Sample records for real-time rt-pcr analysis

  1. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  2. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real-time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real-time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...pseudomallei and B. mallei , respectively are the causative agents of meliodosis and glanders , primarily in animals (both pathogens), and in humans

  4. Avian influenza virus detection and quantitation by real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  5. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated virus 3 variant groups I, II, III and VI.

    PubMed

    Bester, Rachelle; Jooste, Anna E C; Maree, Hans J; Burger, Johan T

    2012-09-27

    Grapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM. The real-time RT-PCR HRM provides a sensitive, automated and

  6. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    PubMed

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Recent sequence variation in probe binding site affected detection of respiratory syncytial virus group B by real-time RT-PCR.

    PubMed

    Kamau, Everlyn; Agoti, Charles N; Lewa, Clement S; Oketch, John; Owor, Betty E; Otieno, Grieven P; Bett, Anne; Cane, Patricia A; Nokes, D James

    2017-03-01

    Direct immuno-fluorescence test (IFAT) and multiplex real-time RT-PCR have been central to RSV diagnosis in Kilifi, Kenya. Recently, these two methods showed discrepancies with an increasing number of PCR undetectable RSV-B viruses. Establish if mismatches in the primer and probe binding sites could have reduced real-time RT-PCR sensitivity. Nucleoprotein (N) and glycoprotein (G) genes were sequenced for real-time RT-PCR positive and negative samples. Primer and probe binding regions in N gene were checked for mismatches and phylogenetic analyses done to determine molecular epidemiology of these viruses. New primers and probe were designed and tested on the previously real-time RT-PCR negative samples. N gene sequences revealed 3 different mismatches in the probe target site of PCR negative, IFAT positive viruses. The primers target sites had no mismatches. Phylogenetic analysis of N and G genes showed that real-time RT-PCR positive and negative samples fell into distinct clades. Newly designed primers-probe pair improved detection and recovered previous PCR undetectable viruses. An emerging RSV-B variant is undetectable by a quite widely used real-time RT-PCR assay due to polymorphisms that influence probe hybridization affecting PCR accuracy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Sequence Optimized Real-Time RT-PCR Assay for Detection of Crimean-Congo Hemorrhagic Fever Virus

    DTIC Science & Technology

    2017-03-21

    19-23]. Real-56 time reverse-transcription PCR remains the gold standard for quantitative , sensitive, and specific 57 detection of CCHFV; however...five-fold in two different series , and samples were run by real- time RT-PCR 116 in triplicate. The preliminary LOD was the lowest RNA dilution where...1 Sequence optimized real- time RT-PCR assay for detection of Crimean-Congo hemorrhagic fever 1 virus 2 3 JW Koehler1, KL Delp1, AT Hall1, SP

  9. Bluetongue virus RNA detection by real-time rt-PCR in post-vaccination samples from cattle.

    PubMed

    De Leeuw, I; Garigliany, M; Bertels, G; Willems, T; Desmecht, D; De Clercq, K

    2015-04-01

    Bluetongue virus serotype 8 (BTV-8) was responsible for a large outbreak among European ruminant populations in 2006-2009. In spring 2008, a massive vaccination campaign was undertaken, leading to the progressive disappearance of the virus. During surveillance programmes in Western Europe in 2010-2011, a low but significant number of animals were found weakly positive using BTV-specific real-time RT-PCR, raising questions about a possible low level of virus circulation. An interference of the BTV-8 inactivated vaccine on the result of the real-time RT-PCR was also hypothesized. Several studies specifically addressed the potential association between a recent vaccination and BTV-8 RNA detection in the blood of sheep. Results were contradictory and cattles were not investigated. To enlighten this point, a large study was performed to determine the risks of detection of bluetongue vaccine-associated RNA in the blood and spleen of cattle using real-time RT-PCR. Overall, the results presented clearly demonstrate that vaccine viral RNA can reach the blood circulation in sufficient amounts to be detected by real-time RT-PCR in cattle. This BTV-8 vaccine RNA carriage appears as short lasting. © 2013 Blackwell Verlag GmbH.

  10. Differential Detection of Enterovirus and Herpes Simplex Virus in Cerebrospinal Fluid by Real-Time RT-PCR.

    PubMed

    Sarquiz-Martínez, Brenda; González-Bonilla, César R; Santacruz-Tinoco, Clara Esperanza; Muñoz-Medina, José E; Pardavé-Alejandre, Héctor D; Barbosa-Cabrera, Elizabeth; Ramírez-González, José Ernesto; Díaz-Quiñonez, José Alberto

    2017-01-01

    Enterovirus (EV) and herpes simplex virus 1 and 2 (HSV1 and HSV2) are the main etiologic agents of central nervous system infections. Early laboratory confirmation of these infections is performed by viral culture of the cerebrospinal fluid (CSF), or the detection of specific antibodies in serum (e.g., HSV). The sensitivity of viral culture ranges from 65 to 75%, with a recovery time varying from 3 to 10 days. Serological tests are faster and easy to carry out, but they exhibit cross-reactivity between HSV1 and HSV2. Although molecular techniques are more sensitive (sensitivity >95%), they are more expensive and highly susceptible to cross-contamination. A real-time RT-PCR for the detection of EV, HSV1, and HSV2 was compared with end-point nested PCR. We tested 87 CSF samples of patients with a clinical diagnosis of viral meningitis or encephalitis. Fourteen samples were found to be positive by RT-PCR, but only 8 were positive by end-point PCR. The RT-PCR showed a specificity range of 94-100%, the negative predictive value was 100%, and the positive predictive value was 62, 100, and 28% for HSV1, HSV2, and EV, respectively. Real-time RT-PCR detected EV, HSV1, and HSV2 with a higher sensitivity and specificity than end-point nested RT-PCR. © 2017 S. Karger AG, Basel.

  11. Determining miRNA Expression Levels in Degraded RNA Samples Using Real-Time RT-qPCR and Microarray Technologies

    PubMed Central

    Tighe, S.; Holbrook, J.; Nadella, V.; Carmical, R.; Sol-Church, K.; Yueng, A.T.; Chittur, S.

    2011-01-01

    The Nucleic Acid Research Group (NARG) has previously conducted studies evaluating the impact of RNA integrity and priming strategies on cDNA synthesis and real-time RT-qPCR. The results of last year's field study as it relates to degraded RNA will be presented. In continuation of the RNA integrity theme, this year's study was designed to evaluate the impact of RNA integrity on the analysis of miRNA expression using real-time RT-qPCR. Target section was based on data obtained by the Microarray Research Group (MARG) and other published data from next gen sequencing. These 9 miRNAs represent three groups of miRNA that are expressed at low, medium or high levels in the First Choice human brain reference RNA sample. Two popular RT priming strategies tested in this study include the Megaplex miRNA TaqMan assay (ABI) and the RT2 miRNA qPCR assay (Qiagen/SA Biosciences). The basis for the ABI assay design is a target-specific stem-loop structure and reverse-transcription primer, while the Qiagen design combines poly(A) tailing and a universal reverse transcription in one cDNA synthesis reaction. For this study, the human brain reference RNA was subject to controlled degradation using RNase A to RIN (RNA Integrity Number) values of 7 (good), 4 (moderately degraded), and 2 (severely degraded).These templates were then used to assess both RT methods. In addition to this real-time RT-qPCR data, the same RNA templates were further analyzed using universal poly(A) tailing and hybridization to Affymetrix miRNA GeneChips. This talk will provide insights into RT priming strategies for miRNA and contrast the qPCR results obtained using different technologies.

  12. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    PubMed Central

    Expósito-Rodríguez, Marino; Borges, Andrés A; Borges-Pérez, Andrés; Pérez, José A

    2008-01-01

    Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene

  13. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus.

    PubMed

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-06-02

    A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  14. Diagnosis of Cetacean morbillivirus: A sensitive one step real time RT fast-PCR method based on SYBR(®) Green.

    PubMed

    Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando

    2015-12-15

    Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.

    PubMed

    Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram

    2014-12-01

    Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.

  16. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    PubMed

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  17. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Improved serotype-specific dengue virus detection in Trinidad and Tobago using a multiplex, real-time RT-PCR.

    PubMed

    Waggoner, Jesse J; Sahadeo, Nikita S D; Brown, Arianne; Mohamed-Hadley, Alisha; Hadley, Dexter; Carrington, Leslie; Carrington, Christine V F; Pinsky, Benjamin A

    2015-02-01

    Dengue virus (DENV) transmission occurs throughout the Caribbean, though laboratory confirmation and epidemiologic surveillance are limited by the availability of serotype-specific molecular diagnostics. In this study, we show that a serotype-specific DENV multiplex, real-time reverse transcriptase-PCR (RT-PCR) detected DENV RNA in significantly more samples (82/182) than a reference hemi-nested RT-PCR (57/182; P=0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus.

    PubMed

    Jothikumar, Narayanan; Cromeans, Theresa L; Robertson, Betty H; Meng, X J; Hill, Vincent R

    2006-01-01

    Hepatitis E virus (HEV) is transmitted by the fecal-oral route and causes sporadic and epidemic forms of acute hepatitis. Large waterborne HEV epidemics have been documented exclusively in developing countries. At least four major genotypes of HEV have been reported worldwide: genotype 1 (found primarily in Asian countries), genotype 2 (isolated from a single outbreak in Mexico), genotype 3 (identified in swine and humans in the United States and many other countries), and genotype 4 (identified in humans, swine and other animals in Asia). To better detect and quantitate different HEV strains that may be present in clinical and environmental samples, we developed a rapid and sensitive real-time RT-PCR assay for the detection of HEV RNA. Primers and probes for the real-time RT-PCR were selected based on the multiple sequence alignments of 27 sequences of the ORF3 region. Thirteen HEV isolates representing genotypes 1-4 were used to standardize the real-time RT-PCR assay. The TaqMan assay detected as few as four genome equivalent (GE) copies of HEV plasmid DNA and detected as low as 0.12 50% pig infectious dose (PID50) of swine HEV. Different concentrations of swine HEV (120-1.2PID50) spiked into a surface water concentrate were detected in the real-time RT-PCR assay. This is the first reporting of a broadly reactive TaqMan RT-PCR assay for the detection of HEV in clinical and environmental samples.

  1. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species.

    PubMed

    Soltan, Mohamed A; Tsai, Yun-Long; Lee, Pei-Yu A; Tsai, Chuan-Fu; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Wilkes, Rebecca P

    2016-09-01

    There is no gold standard for detection of Rotavirus Group A (RVA), one of the main causes of diarrhea in neonatal animals. Sensitive and specific real-time RT-PCR (rtRT-PCR) assays are available for RVA but require submission of the clinical samples to diagnostic laboratories. Patient-side immunoassays for RVA protein detection have shown variable results, particularly with samples from unintended species. A sensitive and specific test for detection of RVA on the farm would facilitate rapid management decisions. The insulated isothermal RT-PCR (RT-iiPCR) assay works in a portable machine to allow sensitive and specific on-site testing. The aim of this investigation was to evaluate a commercially available RT-iiPCR assay for RVA detection in feces from different animal species. This assay was compared to an in-house rtRT-PCR assay and a commercially available rtRT-PCR kit, as well as an ELISA and EM for RVA detection. All three PCR assays targeted the well-conserved NSP5 gene. Clinical fecal samples from 108 diarrheic animals (mainly cattle and horses) were tested. The percentage of positive samples by ELISA, EM, in-house rtRT-PCR, commercial rtRT-PCR, and RT-iiPCR was 29.4%, 31%, 36.7%, 51.4%, 56.9%, respectively. The agreement between different assays was high (81.3-100%) in samples containing high viral loads. The sensitivity of the RT-iiPCR assay appeared to be higher than the commercially available rtRT-PCR assay, with a limit of detection (95% confidence index) of 3-4 copies of in vitro transcribed dsRNA. In conclusion, the user-friendly, field-deployable RT-iiPCR system holds substantial promise for on-site detection of RVA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. High-throughput real-time quantitative reverse transcription PCR.

    PubMed

    Bookout, Angie L; Cummins, Carolyn L; Mangelsdorf, David J; Pesola, Jean M; Kramer, Martha F

    2006-02-01

    Extensive detail on the application of the real-time quantitative polymerase chain reaction (QPCR) for the analysis of gene expression is provided in this unit. The protocols are designed for high-throughput, 384-well-format instruments, such as the Applied Biosystems 7900HT, but may be modified to suit any real-time PCR instrument. QPCR primer and probe design and validation are discussed, and three relative quantitation methods are described: the standard curve method, the efficiency-corrected DeltaCt method, and the comparative cycle time, or DeltaDeltaCt method. In addition, a method is provided for absolute quantification of RNA in unknown samples. RNA standards are subjected to RT-PCR in the same manner as the experimental samples, thus accounting for the reaction efficiencies of both procedures. This protocol describes the production and quantitation of synthetic RNA molecules for real-time and non-real-time RT-PCR applications.

  3. Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia.

    PubMed

    Wattjes, M P; Krauter, J; Nagel, S; Heidenreich, O; Ganser, A; Heil, G

    2000-02-01

    The chromosomal translocation t(8;21)(q22;q22) is one of the most frequent karyotypic aberrations in acute myeloid leukemia (AML) and results in a chimeric fusion transcript AML1/MTG8. Since AML1/MTG8 fusion transcripts remain detectable by RT-PCR in t(8;21) AML patients in long-term hematological remission, quantitative assessment of AML1/MTG8 transcripts is necessary for the monitoring of minimal residual disease (MRD) in these patients. Competitive RT-PCR and recently real-time RT-PCR are increasingly used for detection and quantification of leukemia specific fusion transcripts. For the direct comparison of both methods we cloned a 42 bp DNA fragment into the original AML1/MTG8 sequence. The resulting molecule was used as an internal competitor for our novel competitive nested RT-PCR for AML1/MTG8 and as an external standard for the generation of AML1/MTG8 standard curves in a real-time PCR assay. Using this standard molecule for both PCR techniques, we compared their sensitivity, linearity and reproducibility. Both methods were comparable with regard to all parameters tested irrespective of analyzing serial dilutions of plasmids, cell lines or samples from t(8;21) positive AML patients at different stages of the disease. Therefore, both techniques can be recommended for the monitoring of MRD in these particular AML patients. However, the automatization of the real-time PCR technique offers some technical advantages.

  4. Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler's murine encephalomyelitis virus and rat theilovirus.

    PubMed

    Yuan, Wen; Wang, Jing; Xu, Fengjiao; Huang, Bihong; Lian, Yuexiao; Rao, Dan; Yin, Xueqin; Wu, Miaoli; Zhu, Yujun; Zhang, Yu; Huang, Ren; Guo, Pengju

    2016-10-01

    Theiler's murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×10(1) copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation <3.1%. 439 clinical samples were evaluated by both duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    PubMed Central

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  6. TaqMan real-time RT-PCR detection of infectious salmon anaemia virus (ISAV) from formalin-fixed paraffin-embedded Atlantic salmon Salmo salar tissues.

    PubMed

    Godoy, M G; Kibenge, F S; Kibenge, M J; Olmos, P; Ovalle, L; Yañez, A J; Avendaño-Herrera, R

    2010-05-18

    The objective of this study was to evaluate the application of a TaqMan real-time reverse transcriptase PCR (RT-PCR) assay for the detection of infectious salmon anaemia virus (ISAV) in formalin-fixed paraffin-embedded (FFPE) fish tissues from Atlantic salmon Salmo salar with and without clinical signs of infection, and to compare it with histological and immunohistochemical (IHC) techniques. Sixteen fish samples obtained in 2007 and 2008 from 4 different farms in Chile were examined. The real-time RT-PCR allowed the detection of ISAV in FFPE samples from 9 of 16 fish, regardless of the organs analyzed, whereas 4 of the real-time RT-PCR negative fish were positive as indicated by histological examination and 3 of the real-time RT-PCR positive fish were negative as indicated by immunohistochemistry evaluation. The presence of ISAV in RT-PCR positive samples was confirmed by amplicon sequencing. This work constitutes the first report on the use of real-time RT-PCR for the detection of ISAV in FFPE sections. The assay is very useful for the examination of archival wax-embedded tissues, and allows for both prospective and retrospective evaluation of tissue samples for the presence of ISAV. However, the method only confirms the presence of the pathogen and should be used in combination with histopathology, which is a more precise tool. The combination of both techniques would be invaluable for confirmatory diagnosis of infectious salmon anaemia (ISA), which is essential for solving salmon farm problems.

  7. Ring trial 2016 for Bluetongue virus detection by real-time RT-PCR in France.

    PubMed

    Sailleau, Corinne; Viarouge, Cyril; Breard, Emmanuel; Vitour, Damien; Zientara, Stephan

    2017-05-01

    Since the unexpected emergence of BTV-8 in Northern Europe and the incursion of BTV-8 and 1 in France in 2006-2007, molecular diagnosis has considerably evolved. Several real-time RT-PCR (rtRT-PCR) methods have been developed and published, and are currently being used in many countries across Europe for BTV detection and typing. In France, the national reference laboratory (NRL) for orbiviruses develops and validates 'ready-to-use' kits with private companies for viral RNA detection. The regional laboratories network that was set up to deal with a heavy demand for analyses has used these available kits. From 2007, ring tests were organized to monitor the performance of the French laboratories. This study presents the results of 63 regional laboratories in the ring trial organized in 2016. Blood samples were sent to the laboratories. Participants were asked to use the rtRT-PCR methods in place in their laboratory, for detection of all BTV serotypes and specifically BTV-8. The French regional laboratories are able to detect and genotype BTV in affected animals. Despite the use of several methods (i.e. RNA extraction and different commercial rtRT-PCRs), the network is homogeneous. The ring trial demonstrated that the French regional veterinary laboratories have reliable and robust BTV diagnostic tools for BTV genome detection.

  8. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Development of a real-time RT-PCR assay for a novel influenza A (H1N1) virus.

    PubMed

    Jiang, Tao; Kang, Xiaoping; Deng, Yongqiang; Zhao, Hui; Li, Xiaofeng; Yu, Xuedong; Yu, Man; Qin, Ede; Zhu, Qingyu; Yang, Yinhui; Qin, Chengfeng

    2010-02-01

    A pandemic caused by a novel influenza A virus (H1N1) poses a serious public health threat. In this study, a real-time reverse transcriptase PCR (RT-PCR) assay based on the hemagglutinin gene was developed that discriminates the novel H1N1 from swine influenza virus, seasonal H1N1/H3N2 virus and the highly pathogenic H5N1 avian influenza virus. The sensitivity of this assay was 0.2 50% tissue culture infective dose of virus and 200 copies of in vitro-transcribed target RNA. Three hundred and forty-eight clinical specimens from suspected H1N1 patients were tested using this assay, and forty-two (12.07%) were found to be positive. Tests using the real-time PCR assay recommended by WHO and virus isolation gave identical results. This sensitive and specific real-time RT-PCR assay will contribute to the early diagnosis and control of the emerging H1N1 influenza pandemic. 2009 Elsevier B.V. All rights reserved.

  10. Molecular simultaneous detection of Cherry necrotic rusty mottle virus and Cherry green ring mottle virus by real-time RT-PCR and high resolution melting analysis

    USDA-ARS?s Scientific Manuscript database

    In this study, real-time RT-PCR assays were combined with high resolution melting (HRM) analysis for the simultaneous detection of Cherry necrotic rusty mottle virus (CNRMV) and Cherry green ring mottle virus (CGRMV) infection in sweet cherry trees. Detection of CNRMV and CGRMV was performed using a...

  11. A novel and highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus.

    PubMed

    Shen, Xin-Xin; Qiu, Fang-Zhou; Zhao, Huai-Long; Yang, Meng-Jie; Hong, Liu; Xu, Song-Tao; Zhou, Shuai-Feng; Li, Gui-Xia; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-03-01

    The sensitivity of qRT-PCR assay is not adequate for the detection of the samples with lower viral load, particularly in the cerebrospinal fluid (CSF) of patients. Here, we present the development of a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of human enterovirus (HEV). The clinical performance of both RTN RT-PCR and qRT-PCR was also tested and compared using 140 CSF and fecal specimens. The sensitivities of RTN RT-PCR assay for EV71, Coxsackievirus A (CVA)16, CVA6 and CVA10 achieved 10 -8 dilution with a corresponding Ct value of 38.20, 36.45, 36.75, and 36.45, respectively, which is equal to traditional two-step nested RT-PCR assay and approximately 2-10-fold lower than that of qRT-PCR assay. The specificity of RTN RT-PCR assay was extensively analyzed insilico and subsequently verified using the reference isolates and clinical samples. Sixteen qRT-PCR-negative samples were detected by RTN RT-PCR and a variety of enterovirus serotypes was identified by sequencing of inner PCR products. We conclude RTN RT-PCR is more sensitive than qRT-PCR for the detection of HEV in clinical samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR.

    PubMed

    Donia, D; Divizia, M; Pana', A

    2005-06-01

    Armored Enterovirus RNA was used to standardize a real-time reverse transcription (RT)-PCR for environmental testing. Armored technology is a system to produce a robust and stable RNA standard, trapped into phage proteins, to be used as internal control. The Armored Enterovirus RNA protected sequence includes 263 bp of highly conserved sequences in 5' UTR region. During these tests, Armored RNA has been used to produce a calibration curve, comparing three different fluorogenic chemistry: TaqMan system, Syber Green I and Lux-primers. The effective evaluation of three amplifying commercial reagent kits, in use to carry out real-time RT-PCR, and several extraction procedures of protected viral RNA have been carried out. The highest Armored RNA recovery was obtained by heat treatment while chemical extraction may decrease the quantity of RNA. The best sensitivity and specificity was obtained using the Syber Green I technique since it is a reproducible test, easy to use and the cheapest one. TaqMan and Lux-primer assays provide good RT-PCR efficiency in relationship to the several extraction methods used, since labelled probe or primer request in these chemistry strategies, increases the cost of testing.

  13. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae

    PubMed Central

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-01-01

    Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference

  14. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.

    PubMed

    Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc

    2009-10-30

    Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. In this work, we provided a set of genes that are suitable reference genes for quantitative gene

  15. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses

    PubMed Central

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M.; Zhao, Hui; Ma, Xiaoyue; Ellison, James A.; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  16. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    PubMed

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M; Zhao, Hui; Ma, Xiaoyue; Ellison, James A; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian; Li, Yu

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  17. Limitations of commonly used internal controls for real-time RT-PCR analysis of renal epithelial-mesenchymal cell transition.

    PubMed

    Elberg, Gerard; Elberg, Dorit; Logan, Charlotte J; Chen, Lijuan; Turman, Martin A

    2006-01-01

    Progressive renal fibrotic disease is accompanied by the massive accumulation of myofibroblasts as defined by alpha smooth muscle actin (alphaSMA) expression. We quantitated gene expression using real-time RT-PCR analysis during conversion of primary cultured human renal tubular cells (RTC) to myofibroblasts after treatment with transforming growth factor-beta1 (TGF-beta1). We report herein the limitations of commonly used reference genes for mRNA quantitation. We determined the expression of alphaSMA and megakaryoblastic leukemia-1 (MKL1), a transcriptional regulator of alphaSMA, by quantitative real-time PCR using three common internal controls, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin A and 18S rRNA. Expression of GAPDH mRNA and cyclophilin A mRNA, and to a lesser extent, 18S rRNA levels varied over time in culture and with exposure to TGF-beta1. Thus, depending on which reference gene was used, TGF-beta1 appeared to have different effects on expression of MKL1 and alphaSMA. RTC converting to myofibroblasts in primary culture is a valuable system to study renal fibrosis in humans. However, variability in expression of reference genes with TGF-beta1 treatment illustrates the need to validate mRNA quantitation with multiple reference genes to provide accurate interpretation of fibrosis studies in the absence of a universal internal standard for mRNA expression. 2006 S. Karger AG, Basel.

  18. Establishment of a multiplex real-time RT-PCR assay for rapid identification of H6 subtype avian influenza viruses.

    PubMed

    Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping

    2018-06-01

    The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.

  19. High-Throughput RT-PCR for small-molecule screening assays

    PubMed Central

    Bittker, Joshua A.

    2012-01-01

    Quantitative measurement of the levels of mRNA expression using real-time reverse transcription polymerase chain reaction (RT-PCR) has long been used for analyzing expression differences in tissue or cell lines of interest. This method has been used somewhat less frequently to measure the changes in gene expression due to perturbagens such as small molecules or siRNA. The availability of new instrumentation for liquid handling and real-time PCR analysis as well as the commercial availability of start-to-finish kits for RT-PCR has enabled the use of this method for high-throughput small-molecule screening on a scale comparable to traditional high-throughput screening (HTS) assays. This protocol focuses on the special considerations necessary for using quantitative RT-PCR as a primary small-molecule screening assay, including the different methods available for mRNA isolation and analysis. PMID:23487248

  20. [Evaluation on stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval].

    PubMed

    Zhang, Ping; Ma, Kai-Jun; Zhang, Heng; Wang, Hui-Jun; Shen, Yi-Wen; Chen, Long

    2012-04-01

    To explore the stability of internal controls in human cardiac muscle by real-time RT-PCR during early postmortem interval (PMI) in order to find the most stable marker. Ten individuals with similar environmental conditions (the average store temperature: 25 degrees C) and different PMI ranging from 4.3 to 22.3 h were selected. Total RNA was extracted from each sample and six commonly internal controls were used including beta-actin, GAPDH, B2M, U6, 18S rRNA and HSA-miR-1, and the expression was detected in cardiac muscle by real-time RT-PCR. The expression stability of internal controls was evaluated using genormPLUS software during early PMI. The internal control with the most stability was selected. The relationship between the most stable marker and its expression level affected by some other parameters such as age, gender and cause of death was also analyzed. The U6 showed the most stable expression during early PMI in cardiac muscle, and its expression level was not affected by those parameters including age, gender and cause of death (P > 0.05). U6 may be a valuable internal control for the study of relationship between PMI determination and degradation of nucleic acid in human cardiac muscle by real-time RT-PCR.

  1. [Experimental studies of using real-time fluorescence quantitative PCR and RT-PCR to detect E6 and E7 genes of human papillomavirus type 16 in cervical carcinoma cell lines].

    PubMed

    Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min

    2007-06-01

    To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.

  2. Development and comparative evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of West Nile virus in human patients.

    PubMed

    Kumar, Jyoti S; Saxena, Divyasha; Parida, Manmohan

    2014-01-01

    The recent outbreaks of West Nile Virus (WNV) in the Northeastern American continents and other regions of the world have made it essential to develop an efficient protocol for surveillance of WN virus. Nucleic acid based techniques like, RT-PCR have the advantage of sensitivity, specificity and rapidity. A one step single tube Env gene specific real-time RT-PCR was developed for early and reliable clinical diagnosis of WNV infection in clinical samples. The applicability of this assay for clinical diagnosis was validated with 105 suspected acute-phase serum and plasma samples from the recent epidemic of mysterious fever in Tamil Nadu, India in 2009-10. The comparative evaluation revealed the higher sensitivity of real-time RT-PCR assay by picking up 4 additional samples with low copy number of template in comparison to conventional RT-PCR. All the real-time positive samples further confirmed by CDC reported TaqMan real-time RT-PCR and quantitative real-time RT-PCR assays for the simultaneous detection of WNV lineage 1 and 2 strains. The quantitation of the viral load samples was done using a standard curve. These findings demonstrated that the assay has the potential usefulness for clinical diagnosis due to detection and quantification of WNV in acute-phase patient serum samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Rapid differentiation of citrus Hop stunt viroid variants by real-time RT-PCR and high resolution melting analysis.

    PubMed

    Loconsole, Giuliana; Onelge, Nuket; Yokomi, Raymond K; Kubaa, Raied Abou; Savino, Vito; Saponari, Maria

    2013-01-01

    The RNA genome of pathogenic and non-pathogenic variants of citrus Hop stunt viroid (HSVd) differ by five to six nucleotides located within the variable (V) domain referred to as the "cachexia expression motif". Sensitive hosts such as mandarin and its hybrids are seriously affected by cachexia disease. Current methods to differentiate HSVd variants rely on lengthy greenhouse biological indexing on Parson's Special mandarin and/or direct nucleotide sequence analysis of amplicons from RT-PCR of HSVd-infected plants. Two independent high throughput assays to segregate HSVd variants by real-time RT-PCR and High-Resolution Melting Temperature (HRM) analysis were developed: one based on EVAGreen dye; the other based on TaqMan probes. Primers for both assays targeted three differentiating nucleotides in the V domain which separated HSVd variants into three clusters by distinct melting temperatures with a confidence level higher than 98%. The accuracy of the HRM assays were validated by nucleotide sequencing of representative samples within each HRM cluster and by testing 45 HSVd-infected field trees from California, Italy, Spain, Syria and Turkey. To our knowledge, this is the first report of a rapid and sensitive approach to detect and differentiate HSVd variants associated with different biological behaviors. Although, HSVd is found in several crops including citrus, cachexia variants are restricted to some citrus-growing areas, particularly the Mediterranean Region. Rapid diagnosis for cachexia and non-cachexia variants is, thus, important for the management of HSVd in citrus and reduces the need for bioindexing and sequencing analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE).

    PubMed

    Taylor, Sean C; Mrkusich, Eli M

    2014-01-01

    In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR. © 2013 S. Karger AG, Basel.

  5. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  6. Targeted resequencing reveals ALK fusions in non-small cell lung carcinomas detected by FISH, immunohistochemistry, and real-time RT-PCR: a comparison of four methods.

    PubMed

    Tuononen, Katja; Sarhadi, Virinder Kaur; Wirtanen, Aino; Rönty, Mikko; Salmenkivi, Kaisa; Knuuttila, Aija; Remes, Satu; Telaranta-Keerie, Aino I; Bloor, Stuart; Ellonen, Pekka; Knuutila, Sakari

    2013-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements occur in a subgroup of non-small cell lung carcinomas (NSCLCs). The identification of these rearrangements is important for guiding treatment decisions. The aim of our study was to screen ALK gene fusions in NSCLCs and to compare the results detected by targeted resequencing with results detected by commonly used methods, including fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and real-time reverse transcription-PCR (RT-PCR). Furthermore, we aimed to ascertain the potential of targeted resequencing in detection of ALK-rearranged lung carcinomas. We assessed ALK fusion status for 95 formalin-fixed paraffin-embedded tumor tissue specimens from 87 patients with NSCLC by FISH and real-time RT-PCR, for 57 specimens from 56 patients by targeted resequencing, and for 14 specimens from 14 patients by IHC. All methods were performed successfully on formalin-fixed paraffin-embedded tumor tissue material. We detected ALK fusion in 5.7% (5 out of 87) of patients examined. The results obtained from resequencing correlated significantly with those from FISH, real-time RT-PCR, and IHC. Targeted resequencing proved to be a promising method for ALK gene fusion detection in NSCLC. Means to reduce the material and turnaround time required for analysis are, however, needed.

  7. Simultaneous detection and serotyping of dengue infection using single tube multiplex CDC Dengue Real-Time RT-PCR from India.

    PubMed

    Sharma, Shashi; Tandel, Kundan; Danwe, Surabhi; Bhatt, Puneet; Dash, P K; Ranjan, Praveer; Rathi, K R; Gupta, Rajiv Mohan; Parida, M M

    2018-03-01

    Four antigenically different dengue virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) are known to cause infections in humans. Some of these are known to cause more severe disease than the others. Chances for developing Dengue hemorrhagic fever-dengue shock syndrome (DHF-DSS) increases significantly with history of previous infection with one of the four serotypes. Therefore, early diagnosis, serotyping and providing early warning of dengue fever epidemics to concerned authorities becomes very important for better patient outcome and to curb the rapid spread in the community. During the 2014 outbreak, a total of 100 samples from suspected cases of dengue were collected. NS1 antigen based rapid test was used for serological diagnosis. Dengue complex one step reverse transcription-polymerase chain reaction was performed to look for presence of viral RNA. Single tube multiplex RT-PCR was also performed to look for infecting serotype. CDC Dengue Multiplex Real Time PCR assay was performed for rapid diagnosis and simultaneous serotyping of the dengue virus. Out of the 100 samples screened, 69 were found to be positive by NS1Ag Rapid test. 34 samples were found positive by dengue consensus RT-PCR assay. 22 samples were found to be positive by single tube Dengue multiplex RT-PCR assay. Serotype DEN-2 was present in maximum numbers followed by DEN-3. 44 samples were found positive by DENV CDC Multiplex Real time PCR assay. DEN-2 was found in maximum numbers followed by DEN-1. Dengue remains to be an important health problem in India and across the globe. Few serotypes of dengue are more dangerous than the others. Rapid diagnosis and serotyping remains the key for better patient management and prevention of disease spreading in the community. Highly sensitive, specific and rapid CDC real time RT-PCR assay was found to be most promising tool among all available molecular diagnostic methods. This will serve a rapid and reliable simultaneous dengue virus detection as well

  8. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    PubMed

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  9. Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is the most important tool in measuring levels of gene expression due to its accuracy, specificity, and sensitivity. However, the accuracy of qRT-PCR analysis strongly depends on transcript normalization using stably expressed reference gene...

  10. Detection of respiratory viruses and bacteria in children using a twenty-two target reverse-transcription real-time PCR (RT-qPCR) panel.

    PubMed

    Ellis, Chelsey; Misir, Amita; Hui, Charles; Jabbour, Mona; Barrowman, Nicholas; Langill, Jonathan; Bowes, Jennifer; Slinger, Robert

    2016-05-01

    Rapid detection of the wide range of viruses and bacteria that cause respiratory infection in children is important for patient care and antibiotic stewardship. We therefore designed and evaluated a ready-to-use 22 target respiratory infection reverse-transcription real-time polymerase chain reaction (RT-qPCR) panel to determine if this would improve detection of these agents at our pediatric hospital. RT-qPCR assays for twenty-two target organisms were dried-down in individual wells of 96 well plates and saved at room temperature. Targets included 18 respiratory viruses and 4 bacteria. After automated nucleic acid extraction of nasopharyngeal aspirate (NPA) samples, rapid qPCR was performed. RT-qPCR results were compared with those obtained by the testing methods used at our hospital laboratories. One hundred fifty-nine pediatric NPA samples were tested with the RT-qPCR panel. One or more respiratory pathogens were detected in 132/159 (83%) samples. This was significantly higher than the detection rate of standard methods (94/159, 59%) (P<0.001). This difference was mainly due to improved RT-qPCR detection of rhinoviruses, parainfluenza viruses, bocavirus, and coronaviruses. The panel internal control assay performance remained stable at room temperature storage over a two-month testing period. The RT-qPCR panel was able to identify pathogens in a high proportion of respiratory samples. The panel detected more positive specimens than the methods in use at our hospital. The pre-made panel format was easy to use and rapid, with results available in approximately 90 minutes. We now plan to determine if use of this panel improves patient care and antibiotic stewardship.

  11. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.

    PubMed

    Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A

    2018-01-01

    Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    PubMed

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Real Time Polymerase Chain Reaction (rt-PCR): A New Patent to Diagnostic Purposes for Paracoccidioidomycosis.

    PubMed

    Rocha-Silva, Fabiana; Gomes, Luciana I; Gracielle-Melo, Cidiane; Goes, Alfredo M; Caligiorne, Rachel B

    2017-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. It is prevalent in Latin American, mainly in Brazil. Therefore, PCM has fundamental impact on the Brazilian global economy, especially in public health system, since it is affecting economical active population in different country regions. The present study aimed to standardize the Real Time-Polymerase Chain Reaction (rt-PCR) for an efficient and safe PCM diagnosis amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. To standardize a methodology of rt-PCR using species-specific primers and probe designed for annealing in this specific region of the fungi´s genome, amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. Followed by design in silico, experiments were performed in vitro to determine rt-PCR specificity, efficiency and genome detection limit. The primers and probe sequences were deposited in Brazilian Coordination of Technological Innovation and Transfer (CTIT), under patent reference number BR1020160078830. The present study demonstrated the rt-PCR applicability for support on diagnosis of paracoccidioidomycosis, presenting low cost, which makes it affordable for public health services in developing countries as Brazil. It is noteworthy that it is necessary to validate this methodology using clinical samples before to use as a safe method of diagnosis. A review of all patents related to this topic was performed and it was shown that, to date, there are no records of patent on kits for paracoccidioidomycosis´s diagnostic. Indeed, there is still a lot to go to reach this goal. The reaction developed was standardized and patented, opening perspectives to molecular diagnosis development for paracoccidioidomycosis, since rt-PCR can be applied to a broad spectrum of infectious diseases. It would need to be tested in biological

  14. Nucleic Acid Research Group (NARG) 2009-2010 Study : Optimal Priming Strategies for cDNA Synthesis in Real-Time RT-qPCR

    PubMed Central

    Hunter, T.C.; Knudtson, K.L.; Nadella, V.; Sol-Church, K.; Taylor, W.L.; Tighe, S.; Yueng, A.T.; Chittur, S.

    2010-01-01

    r1-1 Real-time reverse transcriptase quantitative PCR (RT-qPCR) is a widely used technique for measuring transcript levels. Priming strategy and reverse transcriptase enzyme are key elements that affect sensitivity and variability of RT-qPCR and microarray results. Previously, the Nucleic Acid Research Group (NARG) had conducted preliminary studies within the group to examine the effects of priming strategy on generating cDNA for use with qPCR. This year's study was an open study in which the qPCR community was invited to participate. Participants received the RT primers and RNA template and were asked to perform the RT reaction using their preferred reaction conditions. Each participating laboratory was provided at least two RNA templates of varying quality. The RT products were returned to the NARG and all RT reactions were used in a qPCR reaction. The qPCR assays looked at three genes of varying abundance, b-actin (high copy), b-glucuronidase (medium copy) and TATA binding protein (low copy) as well as varying distance from the 3? end for each transcript. Results from participating laboratories will be evaluated to determine the impact of priming strategy, assay chemistry and experimental setup on the RT step. Additionally, we will address the impact of RNA integrity on cDNA synthesis.

  15. Identification of normalization factors for quantitative real-time RT-PCR analysis of gene expression in Pacific abalone Haliotis discus hannai

    NASA Astrophysics Data System (ADS)

    Qiu, Reng; Sun, Boguang; Fang, Shasha; Sun, Li; Liu, Xiao

    2013-03-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is widely used in studies of gene expression. In most of these studies, housekeeping genes are used as internal references without validation. To identify appropriate reference genes for qRT-PCR in Pacific abalone Haliotis discus hannai, we examined the transcription stability of six housekeeping genes in abalone tissues in the presence and absence of bacterial infection. For this purpose, abalone were infected with the bacterial pathogen Vibrio anguillarum for 12 h and 48 h. The mRNA levels of the housekeeping genes in five tissues (digestive glands, foot muscle, gill, hemocyte, and mantle) were determined by qRT-PCR. The PCR data was subsequently analyzed with the geNorm and NormFinder algorithms. The results show that in the absence of bacterial infection, elongation factor-1-alpha and beta-actin were the most stably expressed genes in all tissues, and thus are suitable as cross-tissue type normalization factors. However, we did not identify any universal reference genes post infection because the most stable genes varied between tissue types. Furthermore, for most tissues, the optimal reference genes identified by both algorithms at 12 h and 48 h post-infection differed. These results indicate that bacterial infection induced significant changes in the expression of abalone housekeeping genes in a manner that is dependent on tissue type and duration of infection. As a result, different normalization factors must be used for different tissues at different infection points.

  16. Simultaneous detection and differentiation of three Potyviridae viruses by a multiplex TaqMan real time RT-PCR assay

    USDA-ARS?s Scientific Manuscript database

    A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G, Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay w...

  17. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs.

    PubMed

    Sehata, Go; Sato, Hiroaki; Ito, Toshihiro; Imaizumi, Yoshitaka; Noro, Taichi; Oishi, Eiji

    2015-07-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication.

  18. Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus).

    PubMed

    Yang, Chang Geng; Wang, Xian Li; Tian, Juan; Liu, Wei; Wu, Fan; Jiang, Ming; Wen, Hua

    2013-09-15

    Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) has been used frequently to study gene expression related to fish immunology. In such studies, a stable reference gene should be selected to correct the expression of the target gene. In this study, seven candidate reference genes (glyceraldehyde-3-phosphate dehydrogenase (GADPH), ubiquitin-conjugating enzyme (UBCE), 18S ribosomal RNA (18S rRNA), beta-2-microglobulin (B2M), elongation factor 1 alpha (EF1A), tubulin alpha chain-like (TUBA) and beta actin (ACTB)), were selected to analyze their stability and normalization in seven tissues (liver, spleen, kidney, brain, heart, muscle and intestine) of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae or Streptococcus iniae, respectively. The results showed that all the candidate reference genes exhibited tissue-dependent transcriptional variations. With PBS injection as a control, UBCE was the most stable and suitable single reference gene in the intestine, liver, brain, kidney, and spleen after S. iniae infection, and in the liver, kidney, and spleen after S. agalactiae infection. EF1A was the most suitable in heart and muscle after S. iniae or S. agalactiae infection. GADPH was the most suitable gene in intestine and brain after S. agalactiae infection. In normal conditions, UBCE and 18S rRNA were the most stably expressed genes across the various tissues. These results showed that for RT-qPCR analysis of tilapia, selecting two or more reference genes may be more suitable for cross-tissue analysis of gene expression. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Comparison of ELISA and dual stage real time RT-PCR to differentiate Sabin like and non-Sabin like poliovirus isolates.

    PubMed

    Kaundal, Nirmal; Sarkate, Purva; Prakash, Charu; Rishi, Narayan

    2017-06-01

    Environmental surveillance of polioviruses has been used as an important tool in monitoring circulation of wild polioviruses and/or Vaccine derived polioviruses in sewage samples. It is important to distinguish Sabin like isolates from non-Sabin like; ELISA & dual stage real time RT-PCR have been used for the same. Current study was carried out on sewage isolates to compare ELISA & RT-PCR with sequencing to distinguish Sabin like from non-Sabin like. Out of 468 sewage specimens, 91 (19.44%) were non-polio enteroviruses positive and 377 (80.56%) were polio positive by virus isolation method. A total of 488 polio virus isolates were detected by L20B and RD route which were further subjected to ELISA and RT-PCR. The results were compared with sequencing. On comparison, the specificity of ELISA was only 66.67% in spite of very low sensitivity (3.43%). The sensitivity of RT-PCR was 97.71% which makes it a good primary screening test for detection of non-Sabin like viruses. However, the specificity was only 33.33%. RT-PCR appears to be a sensitive tool for detecting non-Sabin like viruses however; the isolates which are non-Sabin like by RT-PCR may not necessarily be mutated viruses. ELISA cannot be used for differentiation of Sabin likes from non-Sabin likes due to low sensitivity.

  20. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    PubMed

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Investigation of West Nile virus RNA in blood donors by real-time RT-PCR].

    PubMed

    Sahiner, Fatih; Avcı, Ismail Yaşar; Bedir, Orhan; Koru, Ozgür; Sener, Kenan; Yapar, Mehmet; Kubar, Ayhan

    2012-07-01

    West Nile virus (WNV), a member of Flaviviridae family, is an enveloped, icosahedral symmetric RNA virus. Primary reservoir hosts of WNV are birds, but the virus can cause various infections in humans and other mammals. The most common and natural transmission way of WNV infections is mosquito bites, however, humans can be infected by different routes. The most important non-mosquito transmission route is contaminated blood and blood products. In this study, we aimed to investigate the risk of WNV transmission through blood and blood products in Ankara, Turkey. The presence of WNV RNA was investigated by in house real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in serum samples obtained from 729 healthy blood donors (mean age: 27.7 years; 711 were male), regardless of the donor's seropositivity status since the virus can be transmitted at the early stages of infection when seroconversion has not yet developed. Serum samples were collected in August-September 2009, the period when these infections are more frequent due to mosquito activity. The vast majority of donors (n= 702, 96.3%) have been inhabiting in Ankara and 569 (78%) of donors have had risk factors for arboviral infections (e.g. outdoor activity, mosquito and tick bites). WNV RNA was not detected by real-time RT-PCR analysis in any serum sample included in this study. According to the results of our study, it can be said that the risk of WNV transmission through blood and blood products is low in Ankara. However, WNV seropositivity was detected within the range of 0.56 to 2.4% among blood donors in previous studies and probable and confirmed WNV infections have been reported in our region. In addition, WNV outbreaks have emerged in some countries neighbouring Turkey recently. Thus, the risk of WNV transmission through blood and blood products should not be ignored and blood donor questionnaires should be evaluated in detail.

  2. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs

    PubMed Central

    SEHATA, Go; SATO, Hiroaki; ITO, Toshihiro; IMAIZUMI, Yoshitaka; NORO, Taichi; OISHI, Eiji

    2015-01-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication. PMID:25728411

  3. Early diagnosis of dengue in travelers: comparison of a novel real-time RT-PCR, NS1 antigen detection and serology.

    PubMed

    Huhtamo, Eili; Hasu, Essi; Uzcátegui, Nathalie Y; Erra, Elina; Nikkari, Simo; Kantele, Anu; Vapalahti, Olli; Piiparinen, Heli

    2010-01-01

    The increased traveling to dengue endemic regions and the numerous epidemics have led to a rise in imported dengue. The laboratory diagnosis of acute dengue requires several types of tests and often paired samples are needed for obtaining reliable results. Although several diagnostic methods are available, proper comparative data on their performance are lacking. To compare the performance of novel methods including a novel pan-DENV real-time RT-PCR and a commercially available NS1 capture-EIA in regard to IgM detection for optimizing the early diagnosis of DENV in travelers. A panel of 99 selected early phase serum samples of dengue patients was studied by real-time RT-PCR, NS1 antigen ELISA, IgM-EIA, IgG-IFA and cell culture virus isolation. The novel real-time RT-PCR was shown specific and sensitive for detection of DENV-1-4 RNA and suitable for diagnostic use. The diagnostic rate using combination of RNA and IgM detection was 99% and using NS1 and IgM detection 95.9%. The results of RNA and NS1 antigen detection disagreed in 15.5% of samples that had only RNA or NS1 antigen detected. The diagnostic rates of early samples are higher when either RNA or NS1 antigen detection is combined with IgM detection. Besides the differences in the RNA and NS1 detection assays, the observed discrepancy of results could suggest individual variation or differences in timing of these markers in patient serum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. Searching for the best real-time RT-PCRs to detect Zika virus infections: the importance of comparing several protocols.

    PubMed

    de Moraes, F M; Espósito, D L A; Klein, T M; da Fonseca, B A L

    2018-01-01

    Clinical manifestations of Zika, dengue, and chikungunya virus infections are very similar, making it difficult to reach a diagnosis based only on clinical grounds. In addition, there is an intense cross-reactivity between antibodies directed to Zika virus and other flaviviruses, and an accurate Zika diagnosis is best achieved by real-time RT-PCR. However, some real-time RT-PCR show better performance than others. To reach the best possible Zika diagnosis, the analytic sensitivity of some probe-based real-time RT-PCR amplifying Zika virus RNA was evaluated in spiked and clinical samples. We evaluated primers and probes to detect Zika virus, which had been published before, and tested sensitivity using serum spiked and patient samples by real-time RT-PCR. When tested against spiked samples, the previously described primers showed different sensitivity, with very similar results when samples from patients (serum and urine) were analyzed. Real-time RT-PCR designed to amplify Zika virus NS1 showed the best analytical sensitivity for all samples.

  5. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    USGS Publications Warehouse

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  6. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    PubMed Central

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990

  7. Validation of two commercial real-time RT-PCR kits for rapid and specific diagnosis of classical swine fever virus.

    PubMed

    Le Dimna, M; Vrancken, R; Koenen, F; Bougeard, S; Mesplède, A; Hutet, E; Kuntz-Simon, G; Le Potier, M F

    2008-01-01

    Two real-time RT-PCR kits, developed by LSI (TaqVet CSF) and ADIAGENE (Adiavet CSF), obtained an agreement to be commercialised in France, subject to conditions, defined by the French Classical Swine Fever (CSF) National Reference Laboratory. The producers were asked to introduce an internal control to check the RNA extraction efficacy. The different criteria assessed were sensitivity, "pestivirus specificity", reproducibility and ease of handling, using 189 different samples. These samples were either CSFV inactivated strains or blood/serum/organs collected from CSFV experimentally infected pigs or naturally infected wild boars. The reproducibility of the assays was confirmed by the analysis of a batch-to-batch panel control that was used for inter-laboratory tests involving nine laboratories. The two kits were also tested for the use in mass diagnostics and the results proved the kits to be suited using pools of blood, serum and tonsils. Moreover, a field evaluation, carried out on spleen samples collected from the CSF surveillance of wild boars in an area known to be infected and from domestic pigs at a slaughterhouse, confirmed the high sensitivity and specificity of the two kits. This step-by-step evaluation procedure confirmed that the two commercial CSF real-time RT-PCR kits have a higher predictive value than the current diagnostic standard, Virus Isolation.

  8. Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis.

    PubMed

    Rocha, Danilo J P; Santos, Carolina S; Pacheco, Luis G C

    2015-09-01

    The appropriate choice of reference genes is essential for accurate normalization of gene expression data obtained by the method of reverse transcription quantitative real-time PCR (RT-qPCR). In 2009, a guideline called the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) highlighted the importance of the selection and validation of more than one suitable reference gene for obtaining reliable RT-qPCR results. Herein, we searched the recent literature in order to identify the bacterial reference genes that have been most commonly validated in gene expression studies by RT-qPCR (in the first 5 years following publication of the MIQE guidelines). Through a combination of different search parameters with the text mining tool MedlineRanker, we identified 145 unique bacterial genes that were recently tested as candidate reference genes. Of these, 45 genes were experimentally validated and, in most of the cases, their expression stabilities were verified using the software tools geNorm and NormFinder. It is noteworthy that only 10 of these reference genes had been validated in two or more of the studies evaluated. An enrichment analysis using Gene Ontology classifications demonstrated that genes belonging to the functional categories of DNA Replication (GO: 0006260) and Transcription (GO: 0006351) rendered a proportionally higher number of validated reference genes. Three genes in the former functional class were also among the top five most stable genes identified through an analysis of gene expression data obtained from the Pathosystems Resource Integration Center. These results may provide a guideline for the initial selection of candidate reference genes for RT-qPCR studies in several different bacterial species.

  9. Comprehensive Multiplex One-Step Real-Time TaqMan qRT-PCR Assays for Detection and Quantification of Hemorrhagic Fever Viruses

    PubMed Central

    Li, Jiandong; Qu, Jing; He, Chengcheng; Zhang, Shuo; Li, Chuan; Zhang, Quanfu; Liang, Mifang; Li, Dexin

    2014-01-01

    Background Viral hemorrhagic fevers (VHFs) are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs) are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. Results Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. Conclusions Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be specific, sensitive

  10. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1.

    PubMed

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R (2) values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.

  11. Cross-Platform Evaluation of Commercial Real-Time SYBR Green RT-PCR Kits for Sensitive and Rapid Detection of European Bat Lyssavirus Type 1

    PubMed Central

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R 2 values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes. PMID:25785274

  12. Detection of influenza A(H1N1)v virus by real-time RT-PCR.

    PubMed

    Panning, M; Eickmann, M; Landt, O; Monazahian, M; Olschläger, S; Baumgarte, S; Reischl, U; Wenzel, J J; Niller, H H; Günther, S; Hollmann, B; Huzly, D; Drexler, J F; Helmer, A; Becker, S; Matz, B; Eis-Hübinger, Am; Drosten, C

    2009-09-10

    Influenza A(H1N1)v virus was first identified in April 2009. A novel real-time RT-PCR for influenza A(H1N1)v virus was set up ad hoc and validated following industry-standard criteria. The lower limit of detection of the assay was 384 copies of viral RNA per ml of viral transport medium (95% confidence interval: 273-876 RNA copies/ml). Specificity was 100% as assessed on a panel of reference samples including seasonal human influenza A virus H1N1 and H3N2, highly pathogenic avian influenza A virus H5N1 and porcine influenza A virus H1N1, H1N2 and H3N2 samples. The real-time RT-PCR assay for the influenza A matrix gene recommended in 2007 by the World Health Organization was modified to work under the same reaction conditions as the influenza A(H1N1)v virus-specific test. Both assays were equally sensitive. Clinical applicability of both assays was demonstrated by screening of almost 2,000 suspected influenza (H1N1)v specimens, which included samples from the first cases of pandemic H1N1 influenza imported to Germany. Measuring influenza A(H1N1)v virus concentrations in 144 laboratory-confirmed samples yielded a median of 4.6 log RNA copies/ml. The new methodology proved its principle and might assist public health laboratories in the upcoming influenza pandemic.

  13. Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus.

    PubMed

    Zhang, Jianqiang; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chen, Qi; Zhang, Yan; Chiang, Cheng-Jen; Shen, Yu-Han; Li, Fu-Chun; Chang, Hsiao-Fen Grace; Gauger, Phillip C; Harmon, Karen M; Wang, Hwa-Tang Thomas

    2016-08-01

    Recent outbreaks of porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) in multiple countries have caused significant economic losses and remain a serious challenge to the swine industry. Rapid diagnosis is critical for the implementation of efficient control strategies before and during PEDV and PDCoV outbreaks. Insulated isothermal PCR (iiPCR) on the portable POCKIT™ device is user friendly for on-site pathogen detection. In the present study, a singleplex PEDV RT-iiPCR, a singleplex PDCoV RT-iiPCR, and a duplex PEDV/PDCoV real-time RT-PCR (rRT-PCR) commercial reagents targeting the M gene were compared to an N gene-based PEDV rRT-PCR and an M gene-based PDCoV rRT-PCR that were previously published and used as reference PCRs. All PCR assays were highly specific and did not cross react with other porcine enteric pathogens. Analytical sensitivities of the PEDV RT-iiPCR, PDCoV RT-iiPCR and duplex PEDV/PDCoV rRT-PCR were determined using in vitro transcribed RNA as well as viral RNA extracted from ten-fold serial dilutions of PEDV and PDCoV cell culture isolates. Performance of each PCR assay was further evaluated using 170 clinical samples (86 fecal swabs, 24 feces, 19 intestines, and 41 oral fluids). Compared to the reference PEDV rRT-PCR, the sensitivity, specificity and accuracy of the PEDV RT-iiPCR were 97.73%, 98.78%, and 98.24%, respectively, and those of the duplex PEDV/PDCoV rRT-PCR were 98.86%, 96.34%, and 97.65%, respectively. Compared to the reference PDCoV rRT-PCR, the sensitivity, specificity and accuracy of the PDCoV RT-iiPCR were 100%, 100%, and 100%, respectively, and those of the PEDV/PDCoV duplex rRT-PCR were 96.34%, 100%, and 98.24%, respectively. Overall, all three new PCR assays were comparable to the reference rRT-PCRs for detection of PEDV and/or PDCoV. The PEDV and PDCoV RT-iiPCRs are potentially useful tools for on-site detection and the duplex PEDV/PDCoV rRT-PCR provides a convenient method to simultaneously detect

  14. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR).

    PubMed

    Jeong, Jae-Kyo; Kang, Min-Hee; Gurunathan, Sangiliyandi; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2014-09-25

    Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.

  15. Quantitative real time RT-PCR study of pathogen-induced gene expression in rock bream (Oplegnathus fasciatus): internal controls for data normalization.

    PubMed

    Zhang, Bao-cun; Sun, Li; Xiao, Zhi-zhong; Hu, Yong-hua

    2014-06-01

    Rock bream Oplegnathus fasciatus is an important economic fish species. In this study, we evaluated the appropriateness of six housekeeping genes as internal controls for quantitative real-time PCR (RT-qPCR) analysis of gene expression in rock bream before and after pathogen infection. The expression of the selected genes in eight tissues infected with Vibrio alginolyticus or megalocytivirus was determined by RT-qPCR, and the PCR data were analyzed with geNorm and NormFinder algorithms. The results showed that before pathogen infection, mediator of RNA polymerase II transcription subunit 8 and β-actin were ranked as the most stable genes across the examined tissues. After bacterial or viral infection, the stabilities of the housekeeping genes varied to significant extents in tissue-dependent manners, and no single pair of genes was identified as suitable references for all tissues for either of the pathogen stimuli. In addition, for the majority of tissues, the most stable genes during bacterial infection differed from those during viral infection. Nevertheless, optimum reference genes were identified for each tissue under different conditions. Taken together, these results indicate that tissue type and the nature of the infectious agent used in the study can all influence the choice of normalization factors, and that the optimum reference genes identified in this study will provide a useful guidance for the selection of internal controls in future RT-PCR study of gene expression in rock bream. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Laboratory validation of two real-time RT-PCR methods with 5'-tailed primers for an enhanced detection of foot-and-mouth disease virus.

    PubMed

    Vandenbussche, Frank; Lefebvre, David J; De Leeuw, Ilse; Van Borm, Steven; De Clercq, Kris

    2017-08-01

    The 3D and 5UTR real-time RT-PCR assays (RT-qPCR) from Callahan et al. (2002) and Reid et al. (2002) are commonly used reference methods for the detection of foot-and-mouth disease virus (FMDV). For an optimal detection of FMDV in clinical samples, it is advised to use both assays simultaneously (King et al., 2006). Recently, Vandenbussche et al. (2016) showed that the addition of 5'-tails to the FMDV-specific primers enhances the detection of FMDV in both the 3D and the 5UTR RT-qPCR assay. To validate the 3D and 5UTR RT-qPCR assays with 5'-tailed primers for diagnostic purposes, both assays were run in parallel in a triplex one-step RT-qPCR protocol with beta-actin as an internal control and synthetic RNA as an external control. We obtained low limits of detection and high linearity's, high repeatability and reproducibility, near 100% analytical specificity and >99% diagnostic accuracy for both assays. It was concluded that the 3D and 5UTR RT-qPCR assays with 5'-tailed primers are particularly suited for the detection of FMDV as well as to exclude the presence of FMDV. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis.

    PubMed

    Fischer, Cristine Dossin Bastos; Ikuta, Nilo; Canal, Cláudio Wageck; Makiejczuk, Aline; Allgayer, Mariangela da Costa; Cardoso, Cristine Hoffmeister; Lehmann, Fernanda Kieling; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2013-12-01

    Canine distemper virus (CDV) is the cause of a severe and highly contagious disease in dogs. Practical diagnosis of canine distemper based on clinical signs and laboratory tests are required to confirm CDV infection. The present study aimed to develop a molecular assay to detect and differentiate field and vaccine CDV strains. Reverse transcription followed by nested real time polymerase chain reaction (RT-nqPCR) was developed, which exhibited analytical specificity (all the samples from healthy dogs and other canine infectious agents were not incorrectly detected) and sensitivity (all replicates of a vaccine strain were positive up to the 3125-fold dilution - 10(0.7) TCID50). RT-nqPCR was validated for CDV detection on different clinical samples (blood, urine, rectal and conjunctival swabs) of 103 animals suspected to have distemper. A total of 53 animals were found to be positive based on RT-nqPCR in at least one clinical sample. Blood resulted in more positive samples (50 out of 53, 94.3%), followed by urine (44/53, 83.0%), rectal (38/53, 71%) and conjunctival (27/53, 50.9%) swabs. A commercial immunochromatography (IC) assay had detected CDV in only 30 conjunctival samples of these positive dogs. Nucleoprotein (NC) gene sequencing of 25 samples demonstrated that 23 of them were closer to other Brazilian field strains and the remaining two to vaccine strains. A single nucleotide sequences difference, which creates an Msp I restriction enzyme digestion, was used to differentiate between field and vaccine CDV strains by restriction fragment length polymorphism (RFLP) analysis. The complete assay was more sensitive than was IC for the detection of CDV. Blood was the more frequently positive specimen and the addition of a restriction enzyme step allowed the differentiation of vaccine and Brazilian field strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Strand-specific, real-time RT-PCR assays for quantification of genomic and positive-sense RNAs of the fish rhabdovirus, Infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Hart, S. Alexandra; Kurath, Gael; Winton, James R.

    2006-01-01

    The fish rhabdovirus, Infectious hematopoietic necrosis virus (IHNV), is an important pathogen of salmonids. Cell culture assays have traditionally been used to quantify levels of IHNV in samples; however, real-time or quantitative RT-PCR assays have been proposed as a rapid alternative. For viruses having a single-stranded, negative-sense RNA genome, standard qRT-PCR assays do not distinguish between the negative-sense genome and positive-sense RNA species including mRNA and anti-genome. Thus, these methods do not determine viral genome copy number. This study reports development of strand-specific, qRT-PCR assays that use tagged primers for enhancing strand specificity during cDNA synthesis and quantitative PCR. Protocols were developed for positive-strand specific (pss-qRT-PCR) and negative-strand specific (nss-qRT-PCR) assays for IHNV glycoprotein (G) gene sequences. Validation with synthetic RNA transcripts demonstrated the assays could discriminate the correct strand with greater than 1000-fold fidelity. The number of genome copies in livers of IHNV-infected fish determined by nss-qRT-PCR was, on average, 8000-fold greater than the number of infectious units as determined by plaque assay. We also compared the number of genome copies with the quantity of positive-sense RNA and determined that the ratio of positive-sense molecules to negative-sense genome copies was, on average, 2.7:1. Potential future applications of these IHNV strand-specific qRT-PCR assays are discussed.

  1. Evaluation of RIDA®GENE norovirus GI/GII real time RT-PCR using stool specimens collected from children and adults with acute gastroenteritis.

    PubMed

    Kanwar, N; Hassan, F; Barclay, L; Langley, C; Vinjé, J; Bryant, P W; George, K St; Mosher, L; Matthews-Greer, J M; Rocha, M A; Beenhouwer, D O; Harrison, C J; Moffatt, M; Shastri, N; Selvarangan, R

    2018-04-10

    Norovirus is the leading cause of epidemic and sporadic acute gastroenteritis (AGE) in the United States. Widespread prevalence necessitates implementation of accurate norovirus detection assays in clinical diagnostic laboratories. To evaluate RIDA ® GENE norovirus GI/GII real-time RT-PCR assay (RGN RT-PCR) using stool samples from patients with sporadic AGE. Patients between 14 days to 101 years of age with symptoms of AGE were enrolled prospectively at four sites across the United States during 2014-2015. Stool specimens were screened for the presence of norovirus RNA by the RGN RT-PCR assay. Results were compared with a reference method that included conventional RT-PCR and sequencing of a partial region of the 5'end of the norovirus ORF2 gene. A total of 259 (36.0%) of 719 specimens tested positive for norovirus by the reference method. The RGN RT-PCR assay detected norovirus in 244 (94%) of these 259 norovirus positive specimens. The sensitivity and specificity (95% confidence interval) of the RGN RT-PCR assay for detecting norovirus genogroup (G) I was 82.8% (63.5-93.5) and 99.1% (98.0-99.6) and for GII was 94.8% (90.8-97.2) and 98.6% (96.9-99.4), respectively. Seven specimens tested positive by the RGN-RT PCR that were negative by the reference method. The fifteen false negative samples were typed as GII.4 Sydney, GII.13, GI.3, GI.5, GI.2, GII.1, and GII.3 in the reference method. The RGN RT-PCR assay had a high sensitivity and specificity for the detection of norovirus in stool specimens from patients with sporadic AGE. Copyright © 2018. Published by Elsevier B.V.

  2. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  3. Selection and Validation of Appropriate Reference Genes for qRT-PCR Analysis in Isatis indigotica Fort.

    PubMed Central

    Li, Tao; Wang, Jing; Lu, Miao; Zhang, Tianyi; Qu, Xinyun; Wang, Zhezhi

    2017-01-01

    Due to its sensitivity and specificity, real-time quantitative PCR (qRT-PCR) is a popular technique for investigating gene expression levels in plants. Based on the Minimum Information for Publication of Real-Time Quantitative PCR Experiments (MIQE) guidelines, it is necessary to select and validate putative appropriate reference genes for qRT-PCR normalization. In the current study, three algorithms, geNorm, NormFinder, and BestKeeper, were applied to assess the expression stability of 10 candidate reference genes across five different tissues and three different abiotic stresses in Isatis indigotica Fort. Additionally, the IiYUC6 gene associated with IAA biosynthesis was applied to validate the candidate reference genes. The analysis results of the geNorm, NormFinder, and BestKeeper algorithms indicated certain differences for the different sample sets and different experiment conditions. Considering all of the algorithms, PP2A-4 and TUB4 were recommended as the most stable reference genes for total and different tissue samples, respectively. Moreover, RPL15 and PP2A-4 were considered to be the most suitable reference genes for abiotic stress treatments. The obtained experimental results might contribute to improved accuracy and credibility for the expression levels of target genes by qRT-PCR normalization in I. indigotica. PMID:28702046

  4. Factors Affecting Detection of Hepatitis E Virus on Canadian Retail Pork Chops and Pork Livers Assayed Using Real-Time RT-PCR.

    PubMed

    Wilhelm, B J; Leblanc, D; Avery, B; Pearl, D L; Houde, A; Rajić, A; McEwen, S A

    2016-03-01

    We collected 599 Canadian retail pork chops and 283 pork livers routinely (usually weekly) from April 2011 to March 2012 using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) retail sampling platform. Samples were assayed using validated real-time (q) reverse transcriptase polymerase chain reaction (RT-PCR) and nested classical RT-PCR for the detection of hepatitis E virus (HEV), porcine enteric calicivirus (PEC) and rotavirus (RV). The presence of Escherichia coli, Salmonella spp. and Campylobacter spp. was measured on a subset of our samples. Exact logistic regression models were fitted for predictors for HEV detection, for each assay. For both assays, sample type (pork chop versus liver) was a significant predictor for HEV RNA detection. For nested classical RT-PCR but not qRT-PCR, region of sample collection was a significant predictor (P = 0.008) of HEV detection. Odds of HEV detection were greatest in spring relative to other seasons. E. coli was a significant predictor for HEV RNA detection using the qRT-PCR (P = 0.03). Overall, the prevalence of E. coli, Salmonella spp. and Campylobacter spp. was significantly greater than HEV, PEC or RV on our retail pork samples. Our sparse data set for the detection of PEC and RV precluded modelling of risk factors for the detection of these viruses. © 2015 Zoonoses and Public Health © 2015 Her Majesty the Queen in Right of Canada Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  5. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data.

    PubMed

    Perkins, James R; Dawes, John M; McMahon, Steve B; Bennett, David L H; Orengo, Christine; Kohl, Matthias

    2012-07-02

    Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s). We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  6. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data

    PubMed Central

    2012-01-01

    Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s). Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples. PMID:22748112

  7. Development of duplex SYBR Green I-based real-time quantitative reverse-transcription PCR for detection and discrimination of grapevine viruses

    USDA-ARS?s Scientific Manuscript database

    A SYBR® Green-based real-time quantitative reverse transcription PCR (qRT-PCR) assay in combination with melt curve analysis (MCA) was developed for the detection of nine grapevine viruses. The detection limits for singleplex qRT-PCR for all nine grapevine viruses were determined to be in the range ...

  8. miRNome analysis using real-time PCR.

    PubMed

    Pontrelli, Paola; Accetturo, Matteo; Gesualdo, Loreto

    2014-01-01

    MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression in eukaryotic organisms, thus influencing physiological mechanisms such as development, cell proliferation, cell death, and cell differentiation. The importance of the gene regulatory system operated by miRNAs is emerging as a central topic in the setting of several diseases included infectious disease and cancer. The different techniques used for the study of the entire "miRNome" give the opportunity to go better inside these novel mechanisms of gene expression regulation. In the following method we describe a protocol based on quantitative real-time PCR (qRT-PCR) with SYBR(®) green technology, to specifically analyze the expression levels of only those miRNAs that target genes involved in CTLs biogenesis and functions. Through an in silico approach, we designed a custom microRNA qPCR panel focused on those miRNAs relevant in regulation of CTLs-specific pathways. The panel we created was customized by EXIQON, since this company proposed a method based on the use of LNA enhanced primers, which guarantee increased affinity and specificity for each microRNA. The advantage of this protocol with respect to a whole miRNome analysis consists in the possibility to evidence weaker signals that otherwise would be secreted and remove the noise itself generated by other miRNAs not directly involved in the regulation of CTLs-specific pathways. This panel can be applicable in the study of CTLs behavior in pathological conditions such as infectious disease and cancer or can be used to characterize changes in patients' immune responsiveness after therapeutic intervention in order to understand the molecular mechanisms underlying these effects.

  9. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Purcell, Maureen K.; Thompson, Rachel L.; Garver, Kyle A.; Hawley, Laura M.; Batts, William N.; Sprague, Laura; Sampson, Corie; Winton, James R.

    2013-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  10. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-time RT-PCR quantification.

    PubMed

    Tucciarone, C M; Franzo, G; Berto, G; Drigo, M; Ramon, G; Koutoulis, K C; Catelli, E; Cecchinato, M

    2018-01-01

    Infectious bronchitis virus (IBV) is a great economic burden both for productive losses and costs of the control strategies. Many different vaccination protocols are applied in the same region and even in consecutive cycles on the same farm in order to find the perfect balance between costs and benefits. In Northern Italy, the usual second vaccination is more and more often moved up to the chick's first d of life. The second strain administration together with the common Mass priming by spray at the hatchery allows saving money and time and reducing animal stress. The present work compared the different vaccine strains (Mass-like or B48, and 1/96) kinetics both in field conditions and in a 21-day-long experimental trial in broilers, monitoring the viral replication by upper respiratory tract swabbing and vaccine specific real time reverse transcription PCR (RT-PCR) quantification. In both field and experimental conditions, titers for all the vaccines showed an increasing trend in the first 2 wk and then a decrease, though still remaining detectable during the whole monitored period. IBV field strain and avian Metapneumovirus (aMPV) presence also was also investigated by RT-PCR and sequencing, and by multiplex real-time RT-PCR, respectively, revealing a consistency in the pathogen introduction timing at around 30 d, in correspondence with the vaccine titer's main decrease. These findings suggest the need for an accurate knowledge of live vaccine kinetics, whose replication can compete with the other pathogen one, providing additional protection to be added to what is conferred by the adaptive immune response. © 2017 Poultry Science Association Inc.

  11. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  12. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  13. Strand-specific real-time RT-PCR quantitation of Maize fine streak virus genomic and positive-sense RNAs using high temperature reverse transcription

    USDA-ARS?s Scientific Manuscript database

    Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...

  14. Validation of Reference Genes for Gene Expression by Quantitative Real-Time RT-PCR in Stem Segments Spanning Primary to Secondary Growth in Populus tomentosa.

    PubMed

    Wang, Ying; Chen, Yajuan; Ding, Liping; Zhang, Jiewei; Wei, Jianhua; Wang, Hongzhi

    2016-01-01

    The vertical segments of Populus stems are an ideal experimental system for analyzing the gene expression patterns involved in primary and secondary growth during wood formation. Suitable internal control genes are indispensable to quantitative real time PCR (qRT-PCR) assays of gene expression. In this study, the expression stability of eight candidate reference genes was evaluated in a series of vertical stem segments of Populus tomentosa. Analysis through software packages geNorm, NormFinder and BestKeeper showed that genes ribosomal protein (RP) and tubulin beta (TUBB) were the most unstable across the developmental stages of P. tomentosa stems, and the combination of the three reference genes, eukaryotic translation initiation factor 5A (eIF5A), Actin (ACT6) and elongation factor 1-beta (EF1-beta) can provide accurate and reliable normalization of qRT-PCR analysis for target gene expression in stem segments undergoing primary and secondary growth in P. tomentosa. These results provide crucial information for transcriptional analysis in the P. tomentosa stem, which may help to improve the quality of gene expression data in these vertical stem segments, which constitute an excellent plant system for the study of wood formation.

  15. Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients

    PubMed Central

    Xu, Yuanxin; Theobald, Valerie; Sung, Crystal; DePalma, Kathleen; Atwater, Laura; Seiger, Keirsten; Perricone, Michael A; Richards, Susan M

    2008-01-01

    Background HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis. Methods Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100209(210M) and MART-126–35(27L), IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100209, gp100pool, MART-127–35, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established. Results The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and

  16. Real-Time RT-PCR Assays for Detection and Genotyping of West Nile Virus Lineages Circulating in Africa.

    PubMed

    Fall, Gamou; Faye, Martin; Weidmann, Manfred; Kaiser, Marco; Dupressoir, Anne; Ndiaye, El Hadj; Ba, Yamar; Diallo, Mawlouth; Faye, Ousmane; Sall, Amadou Alpha

    2016-12-01

    West Nile virus (WNV) is an emerging arbovirus, circulating worldwide between birds and mosquitoes, which impacts human and animal health. Since the mid-1990s, WNV outbreaks have emerged in Europe and America and represent currently the primary cause of encephalitis in the United States. WNV exhibits a great genetic diversity with at least eight different lineages circulating in the world, and four (1, 2, Koutango, and putative new) are present in Africa. These different WNV lineages are not readily differentiated by serology, and thus, rapid molecular tools are required for diagnostic. We developed here real-time RT-PCR assays for detection and genotyping of African WNV lineages. The specificity of the assays was tested using other flaviviruses circulating in Africa. The sensitivity was determined by testing serial 10-fold dilutions of viruses and RNA standards. The assays provided good specificity and sensitivity and the analytical detection limit was 10 copies/reaction. The RT-PCR assays allowed the detection and genotyping of all WNV isolates in culture medium, human serum, and vertebrate tissues, as well as in field and experimental mosquito samples. Comparing the ratios of genome copy number/infectious virion (plaque-forming units), our study finally revealed new insight on the replication of these different WNV lineages in mosquito cells. Our RT-PCR assays are the first ones allowing the genotyping of all WNV African variants, and this may have important applications in surveillance and epidemiology in Africa and also for monitoring of their emergence in Europe and other continents.

  17. Comprehensive Analysis of CBFβ-MYH11 Fusion Transcripts in Acute Myeloid Leukemia by RT-PCR Analysis

    PubMed Central

    Kadkol, ShriHari S.; Bruno, Annette; Dodge, Carol; Lindgren, Valerie; Ravandi, Farhad

    2004-01-01

    CBFβ-MYH11 fusion transcripts are expressed in acute myeloid leukemias of the M4Eo subtype. Patients who express CBFβ-MYH11 fusion transcripts respond favorably to high-dose chemotherapy and are generally spared allogeneic bone marrow transplantation. Hence it is important to identify this fusion in all patients with acute myeloid leukemia M4Eo leukemia. The fusion can be detected by cytogenetics, fluorescence in-situ hybridization (FISH), or by molecular analysis with RT-PCR. Multiple fusion transcripts arising as a result of various breakpoints in the CBFβ and MYH11 have been identified. In this report we describe a comprehensive RT-PCR assay to identify all known fusion transcripts and provide an algorithm for molecular analysis of CBFβ-MYH11 fusions from patient specimens. Further, identification of the fusion transcript by such an assay would help in the diagnosis and follow up of patients with cryptic inversion 16 translocations (such as patient 2 in this report) not detected by standard cytogenetics or FISH and for rational design of probes for quantitative analysis by real-time PCR. PMID:14736823

  18. A real-time RT-PCR assay for molecular identification and quantitation of feline morbillivirus RNA from biological specimens.

    PubMed

    De Luca, Eliana; Crisi, Paolo Emidio; Di Domenico, Marco; Malatesta, Daniela; Vincifori, Giacomo; Di Tommaso, Morena; Di Guardo, Giovanni; Di Francesco, Gabriella; Petrini, Antonio; Savini, Giovanni; Boari, Andrea; Lorusso, Alessio

    2018-05-03

    The aim of this study was to develop a real-time RT-PCR to detect and quantitate feline morbillivirus (FeMV) RNA in biological samples. Primers and probe were targeted on a conserved region of FeMV P/V/C gene. To validate the assay with field samples, a total number of specimens of cats have been recruited including 264 urine and blood samples and compared with a generic RT-PCR targeting the L protein encoding gene of morbilliviruses. In addition, 385 tissue samples from 35 carcasses of cats have been also employed. RNA titres were low in all tested samples. Results also indicated the absence of cross-reaction with related morbilliviruses and existing pathogens of cats. In tissues with low levels of FeMV RNA, the presence of viral antigen was also evidenced by immunohistochemistry targeting the N viral protein. This newly described assay allows for a rapid, accurate and reliable quantitative detection of FeMV RNA that can be applied for diagnostics and research studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    PubMed

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  20. Transcriptional profiling of the early stages of germination in Candida albicans by real-time RT-PCR.

    PubMed

    Toyoda, Mika; Cho, Tamaki; Kaminishi, Hidenori; Sudoh, Masayuki; Chibana, Hiroji

    2004-12-01

    By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.

  1. Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus).

    PubMed

    Dang, Wei; Sun, Li

    2011-02-01

    In recent years, quantitative real time reverse transcriptase-PCR (qRT-PCR) has been used frequently in the study of gene expression in turbot (Scophthalmus maximus) in relation to bacterial infection. However, no investigations on appropriate qRT-PCR reference genes have been documented. In this report, we determined the potential of eight housekeeping genes, i.e. β-actin (ACTB), ribosomal protein L17 (RPL17), α-tubulin (TUBA), elongation factor-1-α(EF1A), β-2-Microglobulin (B2M), RNA polymerase II subunit D (RPSD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 18S ribosomal RNA (18S rRNA), as internal standards for qRT-PCR analysis of gene expression in turbot as a function of bacterial infection. For this purpose, the expression of the eight housekeeping genes in seven turbot tissues was determined by qRT-PCR before and after bacterial challenge, and the data were analyzed with the geNorm and NormFinder algorisms. The results showed that the expression of all the examined genes exhibited tissue-dependent variations both before and after bacterial challenge. Before bacterial challenge, geNorm and NormFinder identified RPSD as the gene that showed least tissue specific expression. At 12 h post-bacterial infection, geNorm ranked ACTB/GAPDH, 18S rRNA/ACTB, ACTB/GAPDH, 18S rRNA/ACTB, RPL17/TUBA, RPSD/GAPDH, and RPSD/B2M, respectively, as the most stably expressed genes in liver, spleen, kidney, gill, heart, muscle, and brain. Comparable ranking orders were produced by NormFinder. Similar results were obtained at 24 h post-bacterial infection. Taken together, these results indicate that RPSD is the most stable gene across tissue types under normal physiological conditions and that, during bacterial infection, ACTB might be used as an internal standard for the normalization of gene expression in immune relevant organs; however, no single gene or single pair of genes in the examined set of housekeeping genes can serve as a universal reference across all

  2. Application of RT-PCR in formalin-fixed and paraffin-embedded lung cancer tissues.

    PubMed

    Zhang, Fan; Wang, Zhuo-min; Liu, Hong-yu; Bai, Yun; Wei, Sen; Li, Ying; Wang, Min; Chen, Jun; Zhou, Qing-hua

    2010-01-01

    To analyze gene expression in formalin-fixed, paraffin-embedded lung cancer tissues using modified method. Total RNA from frozen tissues was extracted using TRIZOL reagent. RNA was extracted from formalin-fixed, paraffin-embedded tissues by digestion with proteinase K before the acid-phenol:chloroform extraction and carrier precipitation. We modified this method by using a higher concentration of proteinase K and a longer digestion time, optimized to 16 hours. RT-PCR and real-time RT-PCR were used to check reproducibility and the concordance between frozen and paraffin-embedded samples. The results showed that the RNA extracted from the paraffin-embedded lung tissues had high quality with the most fragment length between 28S and 18S bands (about 1000 to 2000 bases). The housekeeping gene GUSB exhibited low variation of expression in frozen and paraffin-embedded lung tissues, whereas PGK1 had the lowest variation in lymphoma tissues. Furthermore, real-time PCR analysis of the expression of known prognostic genes in non-small cell lung carcinoma (NSCLC) demonstrated an extremely high correlation (r>0.880) between the paired frozen and formalin-fixed, paraffin-embedded specimens. This improved method of RNA extraction is suitable for real-time quantitative RT-PCR, and may be used for global gene expression profiling of paraffin-embedded tissues.

  3. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix(®) and RotaTeq(®) vaccine strains in stool samples.

    PubMed

    Gautam, Rashi; Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Ian Tam, Ka; Gentsch, Jon R; Bowen, Michael D

    2014-01-01

    Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix(®) and RotaTeq(®) are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix(®) and RotaTeq(®) vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix(®) and RotaTeq(®) vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix(®) (NSP2, VP4) and RotaTeq(®) (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix(®) NSP2 and VP4 qRT-PCR assays exhibited 92-100% sensitivity, 99-100% specificity, 94-105% efficiency, and a limit of detection of 2-3 copies per reaction. RotaTeq(®) VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94-100% specificity, 91-102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix(®) and RotaTeq(®) vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE.

  4. Real-time RT-PCR assays to differentiate wild-type group A rotavirus strains from Rotarix® and RotaTeq® vaccine strains in stool samples

    PubMed Central

    Gautam, Rashi; Esona, Mathew D; Mijatovic-Rustempasic, Slavica; Ian Tam, Ka; Gentsch, Jon R; Bowen, Michael D

    2014-01-01

    Group A rotaviruses (RVA) are the leading cause of severe diarrhea in young children worldwide. Two live-attenuated RVA vaccines, Rotarix® and RotaTeq® are recommended by World Health Organization (WHO) for routine immunization of all infants. Rotarix® and RotaTeq® vaccines have substantially reduced RVA associated mortality but occasionally have been associated with acute gastroenteritis (AGE) cases identified in vaccinees and their contacts. High-throughput assays are needed to monitor the prevalence of vaccine strains in AGE cases and emergence of new vaccine-derived strains following RVA vaccine introduction. In this study, we have developed quantitative real-time RT-PCR (qRT-PCR) assays for detection of Rotarix® and RotaTeq® vaccine components in stool samples. Real-time RT-PCR assays were designed for vaccine specific targets in the genomes of Rotarix® (NSP2, VP4) and RotaTeq® (VP6, VP3-WC3, VP3-human) and validated on sequence confirmed stool samples containing vaccine strains, wild-type RVA strains, and RVA-negative stools. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Rotarix® NSP2 and VP4 qRT-PCR assays exhibited 92–100% sensitivity, 99–100% specificity, 94–105% efficiency, and a limit of detection of 2–3 copies per reaction. RotaTeq® VP6, VP3-WC3, and VP3-human qRT-PCR assays displayed 100% sensitivity, 94–100% specificity, 91–102% efficiency and limits of detection of 1 copy, 2 copies, and 140 copies, respectively. These assays permit rapid identification of Rotarix® and RotaTeq® vaccine components in stool samples from clinical and surveillance studies and will be helpful in determining the frequency of vaccine strain-associated AGE. PMID:24342877

  5. Development of strand-specific real-time RT-PCR to distinguish viral RNAs during Newcastle disease virus infection.

    PubMed

    Qiu, Xusheng; Yu, Yang; Yu, Shengqing; Zhan, Yuan; Wei, Nana; Song, Cuiping; Sun, Yingjie; Tan, Lei; Ding, Chan

    2014-01-01

    Newcastle disease virus (NDV) causes large losses in the global fowl industry. To better understand NDV replication and transcription cycle, quantitative detection methods for distinguishing NDV genomic RNA (gRNA), antigenomic RNA (cRNA), and messenger RNA (mRNA) in NDV-infected cells are indispensible. Three reverse transcription primers were designed to specifically target the nucleoprotein (NP) region of gRNA, cRNA, and NP mRNA, and a corresponding real-time RT-PCR assay was developed to simultaneously quantify the three types of RNAs in NDV-infected cells. This method showed very good specificity, sensitivity, and reproducibility. The detection range of the assay was between 5.5 × 10(2) and 1.1 × 10(9) copies/μL of the target gene. These methods were applied to investigate the dynamics of the gRNA, cRNA, and mRNA synthesis in NDV La Sota infected DF-1 cells. The results showed that the copy numbers of viral gRNA, cRNA, and NP mRNA all exponentially increased in the beginning. The viral RNA copy number then plateaued at 10'h postinfection and gradually decreased from 16 h postinfection. No synthesis priority was observed between replication (gRNA and cRNA amounts) and transcription (mRNA amounts) during NDV infection. However, the cRNA accumulated more rapidly than gRNA, as the cRNA copy number was three- to tenfold higher than gRNA starting from 2 h postinfection. Conclusion. A real-time RT-PCR for absolute quantitation of specific viral RNA fragments in NDV-infected cells was developed for the first time. The development of this assay will be helpful for further studies on the pathogenesis and control strategies of NDV.

  6. Quantification of silkworm coactivator of MBF1 mRNA by SYBR Green I real-time RT-PCR reveals tissue- and stage-specific transcription levels.

    PubMed

    Li, Guang-li; Roy, Bhaskar; Li, Xing-hua; Yue, Wan-fu; Wu, Xiao-feng; Liu, Jian-mei; Zhang, Chuan-xi; Miao, Yun-gen

    2009-05-01

    Transcriptional coactivators play a crucial role in gene transcription and expression. Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator necessary for transcriptional activation caused by DNA-binding activators, such as FTZ-F1 and GCN4. Until now, very few studies have been reported in the silkworm. We selected the Bombyx mori because it is a model insect and acts as an economic animal for silk industry. In this study, we conducted the quantitative analysis of MBF1 mRNA in silkworm B. mori L. with actin (A3) as internal standard by means of SYBR Green I real-time RT-PCR method. The total RNA was extracted from the silk gland, epidermis, fat body, and midguts of the fifth instar B. mori larvae. The mRNA was reverse transcripted, and the cDNA fragments of MBF1 mRNA and actin gene were amplified by RT-PCR using specific primers. MBF1 mRNA expression in different tissues of silkworm B. mori L. was quantified using standardized SYBR Green I RT-PCR. The results suggested MBF1 gene was expressed in all investigated organs but highly expressed in the silk gland, showing its relation to biosynthesis of silk proteins.

  7. Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus.

    PubMed

    Faye, Martin; Dacheux, Laurent; Weidmann, Manfred; Diop, Sylvie Audrey; Loucoubar, Cheikh; Bourhy, Hervé; Sall, Amadou Alpha; Faye, Ousmane

    2017-05-01

    Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    PubMed

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera serogroup viruses with a suitable

  9. Evaluation of FTA cards as a laboratory and field sampling device for the detection of foot-and-mouth disease virus and serotyping by RT-PCR and real-time RT-PCR.

    PubMed

    Muthukrishnan, Madhanmohan; Singanallur, Nagendrakumar B; Ralla, Kumar; Villuppanoor, Srinivasan A

    2008-08-01

    Foot-and-mouth disease virus (FMDV) samples transported to the laboratory from far and inaccessible areas for serodiagnosis pose a major problem in a tropical country like India, where there is maximum temperature fluctuation. Inadequate storage methods lead to spoilage of FMDV samples collected from clinically positive animals in the field. Such samples are declared as non-typeable by the typing laboratories with the consequent loss of valuable epidemiological data. The present study evaluated the usefulness of FTA Classic Cards for the collection, shipment, storage and identification of the FMDV genome by RT-PCR and real-time RT-PCR. The stability of the viral RNA, the absence of infectivity and ease of processing the sample for molecular methods make the FTA cards a useful option for transport of FMDV genome for identification and serotyping. The method can be used routinely for FMDV research as it is economical and the cards can be transported easily in envelopes by regular document transport methods. Live virus cannot be isolated from samples collected in FTA cards, which is a limitation. This property can be viewed as an advantage as it limits the risk of transmission of live virus.

  10. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum.

    PubMed

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.

  11. Real-time PCR assay for the diagnosis of pleural tuberculosis

    PubMed Central

    Cárdenas Bernal, Ana María; Giraldo-Cadavid, Luis Fernando; Prieto Diago, Enrique; Santander, Sandra Paola

    2017-01-01

    Abstract Introduction: The diagnosis of pleural tuberculosis requires an invasive and time-consuming reference method. Polymerase chain reaction (PCR) is rapid, but validation in pleural tuberculosis is still weak. Objective: To establish the operating characteristics of real-time polymerase chain reaction (RT-PCR) hybridization probes for the diagnosis of pleural tuberculosis. Methods: The validity of the RT-PCR hybridization probes was evaluated compared to a composite reference method by a cross-sectional study at the Hospital Universitario de la Samaritana. 40 adults with lymphocytic pleural effusion were included. Pleural tuberculosis was confirmed (in 9 patients) if the patient had at least one of three tests using the positive reference method: Ziehl-Neelsen or Mycobacterium tuberculosis culture in fluid or pleural tissue, or pleural biopsy with granulomas. Pleural tuberculosis was ruled out (in 31 patients) if all three tests were negative. The operating characteristics of the RT-PCR, using the Mid-P Exact Test, were determined using the OpenEpi 2.3 Software (2009). Results: The RT-PCR hybridization probes showed a sensitivity of 66.7% (95% CI: 33.2%-90.7%) and a specificity of 93.5% (95% CI: 80.3%-98.9%). The PPV was 75.0% (95% CI: 38.8%-95.6%) and a NPV of 90.6% (95% CI: 76.6%-97.6%). Two false positives were found for the test, one with pleural mesothelioma and the other with chronic pleuritis with mesothelial hyperplasia. Conclusions: The RT-PCR hybridization probes had good specificity and acceptable sensitivity, but a negative value cannot rule out pleural tuberculosis. PMID:29021638

  12. Selection of reference genes for RT-qPCR analysis in the monarch butterfly, Danaus plexippus (L.), a migrating bio-indicator

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...

  13. Real-time PCR in virology.

    PubMed

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  14. Comparison of Real-Time PCR, Reverse Transcriptase Real-Time PCR, Loop-Mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce ▿ †

    PubMed Central

    Zhang, Guodong; Brown, Eric W.; González-Escalona, Narjol

    2011-01-01

    Contamination of foods, especially produce, with Salmonella spp. is a major concern for public health. Several methods are available for the detection of Salmonella in produce, but their relative efficiency for detecting Salmonella in commonly consumed vegetables, often associated with outbreaks of food poisoning, needs to be confirmed. In this study, the effectiveness of three molecular methods for detection of Salmonella in six produce matrices was evaluated and compared to the FDA microbiological detection method. Samples of cilantro (coriander leaves), lettuce, parsley, spinach, tomato, and jalapeno pepper were inoculated with Salmonella serovars at two different levels (105 and <101 CFU/25 g of produce). The inoculated produce was assayed by the FDA Salmonella culture method (Bacteriological Analytical Manual) and by three molecular methods: quantitative real-time PCR (qPCR), quantitative reverse transcriptase real-time PCR (RT-qPCR), and loop-mediated isothermal amplification (LAMP). Comparable results were obtained by these four methods, which all detected as little as 2 CFU of Salmonella cells/25 g of produce. All control samples (not inoculated) were negative by the four methods. RT-qPCR detects only live Salmonella cells, obviating the danger of false-positive results from nonviable cells. False negatives (inhibition of either qPCR or RT-qPCR) were avoided by the use of either a DNA or an RNA amplification internal control (IAC). Compared to the conventional culture method, the qPCR, RT-qPCR, and LAMP assays allowed faster and equally accurate detection of Salmonella spp. in six high-risk produce commodities. PMID:21803916

  15. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  16. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa.

    PubMed

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R; Wadsworth, Jemma; Mioulet, Valerie; Sallu, Raphael; Belsham, Graham J; Kasanga, Christopher J; Knowles, Nick J; King, Donald P

    2016-11-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce C T values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Lolium temulentum is a valuable model grass species for the study of stress in forage and turf grasses. Gene expression analysis by quantitative real time RT-PCR relies on the use of proper internal standards. The aim of this study was to identify and evaluate reference genes for use in real-time q...

  18. Development and evaluation of a real-time RT-PCR assay for detection of a novel avian influenza A (H5N6) virus.

    PubMed

    Zhang, Rusheng; Yao, Dong; Chen, Jingfang; Ye, Wen; Ou, Xinhua; Chen, Tianmu; Sun, Biancheng

    2018-07-01

    As of Aug 25, 2017, 17 incidences of human infection and 6 deaths due to the novel H5N6 virus have been reported in China. Genetic analysis of the viral genome revealed that this reassortant virus is highly pathogenic to poultry, and that the virus has a risk of transmission to humans. Accordingly, the development of a rapid, sensitive, and specific molecular diagnostic assay is critical for public health. In this study, a real-time reverse-transcription PCR (RT-PCR) assay was developed to specifically detect the novel H5N6 virus, with primer pairs targeting the hemagglutinin and neuraminidase gene sequences of this virus. RNA was extracted from throat swab specimens from patients with influenza-like illness (ILIs), and environmental samples were collected from live poultry markets (LPMs) for H5N6 virus detection by real-time RT-PCR. The method was demonstrated to enable specific detection of the avian H5N6 virus, with no cross-reactivity with seasonal influenza viruses (H1N1, H1N1 pdm09, H3N2 or B); H5N1, H7N9, H9N2 viruses; or other human respiratory viruses. The detection limit of the assay was 1.0 × 10 1 copies per reaction for N6 and 1.0 × 10 2 copies per reaction for H5 assays. The assay is a powerful tool for rapid, sensitive, and specific detection of H5N6 virus infection in specimens derived from humans, animals, and the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Successful Validation of RNA Purification and Quantitative Real-Time PCR Analysis of Gene Expression on the International Space Station

    NASA Technical Reports Server (NTRS)

    Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo

    2017-01-01

    The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.

  20. [Selection of reference genes of Siraitia grosvenorii by real-time PCR].

    PubMed

    Tu, Dong-ping; Mo, Chang-ming; Ma, Xiao-jun; Zhao, Huan; Tang, Qi; Huang, Jie; Pan, Li-mei; Wei, Rong-chang

    2015-01-01

    Siraitia grosvenorii is a traditional Chinese medicine also as edible food. This study selected six candidate reference genes by real-time quantitative PCR, the expression stability of the candidate reference genes in the different samples was analyzed by using the software and methods of geNorm, NormFinder, BestKeeper, Delta CT method and RefFinder, reference genes for S. grosvenorii were selected for the first time. The results showed that 18SrRNA expressed most stable in all samples, was the best reference gene in the genetic analysis. The study has a guiding role for the analysis of gene expression using qRT-PCR methods, providing a suitable reference genes to ensure the results in the study on differential expressed gene in synthesis and biological pathways, also other genes of S. grosvenorii.

  1. A real time genotyping PCR assay for polyomavirus BK.

    PubMed

    Gard, Lilli; Niesters, Hubert G M; Riezebos-Brilman, Annelies

    2015-09-01

    Polyomavirus BK (BKV) may cause nephropathy in renal transplant recipients and hemorrhagic cystitis in bone marrow recipients. We developed real-time PCRs (RT-PCR) to determine easily and rapidly the different BKV genotypes (BKGT) (I-IV). On the VP1 gene a duplex of RT-PCRs was developed and validated to differentiate the four main BKGT. 212 BKV positive samples (21 plasma, 191 urine) were tested with these specific PCRs. Of these 212 samples, 55 PCR results were additionally confirmed by sequencing a VP1 gene fragment (nucleotide 1630-1956). For every genotype, a highly specific, precise and internally controlled assay was developed with a limit of detection of log 3 copies per ml. In 18 (8.5%) of these samples genotyping was not successful due to a low viral load. By sequence analysis, the genotype of 46 out of 55 and 2 out of 4 samples with double infection could be confirmed. This study describes RT-PCRs for detection of the main BKGT. It proved to be rapid, cheap and sensitive compared to sequencing. Double infections can also be detected. This method will be of value to investigate the role of BKV infection in relation to the genotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evaluation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) studies in Silene vulgaris considering the method of cDNA preparation

    PubMed Central

    Koloušková, Pavla; Stone, James D.

    2017-01-01

    Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not. PMID:28817728

  3. Real-Time PCR Analysis of Vibrio vulnificus from Oysters

    PubMed Central

    Campbell, Mark S.; Wright, Anita C.

    2003-01-01

    Vibrio vulnificus is an opportunistic human pathogen commonly found in estuarine environments. Infections are associated with raw oyster consumption and can produce rapidly fatal septicemia in susceptible individuals. Standard enumeration of this organism in shellfish or seawater is laborious and inaccurate; therefore, more efficient assays are needed. An oligonucleotide probe derived from the cytolysin gene, vvhA, was previously used for colony hybridizations to enumerate V. vulnificus. However, this method requires overnight growth, and vibrios may lack culturability under certain conditions. In the present study, we targeted the same locus for development of a TaqMan real-time PCR assay. Probe specificity was confirmed by amplification of 28 V. vulnificus templates and by the lack of a PCR product with 22 non-V. vulnificus strains. Detection of V. vulnificus in pure cultures was observed over a 6-log-unit linear range of concentration (102 to 108 CFU ml−1), with a lower limit of 72 fg of genomic DNA μl of PCR mixture−1 or the equivalent of six cells. Similar sensitivity was observed in DNA extracted from mixtures of V. vulnificus and V. parahaemolyticus cells. Real-time PCR enumeration of artificially inoculated oyster homogenates correlated well with colony hybridization counts (r2 = 0.97). Numbers of indigenous V. vulnificus cells in oysters by real-time PCR showed no significant differences from numbers from plate counts with probe (t test; P = 0.43). Viable but nonculturable cells were also enumerated by real-time PCR and confirmed by the BacLight viability assay. These data indicate that real-time PCR can provide sensitive species-specific detection and enumeration of V. vulnificus in seafood. PMID:14660359

  4. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    PubMed

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System

    PubMed Central

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit

  6. Development of a novel real-time RT-PCR assay to detect Seneca Valley virus-1 associated with emerging cases of vesicular disease in pigs.

    PubMed

    Fowler, Veronica L; Ransburgh, Russell H; Poulsen, Elizabeth G; Wadsworth, Jemma; King, Donald P; Mioulet, Valerie; Knowles, Nick J; Williamson, Susanna; Liu, Xuming; Anderson, Gary A; Fang, Ying; Bai, Jianfa

    2017-01-01

    Seneca Valley virus 1 (SVV-1) can cause vesicular disease that is clinically indistinguishable from foot-and-mouth disease, vesicular stomatitis and swine vesicular disease. SVV-1-associated disease has been identified in pigs in several countries, namely USA, Canada, Brazil and China. Diagnostic tests are required to reliably detect this emerging virus, and this report describes the development and evaluation of a novel real-time (r) reverse-transcription (RT) PCR assay (rRT-PCR), targeting the viral polymerase gene (3D) of SVV-1. This new assay detected all historical and contemporary SVV-1 isolates examined (n=8), while no cross-reactivity was observed with nucleic acid templates prepared from other vesicular disease viruses or common swine pathogens. The analytical sensitivity of the rRT-PCR was 0.79 TCID 50 /ml and the limit of detection was equivalent using two different rRT-PCR master-mixes. The performance of the test was further evaluated using pig nasal (n=25) and rectal swab samples (n=25), where concordant results compared to virus sequencing were generated for 43/50 samples. The availability of this assay, will enable laboratories to rapidly detect SVV-1 in cases of vesicular disease in pigs, negated for notifiable diseases, and could enable existing knowledge gaps to be investigated surrounding the natural epidemiology of SVV-1. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Inactivation conditions for human Norovirus measured by an in situ capture-qRT-PCR Method

    USDA-ARS?s Scientific Manuscript database

    Human noroviruses (HuNoVs) are the major cause of epidemic non-bacterial gastroenteritis. Due to the inability to cultivate HuNoVs, it has been a challenge to determine their infectivity. Quantitative real-time RT-PCR (qRT-PCR) is widely used in detecting HuNoVs. However, qRT-PCR only detects the...

  8. Development of SYBR Green I Based Real-Time RT-PCR Assay for Specific Detection of Watermelon silver mottle Virus.

    PubMed

    Rao, Xueqin; Sun, Jie

    2015-09-01

    Watermelon silver mottle virus (WSMoV), which belongs to the genus Tospovirus , causes significant loss in Cucurbitaceae plants. Development of a highly sensitive and reliable detection method for WSMoV. Recombinant plasmids for targeting the sequence of nucleocapsid protein gene of WSMoV were constructed. SYBR Green I real-time PCR was established and evaluated with standard recombinant plasmids and 27 watermelon samples showing WSMoV infection symptoms. The recombinant plasmid was used as template for SYBR Green I real-time PCR to generate standard and melting curves. Melting curve analysis indicated no primer-dimers and non-specific products in the assay. No cross-reaction was observed with Capsicum chlorosis virus (genus Tospovirus ) and Cucumber mosaic virus (genus Cucumovirus). Repeatability tests indicated that inter-assay variability of the Ct values was 1.6%. A highly sensitive, reliable and rapid detection method of SYBR Green I real-time PCR for timely detection of WSMoV plants and vector thrips was established, which will facilitate disease forecast and control.

  9. High-level expression of podoplanin in benign and malignant soft tissue tumors: immunohistochemical and quantitative real-time RT-PCR analysis.

    PubMed

    Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto

    2011-03-01

    Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.

  10. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    PubMed Central

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level

  11. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides.

    PubMed

    Valle-Maldonado, Marco I; Jácome-Galarza, Irvin E; Gutiérrez-Corona, Félix; Ramírez-Díaz, Martha I; Campos-García, Jesús; Meza-Carmen, Víctor

    2015-03-01

    Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.

  12. Correlation of immune activation with HIV-1 RNA levels assayed by real-time RT-PCR in HIV-1 Subtype C infected patients in Northern India

    PubMed Central

    Agarwal, Atima; Sankaran, Sumathi; Vajpayee, Madhu; Sreenivas, V; Seth, Pradeep; Dandekar, Satya

    2014-01-01

    Background Assays with specificity and cost effectiveness are needed for the measurement of HIV-1 burden to monitor disease progression or response to anti-retroviral therapy (ART) in HIV-1 subtype C infected patients. Objectives The objective of this study was to develop and validate an affordable; one step Real-Time RT-PCR assay with high specificity and sensitivity to measure plasma HIV-1 loads in HIV-1 subtype C infected patients. Results We developed an RT-PCR assay to detect and quantitate plasma HIV-1 levels in HIV-1 subtype C infected patients. An inverse correlation between plasma viral loads (PVL) and CD4+ T-cell numbers was detected at all CDC stages. Significant correlations were found between CD8+ T-cell activation and PVL, as well as with the clinical and immunological status of the patients. Conclusions The RT-PCR assay provides a sensitive method to measure PVL in HIV-1 subtype C infected patients. Viral loads correlated with immune activation and can be used to monitor HIV care in India. PMID:17962068

  13. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    PubMed

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  14. Selection of the internal control gene for real-time quantitative rt-PCR assays in temperature treated Leptospira.

    PubMed

    Carrillo-Casas, Erika Margarita; Hernández-Castro, Rigoberto; Suárez-Güemes, Francisco; de la Peña-Moctezuma, Alejandro

    2008-06-01

    Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct housekeeping genes (lipL41, flaB, and 16S rRNA) for their expression level and stability in temperature treated Leptospira cultures. Leptospira interrogans serovar Hardjo subtype Hardjoprajitno was cultured at 30 degrees C for 7 days until a density of 10(6) cells/ml was reached and then shifted to physiological temperatures (37 degrees C and 42 degrees C) and to environmental temperatures (25 degrees C and 30 degrees C) during a 24 h period. cDNA was amplified by quantitative PCR using SYBR Green I technology and gene-specific primers for lipL41, flaB, and 16S rRNA. Expression stability (M) was assessed by geNorm and Normfinder v.18. 16S rRNA registered an average expression stability of M = 1.1816, followed by flaB (M = 1.682) and lipL41 (M = 1.763). 16S rRNA was identified as the most stable gene and can be used as a normalizer, as it showed greater expression stability than lipL41 and flaB in the four temperature treatments. Hence, comparisons of gene expression will have a higher sensitivity and specificity.

  15. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    PubMed

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids.

    PubMed

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-06-04

    Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  17. Comparison of the genexpert enterovirus assay (GXEA) with real-time one step RT-PCR for the detection of enteroviral RNA in the cerebrospinal fluid of patients with meningitis.

    PubMed

    Hong, JiYoung; Kim, Ahyoun; Hwang, Seoyeon; Cheon, Doo-Sung; Kim, Jong-Hyen; Lee, June-Woo; Park, Jae-Hak; Kang, Byunghak

    2015-02-13

    Enteroviruses (EVs) are the leading cause of aseptic meningitis worldwide. Detection of enteroviral RNA in clinical specimens has been demonstrated to improve the management of patient care, especially that of neonates and young children. To establish a sensitive and reliable assay for routine laboratory diagnosis, we compared the sensitivity and specificity of the GeneXpert Enterovirus Assay (GXEA) with that of the reverse transcription polymerase chain reaction (RT-PCR) based assay referred to as real-time one step RT-PCR (RTo-PCR). The sensitivity/specificity produced by GXEA and RTo-PCR were 100%/100% and 65%/100%, respectively. Both methods evaluated in this article can be used for detection of enterovirus in clinical specimens and these nucleic acid amplification methods are useful assays for the diagnosis of enteroviral infection.

  18. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    PubMed

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  19. Predicting Gene Structures from Multiple RT-PCR Tests

    NASA Astrophysics Data System (ADS)

    Kováč, Jakub; Vinař, Tomáš; Brejová, Broňa

    It has been demonstrated that the use of additional information such as ESTs and protein homology can significantly improve accuracy of gene prediction. However, many sources of external information are still being omitted from consideration. Here, we investigate the use of product lengths from RT-PCR experiments in gene finding. We present hardness results and practical algorithms for several variants of the problem and apply our methods to a real RT-PCR data set in the Drosophila genome. We conclude that the use of RT-PCR data can improve the sensitivity of gene prediction and locate novel splicing variants.

  20. SYBR Green Real-Time PCR for the Detection of All Enterovirus-A71 Genogroups

    PubMed Central

    Dubot-Pérès, Audrey; Tan, Charlene Y. Q.; de Chesse, Reine; Sibounheuang, Bountoy; Vongsouvath, Manivanh; Phommasone, Koukeo; Bessaud, Maël; Gazin, Céline; Thirion, Laurence; Phetsouvanh, Rattanaphone; Newton, Paul N.; de Lamballerie, Xavier

    2014-01-01

    Enterovirus A71 (EV-A71) has recently become an important public health threat, especially in South-East Asia, where it has caused massive outbreaks of Hand, Foot and Mouth disease every year, resulting in significant mortality. Rapid detection of EV-A71 early in outbreaks would facilitate implementation of prevention and control measures to limit spread. Real-time RT-PCR is the technique of choice for the rapid diagnosis of EV-A71 infection and several systems have been developed to detect circulating strains. Although eight genogroups have been described globally, none of these PCR techniques detect all eight. We describe, for the first time, a SYBR Green real-time RT-PCR system validated to detect all 8 EV-A71 genogroups. This tool could permit the early detection and shift in genogroup circulation and the standardization of HFMD virological diagnosis, facilitating networking of laboratories working on EV-A71 in different regions. PMID:24651608

  1. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-07-01

    The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R (2) = 1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0 ~ 5 × 10(8) and 0 ~ 5 × 10(7) cells per gram of soil, respectively (n = 5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract(-1) as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA(-1)) at ≥5 × 10(5) MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y = a · x) revealed excellent quantitative agreement between the two technologies (a = 0.98, R (2) = 0.97 in the CupMBT set and a = 0.90, R (2) = 0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.

  2. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  3. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    PubMed

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific

  4. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand.

    PubMed

    Klungthong, Chonticha; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Chinnawirotpisan, Piyawan; Rodpradit, Prinyada; Hussem, Kittinun; Thaisomboonsuk, Butsaya; Ong-ajchaowlerd, Prapapun; Nisalak, Ananda; Kalayanarooj, Siripen; Buddhari, Darunee; Gibbons, Robert V; Jarman, Richard G; Yoon, In-Kyu; Fernandez, Stefan

    2015-02-01

    AFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA. To examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance. A retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011-2013. The percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods. Published by Elsevier B.V.

  5. A Guideline to Family-Wide Comparative State-of-the-Art Quantitative RT-PCR Analysis Exemplified with a Brassicaceae Cross-Species Seed Germination Case Study[W][OA

    PubMed Central

    Graeber, Kai; Linkies, Ada; Wood, Andrew T.A.; Leubner-Metzger, Gerhard

    2011-01-01

    Comparative biology includes the comparison of transcriptome and quantitative real-time RT-PCR (qRT-PCR) data sets in a range of species to detect evolutionarily conserved and divergent processes. Transcript abundance analysis of target genes by qRT-PCR requires a highly accurate and robust workflow. This includes reference genes with high expression stability (i.e., low intersample transcript abundance variation) for correct target gene normalization. Cross-species qRT-PCR for proper comparative transcript quantification requires reference genes suitable for different species. We addressed this issue using tissue-specific transcriptome data sets of germinating Lepidium sativum seeds to identify new candidate reference genes. We investigated their expression stability in germinating seeds of L. sativum and Arabidopsis thaliana by qRT-PCR, combined with in silico analysis of Arabidopsis and Brassica napus microarray data sets. This revealed that reference gene expression stability is higher for a given developmental process between distinct species than for distinct developmental processes within a given single species. The identified superior cross-species reference genes may be used for family-wide comparative qRT-PCR analysis of Brassicaceae seed germination. Furthermore, using germinating seeds, we exemplify optimization of the qRT-PCR workflow for challenging tissues regarding RNA quality, transcript stability, and tissue abundance. Our work therefore can serve as a guideline for moving beyond Arabidopsis by establishing high-quality cross-species qRT-PCR. PMID:21666000

  6. Pandemic preparedness in Hawaii: a multicenter verification of real-time RT-PCR for the direct detection of influenza virus types A and B.

    PubMed

    Whelen, A Christian; Bankowski, Matthew J; Furuya, Glenn; Honda, Stacey; Ueki, Robert; Chan, Amelia; Higa, Karen; Kumashiro, Diane; Moore, Nathaniel; Lee, Roland; Koyamatsu, Terrie; Effler, Paul V

    2010-01-01

    We integrated multicenter, real-time (RTi) reverse transcription polymerase chain reaction (RT-PCR) screening into a statewide laboratory algorithm for influenza surveillance and response. Each of three sites developed its own testing strategy and was challenged with one randomized and blinded panel of 50 specimens previously tested for respiratory viruses. Following testing, each participating laboratory reported its results to the Hawaii State Department of Health, State Laboratories Division for evaluation and possible discrepant analysis. Two of three laboratories reported a 100% sensitivity and specificity, resulting in a 100% positive predictive value and a 100% negative predictive value (NPV) for influenza type A. The third laboratory showed a 71% sensitivity for influenza type A (83% NPV) with 100% specificity. All three laboratories were 100% sensitive and specific for the detection of influenza type B. Discrepant analysis indicated that the lack of sensitivity experienced by the third laboratory may have been due to the analyte-specific reagent probe used by that laboratory. Use of a newer version of the product with a secondary panel of 20 specimens resulted in a sensitivity and specificity of 100%. All three laboratories successfully verified their ability to conduct clinical testing for influenza using diverse nucleic acid extraction and RTi RT-PCR platforms. Successful completion of the verification by all collaborating laboratories paved the way for the integration of those facilities into a statewide laboratory algorithm for influenza surveillance and response.

  7. Performance of a commercial assay for the diagnosis of influenza A (H1N1) infection in comparison to the Centers for Disease Control and Prevention protocol of real time RT-PCR.

    PubMed

    Barbás, María G; Gallego, Sandra V; Castro, Gonzalo M; Baumeister, Elsa; Kademian, Silvia; De Leon, Juan; Cudolá, Analía

    2012-01-01

    At the time of influenza A (H1N1) emergency, the WHO responded with remarkable speed by releasing guidelines and a protocol for a real-time RT-PCR assay (rRT-PCR). The aim of the present study was to evalúate the performance of the "Real Time Ready Influenza A/H1N1 Detection Set" (June 2009)-Roche kit in comparison to the CDC reference rRT-PCR protocol. The overall sensitivity of the Roche assay for detection of the Inf A gene in the presence or absence of the H1 gene was 74.5 %. The sensitivity for detecting samples that were only positive for the Inf A gene (absence of the H1 gene) was 53.3 % whereas the sensitivity for H1N1-positive samples (presence of the Inf A gene and any other swine gene) was 76.4 %. The specificity of the assay was 97.1 %. A new version of the kit (November 2009) is now available, and a recent evaluation of its performance showed good sensitivity to detect pandemic H1N1 compared to other molecular assays.

  8. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    PubMed

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  9. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues.

    PubMed

    Kilpatrick, David R; Yang, Chen-Fu; Ching, Karen; Vincent, Annelet; Iber, Jane; Campagnoli, Ray; Mandelbaum, Mark; De, Lina; Yang, Su-Ju; Nix, Allan; Kew, Olen M

    2009-06-01

    We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.

  10. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    PubMed Central

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. PMID:22938136

  11. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects.

    PubMed

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.

  12. Simultaneous detection, typing and quantitation of oncogenic human papillomavirus by multiplex consensus real-time PCR.

    PubMed

    Jenkins, Andrew; Allum, Anne-Gry; Strand, Linda; Aakre, Randi Kersten

    2013-02-01

    A consensus multiplex real-time PCR test (PT13-RT) for the oncogenic human papillomavirus (HPV) types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 is described. The test targets the L1 gene. Analytical sensitivity is between 4 and 400 GU (genomic units) in the presence of 500 ng of human DNA, corresponding to 75,000 human cells. HPV types are grouped into multiplex groups of 3 or 4 resulting in the use of 4 wells per sample and permitting up to 24 samples per run (including controls) in a standard 96-well real-time PCR instrument. False negative results are avoided by (a) measuring sample DNA concentration to control that sufficient cellular material is present and (b) including HPV type 6 as a homologous internal control in order to detect PCR inhibition or competition from other (non-oncogenic) HPV types. Analysis time from refrigerator to report is 8 h, including 2.5 h hands-on time. Relative to the HC2 test, the sensitivity and specificity were respectively 98% and 83%, the lower specificity being attributable to the higher analytical sensitivity of PT13-RT. To assess type determination comparison was made with a reversed line-blot test. Type concordance was high (κ=0.79) with discrepancies occurring mostly in multiple-positive samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    PubMed Central

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Sethuraman, Veeran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin. PMID:29695976

  14. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions.

    PubMed

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Sethuraman, Veeran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura . In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  15. Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR

    PubMed Central

    Lievens, Antoon; Van Aelst, S.; Van den Bulcke, M.; Goetghebeur, E.

    2012-01-01

    Current methodology in real-time Polymerase chain reaction (PCR) analysis performs well provided PCR efficiency remains constant over reactions. Yet, small changes in efficiency can lead to large quantification errors. Particularly in biological samples, the possible presence of inhibitors forms a challenge. We present a new approach to single reaction efficiency calculation, called Full Process Kinetics-PCR (FPK-PCR). It combines a kinetically more realistic model with flexible adaptation to the full range of data. By reconstructing the entire chain of cycle efficiencies, rather than restricting the focus on a ‘window of application’, one extracts additional information and loses a level of arbitrariness. The maximal efficiency estimates returned by the model are comparable in accuracy and precision to both the golden standard of serial dilution and other single reaction efficiency methods. The cycle-to-cycle changes in efficiency, as described by the FPK-PCR procedure, stay considerably closer to the data than those from other S-shaped models. The assessment of individual cycle efficiencies returns more information than other single efficiency methods. It allows in-depth interpretation of real-time PCR data and reconstruction of the fluorescence data, providing quality control. Finally, by implementing a global efficiency model, reproducibility is improved as the selection of a window of application is avoided. PMID:22102586

  16. Identification and evaluation of reference genes for qRT-PCR normalization in Ganoderma lucidum.

    PubMed

    Xu, Jiang; Xu, ZhiChao; Zhu, YingJie; Luo, HongMei; Qian, Jun; Ji, AiJia; Hu, YuanLei; Sun, Wei; Wang, Bo; Song, JingYuan; Sun, Chao; Chen, ShiLin

    2014-01-01

    Quantitative real-time reverse transcription PCR (qRT-PCR) is a rapid, sensitive, and reliable technique for gene expression studies. The accuracy and reliability of qRT-PCR results depend on the stability of the reference genes used for gene normalization. Therefore, a systematic process of reference gene evaluation is needed. Ganoderma lucidum is a famous medicinal mushroom in East Asia. In the current study, 10 potential reference genes were selected from the G. lucidum genomic data. The sequences of these genes were manually curated, and primers were designed following strict criteria. The experiment was conducted using qRT-PCR, and the stability of each candidate gene was assessed using four commonly used statistical programs-geNorm, NormFinder, BestKeeper, and RefFinder. According to our results, PP2A was expressed at the most stable levels under different fermentation conditions, and RPL4 was the most stably expressed gene in different tissues. RPL4, PP2A, and β-tubulin are the most commonly recommended reference genes for normalizing gene expression in the entire sample set. The current study provides a foundation for the further use of qRT-PCR in G. lucidum gene analysis.

  17. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses.

    PubMed

    Santiago, Gilberto A; Vázquez, Jesús; Courtney, Sean; Matías, Katia Y; Andersen, Lauren E; Colón, Candimar; Butler, Angela E; Roulo, Rebecca; Bowzard, John; Villanueva, Julie M; Muñoz-Jordan, Jorge L

    2018-04-11

    The emergence and spread of Zika virus (ZIKV) presented a challenge to the diagnosis of ZIKV infections in areas with transmission of dengue (DENV) and chikungunya (CHIKV) viruses. To facilitate detection of ZIKV infections, and differentiate these infections from DENV and CHIKV, we developed the Trioplex real-time RT-PCR assay (Trioplex assay). Here, we describe the optimization of multiplex and singleplex formats of the assay for a variety of chemistries and instruments to facilitate global standardization and implementation. We evaluated the analytical performance of all Trioplex modalities for detection of these three pathogens in serum and whole blood, and for ZIKV in urine. The limit of detection for the three viruses and in different RNA-extraction modalities is near 10 3 genome copy equivalents per milliliter (GCE/mL). Simultaneous testing of more than one specimen type from each patient provides a 6.4% additional diagnostic sensitivity. Overall, the high sensitivity of the Trioplex assay demonstrates the utility of this assay ascertaining Zika cases.

  18. Absolute quantification by droplet digital PCR versus analog real-time PCR

    PubMed Central

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  19. Validation of endogenous internal real-time PCR controls in renal tissues.

    PubMed

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal

    2009-01-01

    Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.

  20. Validation of Endogenous Internal Real-Time PCR Controls in Renal Tissues

    PubMed Central

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R.; Mrug, Michal

    2009-01-01

    Background Endogenous internal controls (‘reference’ or ‘housekeeping’ genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. Methods To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used ‘reference genes’ in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan® RT-PCR analyses and Affymetrix GeneChip® arrays, were normalized and tested for overall variance and equivalence of the means. Results Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. Conclusion A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. PMID:19729889

  1. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  2. Analytical and Clinical Performance of the CDC Real Time RT-PCR Assay for Detection and Typing of Dengue Virus

    PubMed Central

    Santiago, Gilberto A.; Vergne, Edgardo; Quiles, Yashira; Cosme, Joan; Vazquez, Jesus; Medina, Juan F.; Medina, Freddy; Colón, Candimar; Margolis, Harold; Muñoz-Jordán, Jorge L.

    2013-01-01

    Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1–4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1–4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1–4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1–4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases. PMID:23875046

  3. Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time, reverse transcription polymerase chain reaction (rRT-PCR) and virus isolation

    USDA-ARS?s Scientific Manuscript database

    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 real-time, reverse transcription polymerase chain reaction (rRT-PCR) and 7 virus isolation (VI) assays. To conduct the study, OF was inoculated with H1N1 or H3N2 IAV and serially 10-fold d...

  4. Application of real-time PCR and melting curve analysis in rapid Diego blood group genotyping.

    PubMed

    Novaretti, M C Z; Ruiz, A S; Dorlhiac-Llacer, P E; Chamone, D A F

    2010-01-01

    The paucity of appropriate reagents for serologic typing of the Diego blood group antigens has prompted the development of a real-time PCR and melting curve analysis for Diego blood group genotyping. In this study, we phenotyped 4326 donor blood samples for Di(a) using semiautomated equipment. All 157 Di(a+) samples were then genotyped by PCR using sequence-specific primers (PCR-SSP) for DI*02 because of anti-Di(b) scarcity. Of the 4326 samples, we simultaneously tested 160 samples for Di(a) and Di(b) serology, and DI*01 and DI*02 by PCR-SSP and by real-time PCR. We used the same primers for Diego genotyping by real-time PCR and PCR-SSP. Melting curve profiles obtained using the dissociation software of the real-time PCR apparatus enabled the discrimination of Diego alleles. Of the total samples tested, 4169 blood donors, 96.4 percent (95% confidence interval [CI], 95.8-96.9%), were homozygous for DI*02 and 157, 3.6 percent (95% CI, 3.1%-4.2%), were heterozygous DI*01/02. No blood donor was found to be homozygous for DI*01 in this study. The calculated DI*01 and DI*02 allele frequencies were 0.0181 (95% CI, 0.0173-0.0189) and 0.9819 (95% CI, 0.9791-0.9847), respectively, showing a good fit for the Hardy-Weinberg equilibrium. There was full concordance among Diego phenotype results by PCR-SSP and real-time PCR. DI*01 and DI*02 allele determination with SYBR Green I and thermal cycler technology are useful methods for Diego determination. The real-time PCR with SYBR Green I melting temperature protocol can be used as a rapid screening tool for DI*01 and DI*02 blood group genotyping.

  5. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  6. Detection and Analysis of Circular RNAs by RT-PCR.

    PubMed

    Panda, Amaresh C; Gorospe, Myriam

    2018-03-20

    Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

  7. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  8. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    PubMed

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98

  9. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples

    PubMed Central

    Mijatovic-Rustempasic, Slavica; Esona, Mathew D.; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D.

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98.8

  10. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    PubMed

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Intracellular flow cytometry may be combined with good quality and high sensitivity RT-qPCR analysis.

    PubMed

    Sandstedt, Mikael; Jonsson, Marianne; Asp, Julia; Dellgren, Göran; Lindahl, Anders; Jeppsson, Anders; Sandstedt, Joakim

    2015-12-01

    Flow cytometry (FCM) has become a well-established method for analysis of both intracellular and cell-surface proteins, while quantitative RT-PCR (RT-qPCR) is used to determine gene expression with high sensitivity and specificity. Combining these two methods would be of great value. The effects of intracellular staining on RNA integrity and RT-qPCR sensitivity and quality have not, however, been fully examined. We, therefore, intended to assess these effects further. Cells from the human lung cancer cell line A549 were fixed, permeabilized and sorted by FCM. Sorted cells were analyzed using RT-qPCR. RNA integrity was determined by RNA quality indicator analysis. A549 cells were then mixed with cells of the mouse cardiomyocyte cell line HL-1. A549 cells were identified by the cell surface marker ABCG2, while HL-1 cells were identified by intracellular cTnT. Cells were sorted and analyzed by RT-qPCR. Finally, cell cultures from human atrial biopsies were used to evaluate the effects of fixation and permeabilization on RT-qPCR analysis of nonimmortalized cells stored prior to analysis by FCM. A large amount of RNA could be extracted even when cells had been fixed and permeabilized. Permeabilization resulted in increased RNA degradation and a moderate decrease in RT-qPCR sensitivity. Gene expression levels were also affected to a moderate extent. Sorted populations from the mixed A549 and HL-1 cell samples showed gene expression patterns that corresponded to FCM data. When samples were stored before FCM sorting, the RT-qPCR analysis could still be performed with high sensitivity and quality. In summary, our results show that intracellular FCM may be performed with only minor impairment of the RT-qPCR sensitivity and quality when analyzing sorted cells; however, these effects should be considered when comparing RT-qPCR data of not fixed samples with those of fixed and permeabilized samples. © 2015 International Society for Advancement of Cytometry.

  12. Design and validation of a real-time RT-PCR for the simultaneous detection of enteroviruses and parechoviruses in clinical samples.

    PubMed

    Cabrerizo, María; Calvo, Cristina; Rabella, Nuria; Muñoz-Almagro, Carmen; del Amo, Eva; Pérez-Ruiz, Mercedes; Sanbonmatsu-Gámez, Sara; Moreno-Docón, Antonio; Otero, Almudena; Trallero, Gloria

    2014-11-01

    Human enteroviruses (EVs) and parechoviruses (HPeVs) are important etiological agents causing infections such as meningitis, encephalitis and sepsis-like disease in neonates and young children. We have developed a real-time RT-PCR for simultaneous detection of EV and HPeV in clinical samples. Primers and probe sets were designed from the conserved 5'-noncoding region of the genomes. The sensitivity, specificity and reproducibility of the technique were measured using a set of 25 EV and 6 HPeV types. All EVs but no HPeVs were detected with the EV primers-probe set. The HPeV primers-probe set detected only the 6 HPeV types. The lower detection limit was found to be 4 and 40CCID50/ml for HPeV and EV respectively, demonstrating high sensitivity of the technique for both viruses. The threshold cycle values were highly reproducible on repeat testing of positive controls among assay runs. The assay was evaluated in 53 clinical samples of suspected meningitis, sepsis or febrile syndromes from children under 3 years. In 11 of these (21%) EVs were detected, while 4, i.e. 7.5%, were HPeV positive. Molecular typing was carried out for 73% of the viruses. In summary, the RT-PCR method developed demonstrated effectively both EV and HPeV detection, which can cause similar clinical symptoms in infants. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development a of multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Asian prunus viruses (APV 1, APV 2 and APV 3) and Plum bark necrosis stem pitting associated virus (PBNSPaV) are two recently described viruses infecting Prunus spp., and Peach latent mosaic viroid (PLMVd) is a viroid that infects the same species. A single-tube multiplex, TaqMan real-time RT-PCR as...

  14. Development of a test for bovine tuberculosis in cattle based on measurement of gamma interferon mRNA by real-time PCR.

    PubMed

    Gan, W; Zhou, X; Yang, H; Chen, H; Qiao, J; Khan, S H; Yang, L; Yin, X; Zhao, D

    2013-08-03

    The infection status of cattle for bovine tuberculosis (bTB) was determined by real-time PCR, comparing the levels of IFN-γ mRNA in blood cultures stimulated with either bovine or avian tuberculin with non-stimulated control (phosphate buffer saline, PBS) blood culture. Totally, 137 cattle were tested to validate the assay, in which 54 were IFN-γ real-time quantitative PCR (RT-qPCR) positive, while the remaining 83 were found negative. Meanwhile, the IFN-γ ELISA test was carried out using the Bovigam IFN-γ detection ELISA kit and these results were used as a standard. The results of the single intradermal tuberculin tests (SIDT) and IFN-γ RT-qPCR tests were compared and revealed that the RT-qPCR correlated better with the ELISA and its accuracy was higher than SIDT. This indicates the RT-qPCR is a useful diagnostic method for bTB in cattle. However, several limitations remain for our approach, such as lack of a TB lesions or postmortem test results as a gold standard. Further improvements should be made in the future to increase accuracy of diagnosis of bTB in cattle.

  15. lpxC and yafS are the most suitable internal controls to normalize real time RT-qPCR expression in the phytopathogenic bacteria Dickeya dadantii.

    PubMed

    Hommais, Florence; Zghidi-Abouzid, Ouafa; Oger-Desfeux, Christine; Pineau-Chapelle, Emilie; Van Gijsegem, Frederique; Nasser, William; Reverchon, Sylvie

    2011-01-01

    Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high) and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC) and ABF-0020529 (yafS) were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. We have identified at least two genes, lpxC (ABF-0017965) and yafS (ABF-0020509), whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria.

  16. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus) Growth Hormone Receptor Type I

    PubMed Central

    2009-01-01

    Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR) by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes. PMID:19495916

  17. Performance of nested RT-PCR on CSF for tuberculous meningitis diagnosis in HIV-infected patients.

    PubMed

    Gualberto, F A S; Gonçalves, M G; Fukasawa, L O; Santos, A M Ramos Dos; Sacchi, C T; Harrison, L H; Boulware, D R; Vidal, J E

    2017-10-01

    Timely diagnosis of tuberculous meningitis (TBM) in patients with human immunodeficiency virus (HIV) infection remains a challenge. Despite the current scale-up of the Xpert® MTB/RIF assay, other molecular diagnostic tools are necessary, particularly in referral centres in low- and middle-income countries without Xpert testing. To determine the diagnostic performance of nested real-time polymerase chain reaction (nRT-PCR) in HIV-infected TBM patients categorised according to standardised clinical case definitions. Based on clinical, laboratory and imaging data, HIV-infected patients with suspected TBM were prospectively categorised as 'definite TBM', 'probable TBM', 'possible TBM' or 'not TBM'. We evaluated nRT-PCR sensitivity and specificity in diagnosing TBM among definite TBM cases, and among definite + probable TBM cases. Ninety-two participants were enrolled in the study. nRT-PCR sensitivity for definite TBM (n = 8) was 100% (95%CI 67-100) and 86% (95%CI 60-96) for both definite and probable TBM (n = 6). Assuming that 'not TBM' patients (n = 74) were true-negatives, nRT-PCR specificity was 100% (95%CI 95-100). The possible TBM group (n = 4) had no nRT-PCR positives. The nRT-PCR is a useful rule-in test for HIV-infected patients with TBM according to international consensus case definitions. As nRT-PCR cannot exclude TBM, studies comparing and combining nRT-PCR with other assays are necessary for a rule-out test.

  18. Undergraduate virology exercises demonstrate conventional and real-time PCR using commercially available HIV primers and noninfectious target.

    PubMed

    Sulzinski, Michael A; Wasilewski, Melissa A; Farrell, James C; Glick, David L

    2009-07-01

    It is an extraordinary challenge to offer an undergraduate laboratory course in virology that teaches hands-on, relevant molecular biology techniques using nonpathogenic models of human virus detection. To our knowledge, there exists no inexpensive kits or reagent sets that are appropriate for demonstrating real-time PCR (RT-PCR) in an undergraduate laboratory course in virology. Here we describe simple procedures for student exercises that demonstrate the PCR detection of an HIV target nucleic acid. Our procedures combine a commercially available kit for conventional PCR with a modification for RT-PCR using the same reagents in the kit, making it possible for an instructor with access to a LightCycler® instrument to implement a relevant student exercise on RT-PCR detection of HIV nucleic acid targets. This combination of techniques is useful for demonstrating and comparing conventional PCR amplification and detection with agarose gel electrophoresis, with real-time PCR over a series of three laboratory periods. The series of laboratory periods also is used to provide the foundation for teaching the concept of PCR primer design, optimization of PCR detection systems, and introduction to nucleic acid queries using NCBI-BLAST to find and identify primers, amplicons, and other potential amplification targets within the HIV viral genome. The techniques were successfully implemented at the Biology 364 undergraduate virology course at the University of Scranton during the Fall 2008 semester. The techniques are particularly targeted to students who intend to pursue either postgraduate technical employment or graduate studies in the molecular life sciences. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  19. Undergraduate Virology Exercises Demonstrate Conventional and Real-Time PCR Using Commercially Available HIV Primers and Noninfectious Target

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.; Wasilewski, Melissa A.; Farrell, James C.; Glick, David L.

    2009-01-01

    It is an extraordinary challenge to offer an undergraduate laboratory course in virology that teaches hands-on, relevant molecular biology techniques using nonpathogenic models of human virus detection. To our knowledge, there exists no inexpensive kits or reagent sets that are appropriate for demonstrating real-time PCR (RT-PCR) in an…

  20. A rapid single-tube protocol for HAV detection by nested real-time PCR.

    PubMed

    Hu, Yuan; Arsov, Ivica

    2014-09-01

    Infections by food-borne viruses such as hepatitis A virus (HAV) and norovirus are significant public health concerns worldwide. Since food-borne viruses are rarely confirmed through direct isolation from contaminated samples, highly sensitive molecular techniques remain the methods of choice for the detection of viral genetic material. Our group has previously developed a specific nested real-time PCR (NRT-PCR) assay for HAV detection that improved overall sensitivity. Furthermore in this study, we have developed a single-tube NRT-PCR approach for HAV detection in food samples that reduces the likelihood of cross contamination between tubes during sample manipulation. HAV RNA was isolated from HAV-spiked food samples and HAV-infected cell cultures. All reactions following HAV RNA isolation, including conventional reverse transcriptase PCR, nested-PCR, and RT-PCR were performed in a single tube. Our results demonstrated that all the samples tested positive by RT-PCR and nested-PCR were also positive by a single-tube NRT-PCR. The detection limits observed for HAV-infected cell cultures and HAV-spiked green onions were 0.1 and 1 PFU, respectively. This novel method retained the specificity and robustness of the original NRT-PCR method, while greatly reducing sample manipulation, turnaround time, and the risk of carry-over contamination. Single-tube NRT-PCR thus represents a promising new tool that can potentially facilitate the detection of HAV in foods thereby improving food safety and public health.

  1. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  2. RT-PCR analysis of RNA extracted from Bouin-fixed and paraffin-embedded lymphoid tissues.

    PubMed

    Gloghini, Annunziata; Canal, Barbara; Klein, Ulf; Dal Maso, Luigino; Perin, Tiziana; Dalla-Favera, Riccardo; Carbone, Antonino

    2004-11-01

    In the present study, we have investigated whether RNA can be efficiently isolated from Bouin-fixed or formalin-fixed, paraffin-embedded lymphoid tissue specimens. To this aim, we applied a new and simple method that includes the combination of proteinase K digestion and column purification. By this method, we demonstrated that the amplification of long fragments could be accomplished after a pre-heating step before cDNA synthesis associated with the use of enzymes that work at high temperature. By means of PCR using different primers for two examined genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH]- and CD40), we amplified segments of cDNA obtained by reverse transcription of the isolated RNA extracted from Bouin-fixed or formalin-fixed paraffin-embedded tissues. Amplified fragments of the expected sizes were obtained for both genes tested indicating that this method is suitable for the isolation of high-quality RNA. To explore the possibility for giving accurate real time quantitative RT-PCR results, cDNA obtained from matched frozen, Bouin-fixed and formalin-fixed neoplastic samples (two diffuse large cell lymphomas, one plasmacytoma) was tested for the following target genes: CD40, Aquaporin-3, BLIMP1, IRF4, Syndecan-1. Delta threshold cycle (DeltaC(T)) values for Bouin-fixed and formalin-fixed paraffin-embedded tissues and their correlation with those for frozen samples showed an extremely high correlation (r > 0.90) for all of the tested genes. These results show that the method of RNA extraction we propose is suitable for giving accurate real time quantitative RT-PCR results.

  3. Real-Time PCR for the Detection and Quantification of Geodermatophilaceae from Stone Samples and Identification of New Members of the Genus Blastococcus†

    PubMed Central

    Salazar, Oscar; Valverde, Aranzazu; Genilloud, Olga

    2006-01-01

    Real-time PCR (RT-PCR) technology was used for the specific detection and quantification of members of the family Geodermatophilaceae in stone samples. Differences in the nucleotide sequences of the 16S rRNA gene region were used to design a pair of family-specific primers that were used to detect and quantify by RT-PCR DNA from members of this family in stone samples from different geographical origins in Spain. These primers were applied later to identify by PCR-specific amplification new members of the family Geodermatophilaceae isolated from the same stone samples. The diversity and taxonomic position of the wild-type strains identified from ribosomal sequence analysis suggest the presence of a new lineage within the genus Blastococcus. PMID:16391063

  4. Diagnosis of Barmah Forest Virus Infection by a Nested Real-Time SYBR Green RT-PCR Assay

    PubMed Central

    Hueston, Linda; Toi, Cheryl S.; Jeoffreys, Neisha; Sorrell, Tania; Gilbert, Gwendolyn

    2013-01-01

    Barmah Forest virus (BFV) is a mosquito borne (+) ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR negative. Two culture-positive (neutralizing antibody negative) samples were positive on first round PCR, while one sample (IgM and neutralizing antibody strongly positive, IgG negative) was positive on second round PCR, suggesting that viral RNA is detectable and transiently present in early infection. PCR can provide results faster than culture, is capable of high throughput and by sequencing the PCR product strain variants can be characterized. PMID:23935816

  5. Pork detection in binary meat mixtures and some commercial food products using conventional and real-time PCR techniques.

    PubMed

    Al-Kahtani, Hassan A; Ismail, Elsayed A; Asif Ahmed, Mohammed

    2017-03-15

    Pork DNA was detected in meat mixtures using both conventional PCR and real-time PCR (RT-PCR). Thirty meat mixtures containing beef, chicken, camel, rabbit, goat and sheep with varying percentage of pork (0%, 1%, 5%, 10%, and 20%) and 75 commercial food products, were analyzed using conventional and RT-PCR to determine the presence of pork DNA. Pork DNA standard curves and cycle threshold (Ct) values were used for quantification. The detection limits for pork DNA in the mixtures were 0.22, 0.047, 0.048, 0.0000037, 0.015ng/μl respectively. Unlike conventional PCR, RT-PCR detected pork DNA in nine processed food samples [chicken sausages (2), chicken luncheon (2), turkey meat loaf, milk chocolate with soft nougat, jelly, cake, and candies] at pork DNA concentrations of 0.0001ng/μl or less. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  7. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.

    PubMed

    Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice

    2017-11-01

    Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.

  8. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    PubMed Central

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (−8, −6, −4, −2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens. PMID:25585250

  9. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    PubMed

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  10. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    PubMed

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  11. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    PubMed

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  12. Development and evaluation of a real-time RT-qPCR for detection of Crimean-Congo hemorrhagic fever virus representing different genotypes.

    PubMed

    Jääskeläinen, Anne J; Kallio-Kokko, Hannimari; Ozkul, Aykut; Bodur, Hurrem; Korukruoglu, Gulay; Mousavi, Mehrdad; Pranav, Patel; Vaheri, Antti; Mirazimi, Ali; Vapalahti, Olli

    2014-12-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease caused by a nairovirus belonging to family Bunyaviridae. The CCHF virus (CCHFV) can be transmitted to humans by Hyalomma ticks as well as by direct contact with infected body fluids or tissues from viremic livestock or humans. Our aim was to set up a fast RT-qPCR for detection of the different CCHFV genotypes in clinical samples, including an inactivation step to make the sample handling possible in lower biosafety levels (BSL) than BSL-4. This method was evaluated against commercial reference assays and international External Quality Assessment (EQA) samples. The analytical limit of detection for the developed CCHFV-S RT-qPCR was 11 CCHFV genomes per reaction. After exclusion of four dubious samples, we studied 38 CCHFV-positive samples (using reference tests) of which 38 were found positive by CCHFV-S RT-qPCR, suggesting a sensitivity of 100%. CCHFV-S RT q-PCR detected all eight different CCHFV strains representing five different CCHFV genotypes. In conclusion, the CCHFV-S RT-qPCR described in this study was evaluated using various sources of CCHFV samples and shown to be an accurate tool to detect human CCHFV infection caused by different genotypes of the virus.

  13. Two Novel Real-Time Reverse Transcriptase PCR Assays for Rapid Detection of Bacterial Contamination in Platelet Concentrates

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2004-01-01

    The incidence of platelet bacterial contamination is approximately 1 per 2,000 units and has been acknowledged as the most frequent infectious risk from transfusion. In preliminary studies, the sterility of platelet concentrates (PCs) was tested with an automated bacterial blood culturing system and molecular genetic assays. Two real-time reverse transcriptase PCR (RT-PCR) assays performed in a LightCycler instrument were developed and compared regarding specificity and sensitivity by the use of different templates to detect the majority of the clinically important bacterial species in platelets. Primers and probes specific for the conserved regions of the eubacterial 23S rRNA gene or the groEL gene (encoding the 60-kDa heat shock protein Hsp60) were designed. During the development of the 23S rRNA RT-PCR, problems caused by the contamination of reagents with bacterial DNA were noted. Treatment with 8-methoxypsoralen and UV irradiation reduced the level of contaminating DNA. The sensitivity of the assays was greatly influenced by the enzyme system which was used. With rTth DNA polymerase in a one-enzyme system, we detected 500 CFU of Escherichia coli or Staphylococcus epidermidis/ml. With a two-enzyme system consisting of Moloney murine leukemia virus RT and Taq DNA polymerase, we detected 16 CFU/ml. With groEL mRNA as the target of RT-PCR under optimized conditions, we detected 125 CFU of E. coli/ml, and no problems with false-positive results caused by reagent contamination or a cross-reaction with human nucleic acids were found. Furthermore, the use of mRNA as an indicator of viability was demonstrated. Here we report the application of novel real-time RT-PCR assays for the detection of bacterial contamination of PCs that are appropriate for transfusion services. PMID:15472337

  14. Direct sequencing of hepatitis A virus and norovirus RT-PCR products from environmentally contaminated oyster using M13-tailed primers.

    PubMed

    Williams-Woods, Jacquelina; González-Escalona, Narjol; Burkhardt, William

    2011-12-01

    Human norovirus (HuNoV) and hepatitis A (HAV) are recognized as leading causes of non-bacterial foodborne associated illnesses in the United States. DNA sequencing is generally considered the standard for accurate viral genotyping in support of epidemiological investigations. Due to the genetic diversity of noroviruses (NoV), degenerate primer sets are often used in conventional reverse transcription (RT) PCR and real-time RT-quantitative PCR (RT-qPCR) for the detection of these viruses and cDNA fragments are generally cloned prior to sequencing. HAV detection methods that are sensitive and specific for real-time RT-qPCR yields small fragments sizes of 89-150bp, which can be difficult to sequence. In order to overcome these obstacles, norovirus and HAV primers were tailed with M13 forward and reverse primers. This modification increases the sequenced product size and allows for direct sequencing of the amplicons utilizing complementary M13 primers. HuNoV and HAV cDNA products from environmentally contaminated oysters were analyzed using this method. Alignments of the sequenced samples revealed ≥95% nucleotide identities. Tailing NoV and HAV primers with M13 sequence increases the cDNA product size, offers an alternative to cloning, and allows for rapid, accurate and direct sequencing of cDNA products produced by conventional or real time RT-qPCR assays. Published by Elsevier B.V.

  15. Development of single-step multiplex real-time RT-PCR assays for rapid diagnosis of enterovirus 71, coxsackievirus A6, and A16 in patients with hand, foot, and mouth disease.

    PubMed

    Puenpa, Jiratchaya; Suwannakarn, Kamol; Chansaenroj, Jira; Vongpunsawad, Sompong; Poovorawan, Yong

    2017-10-01

    Real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) has facilitated the rapid and accurate identification of the two most common etiological agents underlying hand, foot, and mouth disease (HFMD). However, the worldwide emergence of CV-A6 infection in HFMD necessitates development of an improved multiplex rRT-PCR method. To rapidly determine the etiology of HFMD, two rRT-PCR assays using TaqMan probes were developed to differentiate among three selected common enteroviruses (EV-A71, CV-A16 and CV-A6) and to enable broad detection of enteroviruses (pan-enterovirus assay). No cross-reactions were observed with other RNA viruses examined. The detection limits of both assays were 10 copies per microliter for EV-A71, CV-A6 and CV-A16, and pan-enterovirus. The methods showed high accuracy (EV-A71, 90.6%; CV-A6, 92.0%; CV-A16, 100%), sensitivity (EV-A71, 96.5%; CV-A6, 95.8%; CV-A16, 99.0%), and specificity (EV-A71, 100%; CV-A6, 99.9%; CV-A16, 99.9%) in testing clinical specimens (n=1049) during 2014-2016, superior to those of conventional RT-PCR. Overall, the multiplex rRT-PCR assays enabled highly sensitive detection and rapid simultaneous typing of EV-A71, CV-A6 and CV-A16, and enteroviruses, rendering them feasible and attractive methods for large-scale surveillance of enteroviruses associated with HFMD outbreaks. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR)

    PubMed Central

    Provenzano, Maurizio; Mocellin, Simone; Bonginelli, Paola; Nagorsen, Dirk; Kwon, Seog-Woon; Stroncek, David

    2003-01-01

    The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA) polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs) from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV) and Influenza (Flu), were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR) was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-4 (IL-4), and Interleukin-10 (IL-10). We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization. PMID:14675481

  17. Real-Time-Simulation of IEEE-5-Bus Network on OPAL-RT-OP4510 Simulator

    NASA Astrophysics Data System (ADS)

    Atul Bhandakkar, Anjali; Mathew, Lini, Dr.

    2018-03-01

    The Real-Time Simulator tools have high computing technologies, improved performance. They are widely used for design and improvement of electrical systems. The advancement of the software tools like MATLAB/SIMULINK with its Real-Time Workshop (RTW) and Real-Time Windows Target (RTWT), real-time simulators are used extensively in many engineering fields, such as industry, education, and research institutions. OPAL-RT-OP4510 is a Real-Time Simulator which is used in both industry and academia. In this paper, the real-time simulation of IEEE-5-Bus network is carried out by means of OPAL-RT-OP4510 with CRO and other hardware. The performance of the network is observed with the introduction of fault at various locations. The waveforms of voltage, current, active and reactive power are observed in the MATLAB simulation environment and on the CRO. Also, Load Flow Analysis (LFA) of IEEE-5-Bus network is computed using MATLAB/Simulink power-gui load flow tool.

  18. Development of a rapid, sensitive TaqMan real-time RT-PCR assay for the detection of Rose rosette virus using multiple gene targets.

    PubMed

    Babu, Binoy; Jeyaprakash, Ayyamperumal; Jones, Debra; Schubert, Timothy S; Baker, Carlye; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2016-09-01

    Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples

    PubMed Central

    2010-01-01

    Background Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Results Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. Conclusions We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system. PMID:20492695

  20. Validation of endogenous reference genes for qRT-PCR analysis of human visceral adipose samples.

    PubMed

    Mehta, Rohini; Birerdinc, Aybike; Hossain, Noreen; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair; Baranova, Ancha

    2010-05-21

    Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals. Cross-validation of expression stability of eight selected reference genes using three popular algorithms, GeNorm, NormFinder and BestKeeper found ACTB and RPII as most stable reference genes. We recommend ACTB and RPII as stable reference genes most suitable for gene expression studies of human visceral adipose tissue. The use of these genes as a reference pair may further enhance the robustness of qRT-PCR in this model system.

  1. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR.

    PubMed

    Theis, Torsten; Skurray, Ronald A; Brown, Melissa H

    2007-08-01

    Quantitative real-time PCR (qRT-PCR) has become a routine technique for gene expression analysis. Housekeeping genes are customarily used as endogenous references for the relative quantification of genes of interest. The aim of this study was to develop a quantitative real-time PCR assay to analyze gene expression in multidrug resistant Staphylococcus aureus in the presence of cationic lipophilic substrates of multidrug transport proteins. Eleven different housekeeping genes were analyzed for their expression stability in the presence of a range of concentrations of four structurally different antimicrobial compounds. This analysis demonstrated that the genes rho, pyk and proC were least affected by rhodamine 6G and crystal violet, whereas fabD, tpiA and gyrA or fabD, proC and pyk were stably expressed in cultures grown in the presence of ethidium or berberine, respectively. Subsequently, these housekeeping genes were used as internal controls to analyze expression of the multidrug transport protein QacA and its transcriptional regulator QacR in the presence of the aforementioned compounds. Expression of qacA was induced by all four compounds, whereas qacR expression was found to be unaffected, reduced or enhanced. This study demonstrates that staphylococcal gene expression, including housekeeping genes previously used to normalize qRT-PCR data, is affected by growth in the presence of different antimicrobial compounds. Thus, identification of suitable genes usable as a control set requires rigorous testing. Identification of a such a set enabled them to be utilized as internal standards for accurate quantification of transcripts of the qac multidrug resistance system from S. aureus grown under different inducing conditions. Moreover, the qRT-PCR assay presented in this study may also be applied to gene expression studies of other multidrug transporters from S. aureus.

  2. Comparative analysis of gene expression level by quantitative real-time PCR has limited application in objects with different morphology.

    PubMed

    Demidenko, Natalia V; Penin, Aleksey A

    2012-01-01

    qRT-PCR is a generally acknowledged method for gene expression analysis due to its precision and reproducibility. However, it is well known that the accuracy of qRT-PCR data varies greatly depending on the experimental design and data analysis. Recently, a set of guidelines has been proposed that aims to improve the reliability of qRT-PCR. However, there are additional factors that have not been taken into consideration in these guidelines that can seriously affect the data obtained using this method. In this study, we report the influence that object morphology can have on qRT-PCR data. We have used a number of Arabidopsis thaliana mutants with altered floral morphology as models for this study. These mutants have been well characterised (including in terms of gene expression levels and patterns) by other techniques. This allows us to compare the results from the qRT-PCR with the results inferred from other methods. We demonstrate that the comparison of gene expression levels in objects that differ greatly in their morphology can lead to erroneous results.

  3. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  4. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  5. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  6. [Difference of three standard curves of real-time reverse-transcriptase PCR in viable Vibrio parahaemolyticus quantification].

    PubMed

    Jin, Mengtong; Sun, Wenshuo; Li, Qin; Sun, Xiaohong; Pan, Yingjie; Zhao, Yong

    2014-04-04

    We evaluated the difference of three standard curves in quantifying viable Vibrio parahaemolyticus in samples by real-time reverse-transcriptase PCR (Real-time RT-PCR). The standard curve A was established by 10-fold diluted cDNA. The cDNA was reverse transcripted after RNA synthesized in vitro. The standard curve B and C were established by 10-fold diluted cDNA. The cDNA was synthesized after RNA isolated from Vibrio parahaemolyticus in pure cultures (10(8) CFU/mL) and shrimp samples (10(6) CFU/g) (Standard curve A and C were proposed for the first time). Three standard curves were performed to quantitatively detect V. parahaemolyticus in six samples, respectively (Two pure cultured V. parahaemolyticus samples, two artificially contaminated cooked Litopenaeus vannamei samples and two artificially contaminated Litopenaeus vannamei samples). Then we evaluated the quantitative results of standard curve and the plate counting results and then analysed the differences. The three standard curves all show a strong linear relationship between the fractional cycle number and V. parahaemolyticus concentration (R2 > 0.99); The quantitative results of Real-time PCR were significantly (p < 0.05) lower than the results of plate counting. The relative errors compared with the results of plate counting ranked standard curve A (30.0%) > standard curve C (18.8%) > standard curve B (6.9%); The average differences between standard curve A and standard curve B and C were - 2.25 Lg CFU/mL and - 0.75 Lg CFU/mL, respectively, and the mean relative errors were 48.2% and 15.9%, respectively; The average difference between standard curve B and C was among (1.47 -1.53) Lg CFU/mL and the average relative errors were among 19.0% - 23.8%. Standard curve B could be applied to Real-time RT-PCR when quantify the number of viable microorganisms in samples.

  7. Trends and advances in food analysis by real-time polymerase chain reaction.

    PubMed

    Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin

    2016-05-01

    Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.

  8. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation

  9. A new highly sensitive and specific real-time PCR assay targeting the malate dehydrogenase gene of Kingella kingae and application to 201 pediatric clinical specimens.

    PubMed

    Houmami, Nawal El; Durand, Guillaume André; Bzdrenga, Janek; Darmon, Anne; Minodier, Philippe; Seligmann, Hervé; Raoult, Didier; Fournier, Pierre-Edouard

    2018-06-06

    Kingella kingae is a significant pediatric pathogen responsible for bone and joint infections, occult bacteremia, and endocarditis in early childhood. Past efforts to detect this bacterium by culture and broad-range 16S rRNA gene polymerase chain reaction (PCR) assays from clinical specimens have proven unsatisfactory and were gradually let out for the benefit of specific real-time PCR tests targeting the groEL gene and RTX locus of K. kingae by the late 2000s. However, recent studies showed that real-time PCR (RT-PCR) assays targeting the Kingella sp. RTX locus that are currently available for the diagnosis of K. kingae infection lack of specificity because they could not distinguish between K. kingae and the recently described K. negevensis species. Furthermore, in silico analysis of the groEL gene from a large collection of 45 K. kingae strains showed that primers and probes from K. kingae groEL -based RT-PCR assays display a few mismatches with K. kingae groEL variations that may result in a decreased detection sensitivity, especially in paucibacillary clinical specimens. In order to provide an alternative to groEL - and RTX-targeting RT-PCR assays that may suffer from suboptimal specificity and sensitivity, a K. kingae -specific RT-PCR assay targeting the malate dehydrogenase ( mdh ) gene was developed for predicting no mismatch against 18 variants of the K. kingae mdh gene from 20 distinct sequences types of K. kingae This novel K. kingae -specific RT-PCR assay demonstrated a high specificity and sensitivity and was successfully used to diagnose K. kingae infections and carriage in 104 clinical specimens from children aged between 7 months and 7 years old. Copyright © 2018 American Society for Microbiology.

  10. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  11. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment.

    PubMed

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  12. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    PubMed Central

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364

  13. Salmonella detection from chicken rinsate with surface enhanced Raman spectroscopy and RT-PCR validation

    USDA-ARS?s Scientific Manuscript database

    Optical detection of bacteria has been approached in recent years as a bacteria detection method that can counter time restraints of traditional plating or the high reoccurring cost of real-time polymerase chain reaction (RT-PCR). The goal of optical detection is to identify bacteria with spectral s...

  14. Development of a sensitive and quantitative diagnostic assay for fish nervous necrosis virus based on two-target real-time PCR.

    PubMed

    Dalla Valle, L; Toffolo, V; Lamprecht, M; Maltese, C; Bovo, G; Belvedere, P; Colombo, L

    2005-10-31

    The aim of the present work was to develop two new independent SYBR Green I-based real-time PCR assays for both detection and quantification of betanodavirus, an RNA virus that infects several species of marine teleost fish causing massive mortalities in larvae and juveniles. The assays utilized two pairs of primers targeting highly conserved regions of both the RNA molecules forming the betanodavirus genome: RNA1 encoding the RNA-dependent RNA polymerase (RdRP) and RNA2 encoding the coat protein (CP). The specificity of amplifications was monitored by the melting analysis and agarose gel electrophoresis of the amplified products. The applicability of these assays was confirmed with 21 betanodavirus strains, covering all the four main clades. In addition, a BLAST (NCBI) search with the primer sequences showed no genomic cross-reactivity with other viruses. The new assays were able to quantify concentrations of betanodavirus genes ranging from 10(1) to 10(8) copies per reaction. The intra-assay coefficients of variation (CV) of threshold cycle (Ct) values of the assays were 1.5% and 1.4% for CP and RdRP RNAs, respectively. The inter-assay CVs of Ct values were 2.3% and 2.4% for CP and RdRP RNAs, respectively. Moreover, regression analysis showed a significant correlation (R2>0.97) between genome number, as determined by real-time PCR assays and the corresponding virus titer expressed as TCID50/ml of two different betanodavirus strains propagated in cell culture. The two assays were compared with a previously established one-step RT-PCR assay and with the classical virus isolation test and found to be more sensitive. In conclusion, the developed real-time RT-PCR assays are a reliable, specific and sensitive tool for the quantitative diagnosis of betanodavirus.

  15. Design and Assessment of a Real Time Reverse Transcription-PCR Method to Genotype Single-Stranded RNA Male-Specific Coliphages (Family Leviviridae).

    EPA Science Inventory

    A real-time, reverse transcription-PCR (RT-qPCR) assay was developed to differentiate the four genogroups of male-specific ssRNA coliphages (FRNA) (family Leviviridae). As FRNA display a trend of source-specificity (human sewage or animal waste) at the genogroup level, this assa...

  16. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    PubMed

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.

  17. Evaluation of Altona Diagnostics RealStar Zika Virus Reverse Transcription-PCR Test Kit for Zika Virus PCR Testing

    PubMed Central

    Lombos, Ernesto; Tang, Elaine; Perusini, Stephen; Eshaghi, Alireza; Nagra, Sandeep; Frantz, Christine; Olsha, Romy; Kristjanson, Erik; Dimitrova, Kristina; Safronetz, David; Drebot, Mike

    2017-01-01

    ABSTRACT With the emerging Zika virus (ZIKV) epidemic, accessible real-time reverse transcription-PCR (rRT-PCR) assays are needed to streamline testing. The commercial Altona Diagnostics RealStar ZIKV rRT-PCR test kit (Altona PCR) has been approved for emergency use authorization by the U.S. FDA. Our aim was to verify the Altona PCR by comparing it to the CDC-designed dual-target ZIKV rRT-PCR reference assay (reference PCR) and describe the demographics of patients tested for ZIKV by rRT-PCR in Ontario, Canada. A large set of clinical specimens was tested for ZIKV by the Altona PCR and the reference PCR. Positive or equivocal specimens underwent PCR and Sanger sequencing targeting the ZIKV NS5 gene. A total of 671 serum specimens were tested by the reference PCR: 58 (8.6%) were positive, 193 (28.8%) were equivocal, and 420 (62.6%) were negative. Ninety percent of the reference PCR-positive patients were tested in the first 5 days after symptom onset. The Altona PCR was performed on 284/671 specimens tested by the reference PCR. The Altona PCR was positive for 53/58 (91%) reference PCR-positive specimens and 16/193 (8%) reference PCR-equivocal specimens; the ZIKV NS5 PCR was positive for all 68 Altona PCR-positive specimens and negative for all 181 Altona PCR-negative specimens that underwent the NS5 PCR. The Altona PCR has very good sensitivity (91%) and specificity (97%) compared to the reference PCR. The Altona PCR can be used for ZIKV diagnostic testing and has less extensive verification requirements than a laboratory-developed test. PMID:28298448

  18. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples.

    PubMed

    Campos, Maria Doroteia; Valadas, Vera; Campos, Catarina; Morello, Laura; Braglia, Luca; Breviario, Diego; Cardoso, Hélia G

    2018-01-01

    Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.

  19. Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens

    PubMed

    Beyhan, Yunus Emre; Taş Cengiz, Zeynep

    2017-08-23

    Background/aim: This study included patients who had digestive system complaints between August 2015 and October 2015. The research was designed to compare conventional microscopy with an antigen detection ELISA kit and the TaqMan-based real-time PCR (RT-PCR) technique for detection of Giardia intestinalis in human stool specimens. Materials and methods: Samples were concentrated by formalin-ether sedimentation technique and microscopic examinations were carried out on wet mount slides. A commercially available ELISA kit (Giardia CELISA, Cellabs, Brookvale, Australia) was used for immunoassay. DNA was extracted from fecal samples of about 200 mg using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and the LightCycler Nano system (Roche Diagnostics, Mannheim, Germany) was used for the TaqMan-based RT-PCR assay. Results: A total of 94 stool samples, 38 of them diagnosed positive (40.4%) and 56 of them diagnosed negative by microscopy, were selected for evaluation by antigen detection and molecular assays. The prevalence of G. intestinalis infection was found as 46.8% (n: 44) and 79.8% (n: 75) by ELISA and RT-PCR, respectively. RT-PCR revealed by far the highest positivity rate compared to the other two methods. The difference between these methods was found to be statistically significant (P < 0.05). In comparison to PCR, the sensitivity and specificity of microscopy and ELISA were 50.7% and 100% and 53.3% and 79%, respectively. Conclusion: RT-PCR seems to be much more sensitive and beneficial for rapid and accurate diagnosis of G. intestinalis in human stools.

  20. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis.

    PubMed

    Nguyen, Duc Quan; Eamens, Andrew L; Grof, Christopher P L

    2018-01-01

    Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail ( Setaria viridis ) has recently been proposed as a potential experimental model for the study of C 4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens -mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis ( S. viridis ). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE / THERONINE - PROTEIN PHOSPHATASE 2A ( PP2A ), 5 '- ADENYLYLSULFATE REDUCTASE 6 ( ASPR6 ) and DUAL SPECIFICITY PHOSPHATASE ( DUSP ) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A , ASPR6 and DUSP , were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE ( CAD ) genes across the same tissues. This approach readily demonstrated the suitably of the three

  1. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR

    PubMed Central

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  2. Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy.

    PubMed

    Chen, Lida; Li, Wenli; Zhang, Kuo; Zhang, Rui; Lu, Tian; Hao, Mingju; Jia, Tingting; Sun, Yu; Lin, Guigao; Wang, Lunan; Li, Jinming

    2016-01-01

    Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P < 0.05). This quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. The use of quantitative real-time reverse transcriptase PCR for 5' and 3' portions of ALK transcripts to detect ALK rearrangements in lung cancers.

    PubMed

    Wang, Rui; Pan, Yunjian; Li, Chenguang; Hu, Haichuan; Zhang, Yang; Li, Hang; Luo, Xiaoyang; Zhang, Jie; Fang, Zhaoyuan; Li, Yuan; Shen, Lei; Ji, Hongbin; Garfield, David; Sun, Yihua; Chen, Haiquan

    2012-09-01

    Approximately 3% to 7% of non-small cell lung cancers (NSCLC) harbor an ALK fusion gene, thus defining a tumor group that may be responsive to targeted therapy. The breakpoint in ALK consistently occurs at exon 20 and EML4 or other fusion partners, thus driving a strong expression of ALK kinase domain and resulting in an unbalanced expression in 5' and 3' portions of ALK transcripts. We have developed a rapid and accurate method by simultaneously detecting the expression in 5' and 3' portions of ALK mRNA. Quantitative real-time reverse transcriptase PCR (qRT-PCR) was used to examine expression levels of the 5' and 3' portions of ALK transcripts in177 NSCLCs, in which EGFR, KRAS, HER2, and BRAF mutations were absent. If unbalanced ALK mRNA expression was seen, ALK rearrangement was assumed to exist. ALK FISH was used to confirm the accuracy of qRT-PCR. RT-PCR and 5' RACE coupling sequencing identified the fusion variants. Real-time RT-PCR showed excellent sensitivity and specificity (100% and 100%, respectively) for detection of ALK rearrangements in resected specimens. In addition, six novel ALK fusion variants were identified, including one KIF5B-ALK (E17;A20) and five EML4-ALK variants (E6a;A19, E6a/b ins 18;A20, E17b ins 39;A20, E10a/b, E13;A20, and E17 ins 65;A20). Real-time RT-PCR is a rapid and accurate method for diagnosing ALK-rearranged lung cancers. Coupling of 5' RACE to this method should further facilitate rapid identification of novel ALK fusion genes. ©2012 AACR.

  4. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  5. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    PubMed

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r 2 =0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  7. Successful Validation of Sample Processing and Quantitative Real-Time PCR Capabilities on the International Space Station

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Schonfeld, Julie; Tran, Luan

    2016-01-01

    The WetLab-2 system was developed by NASA Ames Research Center to offer new capabilities to researchers. The system can lyse cells and extract RNA (Ribonucleic Acid) on-orbit from different sample types ranging from microbial cultures to animal tissues. The purified RNA can then either be stabilized for return to Earth or can be used to conduct on-orbit quantitative Reverse Transcriptase PCR (Polymerase Chain Reaction) (qRT-PCR) analysis without the need for sample return. The qRT-PCR results can be downlinked to the ground a few hours after the completion of the run. The validation flight of the WetLab-2 system launched on SpaceX-8 on April 8, 2016. On orbit operations started on April 15th with system setup and was followed by three quantitative PCR runs using an E. coli genomic DNA template pre-loaded at three different concentrations. These runs were designed to discern if quantitative PCR functions correctly in microgravity and if the data is comparable to that from the ground control runs. The flight data showed no significant differences compared to the ground data though there was more variability in the values, this was likely due to the numerous small bubbles observed. The capability of the system to process samples and purify RNA was then validated using frozen samples prepared on the ground. The flight data for both E. coli and mouse liver clearly shows that RNA was successfully purified by our system. The E. coli qRT-PCR run showed successful singleplex, duplex and triplex capability. Data showed high variability in the resulting Cts (Cycle Thresholds [for the PCR]) likely due to bubble formation and insufficient mixing during the procedure run. The mouse liver qRT-PCR run had successful singleplex and duplex reactions and the variability was slightly better as the mixing operation was improved. The ability to purify and stabilize RNA and to conduct qRT-PCR on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. The

  8. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  9. Real-time PCR for simultaneous detection and genotyping of bovine viral diarrhea virus.

    PubMed

    Letellier, C; Kerkhofs, P

    2003-12-01

    Since two genotypes of bovine viral diarrhea viruses (BVDV) occur in Belgian herds, their differentiation is important for disease surveillance. A quantitative real-time PCR assay was developed to detect and classify bovine viral diarrhea viruses in genotype I and II. A pair of primers specific for highly conserved regions of the 5'UTR and two TaqMan probes were designed. The FAM and VIC-labeled probe sequences differed by three nucleotides, allowing the differentiation between genotype I and II. The assay detectability of genotype I and II real-time PCR assay was 1000 and 100 copies, respectively. Highly reproducible data were obtained as the coefficients of variation of threshold cycle values in inter-runs were less than 2.2%. The correct classification of genotype I and II viruses was assessed by using reference strains and characterized field isolates of both genotypes. The application to clinical diagnosis was evaluated on pooled blood samples by post run measurement of the FAM- and VIC-associated fluorescence. The 100% agreement with the conventional RT-PCR method confirmed that this new technique could be used for routine detection of persistently infected immunotolerant animals.

  10. A new real-time PCR protocol for detection of avian haemosporidians.

    PubMed

    Bell, Jeffrey A; Weckstein, Jason D; Fecchio, Alan; Tkach, Vasyl V

    2015-07-19

    Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ(2) = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693

  11. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR.

    PubMed

    Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu

    2015-06-03

    Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.

  12. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    PubMed Central

    Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu

    2015-01-01

    Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi. PMID:26047338

  13. Validation of a Real Time PCR for Classical Swine Fever Diagnosis

    PubMed Central

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Érica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5′NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5′NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF. PMID:24818039

  14. Validation of a real time PCR for classical Swine Fever diagnosis.

    PubMed

    Dias, Natanael Lamas; Fonseca Júnior, Antônio Augusto; Oliveira, Anapolino Macedo; Sales, Erica Bravo; Alves, Bruna Rios Coelho; Dorella, Fernanda Alves; Camargos, Marcelo Fernandes

    2014-01-01

    The viral disease classical swine fever (CSF), caused by a Pestivirus, is one of the major causes of economic losses for pig farming. The aim of this work was to validate a RT-qPCR using Taqman for detection of CSF in swine tissues. The parameters for the validation followed the specifications of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals of the World Organization for Animal Health (OIE) and the guide ABNT NBR ISO/IEC 17025:2005. The analysis of the 5'NTR region of CSF virus was performed in 145 samples from 29 infected pigs and in 240 samples from 80 pigs originated in the Brazilian CSF-free zone. The tissues tested were spleen, kidney, blood, tonsils, and lymph nodes. Sequencing of the positive samples for 5'NTR region was performed to evaluate the specificity of the RT-qPCR. Tests performed for the RT-qPCR validation demonstrated that the PCR assay was efficient in detecting RNA from CSF virus in all materials from different tissues of infected animals. Furthermore, RNA from CSF virus was not detected in samples of swine originated from the Brazilian CSF-free zone. Hence, it is concluded that RT-qPCR can be used as a complementary diagnostic for CSF.

  15. Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates.

    PubMed

    Smiljanic, M; Kaase, M; Ahmad-Nejad, P; Ghebremedhin, B

    2017-07-10

    Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. Among the carbapenem-resistant isolates the genes bla KPC , bla VIM , bla NDM or bla OXA were detected. Both RT-PCR assays detected all bla KPC , bla VIM and bla NDM in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii.

  16. Detection of Mycoplasma pneumoniae by real-time PCR.

    PubMed

    Winchell, Jonas M; Mitchell, Stephanie L

    2013-01-01

    Mycoplasma pneumoniae is a significant cause of respiratory disease, accounting for approximately 20% of cases of community-acquired pneumonia. Although several diagnostic methods exist to detect M. pneumoniae in respiratory specimens, real-time PCR has emerged as a significant improvement for the rapid diagnosis of this pathogen. The method described herein details the procedure for the detection of M. pneumoniae by real-time PCR (qPCR). The qPCR assay described can be performed with three targets specific for M. pneumoniae (Mp181, Mp3, and Mp7) and one marker for the detection of the RNaseP gene found in human nucleic acid as an internal control reaction. Recent studies have demonstrated the ability of this procedure to reliably identify this agent and facilitate the timely recognition of an outbreak.

  17. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    PubMed

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  18. Evaluation of a Real-Time Reverse Transcription-PCR Assay for Detection of Enterovirus D68 in Clinical Samples from an Outbreak in New York State in 2014.

    PubMed

    Zhuge, Jian; Vail, Eric; Bush, Jeffrey L; Singelakis, Lauren; Huang, Weihua; Nolan, Sheila M; Haas, Janet P; Engel, Helen; Della Posta, Millicent; Yoon, Esther C; Fallon, John T; Wang, Guiqing

    2015-06-01

    An outbreak of severe respiratory illness associated with enterovirus D68 (EV-D68) infection was reported in mid-August 2014 in the United States. In this study, we evaluated the diagnostic utility of an EV-D68-specific real-time reverse transcription-PCR (rRT-PCR) that was recently developed by the Centers for Disease Control and Prevention in clinical samples. Nasopharyngeal (NP) swab specimens from patients in a recent outbreak of respiratory illness in the lower Hudson Valley, New York State, were collected and examined for the presence of human rhinovirus or enterovirus using the FilmArray Respiratory Panel (RP) assay. Samples positive by RP were assessed using EV-D68 rRT-PCR, and the data were compared to results from sequencing analysis of partial VP1 and 5' untranslated region (5'-UTR) sequences of the EV genome. A total of 285 RP-positive NP specimens (260 from the 2014 outbreak and 25 from 2013) were analyzed by rRT-PCR; EV-D68 was detected in 74 of 285 (26.0%) specimens examined. Data for comparisons between rRT-PCR and sequencing analysis were obtained from 194 NP specimens. EV-D68 detection was confirmed by sequencing analysis in 71 of 74 positive and in 1 of 120 randomly selected negative specimens by rRT-PCR. The EV-D68 rRT-PCR showed diagnostic sensitivity and specificity of 98.6% and 97.5%, respectively. Our data suggest that the EV-D68 rRT-PCR is a reliable assay for detection of EV-D68 in clinical samples and has a potential to be used as a tool for rapid diagnosis and outbreak investigation of EV-D68-associated infections in clinical and public health laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Evaluation of a Real-Time Reverse Transcription-PCR Assay for Detection of Enterovirus D68 in Clinical Samples from an Outbreak in New York State in 2014

    PubMed Central

    Zhuge, Jian; Vail, Eric; Bush, Jeffrey L.; Singelakis, Lauren; Huang, Weihua; Nolan, Sheila M.; Haas, Janet P.; Engel, Helen; Della Posta, Millicent; Yoon, Esther C.; Fallon, John T.

    2015-01-01

    An outbreak of severe respiratory illness associated with enterovirus D68 (EV-D68) infection was reported in mid-August 2014 in the United States. In this study, we evaluated the diagnostic utility of an EV-D68-specific real-time reverse transcription-PCR (rRT-PCR) that was recently developed by the Centers for Disease Control and Prevention in clinical samples. Nasopharyngeal (NP) swab specimens from patients in a recent outbreak of respiratory illness in the lower Hudson Valley, New York State, were collected and examined for the presence of human rhinovirus or enterovirus using the FilmArray Respiratory Panel (RP) assay. Samples positive by RP were assessed using EV-D68 rRT-PCR, and the data were compared to results from sequencing analysis of partial VP1 and 5′ untranslated region (5′-UTR) sequences of the EV genome. A total of 285 RP-positive NP specimens (260 from the 2014 outbreak and 25 from 2013) were analyzed by rRT-PCR; EV-D68 was detected in 74 of 285 (26.0%) specimens examined. Data for comparisons between rRT-PCR and sequencing analysis were obtained from 194 NP specimens. EV-D68 detection was confirmed by sequencing analysis in 71 of 74 positive and in 1 of 120 randomly selected negative specimens by rRT-PCR. The EV-D68 rRT-PCR showed diagnostic sensitivity and specificity of 98.6% and 97.5%, respectively. Our data suggest that the EV-D68 rRT-PCR is a reliable assay for detection of EV-D68 in clinical samples and has a potential to be used as a tool for rapid diagnosis and outbreak investigation of EV-D68-associated infections in clinical and public health laboratories. PMID:25854481

  20. No Control Genes Required: Bayesian Analysis of qRT-PCR Data

    PubMed Central

    Matz, Mikhail V.; Wright, Rachel M.; Scott, James G.

    2013-01-01

    Background Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. Results In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the “classic” analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Conclusions Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC

  1. No control genes required: Bayesian analysis of qRT-PCR data.

    PubMed

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  2. Evaluation of changes in periodontal bacteria in healthy dogs over 6 months using quantitative real-time PCR.

    PubMed

    Maruyama, N; Mori, A; Shono, S; Oda, H; Sako, T

    2018-03-01

    Porphyromonas gulae, Tannerella forsythia and Campylobacter rectus are considered dominant periodontal pathogens in dogs. Recently, quantitative real-time PCR (qRT-PCR) methods have been used for absolute quantitative determination of oral bacterial counts. The purpose of the present study was to establish a standardized qRT-PCR procedure to quantify bacterial counts of the three target periodontal bacteria (P. gulae, T. forsythia and C. rectus). Copy numbers of the three target periodontal bacteria were evaluated in 26 healthy dogs. Then, changes in bacterial counts of the three target periodontal bacteria were evaluated for 24 weeks in 7 healthy dogs after periodontal scaling. Analytical evaluation of each self-designed primer indicated acceptable analytical imprecision. All 26 healthy dogs were found to be positive for P. gulae, T. forsythia and C. rectus. Median total bacterial counts (copies/ng) of each target genes were 385.612 for P. gulae, 25.109 for T. forsythia and 5.771 for C. rectus. Significant differences were observed between the copy numbers of the three target periodontal bacteria. Periodontal scaling reduced median copy numbers of the three target periodontal bacteria in 7 healthy dogs. However, after periodontal scaling, copy numbers of all three periodontal bacteria significantly increased over time (p<0.05, Kruskal-Wallis test) (24 weeks). In conclusion, our results demonstrated that qRT-PCR can accurately measure periodontal bacteria in dogs. Furthermore, the present study has revealed that qRT-PCR method can be considered as a new objective evaluation system for canine periodontal disease. Copyright© by the Polish Academy of Sciences.

  3. Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays.

    PubMed

    Durtschi, Jacob D; Stevenson, Jeffery; Hymas, Weston; Voelkerding, Karl V

    2007-02-01

    Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.

  4. Selection of reference genes for RT-qPCR analysis in tumor tissues from male hepatocellular carcinoma patients with hepatitis B infection and cirrhosis.

    PubMed

    Liu, Shuang; Zhu, Pengfei; Zhang, Ling; Ding, Shanlong; Zheng, Sujun; Wang, Yang; Lu, Fengmin

    2013-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has been widely used to quantify relative gene expression because of the high specificity, sensitivity and accuracy of this technique. However, its reliability is strongly depends on the expression stability of reference gene used for data normalization. Therefore, identification of reliable and condition specific reference genes is critical for the success of RT-qPCR. Hepatitis B virus (HBV) infection, male gender and the presence of cirrhosis are widely recognized as the leading independent risk factors for the development of hepatocellular carcinoma (HCC). This study aimed to select reliable reference gene for RT-qPCR analysis in HCC patients with all of those risk factors. Six candidate reference genes were analyzed in 33 paired tumor and non-tumor tissues from untreated HCC patients. The genes expression stabilities were assessed by geNorm and NormFinder. C-terminal binding protein 1(CTBP1) was the most stable gene among the 6 candidate genes evaluated by both geNorm and NormFinder. The expression stability values were 0.08 for CTBP1 and UBC, 0.09 for HPRT1, 0.12 for HMBS, 0.14 for GAPDH and 0.18 for 18S with geNorm analysis. The stability values suggested by NormFinder software were CTBP1: 0.044, UBC: 0.063, HMBS: 0.072, HPRT1: 0.072, GAPDH: 0.098 and 18S rRNA: 0.161. This is the first systematic analysis which suggested CTBP1 as the highest expression-stable gene in human male HBV infection related-HCC with cirrhosis. We recommend CTBP1 as the best candidate reference gene when RT-qPCR was used to determine gene(s) expression in HCC. This may facilitate the relevant HBV related HCC studies in the future.

  5. Vitality Stains and Real Time PCR Studies to Delineate the Interactions of Pichia anomala and Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to probe the effect of the yeast, P. anomala against A flavus by using real time RT-PCR technique and vitality fluorescent stains. Yeast and fungi were inoculated into a 250 ml-flask containing 50 ml potato dextrose broth (PDB) at yeast to fungus (Y : F) ratios of ...

  6. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples

    PubMed Central

    2011-01-01

    Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640

  7. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs.

    PubMed

    Henritzi, Dinah; Zhao, Na; Starick, Elke; Simon, Gaelle; Krog, Jesper S; Larsen, Lars Erik; Reid, Scott M; Brown, Ian H; Chiapponi, Chiara; Foni, Emanuela; Wacheck, Silke; Schmid, Peter; Beer, Martin; Hoffmann, Bernd; Harder, Timm C

    2016-11-01

    A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost-effective large-scale analysis. New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages "av" (European avian-derived), "hu" (European human-derived) and "pdm" (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage "pdm" is differentiated. An RT-PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT-qPCR subtyping. These new multiplex RT-qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  8. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.)

    PubMed Central

    2014-01-01

    Background Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Results Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. Conclusion This study

  9. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  10. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

    PubMed

    Ploemen, Ivo H J; Prudêncio, Miguel; Douradinha, Bruno G; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J F; Hermsen, Cornelus C; Sauerwein, Robert W; Baptista, Fernanda G; Mota, Maria M; Waters, Andrew P; Que, Ivo; Lowik, Clemens W G M; Khan, Shahid M; Janse, Chris J; Franke-Fayard, Blandine M D

    2009-11-18

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luc(con), expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1-5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of

  11. Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging

    PubMed Central

    Douradinha, Bruno G.; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J. F.; Hermsen, Cornelus C.; Sauerwein, Robert W.; Baptista, Fernanda G.; Mota, Maria M.; Waters, Andrew P.; Que, Ivo; Lowik, Clemens W. G. M.; Khan, Shahid M.; Janse, Chris J.; Franke-Fayard, Blandine M. D.

    2009-01-01

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of

  12. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes

    PubMed Central

    Qin, Peng; He, Maolan; Yu, Xiumei; Zhao, Ke; Zhang, Xiaoping; Ma, Menggen; Chen, Qiang; Chen, Xiaoqiong; Zeng, Xianfu; Gu, Yunfu

    2018-01-01

    Lentinula edodes (shiitake mushroom) is a common edible mushroom with a number of potential therapeutic and nutritional applications. It contains various medically important molecules, such as polysaccharides, terpenoids, sterols, and lipids, were contained in this mushroom. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to analyze the mechanisms underlying the biosynthetic pathways of these substances. qRT-PCR is used for accurate analyses of transcript levels owing to its rapidity, sensitivity, and reliability. However, its accuracy and reliability for the quantification of transcripts rely on the expression stability of the reference genes used for data normalization. To ensure the reliability of gene expression analyses using qRT-PCR in L. edodes molecular biology research, it is necessary to systematically evaluate reference genes. In the current study, ten potential reference genes were selected from L. edodes genomic data and their expression levels were measured by qRT-PCR using various samples. The expression stability of each candidate gene was analyzed by three commonly used software packages: geNorm, NormFinder, and BestKeeper. Base on the results, Rpl4 was the most stable reference gene across all experimental conditions, and Atu was the most stable gene among strains. 18S was found to be the best reference gene for different development stages, and Rpl4 was the most stably expressed gene under various nutrient conditions. The present work will contribute to qRT-PCR studies in L. edodes. PMID:29293626

  13. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes.

    PubMed

    Xiang, Quanju; Li, Jin; Qin, Peng; He, Maolan; Yu, Xiumei; Zhao, Ke; Zhang, Xiaoping; Ma, Menggen; Chen, Qiang; Chen, Xiaoqiong; Zeng, Xianfu; Gu, Yunfu

    2018-01-01

    Lentinula edodes (shiitake mushroom) is a common edible mushroom with a number of potential therapeutic and nutritional applications. It contains various medically important molecules, such as polysaccharides, terpenoids, sterols, and lipids, were contained in this mushroom. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to analyze the mechanisms underlying the biosynthetic pathways of these substances. qRT-PCR is used for accurate analyses of transcript levels owing to its rapidity, sensitivity, and reliability. However, its accuracy and reliability for the quantification of transcripts rely on the expression stability of the reference genes used for data normalization. To ensure the reliability of gene expression analyses using qRT-PCR in L. edodes molecular biology research, it is necessary to systematically evaluate reference genes. In the current study, ten potential reference genes were selected from L. edodes genomic data and their expression levels were measured by qRT-PCR using various samples. The expression stability of each candidate gene was analyzed by three commonly used software packages: geNorm, NormFinder, and BestKeeper. Base on the results, Rpl4 was the most stable reference gene across all experimental conditions, and Atu was the most stable gene among strains. 18S was found to be the best reference gene for different development stages, and Rpl4 was the most stably expressed gene under various nutrient conditions. The present work will contribute to qRT-PCR studies in L. edodes.

  14. Diagnosis and identification of Leishmania spp. from Giemsa-stained slides, by real-time PCR and melting curve analysis in south-west of Iran.

    PubMed

    Khademvatan, S; Neisi, N; Maraghi, S; Saki, J

    2011-12-01

    The aim of present study was describing a real-time PCR assay for the diagnosis and direct identification of Leishmania species on Giemsa-stained slides in south-west of Iran. Altogether, 102 Giemsa-stained slides were collected from different part of south-west of Iran between 2008 and 2011. All the Giemsa-stained slides were examined under light microscope. After DNA extraction, real-time PCR amplification and detection were conducted with fluorescent SYBR Green I. For identification, PCR products were analysed with melting curve analysis. One hundred and two archived slides from suspected lesion examined by microscopy and real-time PCR. The sensitivity of the real-time PCR on Giemsa-stained slid was 98% (96/102). The melting curve analysis (T(m)) were 88·3±0·2°C for L. tropica (MHOM/IR/02/Mash10), 86·5±0·2°C for L. major (MHOM/IR/75/ER) and 89·4±0·3°C for L. infantum (MCAN/IR/97/LON 49), respectively. This study is first report in use of real-time PCR for diagnosis and identification of Leishmania spp. in Iran. Up to now, in Iran, the majority of identification of Leishmania species is restriction fragment length polymorphism (PCR-RFLP) of ITS1 and kinetoplast DNA. Our data showed that Giemsa-stained slides that were stored more than 3 years, can be use for Leishmania DNA extraction and amplification by real-time PCR. Compared to conventional PCR-based methods, the real-time PCR is extremely rapid with results and more samples can be processed at one time.

  15. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    PubMed

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  16. A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples.

    PubMed

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Guillier, Laurent; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2015-05-18

    Sensitive and quantitative detection of foodborne enteric viruses is classically achieved by quantitative RT-PCR (RT-qPCR). Recently, digital PCR (dPCR) was described as a novel approach to genome quantification without need for a standard curve. The performance of microfluidic digital RT-PCR (RT-dPCR) was compared to RT-qPCR for detecting the main viruses responsible for foodborne outbreaks (human Noroviruses (NoV) and Hepatitis A virus (HAV)) in spiked lettuce and bottled water. Two process controls (Mengovirus and Murine Norovirus) were used and external amplification controls (EAC) were added to examine inhibition of RT-qPCR and RT-dPCR. For detecting viral RNA and cDNA, the sensitivity of the RT-dPCR assays was either comparable to that of RT-qPCR (RNA of HAV, NoV GI, Mengovirus) or slightly (around 1 log10) decreased (NoV GII and MNV-1 RNA and of HAV, NoV GI, NoV GII cDNA). The number of genomic copies determined by dPCR was always from 0.4 to 1.7 log10 lower than the expected numbers of copies calculated by using the standard qPCR curve. Viral recoveries calculated by RT-dPCR were found to be significantly higher than by RT-qPCR for NoV GI, HAV and Mengovirus in water, and for NoV GII and HAV in lettuce samples. The RT-dPCR assay proved to be more tolerant to inhibitory substances present in lettuce samples. This absolute quantitation approach may be useful to standardize quantification of enteric viruses in bottled water and lettuce samples and may be extended to quantifying other human pathogens in food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Single-Pair Fret Analysis of mRNA Transcripts for Highly Sensitive Gene Expression Profiling in Near Real Time

    PubMed Central

    Peng, Zhiyong; Young, Brandon; Baird, Alison E.; Soper, Steven A.

    2013-01-01

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with on-line single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10 − 10,000 copies) with an R2 = 0.9995 for RT-LDR/spFRET and R2 = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a 2 thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time

  18. Assessment of reference genes for reliable analysis of gene transcription by RT-qPCR in ovine leukocytes.

    PubMed

    Mahakapuge, T A N; Scheerlinck, J-P Y; Rojas, C A Alvarez; Every, A L; Hagen, J

    2016-03-01

    With the availability of genetic sequencing data, quantitative reverse transcription PCR (RT-qPCR) is increasingly being used for the quantification of gene transcription across species. Too often there is little regard to the selection of reference genes and the impact that a poor choice has on data interpretation. Indeed, RT-qPCR provides a snapshot of relative gene transcription at a given time-point, and hence is highly dependent on the stability of the transcription of the reference gene(s). Using ovine efferent lymph cells and peripheral blood mono-nuclear cells (PBMCs), the two most frequently used leukocytes in immunological studies, we have compared the stability of transcription of the most commonly used ovine reference genes: YWHAZ, RPL-13A, PGK1, B2M, GAPDH, HPRT, SDHA and ACTB. Using established algorithms for reference gene normalization "geNorm" and "Norm Finder", PGK1, GAPDH and YWHAZ were deemed the most stably transcribed genes for efferent leukocytes and PGK1, YWHAZ and SDHA were optimal in PBMCs. These genes should therefore be considered for accurate and reproducible RT-qPCR data analysis of gene transcription in sheep. Copyright © 2016. Published by Elsevier B.V.

  19. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  20. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    PubMed

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  1. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    NASA Astrophysics Data System (ADS)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  2. Comparison of two real-time RT-PCR assays for differentiation of C-strain vaccinated from classical swine fever infected pigs and wild boars.

    PubMed

    Widén, F; Everett, H; Blome, S; Fernandez Pinero, J; Uttenthal, A; Cortey, M; von Rosen, T; Tignon, M; Liu, L

    2014-10-01

    Classical swine fever is one of the most important infectious diseases for the pig industry worldwide due to its economic impact. Vaccination is an effective means to control disease, however within the EU its regular use is banned owing to the inability to differentiate infected and vaccinated animals, the so called DIVA principle. This inability complicates monitoring of disease and stops international trade thereby limiting use of the vaccine in many regions. The C-strain vaccine is safe to use and gives good protection. It is licensed for emergency vaccination in the EU in event of an outbreak. Two genetic assays that can distinguish between wild type virus and C-strain vaccines have recently been developed. Here the results from a comparison of these two real-time RT-PCR assays in an interlaboratory exercise are presented. Both assays showed similar performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  4. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).

    PubMed

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-09-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  5. Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species.

    PubMed

    Störmer, Melanie; Vollmer, Tanja; Henrich, Birgit; Kleesiek, Knut; Dreier, Jens

    2009-04-01

    Polymerase chain reaction assays have become widely used methods of confirming the presence of Mollicutes species in clinical samples and cell cultures. We have developed a broad-range real-time PCR assay using the locked nucleic acid technology to detect mollicute species causing human infection and cell line contamination. Primers and probes specifically for the conserved regions of the mycoplasmal tuf gene (encoding elongation factor Tu) were designed. Cell culture supernatants, clinical specimens (vaginal swabs, sputum, cryopreserved heart valve tissues), and reference strains were tested for mollicute contamination as well as to exclude cross-reaction to human nucleic acids and other bacterial species. Nucleic acids were extracted using magnetic separation technology. The coamplification of the human beta2-microglobulin DNA served as an internal control. The PCR assay was highly specific and obtained an analytical sensitivity of one copy per microl sample. The 95% detection limit was calculated to 10 copies per microl sample for Mycoplasma pneumoniae and M. orale. No false-positive results were observed due to cross-reaction of walled bacterial, fungal, and human nucleic acids. To evaluate the PCR, we compared the results to two commercialized test systems. Moreover, in combination with a previously developed broad-range RT-PCR assay for the detection of bacteria in blood products, both mollicute and walled bacterial contamination can be detected simultaneously using multiplex real-time RT-PCR.

  6. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases

    PubMed Central

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-01-01

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies. PMID:27853238

  7. Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases.

    PubMed

    Rydbirk, Rasmus; Folke, Jonas; Winge, Kristian; Aznar, Susana; Pakkenberg, Bente; Brudek, Tomasz

    2016-11-17

    Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer's disease (AD), Parkinson's disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.

  8. Validation of housekeeping genes as an internal control for gene expression studies in Giardia lamblia using quantitative real-time PCR.

    PubMed

    Marcial-Quino, Jaime; Fierro, Francisco; De la Mora-De la Mora, Ignacio; Enríquez-Flores, Sergio; Gómez-Manzo, Saúl; Vanoye-Carlo, America; Garcia-Torres, Itzhel; Sierra-Palacios, Edgar; Reyes-Vivas, Horacio

    2016-04-25

    The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Abilities of the mCP Agar Method and CRENAME Alpha Toxin-Specific Real-Time PCR Assay To Detect Clostridium perfringens Spores in Drinking Water

    PubMed Central

    Maheux, Andrée F.; Bérubé, Ève; Boudreau, Dominique K.; Villéger, Romain; Cantin, Philippe; Boissinot, Maurice; Bissonnette, Luc

    2013-01-01

    We first determined the analytical specificity and ubiquity (i.e., the ability to detect all or most strains) of a Clostridium perfringens-specific real-time PCR (rtPCR) assay based on the cpa gene (cpa rtPCR) by using a bacterial strain panel composed of C. perfringens and non-C. perfringens Clostridium strains. All non-C. perfringens Clostridium strains tested negative, whereas all C. perfringens strains tested positive with the cpa rtPCR, for an analytical specificity and ubiquity of 100%. The cpa rtPCR assay was then used to confirm the identity of 116 putative C. perfringens isolates recovered after filtration of water samples and culture on mCP agar. Colonies presenting discordant results between the phenotype on mCP agar and cpa rtPCR were identified by sequencing the 16S rRNA and cpa genes. Four mCP−/rtPCR+ colonies were identified as C. perfringens, whereas 3 mCP+/rtPCR− colonies were identified as non-C. perfringens. The cpa rtPCR was negative with all 51 non-C. perfringens strains and positive with 64 of 65 C. perfringens strains. Finally, we compared mCP agar and a CRENAME (concentration and recovery of microbial particles, extraction of nucleic acids, and molecular enrichment) procedure plus cpa rtPCR (CRENAME + cpa rtPCR) for their abilities to detect C. perfringens spores in drinking water. CRENAME + cpa rtPCR detected as few as one C. perfringens CFU per 100 ml of drinking water sample in less than 5 h, whereas mCP agar took at least 25 h to deliver results. CRENAME + cpa rtPCR also allows the simultaneous and sensitive detection of Escherichia coli and C. perfringens from the same potable water sample. In itself, it could be used to assess the public health risk posed by drinking water potentially contaminated with pathogens more resistant to disinfection. PMID:24077714

  10. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    PubMed Central

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  11. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    PubMed

    Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm

  12. Development of tailored real-time RT-PCR assays for the detection and differentiation of serotype O, A and Asia-1 foot-and-mouth disease virus lineages circulating in the Middle East.

    PubMed

    Reid, Scott M; Mioulet, Valerie; Knowles, Nick J; Shirazi, Nazeem; Belsham, Graham J; King, Donald P

    2014-10-01

    Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). In countries where FMD is endemic, identification of the serotypes of the causative virus strains is important for vaccine selection and tracing the source of outbreaks. In this study, real-time reverse transcription polymerase chain reaction (rRT-PCR) assays using primer/probe sets designed from the VP1 coding region of the virus genomes were developed for the specific detection of serotype O, A and Asia-1 FMD viruses (FMDVs) circulating in the Middle East. These assays were evaluated using representative field samples of serotype O strains belonging exclusively to the PanAsia-2 lineage, serotype A strains of the Iran-05 lineage and serotype Asia-1 viruses from three relevant sub-groups. When RNA extracted from archival and contemporary field strains was tested using one- or two-step rRT-PCR assays, all three primer/probe sets detected the RNA from homotypic viruses and no cross-reactivity was observed with heterotypic viruses. Similar results were obtained using both single- and multiplex assay formats. Using plasmid standards, the minimum detection level of these tests was found to be lower than two copies. The results illustrate the potential of tailored rRT-PCR tools for the detection and categorization of viruses circulating in the Middle East belonging to distinct subgroups of serotypes O, A and Asia-1. These assays can also overcome the problem of serotyping samples which are found positive by the generic rRT-PCR diagnostic assays but negative by virus isolation and antigen-detection ELISA which would otherwise have to be serotyped by nucleotide sequencing. A similar approach could be used to develop serotyping assays for FMDV strains circulating in other regions of the world. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. REAL TIME PCR ANALYSIS OF INDOOR MOLDS: PRINCIPLES, PROCEDURES AND APPLICATIONS

    EPA Science Inventory

    This presentation will endeavor to present an overview of the real time polymerase chain reaction method developed for indoor mold detection and quantification by the EPA. It will begin with a brief discussion of the PCR technology that provides the basis for this method and how ...

  14. ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization.

    PubMed

    Sang, Jian; Wang, Zhennan; Li, Man; Cao, Jiabao; Niu, Guangyi; Xia, Lin; Zou, Dong; Wang, Fan; Xu, Xingjian; Han, Xiaojiao; Fan, Jinqi; Yang, Ye; Zuo, Wanzhu; Zhang, Yang; Zhao, Wenming; Bao, Yiming; Xiao, Jingfa; Hu, Songnian; Hao, Lili; Zhang, Zhang

    2018-01-04

    Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions. Unlike extant related databases that focus on qPCR primers in model organisms (mainly human and mouse), ICG features harnessing collective intelligence in community integration of internal control genes for a variety of species. Specifically, it integrates a comprehensive collection of more than 750 internal control genes for 73 animals, 115 plants, 12 fungi and 9 bacteria, and incorporates detailed information on recommended application scenarios corresponding to specific experimental conditions, which, collectively, are of great help for researchers to adopt appropriate internal control genes for their own experiments. Taken together, ICG serves as a publicly editable and open-content encyclopaedia of internal control genes and accordingly bears broad utility for reliable RT-qPCR normalization and gene expression characterization in both model and non-model organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Validation of a real-time reverse transcriptase-PCR assay for the detection of H7 avian influenza virus

    USGS Publications Warehouse

    Pedersen, J.; Killian, M.L.; Hines, N.; Senne, D.; Panigrahy, B.; Ip, Hon S.; Spackman, Erica

    2010-01-01

    This report describes the validation of an avian influenza virus (AIV) H7 subtype-specific real-time reverse transcriptasePCR (rRT-PCR) assay developed at the Southeast Poultry Research Laboratory (SEPRL) for the detection of H7 AI in North and South American wild aquatic birds and poultry. The validation was a collaborative effort by the SEPRL and the National Veterinary Services Laboratories. The 2008 H7 rRT-PCR assay detects 101 50% embryo infectious doses per reaction, or 103104 copies of transcribed H7 RNA. Diagnostic sensitivity and specificity were estimated to be 97.5% and 82.4%, respectively; the assay was shown to be specific for H7 AI when tested with >270 wild birds and poultry viruses. Following validation, the 2008 H7 rRT-PCR procedure was adopted as an official U.S. Department of Agriculture procedure for the detection of H7 AIV. The 2008 H7 assay replaced the previously used (2002) assay, which does not detect H7 viruses currently circulating in wild birds in North and South America. ?? 2010 American Association of Avian Pathologists.

  16. Potential Utility of the Real-Time TMPA-RT Precipitation Estimates in Streamflow Prediction

    NASA Technical Reports Server (NTRS)

    Su, Fengge; Gao, Huilin; Huffman, George J.; Lettenmaier, Dennis P.

    2010-01-01

    We investigate the potential utility of the real-time Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA-RT) data for streamflow prediction, both through direct comparisons of TMPA-RT estimates with a gridded gauge product, and through evaluation of streamflow simulations over four tributaries of La Plata Basin (LPB) in South America using the two precipitation products. Our assessments indicate that the relative accuracy and the hydrologic performance of TMPA-RT-based streamflow simulations generally improved after February 2005. The improvements in TMPA-RT since 2005 are closely related to upgrades in the TMPA-RT algorithm in early February, 2005 which include use of additional microwave sensors (AMSR-E and AMSU-B) and implementation of different calibration schemes. Our work suggests considerable potential for hydrologic prediction using purely satellite-derived precipitation estimates (no adjustments by in situ gauges) in parts of the globe where in situ observations are sparse.

  17. Preparation of armored RNA as a control for multiplex real-time reverse transcription-PCR detection of influenza virus and severe acute respiratory syndrome coronavirus.

    PubMed

    Yu, Xin-Fen; Pan, Jing-Cao; Ye, Rong; Xiang, Hai-Qing; Kou, Yu; Huang, Zhi-Cheng

    2008-03-01

    The common respiratory viruses, including influenza A, influenza B, and newly emerging severe acute respiratory syndrome (SARS) viruses, may cause similar clinical symptoms. Therefore, differential diagnosis of these virus pathogens is frequently required for single clinical samples. In addition, there is an urgent need for noninfectious and stable RNA standards and controls for multivirus detection. In this study, reverse transcription-PCR (RT-PCR) targeting of the RNAs of influenza A and influenza B viruses and SARS coronavirus was performed, and the resulting products were spliced into a fragment which was packaged into armored RNA for use as a noninfectious, quantifiable synthetic substitute. Furthermore, in the present study we developed a multiplex real-time RT-PCR assay in which the armored RNA was used as an external positive control and the three RNA viruses could be detected simultaneously in a single reaction mix. The detection limit of the multiplex real-time PCR was 10 copies/microl of armored RNA.

  18. Analysis of Gene Expression in Emerald Ash Borer (Agrilus planipennis) Using Quantitative Real Time-PCR

    PubMed Central

    Bhandary, Binny; Rajarapu, Swapna Priya; Rivera-Vega, Loren; Mittapalli, Omprakash

    2010-01-01

    Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America.EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1st-, 2nd-, 3rd-, 4th-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium. PMID:20445495

  19. Analysis of gene expression in emerald ash borer (Agrilus planipennis) using quantitative real time-PCR.

    PubMed

    Bhandary, Binny; Rajarapu, Swapna Priya; Rivera-Vega, Loren; Mittapalli, Omprakash

    2010-05-04

    Emerald ash borer (EAB, Agrilus planipennis) is an exotic invasive pest, which has killed millions of ash trees (Fraxinus spp) in North America. EAB continues to spread rapidly and attacks ash trees of different ages, from saplings to mature trees. However, to date very little or no molecular knowledge exists for EAB. We are interested in deciphering the molecular-based physiological processes at the tissue level that aid EAB in successful colonization of ash trees. In this report we show the effective use of quantitative real-time PCR (qRT-PCR) to ascertain mRNA levels in different larval tissues (including midgut, fat bodies and cuticle) and different developmental stages (including 1(st)-, 2(nd)-, 3(rd)-, 4(th)-instars, prepupae and adults) of EAB. As an example, a peritrophin gene (herein named, AP-PERI1) is exemplified as the gene of interest and a ribosomal protein (AP-RP1) as the internal control. Peritrophins are important components of the peritrophic membrane/matrix (PM), which is the lining of the insect gut. The PM has diverse functions including digestion and mechanical protection to the midgut epithelium.

  20. Real-time PCR quantification of Vibrio parahaemolyticus in oysters using an alternative matrix.

    PubMed

    Kaufman, G E; Blackstone, G M; Vickery, M C L; Bej, A K; Bowers, J; Bowen, Michael D; Meyer, Richard F; DePaola, A

    2004-11-01

    This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26 degrees C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P < 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P < 0.05; and oyster: r = 0.99, P < 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P < 0.05) but reduced correlation (r = -0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus-specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h

  1. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-07

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.

  2. Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Shuang; Jiang, Wei; Huang, Yuan; Bie, Zhilong

    2014-01-01

    Watermelon is one of the major Cucurbitaceae crops and the recent availability of genome sequence greatly facilitates the fundamental researches on it. Quantitative real-time reverse transcriptase PCR (qRT-PCR) is the preferred method for gene expression analyses, and using validated reference genes for normalization is crucial to ensure the accuracy of this method. However, a systematic validation of reference genes has not been conducted on watermelon. In this study, transcripts of 15 candidate reference genes were quantified in watermelon using qRT-PCR, and the stability of these genes was compared using geNorm and NormFinder. geNorm identified ClTUA and ClACT, ClEF1α and ClACT, and ClCAC and ClTUA as the best pairs of reference genes in watermelon organs and tissues under normal growth conditions, abiotic stress, and biotic stress, respectively. NormFinder identified ClYLS8, ClUBCP, and ClCAC as the best single reference genes under the above experimental conditions, respectively. ClYLS8 and ClPP2A were identified as the best reference genes across all samples. Two to nine reference genes were required for more reliable normalization depending on the experimental conditions. The widely used watermelon reference gene 18SrRNA was less stable than the other reference genes under the experimental conditions. Catalase family genes were identified in watermelon genome, and used to validate the reliability of the identified reference genes. ClCAT1and ClCAT2 were induced and upregulated in the first 24 h, whereas ClCAT3 was downregulated in the leaves under low temperature stress. However, the expression levels of these genes were significantly overestimated and misinterpreted when 18SrRNA was used as a reference gene. These results provide a good starting point for reference gene selection in qRT-PCR analyses involving watermelon.

  3. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    NASA Technical Reports Server (NTRS)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  4. One-step cross-genogroup multiplex RT-qPCR with an internal control system for the detection of infectious pancreatic necrosis virus (IPNV).

    PubMed

    Hoferer, Marc; Braun, Anne; Skrypski, Julia; Bock, Sabine; Thalheim, Sabine; Sting, Reinhard

    2017-09-01

    Infectious pancreatic necrosis virus (IPNV) causes great losses in fish hatcheries world-wide. The detection of IPNV can be challenging in certain circumstances, particularly due to low viral load and the genetic variability of this RNA virus. For the first time, this project created a quantitative triplex real-time reverse transcription PCR (RT-qPCR), including an endogenous control system, for specific, sensitive and rapid detection of IPNV in routine diagnostics. Multiple sequence alignment of 46 nucleotide sequences of the segment A genome obtained from the NCBI database allowed the design of two RT-qPCR systems covering the IPNV genogroup 1 and genogroups 2-5, respectively. The completed triplex RT-qPCR including a salmonid-specific endogenous control showed high specificity and an analytical sensitivity of 20-40 oligonucleotide copies. Testing of dilution series of virus-loaded cell culture suspensions proved equality of the triplex RT-qPCR with virus detection in cell culture and a higher sensitivity than conventional RT-PCR in field samples. In comparative studies of a total of 77 field samples tested, 51 showed identical positive and 19 identical negative results in cell culture and the triplex RT-qPCR. However, seven other samples yielded positive results in the triplex RT-qPCR, but negative results in cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.

  6. [Analytical performances of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine].

    PubMed

    De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie

    2016-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.

  7. [Mission oriented diagnostic real-time PCR].

    PubMed

    Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Splettstoesser, Wolf D; Neubauer, Heinrich; Pfeffer, Martin; Straube, Eberhard

    2007-01-01

    In out of area military missions soldiers are potentially exposed to bacteria that are endemic in tropical areas and can be used as biological agents. It can be difficult to culture these bacteria due to sample contamination, low number of bacteria or pretreatment with antibiotics. Commercial biochemical identification systems are not optimized for these agents which can result in misidentification. Immunological assays are often not commercially available or not specific. Real-time PCR assays are very specific and sensitive and can shorten the time required to establish a diagnosis markedly. Therefore, real-time PCRs for the identification of Bacillus anthracis, Brucella spp., Burkholderia mallei und Burkholderia pseudomallei, Francisella tularensis und Yersinia pestis have been developed. PCR results can be false negative due to inadequate clinical samples, low number of bacteria in samples, DNA degradation, inhibitory substances and inappropriate DNA preparation. Hence, it is crucial to cultivate the organisms as a prerequisite for adequate antibiotic therapy and typing of the agent. In a bioterrorist scenario samples have to be treated according to rules applied in forensic medicine and documentation has to be flawless.

  8. Detection of bacterial pathogens in Mongolia meningitis surveillance with a new real-time PCR assay to detect Haemophilus influenzae.

    PubMed

    Wang, Xin; Mair, Raydel; Hatcher, Cynthia; Theodore, M Jordan; Edmond, Karen; Wu, Henry M; Harcourt, Brian H; Carvalho, Maria da Gloria S; Pimenta, Fabiana; Nymadawa, Pagbajab; Altantsetseg, Dorjpurev; Kirsch, Mariah; Satola, Sarah W; Cohn, Amanda; Messonnier, Nancy E; Mayer, Leonard W

    2011-04-01

    Since the implementation of Haemophilus influenzae (Hi) serotype b vaccine, other serotypes and non-typeable strains have taken on greater importance as a cause of Hi diseases. A rapid and accurate method is needed to detect all Hi regardless of the encapsulation status. We developed 2 real-time PCR (rt-PCR) assays to detect specific regions of the protein D gene (hpd). Both hpd assays are very specific and sensitive for detection of Hi. Of the 63 non-Hi isolates representing 21 bacterial species, none was detected by the hpd #1 assay, and only one of 2 H. aphrophilus isolates was detected by the hpd #3 assay. The hpd #1 and #3 assays detected 97% (229/237) and 99% (234/237) of Hi isolates, respectively, and were superior for detection of both typeable and non-typeable Hi isolates, as compared to previously developed rt-PCR targeting ompP2 or bexA. The diagnostic sensitivity and specificity of these rt-PCR assays were assessed on cerebrospinal fluid specimens collected as part of meningitis surveillance in Ulaanbaatar, Mongolia. The etiology (Neisseria meningitidis, Hi, and Streptococcus pneumoniae) of 111 suspected meningitis cases was determined by conventional methods (culture and latex agglutination), previously developed rt-PCR assays, and the new hpd assays. The rt-PCR assays were more sensitive for detection of meningitis pathogens than other classical methods and improved detection from 50% (56/111) to 75% (83/111). The hpd #3 assay identified a non-b Hi that was missed by the bexA assay and other methods. A sensitive rt-PCR assay to detect both typeable and non-typeable Hi is a useful tool for improving Hi disease surveillance especially after Hib vaccine introduction. Published by Elsevier GmbH.

  9. Detection of canine distemper virus (CDV) through one step RT-PCR combined with nested PCR.

    PubMed

    Kim, Y H; Cho, K W; Youn, H Y; Yoo, H S; Han, H R

    2001-04-01

    A one step reverse transcription PCR (RT-PCR) combined nested PCR was set up to increase efficiency in the diagnosis of canine distemper virus (CDV) infection after developement of nested PCR. Two PCR primer sets were designed based on the sequence of nucleocapsid gene of CDV Onderstepoort strain. One-step RT-PCR with the outer primer pair was revealed to detect 10(2) PFU/ml. The sensitivity was increased hundredfold using the one-step RT-PCR combined with the nested PCR. Specificity of the PCR was also confirmed using other related canine virus and peripheral blood mononuclear cells (PBMC) and body secretes of healthy dogs. Of the 51 blood samples from dogs clinically suspected of CD, 45 samples were revealed as positive by one-step RT-PCR combined with nested PCR. However, only 15 samples were identified as positive with a single one step RT-PCR. Therefore approximately 60% increase in the efficiency of the diagnosis was observed by the combined method. These results suggested that one step RT-PCR combined with nested PCR could be a sensitive, specific, and practical method for diagnosis of CDV infection.

  10. Selection of reference genes for qRT-PCR analysis of gene expression in sea cucumber Apostichopus japonicus during aestivation

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Chen, Muyan; Wang, Tianming; Sun, Lina; Xu, Dongxue; Yang, Hongsheng

    2014-11-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a technique that is widely used for gene expression analysis, and its accuracy depends on the expression stability of the internal reference genes used as normalization factors. However, many applications of qRT-PCR used housekeeping genes as internal controls without validation. In this study, the expression stability of eight candidate reference genes in three tissues (intestine, respiratory tree, and muscle) of the sea cucumber Apostichopus japonicus was assessed during normal growth and aestivation using the geNorm, NormFinder, delta CT, and RefFinder algorithms. The results indicate that the reference genes exhibited significantly different expression patterns among the three tissues during aestivation. In general, the β-tubulin (TUBB) gene was relatively stable in the intestine and respiratory tree tissues. The optimal reference gene combination for intestine was 40S ribosomal protein S18 (RPS18), TUBB, and NADH dehydrogenase (NADH); for respiratory tree, it was β-actin (ACTB), TUBB, and succinate dehydrogenase cytochrome B small subunit (SDHC); and for muscle it was α-tubulin (TUBA) and NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 13 (NDUFA13). These combinations of internal control genes should be considered for use in further studies of gene expression in A. japonicus during aestivation.

  11. Evaluation of Reference Genes for Quantitative Real-Time PCR Analysis of the Gene Expression in Laticifers on the Basis of Latex Flow in Rubber Tree (Hevea brasiliensis Muell. Arg.)

    PubMed Central

    Chao, Jinquan; Yang, Shuguang; Chen, Yueyi; Tian, Wei-Min

    2016-01-01

    Latex exploitation-caused latex flow is effective in enhancing latex regeneration in laticifer cells of rubber tree. It should be suitable for screening appropriate reference gene for analysis of the expression of latex regeneration-related genes by quantitative real-time PCR (qRT-PCR). In the present study, the expression stability of 23 candidate reference genes was evaluated on the basis of latex flow by using geNorm and NormFinder algorithms. Ubiquitin-protein ligase 2a (UBC2a) and ubiquitin-protein ligase 2b (UBC2b) were the two most stable genes among the selected candidate references in rubber tree clones with differential duration of latex flow. The two genes were also high-ranked in previous reference gene screening across different tissues and experimental conditions. By contrast, the transcripts of latex regeneration-related genes fluctuated significantly during latex flow. The results suggest that screening reference gene during latex flow should be an efficient and effective clue for selection of reference genes in qRT-PCR. PMID:27524995

  12. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  13. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    PubMed Central

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  14. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents

    USGS Publications Warehouse

    Takekawa, John Y.; Iverson, Samuel A.; Schultz, Annie K.; Hill, Nichola J.; Cardona, Carol J.; Boyce, Walter M.; Dudley, Joseph P.

    2010-01-01

    Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID(Registered), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission.

  16. Specific detection of rinderpest virus by real-time reverse transcription-PCR in preclincal and clinical samples of experimentally infected cattle

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive detection test for Rinderpest virus (RPV), based on a real-time reverse transcription-PCR (RT-PR) system, was developed. Five different RPV genomic targets were examined, and one was selected and optimized to detect viral RNA in infected tissue culture fluid with a level of detec...

  17. Internally Controlled, Multiplex Real-Time Reverse Transcription PCR for Dengue Virus and Yellow Fever Virus Detection.

    PubMed

    Rojas, Alejandra; Diagne, Cheikh T; Stittleburg, Victoria D; Mohamed-Hadley, Alisha; de Guillén, Yvalena Arévalo; Balmaseda, Angel; Faye, Oumar; Faye, Ousmane; Sall, Amadou A; Harris, Eva; Pinsky, Benjamin A; Waggoner, Jesse J

    2018-04-02

    The differential diagnosis of dengue virus (DENV) and yellow fever virus (YFV) infections in endemic areas is complicated by nonspecific early clinical manifestations. In this study, we describe an internally controlled, multiplex real-time reverse transcription PCR (rRT-PCR) for the detection of DENV and YFV. The DENV-YFV assay demonstrated specific detection and had a dynamic range of 2.0-8.0 log 10 copies/μL of eluate for each DENV serotype and YFV. Clinical performance was similar to a published pan-DENV assay: 48/48 acute-phase samples from dengue cases were detected in both assays. For YFV detection, mock samples were prepared with nine geographically diverse YFV isolates over a range of concentrations. The DENV-YFV assay detected 62/65 replicates, whereas 54/65 were detected using a reference YFV rRT-PCR. Given the reemergence of DENV and YFV in areas around the world, the DENV-YFV assay should be a useful tool to narrow the differential diagnosis and provide early case detection.

  18. Detection of Brucella abortus DNA in aborted goats and sheep in Egypt by real-time PCR.

    PubMed

    Wareth, Gamal; Melzer, Falk; Tomaso, Herbert; Roesler, Uwe; Neubauer, Heinrich

    2015-06-03

    Brucellosis is a major zoonoses affects wide range of domesticated as well as wild animals. Despite the eradication program of brucellosis in Egypt, the disease is still endemic among cattle, buffaloes, sheep, goats, and camels. In the present study, abortion occurred naturally among 25 animals (10 cows, 5 buffaloes, 9 Egyptian Baladi goats and 1 ewe) shared the same pasture were investigated by real-time polymerase chain reaction (RT-PCR). DNA of Brucella (B.) abortus was detected in serum of goats and sheep which has aborted recently by species-specific RT-PCR. The results suggest cross-species infection of B. abortus from cattle to non-preferred hosts raised in close contact. This article will renew our knowledge about the Brucella agent causing abortion in small ruminants in Egypt. Information provided in this study is important for surveillance program, because eradication programs and vaccination strategies may have to be adapted accordingly.

  19. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    PubMed

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  20. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism.

    PubMed

    Le Maréchal, Caroline; Ballan, Valentine; Rouxel, Sandra; Bayon-Auboyer, Marie-Hélène; Baudouard, Marie-Agnès; Morvan, Hervé; Houard, Emmanuelle; Poëzevara, Typhaine; Souillard, Rozenn; Woudstra, Cédric; Le Bouquin, Sophie; Fach, Patrick; Chemaly, Marianne

    2016-04-01

    Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Detection of Plasmodium falciparum by using magnetic nanoparticles separation-based quantitative real-time PCR assay].

    PubMed

    Wang, Fei; Tian, Yin; Yang, Jing; Sun, Fu-Jun; Sun, Ning; Liu, Bi-Yong; Tian, Rui; Ge, Guang-Lu; Zou, Ming-qiang; Deng, Cong-liang; Liu, Yi

    2014-10-01

    To establish a magnetic nanoparticles separation-based quantitative real-time PCR (RT-PCR) assay for fast and accurate detection of Plasmodium falciparum and providing a technical support for improving the control and prevention of imported malaria. According to the conserved sequences of the P. falciparum genome 18SrRNA, the species-specific primers and probe were designed and synthetized. The RT-PCR was established by constructing the plasmid standard, fitting the standard curve and using magnetic nanoparticles separation. The sensitivity and specificity of the assay were evaluated. The relationship between the threshold cycle (Ct) and logarithm of initial templates copies was linear over a range of 2.5 x 10(1) to 2.5 x 10(8) copies/μl (R2 = 0.999). Among 13 subjects of entry frontier, a P. falciparum carrier with low load was detected by using the assay and none was detected with the conventional examinations (microscopic examinations and rapid tests). This assay shows a high sensitivity in detection of P. falciparum, with rapid and accurate characteristics, and is especially useful in diagnosis of P. falciparum infectors with low parasitaemia at entry-exit frontier ports.

  2. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  3. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  4. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  5. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    PubMed

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P < 0.01). In contrast, PGR expression was significantly down-regulated in the cancer group (P < 0.05). There were no significant differences in AR, ERalpha or PSA expression between the groups. This study represents the first to show an upregulation of ERbeta gene expression in laser microdissected prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  6. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture.

    PubMed

    Falentin, Hélène; Postollec, Florence; Parayre, Sandrine; Henaff, Nadine; Le Bivic, Pierre; Richoux, Romain; Thierry, Anne; Sohier, Danièle

    2010-11-15

    Bacterial communities of fermented foods are usually investigated by culture-dependent methods. Real-time quantitative PCR (qPCR) and reverse transcription (RT)-qPCR offer new possibilities to quantify the populations present and their metabolic activity. The aim of this work was to develop qPCR and RT-qPCR methods to assess the metabolic activity and the stress level of the two species used as ripening cultures in Emmental cheese manufacture, Propionibacterium freudenreichii and Lactobacillus paracasei. Three small scale (1/100) microbiologically controlled Emmental cheeses batches were manufactured and inoculated with Lactobacillus helveticus, Streptococcus thermophilus, P. freudenreichii and L. paracasei. At 12 steps of cheese manufacture and ripening, the populations of P. freudenreichii and L. paracasei were quantified by numerations on agar media and by qPCR. 16S, tuf and groL transcript levels were quantified by RT-qPCR. Sampling was carried out in triplicate. qPCR and RT-qPCR assessments were specific, efficient and linear. The quantification limit was 10(3) copies of cells or cDNA/g of cheese. Cell quantifications obtained by qPCR gave similar results than plate count for P. freudenreichii growth and 0.5 to 1 log lower in the stationary phase. Bacterial counts and qPCR quantifications showed that L. paracasei began to grow during the pressing step while P. freudenreichii began to grow from the beginning of ripening (in the cold room). Tuf cDNA quantification results suggested that metabolic activity of L. paracasei reached a maximum during the first part of the ripening (in cold room) and decreased progressively during ripening (in the warm room). Metabolic activity of P. freudenreichii was maximum at the end of cold ripening room and was stable during the first two weeks in warm room. After lactate exhaustion (after two weeks of warm room), the number of tuf cDNA decreased reflecting reduced metabolic activity. For L. paracasei, groL cDNA were stable

  8. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    PubMed

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The

  9. Modeling qRT-PCR dynamics with application to cancer biomarker quantification.

    PubMed

    Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.

  10. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    PubMed

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  11. Selection of reliable reference genes for quantitative real-time PCR gene expression analysis in Jute (Corchorus capsularis) under stress treatments

    PubMed Central

    Niu, Xiaoping; Qi, Jianmin; Zhang, Gaoyang; Xu, Jiantang; Tao, Aifen; Fang, Pingping; Su, Jianguang

    2015-01-01

    To accurately measure gene expression using quantitative reverse transcription PCR (qRT-PCR), reliable reference gene(s) are required for data normalization. Corchorus capsularis, an annual herbaceous fiber crop with predominant biodegradability and renewability, has not been investigated for the stability of reference genes with qRT-PCR. In this study, 11 candidate reference genes were selected and their expression levels were assessed using qRT-PCR. To account for the influence of experimental approach and tissue type, 22 different jute samples were selected from abiotic and biotic stress conditions as well as three different tissue types. The stability of the candidate reference genes was evaluated using geNorm, NormFinder, and BestKeeper programs, and the comprehensive rankings of gene stability were generated by aggregate analysis. For the biotic stress and NaCl stress subsets, ACT7 and RAN were suitable as stable reference genes for gene expression normalization. For the PEG stress subset, UBC, and DnaJ were sufficient for accurate normalization. For the tissues subset, four reference genes TUBβ, UBI, EF1α, and RAN were sufficient for accurate normalization. The selected genes were further validated by comparing expression profiles of WRKY15 in various samples, and two stable reference genes were recommended for accurate normalization of qRT-PCR data. Our results provide researchers with appropriate reference genes for qRT-PCR in C. capsularis, and will facilitate gene expression study under these conditions. PMID:26528312

  12. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  13. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  14. Pathogen Identification by Multiplex LightMix Real-Time PCR Assay in Patients with Meningitis and Culture-Negative Cerebrospinal Fluid Specimens

    PubMed Central

    Wagner, Karoline; Springer, Burkard; Pires, Valeria P.

    2017-01-01

    ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781

  15. Selection and Validation of Appropriate Reference Genes for Quantitative Real-Time PCR Analysis of Gene Expression in Lycoris aurea

    PubMed Central

    Ma, Rui; Xu, Sheng; Zhao, Yucheng; Xia, Bing; Wang, Ren

    2016-01-01

    Lycoris aurea (L' Hér.) Herb, a perennial grass species, produces a unique variety of pharmacologically active Amaryllidaceae alkaloids. However, the key enzymes and their expression pattern involved in the biosynthesis of Amaryllidaceae alkaloids (especially for galanthamine) are far from being fully understood. Quantitative real-time polymerase chain reaction (qRT-PCR), a commonly used method for quantifying gene expression, requires stable reference genes to normalize its data. In this study, to choose the appropriate reference genes under different experimental conditions, 14 genes including YLS8 (mitosis protein YLS8), CYP2 (Cyclophilin 2), CYP 1 (Cyclophilin 1), TIP41 (TIP41-like protein), EXP2 (Expressed protein 2), PTBP1 (Polypyrimidine tract-binding protein 1), EXP1 (Expressed protein 1), PP2A (Serine/threonine-protein phosphatase 2A), β-TUB (β-tubulin), α-TUB (α-tubulin), EF1-α (Elongation factor 1-α), UBC (Ubiquitin-conjugating enzyme), ACT (Actin) and GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) were selected from the transcriptome datasets of L. aurea. And then, expressions of these genes were assessed by qRT-PCR in various tissues and the roots under different treatments. The expression stability of the 14 candidates was analyzed by three commonly used software programs (geNorm, NormFinder, and BestKeeper), and their results were further integrated into a comprehensive ranking based on the geometric mean. The results show the relatively stable genes for each subset as follows: (1) EXP1 and TIP41 for all samples; (2) UBC and EXP1 for NaCl stress; (3) PTBP1 and EXP1 for heat stress, polyethylene glycol (PEG) stress and ABA treatment; (4) UBC and CYP2 for cold stress; (5) PTBP1 and PP2A for sodium nitroprusside (SNP) treatment; (6) CYP1 and TIP41 for methyl jasmonate (MeJA) treatment; and (7) EXP1 and TIP41 for various tissues. The reliability of these results was further enhanced through comparison between part qRT-PCR result and RNA

  16. Quality Control of RNA Preservation and Extraction from Paraffin-Embedded Tissue: Implications for RT-PCR and Microarray Analysis

    PubMed Central

    Pichler, Martin; Zatloukal, Kurt

    2013-01-01

    Analysis of RNA isolated from fixed and paraffin-embedded tissues is widely used in biomedical research and molecular pathological diagnostics. We have performed a comprehensive and systematic investigation of the impact of factors in the pre-analytical workflow, such as different fixatives, fixation time, RNA extraction method and storage of tissues in paraffin blocks, on several downstream reactions including complementary DNA (cDNA) synthesis, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray hybridization. We compared the effects of routine formalin fixation with the non-crosslinking, alcohol-based Tissue Tek Xpress Molecular Fixative (TTXMF, Sakura Finetek), and cryopreservation as gold standard for molecular analyses. Formalin fixation introduced major changes into microarray gene expression data and led to marked gene-to-gene variations in delta-ct values of qRT-PCR. We found that qRT-PCR efficiency and gene-to-gene variations were mainly attributed to differences in the efficiency of cDNA synthesis as the most sensitive step. These differences could not be reliably detected by quality assessment of total RNA isolated from formalin-fixed tissues by electrophoresis or spectrophotometry. Although RNA from TTXMF fixed samples was as fragmented as RNA from formalin fixed samples, much higher cDNA yield and lower ct-values were obtained in qRT-PCR underlining the negative impact of crosslinking by formalin. In order to better estimate the impact of pre-analytical procedures such as fixation on the reliability of downstream analysis, we applied a qRT-PCR-based assay using amplicons of different length and an assay measuring the efficiency of cDNA generation. Together these two assays allowed better quality assessment of RNA extracted from fixed and paraffin-embedded tissues and should be used to supplement quality scores derived from automated electrophoresis. A better standardization of the pre-analytical workflow, application

  17. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  18. Real-Time PCR Quantification Using A Variable Reaction Efficiency Model

    PubMed Central

    Platts, Adrian E.; Johnson, Graham D.; Linnemann, Amelia K.; Krawetz, Stephen A.

    2008-01-01

    Quantitative real-time PCR remains a cornerstone technique in gene expression analysis and sequence characterization. Despite the importance of the approach to experimental biology the confident assignment of reaction efficiency to the early cycles of real-time PCR reactions remains problematic. Considerable noise may be generated where few cycles in the amplification are available to estimate peak efficiency. An alternate approach that uses data from beyond the log-linear amplification phase is explored with the aim of reducing noise and adding confidence to efficiency estimates. PCR reaction efficiency is regressed to estimate the per-cycle profile of an asymptotically departed peak efficiency, even when this is not closely approximated in the measurable cycles. The process can be repeated over replicates to develop a robust estimate of peak reaction efficiency. This leads to an estimate of the maximum reaction efficiency that may be considered primer-design specific. Using a series of biological scenarios we demonstrate that this approach can provide an accurate estimate of initial template concentration. PMID:18570886

  19. Comparative evaluation of laboratory developed real-time PCR assays and RealStar(®) BKV PCR Kit for quantitative detection of BK polyomavirus.

    PubMed

    Hasan, Mohammad R; Tan, Rusung; Al-Rawahi, Ghada; Thomas, Eva; Tilley, Peter

    2016-08-01

    Quantitative, viral load monitoring for BK virus (BKV) by real-time PCR is an important tool in the management of polyomavirus associated nephropathy in renal transplant patients. However, variability in PCR results has been reported because of polymorphisms in viral genes among different subtypes of BKV, and lack of standardization of the PCR assays among different laboratories. In this study we have compared the performance of several laboratory developed PCR assays that target highly conserved regions of BKV genome with a commercially available, RealStar(®) BKV PCR Kit. Three real-time PCR assays (i) VP1 assay: selected from the literature that targets the major capsid protein (VP1) gene (ii) VP1MOD assay: VP1 assay with a modified probe, and (iii) BKLTA assay: newly designed assay that targets the large T antigen gene were assessed in parallel, using controls and clinical specimens that were previously tested using RealStar(®) BKV PCR Kit (Altona Diagnostics GmbH, Hamburg, Germany). Nucleic acid from all samples were extracted using the QIA symphony virus/bacteria kit on an automated DNA extraction platform QIA symphony SP (Qiagen). Primer and probe concentration, and reaction conditions for laboratory developed assays were optimized and the limit of detection of different assays was determined. Positive control for laboratory developed BK assays was prepared through construction of a plasmid carrying respective amplicon sequences. The 95% detection limit of VP1, VP1MOD and BKLTA assays were 1.8×10(2), 3×10(3) and 3.5×10(2) genomic copies/ml, respectively, as determined by Probit regression analysis of data obtained by testing a dilution series of a titered patient specimen, using RealStar(®) BKV PCR Kit. The inter-assay and intra-assay, coefficient of variations of these assays using calibrated, plasmid standards were <1%. All assays, including the RealStar(®) BKV PCR assay, were highly specific when tested against a panel of external proficiency

  20. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR.

    PubMed

    Burns, Cara C; Kilpatrick, David R; Iber, Jane C; Chen, Qi; Kew, Olen M

    2016-01-01

    Virologic surveillance is essential to the success of the World Health Organization initiative to eradicate poliomyelitis. Molecular methods have been used to detect polioviruses in tissue culture isolates derived from stool samples obtained through surveillance for acute flaccid paralysis. This chapter describes the use of realtime PCR assays to identify and serotype polioviruses. In particular, a degenerate, inosine-containing, panpoliovirus (panPV) PCR primer set is used to distinguish polioviruses from NPEVs. The high degree of nucleotide sequence diversity among polioviruses presents a challenge to the systematic design of nucleic acid-based reagents. To accommodate the wide variability and rapid evolution of poliovirus genomes, degenerate codon positions on the template were matched to mixed-base or deoxyinosine residues on both the primers and the TaqMan™ probes. Additional assays distinguish between Sabin vaccine strains and non-Sabin strains. This chapter also describes the use of generic poliovirus specific primers, along with degenerate and inosine-containing primers, for routine VP1 sequencing of poliovirus isolates. These primers, along with nondegenerate serotype-specific Sabin primers, can also be used to sequence individual polioviruses in mixtures.

  1. Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Mäde, Dietrich; Burkhardt, Sabine; Kleesiek, Knut

    2006-01-01

    We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities. PMID:16891482

  2. A novel duplex real time quantitative reverse transcription polymerase chain reaction for rubella virus with armored RNA as a noncompetitive internal positive control.

    PubMed

    Zhao, Lihong; Li, Ruiying; Liu, Aihua; Zhao, Shuping

    2015-07-01

    The objective of this study was to build and apply a duplex real time quantitative reverse transcription-polymerase chain reaction (RT-PCR) for rubella virus. Firstly, a 60-bp-long armored RV RNA was constructed in the laboratory. Secondly, a duplex real time RT-PCR assay was established. Thirdly, the 60-bp-long armored RV RNA was used as an internal positive control (IPC) for the duplex real time RT-PCR. And finally the duplex real time RT-PCR assay was applied to detect RV RNA in clinical specimens. The in-house assay has a high amplification efficiency (0.99), a high analytical sensitivity (200 copies/mL), and a good reproducibility. The diagnostic specificity and sensitivity of the in-house assay were both 100%, due to the monitoring of the armored RV RNA IPC. Therefore, the in-house duplex real time quantitative RT-PCR assay is a specific, sensitive, reproducible and accurate assay for quantitation of RV RNA in clinical specimens. And noncompetitive armored RV RNA IPC can monitor RT-PCR inhibition and prevent false-negative and inaccurate results in the real time detection system. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR.

    PubMed

    Guion, Chase E; Ochoa, Theresa J; Walker, Christopher M; Barletta, Francesca; Cleary, Thomas G

    2008-05-01

    Diarrheagenic Escherichia coli strains are important causes of diarrhea in children from the developing world and are now being recognized as emerging enteropathogens in the developed world. Current methods of detection are too expensive and labor-intensive for routine detection of these organisms to be practical. We developed a real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli. The primers were designed to specifically amplify eight different virulence genes in the same reaction: aggR for enteroaggregative E. coli, stIa/stIb and lt for enterotoxigenic E. coli, eaeA for enteropathogenic E. coli and Shiga toxin-producing E. coli (STEC), stx(1) and stx(2) for STEC, ipaH for enteroinvasive E. coli, and daaD for diffusely adherent E. coli (DAEC). Eighty-nine of ninety diarrheagenic E. coli and 36/36 nonpathogenic E. coli strains were correctly identified using this approach (specificity, 1.00; sensitivity, 0.99). The single false negative was a DAEC strain. The total time between preparation of DNA from E. coli colonies on agar plates and completion of PCR and melting-curve analysis was less than 90 min. The cost of materials was low. Melting-point analysis of real-time multiplex PCR is a rapid, sensitive, specific, and inexpensive method for detection of diarrheagenic E. coli.

  4. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time.

    PubMed

    Peng, Zhiyong; Young, Brandon; Baird, Alison E; Soper, Steven A

    2013-08-20

    Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with online single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10-10,000 copies) with an R(2) = 0.9995 for RT-LDR/spFRET and R(2) = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a two thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time

  5. Repertoire of novel sequence signatures for the detection of Candidatus Liberibacter asiaticus by quantitative real-time PCR

    PubMed Central

    2014-01-01

    Background Huanglongbing (HLB) or citrus greening is a devastating disease of citrus. The gram-negative bacterium Candidatus Liberibacter asiaticus (Las) belonging to the α-proteobacteria is responsible for HLB in North America as well as in Asia. Currently, there is no cure for this disease. Early detection and quarantine of Las-infected trees are important management strategies used to prevent HLB from invading HLB-free citrus producing regions. Quantitative real-time PCR (qRT-PCR) based molecular diagnostic assays have been routinely used in the detection and diagnosis of Las. The oligonucleotide primer pairs based on conserved genes or regions, which include 16S rDNA and the β-operon, have been widely employed in the detection of Las by qRT-PCR. The availability of whole genome sequence of Las now allows the design of primers beyond the conserved regions for the detection of Las explicitly. Results We took a complimentary approach by systematically screening the genes in a genome-wide fashion, to identify the unique signatures that are only present in Las by an exhaustive sequence based similarity search against the nucleotide sequence database. Our search resulted in 34 probable unique signatures. Furthermore, by designing the primer pair specific to the identified signatures, we showed that most of our primer sets are able to detect Las from the infected plant and psyllid materials collected from the USA and China by qRT-PCR. Overall, 18 primer pairs of the 34 are found to be highly specific to Las with no cross reactivity to the closely related species Ca. L. americanus (Lam) and Ca. L. africanus (Laf). Conclusions We have designed qRT-PCR primers based on Las specific genes. Among them, 18 are suitable for the detection of Las from Las-infected plant and psyllid samples. The repertoire of primers that we have developed and characterized in this study enhanced the qRT-PCR based molecular diagnosis of HLB. PMID:24533511

  6. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate.

    PubMed

    Bowei, Chen; Xingyu, Liu; Wenyan, Liu; Jiankang, Wen

    2009-11-01

    The microbial communities of leachate from a bioleaching heap located in China were analyzed using the 16S rRNA gene clone library and real-time quantitative PCR. Both methods showed that Leptospirillum spp. were the dominant bacteria, and Ferroplasma acidiphilum were the only archaea detected in the leachate. Clone library results indicated that nine operational taxonomic units (OTUs) were obtained, which fell into four divisions, the Nitrospirae (74%), the gamma-Proteobacteria (14%), the Actinobacteria (6%) and the Euryarchaeota (6%). The results obtained by real-time PCR in some ways were the same as clone library analysis. Furthermore, Sulfobacillus spp., detected only by real-time PCR, suggests that real-time PCR was a reliable technology to study the microbial communities in bioleaching environments. It is a useful tool to assist clone library analysis, to further understand microbial consortia and to have comprehensive and exact microbiological information about bioleaching environments. Finally, the interactions among the microorganisms detected in the leachate were summarized according to the characteristics of these species.

  7. [Quantitative real-time PCR for target periodontal bacteria in subgingival plaque before and after local delivery of periocline, scaling and root planning].

    PubMed

    Deng, Shu-li; Wang, Ying; He, Jia-yan; Chen, Zhuo; Chen, Hui

    2013-06-01

    To compare the copy number of Porphyromonas gingivalis (Pg) and Prevotella intermedia (Pi) in subgingival plaque before and after local delivery of periocline (2% minocycline hydrochloride ointment, MO), scaling and root planning (SRP) by quantitative real-time PCR (qRT-PCR) and evaluate the efficacy. Sixty-two adults with moderate to severe chronic periodontitis were selected in the study. Microbial samples were taken from pocket before and after MO and SRP(7d). The samples were evaluated by qRT-PCR for Pg and Pi. Microbiological effectiveness of treatments was assessed using Kruskal-Wallis and Wilcoxon rank-sum test. All tests were two-sided with a significance level of 0.05. All analyses were conducted with SAS 9.1.3 software package. The copy number of Pg and Pi in subgingival plaque was 10(3)-10(6) and 10(2)-10(6). Bacterial loads of Pg were reduced in SPR+ MO, SRP and MO site. The counts of Pi decreased in SRP+ MO sites compared with those in the MO or SRP alone sites significantly (P<0.05). Quantitative real-time PCR (qRT-PCR) is used as a powerful tool with high sensitivity and specificity to quantitatively assess target periodontal bacteria. The results show that subgingival administration of MO and SRP was effective for reducing pathogenic bacteria and improving clinical outcome. Supported by 2011 National Clinical Specialist Construction Project; Natural Science Foundation of Zhejiang Province(LY13H140002); Education Department Funds of Zhejiang Province(20061258) and Medical General Research Project of Zhejiang Province(2012KYB121).

  8. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  9. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  10. Human fecal source identification with real-time quantitative PCR

    EPA Science Inventory

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  11. EQUAL-quant: an international external quality assessment scheme for real-time PCR.

    PubMed

    Ramsden, Simon C; Daly, Sarah; Geilenkeuser, Wolf-Jochen; Duncan, Graeme; Hermitte, Fabienne; Marubini, Ettore; Neumaier, Michael; Orlando, Claudio; Palicka, Vladimir; Paradiso, Angelo; Pazzagli, Mario; Pizzamiglio, Sara; Verderio, Paolo

    2006-08-01

    Quantitative gene expression analysis by real-time PCR is important in several diagnostic areas, such as the detection of minimum residual disease in leukemia and the prognostic assessment of cancer patients. To address quality assurance in this technically challenging area, the European Union (EU) has funded the EQUAL project to develop methodologic external quality assessment (EQA) relevant to diagnostic and research laboratories among the EU member states. We report here the results of the EQUAL-quant program, which assesses standards in the use of TaqMan probes, one of the most widely used assays in the implementation of real-time PCR. The EQUAL-quant reagent set was developed to assess the technical execution of a standard TaqMan assay, including RNA extraction, reverse transcription, and real-time PCR quantification of target DNA copy number. The multidisciplinary EQA scheme included 137 participating laboratories from 29 countries. We demonstrated significant differences in performance among laboratories, with 20% of laboratories reporting at least one result lacking in precision and/or accuracy according to the statistical procedures described. No differences in performance were observed for the >10 different testing platforms used by the study participants. This EQA scheme demonstrated both the requirement and demand for external assessment of technical standards in real-time PCR. The reagent design and the statistical tools developed within this project will provide a benchmark for defining acceptable working standards in this emerging technology.

  12. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  13. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  14. Real-time RT-PCR systems for CTC detection from blood samples of breast cancer and gynaecological tumour patients (Review).

    PubMed

    Andergassen, Ulrich; Kölbl, Alexandra C; Mahner, Sven; Jeschke, Udo

    2016-04-01

    Cells, which detach from a primary epithelial tumour and migrate through lymphatic vessels and blood stream are called 'circulating tumour cells'. These cells are considered to be the main root of remote metastasis and are correlated to a worse prognosis concerning progression-free and overall survival of the patients. Therefore, the detection of the minimal residual disease is of great importance regarding therapeutic decisions. Many different detection strategies are already available, but only one method, the CellSearch® system, reached FDA approval. The present review focusses on the detection of circulating tumour cells by means of real-time PCR, a highly sensitive method based on differences in gene expression between normal and malignant cells. Strategies for an enrichment of tumour cells are mentioned, as well as a large panel of potential marker genes. Drawbacks and advantages of the technique are elucidated, whereas, the greatest advantage might be, that by selection of appropriate marker genes, also tumour cells, which have already undergone epithelial to mesenchymal transition can be detected. Finally, the application of real-time PCR in different gynaecological malignancies is described, with breast cancer being the most studied cancer entity.

  15. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    PubMed

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  17. Evaluation of Reference Genes for RT-qPCR Studies in the Seagrass Zostera muelleri Exposed to Light Limitation

    PubMed Central

    Schliep, M.; Pernice, M.; Sinutok, S.; Bryant, C. V.; York, P. H.; Rasheed, M. A.; Ralph, P. J.

    2015-01-01

    Seagrass meadows are threatened by coastal development and global change. In the face of these pressures, molecular techniques such as reverse transcription quantitative real-time PCR (RT-qPCR) have great potential to improve management of these ecosystems by allowing early detection of chronic stress. In RT-qPCR, the expression levels of target genes are estimated on the basis of reference genes, in order to control for RNA variations. Although determination of suitable reference genes is critical for RT-qPCR studies, reports on the evaluation of reference genes are still absent for the major Australian species Zostera muelleri subsp. capricorni (Z. muelleri). Here, we used three different software (geNorm, NormFinder and Bestkeeper) to evaluate ten widely used reference genes according to their expression stability in Z. muelleri exposed to light limitation. We then combined results from different software and used a consensus rank of four best reference genes to validate regulation in Photosystem I reaction center subunit IV B and Heat Stress Transcription factor A- gene expression in Z. muelleri under light limitation. This study provides the first comprehensive list of reference genes in Z. muelleri and demonstrates RT-qPCR as an effective tool to identify early responses to light limitation in seagrass. PMID:26592440

  18. EVALUATION OF RAPID DNA EXTRACTION PROCEDURES FOR THE QUANTITATIVE DETECTION OF FUNGAL CELLS USING REAL TIME PCR ANALYSIS

    EPA Science Inventory

    The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...

  19. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  20. Real-Time PCR Identification of Six Malassezia Species.

    PubMed

    Ilahi, Amin; Hadrich, Inès; Neji, Sourour; Trabelsi, Houaida; Makni, Fattouma; Ayadi, Ali

    2017-06-01

    Lipophilic yeast Malassezia species is widely found on the skin surface of humans and other animals. This fungus can cause pityriasis versicolor, Malassezia folliculitis, and seborrheic dermatitis. Still now, there is a problem with species identification of Malassezia with conventional methods. We developed a real-time polymerase chain reaction (PCR) assay with multiple hybridization probes for detecting M. globosa, M. furfur, M. restricta, M. sympodialis, M. slooffiae, and M. pachydermatis. The amplification curves and specific melting peaks of the probes hybridized with real-time PCR product were used for species identifications. The assay was further evaluated on 120 samples which were performed by swabbing from 60 domestic animals (23 goats, 10 dogs, 15 cows, 3 cats, 8 rabbits, and 1 donkey) and in 70 human samples (28 patients with pityriasis versicolor, 17 breeders, and 25 control group). Fifteen M. pachydermatis were identified from animals. From human, 61 isolates were identified as M. globosa (28), M. furfur (15), M. restricta (6), M. sympodialis (8), M. slooffiae (2), and M. pachydermatis (2). Eight cases of co-detection from 6 patients and 2 breeders were revealed. Our findings show that the assay was highly effective in identifying Malassezia species. The application of multiplex real-time PCR provides a sensitive and rapid identification system for Malassezia species, which may be applied in further epidemiological surveys from clinical samples.

  1. Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction.

    PubMed

    Hamlet, Stephen M

    2010-01-01

    The development of analytical methods enabling the accurate identification and enumeration of bacterial species colonizing the oral cavity has led to the identification of a small number of bacterial pathogens that are major factors in the etiology of periodontal disease. Further, these methods also underpin more recent epidemiological analyses of the impact of periodontal disease on general health. Given the complex milieu of over 700 species of microorganisms known to exist within the complex biofilms found in the oral cavity, the identification and enumeration of oral periodontopathogens has not been an easy task. In recent years however, some of the intrinsic limitations of the more traditional microbiological analyses previously used have been overcome with the advent of immunological and molecular analytical methods. Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications. Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons as they accumulate in "real time" allowing subsequent quantitation. These methods enable the accurate quantitation of as few as 10(2) (using rtPCR) to 10(4) (using ELISA) periodontopathogens in dental plaque samples.

  2. Detection and discrimination of members of the family Luteoviridae by real-time PCR and SYBR® GreenER™ melting curve analysis.

    PubMed

    Chomic, Anastasija; Winder, Louise; Armstrong, Karen F; Pearson, Michael N; Hampton, John G

    2011-01-01

    This study investigated the suitability of a two step real-time RT-PCR melting curve analysis as a tool for the detection and discrimination of nine species in the plant virus family Luteoviridae, being Soybean dwarf virus [SbDV], Bean leafroll virus [BLRV], Beet chlorosis virus [BChV], Beet mild yellowing virus [BMYV], Beet western yellows virus [BWYV], Cereal yellow dwarf virus-RPV [CYDV-RPV], Cucurbit aphid-borne yellows virus [CABYV], Potato leafroll virus [PLRV] and Turnip yellows virus [TuYV]. Melting temperature and shape of the melting peak were analysed for 68 bp and 148 bp coat protein gene amplicons using SYBR® GreenER™ fluorescent dye. Specific melting peaks with unique melting temperature were observed for the various species of the family Luteoviridae using the 68 bp amplicon, but not with the 148 bp amplicon. Due to the high variability of sequences for some members of this family, different melting temperatures were also observed between different isolates of the species CYDV-RPV and TuYV. Nevertheless, discrimination between species was achieved for SbDV, BLRV, BChV, BMYV, CABYV and either PLRV or BWYV. Melting curve analysis, in this study, is a faster and more discriminatory alternative to gel electrophoresis of end-point PCR products for the detection of Luteoviridae infection. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.

    PubMed

    Wu, Henry M; Cordeiro, Soraia M; Harcourt, Brian H; Carvalho, Mariadaglorias; Azevedo, Jailton; Oliveira, Tainara Q; Leite, Mariela C; Salgado, Katia; Reis, Mitermayer G; Plikaytis, Brian D; Clark, Thomas A; Mayer, Leonard W; Ko, Albert I; Martin, Stacey W; Reis, Joice N

    2013-01-22

    Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is

  4. Candidate Reference Genes Selection and Application for RT-qPCR Analysis in Kenaf with Cytoplasmic Male Sterility Background

    PubMed Central

    Zhou, Bujin; Chen, Peng; Khan, Aziz; Zhao, Yanhong; Chen, Lihong; Liu, Dongmei; Liao, Xiaofang; Kong, Xiangjun; Zhou, Ruiyang

    2017-01-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait that results in the production of dysfunctional pollen. Based on reliable reference gene-normalized real-time quantitative PCR (RT-qPCR) data, examining gene expression profile can provide valuable information on the molecular mechanism of kenaf CMS. However, studies have not been conducted regarding selection of reference genes for normalizing RT-qPCR data in the CMS and maintainer lines of kenaf crop. Therefore, we studied 10 candidate reference genes (ACT3, ELF1A, G6PD, PEPKR1, TUB, TUA, CYP, GAPDH, H3, and 18S) to assess their expression stability at three stages of pollen development in CMS line 722A and maintainer line 722B of kenaf. Five computational statistical approaches (GeNorm, NormFinder, ΔCt, BestKeeper, and RefFinder) were used to evaluate the expression stability levels of these genes. According to RefFinder and GeNorm, the combination of TUB, CYP, and PEPKR1 was identified as an internal control for the accurate normalization across all sample set, which was further confirmed by validating the expression of HcPDIL5-2a. Furthermore, the combination of TUB, CYP, and PEPKR1 was used to differentiate the expression pattern of five mitochondria F1F0-ATPase subunit genes (atp1, atp4, atp6, atp8, and atp9) by RT-qPCR during pollen development in CMS line 722A and maintainer line 722B. We found that atp1, atp6, and atp9 exhibited significantly different expression patterns during pollen development in line 722A compared with line 722B. This is the first systematic study of reference genes selection for CMS and will provide useful information for future research on the gene expressions and molecular mechanisms underlying CMS in kenaf. PMID:28919905

  5. Harmonization of Bordetella pertussis real-time PCR diagnostics in the United States in 2012.

    PubMed

    Williams, Margaret M; Taylor, Thomas H; Warshauer, David M; Martin, Monte D; Valley, Ann M; Tondella, M Lucia

    2015-01-01

    Real-time PCR (rt-PCR) is an important diagnostic tool for the identification of Bordetella pertussis, Bordetella holmesii, and Bordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in the B. pertussis genome and 32 to 65 copies in B. holmesii. The CDC developed a multitarget PCR assay to differentiate B. pertussis, B. holmesii, and B. parapertussis and provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these three Bordetella species in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viable Bordetella and non-Bordetella species in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481 in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiated B. pertussis and B. holmesii and 68% and 72% identified B. parapertussis. IS481 cycle threshold (CT) values for B. pertussis samples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiated B. pertussis and B. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCR Bordetella diagnostic protocols in USPHLs compared to that of the previous survey. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindson, B J; Baker, B R; Bentley Tammero, L F

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspectmore » cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less

  7. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Zhang, Songdou; An, Shiheng; Li, Zhen; Wu, Fengming; Yang, Qingpo; Liu, Yichen; Cao, Jinjun; Zhang, Huaijiang; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-25

    Recent studies have focused on determining functional genes and microRNAs in the pest Helicoverpa armigera (Lepidoptera: Noctuidae). Most of these studies used quantitative real-time PCR (qRT-PCR). Suitable reference genes are necessary to normalize gene expression data of qRT-PCR. However, a comprehensive study on the reference genes in H. armigera remains lacking. Twelve candidate reference genes of H. armigera were selected and evaluated for their expression stability under different biotic and abiotic conditions. The comprehensive stability ranking of candidate reference genes was recommended by RefFinder and the optimal number of reference genes was calculated by geNorm. Two target genes, thioredoxin (TRX) and Cu/Zn superoxide dismutase (SOD), were used to validate the selection of reference genes. Results showed that the most suitable candidate combinations of reference genes were as follows: 28S and RPS15 for developmental stages; RPS15 and RPL13 for larvae tissues; EF and RPL27 for adult tissues; GAPDH, RPL27, and β-TUB for nuclear polyhedrosis virus infection; RPS15 and RPL32 for insecticide treatment; RPS15 and RPL27 for temperature treatment; and RPL32, RPS15, and RPL27 for all samples. This study not only establishes an accurate method for normalizing qRT-PCR data in H. armigera but also serve as a reference for further study on gene transcription in H. armigera and other insects. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Quantification of EVI1 transcript levels in acute myeloid leukemia by RT-qPCR analysis: A study by the ALFA Group.

    PubMed

    Smol, Thomas; Nibourel, Olivier; Marceau-Renaut, Alice; Celli-Lebras, Karine; Berthon, Céline; Quesnel, Bruno; Boissel, Nicolas; Terré, Christine; Thomas, Xavier; Castaigne, Sylvie; Dombret, Hervé; Preudhomme, Claude; Renneville, Aline

    2015-12-01

    EVI1 overexpression confers poor prognosis in acute myeloid leukemia (AML). Quantification of EVI1 expression has been mainly assessed by real-time quantitative PCR (RT-qPCR) based on relative quantification of EVI1-1D splice variant. In this study, we developed a RT-qPCR assay to perform quantification of EVI1 expression covering the different splice variants. A sequence localized in EVI1 exons 14 and 15 was cloned into plasmids that were used to establish RT-qPCR standard curves. Threshold values to define EVI1 overexpression were determined using 17 bone marrow (BM) and 31 peripheral blood (PB) control samples and were set at 1% in BM and 0.5% in PB. Samples from 64 AML patients overexpressing EVI1 included in the ALFA-0701 or -0702 trials were collected at diagnosis and during follow-up (n=152). Median EVI1 expression at AML diagnosis was 23.3% in BM and 3.6% in PB. EVI1 expression levels significantly decreased between diagnostic and post-induction samples, with an average variation from 21.6% to 3.56% in BM and from 4.0% to 0.22% in PB, but did not exceed 1 log10 reduction. Our study demonstrates that the magnitude of reduction in EVI1 expression levels between AML diagnosis and follow-up is not sufficient to allow sensitive detection of minimal residual disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. In-flight demonstration of a Real-Time Flush Airdata Sensing (RT-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Davis, Roy J.; Fife, John Michael

    1995-01-01

    A prototype real-time flush airdata sensing (RT-FADS) system has been developed and flight tested at the NASA Dryden Flight Research Center. This system uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters in real time using nonlinear regression. The algorithm is robust to sensor failures and noise in the measured pressures. The RT-FADS system has been calibrated using inertial trajectory measurements that were bootstrapped for atmospheric conditions using meteorological data. Mach numbers as high as 1.6 and angles of attack greater than 45 deg have been tested. The system performance has been evaluated by comparing the RT-FADS to the ship system airdata computer measurements to give a quantitative evaluation relative to an accepted measurement standard. Nominal agreements of approximately 0.003 in Mach number and 0.20 deg in angle of attack and angle of sideslip have been achieved.

  10. Measuring and mitigating inhibition during real-time, quantitative PCR analysis of viral nucleic acid extracts from large-volume environmental water samples

    USDA-ARS?s Scientific Manuscript database

    Naturally-occurring inhibitory compounds are a major concern during qPCR and RT-qPCR analysis of environmental samples, particularly large volume water samples. Here, a standardized method for measuring and mitigating sample inhibition in environmental water concentrates is described. Specifically, ...

  11. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindson, B J; Reid, S M; Baker, B R

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouthmore » disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.« less

  12. Diagnostic testing for pandemic influenza in Singapore: a novel dual-gene quantitative real-time RT-PCR for the detection of influenza A/H1N1/2009.

    PubMed

    Lee, Hong Kai; Lee, Chun Kiat; Loh, Tze Ping; Tang, Julian Wei-Tze; Chiu, Lily; Tambyah, Paul A; Sethi, Sunil K; Koay, Evelyn Siew-Chuan

    2010-09-01

    With the relative global lack of immunity to the pandemic influenza A/H1N1/2009 virus that emerged in April 2009 as well as the sustained susceptibility to infection, rapid and accurate diagnostic assays are essential to detect this novel influenza A variant. Among the molecular diagnostic methods that have been developed to date, most are in tandem monoplex assays targeting either different regions of a single viral gene segment or different viral gene segments. We describe a dual-gene (duplex) quantitative real-time RT-PCR method selectively targeting pandemic influenza A/H1N1/2009. The assay design includes a primer-probe set specific to only the hemagglutinin (HA) gene of this novel influenza A variant and a second set capable of detecting the nucleoprotein (NP) gene of all swine-origin influenza A virus. In silico analysis of the specific HA oligonucleotide sequence used in the assay showed that it targeted only the swine-origin pandemic strain; there was also no cross-reactivity against a wide spectrum of noninfluenza respiratory viruses. The assay has a diagnostic sensitivity and specificity of 97.7% and 100%, respectively, a lower detection limit of 50 viral gene copies/PCR, and can be adapted to either a qualitative or quantitative mode. It was first applied to 3512 patients with influenza-like illnesses at a tertiary hospital in Singapore, during the containment phase of the pandemic (May to July 2009).

  13. Using Rapid Diagnostic Tests as a Source of Viral RNA for Dengue Serotyping by RT-PCR - A Novel Epidemiological Tool

    PubMed Central

    Vongsouvath, Manivanh; Phommasone, Koukeo; Sengvilaipaseuth, Onanong; Kosoltanapiwat, Nathamon; Chantratita, Narisara; Blacksell, Stuart D.; Lee, Sue J.; de Lamballerie, Xavier; Mayxay, Mayfong; Keomany, Sommay; Newton, Paul N.; Dubot-Pérès, Audrey

    2016-01-01

    Background Dengue virus infection causes major public health problems in tropical and subtropical areas. In many endemic areas, including the Lao PDR, inadequate access to laboratory facilities is a major obstacle to surveillance and study of dengue epidemiology. Filter paper is widely used for blood collection for subsequent laboratory testing for antibody and nucleic acid detection. For the first time, we demonstrate that dengue viral RNA can be extracted from dengue rapid diagnostic tests (RDT) and then submitted to real-time RT-PCR for serotyping. Methodology/Principal Findings We evaluated the Standard Diagnostics (SD) Bioline Dengue Duo RDT, a commonly used test in dengue endemic areas. First, using the QIAamp RNA kit, dengue RNA was purified from the sample pad of the NS1 RDT loaded with virus isolates of the four serotypes, then quantified by RT-PCR. We observed greater recovery of virus, with a mean of 27 times more RNA recovered from RDT, than from filter paper. Second, we evaluated dengue NS1 RDTs from patients at Mahosot Hospital, Vientiane, (99 patients) and from rural Salavan Provincial Hospital (362 patients). There was good agreement between dengue RT-PCR from NS1 RDT with RT-PCR performed on RNA extracted from patient sera, either using RDT loaded with blood (82.8% and 91.4%, in Vientiane and Salavan, respectively) or serum (91.9% and 93.9%). There was 100% concordance between RDT and serum RT-PCR of infecting dengue serotype. Conclusions/Significance Therefore, the collection of NS1 positive RDTs, which do not require cold storage, may be a novel approach for dengue serotyping by RT-PCR and offers promising prospects for the collection of epidemiological data from previously inaccessible tropical areas to aid surveillance and public health interventions. PMID:27159058

  14. Comparison of FilmArray and Quantitative Real-Time Reverse Transcriptase PCR for Detection of Zaire Ebolavirus from Contrived and Clinical Specimens

    PubMed Central

    Southern, Timothy R.; Racsa, Lori D.; Albariño, César G.; Fey, Paul D.; Hinrichs, Steven H.; Murphy, Caitlin N.; Herrera, Vicki L.; Sambol, Anthony R.; Hill, Charles E.; Ryan, Emily L.; Kraft, Colleen S.; Campbell, Shelley; Sealy, Tara K.; Schuh, Amy; Ritchie, James C.; Lyon, G. Marshall; Mehta, Aneesh K.; Varkey, Jay B.; Ribner, Bruce S.; Brantly, Kent P.; Ströher, Ute; Iwen, Peter C.

    2015-01-01

    Rapid, reliable, and easy-to-use diagnostic assays for detection of Zaire ebolavirus (ZEBOV) are urgently needed. The goal of this study was to examine the agreement among emergency use authorization (EUA) tests for the detection of ZEBOV nucleic acids, including the BioFire FilmArray BioThreat (BT) panel, the FilmArray BT-E panel, and the NP2 and VP40 quantitative real-time reverse transcriptase (qRT) PCR assays from the Centers for Disease Control and Prevention (CDC). Specimens used in this study included whole blood spiked with inactivated ZEBOV at known titers and whole-blood, plasma, and urine clinical specimens collected from persons diagnosed with Ebola virus disease (EVD). The agreement for FilmArray and qRT-PCR results using contrived whole-blood specimens was 100% (6/6 specimens) for each ZEBOV dilution from 4 × 107 to 4 × 102 50% tissue culture infective dose (TCID50)/ml, as well as the no-virus negative-control sample. The limit of detection for FilmArray and qRT-PCR assays with inactivated ZEBOV, based on duplicate positive results, was determined to be 4 × 102 TCID50/ml. Rates of agreement between FilmArray and qRT-PCR results for clinical specimens from patients with EVD were 85% (23/27 specimens) for whole-blood specimens, 90% (18/20 specimens) for whole-blood specimens tested by FilmArray testing and matched plasma specimens tested by qRT-PCR testing, and 85% (11/13 specimens) for urine specimens. Among 60 specimens, eight discordant results were noted, with ZEBOV nucleic acids being detected only by FilmArray testing in four specimens and only by qRT-PCR testing in the remaining four specimens. These findings demonstrate that the rapid and easy-to-use FilmArray panels are effective tests for evaluating patients with EVD. PMID:26157148

  15. Identification of novel and robust internal control genes from Volvariella volvacea that are suitable for RT-qPCR in filamentous fungi.

    PubMed

    Tao, Yongxin; van Peer, Arend Frans; Huang, Qianhui; Shao, Yanping; Zhang, Lei; Xie, Bin; Jiang, Yuji; Zhu, Jian; Xie, Baogui

    2016-07-12

    The selection of appropriate internal control genes (ICGs) is a crucial step in the normalization of real-time quantitative PCR (RT-qPCR) data. Housekeeping genes are habitually selected for this purpose, despite accumulating evidence on their instability. We screened for novel, robust ICGs in the mushroom forming fungus Volvariella volvacea. Nine commonly used and five newly selected ICGs were evaluated for expression stability using RT-qPCR data in eight different stages of the life cycle of V. volvacea. Three different algorithms consistently determined that three novel ICGs (SPRYp, Ras and Vps26) exhibited the highest expression stability in V. volvacea. Subsequent analysis of ICGs in twenty-four expression profiles from nine filamentous fungi revealed that Ras was the most stable ICG amongst the Basidiomycetous samples, followed by SPRYp, Vps26 and ACTB. Vps26 was expressed most stably within the analyzed data of Ascomycetes, followed by HH3 and β-TUB. No ICG was universally stable for all fungal species, or for all experimental conditions within a species. Ultimately, the choice of an ICG will depend on a specific set of experiments. This study provides novel, robust ICGs for Basidiomycetes and Ascomycetes. Together with the presented guiding principles, this enables the efficient selection of suitable ICGs for RT-qPCR.

  16. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    PubMed

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; P<0.0001), with an average bias of -0.24 log 10 copies/ml. The in-house developed HHV-6 qPCR method is a sensitive and reliable assay with lower cost for the detection and quantification of HHV-6 DNA when compared to the RealStar ® HHV-6 PCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  18. Evaluation of digital real-time PCR assay as a molecular diagnostic tool for single-cell analysis.

    PubMed

    Chang, Chia-Hao; Mau-Hsu, Daxen; Chen, Ke-Cheng; Wei, Cheng-Wey; Chiu, Chiung-Ying; Young, Tai-Horng

    2018-02-21

    In a single-cell study, isolating and identifying single cells are essential, but these processes often require a large investment of time or money. The aim of this study was to isolate and analyse single cells using a novel platform, the PanelChip™ Analysis System, which includes 2500 microwells chip and a digital real-time polymerase chain reaction (dqPCR) assay, in comparison with a standard PCR (qPCR) assay. Through the serial dilution of a known concentration standard, namely pUC19, the accuracy and sensitivity levels of two methodologies were compared. The two systems were tested on the basis of expression levels of the genetic markers vimentin, E-cadherin, N-cadherin and GAPDH in A549 lung carcinoma cells at two known concentrations. Furthermore, the influence of a known PCR inhibitor commonly found in blood samples, heparin, was evaluated in both methodologies. Finally, mathematical models were proposed and separation method of single cells was verified; moreover, gene expression levels during epithelial-mesenchymal transition in single cells under TGFβ1 treatment were measured. The drawn conclusion is that dqPCR performed using PanelChip™ is superior to the standard qPCR in terms of sensitivity, precision, and heparin tolerance. The dqPCR assay is a potential tool for clinical diagnosis and single-cell applications.

  19. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  20. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  1. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    PubMed

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  2. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus.

    PubMed

    Frosth, Sara; König, Ulrika; Nyman, Ann-Kristin; Aspán, Anna

    2017-09-01

    Dichelobacter nodosus is the principal cause of ovine footrot and strain virulence is an important factor in disease severity. Therefore, detection and virulence determination of D. nodosus is important for proper diagnosis of the disease. Today this is possible by real-time PCR analysis. Analysis of large numbers of samples is costly and laborious; therefore, pooling of individual samples is common in surveillance programs. However, pooling can reduce the sensitivity of the method. The aim of this study was to develop a pooling method for real-time PCR analysis that would allow sensitive detection and simultaneous virulence determination of D. nodosus. A total of 225 sheep from 17 flocks were sampled using ESwabs within the Swedish Footrot Control Program in 2014. Samples were first analysed individually and then in pools of five by real-time PCR assays targeting the 16S rRNA and aprV2/B2 genes of D. nodosus. Each pool consisted of four negative and one positive D. nodosus samples with varying amounts of the bacterium. In the individual analysis, 61 (27.1%) samples were positive in the 16S rRNA and the aprV2/B2 PCR assays and 164 (72.9%) samples were negative. All samples positive in the aprV2/B2 PCR-assay were of aprB2 variant. The pooled analysis showed that all 41 pools were also positive for D. nodosus 16S rRNA and the aprB2 variant. The diagnostic sensitivity for pooled and individual samples was therefore similar. Our method includes concentration of the bacteria before DNA-extraction. This may account for the maintenance of diagnostic sensitivity. Diagnostic sensitivity in the real-time PCR assays of the pooled samples were comparable to the sensitivity obtained for individually analysed samples. Even sub-clinical infections were able to be detected in the pooled PCR samples which is important for control of the disease. This method may therefore be implemented in footrot control programs where it can replace analysis of individual samples.

  3. Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis.

    PubMed

    Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele

    2009-11-01

    A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.

  4. Evaluation of the Xpert Flu test and comparison with in-house real-time RT-PCR assays for detection of influenza virus from 2008 to 2011 in Marseille, France.

    PubMed

    Salez, N; Ninove, L; Thirion, L; Gazin, C; Zandotti, C; de Lamballerie, X; Charrel, R N

    2012-04-01

    Rapid documentation of respiratory specimens can have an impact on the management of patients and their relatives in terms of preventive and curative measures. We compared the results of the Xpert(®) Flu assay (Cepheid) with three real-time RT-PCR assays using 127 nasopharyngeal samples, of which 75 were positive for influenza A (with 52 identified as A/H1N1-2009) and 52 were positive for influenza B. The Xpert(®) Flu assay presented a quasi-absence of non-interpretable tests, and showed sensitivity and specificity of 100% and 100% for Flu A, 98.4% and 100% for A/H1N1-2009, and 80.7% and 100% for Flu B. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  5. Continuous-flow, microfluidic, qRT-PCR system for RNA virus detection.

    PubMed

    Fernández-Carballo, B Leticia; McBeth, Christine; McGuiness, Ian; Kalashnikov, Maxim; Baum, Christoph; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2018-01-01

    One of the main challenges in the diagnosis of infectious diseases is the need for rapid and accurate detection of the causative pathogen in any setting. Rapid diagnosis is key to avoiding the spread of the disease, to allow proper clinical decisions to be made in terms of patient treatment, and to mitigate the rise of drug-resistant pathogens. In the last decade, significant interest has been devoted to the development of point-of-care reverse transcription polymerase chain reaction (PCR) platforms for the detection of RNA-based viral pathogens. We present the development of a microfluidic, real-time, fluorescence-based, continuous-flow reverse transcription PCR system. The system incorporates a disposable microfluidic chip designed to be produced industrially with cost-effective roll-to-roll embossing methods. The chip has a long microfluidic channel that directs the PCR solution through areas heated to different temperatures. The solution first travels through a reverse transcription zone where RNA is converted to complementary DNA, which is later amplified and detected in real time as it travels through the thermal cycling area. As a proof of concept, the system was tested for Ebola virus detection. Two different master mixes were tested, and the limit of detection of the system was determined, as was the maximum speed at which amplification occurred. Our results and the versatility of our system suggest its promise for the detection of other RNA-based viruses such as Zika virus or chikungunya virus, which constitute global health threats worldwide. Graphical abstract Photograph of the RT-PCR thermoplastic chip.

  6. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  7. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    PubMed

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  8. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine▿

    PubMed Central

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.

    2006-01-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381

  9. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  10. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear.

    PubMed

    Hassanpour, Gholamreza; Mirhendi, Hossein; Mohebali, Mehdi; Raeisi, Ahmad; Zeraati, Hojjat; Keshavarz, Hossein

    2016-01-01

    We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan- Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. A single primer/probe set for pan-species Plasmodium -specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum . All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.

  11. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem.

    PubMed

    Balasingham, Katherine D; Walter, Ryan P; Heath, Daniel D

    2017-05-01

    Several studies have demonstrated that environmental DNA (eDNA) can be used to detect the presence of aquatic species, days to weeks after the target species has been removed. However, most studies used eDNA analysis in lentic systems (ponds or lakes), or in controlled laboratory experiments. While eDNA degrades rapidly in all aquatic systems, it also undergoes dilution effects and physical destruction in flowing systems, complicating detection in rivers. However, some eDNA (i.e. residual eDNA) can be retained in aquatic systems, even those subject to high flow regimes. Our goal was to determine residual eDNA detection sensitivity using quantitative real-time polymerase chain reaction (qRT-PCR), in a flowing, uncontrolled river after the eDNA source was removed from the system; we repeated the experiment over 2 years. Residual eDNA had the strongest signal strength at the original source site and was detectable there up to 11.5 h after eDNA source removal. Residual eDNA signal strength decreased as sampling distance downstream from the eDNA source site increased, and was no longer detectable at the source site 48 h after the eDNA source water was exhausted in both experiments. This experiment shows that residual eDNA sampled in surface water can be mapped quantitatively using qRT-PCR, which allows a more accurate spatial identification of the target species location in lotic systems, and relative residual eDNA signal strength may allow the determination of the timing of the presence of target species. © 2016 John Wiley & Sons Ltd.

  12. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    PubMed

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  13. Defining suitable reference genes for RT-qPCR analysis on human sertoli cells after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure.

    PubMed

    Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo

    2014-11-01

    Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization.

  14. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples.

    PubMed

    Zanardi, G; Caminiti, A; Delle Donne, G; Moroni, P; Santi, A; Galletti, G; Tamba, M; Bolzoni, G; Bertocchi, L

    2014-09-01

    For more than 30 yr, a control plan for Streptococcus agalactiae and Staphylococcus aureus has been carried out in more than 1,500 dairy herds of the province of Brescia (northern Italy). From 2010 to 2011, the apparent prevalence of Strep. agalactiae has been relatively stable around 10%, but the apparent prevalence of Staph. aureus has been greater than 40% with an increasing trend. The aim of this paper was to estimate and compare the diagnostic accuracy of 3 assays for the detection of Strep. agalactiae and Staph. aureus in bulk-tank milk samples (BTMS) in field conditions. The assays were a qualitative and a quantitative bacteriological culture (BC) for each pathogen and a homemade multiplex real-time PCR (rt-PCR). Because a gold standard was not available, the sensitivities (Se) and specificities (Sp) were evaluated using a Bayesian latent class approach. In 2012 we collected one BTMS from 165 dairy herds that were found positive for Strep. agalactiae in the previous 2-yr campaigns of eradication plan. In most cases, BTMS collected in these herds were positive for Staph. aureus as well, confirming the wide spread of this pathogen. At the same time we also collected composite milk samples from all the 8,624 lactating cows to evaluate the within-herd prevalence of Strep. agalactiae. Streptococcus agalactiae samples were cultured using a selective medium Tallium Kristalviolette Tossin, whereas for Staph. aureus, we used Baird Parker modified medium with added Rabbit Plasma Fibrinogen ISO-Formulation. In parallel, BTMS were tested using the rt-PCR. Regarding Strep. agalactiae, the posterior median of Se and Sp of the 2 BC was similar [qualitative BC: Se=98%, posterior credible interval (95%PCI): 94-100%, and Sp=99%, 95%PCI: 96-100%; quantitative BC: Se=99%, 95%PCI: 96-100%, and Sp=99%, 95%PCI: 95-100%] and higher than those of the rt-PCR (at 40 cycle threshold, Se=92%, 95%PCI: 85-97%; Sp=94%, 95%PCI: 88-98%). Also in case of Staph. aureus, the posterior medians

  15. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  17. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    PubMed

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  18. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG

  19. The physiologic state of Escherichia coli O157:H7 does not affect its detection in two commercial real-time PCR-based tests

    USDA-ARS?s Scientific Manuscript database

    Multiplex real-time PCR detection of Escherichia coli O157:H7 is an efficient molecular tool with high sensitivity and specificity for meat safety and quality assurance in the beef industry. The Biocontrol GDS and the DuPont Qualicon BAX®-RT rapid detection systems are two commercial tests based on...

  20. Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

    PubMed

    Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah

    2015-01-01

    Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.

  1. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

    PubMed

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-07-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.

  2. A modified protocol for RNA extraction from different peach tissues suitable for gene isolation and real-time PCR analysis.

    PubMed

    Tong, Zhaoguo; Qu, Shenchun; Zhang, Jiyu; Wang, Fei; Tao, Jianmin; Gao, Zhihong; Zhang, Zhen

    2012-03-01

    RNA extraction is the first step in the study of gene isolation and expression. However, it is difficult to extract high quantity and quality RNA from tissues containing large quantities of polysaccharides and polyphenols. Peach (Prunus persica), in addition to containing high levels of polysaccharides and polyphenols, is a challenging starting material for RNA isolation using a single method because of different amounts of those substances in diverse tissues. Based on three reported methods, we developed a modified RNA isolation protocol to solve this problem, leading to high quality and quantity of total RNA from peach mesocarp tissues of fruits which were sampled from all developmental stages and different storage periods, as well as from other tissues including flowers, leaves, stems, and roots. With our modified method, 28-650 μg of total RNA was routinely obtained from per gram of fresh material, gave at least a 1.16-fold improvement by compared with those isolated by other seven methods. The RNA extracts were successfully used in downstream applications such as RT-PCR, RACE, and real-time PCR.

  3. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear

    PubMed Central

    HASSANPOUR, Gholamreza; MIRHENDI, Hossein; MOHEBALI, Mehdi; RAEISI, Ahmad; ZERAATI, Hojjat; KESHAVARZ, Hossein

    2016-01-01

    Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples. PMID:28127357

  4. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    PubMed

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  5. RFLP Analysis and Allelic Discrimination with Real-Time PCR Using the Human Lactase Persistence Trait: A Pair of Molecular Genetic Investigations

    ERIC Educational Resources Information Center

    Weinlander, Kenneth M.; Hall, David J.; De Stasio, Elizabeth A.

    2010-01-01

    We describe here two open-ended laboratory investigations for an undergraduate laboratory course that uses students' DNA as templates for quantitative real-time PCR and for traditional PCR followed by RFLP analysis. Students are captivated by the immediacy of the application and the relevance of the genotypes and traits, lactase persistence or…

  6. Comparison of the sensitivity and specificity of real-time PCR and in situ hybridization in HPV16 and 18 detection in archival cervical cancer specimens.

    PubMed

    Biesaga, Beata; Szostek, Sława; Klimek, Małgorzata; Jakubowicz, Jerzy; Wysocka, Joanna

    2012-07-04

    The aim of this study was to analyze the correlation between real-time PCR (RT-PCR) treated as a reference method and in situ hybridization with tyramide amplification system (ISH-TSA) in the detection of HPV16 and 18 infection and the assessment of viral genome status. The study was performed on cervical cancer biopsies fixed in 10% neutral buffered formalin and embedded in paraffin obtained from 85 women. TaqMan-based 5'exonuclease RT-PCR with type-specific primers was used to assess HPV16 and 18 infections and genome status. Viral infection and genome status was also assessed by ISH-TSA. RT-PCR revealed 76 (89.4%), and ISH-TSA 81 (95.3%) cancers with HPV16 and 18 infections. The ISH-TSA sensitivity and specificity were: 96.1% and 11.1% compared to RT-PCR. The difference between these techniques in HPV detection was significant (p = 0.000). Among 76 HPV16/18 positive cancers in RT-PCR, there were 30 (39.5%) with integrated and 46 (60.5%) with mixed viral genome form. According to ISH-TSA, there were 39 (51.3%) samples with integrated and 37 with mixed form (48.7%). The sensitivity and specificity of ISH-TSA in genome status assessment were 70.0% and 60.9%, respectively. The difference between RT-PCR and ISH-TSA in genome state detection was not statistically significant (p = 0.391). These results suggest that ISH-TSA shows insufficient specificity in HPV detection for use in clinical practice. However, this assay could be applied for viral genome status assessment.

  7. Clinical utility of RT-PCR in assessing HER 2 gene expression versus traditional IHC and FISH in breast cancer patients.

    PubMed

    Suryavanshi, Moushumi; Mehta, Anurag; Jaipuria, Jiten; Kumar, Dushyant; Vishwakarma, Gayatri; Panigrahi, Manoj Kumar; Verma, Haristuti; Saifi, Mumtaz; Sharma, Sanjeev; Tandon, Simran; Doval, D C; Das, Bhudev C

    2018-02-09

    IHC and FISH are used for categorizing HER 2 status in breast cancer at the protein and DNA level, respectively. HER 2 expression at the RNA level is quantitative, cheaper, easier to standardize and free from interobserver variation. 115 consecutive patients were tested by IHC, FISH and RT-PCR (test cohort). Assuming FISH result to be the response variable, ROC curves for RT-PCR ratio were analyzed to label HER 2 negative, equivocal and positive cases as RT-PCR score 1, 2 and 3, respectively. Inter-relationships between RT-PCR, IHC and FISH were defined. 'Clinical benefit' of a test was defined as proportion of patients labeled unequivocally as HER 2 positive or negative. Population for 1 year was simulated constraint to previous reports of HER 2 positivity and IHC category distribution by a meta-analysis of previous studies that evaluated concordance between IHC and FISH to determine HER 2 status (simulation cohort). Four diagnostic pathways in the simulation cohort were defined-(1) initial IHC, followed by FISH (conventional pathway); (2) initial RT-PCR, followed by FISH; (3) initial IHC, followed by RT-PCR and then by FISH; (4) initial RT-PCR, followed by IHC and then by FISH. The clinical benefit of IHC and RT-PCR in the four pathways was analyzed and sensitivity analysis for incremental cost-effectiveness ratio and cost-benefit comapring RT-PCR against IHC, both as first-line tests and among those with IHC score 2 as a reflex second-line test was performed by the Monte Carlo technique. 115 patients comprised the study population. While none with IHC score of 0 or 1 was FISH positive for HER 2, all cases with IHC score of 3 were FISH positive. 43 cases were assigned IHC score of 2. Thus, 72 patients benefited from the initial IHC testing [clinical benefit 62.6%], with the overall concordance between IHC and FISH being 100% for those with IHC score of 0, 1 and 3 (conclusive IHC categories). For RT-PCR with 100% concordance, 15.7% (115-97 = 18) patients

  8. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants.

    PubMed

    Cnops, Lieselotte; Tannich, Egbert; Polman, Katja; Clerinx, Jan; Van Esbroeck, Marjan

    2012-10-01

    To evaluate the use of a genus-specific PCR that combines high sensitivity with the detection of different Schistosoma species for diagnosis in international travellers and migrants in comparison to standard microscopy. The genus-specific real-time PCR was developed to target the 28S ribosomal RNA gene of the major human Schistosoma species. It was validated for analytical specificity and reproducibility and demonstrated an analytical sensitivity of 0.2 eggs per gram of faeces. Its diagnostic performance was further evaluated on 152 faecal, 32 urine and 38 serum samples from patients presenting at the outpatient clinic of the Institute of Tropical Medicine in Antwerp (Belgium). We detected Schistosoma DNA in 76 faecal (50.0%) and five urine (15.6%) samples of which, respectively, nine and one were not detected by standard microscopy. Only two of the 38 serum samples of patients with confirmed schistosomiasis were positive with the presently developed PCR. Sequence analysis on positive faecal samples allowed identification of the Schistosoma species complex. The real-time PCR is highly sensitive and may offer added value in diagnosing imported schistosomiasis. The genus-specific PCR can detect all schistosome species that are infectious to humans and performs very well with faeces and urine, but not in serum. © 2012 Blackwell Publishing Ltd.

  9. Detection of Orthopoxvirus DNA by Real-Time PCR and Identification of Variola Virus DNA by Melting Analysis

    PubMed Central

    Nitsche, Andreas; Ellerbrok, Heinz; Pauli, Georg

    2004-01-01

    Although variola virus was eradicated by the World Health Organization vaccination program in the 1970s, the diagnosis of smallpox infection has attracted great interest in the context of a possible deliberate release of variola virus in bioterrorist attacks. Obviously, fast and reliable diagnostic tools are required to detect variola virus and to distinguish it from orthopoxviruses that have identical morphological characteristics, including vaccinia virus. The advent of real-time PCR for the clinical diagnosis of viral infections has facilitated the detection of minute amounts of viral nucleic acids in a fast, safe, and precise manner, including the option to quantify and to genotype the target reliably. In this study a complete set of four hybridization probe-based real-time PCR assays for the specific detection of orthopoxvirus DNA is presented. Melting analysis following PCR enables the identification of variola virus by the PCR product's characteristic melting temperature, permitting the discrimination of variola virus from other orthopoxviruses. In addition, an assay for the specific amplification of variola virus DNA is presented. All assays can be performed simultaneously in the same cycler, and results of a PCR run are obtained in less than 1 h. The application of more than one assay for the same organism significantly contributes to the diagnostic reliability, reducing the risk of false-negative results due to unknown sequence variations. In conclusion, the assays presented will improve the speed and reliability of orthopoxvirus diagnostics and variola virus identification. PMID:15004077

  10. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer.

    PubMed

    Hout, David R; Schweitzer, Brock L; Lawrence, Kasey; Morris, Stephan W; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly; Saltman, David L

    2017-08-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase ( ALK ) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off Δ C t of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK.

  11. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer

    PubMed Central

    Hout, David R.; Lawrence, Kasey; Morris, Stephan W.; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly

    2017-01-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase (ALK) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off ΔCt of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK. PMID:28763012

  12. Low-Cost HIV-1 Diagnosis and Quantification in Dried Blood Spots by Real Time PCR

    PubMed Central

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A. S.; Eliot, Melissa N.; Lin, Rongheng; Foulkes, Andrea S.; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L.; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-01-01

    Background Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. Methods and Findings We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log10, and %CV <8% up to 4 log10 dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance. Conclusions The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings. PMID:19503790

  13. Low-cost HIV-1 diagnosis and quantification in dried blood spots by real time PCR.

    PubMed

    Mehta, Nishaki; Trzmielina, Sonia; Nonyane, Bareng A S; Eliot, Melissa N; Lin, Rongheng; Foulkes, Andrea S; McNeal, Kristina; Ammann, Arthur; Eulalievyolo, Vindu; Sullivan, John L; Luzuriaga, Katherine; Somasundaran, Mohan

    2009-06-05

    Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy. We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log(10), and %CV <8% up to 4 log(10) dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance. The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings.

  14. Reference gene validation for RT-qPCR, a note on different available software packages.

    PubMed

    De Spiegelaere, Ward; Dern-Wieloch, Jutta; Weigel, Roswitha; Schumacher, Valérie; Schorle, Hubert; Nettersheim, Daniel; Bergmann, Martin; Brehm, Ralph; Kliesch, Sabine; Vandekerckhove, Linos; Fink, Cornelia

    2015-01-01

    An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use.

  15. Evaluation of Reference Genes for Gene Expression Analysis Using Quantitative RT-PCR in Azospirillum brasilense

    PubMed Central

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data. PMID:24841066

  16. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    PubMed

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  17. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  18. Evaluation of non-extracted genital swabs for real-time HSV PCR.

    PubMed

    Miari, Victoria F; Wall, Gavin R; Clark, Duncan A

    2015-01-01

    Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  19. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors.

    PubMed

    Bartsch, Christina; Szabo, Kathrin; Dinh-Thanh, Mai; Schrader, Christina; Trojnar, Eva; Johne, Reimar

    2016-12-01

    Frozen berries have been repeatedly identified as vehicles for norovirus (NoV) transmission causing large gastroenteritis outbreaks. However, virus detection in berries is often hampered by the presence of RT-PCR-inhibiting substances. Here, several virus extraction methods for subsequent real-time RT-PCR-based NoV-RNA detection in strawberries were compared and optimized. NoV recovery rates (RRs) between 0.21 ± 0.13% and 10.29 ± 6.03% were found when five different artificially contaminated strawberry batches were analyzed by the ISO/TS15216-2 method indicating the presence of different amounts of RT-PCR inhibitors. A comparison of five different virus extraction methods using artificially contaminated strawberries containing high amounts of RT-PCR inhibitors revealed the best NoV RRs for the ISO/TS15216 method. Further improvement of NoV RRs from 2.83 ± 2.92% to 15.28 ± 9.73% was achieved by the additional use of Sephacryl(®)-based columns for RNA purification. Testing of 22 frozen strawberry samples from a batch involved in a gastroenteritis outbreak resulted in 5 vs. 13 NoV GI-positive and in 9 vs. 20 NoV GII-positive samples using the original ISO/TS15216 method vs. the extended protocol, respectively. It can be concluded that the inclusion of an additional RNA purification step can increase NoV detection by the ISO/TS15216-2 method in frozen berries containing high amounts of RT-PCR inhibitors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The Cost-Effectiveness of Real-Time Continuous Glucose Monitoring (RT-CGM) in Type 2 Diabetes.

    PubMed

    Fonda, Stephanie J; Graham, Claudia; Munakata, Julie; Powers, Julia M; Price, David; Vigersky, Robert A

    2016-07-01

    This analysis models the cost-effectiveness of real-time continuous glucose monitoring (RT-CGM) using evidence from a randomized controlled trial (RCT) that demonstrated RT-CGM reduced A1C, for up to 9 months after using the technology, among patients with type 2 diabetes not on prandial insulin. RT-CGM was offered short-term and intermittently as a self-care tool to inform patients' behavior. The analyses projected lifetime clinical and economic outcomes for RT-CGM versus self-monitoring of blood glucose by fingerstick only. The base-case analysis was consistent with the RCT (RT-CGM for 2 weeks on/1 week off over 3 months). A scenario analysis simulated outcomes of an RT-CGM "refresher" after the active intervention of the RCT. Analyses used the IMS CORE Diabetes Model and were conducted from a US third-party payer perspective, including direct costs obtained from published sources and inflated to 2011 US dollars. Costs and health outcomes were discounted at 3% per annum. Life expectancy (LE) and quality-adjusted life expectancy (QALE) from RT-CGM were 0.10 and 0.07, with a cost of $653/patient over a lifetime. Incremental LE and QALE from a "refresher" were 0.14 and 0.10, with a cost of $1312/patient over a lifetime, and incremental cost-effectiveness ratios were $9319 and $13 030 per LY and QALY gained. RT-CGM, as a self-care tool, is a cost-effective disease management option in the US for people with type 2 diabetes not on prandial insulin. Repeated use of RT-CGM may result in additional cost-effectiveness. © 2016 Diabetes Technology Society.

  1. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts.

    PubMed

    Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios

    2017-07-01

    A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.

  2. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  3. In-depth analysis of internal control genes for quantitative real-time PCR in Brassica oleracea var. botrytis.

    PubMed

    Sheng, X G; Zhao, Z Q; Yu, H F; Wang, J S; Zheng, C F; Gu, H H

    2016-07-15

    Quantitative reverse-transcription PCR (qRT-PCR) is a versatile technique for the analysis of gene expression. The selection of stable reference genes is essential for the application of this technique. Cauliflower (Brassica oleracea L. var. botrytis) is a commonly consumed vegetable that is rich in vitamin, calcium, and iron. Thus far, to our knowledge, there have been no reports on the validation of suitable reference genes for the data normalization of qRT-PCR in cauliflower. In the present study, we analyzed 12 candidate housekeeping genes in cauliflower subjected to different abiotic stresses, hormone treatment conditions, and accessions. geNorm and NormFinder algorithms were used to assess the expression stability of these genes. ACT2 and TIP41 were selected as suitable reference genes across all experimental samples in this study. When different accessions were compared, ACT2 and UNK3 were found to be the most suitable reference genes. In the hormone and abiotic stress treatments, ACT2, TIP41, and UNK2 were the most stably expressed. Our study also provided guidelines for selecting the best reference genes under various experimental conditions.

  4. Identification of phlebotomine sand fly blood meals by real-time PCR.

    PubMed

    Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe

    2015-04-16

    Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black

  5. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR.

    PubMed

    Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro

    2016-09-01

    Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Reverse transcription loop-mediated isothermal amplification (RT-LAMP), a light for mammalian transcript analysis in low-input laboratories.

    PubMed

    Pandey, Mamta; Singh, Dheer; Onteru, Suneel K

    2018-06-01

    Transcript analysis is usually performed by costly, time-consuming, and expertise intensive methods, like real time-PCR, microarray, etc. However, they are not much feasible in low-input laboratories. Therefore, we implemented the reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a means of mammalian transcript analysis. Particularly, RT-LAMP was developed for buffalo aromatase cytochrome P450 (CYP19) transcript, to study its expression in 3D-cultured buffalo granulosa cells, which were exposed to lipopolysaccharide (LPS). The CYP19-RT-LAMP assay rapidly identified the LPS-induced downregulation of the CYP19 gene within 30 min at 63°C in a water bath. The assay was visualized via unaided eye by observing the change in turbidity and fluorescence, which were decreased by increasing the LPS exposure time to granulosa cells. Overall, the developed CYP19-RT-LAMP assay provided a hope on the application of RT-LAMP for mammalian transcript analysis in low-input laboratories. © 2017 Wiley Periodicals, Inc.

  8. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    PubMed

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development and validation of a harmonized TaqMan-based triplex real-time RT-PCR protocol for the quantitative detection of normalized gene expression profiles of seven porcine cytokines.

    PubMed

    Petrov, Anja; Beer, Martin; Blome, Sandra

    2014-01-01

    Dysregulation of cytokine responses plays a major role in the pathogenesis of severe and life-threatening infectious diseases like septicemia or viral hemorrhagic fevers. In pigs, diseases like African and classical swine fever are known to show exaggerated cytokine releases. To study these responses and their impact on disease severity and outcome in detail, reliable, highly specific and sensitive methods are needed. For cytokine research on the molecular level, real-time RT-PCRs have been proven to be suitable. Yet, the currently available and most commonly used SYBR Green I assays or heterogeneous gel-based RT-PCRs for swine show a significant lack of specificity and sensitivity. The latter is however absolutely essential for an accurate quantification of rare cytokine transcripts as well as for detection of small changes in gene expressions. For this reason, a harmonized TaqMan-based triplex real-time RT-PCR protocol for the quantitative detection of normalized gene expression profiles of seven porcine cytokines was designed and validated within the presented study. Cytokines were chosen to represent different immunological pathways and targets known to be involved in the pathogenesis of the above mentioned porcine diseases, namely interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, tumor necrosis factor (TNF)-α and interferon (IFN)-α. Beta-Actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) served as reference genes for normalization. For absolute quantification a synthetic standard plasmid was constructed comprising all target cytokines and reference genes within a single molecule allowing the generation of positive control RNA. The standard as well as positive RNAs from samples, and additionally more than 400 clinical samples, which were collected from animal trials, were included in the validation process to assess analytical sensitivity and applicability under routine conditions. The resulting assay allows the reliable assessment of gene expression

  10. Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity.

    PubMed

    Li, B; Matter, E K; Hoppert, H T; Grayson, B E; Seeley, R J; Sandoval, D A

    2014-02-01

    Obesity has a complicated metabolic pathology, and defining the underlying mechanisms of obesity requires integrative studies with molecular end points. Real-time quantitative PCR (RT-qPCR) is a powerful tool that has been widely utilized. However, the importance of using carefully validated reference genes in RT-qPCR seems to have been overlooked in obesity-related research. The objective of this study was to select a set of reference genes with stable expressions to be used for RT-qPCR normalization in rats under fasted vs re-fed and chow vs high-fat diet (HFD) conditions. Male long-Evans rats were treated under four conditions: chow/fasted, chow/re-fed, HFD/fasted and HFD/re-fed. Expression stabilities of 13 candidate reference genes were evaluated in the rat hypothalamus, duodenum, jejunum and ileum using the ReFinder software program. The optimal number of reference genes needed for RT-qPCR analyses was determined using geNorm. Using geNorm analysis, we found that it was sufficient to use the two most stably expressed genes as references in RT-qPCR analyses for each tissue under specific experimental conditions. B2M and RPLP0 in the hypothalamus, RPS18 and HMBS in the duodenum, RPLP2 and RPLP0 in the jejunum and RPS18 and YWHAZ in the ileum were the most suitable pairs for a normalization study when the four aforementioned experimental conditions were considered. Our study demonstrates that gene expression levels of reference genes commonly used in obesity-related studies, such as ACTB or RPS18, are altered by changes in acute or chronic energy status. These findings underline the importance of using reference genes that are stable in expression across experimental conditions when studying the rat hypothalamus and intestine, because these tissues have an integral role in the regulation of energy homeostasis. It is our hope that this study will raise awareness among obesity researchers on the essential need for reference gene validation in gene expression

  11. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  12. Analytical validation of a reverse transcriptase droplet digital PCR (RT-ddPCR) for quantitative detection of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Jia, Peng; Purcell, Maureen; Pan, Guang; Wang, Jinjin; Kan, Shifu; Liu, Yin; Zheng, Xiaocong; SHi, Xiujie; He, Junqiang; Yu, Li; Hua, Qunyi; Lu, Tikang; Lan, Wensheng; Winton, James; Jin, Ningyi; Liu, Hong

    2017-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/μl while the LOD for the RT-qPCR was 0.2 PFU/μl. Good agreement (69.4–100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.

  13. Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples.

    PubMed

    Stark, D; Al-Qassab, S E; Barratt, J L N; Stanley, K; Roberts, T; Marriott, D; Harkness, J; Ellis, J T

    2011-01-01

    The aim of this study was to describe the first development and evaluation of a multiplex tandem PCR (MT-PCR) assay for the detection and identification of 4 common pathogenic protozoan parasites, Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis, from human clinical samples. A total of 472 fecal samples submitted to the Department of Microbiology at St. Vincent's Hospital were included in the study. The MT-PCR assay was compared to four real-time PCR (RT-PCR) assays and microscopy by a traditional modified iron hematoxylin stain. The MT-PCR detected 28 G. intestinalis, 26 D. fragilis, 11 E. histolytica, and 9 Cryptosporidium sp. isolates. Detection and identification of the fecal protozoa by MT-PCR demonstrated 100% correlation with the RT-PCR results, and compared to RT-PCR, MT-PCR exhibited 100% sensitivity and specificity, while traditional microscopy of stained fixed fecal smears exhibited sensitivities and specificities of 56% and 100% for Cryptosporidium spp., 38% and 99% for D. fragilis, 47% and 97% for E. histolytica, and 50% and 100% for G. intestinalis. No cross-reactivity was detected in 100 stool samples containing various other bacterial, viral, and protozoan species. The MT-PCR assay was able to provide rapid, sensitive, and specific simultaneous detection and identification of the four most important diarrhea-causing protozoan parasites that infect humans. This study also highlights the lack of sensitivity demonstrated by microscopy, and thus, molecular methods such as MT-PCR must be considered the diagnostic methods of choice for enteric protozoan parasites.

  14. Improved safety for molecular diagnosis of classical rabies viruses by use of a TaqMan real-time reverse transcription-PCR "double check" strategy.

    PubMed

    Hoffmann, B; Freuling, C M; Wakeley, P R; Rasmussen, T B; Leech, S; Fooks, A R; Beer, M; Müller, T

    2010-11-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories.

  15. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  16. One step screening of retroviral producer clones by real time quantitative PCR.

    PubMed

    Towers, G J; Stockholm, D; Labrousse-Najburg, V; Carlier, F; Danos, O; Pagès, J C

    1999-01-01

    Recombinant retroviruses are obtained from either stably or transiently transfected retrovirus producer cells. In the case of stably producing lines, a large number of clones must be screened in order to select the one with the highest titre. The multi-step selection of high titre producing clones is time consuming and expensive. We have taken advantage of retroviral endogenous reverse transcription to develop a quantitative PCR assay on crude supernatant from producing clones. We used Taqman PCR technology, which, by using fluorescence measurement at each cycle of amplification, allows PCR product quantification. Fluorescence results from specific degradation of a probe oligonucleotide by the Taq polymerase 3'-5' exonuclease activity. Primers and probe sequences were chosen to anneal to the viral strong stop species, which is the first DNA molecule synthesised during reverse transcription. The protocol consists of a single real time PCR, using as template filtered viral supernatant without any other pre-treatment. We show that the primers and probe described allow quantitation of serially diluted plasmid to as few as 15 plasmid molecules. We then test 200 GFP-expressing retroviral-producing clones either by FACS analysis of infected cells or by using the quantitative PCR. We confirm that the Taqman protocol allows the detection of virus in supernatant and selection of high titre clones. Furthermore, we can determine infectious titre by quantitative PCR on genomic DNA from infected cells, using an additional set of primers and probe to albumin to normalise for the genomic copy number. We demonstrate that real time quantitative PCR can be used as a powerful and reliable single step, high throughput screen for high titre retroviral producer clones.

  17. The use of real-time polymerase chain reaction with high resolution melting (real-time PCR-HRM) analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus.

    PubMed

    Filipiak, Anna; Hasiów-Jaroszewska, Beata

    2016-04-01

    The real-time PCR-HRM analysis was developed for the detection and discrimination of the quarantine nematode Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. A set of primers was designed to target the ITS region of rDNA. The results have demonstrated that this analysis is a valuable tool for differentiation of these both species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of Reference Genes for RT qPCR Analyses of Structure-Specific and Hormone Regulated Gene Expression in Physcomitrella patens Gametophytes

    PubMed Central

    Le Bail, Aude; Scholz, Sebastian; Kost, Benedikt

    2013-01-01

    The use of the moss Physcomitrella patens as a model system to study plant development and physiology is rapidly expanding. The strategic position of P. patens within the green lineage between algae and vascular plants, the high efficiency with which transgenes are incorporated by homologous recombination, advantages associated with the haploid gametophyte representing the dominant phase of the P. patens life cycle, the simple structure of protonemata, leafy shoots and rhizoids that constitute the haploid gametophyte, as well as a readily accessible high-quality genome sequence make this moss a very attractive experimental system. The investigation of the genetic and hormonal control of P. patens development heavily depends on the analysis of gene expression patterns by real time quantitative PCR (RT qPCR). This technique requires well characterized sets of reference genes, which display minimal expression level variations under all analyzed conditions, for data normalization. Sets of suitable reference genes have been described for most widely used model systems including e.g. Arabidopsis thaliana, but not for P. patens. Here, we present a RT qPCR based comparison of transcript levels of 12 selected candidate reference genes in a range of gametophytic P. patens structures at different developmental stages, and in P. patens protonemata treated with hormones or hormone transport inhibitors. Analysis of these RT qPCR data using GeNorm and NormFinder software resulted in the identification of sets of P. patens reference genes suitable for gene expression analysis under all tested conditions, and suggested that the two best reference genes are sufficient for effective data normalization under each of these conditions. PMID:23951063

  19. Selection of housekeeping genes as internal controls for quantitative RT-PCR analysis of the veined rapa whelk (Rapana venosa).

    PubMed

    Song, Hao; Dang, Xin; He, Yuan-Qiu; Zhang, Tao; Wang, Hai-Yan

    2017-01-01

    The veined rapa whelk Rapana venosa is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in R. venosa . For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in R. venosa for use as internal controls for qRT-PCR. In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1 α ( EF-1α ), α -actin ( ACT ), cytochrome c oxidase subunit 1 ( COX1 ), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 α subcomplex subunit 7 ( NDUFA7 ), 60S ribosomal protein L5 ( RL5 ), 60S ribosomal protein L28 ( RL28 ), glyceraldehyde 3-phosphate dehydrogenase ( GAPDH ), β -tubulin ( TUBB ), 40S ribosomal protein S25 ( RS25 ), 40S ribosomal protein S8 ( RS8 ), ubiquitin-conjugating enzyme E2 ( UBE2 ), histone H3 ( HH3 ), and peptidyl-prolyl cis-trans isomerase A ( PPIA ). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms. Of the 13 candidate genes tested, we found that EF-1α was the most stable internal control gene in almost all adult tissue samples investigated with RL5 and RL28 as secondary choices. For the normalization of a single specific tissue, we suggested that EF-1α and NDUFA7 are the best combination in gonad, as well as COX1 and RL28 for intestine, EF-1α and RL5 for kidney, EF-1α and COX1 for gill, EF-1α and RL28 for Leiblein and mantle, EF-1α , RL5 , and NDUFA7 for liver , GAPDH , PPIA , and RL28 for hemocyte. From a developmental perspective, we found that RL28 was the most stable gene

  20. Selection of housekeeping genes as internal controls for quantitative RT-PCR analysis of the veined rapa whelk (Rapana venosa)

    PubMed Central

    Song, Hao; Dang, Xin; He, Yuan-qiu

    2017-01-01

    Background The veined rapa whelk Rapana venosa is an important commercial shellfish in China and quantitative real-time PCR (qRT-PCR) has become the standard method to study gene expression in R. venosa. For accurate and reliable gene expression results, qRT-PCR assays require housekeeping genes as internal controls, which display highly uniform expression in different tissues or stages of development. However, to date no studies have validated housekeeping genes in R. venosa for use as internal controls for qRT-PCR. Methods In this study, we selected the following 13 candidate genes for suitability as internal controls: elongation factor-1α (EF-1α), α-actin (ACT), cytochrome c oxidase subunit 1 (COX1), nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1α subcomplex subunit 7 (NDUFA7), 60S ribosomal protein L5 (RL5), 60S ribosomal protein L28 (RL28), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), β-tubulin (TUBB), 40S ribosomal protein S25 (RS25), 40S ribosomal protein S8 (RS8), ubiquitin-conjugating enzyme E2 (UBE2), histone H3 (HH3), and peptidyl-prolyl cis-trans isomerase A (PPIA). We measured the expression levels of these 13 candidate internal controls in eight different tissues and twelve larvae developmental stages by qRT-PCR. Further analysis of the expression stability of the tested genes was performed using GeNorm and RefFinder algorithms. Results Of the 13 candidate genes tested, we found that EF-1α was the most stable internal control gene in almost all adult tissue samples investigated with RL5 and RL28 as secondary choices. For the normalization of a single specific tissue, we suggested that EF-1α and NDUFA7 are the best combination in gonad, as well as COX1 and RL28 for intestine, EF-1α and RL5 for kidney, EF-1α and COX1 for gill, EF-1α and RL28 for Leiblein and mantle, EF-1α, RL5, and NDUFA7 for liver, GAPDH, PPIA, and RL28 for hemocyte. From a developmental perspective, we found that RL28 was the most stable gene in all

  1. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy.

    PubMed

    Liu, Zhidai; Zhang, Penghui; He, Xiaoyan; Liu, Shan; Tang, Shi; Zhang, Rong; Wang, Xinbin; Tan, Junjie; Peng, Bin; Jiang, Li; Hong, Siqi; Zou, Lin

    2016-08-17

    Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.

  2. Diagnosis of invasive fungal infections using real-time PCR assay in paediatric acute leukaemia induction.

    PubMed

    Mandhaniya, Sushil; Iqbal, Sobuhi; Sharawat, Surender Kumar; Xess, Immaculata; Bakhshi, Sameer

    2012-07-01

    Invasive fungal infections (IFI) lead to morbidity and mortality in neutropenic patients and in allogenic stem cell transplantation. Serum-based fungal detection assays have limitation of specificity or sensitivity. Studies on fungal DNA detection using real-time PCR in childhood leukaemia are lacking. The aim of this study was to develop sensitive and specific diagnostic tools for IFI in paediatric acute leukaemia patients using real-time PCR. Of 100 randomised paediatric acute leukaemia patients receiving antifungal prophylaxis with voriconazole/amphotericin B, single peripheral whole blood sample in EDTA was used for Pan-AC real-time PCR assay (detects nine Candida and six Aspergillus species) in patients who failed prophylaxis due to proven, probable, possible or suspected fungal infections. PCR results were retrospectively correlated with clinical profile. Real-time PCR test was positive in 18/29 (62%) patients who failed prophylaxis. The only patient with proven IFI (mucormycosis), real-time PCR assay was negative. Real-time PCR was positive in 2/4 (50%) patients with possible and 16/24 (66.6%) suspected IFI and 5/10 (50%) patients with pneumonia. By applying method A/B, sensitivity and positive predictive value could not be commented due to unproven Aspergillus or Candida infections; specificity and negative predictive values (NPV) were 41% and 100% respectively; by method C (included episodes of possible IFI as true positive), sensitivity, specificity, PPV and NPV were 50%, 36%, 11% and 81% respectively. In those with suspected IFI, 8/24 (33.3%) were PCR negative and unnecessarily received empirical antifungal therapy (EAFT). Real-time PCR is a practical, rapid, non-invasive screening test for excluding IFI in paediatric leukaemia. The high NPV makes real-time PCR a promising tool to use this prior to initiating EAFT in antibiotic-resistant febrile neutropenic patients; this would avoid toxicity, cost and hospitalisation for EAFT (Clinical

  3. Nucleic acid extraction from polluted estuarine water for detection of viruses and bacteria by PCR and RT-PCR analysis.

    PubMed

    Petit, F; Craquelin, S; Guespin-Michel, J; Buffet-Janvresse, C

    1999-03-01

    We describe an extraction protocol for genomic DNA and RNA of both viruses and bacteria from polluted estuary water. This procedure was adapted to the molecular study of microflora of estuarine water where bacteria and viruses are found free, forming low-density biofilms, or intimately associated with organo-mineral particles. The sensitivity of the method was determined with seeded samples for RT-PCR and PCR analysis of viruses (10 virions/mL), and bacteria (1 colony-forming unit mL). We report an example of molecular detection of both poliovirus and Salmonella in the Seine estuary (France) and an approach to studying their association with organo-mineral particles.

  4. Selection of reference genes for quantitative real-time PCR normalization in Panax ginseng at different stages of growth and in different organs.

    PubMed

    Liu, Jing; Wang, Qun; Sun, Minying; Zhu, Linlin; Yang, Michael; Zhao, Yu

    2014-01-01

    Quantitative real-time reverse transcription PCR (qRT-PCR) has become a widely used method for gene expression analysis; however, its data interpretation largely depends on the stability of reference genes. The transcriptomics of Panax ginseng, one of the most popular and traditional ingredients used in Chinese medicines, is increasingly being studied. Furthermore, it is vital to establish a series of reliable reference genes when qRT-PCR is used to assess the gene expression profile of ginseng. In this study, we screened out candidate reference genes for ginseng using gene expression data generated by a high-throughput sequencing platform. Based on the statistical tests, 20 reference genes (10 traditional housekeeping genes and 10 novel genes) were selected. These genes were tested for the normalization of expression levels in five growth stages and three distinct plant organs of ginseng by qPCR. These genes were subsequently ranked and compared according to the stability of their expressions using geNorm, NormFinder, and BestKeeper computational programs. Although the best reference genes were found to vary across different samples, CYP and EF-1α were the most stable genes amongst all samples. GAPDH/30S RPS20, CYP/60S RPL13 and CYP/QCR were the optimum pair of reference genes in the roots, stems, and leaves. CYP/60S RPL13, CYP/eIF-5A, aTUB/V-ATP, eIF-5A/SAR1, and aTUB/pol IIa were the most stably expressed combinations in each of the five developmental stages. Our study serves as a foundation for developing an accurate method of qRT-PCR and will benefit future studies on gene expression profiles of Panax Ginseng.

  5. Design and Performance of the CDC Real-Time Reverse Transcriptase PCR Swine Flu Panel for Detection of 2009 A (H1N1) Pandemic Influenza Virus▿†‡

    PubMed Central

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-01-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10−1.3∼−0.7 50% infectious doses (ID50) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation. PMID:21593260

  6. A cost effective real-time PCR for the detection of adenovirus from viral swabs

    PubMed Central

    2013-01-01

    Compared to traditional testing strategies, nucleic acid amplification tests such as real-time PCR offer many advantages for the detection of human adenoviruses. However, commercial assays are expensive and cost prohibitive for many clinical laboratories. To overcome fiscal challenges, a cost effective strategy was developed using a combination of homogenization and heat treatment with an “in-house” real-time PCR. In 196 swabs submitted for adenovirus detection, this crude extraction method showed performance characteristics equivalent to viral DNA obtained from a commercial nucleic acid extraction. In addition, the in-house real-time PCR outperformed traditional testing strategies using virus culture, with sensitivities of 100% and 69.2%, respectively. Overall, the combination of homogenization and heat treatment with a sensitive in-house real-time PCR provides accurate results at a cost comparable to viral culture. PMID:23758993

  7. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    PubMed Central

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  8. Analysis of gene expression in small numbers of purified hemopoietic progenitor cells by RT-PCR.

    PubMed

    Ziegler, B L; Lamping, C P; Thoma, S J; Fliedner, T M

    1995-05-01

    Primitive hemopoietic stem cells represent the most probable targets for genetic alterations due to exposure to ionizing irradiation or chemical carcinogens. We have applied a two-step protocol for the purification of CD34+HLA-DR-/low hemopoietic progenitor cells from cord blood (CB). CD34+ cells were isolated by monoclonal antibody (mAb) against CD34 (My10) and immunomagnetic beads. Beads were cleaved off the CD34+ cells by enzymatic treatment with chymopapain. Due to chymopapain-resistance of epitopes recognized by the used mAbs purity control of CD34+ cells and separation into CD34+HLA-DR-/low and CD34+HLA-DR+ subsets could be performed by using flow cytometry. Two miniaturized procedures were applied to isolate poly(A)+ mRNA for the reverse transcription polymerase chain reaction (RT-PCR) from small numbers of CD34+HLA-DR-/low cells. In five experiments, the mean purity of immunomagnetically isolated CD34+ cells was 93.8% +/- 3.9. Flow cytometry sorting of CD34+ cells resulted in pure CD34+HLA-DR-/low populations (purity > 98.8%; range 98.8% to 99.9%; viability > 96%) with an average yield of 2600 +/- 800 cells/5 x 10(7) low density CB cells. By RT-PCR using both poly(A)+ mRNA isolation procedures, sequences corresponding to CD34 and beta 2-microglobulin were amplified from as few as 20 cells. Furthermore, a sequence-independent RT-PCR (SIP-RT-PCR) was applied to amplify the cDNA derived from five erythroblasts isolated from a burst-forming unit-erythroid (BFU-E). Upon hybridization, full-length c-fos message was detected in the SIP-RT-PCR amplified material. Our data demonstrate that gene expression can be detected at the transcriptional level in small numbers of hemopoietic progenitor cells. In addition, the SIP-RT-PCR may allow the amplification of unique mRNA species when subtractive hybridization procedures are performed. The presented data should be useful to analyze gene expression in rare subsets of radiation-exposed immature hemopoietic stem

  9. Rapid detection of Cronobacter sakazakii by real-time PCR based on the cgcA gene and TaqMan probe with internal amplification control.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Li, Rong; Wu, Xinwei; Xiao, Xinglong; Wu, Hui

    2016-03-01

    Cronobacter sakazakii is a severe virulent strain that is frequently detected in powdered infant formula (PIF). Therefore, it is necessary to develop a fast and specific detection method. The specificity of our newly developed quantitative real-time PCR (qRT-PCR) was validated with DNA from 46 strains. Among them, 12 C. sakazakii strains were correctly amplified, whereas no positive florescent signal was observed from 34 nontarget controls. The detection limit of C. sakazakii was about 110 CFU/mL in broth and 1100 CFU/g in PIF. After enrichment in buffered peptone water for 6 h, our developed qRT-PCR assay could reliably detect C. sakazakii when the inoculation level was as low as 2 CFU/25 g (0.08 CFU/g) in PIF. The growth of C. sakazakii could be inhibited by the presence of Lactobacillus pentosus and Bacillus cereus, which used a longer enrichment period before the isolation was accomplished. However, at 5 and 50 CFU/25 g inoculation levels of C. sakazakii in the presence of 4 × 10(6) CFU L. pentosus/25 g or of 2 × 10(4) CFU B. cereus/25 g, the qRT-PCR assay could detect the presence of Cronobacter even though these artificially spiked samples were negative in culture. Therefore, our results indicated that the qRT-PCR assay could detect samples containing inhibitors and could avoid false negatives by using an internal amplification control.

  10. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    PubMed

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  11. Real-Time PCR in HIV/Trypanosoma cruzi Coinfection with and without Chagas Disease Reactivation: Association with HIV Viral Load and CD4+ Level

    PubMed Central

    de Freitas, Vera Lúcia Teixeira; da Silva, Sheila Cristina Vicente; Sartori, Ana Marli; Bezerra, Rita Cristina; Westphalen, Elizabeth Visone Nunes; Molina, Tatiane Decaris; Teixeira, Antonio R. L.; Ibrahim, Karim Yaqub; Shikanai-Yasuda, Maria Aparecida

    2011-01-01

    Background Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4+ cells or the CD4+/CD8+ ratio. Conclusions qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4+ cells/mm3 and the CD4+/CD8+ ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy. PMID

  12. Variation in Bluetongue virus real-time reverse transcription polymerase chain reaction assay results in blood samples of sheep, cattle, and alpaca.

    PubMed

    Brito, Barbara P; Gardner, Ian A; Hietala, Sharon K; Crossley, Beate M

    2011-07-01

    Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.

  13. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    ERIC Educational Resources Information Center

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  14. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  15. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    PubMed

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis

  16. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  17. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  18. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  19. Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics

    PubMed Central

    Dettinger, Lisa; Powell, James W.; Seiders, Melanie; Condori, Rene Edgar Condori; Griesser, Richard; Okogi, Kenneth; Carlos, Maria; Pesko, Kendra; Breckenridge, Mike; Simon, Edson Michael M.; Chu, Maria Yna Joyce V.; Davis, April D.; Brunt, Scott J.; Orciari, Lillian; Yager, Pamela; Carson, William C.; Hartloge, Claire; Saliki, Jeremiah T.; Deldari, Mojgan; Hsieh, Kristina; Wadhwa, Ashutosh; Wilkins, Kimberly; Rabideau, Patricia; Gruhn, Nina; Cadet, Rolain; Isloor, Shrikrishna; Nath, Sujith S.; Joseph, Tomy; Gao, Jinxin; Wallace, Ryan; Reynolds, Mary; Olson, Victoria A.

    2018-01-01

    Rabies is a fatal zoonotic disease that requires fast, accurate diagnosis to prevent disease in an exposed individual. The current gold standard for post-mortem diagnosis of human and animal rabies is the direct fluorescent antibody (DFA) test. While the DFA test has proven sensitive and reliable, it requires high quality antibody conjugates, a skilled technician, a fluorescence microscope and diagnostic specimen of sufficient quality. The LN34 pan-lyssavirus real-time RT-PCR assay represents a strong candidate for rabies post-mortem diagnostics due to its ability to detect RNA across the diverse Lyssavirus genus, its high sensitivity, its potential for use with deteriorated tissues, and its simple, easy to implement design. Here, we present data from a multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from Africa, the Americas, Asia, Europe, and the Middle East were tested. The LN34 assay exhibited low variability in repeatability and reproducibility studies and was capable of detecting viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. The LN34 assay displayed high diagnostic specificity (99.68%) and sensitivity (99.90%) when compared to the DFA test, and no DFA positive samples were negative by the LN34 assay. The LN34 assay produced definitive findings for 80 samples that were inconclusive or untestable by DFA; 29 were positive. Five samples were inconclusive by the LN34 assay, and only one sample was inconclusive by both tests. Furthermore, use of the LN34 assay led to the identification of one false negative and 11 false positive DFA results. Together, these results demonstrate the reliability and robustness of the LN34 assay and support a role for the LN34 assay in improving rabies diagnostics and surveillance. PMID:29768505

  20. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  1. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  2. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    PubMed

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  3. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction.

    PubMed

    Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun

    2014-09-01

    The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Lactase Non-Persistence Genotyping: Comparison of Two Real-Time PCR Assays and Assessment of Concomitant Fructose/Sorbitol Malabsorption Rates.

    PubMed

    Enko, Dietmar; Pollheimer, Verena; Németh, Stefan; Pühringer, Helene; Stolba, Robert; Halwachs-Baumann, Gabriele; Kriegshäuser, Gernot

    2016-01-01

    Genetic testing is a standard technique for the diagnosis of primary adult-type hypolactasia, also referred to as lactase non-persistence. The aim of this study was to compare the lactase gene (LCT) C/T-13910 polymorphism genotyping results of two commercially available real-time (RT)-PCR assays in patients referred to our outpatient clinic for primary lactose malabsorption testing. Furthermore, concomitant conditions of fructose/sorbitol malabsorption were assessed. Samples obtained from 100 patients were tested in parallel using the LCT T-13910C ToolSet for Light Cycler (Roche, Rotkreuz, Switzerland) and the LCT-13910C>T RealFast Assay (ViennaLab Diagnostics GmbH, Vienna, Austria). Additionally, patients were also screened for the presence of fructose/sorbitol malabsorption by functional hydrogen (H2)/methane (CH4) breath testing (HMBT). Cohen's Kappa (κ) was used to calculate the agreement between the two genotyping methods. The exact Chi-Square test was performed to compare fructose/sorbitol HMBT with LCT genotyping results. Twenty-one (21.0%) patients had a LCT C/C-13910 genotype suggestive of lactase non-persistence, and 79 (79.0%) patients were identified with either a LCT T/C-13910 or T/T-13910 genotype (i.e., lactase persistence). In all genotype groups, concordance between the two RT-PCR assays was 100%. Cohen's κ demonstrated perfect observed agreement (p < 0.001, κ = 1). Fructose and sorbitol malabsorption was observed in 13/100 (13.0%) and 25/100 (25.0%) individuals, respectively. Both RT-PCR assays are robust and reliable LCT genotyping tools in a routine clinical setting. Concomitant fructose and/or sorbitol malabsorption should be considered in individuals with suspected lactase-non-persistence. However, standardization of clinical interpretation of laboratory HMBT results is required.

  5. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    PubMed

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  6. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System

    PubMed Central

    DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu

    2018-01-01

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557

  7. Overcoming Heparin-Associated RT-qPCR Inhibition and Normalization Issues for microRNA Quantification in Patients with Acute Myocardial Infarction.

    PubMed

    Coelho-Lima, Jose; Mohammed, Ashfaq; Cormack, Suzanne; Jones, Samuel; Das, Rajiv; Egred, Mohaned; Panahi, Pedram; Ali, Simi; Spyridopoulos, Ioakim

    2018-06-11

     Cardiac-enriched micro ribonucleic acids (miRNAs) are released into the circulation following ST-elevation myocardial infarction (STEMI). Lack of standardized approaches for reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) data normalization and presence of RT-qPCR inhibitors (e.g. heparin) in patient blood samples have prevented reproducible miRNA quantification in this cohort and subsequent translation of these biomarkers to clinical practice.  Using a RT-qPCR miRNA screening platform, we identified and validated an endogenous circulating miRNA as a normalization control. In addition, we assessed the effects of in vivo and in vitro anticoagulant drugs administration (heparin and bivalirudin) on three RT-qPCR normalization strategies (global miRNA mean, exogenous spike-in control [cel-miR-39] and endogenous miRNA control). Finally, we evaluated the effect of heparin and its in vitro inhibition with heparinase on the quantification of cardiac-enriched miRNAs in STEMI patients.  miR-425-5p was validated as an endogenous miRNA control. Heparin administration in vitro and in vivo inhibited all RT-qPCR normalization strategies. In contrast, bivalirudin had no effects on cel-miR-39 or miR-425-5p quantification. In vitro RNA sample treatment with 0.3 U of heparinase overcame heparin-induced over-estimation of cardiac-enriched miRNA levels and improved their correlation with high-sensitivity troponin T.  miRNA quantification in STEMI patients receiving heparin is jeopardized by its effect on all RT-qPCR normalization approaches. Use of samples from bivalirudin-treated patients or in vitro treatment of heparin-contaminated samples with heparinase are suitable alternatives for miRNA quantification in this cohort. Finally, we reinforce the evidence that cardiac-enriched miRNAs early after myocardial reperfusion reflect the severity of cardiac injury. Schattauer GmbH Stuttgart.

  8. Agreement Rate of Rapid Urease Test, Conventional PCR, and Scorpion Real-Time PCR in Detecting Helicobacter Pylori from Tonsillar Samples of Patients with Chronic Tonsillitis

    PubMed Central

    Najafipour, Reza; Farivar, Taghi Naserpour; Pahlevan, Ali Akbar; Johari, Pouran; Safdarian, Farshid; Asefzadeh, Mina

    2012-01-01

    Background: Helicobacter pylori is capable of inducing systemic inflammatory reactions through immunological processes. There are several methods to identify the presence of H. pylori in clinical samples including rapid urease test (RUT), conventional polymerase chain reaction (PCR), and the Scorpion real-time PCR. Aim: The aim of the present study is to compare the agreement rate of these tests in identifying H. pylori in tonsillar biopsy specimens collected from patients with chronic tonsillitis. Materials and Methods: A total of 103 tonsil biopsy samples from patients with clinical signs of chronic tonsillitis were examined with RUT, PCR, and Scorpion real-time PCR. The degree of agreement between the three tests was later calculated. Results: There was a poor degree of agreement between RUT and PCR and also RUT and Scorpion real-time PCR (Kappa=0.269 and 0.249, respectively). In contrast with RUT, there was a strong degree of agreement between PCR and Scorpion real-time PCR (Kappa=0.970). Conclusion: The presence of a strong agreement between the Scorpion real-time PCR and PCR as well as its technical advantage over the conventional PCR assay, made the Scorpion real-time PCR an appropriate laboratory test to investigate the presence of H. pylori in tonsillar biopsy specimens in patients suffering from chronic tonsillitis. PMID:22754245

  9. Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.

    PubMed

    Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario

    2014-01-01

    A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Detection of Anaplasma marginale and A. phagocytophilum in Bovine Peripheral Blood Samples by Duplex Real-Time Reverse Transcriptase PCR Assay ▿

    PubMed Central

    Reinbold, James B.; Coetzee, Johann F.; Sirigireddy, Kamesh R.; Ganta, Roman R.

    2010-01-01

    Insufficient diagnostic sensitivity and specificity coupled with the potential for cross-reactivity among closely related Anaplasma species has made the accurate determination of infection status problematic. A method for the development of simplex and duplex real-time quantitative reverse transcriptase PCR (qRT-PCR) assays for the detection of A. marginale and A. phagocytophilum 16S rRNA in plasma-free bovine peripheral blood samples is described. The duplex assay was able to detect as few as 100 copies of 16S rRNA of both A. marginale and A. phagocytophilum in the same reaction. The ratio of 16S rRNA to 16S DNA copies for A. marginale was determined to be 117.9:1 (95% confidence interval [95% CI], 100.7:1, 135.2:1). Therefore, the detection limit is the minimum infective unit of one A. marginale bacterium. The duplex assay detected nonequivalent molar ratios as high as 100-fold. Additionally, the duplex assay and a competitive enzyme-linked immunosorbent assay (cELISA) were used to screen 237 samples collected from herds in which anaplasmosis was endemic. When the cELISA was evaluated by the results of the qRT-PCR, its sensitivity and specificity for the detection of A. marginale infection were found to be 65.2% (95% CI, 55.3%, 75.1%) and 97.3% (95% CI, 94.7%, 99.9%), respectively. A. phagocytophilum infection was not detected in the samples analyzed. One- and two-way receiver operator characteristic curves were constructed in order to recommend the optimum negative cutoff value for the cELISA. Percentages of inhibition of 20 and 15.3% were recommended for the one- and two-way curves, respectively. In conclusion, the duplex real-time qRT-PCR assay is a highly sensitive and specific diagnostic tool for the accurate and precise detection of A. marginale and A. phagocytophilum infections in cattle. PMID:20463162

  11. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    PubMed

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    PubMed

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ground transport stress affects bacteria in the rumen of beef cattle: A real-time PCR analysis.

    PubMed

    Deng, Lixin; He, Cong; Zhou, Yanwei; Xu, Lifan; Xiong, Huijun

    2017-05-01

    Transport stress syndrome often appears in beef cattle during ground transportation, leading to changes in their capacity to digest food due to changes in rumen microbiota. The present study aimed to analyze bacteria before and after cattle transport. Eight Xianan beef cattle were transported over 1000 km. Rumen fluid and blood were sampled before and after transport. Real-time PCR was used to quantify rumen bacteria. Cortisol and adrenocorticotrophic hormone (ACTH) were measured. Cortisol and ACTH were increased on day 1 after transportation and decreased by day 3. Cellulolytic bacteria (Fibrobacter succinogenes and Ruminococcus flavefaciens), Ruminococcus amylophilus and Prevotella albensis were increased at 6 h and declined by 15 days after transport. There was a significant reduction in Succinivibrio dextrinosolvens, Prevotella bryantii, Prevotella ruminicola and Anaerovibrio lipolytica after transport. Rumen concentration of acetic acid increased after transport, while rumen pH and concentrations of propionic and butyric acids were decreased. Body weight decreased by 3 days and increased by 15 days after transportation. Using real-time PCR analysis, we detected changes in bacteria in the rumen of beef cattle after transport, which might affect the growth of cattle after transport. © 2016 Japanese Society of Animal Science.

  14. Blending DNA binding dyes to improve detection in real-time PCR.

    PubMed

    Jansson, Linda; Koliana, Marianne; Sidstedt, Maja; Hedman, Johannes

    2017-03-01

    The success of real-time PCR (qPCR) analysis is partly limited by the presence of inhibitory compounds in the nucleic acid samples. For example, humic acid (HA) from soil and aqueous sediment interferes with amplification and also quenches the fluorescence of double-stranded (ds) DNA binding dyes, thus hindering amplicon detection. We aimed to counteract the HA fluorescence quenching effect by blending complementary dsDNA binding dyes, thereby elevating the dye saturation levels and increasing the fluorescence signals. A blend of the four dyes EvaGreen, ResoLight, SYBR Green and SYTO9 gave significantly higher fluorescence intensities in the presence and absence of HA, compared with the dyes applied separately and two-dye blends. We propose blending of dyes as a generally applicable means for elevating qPCR fluorescence signals and thus enabling detection in the presence of quenching substances.

  15. Development and validation of a SYBR Green real-time PCR assay for rapid and quantitative detection of goose interferons and proinflammatory cytokines.

    PubMed

    Zhou, Hao; Chen, Shun; Qi, Yulin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-10-01

    Real time quantitative polymerase chain reaction (RT-qPCR) based on SYBR-Green I binding is a quick, reliable, and easy method for analyzing small amounts of mRNA. Viral pathogens are recognized at the time of infection by pattern recognition receptors; thus, the inflammatory cytokines (IL1β, IL6, and IL18) and antiviral cytokines (IFNα, IFNγ) are secreted by innate immune cells and induced to respond to the pathogens. The objective of this study was to develop an effective and sensitive RT-qPCR assay for the rapid and accurate quantification of goose cytokines: IFNα, IFNγ, IL1β, IL6, and IL18. Subsequently, the established methods were employed to detect the immune response in agonist-stimulated goose spleen cells in vitro. These data indicated that the established RT-qPCR is a reliable method for determining relative gene expression. The results revealed that Imiquimod led to the significant upregulation of goose IFNα (P < 0.01), IFNγ (P < 0.01), IL1β (P < 0.01), IL6 (P < 0.01), and IL18 (P < 0.05). The established methods are important for scientific research and clinical applications, which require rapid and accurate results in a short period of time. The technique can potentially be used in the further research of goose molecular immunology, which will help us understand the interactions between hosts and pathogens. © 2015 Poultry Science Association Inc.

  16. Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages

    PubMed Central

    De Spiegelaere, Ward; Dern-Wieloch, Jutta; Weigel, Roswitha; Schumacher, Valérie; Schorle, Hubert; Nettersheim, Daniel; Bergmann, Martin; Brehm, Ralph; Kliesch, Sabine; Vandekerckhove, Linos; Fink, Cornelia

    2015-01-01

    Background An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. Results 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. Conclusions This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use. PMID:25825906

  17. A new diagnostic real-time PCR method for huanglongbing detection in citrus root tissue

    USDA-ARS?s Scientific Manuscript database

    Citrus fibrous root tissue was evaluated as an alternative source material for Huanglongbing (HLB) diagnosis by real-time PCR using primer-probe set TXCChlb, developed in the present study based on 16S rDNA of “Candidatus Liberibacter asiaticus” (CLas). Real-time PCR data obtained with DNA samples p...

  18. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    PubMed

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  19. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  20. Rapid DNA extraction protocol for detection of alpha-1 antitrypsin deficiency from dried blood spots by real-time PCR.

    PubMed

    Struniawski, R; Szpechcinski, A; Poplawska, B; Skronski, M; Chorostowska-Wynimko, J

    2013-01-01

    The dried blood spot (DBS) specimens have been successfully employed for the large-scale diagnostics of α1-antitrypsin (AAT) deficiency as an easy to collect and transport alternative to plasma/serum. In the present study we propose a fast, efficient, and cost effective protocol of DNA extraction from dried blood spot (DBS) samples that provides sufficient quantity and quality of DNA and effectively eliminates any natural PCR inhibitors, allowing for successful AAT genotyping by real-time PCR and direct sequencing. DNA extracted from 84 DBS samples from chronic obstructive pulmonary disease patients was genotyped for AAT deficiency variants by real-time PCR. The results of DBS AAT genotyping were validated by serum IEF phenotyping and AAT concentration measurement. The proposed protocol allowed successful DNA extraction from all analyzed DBS samples. Both quantity and quality of DNA were sufficient for further real-time PCR and, if necessary, for genetic sequence analysis. A 100% concordance between AAT DBS genotypes and serum phenotypes in positive detection of two major deficiency S- and Z- alleles was achieved. Both assays, DBS AAT genotyping by real-time PCR and serum AAT phenotyping by IEF, positively identified PI*S and PI*Z allele in 8 out of the 84 (9.5%) and 16 out of 84 (19.0%) patients, respectively. In conclusion, the proposed protocol noticeably reduces the costs and the hand-on-time of DBS samples preparation providing genomic DNA of sufficient quantity and quality for further real-time PCR or genetic sequence analysis. Consequently, it is ideally suited for large-scale AAT deficiency screening programs and should be method of choice.

  1. Head movement compensation in real-time magnetoencephalographic recordings.

    PubMed

    Little, Graham; Boe, Shaun; Bardouille, Timothy

    2014-01-01

    Neurofeedback- and brain-computer interface (BCI)-based interventions can be implemented using real-time analysis of magnetoencephalographic (MEG) recordings. Head movement during MEG recordings, however, can lead to inaccurate estimates of brain activity, reducing the efficacy of the intervention. Most real-time applications in MEG have utilized analyses that do not correct for head movement. Effective means of correcting for head movement are needed to optimize the use of MEG in such applications. Here we provide preliminary validation of a novel analysis technique, real-time source estimation (rtSE), that measures head movement and generates corrected current source time course estimates in real-time. rtSE was applied while recording a calibrated phantom to determine phantom position localization accuracy and source amplitude estimation accuracy under stationary and moving conditions. Results were compared to off-line analysis methods to assess validity of the rtSE technique. The rtSE method allowed for accurate estimation of current source activity at the source-level in real-time, and accounted for movement of the source due to changes in phantom position. The rtSE technique requires modifications and specialized analysis of the following MEG work flow steps.•Data acquisition•Head position estimation•Source localization•Real-time source estimation This work explains the technical details and validates each of these steps.

  2. Identification and validation of suitable reference genes for RT-qPCR analysis in mouse testis development.

    PubMed

    Gong, Zu-Kang; Wang, Shuang-Jie; Huang, Yong-Qi; Zhao, Rui-Qiang; Zhu, Qi-Fang; Lin, Wen-Zhen

    2014-12-01

    RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.

  3. Pretreatment to avoid positive RT-PCR results with inactivated viruses.

    PubMed

    Nuanualsuwan, Suphachai; Cliver, Dean O

    2002-07-01

    Enteric viruses that are important causes of human disease must often be detected by reverse transcription-polymerase chain reaction (RT-PCR), a method that commonly yields positive results with samples that contain only inactivated virus. This study was intended to develop a pretreatment for samples, so that inactivated viruses would not be detected by the RT-PCR procedure. Model viruses were human hepatitis A virus, vaccine poliovirus 1 and feline calicivirus as a surrogate for the Norwalk-like viruses. Each virus was inactivated (from an initial titer of approximately 10(3) PFU/ml) by ultraviolet light, hypochlorite or heating at 72 degrees C. Inactivated viruses, that were treated with proteinase K and ribonuclease for 30 min at 37 degrees C before RT-PCR, gave a negative result, which is to say that no amplicon was detected after the reaction was completed. This antecedent to the RT-PCR method may be applicable to other types of viruses, to viruses inactivated in other ways and to other molecular methods of virus detection.

  4. A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus.

    PubMed

    He, Peiyan; Wang, Henghui; Luo, Jianyong; Yan, Yong; Chen, Zhongwen

    2018-05-23

    Foodborne disease caused by Vibrio parahaemolyticus is a serious public health problem in many countries. Molecular typing has a great scientific significance and application value for epidemiological research of V. parahaemolyticus. In this study, a real-time PCR with melting curve analysis was established for molecular typing of V. parahaemolyticus. Eighteen large variably presented gene clusters (LVPCs) of V. parahaemolyticus which have different distributions in the genome of different strains were selected as targets. Primer pairs of 18 LVPCs were distributed into three tubes. To validate this newly developed assay, we tested 53 Vibrio parahaemolyticus strains, which were classified in 13 different types. Furthermore, cluster analysis using NTSYS PC 2.02 software could divide 53 V. parahaemolyticus strains into six clusters at a relative similarity coefficient of 0.85. This method is fast, simple, and conveniently for molecular typing of V. parahaemolyticus.

  5. A real-time PCR diagnostic method for detection of Naegleria fowleri.

    PubMed

    Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita

    2010-09-01

    Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR “Double Check” Strategy▿ †

    PubMed Central

    Hoffmann, B.; Freuling, C. M.; Wakeley, P. R.; Rasmussen, T. B.; Leech, S.; Fooks, A. R.; Beer, M.; Müller, T.

    2010-01-01

    To improve the diagnosis of classical rabies virus with molecular methods, a validated, ready-to-use, real-time reverse transcription-PCR (RT-PCR) assay was developed. In a first step, primers and 6-carboxyfluorescien-labeled TaqMan probes specific for rabies virus were selected from the consensus sequence of the nucleoprotein gene of 203 different rabies virus sequences derived from GenBank. The selected primer-probe combination was highly specific and sensitive. During validation using a sample set of rabies virus strains from the virus archives of the Friedrich-Loeffler-Institut (FLI; Germany), the Veterinary Laboratories Agency (VLA; United Kingdom), and the DTU National Veterinary Institute (Lindholm, Denmark), covering the global diversity of rabies virus lineages, it was shown that both the newly developed assay and a previously described one had some detection failures. This was overcome by a combined assay that detected all samples as positive. In addition, the introduction of labeled positive controls (LPC) increased the diagnostic safety of the single as well as the combined assay. Based on the newly developed, alternative assay for the detection of rabies virus and the application of LPCs, an improved diagnostic sensitivity and reliability can be ascertained for postmortem and intra vitam real-time RT-PCR analyses in rabies reference laboratories. PMID:20739489

  7. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  8. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    PubMed

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  9. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    PubMed

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  10. A novel specific duplex real-time RT-PCR method for absolute quantitation of Grapevine Pinot gris virus in plant material and single mites.

    PubMed

    Morán, Félix; Olmos, Antonio; Lotos, Leonidas; Predajňa, Lukáš; Katis, Nikolaos; Glasa, Miroslav; Maliogka, Varvara; Ruiz-García, Ana B

    2018-01-01

    Grapevine Pinot gris virus (GPGV) is a widely distributed grapevine pathogen that has been associated to the grapevine leaf mottling and deformation disease. With the aim of better understanding the disease epidemiology and providing efficient control strategies a specific and quantitative duplex TaqMan real-time RT-PCR assay has been developed. This method has allowed reliable quantitation of the GPGV titer ranging from 30 up to 3 x 108 transcript copies, with a detection limit of 70 viral copies in plant material. The assay targets a grapevine internal control that reduces the occurrence of false negative results, thus increasing the diagnostic sensitivity of the technique. Viral isolates both associated and non-associated to symptoms from Greece, Slovakia and Spain have been successfully detected. The method has also been applied to the absolute quantitation of GPGV in its putative transmission vector Colomerus vitis. Moreover, the viral titer present in single mites has been determined. In addition, in the current study a new polymorphism in the GPGV genome responsible for a shorter movement protein has been found. A phylogenetic study based on this genomic region has shown a high variability among Spanish isolates and points to a different evolutionary origin of this new polymorphism. The methodology here developed opens new possibilities for basic and epidemiological studies as well as for the establishment of efficient control strategies.

  11. Technique for quantitative RT-PCR analysis directly from single muscle fibers.

    PubMed

    Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M

    2008-07-01

    The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.

  12. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  13. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  14. TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana

    2014-07-01

    Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  16. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    PubMed

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  17. Comparative evaluation of new TaqMan real-time assays for the detection of hepatitis A virus.

    PubMed

    Houde, Alain; Guévremont, Evelyne; Poitras, Elyse; Leblanc, Danielle; Ward, Pierre; Simard, Carole; Trottier, Yvon-Louis

    2007-03-01

    Three novel real-time TaqMan RT-PCR assays targeting the 5'-UTR, the viral protease and the viral polymerase regions of the hepatitis A virus (HAV) were developed, evaluated and compared against a new published 5'-UTR TaqMan assay (JN) and a widely used conventional RT-PCR assay (HAVc). All conventional RT-PCR (HAV, SH-Prot and SH-Poly systems) and TaqMan (SH-Prot, SH-Poly, JN and SH-5U systems) assays evaluated were consistent for the detection of the three different HAV strains (HM-175, HAS-15 and LSH/S) used and reproducible for both RNA duplicates with the exception of two reproducibility discrepancies observed with both 5'-UTR real-time systems (JN and SH-5U). Limits of detection for conventional HAV, SH-Prot and SH-Poly RT-PCR systems were found to be equivalent when tested with serially diluted suspensions of the HM-175 strain. Although the four real-time RT-PCR TaqMan assays evaluated herein produced similar and consistent quantification data down to the level of one genomic equivalent copy with their respectively cloned amplicons, significant and important differences were observed for the detection of HAV genomic RNA. Results showed that the new real-time TaqMan SH-Poly and SH-Prot primer and probe systems were more consistent and sensitive by 5 logs as compared to both 5'-UTR designs (JN and SH-5U) used for the detection of HAV genomic RNA as well as for the detection in cell culture by cytopathic effect. Considering their higher analytical sensitivity, the proposed SH-Poly and SH-Prot amplification systems could therefore represent valuable tools for the detection of HAV in clinical, environmental and food samples.

  18. Evaluation of propidium monoazide real-time PCR for enumeration of probiotic lactobacilli microencapsulated in calcium alginate beads.

    PubMed

    Oketič, K; Matijašić, B Bogovič; Obermajer, T; Radulović, Z; Lević, S; Mirković, N; Nedović, V

    2015-01-01

    The aim of the study was to evaluate real-time PCR coupled with propidium monoazide (PMA) treatment for enumeration of microencapsulated probiotic lactobacilli microencapsulated in calcium alginate beads. Lactobacillus gasseri K7 (CCM 7710) and Lactobacillus delbrueckii subsp. bulgaricus (CCM 7712) were analysed by plate counting and PMA real-time PCR during storage at 4 °C for 90 days. PMA was effective in preventing PCR amplification of the target sequences of DNA released from heat-compromised bacteria. The values obtained by real-time PCR of non-treated samples were in general higher than those obtained by real-time PCR of PMA-treated samples or by plate counting, indicating the presence of sub-lethally injured cells. This study shows that plate count could not be completely replaced by culture independent method PMA real-time PCR for enumeration of probiotics, but may rather complement the well-established plate counting, providing useful information about the ratio of compromised bacteria in the samples.

  19. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  20. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay.

    PubMed

    Iijima, Yoshio; Asako, Nahoko T; Aihara, Masanori; Hayashi, Kozaburo

    2004-07-01

    A rapid laboratory system has been developed and evaluated that can simultaneously identify major diarrhoeagenic bacteria, including Salmonella enterica, Vibrio parahaemolyticus, Campylobacter jejuni and Shiga toxin-producing Escherichia coli, in stool specimens by real-time PCR. Specific identification was achieved by using selective TaqMan probes, detecting two targets in each pathogen. A positive result was scored only when both targets of a pathogen were amplified and the difference between threshold cycles for detection was less than five. Diagnosis of enteric bacterial infections using this highly sensitive method, including DNA extraction and real-time PCR, requires only 3 h. Forty stool specimens related to suspected food poisoning outbreaks were analysed: 16 (40%) of these samples were found to be positive for diarrhoeagenic bacteria using a conventional culture method; 28 (70%) were positive using the real-time PCR assay. Of the 12 PCR-positive but culture-negative cases, 11 patients had consumed pathogen-contaminated or high-risk food. Analysis of faecal samples from 105 outpatients who complained of diarrhoea and/or abdominal pain identified 19 (18%) patients as being positive for diarrhoeagenic bacteria using the culture method. An additional six (6%) patients were found to be positive by PCR analysis.

  1. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    PubMed

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains.

    PubMed

    He, Peiyan; Chen, Zhongwen; Luo, Jianyong; Wang, Henghui; Yan, Yong; Chen, Lixia; Gao, Wenjie

    2014-01-01

    Foodborne disease caused by pathogenic Vibrio parahaemolyticus has become a serious public health problem in many countries. Rapid diagnosis and the identification of pathogenic V. parahaemolyticus are very important in the context of public health. In this study, an EvaGreen-based multiplex real-time PCR assay was established for the detection of pathogenic V. parahaemolyticus. This assay targeted three genetic markers of V. parahaemolyticus (species-specific gene toxR and virulence genes tdh and trh). The assay could unambiguously identify pathogenic V. parahaemolyticus with a minimum detection limit of 1.4 pg genomic DNA per reaction (concentration giving a positive multiplex real-time PCR result in 95% of samples). The specificity of the assay was evaluated using 72 strains of V. parahaemolyticus and other bacteria. A validation of the assay with clinical samples confirmed its sensitivity and specificity. Our data suggest the newly established multiplex real-time PCR assay is practical, cost-effective, specific, sensitive and capable of high-throughput detection of pathogenic V. parahaemolyticus. Copyright © 2014. Published by Elsevier Ltd.

  3. Detection of Yersinia Enterocolitica Species in Pig Tonsils and Raw Pork Meat by the Real-Time Pcr and Culture Methods.

    PubMed

    Stachelska, M A

    2017-09-26

    The aim of the present study was to establish a rapid and accurate real-time PCR method to detect pathogenic Yersinia enterocolitica in pork. Yersinia enterocolitica is considered to be a crucial zoonosis, which can provoke diseases both in humans and animals. The classical culture methods designated to detect Y. enterocolitica species in food matrices are often very time-consuming. The chromosomal locus _tag CH49_3099 gene, that appears in pathogenic Y. enterocolitica strains, was applied as DNA target for the 5' nuclease PCR protocol. The probe was labelled at the 5' end with the fluorescent reporter dye (FAM) and at the 3' end with the quencher dye (TAMRA). The real-time PCR cycling parameters included 41 cycles. A Ct value which reached a value higher than 40 constituted a negative result. The developed for the needs of this study qualitative real-time PCR method appeared to give very specific and reliable results. The detection rate of locus _tag CH49_3099 - positive Y. enterocolitica in 150 pig tonsils was 85 % and 32 % with PCR and culture methods, respectively. Both the Real-time PCR results and culture method results were obtained from material that was enriched during overnight incubation. The subject of the study were also raw pork meat samples. Among 80 samples examined, 7 ones were positive when real-time PCR was applied, and 6 ones were positive when classical culture method was applied. The application of molecular techniques based on the analysis of DNA sequences such as the Real-time PCR enables to detect this pathogenic bacteria very rapidly and with higher specificity, sensitivity and reliability in comparison to classical culture methods.

  4. Quantification of Campylobacter spp. in pig feces by direct real-time PCR with an internal control of extraction and amplification.

    PubMed

    Leblanc-Maridor, Mily; Garénaux, Amélie; Beaudeau, François; Chidaine, Bérangère; Seegers, Henri; Denis, Martine; Belloc, Catherine

    2011-04-01

    The rapid and direct quantification of Campylobacter spp. in complex substrates like feces or environmental samples is crucial to facilitate epidemiological studies on Campylobacter in pig production systems. We developed a real-time PCR assay for detecting and quantifying Campylobacter spp. directly in pig feces with the use of an internal control. Campylobacter spp. and Yersinia ruckeri primers-probes sets were designed and checked for specificity with diverse Campylobacter, related organisms, and other bacterial pathogens before being used in field samples. The quantification of Campylobacter spp. by the real-time PCR then was realized on 531 fecal samples obtained from experimentally and naturally infected pigs; the numeration of Campylobacter on Karmali plate was done in parallel. Yersinia ruckeri, used as bacterial internal control, was added to the samples before DNA extraction to control DNA-extraction and PCR-amplification. The sensitivity of the PCR assay was 10 genome copies. The established Campylobacter real-time PCR assay showed a 7-log-wide linear dynamic range of quantification (R²=0.99) with a detection limit of 200 Colony Forming Units of Campylobacter per gram of feces. A high correlation was found between the results obtained by real-time PCR and those by culture at both qualitative and quantitative levels. Moreover, DNA extraction followed by real-time PCR reduced the time needed for analysis to a few hours (within a working day). In conclusion, the real-time PCR developed in this study provides new tools for further epidemiological surveys to investigate the carriage and excretion of Campylobacter by pigs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  6. Profiling of human epigenetic regulators using a semi-automated real-time qPCR platform validated by next generation sequencing

    PubMed Central

    Dudakovic, Amel; Gluscevic, Martina; Paradise, Christopher R.; Dudakovic, Halil; Khani, Farzaneh; Thaler, Roman; Ahmed, Farah S.; Li, Xiaodong; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Deyle, David R.; Westendorf, Jennifer J.; van Wijnen, Andre J.

    2017-01-01

    Epigenetic mechanisms control phenotypic commitment of mesenchymal stromal/stem cells (MSCs) into osteogenic, chondrogenic or adipogenic lineages. To investigate enzymes and chromatin binding proteins controlling the epigenome, we developed a hybrid expression screening strategy that combines semi-automatic real-time qPCR (RT-qPCR), next generation RNA sequencing (RNA-seq), and a novel data management application (FileMerge). This strategy was used to interrogate expression of a large cohort (n>300) of human epigenetic regulators (EpiRegs) that generate, interpret and/or edit the histone code. We find that EpiRegs with similar enzymatic functions are variably expressed and specific isoforms dominate over others in human MSCs. This principle is exemplified by analysis of key histone acetyl transferases (HATs) and deacetylases (HDACs), H3 lysine methyl transferases (e.g., EHMTs) and demethylases (KDMs), as well as bromodomain (BRDs) and chromobox (CBX) proteins. Our results show gender-specific expression of H3 lysine 9 [H3K9] demethylases (e.g., KDM5D and UTY) as expected and upregulation of distinct EpiRegs (n>30) during osteogenic differentiation of MSCs (e.g., HDAC5 and HDAC7). The functional significance of HDACs in osteogenic lineage commitment of MSCs was functionally validated using panobinostat (LBH-589). This pan-deacetylase inhibitor suppresses osteoblastic differentiation as evidenced by reductions in bone-specific mRNA markers (e.g., ALPL), alkaline phosphatase activity and calcium deposition (i.e., Alizarin Red staining). Thus, our RT-qPCR platform identifies candidate EpiRegs by expression screening, predicts biological outcomes of their corresponding inhibitors, and enables manipulation of the human epigenome using molecular or pharmacological approaches to control stem cell differentiation. PMID:28132772

  7. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  8. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    PubMed

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in

  9. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    PubMed Central

    2010-01-01

    Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene

  10. Sensitive quantification of aflatoxin B1 in animal feeds, corn feed grain, and yellow corn meal using immunomagnetic bead-based recovery and real-time immunoquantitative-PCR.

    PubMed

    Babu, Dinesh; Muriana, Peter M

    2014-12-02

    Aflatoxins are considered unavoidable natural mycotoxins encountered in foods, animal feeds, and feed grains. In this study, we demonstrate the application of our recently developed real-time immunoquantitative PCR (RT iq-PCR) assay for sensitive detection and quantification of aflatoxins in poultry feed, two types of dairy feed (1 and 2), horse feed, whole kernel corn feed grains, and retail yellow ground corn meal. Upon testing methanol/water (60:40) extractions of the above samples using competitive direct enzyme linked immunosorbent assay, the aflatoxin content was found to be <20 μg/kg. The RT iq-PCR assay exhibited high antigen hook effect in samples containing aflatoxin levels higher than the quantification limits (0.1-10 μg/kg), addressed by comparing the quantification results of undiluted and diluted extracts. In testing the reliability of the immuno-PCR assay, samples were spiked with 200 μg/kg of aflatoxin B1, but the recovery of spiked aflatoxin was found to be poor. Considering the significance of determining trace levels of aflatoxins and their serious implications for animal and human health, the RT iq-PCR method described in this study can be useful for quantifying low natural aflatoxin levels in complex matrices of food or animal feed samples without the requirement of extra sample cleanup.

  11. Soft fruit traceability in food matrices using real-time PCR.

    PubMed

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-02-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation.

  12. Soft Fruit Traceability in Food Matrices using Real-Time PCR

    PubMed Central

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-01-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation. PMID:22253987

  13. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus.

    PubMed

    Ambagala, A; Fisher, M; Goolia, M; Nfon, C; Furukawa-Stoffer, T; Ortega Polo, R; Lung, O

    2017-10-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot-and-mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field-deployable assay would support local decision-making during an FMDV outbreak. Here we report validation of a novel reverse transcription-insulated isothermal PCR (RT-iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT ™ analyser that automatically analyses data and displays '+' or '-' results. The FMDV RT-iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro-transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross-reactivity with viruses causing similar clinical diseases in cloven-hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory-based real-time RT-PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco ™ mini transportable magnetic bead-based, automated extraction system was used. This assay provides a potentially useful field-deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD-free countries or for routine diagnostics in endemic countries with less structured laboratory systems. © 2016 Her Majesty the Queen in Right of Canada.

  14. Distinguishing body lice from head lice by multiplex real-time PCR analysis of the Phum_PHUM540560 gene.

    PubMed

    Drali, Rezak; Boutellis, Amina; Raoult, Didier; Rolain, Jean Marc; Brouqui, Philippe

    2013-01-01

    Body louse or head louse? Once removed from their environment, body and head lice are indistinguishable. Neither the morphological criteria used since the mid-18th century nor the various genetic studies conducted since the advent of molecular biology tools have allowed body lice and head lice to be differentiated. In this work, using a portion of the Phum_PHUM540560 gene from the body louse, we aimed to develop a multiplex real-time polymerase chain reaction (PCR) assay to differentiate between body and head lice in a single reaction. A total of 142 human lice were collected from mono-infested hosts from 13 countries on five continents. We first identified the louse clade using a cytochrome b (CYTB) PCR sequence alignment. We then aligned a fragment of the Phum_PHUM540560 gene amplified from head and body lice to design-specific TaqMan(©) FAM- and VIC-labeled probes. All the analyzed lice were Clade A lice. A total of 22 polymorphisms between the body and head lice were characterized. The multiplex real-time PCR analysis enabled the body and head lice to be distinguished in two hours. This method is simple, with 100% specificity and sensitivity. We confirmed that the Phum_PHUM540560 gene is a useful genetic marker for the study of lice.

  15. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses.

    PubMed

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C

    2016-06-03

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established.

  16. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    PubMed Central

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  17. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    PubMed

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  18. Using real-time PCR to specifically detect Burkholderia mallei.

    PubMed

    Ulrich, Melanie P; Norwood, David A; Christensen, Deanna R; Ulrich, Ricky L

    2006-05-01

    Burkholderia mallei is the causative agent of human and animal glanders and is a category B biothreat agent. Rapid diagnosis of B. mallei and immediate prophylactic treatment are essential for patient survival. The majority of current bacteriological and immunological techniques for identifying B. mallei from clinical samples are time-consuming, and cross-reactivity with closely related organisms (i.e. Burkholderia pseudomallei) is a problem. In this investigation, two B. mallei-specific real-time PCR assays targeting the B. mallei bimA(ma) gene (Burkholderia intracellular motility A; BMAA0749), which encodes a protein involved in actin polymerization, were developed. The PCR primer and probe sets were tested for specificity against a collection of B. mallei and B. pseudomallei isolates obtained from numerous clinical and environmental (B. pseudomallei only) sources. The assays were also tested for cross-reactivity using template DNA from 14 closely related Burkholderia species. The relative limit of detection for the assays was found to be 1 pg or 424 genome equivalents. The authors also analysed the applicability of assays to detect B. mallei within infected BALB/c mouse tissues. Beginning 1 h post aerosol exposure, B. mallei was successfully identified within the lungs, and starting at 24 h post exposure, in the spleen and liver. Surprisingly, B. mallei was not detected in the blood of acutely infected animals. This investigation provides two real-time PCR assays for the rapid and specific identification of B. mallei.

  19. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forwardmore » or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  20. Detection of infectious bronchitis virus with the use of real-time quantitative reverse transcriptase-PCR and correlation with virus detection in embryonated eggs.

    PubMed

    Roh, Ha-Jung; Hilt, Deborah A; Jackwood, Mark W

    2014-09-01

    Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays have been used to detect the presence of challenge virus when the efficacy of infectious bronchitis virus (IBV) vaccine against field viruses is being experimentally evaluated. However, federal guidelines for licensing IBV vaccines indicate that challenge-virus detection following vaccination is to be conducted in embryonated eggs. In this study, we examined qRT-PCR data with the use of universal and type-specific primers and probe sets for IBV detection and compared those data with challenge-virus detection in embryonated eggs to determine if the two methods of evaluating vaccine efficacy are comparable. In addition, we tested the qRT-PCR assays on thermocyclers from two different manufacturers. We found the universal IBV primers and probe set to be comparable to challenge-virus detection in embryonated eggs. However, for some IBV types (Mass41 and Conn on the SmartCycler II and Ark, Mass41, Conn, and GA98 on the ABI 7500) the qRT-PCR assay was more sensitive than virus detection in embryonated eggs. This may simply be due to the universal IBV qRT-PCR assay being more sensitive than virus detection in eggs or to the assay detecting nucleic acid from nonviable virus. This finding is important and needs to be considered when evaluating challenge-virus detection for vaccination and challenge studies, because qRT-PCR could potentially identify positive birds that would otherwise be negative by virus detection in embryonated eggs; thus it could lead to a more stringent measure of vaccine efficacy. We also found that the IBV type-specific primers and probe sets designed in this study were in general less sensitive than the universal IBV primers and probe set. Only the Ark-DPI-spedcific assay on the SmartCycler II and the Ark-DPI-, Mass41-, and DE072/GA98- (for detection of GA98 virus only) specific assays on the ABI 7500 were comparable in sensitivity to virus detection in eggs. We