Sample records for reca gene products

  1. Identification of the recA (tif) gene product of Escherichia coli

    PubMed Central

    Gudas, Lorraine J.; Mount, David W.

    1977-01-01

    Treatments that inhibit DNA synthesis in recA+lexA+Escherichia coli stimulate synthesis of a 40,000 molecular weight protein species (protein X). The protein X molecules produced by wild-type and mutant E. coli strains have been compared by two-dimensional gel electrophoresis. One recA mutant (DM1415 spr recA1) produced a protein X with a more acidic isoelectric point than protein X from the wild type, demonstrating that protein X is probably the product of the recA gene. Additional mutants carrying the recA-linked tif-1 mutation yielded a protein X that was more basic than the wild-type protein, indicating that the tif-1 mutation also alters the recA protein. Protein X molecules from the above mutants and wild-type E. coli have been shown to yield similar partial products upon limited proteolysis in sodium dodecyl sulfate, indicating they are the same protein species. These and additional studies suggest that (i) the tif-1 mutation alters a site on the recA protein that is sensitive to DNA synthesis inhibition, (ii) synthesis of recA protein is self-regulated, and (iii) synthesis of recA protein is also regulated by the lexA product with lexA-suppressor mutations such as spr resulting in constitutive synthesis of recA protein. Images PMID:341152

  2. Nucleotide sequence and further characterization of the Synechococcus sp. strain PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the Escherichia coli recA gene.

    PubMed Central

    Murphy, R C; Gasparich, G E; Bryant, D A; Porter, R D

    1990-01-01

    The nucleotide sequence and transcript initiation site of the Synechococcus sp. strain PCC 7002 recA gene have been determined. The deduced amino acid sequence of the RecA protein of this cyanobacterium is 56% identical and 73% similar to the Escherichia coli RecA protein. Northern (RNA) blot analysis indicates that the Synechococcus strain PCC 7002 recA gene is transcribed as a monocistronic transcript 1,200 bases in length. The 5' endpoint of the recA mRNA was mapped by primer extension by using synthetic oligonucleotides of 17 and 27 nucleotides as primers. The nucleotide sequence 5' to the mapped endpoint contained sequence motifs bearing a striking resemblance to the heat shock (sigma 32-specific) promoters of E. coli but did not contain sequences similar to the E. coli SOS operator recognized by the LexA repressor. An insertion mutation introduced into the recA locus of Synechococcus strain PCC 7002 via homologous recombination resulted in the formation of diploids carrying both mutant and wild-type recA alleles. A variety of growth regimens and transformation procedures failed to produce a recA Synechococcus strain PCC 7002 mutant. However, introduction into these diploid cells of the E. coli recA gene in trans on a biphasic shuttle vector resulted in segregation of the cyanobacterial recA alleles, indicating that the E. coli recA gene was able to provide a function required for growth of recA Synechococcus strain PCC 7002 cells. This interpretation is supported by the observation that the E. coli recA gene is maintained in these cells when antibiotic selection for the shuttle vector is removed. Images FIG. 3 FIG. 4 FIG. 6 PMID:2105307

  3. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  4. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment.

    PubMed

    Waleron, Małgorzata; Waleron, Krzysztof; Podhajska, Anna J; Lojkowska, Ewa

    2002-02-01

    Genotypic characterization, based on the analysis of restriction fragment length polymorphism of the recA gene fragment PCR product (recA PCR-RFLP), was performed on members of the former Erwinia genus. PCR primers deduced from published recA gene sequences of Erwinia carotovora allowed the amplification of an approximately 730 bp DNA fragment from each of the 19 Erwinia species tested. Amplified recA fragments were compared using RFLP analysis with four endonucleases (AluI, HinfI, TasI and Tru1I), allowing the detection of characteristic patterns of RFLP products for most of the Erwinia species. Between one and three specific RFLP groups were identified among most of the species tested (Erwinia amylovora, Erwinia ananas, Erwinia cacticida, Erwinia cypripedii, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia persicina, Erwinia psidii, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera and Erwinia carotovora subsp. wasabiae). However, in two cases, Erwinia chrysanthemi and Erwinia carotovora subsp. carotovora, 15 and 18 specific RFLP groups were detected, respectively. The variability of genetic patterns within these bacteria could be explained in terms of their geographic origin and/or wide host-range. The results indicated that PCR-RFLP analysis of the recA gene fragment is a useful tool for identification of species and subspecies belonging to the former Erwinia genus, as well as for differentiation of strains within E. carotovora subsp. carotovora and E. chrysanthemi.

  5. Use of RecA protein to enrich for homologous genes in a genomic library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taidi-Laskowski, B.; Grumet, F.C.; Tyan, D.

    1988-08-25

    RecA protein-coated probe has been utilized to enrich genomic digests for desired genes in order to facilitate cloning from genomic libraries. Using a previously cloned HLA-B27 gene as the recA-coated enrichment probe, the authors obtained a mean 108x increase in the ratio of specific to nonspecific plaques in lambda libraries screened for B27 variant alleles of estimated 99% homology to the probe. Class I genes of lesser homology were less enriched. Loss of genomic DNA during the enrichment procedure can, however, restrict application of this technique whenever starting genomic DNA is very limited. Nevertheless, the impressive reduction in cloning effortmore » and material makes recA enrichment a useful new tool for cloning homologous genes from genomic DNA.« less

  6. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    PubMed

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  7. Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole

    PubMed Central

    Steffens, Laura S.; Nicholson, Samantha; Paul, Lynthia V.; Nord, Carl Erik; Patrick, Sheila; Abratt, Valerie R.

    2010-01-01

    Bacteroides fragilis is a human gut commensal and an opportunistic pathogen causing anaerobic abscesses and bacteraemias which are treated with metronidazole (Mtz), a DNA damaging agent. This study examined the role of the DNA repair protein, RecA, in maintaining endogenous DNA stability and its contribution to resistance to Mtz and other DNA damaging agents. RT-PCR of B. fragilis genomic DNA showed that the recA gene was co-transcribed as an operon together with two upstream genes, putatively involved in repairing oxygen damage. A B. fragilis recA mutant was generated using targeted gene inactivation. Fluorescence microscopy using DAPI staining revealed increased numbers of mutant cells with reduced intact double-stranded DNA. Alkaline gel electrophoresis of the recA mutant DNA showed increased amounts of strand breaks under normal growth conditions, and the recA mutant also showed less spontaneous mutagenesis relative to the wild type strain. The recA mutant was sensitive to Mtz, ultraviolet light and hydrogen peroxide. A B. fragilis strain overexpressing the RecA protein exhibited increased resistance to Mtz compared to the wild type. This is the first study to show that overexpression of a DNA repair protein in B. fragilis increases Mtz resistance. This represents a novel drug resistance mechanism in this bacterium. PMID:20435137

  8. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage.

    PubMed

    Rapa, Rita A; Islam, Atiqul; Monahan, Leigh G; Mutreja, Ankur; Thomson, Nicholas; Charles, Ian G; Stokes, Harold W; Labbate, Maurizio

    2015-04-01

    Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.

    PubMed Central

    McEntee, K; Weinstock, G M

    1981-01-01

    The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains. Images PMID:7031642

  10. A homolog of Escherichia coli RecA in mitochondria of the cellular slime mold Dictyostelium discoideum.

    PubMed

    Hasegawa, Yasuna; Wakabayashi, Masayuki; Nakamura, Shogo; Kodaira, Ken-ichi; Shinohara, Hiroaki; Yasukawa, Hiro

    2004-05-04

    The cellular slime mold Dictyostelium discoideum expresses a gene encoding a 452-amino-acid polypeptide that is 47% identical to Escherichia coli RecA. A recA-deficient E. coli, JE6651, was transformed by pYSN1, which was designed to express the truncated form of the D. discoideum gene, and used in suppression assays. The viability of the transformant, JE6651(pYSN1), increased following UV irradiation or mitomycin C treatment. Phage lambda (red(-) gam(-)), which required RecA activity for DNA packaging, formed plaques on a lawn of JE6651(pYSN1). These results indicate that the gene product has a DNA recombination activity. Fluorescence of D. discoideum protein fused with GFP was detected in mitochondria. The gene disruption mutant was hypersensitive to UV-light (254nm), mitomycin C and H(2)O(2), indicating that D. discoideum recA is important for survival following exposure to DNA damaging agents.

  11. Mycobacterium leprae RecA is structurally analogous but functionally distinct from Mycobacterium tuberculosis RecA protein.

    PubMed

    Patil, K Neelakanteshwar; Singh, Pawan; Harsha, Sri; Muniyappa, K

    2011-12-01

    Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination

    PubMed Central

    Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L.; Wood, Elizabeth A.; Sandler, Steven J.; Cox, Michael M.

    2015-01-01

    The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. PMID:26047498

  13. Genotyping of Chromobacterium violaceum isolates by recA PCR-RFLP analysis.

    PubMed

    Scholz, Holger Christian; Witte, Angela; Tomaso, Herbert; Al Dahouk, Sascha; Neubauer, Heinrich

    2005-03-15

    Intraspecies variation of Chromobacterium violaceum was examined by comparative sequence - and by restriction fragment length polymorphism analysis of the recombinase A gene (recA-PCR-RFLP). Primers deduced from the known recA gene sequence of the type strain C. violaceum ATCC 12472(T) allowed the specific amplification of a 1040bp recA fragment from each of the 13 C. violaceum strains investigated, whereas other closely related organisms tested negative. HindII-PstI-recA RFLP analysis generated from 13 representative C. violaceum strains enabled us to identify at least three different genospecies. In conclusion, analysis of the recA gene provides a rapid and robust nucleotide sequence-based approach to specifically identify and classify C. violaceum on genospecies level.

  14. The recA gene from the thermophile Thermus aquaticus YT-1: cloning, expression, and characterization.

    PubMed Central

    Angov, E; Camerini-Otero, R D

    1994-01-01

    We have cloned, expressed, and purified the RecA analog from the thermophilic eubacterium Thermus aquaticus YT-1. Analysis of the deduced amino acid sequence indicates that the T. aquaticus RecA is structurally similar to the Escherichia coli RecA and suggests that RecA-like function has been conserved in thermophilic organisms. Preliminary biochemical analysis indicates that the protein has an ATP-dependent single-stranded DNA binding activity and can pair and carry out strand exchange to form a heteroduplex DNA under reaction conditions previously described for E. coli RecA, but at 55 to 65 degrees C. Further characterization of a thermophilically derived RecA protein should yield important information concerning DNA-protein interactions at high temperatures. In addition, a thermostable RecA protein may have some general applicability in stabilizing DNA-protein interactions in reactions which occur at high temperatures by increasing the specificity (stringency) of annealing reactions. Images PMID:8113181

  15. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.

    PubMed

    Groom, Joseph; Chung, Daehwan; Kim, Sun-Ki; Guss, Adam; Westpheling, Janet

    2018-05-28

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (≥ 60 °C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a result also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ∆recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.

  16. Deletion of the Clostridium thermocellum recA Gene Reveals that it is Required for Thermophilic Plasmid Replication but not Plasmid Integration at Homologous DNA Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Daehwan; Groom, Joseph; Kim, Sun-Ki

    A limitation to the engineering of cellulolytic thermophiles is the availability of functional, thermostable (>/= 60 degrees C) replicating plasmid vectors for rapid expression and testing of genes that provide improved or novel fuel molecule production pathways. A series of plasmid vectors for genetic manipulation of the cellulolytic thermophile Caldicellulosiruptor bescii has recently been extended to Clostridium thermocellum, another cellulolytic thermophile that very efficiently solubilizes plant biomass and produces ethanol. While the C. bescii pBAS2 replicon on these plasmids is thermostable, the use of homologous promoters, signal sequences and genes led to undesired integration into the bacterial chromosome, a resultmore » also observed with less thermostable replicating vectors. In an attempt to overcome undesired plasmid integration in C. thermocellum, a deletion of recA was constructed. As expected, C. thermocellum ..delta..recA showed impaired growth in chemically defined medium and an increased susceptibility to UV damage. Interestingly, we also found that recA is required for replication of the C. bescii thermophilic plasmid pBAS2 in C. thermocellum, but it is not required for replication of plasmid pNW33N. In addition, the C. thermocellum recA mutant retained the ability to integrate homologous DNA into the C. thermocellum chromosome. These data indicate that recA can be required for replication of certain plasmids, and that a recA-independent mechanism exists for the integration of homologous DNA into the C. thermocellum chromosome. Understanding thermophilic plasmid replication is not only important for engineering of these cellulolytic thermophiles, but also for developing genetic systems in similar new potentially useful non-model organisms.« less

  17. RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance.

    PubMed

    Alam, Md Kausar; Alhhazmi, Areej; DeCoteau, John F; Luo, Yu; Geyer, C Ronald

    2016-03-17

    Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, β-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modulating Cellular Recombination Potential through Alterations in RecA Structure and Regulation

    PubMed Central

    Bakhlanova, Irina V.; Dudkina, Alexandra V.; Baitin, Dima M.; Knight, Kendall L.; Cox, Michael M.; Lanzov, Vladislav A.

    2010-01-01

    The wild type E. coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to 6 fold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to 4 fold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50 fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of Escherichia coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function – filament formation and the inherent DNA pairing activity of the formed filaments. PMID:21143322

  19. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae.

    PubMed

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2003-02-01

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable sigma70-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response.

  20. Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12

    PubMed Central

    Huisman, Olivier; D'Ari, Richard; George, Jacqueline

    1980-01-01

    In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the “SOS response” at 40°C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42°C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42°C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (≤10−8) were isolated among thermoresistant nonfilamenting revertants of a tif-1 tsl-1 strain, (ii) in a tsl-1 zab-53 strain, only the low basal level of recA protein was synthesized at 42°C, yet cell division was inhibited, and (iii) in a tsl-1 recA99 (amber) strain, no recA protein could be detected at 42°C, yet cell division was inhibited. Among suppressors of tsl-tif-induced lethality are mutations at a locus which we call infB, located in the 66- to 83-min region. The infB1 mutation confers a highly pleiotropic phenotype, which is suggestive of a regulatory defect; it suppressed tsl-tif-induced filamentation but not recA protein synthesis, it did not suppress ultraviolet-induced filamentation (in a lon derivative), and it reduced but did not abolish tif-mediated induction of λ prophage and bacterial mutagenesis. The dissociation of tsl-tif-induced septation inhibition and recA protein synthesis in the tif-1 tsl-1 infB1 strain suggests that the control of SOS filamentation may not be strictly identical to the control of recA protein synthesis. Images PMID:6445897

  1. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae.

    PubMed

    Galvão, C W; Souza, E M; Etto, R M; Pedrosa, F O; Chubatsu, L S; Yates, M G; Schumacher, J; Buck, M; Steffens, M B R

    2012-12-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX Hs) can interact with the H. seropedicaeRecA protein (RecA Hs) and that RecA Hs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX Hs inhibited 90% of the RecA Hs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA Hs. RecA Hs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX Hs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX Hs protein negatively modulates the RecA Hs activities by protein-protein interactions and also by DNA-protein interactions.

  2. Biochemical characterization of RecA variants that contribute to extreme resistance to ionizing radiation

    PubMed Central

    Piechura, Joseph R.; Tseng, Tzu-Ling; Hsu, Hsin-Fang; Byrne, Rose T.; Windgassen, Tricia A.; Chitteni-Pattu, Sindhu; Battista, John R.; Li, Hung-Wen; Cox, Michael M.

    2015-01-01

    Among strains of Escherichia coli that have evolved to survive extreme exposure to ionizing radiation, mutations in the recA gene are prominent and contribute substantially to the acquired phenotype. Changes at amino acid residue 276, D276A and D276N, occur repeatedly and in separate evolved populations. RecA D276A and RecA D276N exhibit unique adaptations to an environment that can require the repair of hundreds of double strand breaks. These two RecA protein variants (a) exhibit a faster rate of filament nucleation on DNA, as well as a slower extension under at least some conditions, leading potentially to a distribution of the protein among a higher number of shorter filaments, (b) promote DNA strand exchange more efficiently in the context of a shorter filament, and (c) are markedly less inhibited by ADP. These adaptations potentially allow RecA protein to address larger numbers of double strand DNA breaks in an environment where ADP concentrations are higher due to a compromised cellular metabolism. PMID:25559557

  3. Thiols, recA induction and radiosensitivity in Escherichia coli.

    PubMed

    Naslund, M; Anderstam, B; Granath, F; Ehrenberg, L

    1996-01-01

    Induction by gamma-radiation, UV radiation or hydroxyurea of RecA gene product synthesis in Escherichia coli, monitored as beta-D-galactosidase in recA-lacZ fusion strains, was shown to be inhibited if 2-mercaptoethylamine (MEA) was added before treatment with the inducing agents. If cysteine (Cys) at low concentrations was added at the same time as MEA it counteracted the action of MEA. The effect of MEA may be described as a competitive inhibition of an inducing or conducting effect of Cys. In E. coli GE499 (uvrA+), complete inhibition by 30-mmol dm-3 MEA of recA induction was associated with about five times higher radio-resistence. Both of these effects of MEA were completely reversed by 0.3-mmol dm-3 Cys. As shown in parallel experiments with E. coli GE500 (uvrA-), these effects of MEA and Cys were shown to be independent of excision-repair proficiency. Treatment of bacteria with MEA and/or Cys was shown not to lead to increased intracellular concentrations of these thiols. Instead, treatment with them appeared to provoke conspicuous increases in glutathione levels, which are, however, probably not directly involved in the studied action of MEA and Cys.

  4. The Walker A motif mutation recA4159 abolishes the SOS response and recombination in a recA730 mutant of Escherichia coli.

    PubMed

    Šimatović, Ana; Mitrikeski, Petar T; Vlašić, Ignacija; Sopta, Mary; Brčić-Kostić, Krunoslav

    2016-01-01

    In bacteria, the RecA protein forms recombinogenic filaments required for the SOS response and DNA recombination. In order to form a recombinogenic filament, wild type RecA needs to bind ATP and to interact with mediator proteins. The RecA730 protein is a mutant version of RecA with superior catalytic abilities, allowing filament formation without the help of mediator proteins. The mechanism of RecA730 filament formation is not well understood, and the question remains as to whether the RecA730 protein requires ATP binding in order to become competent for filament formation. We examined two mutants, recA730,4159 (presumed to be defective for ATP binding) and recA730,2201 (defective for ATP hydrolysis), and show that they have different properties with respect to SOS induction, conjugational recombination and double-strand break repair. We show that ATP binding is essential for all RecA730 functions, while ATP hydrolysis is required only for double-strand break repair. Our results emphasize the similarity of the SOS response and conjugational recombination, neither of which requires ATP hydrolysis by RecA730. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. recA and catalase in H sub 2 O sub 2 -mediated toxicity in Neisseria gonorrhoeae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett, D.J.; Charniga, L.; Cohen, M.S.

    1990-12-01

    Neisseria gonorrhoeae cells defective in the biosynthesis of the recA gene product are no more sensitive to hydrogen peroxide than wild-type cells. Although gonococci possess nearly 100-fold-greater catalase levels than Escherichia coli, they are more susceptible to hydrogen peroxide than this organism. The natural niche of gonococci undoubtedly results in exposure to oxidant stress; however, they do not demonstrate particularly efficient antioxidant defense systems.

  6. Overexpression of Salmonella enterica serovar Typhi recA gene confers fluoroquinolone resistance in Escherichia coli DH5α.

    PubMed

    Yassien, M A M; Elfaky, M A

    2015-11-01

    A spontaneous fluoroquinolone-resistant mutant (STM1) was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi) clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A) conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α.

  7. Nucleotide sequence analysis of the recA gene and discrimination of the three isolates of urease-positive thermophilic Campylobacter (UPTC) isolated from seagulls (Larus spp.) in Northern Ireland.

    PubMed

    Matsuda, M; Tai, K; Moore, J E; Millar, B C; Murayama, O

    2004-01-01

    Nucleotide sequencing after TA cloning of the amplicon of the almost-full length recA gene from three strains of UPTC (A1, A2, and A3) isolated from seagulls in Northern Ireland, the phenotypical and genotypical characteristics of which have been demonstrated to be indistinguishable, clarified nucleotide differences at three nucleotide positions among the three strains. In conclusion, the nucleotide sequences of the recA gene were found to discriminate among the three strains of UPTC, A1, A2, and A3, which are indistinguishable phenotypically and genotypically. Thus, the present study strongly suggests that nucleotide sequence data of the amplicon of a suitable gene or region could aid in discriminating among isolates of the UPTC group, which are indistinguishable phenotypically and genotypically. Copyright 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  8. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament.

    PubMed

    Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C; Iulek, Jorge; Etto, Rafael M; Steffens, Maria B R; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L; Cox, Michael M

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  9. Conservation of an ATP-binding domain among recA proteins from Proteus vulgaris, erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K.L.; Hess, R.M.; McEntee, K.

    1988-06-01

    The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N/sub 3/ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the (..cap alpha..-/sup 32/P)8N/sub 3/ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in eachmore » of the digests and these peptides eluted identically with the tryptic peptide T/sub 31/ of the E. coli K-12 RecA protein, which was the unique site of 8N/sub 3/ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10/sup 7/ years.« less

  10. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    PubMed Central

    Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  11. A RecA Protein Surface Required for Activation of DNA Polymerase V

    PubMed Central

    Gruber, Angela J.; Erdem, Aysen L.; Sabat, Grzegorz; Karata, Kiyonobu; Jaszczur, Malgorzata M.; Vo, Dan D.; Olsen, Tayla M.; Woodgate, Roger; Goodman, Myron F.; Cox, Michael M.

    2015-01-01

    DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis. PMID:25811184

  12. Evidence that the recA441 (tif-1) mutant of Escherichia coli K-12 contains a thermosensitive intragenic suppressor of RecA constitutive protease activity.

    PubMed

    Wang, W B; Tessman, E S

    1985-07-01

    The recA441 mutant of Escherichia coli, which has been thought to have thermoinducible constitutive RecA protease activity, is known to have two mutations within recA. We show here that the mutation that alters codon 38 actually confers temperature-independent constitutive protease activity; the second mutation in recA441, which is at codon 298, appears to be acting as a temperature-sensitive suppressor of the protease activity.

  13. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leite, Wellington C.; Galvão, Carolina W.; Saab, Sérgio C.

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminalmore » polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. In conclusion, our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.« less

  14. Evidence that the recA441 (tif-1) mutant of Escherichia coli K-12 contains a thermosensitive intragenic suppressor of RecA constitutive protease activity.

    PubMed Central

    Wang, W B; Tessman, E S

    1985-01-01

    The recA441 mutant of Escherichia coli, which has been thought to have thermoinducible constitutive RecA protease activity, is known to have two mutations within recA. We show here that the mutation that alters codon 38 actually confers temperature-independent constitutive protease activity; the second mutation in recA441, which is at codon 298, appears to be acting as a temperature-sensitive suppressor of the protease activity. Images PMID:3891740

  15. A homozygous recA mutant of Synechocystis PCC6803: construction strategy and characteristics eliciting a novel RecA independent UVC resistance in dark.

    PubMed

    Minda, Renu; Ramchandani, Jyoti; Joshi, Vasudha P; Bhattacharjee, Swapan Kumar

    2005-12-01

    We report here the construction of a homozygous recA460::cam insertion mutant of Synechocystis sp. PCC 6803 that may be useful for plant molecular genetics by providing a plant like host free of interference from homologous recombination. The homozygous recA460::cam mutant is highly sensitive to UVC under both photoreactivating and non-photoreactivating conditions compared to the wild type (WT). The liquid culture of the mutant growing in approximately 800 lx accumulates nonviable cells to the tune of 86% as estimated by colony counts on plates incubated at the same temperature and light intensity. The generation time of recA mutant in standard light intensity (2,500 lx) increases to 50 h compared to 28 h in lower light intensity (approximately 800 lx) that was used for selection, thus explaining the earlier failures to obtain a homozygous recA mutant. The WT, in contrast, grows at faster rate (23 h generation time) in standard light intensity compared to that at approximately 800 lx (26 h). The Synechocystis RecA protein supports homologous recombination during conjugation in recA (-) mutant of Escherichia coli, but not the SOS response as measured by UV sensitivity. It is suggested that using this homozygous recA460::cam mutant, investigations can now be extended to dissect the network of DNA repair pathways involved in housekeeping activities that may be more active in cyanobacteria than in heterotrophs. Using this mutant for the first time we provide a genetic evidence of a mechanism independent of RecA that causes enhanced UVC resistance on light to dark transition.

  16. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    PubMed Central

    Galvão, C.W.; Souza, E.M.; Etto, R.M.; Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G.; Schumacher, J.; Buck, M.; Steffens, M.B.R.

    2012-01-01

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecXHs) can interact with the H. seropedicae RecA protein (RecAHs) and that RecAHs possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecXHs inhibited 90% of the RecAHs DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecAHs. RecAHs ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecXHs was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecXHs protein negatively modulates the RecAHs activities by protein-protein interactions and also by DNA-protein interactions. PMID:23044625

  17. Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

    PubMed Central

    Muniyappa, Kalappa; Yan, Jie

    2013-01-01

    The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559

  18. RecA: Regulation and Mechanism of a Molecular Search Engine.

    PubMed

    Bell, Jason C; Kowalczykowski, Stephen C

    2016-06-01

    Homologous recombination maintains genomic integrity by repairing broken chromosomes. The broken chromosome is partially resected to produce single-stranded DNA (ssDNA) that is used to search for homologous double-stranded DNA (dsDNA). This homology driven 'search and rescue' is catalyzed by a class of DNA strand exchange proteins that are defined in relation to Escherichia coli RecA, which forms a filament on ssDNA. Here, we review the regulation of RecA filament assembly and the mechanism by which RecA quickly and efficiently searches for and identifies a unique homologous sequence among a vast excess of heterologous DNA. Given that RecA is the prototypic DNA strand exchange protein, its behavior affords insight into the actions of eukaryotic RAD51 orthologs and their regulators, BRCA2 and other tumor suppressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Over a Decade of recA and tly Gene Sequence Typing of the Skin Bacterium Propionibacterium acnes: What Have We Learnt?

    PubMed Central

    2017-01-01

    The Gram-positive, anaerobic bacterium Propionibacterium acnes forms part of the normal microbiota on human skin and mucosal surfaces. While normally associated with skin health, P. acnes is also an opportunistic pathogen linked with a range of human infections and clinical conditions. Over the last decade, our knowledge of the intraspecies phylogenetics and taxonomy of this bacterium has increased tremendously due to the introduction of DNA typing schemes based on single and multiple gene loci, as well as whole genomes. Furthermore, this work has led to the identification of specific lineages associated with skin health and human disease. In this review we will look back at the introduction of DNA sequence typing of P. acnes based on recA and tly loci, and then describe how these methods provided a basic understanding of the population genetic structure of the bacterium, and even helped characterize the grapevine-associated lineage of P. acnes, known as P. acnes type Zappe, which appears to have undergone a host switch from humans-to-plants. Particular limitations of recA and tly sequence typing will also be presented, as well as a detailed discussion of more recent, higher resolution, DNA-based methods to type P. acnes and investigate its evolutionary history in greater detail. PMID:29267255

  20. Does RecA have a role in Borrelia recurrentis?

    PubMed

    Cutler, S J; Rinky, I J; Bonilla, E M

    2011-02-01

    Genomic sequencing of two relapsing fever spirochaetes showed truncation of recA in Borrelia recurrentis, but not in Borrelia duttonii. RecA has an important role among bacteria; we investigated whether this characteristic was representative of B. recurrentis, or an artefact following in vitro cultivation. We sequenced recA directly from samples of patient with louse-borne relapsing fever (B. recurrentis) or tick-borne relapsing fever (B. duttonii). We confirmed the premature stop codon in seven louse-borne relapsing fever samples, and its absence from three tick-borne relapsing fever samples. Furthermore, specific signature polymorphisms were found that could differentiate between these highly similar spirochaetes. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  1. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    PubMed

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  2. Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.

    PubMed

    Pham, Phuong; Seitz, Erica M; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2002-08-20

    SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD'(2)C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are "nonfilamentous". That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3' primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3' filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis.

  3. Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis

    PubMed Central

    Pham, Phuong; Seitz, Erica M.; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M.; Goodman, Myron F.

    2002-01-01

    SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD′2C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are “nonfilamentous”. That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3′ primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3′ filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis. PMID:12177433

  4. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein.

    PubMed

    Bellio, Pierangelo; Di Pietro, Letizia; Mancini, Alisia; Piovano, Marisa; Nicoletti, Marcello; Brisdelli, Fabrizia; Tondi, Donatella; Cendron, Laura; Franceschini, Nicola; Amicosante, Gianfranco; Perilli, Mariagrazia; Celenza, Giuseppe

    2017-06-15

    confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. RecA: a universal drug target in pathogenic bacteria.

    PubMed

    Pavlopoulou, Athanasia

    2018-01-01

    The spread of bacterial infectious diseases due to the development of resistance to antibiotic drugs in pathogenic bacteria is an emerging global concern. Therefore, the efficacious management and prevention of bacterial infections are major public health challenges. RecA is a pleiotropic recombinase protein that has been demonstrated to be implicated strongly in the bacterial drug resistance, survival and pathogenicity. In this minireview, RecA's role in the development of antibiotic resistance and its potential as an antimicrobial drug target are discussed.

  6. RecA family proteins in archaea: RadA and its cousins.

    PubMed

    Haldenby, Sam; White, Malcolm F; Allers, Thorsten

    2009-02-01

    Recombinases of the RecA family are essential for homologous recombination and underpin genome stability, by promoting the repair of double-stranded DNA breaks and the rescue of collapsed DNA replication forks. Until now, our understanding of homologous recombination has relied on studies of bacterial and eukaryotic model organisms. Archaea provide new opportunities to study how recombination operates in a lineage distinct from bacteria and eukaryotes. In the present paper, we focus on RadA, the archaeal RecA family recombinase, and its homologues in archaea and other domains. On the basis of phylogenetic analysis, we propose that a family of archaeal proteins with a single RecA domain, which are currently annotated as KaiC, be renamed aRadC.

  7. Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection

    PubMed Central

    Lee, Jeong Yoon; Lee, Ji Sun; Materne, Emma C.; Rajala, Rahul; Ismail, Ashrafali M.; Seto, Donald; Dyer, David W.

    2018-01-01

    ABSTRACT Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the

  8. Specificity in suppression of SOS expression by recA4162 and uvrD303

    PubMed Central

    Massoni, Shawn C.; Sandler, Steven J.

    2013-01-01

    Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap). PMID:24084169

  9. Deinococcus radiodurans RecA nucleoprotein filaments characterized at the single-molecule level with optical tweezers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pobegalov, Georgii, E-mail: george.pobegalov@nanobio.spbstu.ru; Cherevatenko, Galina; Alekseev, Aleksandr

    2015-10-23

    Deinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments. The Escherichia coli RecA protein (EcRecA) and its interactions with DNA have been extensively studied using various approaches including single-molecule techniques, while the D. radiodurans RecA (DrRecA) remains much less characterized. However, DrRecA shows some remarkable differencesmore » from E. coli homolog. Here we combine microfluidics and single-molecule DNA manipulation with optical tweezers to follow the binding of DrRecA to long double-stranded DNA molecules and probe the mechanical properties of DrRecA nucleoprotein filaments at physiological pH. Our data provide a direct comparison of DrRecA and EcRecA binding to double-stranded DNA under identical conditions. We report a significantly faster filaments assembly as well as lower values of persistence length and contour length for DrRecA nucleoprotein filaments compared to EcRecA. Our results support the existing model of DrRecA forming more frequent and less continuous filaments relative to those of EcRecA. - Highlights: • We investigate Deinococcus radiodurans RecA interactions with long double-stranded DNA at the single-molecule level. • At physiological pH D. radiodurans RecA forms nucleoprotein filaments significantly faster relative to Escherichia coli RecA. • D. radiodurans RecA-dsDNA nucleoprotein filaments are more flexible and slightly shorter compared to those of E. coli RecA.« less

  10. Specificity in suppression of SOS expression by recA4162 and uvrD303.

    PubMed

    Massoni, Shawn C; Sandler, Steven J

    2013-12-01

    Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli.

    PubMed Central

    Magee, T R; Kogoma, T

    1990-01-01

    During SOS induction, Escherichia coli cells acquire the ability to replicate DNA in the absence of protein synthesis, i.e., induced stable DNA replication (iSDR). Initiation of iSDR can occur in the absence of transcription and DnaA protein activity, which are both required for initiation of normal DNA replication at the origin of replication, oriC. In this study we examined the requirement of recB, recC, and recA for the induction and maintenance of iSDR. We found that recB and recC mutations blocked the induction of iSDR by UV irradiation and nalidixic acid treatment. In recB(Ts) strains, iSDR activity induced at 30 degrees C was inhibited by subsequent incubation at 42 degrees C. In addition, iSDR that was induced after heat activation of the RecA441 protein was abolished by the recB21 mutation. These results indicated that the RecBC enzyme was essential not only for SOS signal generation but also for the reinitiation of DNA synthesis following DNA damage. recAo(Con) lexA3(Ind-) strains were found to be capable of iSDR after nalidixic acid treatment, indicating that the derepression of the recA gene and the activation of the elevated level of RecA protein were the necessary and sufficient conditions for the induction of iSDR. PMID:2180906

  12. Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12.

    PubMed

    Long, Jarukit Edward; Renzette, Nicholas; Centore, Richard C; Sandler, Steven J

    2008-01-01

    Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recA(C)) in the absence of external DNA damage in log phase cells. Genetic analysis of two recA(C) mutants was used to determine the mechanism of constitutive SOS (SOS(C)) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOS(C) expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOS(C) expression in recA730 mutants was affected by none of the mutations or conditions tested above. It is concluded that not all recA(C) alleles cause SOS(C) expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOS(C) expression by binding to ssDNA in a mechanism yet to be determined.

  13. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA.

    PubMed

    Metrick, Michael A; Temple, Joshua E; MacDonald, Gina

    2013-12-31

    The Escherichia coli protein RecA is responsible for catalysis of the strand transfer reaction used in DNA repair and recombination. Previous studies in our lab have shown that high concentrations of salts stabilize RecA in a reverse-anionic Hofmeister series. Here we investigate how changes in pH and buffer alter the thermal unfolding and cofactor binding. RecA in 20mM HEPES, MES, Tris and phosphate buffers was studied in the pH range from 6.5 to 8.5 using circular dichroism (CD), infrared (IR) and fluorescence spectroscopies. The results show all of the buffers studied stabilize RecA up to 50°C above the Tris melting temperature and influence RecA's ability to nucleate on double-stranded DNA. Infrared and CD spectra of RecA in the different buffers do not show that secondary structural changes are associated with increased stability or decreased ability to nucleate on dsDNA. These results suggest the differences in stability arise from decreasing positive charge and/or buffer interactions. © 2013. Published by Elsevier B.V. All rights reserved.

  14. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    PubMed

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Mechanical force antagonizes the inhibitory effects of RecX on RecA filament formation in Mycobacterium tuberculosis

    PubMed Central

    Le, Shimin; Chen, Hu; Zhang, Xinghua; Chen, Jin; Patil, K. Neelakanteshwar; Muniyappa, Kalappa; Yan, Jie

    2014-01-01

    Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination. PMID:25294832

  16. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR.

    PubMed

    Ma, Yue-Jiao; Sun, Xiao-Hong; Xu, Xiao-Yan; Zhao, Yong; Pan, Ying-Jie; Hwang, Cheng-An; Wu, Vivian C H

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus.

  17. A Structure-Function Study of RecA: The Structural Basis for ATP Specificity in the Strand Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Gegner, Julie; Spruill, Natalie; Plesniak, Leigh A.

    1999-11-01

    The terms "structure" and "function" can assume a variety of meanings. In biochemistry, the "structure" of a protein can refer to its sequence of amino acids, the three-dimensional arrangement of atoms within a subunit, or the arrangement of subunits into a larger oligomeric or filamentous state. Likewise, the function of biological macromolecules can be examined at many levels. The function of a protein can be described by its role in an organism's survival or by a chemical reaction that it promotes. We have designed a three-part biochemical laboratory experiment that characterizes the structure and function of the Escherichia coli RecA protein. The first part examines the importance of RecA in the survival of bacteria that have been exposed to UV light. This is the broadest view of function of the enzyme. Second, the students use an in vitro assay of RecA whereby the protein promotes homologous recombination. Because RecA functions not catalytically, but rather stoichiometrically, in this recombination reaction, the oligomeric state of RecA in complex with DNA must also be discussed. Finally, through molecular modeling of X-ray crystallographic structures, students identify functionally important features of the ATP cofactor binding site of RecA.

  18. Disintegration of Nascent Replication Bubbles during Thymine Starvation Triggers RecA- and RecBCD-dependent Replication Origin Destruction*

    PubMed Central

    Kuong, Kawai J.; Kuzminov, Andrei

    2012-01-01

    Thymineless death strikes cells unable to synthesize DNA precursor dTTP, with the nature of chromosomal damage still unclear. Thymine starvation stalls replication forks, whereas accumulating evidence indicates the replication origin is also affected. Using a novel DNA labeling technique, here we show that replication slowly continues in thymine-starved cells, but the newly synthesized DNA becomes fragmented and degraded. This degradation apparently releases enough thymine to sustain initiation of new replication bubbles from the chromosomal origin, which destabilizes the origin in a RecA-dependent manner. Marker frequency analysis with gene arrays 1) reveals destruction of the origin-centered chromosomal segment in RecA+ cells; 2) confirms origin accumulation in the recA mutants; and 3) identifies the sites around the origin where destruction initiates in the recBCD mutants. We propose that thymineless cells convert persistent single-strand gaps behind replication forks into double-strand breaks, using the released thymine for new initiations, whereas subsequent disintegration of small replication bubbles causes replication origin destruction. PMID:22621921

  19. Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates.

    PubMed

    Dalmastri, Claudia; Pirone, Luisa; Tabacchioni, Silvia; Bevivino, Annamaria; Chiarini, Luigi

    2005-05-01

    In this study, we evaluated if recA species-specific PCR assays could be successfully applied to identify environmental isolates of the widespread Burkholderia cepacia complex (Bcc) species. A total of 729 Bcc rhizosphere isolates collected in different samplings were assigned to the species B. cepacia genomovar I (61), B. cenocepacia recA lineage IIIB (514), B. ambifaria (124) and B. pyrrocinia (30), by means of recA (RFLP) analysis, and PCR tests were performed to assess sensitivity and specificity of recA species-specific primers pairs. B. cepacia genomovar I specific primers produced the expected amplicon with all isolates of the corresponding species (sensitivity, 100%), and cross-reacted with all B. pyrrocinia isolates. On the contrary, B. cenocepacia IIIB primers did not give the expected amplicon in 164 B. cenocepacia IIIB isolates (sensitivity, 68.1%), and isolates of distinct populations showed different sensitivity. B. ambifaria primers failed to amplify a recA-specific fragment only in a few isolates of this species (sensitivity, 93.5%). The absence of specific amplification in a high number of B. cenocepacia rhizosphere isolates indicates that recA specific PCR assays can lead to an underestimation of environmental microorganisms belonging to this bacterial species.

  20. Genes involved in transitory recombination between phage M13 and plasmid pHV33.

    PubMed Central

    Dagert, M; Ehrlich, S D

    1984-01-01

    Plasmid pHV33 and phage M13 combine in Escherichia coli cells to form a chimera, which decombines to regenerate two parental genomes. Combination can occur via two genetic pathways, one defined by the recBC genes, the other by recA, recF and possibly recL genes. Decombination can also occur via two pathways, one defined again by the recBC genes, the other by a gene not identified, but active only in the absence of the recL gene product. PMID:6323172

  1. Arrangement of RecA protein in its active filament determined by polarized-light spectroscopy.

    PubMed

    Morimatsu, Katsumi; Takahashi, Masayuki; Nordén, Bengt

    2002-09-03

    Linear dichroism (LD) polarized-light spectroscopy is used to determine the arrangement of RecA in its large filamentous complex with DNA, active in homologous recombination. Angular orientation data for two tryptophan and seven tyrosine residues, deduced from differential LD of wild-type RecA vs. mutants that were engineered to attenuate the UV absorption of selected residues, revealed a rotation by some 40 degrees of the RecA subunits relative to the arrangement in crystal without DNA. In addition, conformational changes are observed for tyrosine residues assigned to be involved in DNA binding and in RecA-RecA contacts, thus potentially related to the global structure of the filament and its biological function. The presented spectroscopic approach, called "Site-Specific Linear Dichroism" (SSLD), may find forceful applications also to other biologically important fibrous complexes not amenable to x-ray crystallographic or NMR structural analysis.

  2. Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity.

    PubMed

    Moreb, Eirik Adim; Hoover, Benjamin; Yaseen, Adam; Valyasevi, Nisakorn; Roecker, Zoe; Menacho-Melgar, Romel; Lynch, Michael D

    2017-12-15

    Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.

  3. Rad51 and RecA juxtapose dsDNA ends ready for DNA ligase-catalyzed end-joining under recombinase-suppressive conditions

    PubMed Central

    Konomura, Naoto; Arai, Naoto; Shinohara, Takeshi; Kobayashi, Jun; Iwasaki, Wakana; Ikawa, Shukuko; Kusano, Kohji; Shibata, Takehiko

    2017-01-01

    RecA-family recombinase-catalyzed ATP-dependent homologous joint formation is critical for homologous recombination, in which RecA or Rad51 binds first to single-stranded (ss)DNA and then interacts with double-stranded (ds)DNA. However, when RecA or Rad51 interacts with dsDNA before binding to ssDNA, the homologous joint-forming activity of RecA or Rad51 is quickly suppressed. We found that under these and adenosine diphosphate (ADP)-generating suppressive conditions for the recombinase activity, RecA or Rad51 at similar optimal concentrations enhances the DNA ligase-catalyzed dsDNA end-joining (DNA ligation) about 30- to 40-fold. The DNA ligation enhancement by RecA or Rad51 transforms most of the substrate DNA into multimers within 2–5 min, and for this enhancement, ADP is the common and best cofactor. Adenosine triphosphate (ATP) is effective for RecA, but not for Rad51. Rad51/RecA-enhanced DNA ligation depends on dsDNA-binding, as shown by a mutant, and is independent of physical interactions with the DNA ligase. These observations demonstrate the common and unique activities of RecA and Rad51 to juxtapose dsDNA-ends in preparation for covalent joining by a DNA ligase. This new in vitro function of Rad51 provides a simple explanation for our genetic observation that Rad51 plays a role in the fidelity of the end-joining of a reporter plasmid DNA, by yeast canonical non-homologous end-joining (NHEJ) in vivo. PMID:27794044

  4. Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB.

    PubMed

    Chiarini, Luigi; Cescutti, Paola; Drigo, Laura; Impallomeni, Giuseppe; Herasimenka, Yury; Bevivino, Annamaria; Dalmastri, Claudia; Tabacchioni, Silvia; Manno, Graziana; Zanetti, Flavio; Rizzo, Roberto

    2004-08-01

    Clinical and environmental strains of Burkholderia cenocepacia belonging to the recA lineages IIIA and IIIB were examined for exopolysaccharide (EPS) production. The exopolysaccharides structure was determined using mainly gas chromatography coupled to mass spectrometry and NMR spectroscopy. All the strains produced Cepacian, a highly branched polysaccharide constituted of a heptasaccharide repeating unit, composed of one rhamnose, one glucose, one glucuronic acid, one mannose and three galactose residues. This polymer is the most common exopolysaccharide produced by strains of the Burkholderia cepacia (Bcc) complex. One clinical strain produced also another polysaccharide constituted of three galactose units and one 3-deoxy-D-manno-2-octulosonic acid residues, a polymer that was previously isolated from two strains of B. cepacia genomovar I and B. cenocepacia IIIA.

  5. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming.

    PubMed

    Irazoki, Oihane; Aranda, Jesús; Zimmermann, Timo; Campoy, Susana; Barbé, Jordi

    2016-01-01

    In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  6. Investigating Deinococcus radiodurans RecA protein filament formation on dsDNA by a real-time single-molecule approach

    PubMed Central

    Hsu, Hsin-Fang; Ngo, Khanh V.; Chitteni-Pattu, Sindhu; Cox, Michael M.; Li, Hung-Wen

    2011-01-01

    With the aid of an efficient, precise, and almost error-free DNA repair system, Deinococcus radiodurans can survive hundreds of double strand breaks inflicted by high doses of irradiation or desiccation. The RecA of Deinococcus radiodurans (DrRecA) plays a central role both in the early phase of repair by an extended synthesis-dependent strand annealing process and in the later more general homologous recombination phase. Both roles likely require DrRecA filament formation on duplex DNA. We have developed single-molecule tethered particle motion (TPM) experiments to study the assembly dynamics of RecA proteins on individual duplex DNA molecules by observing changes in DNA tether length resulting from RecA binding. We demonstrate that DrRecA nucleation on dsDNA is much faster than Escherichia coli (Ec) RecA protein, but the extension is slower. This combination of attributes would tend to increase the number and decrease the length of DrRecA filaments relative to those of EcRecA, a feature that may reflect the requirement to repair hundreds of genomic double strand breaks concurrently in irradiated Deinococcus cells. PMID:21853996

  7. RecA binding to a single double-stranded DNA molecule: A possible role of DNA conformational fluctuations

    PubMed Central

    Leger, J. F.; Robert, J.; Bourdieu, L.; Chatenay, D.; Marko, J. F.

    1998-01-01

    Most genetic regulatory mechanisms involve protein–DNA interactions. In these processes, the classical Watson–Crick DNA structure sometimes is distorted severely, which in turn enables the precise recognition of the specific sites by the protein. Despite its key importance, very little is known about such deformation processes. To address this general question, we have studied a model system, namely, RecA binding to double-stranded DNA. Results from micromanipulation experiments indicate that RecA binds strongly to stretched DNA; based on this observation, we propose that spontaneous thermal stretching fluctuations may play a role in the binding of RecA to DNA. This has fundamental implications for the protein–DNA binding mechanism, which must therefore rely in part on a combination of flexibility and thermal fluctuations of the DNA structure. We also show that this mechanism is sequence sensitive. Theoretical simulations support this interpretation of our experimental results, and it is argued that this is of broad relevance to DNA–protein interactions. PMID:9770480

  8. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode

    PubMed Central

    2012-01-01

    Background Plasmid DNA (pDNA) is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC) using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33) allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions. Results The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X). The triple mutant VH33 Δ (recA deoR nupG) accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g), whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant throughout the cultivation

  9. Evaluation of Reference Genes for Gene Expression Analysis Using Quantitative RT-PCR in Azospirillum brasilense

    PubMed Central

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data. PMID:24841066

  10. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    PubMed

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  11. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    NASA Astrophysics Data System (ADS)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  12. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins.

    PubMed

    Rangarajan, Savithri; Woodgate, Roger; Goodman, Myron F

    2002-02-01

    In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.

  13. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    PubMed

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    PubMed

    Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K

    2017-01-01

    Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  15. Fuzzy measures on the Gene Ontology for gene product similarity.

    PubMed

    Popescu, Mihail; Keller, James M; Mitchell, Joyce A

    2006-01-01

    One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.

  16. Recruitment of RecA homologs Dmc1p and Rad51p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI).

    PubMed

    Fukuda, Tomoyuki; Ohya, Yoshikazu

    2006-02-01

    During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.

  17. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant pathogenic bacterium Erwinia carotovora subsp. carotovora in response to DNA-damaging agents.

    PubMed

    Liu, Y; Chatterjee, A; Chatterjee, A K

    1994-12-01

    In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.

  18. Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice.

    PubMed

    da Silva, Paula Renata Alves; Vidal, Marcia Soares; de Paula Soares, Cleiton; Polese, Valéria; Simões-Araújo, Jean Luís; Baldani, José Ivo

    2016-11-01

    Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.

  19. 3' Homologous Free Ends are Required for Stable Joint Molecule Formation by the RecA and Single-Stranded Binding Proteins of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Konforti, Boyana B.; Davis, Ronald W.

    1987-02-01

    The RecA protein of Escherichia coli is important for genetic recombination in vivo and can promote synapsis and strand exchange in vitro. The DNA pairing and strand exchange reactions have been well characterized in reactions with circular single strands and linear duplexes, but little is known about these two processes using substrates more characteristic of those likely to exist in the cell. Single-stranded linear DNAs were prepared by separating strands of duplex molecules or by cleaving single-stranded circles at a unique restriction site created by annealing a short defined oligonucleotide to the circle. Analysis by gel electrophoresis and electron microscopy revealed that, in the presence of RecA and single-stranded binding proteins, a free 3' homologous end is essential for stable joint molecule formation between linear single-stranded and circular duplex DNA.

  20. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    PubMed

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  1. IN VITRO EVALUATION OF BIOLOGICAL ACTIVITY OF CINNAMIC, CAFFEIC, FERULIC AND CHLOROGENIC ACIDS WITH USE OF ESCHERICHIA COLI K-12 RECA::GFP BIOSENSOR STRAIN.

    PubMed

    Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Widerskp, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata; Rosochacki, Stanislaw Jozef

    2017-05-01

    Cinnamic acid and its derivatives are important and promising compounds in cancer therapy, because of its broad spectrum of anicancer and antioxidative ability, and with high potential for development into new generation drugs. The aim of this study was to compare the cyto- and genotoxic effects of cinnamic acid and its derivatives with the use of4Escherichia coli K-12 recA::gfp microbial biosensor strain with plasmid fusion of recA promoter and gfp gene as reporter. Obtained results indicate that recA::gfpmut2 genetic system was a sensitive biosensor to the most chemicals tested in our experiments. The cinnamic acid and its derivatives modulated the reactivity of wcA promoter in relation to control sample and significantly inhibited bacteria cells growth. In the light of our results only chlorogenic and ferulic acids at higher concentrations demonstrated cyto and genotoxic activity toward to E. coli K-12 mcA::gfp cells.

  2. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage

    PubMed Central

    2017-01-01

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway. PMID:28826208

  3. A study on the characterization of Propionibacterium acnes isolated from ocular clinical specimens.

    PubMed

    Sowmiya, Murali; Malathi, Jambulingam; Swarnali, Sen; Priya, Jeyavel Padma; Therese, Kulandai Lily; Madhavan, Hajib N

    2015-10-01

    There are only a few reports available on characterization of Propionibacterium acnes isolated from various ocular clinical specimens. We undertook this study to evaluate the role of P. acnes in ocular infections and biofilm production, and also do the phylogenetic analysis of the bacilli. One hundred isolates of P. acnes collected prospectively from ocular clinical specimens at a tertiary care eye hospital between January 2010 and December 2011, were studied for their association with various ocular disease conditions. The isolates were also subjected to genotyping and phylogenetic analysis, and were also tested for their ability to produce biofilms. Among preoperative conjunctival swabs, P. acnes was a probably significant pathogen in one case; a possibly significant pathogen in two cases. In other clinical conditions, 13 per cent isolates were probably significant pathogens and 38 per cent as possibly significant pathogens. The analysis of 16S rRNA gene revealed four different phylogenies whereas analysis of recA gene showed two phylogenies confirming that recA gene was more reliable than 16S rRNA with less sequence variation. Results of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) had 100 per cent concordance with phylogenetic results. No association was seen between P. acnes subtypes and biofilm production. RecA gene phylogenetic studies revealed two different phylogenies. RFLP technique was found to be cost-effective with high sensitivity and specificity in phylogenetic analysis. No association between P. acnes subtypes and pathogenetic ability was observed. Biofilm producing isolates showed increased antibiotic resistance compared with non-biofilm producing isolates.

  4. RNA-Mediated cis Regulation in Acinetobacter baumannii Modulates Stress-Induced Phenotypic Variation

    PubMed Central

    Ching, Carly; Gozzi, Kevin; Heinemann, Björn; Chai, Yunrong

    2017-01-01

    ABSTRACT In the nosocomial opportunistic pathogen Acinetobacter baumannii, RecA-dependent mutagenesis, which causes antibiotic resistance acquisition, is linked to the DNA damage response (DDR). Notably, unlike the Escherichia coli paradigm, recA and DDR gene expression in A. baumannii is bimodal. Namely, there is phenotypic variation upon DNA damage, which may provide a bet-hedging strategy for survival. Thus, understanding recA gene regulation is key to elucidate the yet unknown DDR regulation in A. baumannii. Here, we identify a structured 5′ untranslated region (UTR) in the recA transcript which serves as a cis-regulatory element. We show that a predicted stem-loop structure in this 5′ UTR affects mRNA half-life and underlies bimodal gene expression and thus phenotypic variation in response to ciprofloxacin treatment. We furthermore show that the stem-loop structure of the recA 5′ UTR influences intracellular RecA protein levels and, in vivo, impairing the formation of the stem-loop structure of the recA 5′ UTR lowers cell survival of UV treatment and decreases rifampin resistance acquisition from DNA damage-induced mutagenesis. We hypothesize that the 5′ UTR allows for stable recA transcripts during stress, including antibiotic treatment, enabling cells to maintain suitable RecA levels for survival. This innovative strategy to regulate the DDR in A. baumannii may contribute to its success as a pathogen. IMPORTANCE Acinetobacter baumannii is an opportunistic pathogen quickly gaining antibiotic resistances. Mutagenesis and antibiotic resistance acquisition are linked to the DNA damage response (DDR). However, how the DDR is regulated in A. baumannii remains unknown, since unlike most bacteria, A. baumannii does not follow the regulation of the Escherichia coli paradigm. In this study, we have started to uncover the mechanisms regulating the novel A. baumannii DDR. We have found that a cis-acting 5′ UTR regulates recA transcript stability, RecA

  5. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.

    PubMed

    Fonseca, Luciane S; da Silva, Josefa B; Milanez, Juliana S; Monteiro-Vitorello, Claudia B; Momo, Leonardo; de Morais, Zenaide M; Vasconcellos, Silvio A; Marques, Marilis V; Ho, Paulo L; da Costa, Renata M A

    2013-01-01

    Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.

  6. Leptospira interrogans serovar Copenhageni Harbors Two lexA Genes Involved in SOS Response

    PubMed Central

    Fonseca, Luciane S.; da Silva, Josefa B.; Milanez, Juliana S.; Monteiro-Vitorello, Claudia B.; Momo, Leonardo; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Marques, Marilis V.; Ho, Paulo L.; da Costa, Renata M. A.

    2013-01-01

    Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN 10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence. PMID:24098496

  7. Error-prone repair and translesion synthesis III: the activation of UmuD (or less is more).

    PubMed

    Bridges, Bryn A

    2005-08-15

    Following DNA damage to Escherichia coli bacteria, RecA protein is activated by binding to single stranded DNA and cleaves its own gene repressor (LexA protein). Two papers from Graham Walker's laboratory showed that several bacterial genes in addition to RecA are repressed by the LexA repressor and are inducible following DNA damage [C.J. Keyon, G.C. Walker, DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli, in: Proceedings of the National Academy of Sciences of the United States of America 77, 1980, pp. 2819--2823] and predicted that one of them (UmuD) might itself be subject to activation by a further cleavage reaction involving activated RecA protein [K.L. Perry, S.J. Elledge, B.B. Mitchell, L. Marsh, G.C. Walker, umuD,C and mucA,B operans whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology, in: Proceedings of the National Academy of Sciences of the United States of America 82, 1985, pp. 4331--4335]. The processed form of UmuD, termed UmuD', later proved to be a subunit of DNA polymerase V, a key enzyme involved in translesion synthesis.

  8. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes.

    PubMed

    Uchiyama, Taku; Miyazaki, Kentaro

    2010-11-01

    A reporter assay-based screening method for enzymes, which we named product-induced gene expression (PIGEX), was developed and used to screen a metagenomic library for amidases. A benzoate-responsive transcriptional activator, BenR, was placed upstream of the gene encoding green fluorescent protein and used as a sensor. Escherichia coli sensor cells carrying the benR-gfp gene cassette fluoresced in response to benzoate concentrations as low as 10 μM but were completely unresponsive to the substrate benzamide. An E. coli metagenomic library consisting of 96,000 clones was grown in 96-well format in LB medium containing benzamide. The library cells were then cocultivated with sensor cells. Eleven amidase genes were recovered from 143 fluorescent wells; eight of these genes were homologous to known bacterial amidase genes while three were novel genes. In addition to their activity toward benzamide, the enzymes were active toward various substrates, including d- and l-amino acid amides, and displayed enantioselectivity. Thus, we demonstrated that PIGEX is an effective approach for screening novel enzymes based on product detection.

  9. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  10. Functions of the gene products of Escherichia coli.

    PubMed Central

    Riley, M

    1993-01-01

    A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076

  11. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    PubMed

    Kingston, Anthony W; Roussel-Rossin, Chloé; Dupont, Claire; Raleigh, Elisabeth A

    2015-01-01

    In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.

  12. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.

  13. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    PubMed

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  14. Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production.

    PubMed

    Masud, H M Abdullah Al; Watanabe, Takahiro; Yoshida, Masahiro; Sato, Yoshitaka; Goshima, Fumi; Kimura, Hiroshi; Murata, Takayuki

    2017-12-01

    Epstein-Barr virus (EBV), a member of human gammaherpesvirus, infects mainly B cells. EBV has two alternative life cycles, latent and lytic, and is reactivated occasionally from the latent stage to the lytic cycle. To combat EBV-associated disorders, understanding the molecular mechanisms of the EBV lytic replication cycle is also important. Here, we focused on an EBV lytic gene, BKRF4. Using our anti-BKRF4 antibody, we revealed that the BKRF4 gene product is expressed during the lytic cycle with late kinetics. To characterize the role of BKRF4, we constructed BKRF4-knockout mutants using the bacterial artificial chromosome (BAC) and CRISPR/Cas9 systems. Although disruption of the BKRF4 gene had almost no effect on viral protein expression and DNA synthesis, it significantly decreased progeny virion levels in HEK293 and Akata cells. Furthermore, we show that BKRF4 is involved not only in production of progeny virions but also in increasing the infectivity of the virus particles. Immunoprecipitation assays revealed that BKRF4 interacted with a virion protein, BGLF2. We showed that the C-terminal region of BKRF4 was critical for this interaction and for efficient progeny production. Immunofluorescence analysis revealed that BKRF4 partially colocalized with BGLF2 in the nucleus and perinuclear region. Finally, we showed that BKRF4 is a phosphorylated, possible tegument protein and that the EBV protein kinase BGLF4 may be important for this phosphorylation. Taken together, our data suggest that BKRF4 is involved in the production of infectious virions. IMPORTANCE Although the latent genes of EBV have been studied extensively, the lytic genes are less well characterized. This study focused on one such lytic gene, BKRF4, which is conserved only among gammaherpesviruses (ORF45 of Kaposi's sarcoma-associated herpesvirus or murine herpesvirus 68). After preparing the BKRF4 knockout virus using B95-8 EBV-BAC, we demonstrated that the BKRF4 gene was involved in infectious

  15. Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS response.

    PubMed

    Nassar, Farah J; Rahal, Elias A; Sabra, Ahmad; Matar, Ghassan M

    2013-09-01

    Treatment of Escherichia coli O157:H7 by certain antimicrobial agents often exacerbates the patient's condition by increasing either the release of preformed Shiga toxins (Stx) upon cell lysis or their production through the SOS response-triggered induction of Stx-producing prophages. Recommended subinhibitory concentrations (sub-MICs) of azithromycin (AZI), gentamicin (GEN), imipenem (IMI), and rifampicin (RIF) were evaluated in comparison to norfloxacin (NOR), an SOS-inducer, to assess the role of the SOS response in Stx release. Relative expression of recA (SOS-inducer), Q (late antitermination gene of Stx-producing prophage), stx1, and stx2 genes was assessed at two sub-MICs of the antimicrobials for two different strains of E. coli O157:H7 using reverse transcription-real-time polymerase chain reaction. Both strains at the two sub-MICs were also subjected to Western blotting for LexA protein expression and to reverse passive latex agglutination for Stx detection. For both strains at both sub-MICs, NOR and AZI caused SOS-induced Stx production (high recA, Q, and stx2 gene expression and high Stx2 production), so they should be avoided in E. coli O157:H7 treatment; however, sub-MICs of RIF and IMI induced Stx2 production in an SOS-independent manner except for one strain at the first twofold dilution below MIC of RIF where Stx2 production decreased. Moreover, GEN caused somewhat increased Stx2 production due to its mode of action rather than any effect on gene expression. The choice of antimicrobial therapy should rely on the antimicrobial mode of action, its concentration, and on the nature of the strain.

  16. Sak4 of Phage HK620 Is a RecA Remote Homolog With Single-Strand Annealing Activity Stimulated by Its Cognate SSB Protein

    PubMed Central

    Hutinet, Geoffrey; Besle, Arthur; Son, Olivier; McGovern, Stephen; Guerois, Raphaël; Petit, Marie-Agnès; Ochsenbein, Françoise; Lecointe, François

    2018-01-01

    Bacteriophages are remarkable for the wide diversity of proteins they encode to perform DNA replication and homologous recombination. Looking back at these ancestral forms of life may help understanding how similar proteins work in more sophisticated organisms. For instance, the Sak4 family is composed of proteins similar to the archaeal RadB protein, a Rad51 paralog. We have previously shown that Sak4 allowed single-strand annealing in vivo, but only weakly compared to the phage λ Redβ protein, highlighting putatively that Sak4 requires partners to be efficient. Here, we report that the purified Sak4 of phage HK620 infecting Escherichia coli is a poorly efficient annealase on its own. A distant homolog of SSB, which gene is usually next to the sak4 gene in various species of phages, highly stimulates its recombineering activity in vivo. In vitro, Sak4 binds single-stranded DNA and performs single-strand annealing in an ATP-dependent way. Remarkably, the single-strand annealing activity of Sak4 is stimulated by its cognate SSB. The last six C-terminal amino acids of this SSB are essential for the binding of Sak4 to SSB-covered single-stranded DNA, as well as for the stimulation of its annealase activity. Finally, expression of sak4 and ssb from HK620 can promote low-level of recombination in vivo, though Sak4 and its SSB are unable to promote strand exchange in vitro. Regarding its homology with RecA, Sak4 could represent a link between two previously distinct types of recombinases, i.e., annealases that help strand exchange proteins and strand exchange proteins themselves. PMID:29740405

  17. Sak4 of Phage HK620 Is a RecA Remote Homolog With Single-Strand Annealing Activity Stimulated by Its Cognate SSB Protein.

    PubMed

    Hutinet, Geoffrey; Besle, Arthur; Son, Olivier; McGovern, Stephen; Guerois, Raphaël; Petit, Marie-Agnès; Ochsenbein, Françoise; Lecointe, François

    2018-01-01

    Bacteriophages are remarkable for the wide diversity of proteins they encode to perform DNA replication and homologous recombination. Looking back at these ancestral forms of life may help understanding how similar proteins work in more sophisticated organisms. For instance, the Sak4 family is composed of proteins similar to the archaeal RadB protein, a Rad51 paralog. We have previously shown that Sak4 allowed single-strand annealing in vivo , but only weakly compared to the phage λ Redβ protein, highlighting putatively that Sak4 requires partners to be efficient. Here, we report that the purified Sak4 of phage HK620 infecting Escherichia coli is a poorly efficient annealase on its own. A distant homolog of SSB, which gene is usually next to the sak4 gene in various species of phages, highly stimulates its recombineering activity in vivo. In vitro , Sak4 binds single-stranded DNA and performs single-strand annealing in an ATP-dependent way. Remarkably, the single-strand annealing activity of Sak4 is stimulated by its cognate SSB. The last six C-terminal amino acids of this SSB are essential for the binding of Sak4 to SSB-covered single-stranded DNA, as well as for the stimulation of its annealase activity. Finally, expression of sak4 and ssb from HK620 can promote low-level of recombination in vivo , though Sak4 and its SSB are unable to promote strand exchange in vitro . Regarding its homology with RecA, Sak4 could represent a link between two previously distinct types of recombinases, i.e., annealases that help strand exchange proteins and strand exchange proteins themselves.

  18. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    DOEpatents

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  19. Prophage-Encoded Staphylococcal Enterotoxin A: Regulation of Production in Staphylococcus aureus Strains Representing Different Sea Regions

    PubMed Central

    Zeaki, Nikoleta; Budi Susilo, Yusak; Pregiel, Anna; Rådström, Peter; Schelin, Jenny

    2015-01-01

    The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA) gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards. PMID:26690218

  20. Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.

    PubMed

    Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav

    2013-01-01

    The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.

  1. Selection of suitable reference genes for gene expression studies in Staphylococcus capitis during growth under erythromycin stress.

    PubMed

    Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Deighton, Margaret A

    2016-08-01

    Accurate and reproducible measurement of gene transcription requires appropriate reference genes, which are stably expressed under different experimental conditions to provide normalization. Staphylococcus capitis is a human pathogen that produces biofilm under stress, such as imposed by antimicrobial agents. In this study, a set of five commonly used staphylococcal reference genes (gyrB, sodA, recA, tuf and rpoB) were systematically evaluated in two clinical isolates of Staphylococcus capitis (S. capitis subspecies urealyticus and capitis, respectively) under erythromycin stress in mid-log and stationary phases. Two public software programs (geNorm and NormFinder) and two manual calculation methods, reference residue normalization (RRN) and relative quantitative (RQ), were applied. The potential reference genes selected by the four algorithms were further validated by comparing the expression of a well-studied biofilm gene (icaA) with phenotypic biofilm formation in S. capitis under four different experimental conditions. The four methods differed considerably in their ability to predict the most suitable reference gene or gene combination for comparing icaA expression under different conditions. Under the conditions used here, the RQ method provided better selection of reference genes than the other three algorithms; however, this finding needs to be confirmed with a larger number of isolates. This study reinforces the need to assess the stability of reference genes for analysis of target gene expression under different conditions and the use of more than one algorithm in such studies. Although this work was conducted using a specific human pathogen, it emphasizes the importance of selecting suitable reference genes for accurate normalization of gene expression more generally.

  2. A transversal approach to predict gene product networks from ontology-based similarity

    PubMed Central

    Chabalier, Julie; Mosser, Jean; Burgun, Anita

    2007-01-01

    Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807

  3. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters.

    PubMed

    Norman, Anders; Hestbjerg Hansen, Lars; Sørensen, Søren J

    2005-05-01

    Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 microM, 1.1 microM, and 141 microM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.

  4. Thermoresistant revertants of an Escherichia coli strain carrying tif-1 and ruv mutations: non-suppressibility of ruv by sfi.

    PubMed Central

    Otsuji, N; Iyehara-Ogawa, H

    1979-01-01

    Spontaneous thermoresistant revertants were isolated from Tif1 Ruv- and Tif1 Ruv+ strains of Escherichia coli K-12. They were divided into five groups; backmutants to tif+ and recA structural gene mutants accounted for at least two of these groups. Mutations with an unconditional RecA- phenyotype were detected at a higher frequency in the Tif1 Ruv- strains (65%) than in the Tif1 Ruv+ strains (25%). A third group consisted of revertants exhibiting a RecA- phenotype at low temperature. Revertants with normal recombination ability and UV resistance, but with a thermosensitive defect in propagating lambda bio11 phage, were also isolated (group 4). The alleles responsible for this property were cotransducible with the srl gene, suggesting that they are located at the recA locus. Other revertants, which might carry lex, LEXB, or zab mutations, were UV sensitive and were able to propagate lambda bio11 phage (group 5). The sfi mutation, which suppresses filamentation in the Tif1 and UV-sensitive Lon- strains, does not restore UV resistance of the Ruv- mutant. PMID:374356

  5. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  6. Genetic resources for advanced biofuel production described with the Gene Ontology.

    PubMed

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C; Mukhopadhyay, Biswarup; Tyler, Brett M

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  7. Genetic resources for advanced biofuel production described with the Gene Ontology

    PubMed Central

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-01-01

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727

  8. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE PAGES

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; ...

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  9. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  10. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, S.; Kamine, J.; Markovitz, D.

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBVmore » gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.« less

  11. The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST).

    PubMed

    Dan, Tong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Menghe, Bilige; Zhang, Heping; Sun, Zhihong

    2015-05-20

    Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (I A (S)) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products.

  12. Ecology and Population Structure of Vibrionaceae in the Coastal Ocean

    DTIC Science & Technology

    2010-02-01

    population is closest to V. gazogenes at atpA (Fig. 2) and V. kanoleae at gyrB (Fig. 3). The relationship with other species at all genetic loci is...Closest named relative varies by gene: V pacinii (recA), V kanaloae (gyrB) and V gazogenes (atpA) F11 L V. splendidus cluster 1 atpA, gyrB, pyrH, recA

  13. Transcriptional regulation of genes related to progesterone production.

    PubMed

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  14. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  15. An Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses. Images PMID:2830625

  16. An Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat.

    PubMed

    Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J

    1988-03-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.

  17. Suppression of the E. coli SOS response by dNTP pool changes.

    PubMed

    Maslowska, Katarzyna H; Makiela-Dzbenska, Karolina; Fijalkowska, Iwona J; Schaaper, Roel M

    2015-04-30

    The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30(+)-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. The rec A operon: a novel stress response gene cluster in Bacteroides fragilis

    PubMed Central

    Nicholson, Samantha A; Smalley, Darren; Smith, C. Jeffrey; Abratt, Valerie R

    2014-01-01

    Bacteroides fragilis, an opportunistic pathogen of humans, is a leading cause of bacteraemias and anaerobic abscesses which are often treated with metronidazole, a drug which damages DNA. This study investigated the responses of the B. fragilis recA three gene operon to the stress experienced during metronidazole treatment and exposure to reactive oxygen species simulating those generated by the host immune system during infection. A transcriptionally regulated response was observed using quantitative RT-PCR after metronidazole and hydrogen peroxide treatment, with all three genes being upregulated under stress conditions. In vivo and in vitro analysis of the functional role of the second gene of the operon was done using heterologous complementation and protein expression (in Escherichia coli), with subsequent biochemical assay. This gene encoded a functional bacterioferritin co-migratory protein (BCP) which was thiol-specific and had antioxidant properties, including protection of the glutamine synthetase III enzyme. This in vitro data supports the hypothesis that the genes of the operon may be involved in protection of the bacteria from the oxidative burst during tissue invasion and may play a significant role in bacterial survival and metronidazole resistance during treatment of B. fragilis infections. PMID:24703997

  19. Neurobiology of autism gene products: towards pathogenesis and drug targets.

    PubMed

    Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H

    2014-03-01

    The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.

  20. Molecular determinants of the DprA−RecA interaction for nucleation on ssDNA

    PubMed Central

    Lisboa, Johnny; Andreani, Jessica; Sanchez, Dyana; Boudes, Marion; Collinet, Bruno; Liger, Dominique; van Tilbeurgh, Herman; Guérois, Raphael; Quevillon-Cheruel, Sophie

    2014-01-01

    Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, DprAM238 and RecAF230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA−RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA. PMID:24782530

  1. Novel species including Mycobacterium fukienense sp. is found from tuberculosis patients in Fujian Province, China, using phylogenetic analysis of Mycobacterium chelonae/abscessus complex.

    PubMed

    Zhang, Yuan Yuan; Li, Yan Bing; Huang, Ming Xiang; Zhao, Xiu Qin; Zhang, Li Shui; Liu, Wen En; Wan, Kang Lin

    2013-11-01

    To identify the novel species 'Mycobacterium fukienense' sp. nov of Mycobacterium chelonae/abscessus complex from tuberculosis patients in Fujian Province, China. Five of 27 clinical Mycobacterium isolates (Cls) were previously identified as M. chelonae/abscessus complex by sequencing the hsp65, rpoB, 16S-23S rRNA internal transcribed spacer region (its), recA and sodA house-keeping genes commonly used to describe the molecular characteristics of Mycobacterium. Clinical Mycobacterium isolates were classified according to the gene sequence using a clustering analysis program. Sequence similarity within clusters and diversity between clusters were analyzed. The 5 isolates were identified with distinct sequences exhibiting 99.8% homology in the hsp65 gene. However, a complete lack of homology was observed among the sequences of the rpoB, 16S-23S rRNA internal transcribed spacer region (its), sodA, and recA genes as compared with the M. abscessus. Furthermore, no match for rpoB, sodA, and recA genes was identified among the published sequences. The novel species, Mycobacterium fukienense, is identified from tuberculosis patients in Fujian Province, China, which does not belong to any existing subspecies of M. chelonea/abscessus complex. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  2. Regulatory structures for gene therapy medicinal products in the European Union.

    PubMed

    Klug, Bettina; Celis, Patrick; Carr, Melanie; Reinhardt, Jens

    2012-01-01

    Taking into account the complexity and technical specificity of advanced therapy medicinal products: (gene and cell therapy medicinal products and tissue engineered products), a dedicated European regulatory framework was needed. Regulation (EC) No. 1394/2007, the "ATMP Regulation" provides tailored regulatory principles for the evaluation and authorization of these innovative medicines. The majority of gene or cell therapy product development is carried out by academia, hospitals, and small- and medium-sized enterprises (SMEs). Thus, acknowledging the particular needs of these types of sponsors, the legislation also provides incentives for product development tailored to them. The European Medicines Agency (EMA) and, in particular, its Committee for Advanced Therapies (CAT) provide a variety of opportunities for early interaction with developers of ATMPs to enable them to have early regulatory and scientific input. An important tool to promote innovation and the development of new medicinal products by micro-, small-, and medium-sized enterprises is the EMA's SME initiative launched in December 2005 to offer financial and administrative assistance to smaller companies. The European legislation also foresees the involvement of stakeholders, such as patient organizations, in the development of new medicines. Considering that gene therapy medicinal products are developed in many cases for treatment of rare diseases often of monogenic origin, the involvement of patient organizations, which focus on rare diseases and genetic and congenital disorders, is fruitful. Two such organizations are represented in the CAT. Research networks play another important role in the development of gene therapy medicinal products. The European Commission is funding such networks through the EU Sixth Framework Program. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  4. Development of the First World Health Organization Lentiviral Vector Standard: Toward the Production Control and Standardization of Lentivirus-Based Gene Therapy Products

    PubMed Central

    Zhao, Yuan; Stepto, Hannah; Schneider, Christian K

    2017-01-01

    Gene therapy is a rapidly evolving field. So far, there have been >2,400 gene therapy products in clinical trials and four products on the market. A prerequisite for producing gene therapy products is ensuring their quality and safety. This requires appropriately controlled and standardized production and testing procedures that result in consistent safety and efficacy. Assuring the quality and safety of lentivirus-based gene therapy products in particular presents a great challenge because they are cell-based multigene products that include viral and therapeutic proteins as well as modified cells. In addition to the continuous refinement of a product, changes in production sites and manufacturing processes have become more and more common, posing challenges to developers regarding reproducibility and comparability of results. This paper discusses the concept of developing a first World Health Organization International Standard, suitable for the standardization of assays and enabling comparison of cross-trial and cross-manufacturing results for this important vector platform. The standard will be expected to optimize the development of gene therapy medicinal products, which is especially important, given the usually orphan nature of the diseases to be treated, naturally hampering reproducibility and comparability of results. PMID:28747142

  5. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    PubMed

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  6. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes.

    PubMed Central

    Santangelo, J D; Jones, D T; Woods, D R

    1991-01-01

    An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum. Images PMID:1991710

  7. [Collaborative study on regulatory science for facilitating clinical development of gene therapy products for genetic diseases].

    PubMed

    Uchida, Eriko; Igarashi, Yuka; Sato, Yoji

    2014-01-01

    Gene therapy products are expected as innovative medicinal products for intractable diseases such as life-threatening genetic diseases and cancer. Recently, clinical developments by pharmaceutical companies are accelerated in Europe and the United States, and the first gene therapy product in advanced countries was approved for marketing authorization by the European Commission in 2012. On the other hand, more than 40 clinical studies for gene therapy have been completed or ongoing in Japan, most of them are conducted as clinical researches by academic institutes, and few clinical trials have been conducted for approval of gene therapy products. In order to promote the development of gene therapy products, revision of the current guideline and/or preparation of concept paper to address the evaluation of the quality and safety of gene therapy products are necessary and desired to clearly show what data should be submitted before First-in-Human clinical trials of novel gene therapy products. We started collaborative study with academia and regulatory agency to promote regulatory science toward clinical development of gene therapy products for genetic diseases based on lentivirus and adeno-associated virus vectors; National Center for Child Health and Development (NCCHD), Nippon Medical School and PMDA have been joined in the task force. At first, we are preparing pre-draft of the revision of the current gene therapy guidelines in this project.

  8. DLH1 is a functional Candida albicans homologue of the meiosis-specific gene DMC1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diener, A.C.; Fink, G.R.

    1996-06-01

    DMC1/LIM15 homologue 1 (DLH1), a gene related to meiosis-specific genes, has been isolated from Candida albicans, a fungus thought not to undergo meiosis. The deduced protein sequence of DLH1 contains 74% amino acid identity with Dmc1p from Saccharomyces cerevisiae and 63% with Lim15p from the plant Lilium longiflorum, meiosis-specific homologous of Escherichia coli RecA. Candida DLH1 complements a dmc1/dmc1 null mutant in S. cerevisiae. High copy expression of DLH1 restores both sporulation and meiotic recombination to a Saccharomyces dmc1/{Delta}/dmc1{Delta} strain. Unlike the DMC1 gene, which is transcribed only in meiotic cells, the heterologous Candida DLH1 gene is transcribed in bothmore » vegetative and meiotic cells of S. cerevisiae. Transcription of DLH1 is not detected or induced in C. albicans under conditions that induce DMC1 and meiosis in S. cerevisiae. The presence of an intact homologue of a meiosis-specific gene in C. albicans raises the possibility that this organism has a cryptic meiotic pathway. 25 refs., 6 figs., 3 tabs.« less

  9. Factors Limiting SOS Expression in Log-Phase Cells of Escherichia coli

    PubMed Central

    Massoni, Shawn C.; Leeson, Michael C.; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice

    2012-01-01

    In Escherichia coli, RecA–single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell. PMID:22843848

  10. Factors limiting SOS expression in log-phase cells of Escherichia coli.

    PubMed

    Massoni, Shawn C; Leeson, Michael C; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice; Sandler, Steven J

    2012-10-01

    In Escherichia coli, RecA-single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell.

  11. Molecular determinants of the DprA-RecA interaction for nucleation on ssDNA.

    PubMed

    Lisboa, Johnny; Andreani, Jessica; Sanchez, Dyana; Boudes, Marion; Collinet, Bruno; Liger, Dominique; van Tilbeurgh, Herman; Guérois, Raphael; Quevillon-Cheruel, Sophie

    2014-06-01

    Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, (DprA)M238 and (RecA)F230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA-RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Database of cattle candidate genes and genetic markers for milk production and mastitis

    PubMed Central

    Ogorevc, J; Kunej, T; Razpet, A; Dovc, P

    2009-01-01

    A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3′UTRs of candidate genes. PMID:19508288

  13. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ...] Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability AGENCY: Food and... the availability of a document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene...

  14. Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet.

    PubMed

    Feng, Jing; Jiang, Yujun; Li, Mingyu; Zhao, Siyu; Zhang, Yanming; Li, Xuesong; Wang, Hui; Lin, Guangen; Wang, Hao; Li, Tiejing; Man, Chaoxin

    2018-05-25

    Bacteria in Lactobacillus casei group, including Lactobacillus casei (L. casei), Lactobacillus paracasei (L. paracasei), and Lactobacillus rhamnosus (L. rhamnosus) are important lactic acid bacteria in the production of fermented dairy products and are faced with the controversial nomenclatural status due to their close phylogenetic similarity. To probe the evolution and phylogeny of L. casei group, 100 isolates of lactic acid bacteria originated from naturally fermented dairy products in Tibet of China were subjected to multilocus sequence typing (MLST). The MLST scheme, based on analysis of the housekeeping genes fusA, ileS, lepA, leuS, pyrG, recA and recG, revealed that all the isolates belonged to a group containing the L. paracasei reference strains and were clearly different from the strains of L. casei and L. rhamnosus. Although nucleotide diversity (π) was low for the seven genes (ranging from 0.00341 for fusA to 0.01307 for recG), high genetic diversity represented by 83 sequence types (STs) with a discriminatory index of 0.98 was detected. A network-like structure based on split decomposition analysis, and the high values of the relative effect of recombination and mutation in the diversification of the lineages (r/m = 4.76) and the relative frequency of occurrence of recombination and mutation (ρ/θ = 2.62) indicated that intra-species recombination occurred frequently and homologous recombination played a key role in generating genotypic diversity amongst L. paracasei strains in Tibet. The discovery of 51 new STs and the results of STRUCTURE analysis suggested that the L. casei group in Tibet had an individual and particular population structure in comparison to European isolates. Overall, this research might be the first report about genetic diversity and population structure of Lactobacillus populations isolated from naturally fermented dairy products in Tibet based on MLST scheme.

  15. Identification of the neurofibromatosis type 1 gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutmann, D.H.; Wood, D.L.; Collins, F.S.

    The gene for neurofibromatosis type 1 (NF1) was recently identified by positional cloning. The complete cDNA encodes a polypeptide of 2818 amino acids. To study the NF1 gene product, antibodies were raised against both fusion proteins and synthetic peptides. Initial characterization of two anti-peptide antibodies and one fusion-protein antibody demonstrated a specific protein of {approx}250 kDa by both immunoprecipitation and immunoblotting. This protein was found in all tissues and cell lines examined and is detected in human, rat, and mouse tissues. To demonstrate that these antibodies specifically recognize the NF1 protein, additional fusion proteins containing the sequence specific to themore » synthetic peptide were generated. Both peptide antisera recognize the proper specific fusion proteins so generated. Immunoprecipitates using the peptide antisera were shown to recognize the same protein detected by immunoblotting with either the other peptide antiserum or the fusion-protein antiserum. Immunoblotting using antiserum specific to spatially distinct epitopes conducted on tissue homogenates demonstrated the NF1 protein in all adult tissues. Based on the homology between the NF1 gene product and members of the GTPase-activating protein (GAP) superfamily, the name NF1-GAP-related protein (NF1GRP) is suggested.« less

  16. Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+.

    PubMed Central

    Thoms, B; Wackernagel, W

    1988-01-01

    Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We show that in a uvrA recB+ recC+ genetic background there are two prerequisites for the suppression by recA(Srf) of the UV-sensitive phenotype of recF mutants. (i) The recA(Srf) protein must be provided in increased amounts either by SOS derepression or by a recA operator-constitutive mutation in a lexA(Ind) (no induction of SOS functions) genetic background. (ii) The gene recJ, which has been shown previously to be involved in the recF pathway of recombination and repair, must be functional. The level of expression of recJ in a lexA(Ind) strain suffices for full suppression. Suppression by recA441 at 30 degrees C also depends on recJ+. The hampered induction by UV of the SOS gene uvrA seen in a recF mutant was improved by a recA(Srf) mutation. This improvement did not require recJ+. We suggest that recA(Srf) and recA(Tif) mutant proteins can operate in postreplication repair independent of recF by using the recJ+ function. PMID:2841294

  17. The GermOnline cross-species systems browser provides comprehensive information on genes and gene products relevant for sexual reproduction.

    PubMed

    Gattiker, Alexandre; Niederhauser-Wiederkehr, Christa; Moore, James; Hermida, Leandro; Primig, Michael

    2007-01-01

    We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at http://www.germonline.org/.

  18. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com; Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu; Prasad, G.L., E-mail: prasadg@rjrt.com

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5more » h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.« less

  19. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    PubMed

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  20. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of Poly(3-hydroxybutyrate) in Escherichia coli.

    PubMed

    Choi, J I; Lee, S Y; Han, K

    1998-12-01

    Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, beta-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.

  1. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. Wemore » found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.« less

  2. MONITORING OF SYNERGISTIC ENHANCEMENT OF CAFFEIC ACID ON ESCHERICHIA COLI K-12 RECA::GFP STRAIN TREATED WITH DACARBAZINE.

    PubMed

    Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Swidersk, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata

    2017-05-01

    Caffeic acid and its derivatives because of its biological activities, including antioxidants, antithrombosis, antihypertensive, antifibrosis, antiviral, and anti-tumor properties are good candidates as adjuvants in anticancer therapy. The aim of this study was the examination of cyto- and genotoxic effect of caffeic acid on Escherichia coli K-12 recA::gfp strain treated with dacarbazine. Obtained results indicate that dacarbazine and caffeic acid influenced the reactivity of recA promoter and modulate the level of gfp expression in genetic construct rrcA::gfpmut2 in E. coli K-12. Simultaneuos administration of dacarbazine with caffeic acid caused the stronger inhibition of the bacteria growth than the dacarbazine and caffeic acid separated administration to bacteria cells. The simultaneous effect of the both tested chemicals - dacarbazine and caffeic acid indicated (cytostatic effect) anticancer activity in relation to bacteria cells. It suggests, that combination of known anticancer drug - dacarbazine w ith caffeic acid exerted synergistic cytotoxic and genotoxic effects toward E. coli K- 12 cells and indicated the possibility of usefulness of caffeic acid as a natural adjuvant in anticancer therapy.

  3. DNA compaction in the early part of the SOS response is dependent on RecN and RecA.

    PubMed

    Odsbu, Ingvild; Skarstad, Kirsten

    2014-05-01

    The nucleoids of undamaged Escherichia coli cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10-20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated 'compact DNA' stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.

  4. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics.

    PubMed

    Hess, Becky M; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C; Wiley, H Steven; Ahring, Birgitte K; Linggi, Bryan

    2013-01-01

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  5. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics

    PubMed Central

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. Steven; Ahring, Birgitte K.; Linggi, Bryan

    2013-01-01

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions. PMID:23840410

  6. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes.

    PubMed

    Yamamoto, Keisuke; Hara, Kiyotaka Y; Morita, Toshihiko; Nishimura, Akira; Sasaki, Daisuke; Ishii, Jun; Ogino, Chiaki; Kizaki, Noriyuki; Kondo, Akihiko

    2016-09-13

    Red yeast, Xanthophyllomyces dendrorhous is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) widely used in the aquaculture, food, pharmaceutical and cosmetic industries. The potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its native terpene pathway. Recently, we developed a multiple gene expression system in X. dendrorhous and enhanced the mevalonate synthetic pathway to increase astaxanthin production. In contrast, the mevalonate synthetic pathway is suppressed by ergosterol through feedback inhibition. Therefore, releasing the mevalonate synthetic pathway from this inhibition through the deletion of genes involved in ergosterol synthesis is a promising strategy to improve isoprenoid production. An efficient method for deleting diploid genes in X. dendrorhous, however, has not yet been developed. Xanthophyllomyces dendrorhous was cultivated under gradually increasing concentrations of antibiotics following the introduction of antibiotic resistant genes to be replaced with target genes. Using this method, double CYP61 genes encoding C-22 sterol desaturases relating to ergosterol biosynthesis were deleted sequentially. This double CYP61 deleted strain showed decreased ergosterol biosynthesis compared with the parental strain and single CYP61 disrupted strain. Additionally, this double deletion of CYP61 genes showed increased astaxanthin production compared with the parental strain and the single CYP61 knockout strain. Finally, astaxanthin production was enhanced by 1.4-fold compared with the parental strain, although astaxanthin production was not affected in the single CYP61 knockout strain. In this study, we developed a system to completely delete target diploid genes in X. dendrorhous. Using this method, we deleted diploid CYP61 genes involved in the synthesis of ergosterol that inhibits the pathway for mevalonate, which is a common

  7. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    PubMed

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  8. Expression of a DNA Replication Gene Cluster in Bacteriophage T4: Genetic Linkage and the Control of Gene Product Interactions

    PubMed Central

    Gerald, W. L.; Karam, J. D.

    1984-01-01

    The results of this study bear on the relationship between genetic linkage and control of interactions between the protein products of different cistrons. In T4 bacteriophage, genes 45 and 44 encode essential components of the phage DNA replication multiprotein complex. T4 gene 45 maps directly upstream of gene 44 relative to the overall direction of reading of this region of the phage chromosome, but it is not known whether these two genes are cotranscribed. It has been shown that a nonsense lesion of T4 gene 45 exerts a cis-dominant inhibitory effect on growth of a missense mutant of gene 44 but not on growth of phage carrying the wild-type gene 44 allele. In previous work, we confirmed these observations on polarity of the gene 45 mutation but detected no polar effects by this lesion on synthesis of either mutant or wild-type gene 44 protein. In the present study, we demonstrate that mRNA for gene 44 protein is separable by gel electrophoresis from gene 45-protein-encoding mRNA. That is, the two proteins are not synthesized from one polycistronic message, and the cis-dominant inhibitory effect of the gene 45 mutation on gene 44 function is probably expressed at a posttranslational stage. We propose that close genetic linkage, whether or not it provides shared transcriptional and translational regulatory signals for certain clusters of functionally related cistrons, may determine the intracellular compartmentalization for synthesis of proteins encoded by these clusters. In prokaryotes, such linkage-dependent compartmentation may minimize the diffusion distances between gene products that are synthesized at low levels and are destined to interact. PMID:6745641

  9. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

  10. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    PubMed

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  11. The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production.

    PubMed

    Cary, Jeffrey W; Harris-Coward, Pamela; Scharfenstein, Leslie; Mack, Brian M; Chang, Perng-Kuang; Wei, Qijian; Lebar, Matthew; Carter-Wientjes, Carol; Majumdar, Rajtilak; Mitra, Chandrani; Banerjee, Sourav; Chanda, Anindya

    2017-10-12

    Homeobox proteins, a class of well conserved transcription factors, regulate the expression of targeted genes, especially those involved in development. In filamentous fungi, homeobox genes are required for normal conidiogenesis and fruiting body formation. In the present study, we identified eight homeobox ( hbx ) genes in the aflatoxin-producing ascomycete, Aspergillus flavus , and determined their respective role in growth, conidiation and sclerotial production. Disruption of seven of the eight genes had little to no effect on fungal growth and development. However, disruption of the homeobox gene AFLA_069100, designated as hbx1 , in two morphologically different A. flavus strains, CA14 and AF70, resulted in complete loss of production of conidia and sclerotia as well as aflatoxins B₁ and B₂, cyclopiazonic acid and aflatrem. Microscopic examination showed that the Δ hbx1 mutants did not produce conidiophores. The inability of Δ hbx1 mutants to produce conidia was related to downregulation of brlA (bristle) and abaA (abacus), regulatory genes for conidiophore development. These mutants also had significant downregulation of the aflatoxin pathway biosynthetic genes aflC , aflD , aflM and the cluster-specific regulatory gene, aflR . Our results demonstrate that hbx1 not only plays a significant role in controlling A. flavus development but is also critical for the production of secondary metabolites, such as aflatoxins.

  12. New insights about antibiotic production by Pseudomonas aeruginosa: a gene expression analysis

    NASA Astrophysics Data System (ADS)

    Gionco, Bárbara; Tavares, Eliandro R.; de Oliveira, Admilton G.; Yamada-Ogatta, Sueli F.; do Carmo, Anderson O.; Pereira, Ulisses de Pádua; Chideroli, Roberta T.; Simionato, Ane S.; Navarro, Miguel O. P.; Chryssafidis, Andreas L.; Andrade, Galdino

    2017-09-01

    The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified twelve upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound.

  13. Recombinase and translesion DNA polymerase decrease the speed of replication fork progression during the DNA damage response in Escherichia coli cells

    PubMed Central

    Tan, Kang Wei; Pham, Tuan Minh; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2015-01-01

    The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response. PMID:25628359

  14. Major genes and QTL influencing wool production and quality: a review.

    PubMed

    Purvis, Ian William; Franklin, Ian Robert

    2005-01-01

    The opportunity exists to utilise our knowledge of major genes that influence the economically important traits in wool sheep. Genes with Mendelian inheritance have been identified for many important traits in wool sheep. Of particular importance are genes influencing pigmentation, wool quality and the keratin proteins, the latter of which are important for the morphology of the wool fibre. Gene mapping studies have identified some chromosomal regions associated with variation in wool quality and production traits. The challenge now is to build on this knowledge base in a cost-effective way to deliver molecular tools that facilitate enhanced genetic improvement programs for wool sheep.

  15. SOS gene induction and possible mutagenic effects of freeze-drying in Escherichia coli and Salmonella typhimurium.

    PubMed

    Rosen, Rachel; Buchinger, Sebastian; Pfänder, Ramona; Pedhazur, Rami; Reifferscheid, Georg; Belkin, Shimshon

    2016-11-01

    We report the results of a study of the potential negative effects of the freeze-drying process, normally considered a benign means for long-term conservation of living cells and the golden standard in bacterial preservation. By monitoring gene induction using a whole-cell Escherichia coli bioreporter panel, in which diverse stress-responsive gene promoters are fused to luminescent or fluorescent reporting systems, we have demonstrated that DNA repair genes belonging to the SOS operon (recA, sulA, uvrA, umuD, and lexA) were induced upon resuscitation from the freeze-dried state, whereas other stress-responsive promoters such as grpE, katG, phoA, soxS, and sodA were not affected. This observation was confirmed by the UMU-chromotest (activation of the umuD gene promoter) in Salmonella typhimurium, as well as by real-time PCR analyses of selected E. coli SOS genes. We further show that a functional SOS operon is important in viability maintenance following resuscitation, but that at the same time, this repair system may introduce significantly higher mutation rates, comparable to those induced by high concentrations of a known mutagen. Our results also indicate that the entire freeze-drying process, rather than either freezing or drying separately, is instrumental in the induction of DNA damage.

  16. Characterization of monocarboxylate transporter 1 (MCT1) binding affinity for Basigin gene products and L1cam.

    PubMed

    Howard, John; Finch, Nicole A; Ochrietor, Judith D

    2010-07-01

    The purpose of this study was to determine the binding affinities of Basigin gene products and neural cell adhesion molecule L1cam for monocarboxylate transporter-1 (MCT1). ELISA binding assays were performed in which recombinant proteins of the transmembrane domains of Basigin gene products and L1cam were incubated with MCT1 captured from mouse brain. It was determined that Basigin gene products bind MCT1 with moderate affinity, but L1cam does not bind MCT1. Despite a high degree of sequence conservation between Basigin gene products and L1cam, the sequences are different enough to prevent L1cam from interacting with MCT1.

  17. A shortest-path graph kernel for estimating gene product semantic similarity.

    PubMed

    Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui

    2011-07-29

    Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.

  18. Natural Products Version 2.0: Connecting Genes to Molecules

    PubMed Central

    Walsh, Christopher T.; Fischbach, Michael A.

    2009-01-01

    Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this perspective, we explore how connecting Nature’s small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and nonribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future? PMID:20121095

  19. Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes.

    PubMed

    Takeshige, Yuya; Egami, Yoko; Wakimoto, Toshiyuki; Abe, Ikuro

    2015-05-01

    Sponge metagenomes are accessible genetic sources containing genes and gene clusters responsible for the biosynthesis of sponge-derived bioactive natural products. In this study, we obtained the clone pDC112, producing turbomycin A and 2,2-di(3-indolyl)-3-indolone, based on the functional screening of the metagenome library derived from the marine sponge Discodermia calyx. The subcloning experiment identified ORF 25, which is homologous to inosine 5'-monophosphate dehydrogenase and required for the production of 2,2-di(3-indolyl)-3-indolone in Escherichia coli.

  20. Regulatory Oversight of Cell and Gene Therapy Products in Canada.

    PubMed

    Ridgway, Anthony; Agbanyo, Francisca; Wang, Jian; Rosu-Myles, Michael

    2015-01-01

    Health Canada regulates gene therapy products and many cell therapy products as biological drugs under the Canadian Food and Drugs Act and its attendant regulations. Cellular products that meet certain criteria, including minimal manipulation and homologous use, may be subjected to a standards-based approach under the Safety of Human Cells, Tissues and Organs for Transplantation Regulations. The manufacture and clinical testing of cell and gene therapy products (CGTPs) presents many challenges beyond those for protein biologics. Cells cannot be subjected to pathogen removal or inactivation procedures and must frequently be administered shortly after final formulation. Viral vector design and manufacturing control are critically important to overall product quality and linked to safety and efficacy in patients through concerns such as replication competence, vector integration, and vector shedding. In addition, for many CGTPs, the value of nonclinical studies is largely limited to providing proof of concept, and the first meaningful data relating to appropriate dosing, safety parameters, and validity of surrogate or true determinants of efficacy must come from carefully designed clinical trials in patients. Addressing these numerous challenges requires application of various risk mitigation strategies and meeting regulatory expectations specifically adapted to the product types. Regulatory cooperation and harmonisation at an international level are essential for progress in the development and commercialisation of these products. However, particularly in the area of cell therapy, new regulatory paradigms may be needed to harness the benefits of clinical progress in situations where the resources and motivation to pursue a typical drug product approval pathway may be lacking.

  1. New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis

    PubMed Central

    Gionco, Bárbara; Tavares, Eliandro R.; de Oliveira, Admilton G.; Yamada-Ogatta, Sueli F.; do Carmo, Anderson O.; Pereira, Ulisses de Pádua; Chideroli, Roberta T.; Simionato, Ane S.; Navarro, Miguel O. P.; Chryssafidis, Andreas L.; Andrade, Galdino

    2017-01-01

    The bacterial resistance for antibiotics is one of the most important problems in public health and only a small number of new products are in development. Antagonistic microorganisms from soil are a promising source of new candidate molecules. Products of secondary metabolism confer adaptive advantages for their producer, in the competition for nutrients in the microbial community. The biosynthesis process of compounds with antibiotic activity is the key to optimize their production and the transcriptomic study of microorganisms is of great benefit for the discovery of these metabolic pathways. Pseudomonas aeruginosa LV strain growing in the presence of copper chloride produces a bioactive organometallic compound, which has a potent antimicrobial activity against various microorganisms. The objective of this study was to verify overexpressed genes and evaluate their relation to the organometallic biosynthesis in this microorganism. P. aeruginosa LV strain was cultured in presence and absence of copper chloride. Two methods were used for transcriptomic analysis, genome reference-guided assembly and de novo assembly. The genome referenced analysis identified nine upregulated genes when bacteria were exposed to copper chloride, while the De Novo Assembly identified 12 upregulated genes. Nineteen genes can be related to an increased microbial metabolism for the extrusion process of exceeding intracellular copper. Two important genes are related to the biosynthesis of phenazine and tetrapyrroles compounds, which can be involved in the bioremediation of intracellular copper and we suggesting that may involve in the biosynthesis of the organometallic compound. Additional studies are being carried out to further prove the function of the described genes and relate them to the biosynthetic pathway of the organometallic compound. PMID:28966922

  2. Increasing Avermectin Production in Streptomyces avermitilis by Manipulating the Expression of a Novel TetR-Family Regulator and Its Target Gene Product.

    PubMed

    Liu, Wenshuai; Zhang, Qinling; Guo, Jia; Chen, Zhi; Li, Jilun; Wen, Ying

    2015-08-01

    Avermectins produced by Streptomyces avermitilis are commercially important anthelmintic agents. The detailed regulatory mechanisms of avermectin biosynthesis remain unclear. Here, we identified SAV3619, a TetR-family transcriptional regulator designated AveT, to be an activator for both avermectin production and morphological differentiation in S. avermitilis. AveT was shown to indirectly stimulate avermectin production by affecting transcription of the cluster-situated activator gene aveR. AveT directly repressed transcription of its own gene (aveT), adjacent gene pepD2 (sav_3620), sav_7490 (designated aveM), and sav_7491 by binding to an 18-bp perfect palindromic sequence (CGAAACGKTKYCGTTTCG, where K is T or G and Y is T or C and where the underlining indicates inverted repeats) within their promoter regions. aveM (which encodes a putative transmembrane efflux protein belonging to the major facilitator superfamily [MFS]), the important target gene of AveT, had a striking negative effect on avermectin production and morphological differentiation. Overexpression of aveT and deletion of aveM in wild-type and industrial strains of S. avermitilis led to clear increases in the levels of avermectin production. In vitro gel-shift assays suggested that C-5-O-B1, the late pathway precursor of avermectin B1, acts as an AveT ligand. Taken together, our findings indicate positive-feedback regulation of aveT expression and avermectin production by a late pathway intermediate and provide the basis for an efficient strategy to increase avermectin production in S. avermitilis by manipulation of AveT and its target gene product, AveM. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Efficient production of antibody Fab fragment by transient gene expression in insect cells.

    PubMed

    Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki

    2017-08-01

    Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    PubMed

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  5. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    PubMed Central

    Basen, Mirko; Schut, Gerrit J.; Nguyen, Diep M.; Lipscomb, Gina L.; Benn, Robert A.; Prybol, Cameron J.; Vaccaro, Brian J.; Poole, Farris L.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways. PMID:25368184

  6. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basen, M; Schut, GJ; Nguyen, DM

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. Bymore » heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.« less

  7. Vasopressin Gene-Related Products in the Management of Breast Cancer

    DTIC Science & Technology

    1997-10-01

    information added to an absence of vasopressin gene-related products from fibrocystic disease should provide us with a new screening test for...official Department of Army endorsement or approval of the products or services of these organizations. In conducting research using animals , the...investigator (s) "äclhered to the "Guide for the Care and Use of Laboratory Animals ," prepared by the Committee on Care and use of Laboratory

  8. Backbone dynamics and global effects of an activating mutation in minimized Mtu RecA inteins.

    PubMed

    Du, Zhenming; Liu, Yangzhong; Ban, David; Lopez, Maria M; Belfort, Marlene; Wang, Chunyu

    2010-07-23

    Inteins mediate protein splicing, which has found many applications in biotechnology and protein engineering. A single valine-to-leucine mutation (V67L) can globally enhance splicing and related cleavage reactions in minimized Mycobacterium tuberculosis RecA inteins. However, V67L mutation causes little change in crystal structures. To test whether protein dynamics contribute to activity enhancement in the V67L mutation, we have studied the conformations and dynamics of the minimized and engineered intein DeltaDeltaIhh-V67CM and a single V67L mutant, DeltaDeltaIhh-L67CM, by solution NMR. Chemical shift perturbations established that the V67L mutation causes global changes, including changes at the N-terminus and C-terminus of the intein, which are active sites for protein splicing. The single V67L mutation significantly slows hydrogen-exchange rates globally, indicating a shift to more stable conformations and reduction in ensemble distribution. Whereas the V67L mutation causes little change for motions on the picosecond-to-nanosecond timescale, motions on the microsecond-to-millisecond timescale affect a region involving the conserved F-block histidine and C-terminal asparagine, which are residues important for C-terminal cleavage. The V67L mutation is proposed to activate splicing by reducing the ensemble distribution of the intein structure and by modifying the active sites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. fabH deletion increases DHA production in Escherichia coli expressing Pfa genes.

    PubMed

    Giner-Robles, Laura; Lázaro, Beatriz; de la Cruz, Fernando; Moncalián, Gabriel

    2018-06-08

    Some marine bacteria, such as Moritella marina, produce the nutraceutical docosahexaenoic acid (DHA) thanks to a specific enzymatic complex called Pfa synthase. Escherichia coli heterologously expressing the pfa gene cluster from M. marina also produces DHA. The aim of this study was to find genetic or metabolic conditions to increase DHA production in E. coli. First, we analysed the effect of the antibiotic cerulenin, showing that DHA production increased twofold. Then, we tested a series of single gene knockout mutations affecting fatty acid biosynthesis, in order to optimize the synthesis of DHA. The most effective mutant, fabH, showed a threefold increase compared to wild type strain. The combination of cerulenin inhibition and fabH deletion rendered a 6.5-fold improvement compared to control strain. Both strategies seem to have the same mechanism of action, in which fatty acid synthesis via the canonical pathway (fab pathway) is affected in its first catalytic step, which allows the substrates to be used by the heterologous pathway to synthesize DHA. DHA-producing E. coli strain that carries a fabH gene deletion boosts DHA production by tuning down the competing canonical biosynthesis pathway. Our approach can be used for optimization of DHA production in different organisms.

  10. Norrie gene product is necessary for regression of hyaloid vessels.

    PubMed

    Ohlmann, Anne V; Adamek, Edith; Ohlmann, Andreas; Lütjen-Drecoll, Elke

    2004-07-01

    To investigate the nature and origin of the vitreous membranes in mice with knock-out of the Norrie gene product (ND mice). Eighty-two eyes of ND mice of different age groups (postnatal day [P]0-13 months) and 95 age-matched wild-type control mice were investigated. In vitreoretinal wholemounts and in sagittal sections, vessels and free cells were visualized by labeling for lectin. In addition, staining with a marker for macrophages (F4/80) and collagen XVIII/endostatin known to be involved in regression of hyaloid vessels was performed for light and electron microscopic investigations. Endostatin expression was confirmed by Western blot analysis. Wild-type controls showed the typical pattern of hyaloid vessels, their regression and concomitantly retinal vasculogenesis and angiogenesis. Hyaloid vessels all stained for endostatin, whereas retinal vessels remained unstained. In ND mice, 1 to 5 days after birth, the hyaloid and retinal vasculatures were comparable to that in control mice. The hyaloid vessels also stained for endostatin. Numerous F4/80-positive cells were present adjacent to the vessels. With increasing age, only a few connecting branches of the hyaloid vessels regressed. Even in old mice most of the hyaloid vessels persisted. The vessels still stained for endostatin. Retinal angiogenesis was impaired. Retrolental membranes in ND mice consist of persistent hyaloid vessels, indicating that the ND gene product is important for the process of regression of these vessels. The ND gene product neither influences endostatin expression nor the presence of macrophages.

  11. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate

    2014-01-01

    The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.

  12. Diversity, Distribution and Quantification of Antibiotic Resistance Genes in Goat and Lamb Slaughterhouse Surfaces and Meat Products

    PubMed Central

    Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W.; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate

    2014-01-01

    The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated ‘hot spots.’ The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination. PMID:25479100

  13. Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle

    PubMed Central

    Ron, Micha; Israeli, Galit; Seroussi, Eyal; Weller, Joel I; Gregg, Jeffrey P; Shani, Moshe; Medrano, Juan F

    2007-01-01

    Background Many studies have found segregating quantitative trait loci (QTL) for milk production traits in different dairy cattle populations. However, even for relatively large effects with a saturated marker map the confidence interval for QTL location by linkage analysis spans tens of map units, or hundreds of genes. Combining mapping and arraying has been suggested as an approach to identify candidate genes. Thus, gene expression analysis in the mammary gland of genes positioned in the confidence interval of the QTL can bridge the gap between fine mapping and quantitative trait nucleotide (QTN) determination. Results We hybridized Affymetrix microarray (MG-U74v2), containing 12,488 murine probes, with RNA derived from mammary gland of virgin, pregnant, lactating and involuting C57BL/6J mice in a total of nine biological replicates. We combined microarray data from two additional studies that used the same design in mice with a total of 75 biological replicates. The same filtering and normalization was applied to each microarray data using GeneSpring software. Analysis of variance identified 249 differentially expressed probe sets common to the three experiments along the four developmental stages of puberty, pregnancy, lactation and involution. 212 genes were assigned to their bovine map positions through comparative mapping, and thus form a list of candidate genes for previously identified QTLs for milk production traits. A total of 82 of the genes showed mammary gland-specific expression with at least 3-fold expression over the median representing all tissues tested in GeneAtlas. Conclusion This work presents a web tool for candidate genes for QTL (cgQTL) that allows navigation between the map of bovine milk production QTL, potential candidate genes and their level of expression in mammary gland arrays and in GeneAtlas. Three out of four confirmed genes that affect QTL in livestock (ABCG2, DGAT1, GDF8, IGF2) were over expressed in the target organ. Thus, cg

  14. Production of recombinant adenovirus containing human interlukin-4 gene.

    PubMed

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-11-01

    Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics.

  15. Regulation of metabolic products and gene expression in Fusarium asiaticum by agmatine addition.

    PubMed

    Suzuki, Tadahiro; Kim, Young-Kyung; Yoshioka, Hifumi; Iwahashi, Yumiko

    2013-05-01

    The metabolic products resulting from the cultivation of F. asiaticum in agmatine were identified using capillary electrophoresis-time of flight mass spectrometry. Glyoxylic acid was detected from fungal cultures grown in agmatine, while it was absent in control cells. The abundance of other metabolic products of the glycolytic pathway also increased because of agmatine; however, there was no increase in the amounts of pyruvic acid or metabolites from the tricarboxylic acid cycle. Moreover, gene expression levels within Fusarium asiaticum exposed to agmatine were analyzed by DNA microarray. Changes in gene expression levels directed the changes in metabolic products. Our results suggest that acetyl coenzyme A, which is a starting substrate for the biosynthesis of deoxynivalenol (DON), was simultaneously produced by activated β-oxidation. Furthermore, the content of 4-aminobutyrate (GABA) was increased in the agmatine addition culture medium. GABA can be synthesized from agmatine through putrescine and might influence the regulation of DON-related genes.

  16. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    NASA Astrophysics Data System (ADS)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  17. Use of galerina marginata genes and proteins for peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  18. Use of Galerina marginata genes and proteins for peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  19. Use of Galerina marginata genes and proteins for peptide production

    DOEpatents

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  20. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOEpatents

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  1. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOEpatents

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2011-10-04

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  2. Enhancement of HIV-1 VLP production using gene inhibition strategies.

    PubMed

    Fuenmayor, Javier; Cervera, Laura; Rigau, Cristina; Gòdia, Francesc

    2018-05-01

    Gag polyprotein from HIV-1 is able to generate virus-like particles (VLPs) when recombinantly expressed in animal cell platforms. HIV-1 VLP production in HEK293 cells can be improved by the use of different strategies for increasing product titers. One of them is the so-called extended gene expression (EGE), based on repeated medium exchanges and retransfections of the cell culture to prolong the production phase. Another approach is the media supplementation with gene expression enhancers such as valproic acid and caffeine, despite their detrimental effect on cell viability. Valproic acid is a histone deacetylase inhibitor while caffeine has a phosphodiesterase inhibition effect. Here, the combination of the EGE protocol with additive supplementation to maximize VLP production is first tested. As an alternative to the direct additive supplementation, the replacement of these chemical additives by iRNA for obtaining the same inhibition action is also tested. The combination of the EGE protocol with caffeine and valproic acid supplementation resulted in a 1.5-fold improvement in HIV-1 VLP production compared with the EGE protocol alone, representing an overall 18-fold improvement over conventional batch cultivation. shRNAs encoded in the expression vector were tested to substitute valproic acid and caffeine. This novel strategy enhanced VLP production by 2.3 fold without any detrimental effect on cell viability (91.7%) compared with the batch cultivation (92.0%). Finally, the combination of shRNA with EGE resulted in more than 15.6-fold improvement compared with the batch standard protocol traditionally used. The methodology developed enables the production of high titers of HIV-1 VLPs avoiding the toxic effects of additives.

  3. EpsA is an essential gene in exopolysaccharide production in Lactobacillus johnsonii FI9785.

    PubMed

    Dertli, Enes; Mayer, Melinda J; Colquhoun, Ian J; Narbad, Arjan

    2016-07-01

    Lactobacillus johnsonii FI9785 has an eps gene cluster which is required for the biosynthesis of homopolymeric exopolysaccharides (EPS)-1 and heteropolymeric EPS-2 as a capsular layer. The first gene of the cluster, epsA, is the putative transcriptional regulator. In this study we showed the crucial role of epsA in EPS biosynthesis by demonstrating that deletion of epsA resulted in complete loss of both EPS-1 and EPS-2 on the cell surface. Plasmid complementation of the epsA gene fully restored EPS production, as confirmed by transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, this complementation resulted in a twofold increase in the expression levels of this gene, which almost doubled amounts of EPS production in comparison with the wild-type strain. Analysis of EPS by NMR showed an increased ratio of the heteropolysaccharide to homopolysaccharide in the complemented strain and allowed identification of the acetylated residue in EPS-2 as the (1,4)-linked βGlcp unit, with the acetyl group located at O-6. These findings indicate that epsA is a positive regulator of EPS production and that EPS production can be manipulated by altering its expression. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Selection and validation of reference genes for RT-qPCR indicates that juice of sugarcane varieties modulate the expression of C metabolism genes in the endophytic diazotrophic Herbaspirillum rubrisubalbicans strain HCC103.

    PubMed

    Polese, Valéria; de Paula Soares, Cleiton; da Silva, Paula Renata Alves; Simões-Araújo, Jean Luiz; Baldani, José Ivo; Vidal, Marcia Soares

    2017-12-01

    Quantitative reverse transcription PCR (RT-qPCR) is an important tool for evaluating gene expression. However, this technique requires that specific internal normalizing genes be identified for different experimental conditions. To date, no internal normalizing genes are available for validation of data analyses for Herbaspirillum rubrisubalbicans strain HCC103, an endophyte that is part of the sugarcane consortium inoculant. This work seeks to identify and evaluate suitable reference genes for gene expression studies in HCC103 grown until middle log phase in sugarcane juice obtained from four sugarcane varieties or media with three different carbon sources. The mRNA levels of five candidate genes (rpoA, gyrA, dnaG, recA and gmK) and seven target genes involved in carbon metabolism (acnA, fbp, galE, suhB, wcaA, ORF_0127.0101 and _0127.0123) were quantified by RT-qPCR. Analysis of expression stability of these genes was carried out using geNorm and Normfinder software. The results indicated that the HCC103 dnaG and gyrA genes are the most stable and showed adequate relative expression level changes among the different sugarcane juices. The highest expression level was seen for ORF_0127.0101, which encodes a sugar transporter, in juice from sugarcane variety RB867515 and glucose as the carbon source. The suhB gene, encoding SuhB inositol monophosphatase, had a higher relative expression level on 0.5% glucose, 100% sugarcane juice from variety RB867515 and 0.5% aconitate. Together the results suggest that dnaG and gyrA genes are suitable as reference genes for RT-qPCR analysis of strain HCC103 and that juice from different sugarcane varieties modulates the expression of key genes involved in carbon metabolism.

  5. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1 mM l-isoleucine, MV-KICF1 accumulated 47 mM KIC (6.1 g l(-1)) with a yield of 0.20 mol/mol glucose and a volumetric productivity of 1.41 mmol KIC l(-1)  h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. A Weighted Multipath Measurement Based on Gene Ontology for Estimating Gene Products Similarity

    PubMed Central

    Liu, Lizhen; Dai, Xuemin; Song, Wei; Lu, Jingli

    2014-01-01

    Abstract Many different methods have been proposed for calculating the semantic similarity of term pairs based on gene ontology (GO). Most existing methods are based on information content (IC), and the methods based on IC are used more commonly than those based on the structure of GO. However, most IC-based methods not only fail to handle identical annotations but also show a strong bias toward well-annotated proteins. We propose a new method called weighted multipath measurement (WMM) for estimating the semantic similarity of gene products based on the structure of the GO. We not only considered the contribution of every path between two GO terms but also took the depth of the lowest common ancestors into account. We assigned different weights for different kinds of edges in GO graph. The similarity values calculated by WMM can be reused because they are only relative to the characteristics of GO terms. Experimental results showed that the similarity values obtained by WMM have a higher accuracy. We compared the performance of WMM with that of other methods using GO data and gene annotation datasets for yeast and humans downloaded from the GO database. We found that WMM is more suited for prediction of gene function than most existing IC-based methods and that it can distinguish proteins with identical annotations (two proteins are annotated with the same terms) from each other. PMID:25229994

  7. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/secretory product.

    PubMed

    Thuwajit, Chanitra; Thuwajit, Peti; Uchida, Kazuhiko; Daorueang, Daoyot; Kaewkes, Sasithorn; Wongkham, Sopit; Miwa, Masanao

    2006-06-14

    To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product. NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR. Among a total of 15,000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfr alpha, jak 1, eps 8, tgf beta 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfbeta 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-beta (TGF-beta) showed statistical significance (P < 0.05). O. viverrini ES product stimulates the significant changes of gene expression in several functional categories

  8. Unveiling the Hybrid Genome Structure of Escherichia coli RR1 (HB101 RecA+)

    PubMed Central

    Jeong, Haeyoung; Sim, Young Mi; Kim, Hyun Ju; Lee, Sang Jun

    2017-01-01

    There have been extensive genome sequencing studies for Escherichia coli strains, particularly for pathogenic isolates, because fast determination of pathogenic potential and/or drug resistance and their propagation routes is crucial. For laboratory E. coli strains, however, genome sequence information is limited except for several well-known strains. We determined the complete genome sequence of laboratory E. coli strain RR1 (HB101 RecA+), which has long been used as a general cloning host. A hybrid genome sequence of K-12 MG1655 and B BL21(DE3) was constructed based on the initial mapping of Illumina HiSeq reads to each reference, and iterative rounds of read mapping, variant detection, and consensus extraction were carried out. Finally, PCR and Sanger sequencing-based finishing were applied to resolve non-single nucleotide variant regions with aberrant read depths and breakpoints, most of them resulting from prophages and insertion sequence transpositions that are not present in the reference genome sequence. We found that 96.9% of the RR1 genome is derived from K-12, and identified exact crossover junctions between K-12 and B genomic fragments. However, because RR1 has experienced a series of genetic manipulations since branching from the common ancestor, it has a set of mutations different from those found in K-12 MG1655. As well as identifying all known genotypes of RR1 on the basis of genomic context, we found novel mutations. Our results extend current knowledge of the genotype of RR1 and its relatives, and provide insights into the pedigree, genomic background, and physiology of common laboratory strains. PMID:28421066

  9. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  10. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2016-11-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  11. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  12. Clinical trials of GMP products in the gene therapy field.

    PubMed

    Bamford, Kathleen B

    2011-01-01

    Advances in gene therapy are increasingly leading to clinical assessment in many fields of medicine with diverse approaches. The basic science stems from approaches aimed at different functions such as correcting a missing/abnormal gene, altering the proportion or expression of normal genes to augment a physiological process or using this principle to destroy malignant or infected cells. As the technology advances, it is increasingly important to ensure that clinical trials answer the questions that need to be asked. In this chapter we review examples of published clinical trials, resources for accessing information about registered trials, the process of regulating trials, good clinical practice, and good manufacturing practice as well as summarising the approach taken by regulatory authorities in reviewing applications for the introduction of products for use in the clinic.

  13. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    PubMed Central

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics that made it a good choice for using in cancer gene therapy, controlling inflammatory diseases, and studies on autoimmune diseases. Materials and Methods In brief, IL-4 coding sequence was amplified by and cloned in pAd-Track-CMV. Then, by means of homologous recombination between recombinant pAd-Track-CMV and Adeasy-1 plasmid in bacteria, recombinant adenovirus complete genome was made and IL-4 containing shuttle vector was incorporated into the viral backbone. After linearization, for virus packaging, viral genome was transfected into HEK-293 cell line. Viral production was conveniently followed with the aid of green fluorescent protein. Results Recombinant adenovirus produced here, was capable to infecting cell lines and express interlukin-4 in cell. Conclusion This system can be used as a powerful, easy, and cost benefit tool in various studies on cancer gene therapy and also studies on immunogenetics. PMID:23493491

  14. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes.

    PubMed

    Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2009-11-01

    Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.

  15. Improved pestalotiollide B production by deleting competing polyketide synthase genes in Pestalotiopsis microspora.

    PubMed

    Chen, Longfei; Li, Yingying; Zhang, Qian; Wang, Dan; Akhberdi, Oren; Wei, Dongsheng; Pan, Jiao; Zhu, Xudong

    2017-02-01

    Pestalotiollide B, an analog of dibenzodioxocinones which are inhibitors of cholesterol ester transfer proteins, is produced by Pestalotiopsis microspora NK17. To increase the production of pestalotiollide B, we attempted to eliminate competing polyketide products by deleting the genes responsible for their biosynthesis. We successfully deleted 41 out of 48 putative polyketide synthases (PKSs) in the genome of NK17. Nine of the 41 PKS deleted strains had significant increased production of pestalotiollide B (P < 0.05). For instance, deletion of pks35, led to an increase of pestalotiollide B by 887%. We inferred that these nine PKSs possibly lead to branch pathways that compete for precursors with pestalotiollide B, or that convert the product. Deletion of some other PKS genes such as pks8 led to a significant decrease of pestalotiollide B, suggesting they are responsible for its biosynthesis. Our data demonstrated that improvement of pestalotiollide B production can be achieved by eliminating competing polyketides.

  16. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-04-01

    To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.

  17. Genetic resources for methane production from biomass described with the Gene Ontology.

    PubMed

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C; Tyler, Brett M; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing "gold standards" for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/).

  18. Genetic resources for methane production from biomass described with the Gene Ontology

    PubMed Central

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C.; Tyler, Brett M.; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70–95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing “gold standards” for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http

  19. Isolated Fungal Promoters and Gene Transcription Terminators and Methods of Protein and Chemical Production in a Fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  20. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.

    2008-11-11

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  1. Isolated fungal promoters and gene transcription terminators and methods of protein and chemical production in a fungus

    DOEpatents

    Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K

    2014-05-27

    The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.

  2. Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.

    PubMed

    Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng

    2014-11-25

    The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P < 0.05). Our study shows evidence of significant associations between SNPs within the HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.

  3. Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits.

    PubMed

    Mo, Delin; Zhu, Zhengmao; te Pas, Marinus F W; Li, Xinyun; Yang, Shulin; Wang, Heng; Wang, Huanling; Li, Kui

    2008-06-30

    In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11-16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P < 0.05). Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.

  4. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    PubMed Central

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  5. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    PubMed Central

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G. L.; Howlett, Allyn C.

    2015-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. PMID:24927667

  6. Impact of nitrogen concentration on validamycin A production and related gene transcription in fermentation of Streptomyces hygroscopicus 5008.

    PubMed

    Wei, Zhen-Hua; Bai, Linquan; Deng, Zixin; Zhong, Jian-Jiang

    2012-09-01

    Validamycin A (VAL-A) is an important and widely used agricultural antibiotic. In this study, statistical screening designs were applied to identify significant medium variables for VAL-A production and to find their optimal levels. The optimized medium caused 70% enhancement of VAL-A production. The difference between optimized medium and original medium suggested that low nitrogen source level might attribute to the enhancement of VAL-A production. The addition of different nitrogen sources to the optimized medium inhibited VAL-A production, which confirmed the importance of nitrogen concentration for VAL-A production. Furthermore, differences in structural gene transcription and enzyme activity between the two media were assayed. The results showed that lower nitrogen level in the optimized medium could regulate VAL-A production in gene transcriptional level. Our previous study indicated that the transcription of VAL-A structural genes could be enhanced at elevated temperature. In this work, the increased fermentation temperature from 37 to 42 °C with the optimized medium enhanced VAL-A production by 39%, which testified to the importance of structural gene transcription in VAL-A production. The information is useful for further VAL-A production enhancement.

  7. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  8. Production of Dwarf Lettuce by Overexpressing a Pumpkin Gibberellin 20-Oxidase Gene

    PubMed Central

    Niki, Tomoya; Nishijima, Takaaki; Nakayama, Masayoshi; Hisamatsu, Tamotsu; Oyama-Okubo, Naomi; Yamazaki, Hiroko; Hedden, Peter; Lange, Theo; Mander, Lewis N.; Koshioka, Masaji

    2001-01-01

    We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2–35S-Ω). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T2 generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T2 generation, indicating that the transgene was stable and dominant. The endogenous levels of GA1 and GA4 were reduced in the dwarfs, whereas large amounts of GA17 and GA25, which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species. PMID:11457947

  9. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    USGS Publications Warehouse

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  10. Analysis of Genes for Succinoyl Trehalose Lipid Production and Increasing Production in Rhodococcus sp. Strain SD-74

    PubMed Central

    Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo

    2013-01-01

    Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682

  11. Characterization of the Expression of Basigin Gene Products Within the Pineal Gland of Mice.

    PubMed

    Tokar, Derek; van Ekeris, Leslie; Linser, Paul J; Ochrietor, Judith D

    2017-08-01

    The expression of Basigin gene products and monocarboxylate transporter-1 (MCT1) has been investigated within the mammalian neural retina and suggests a role for these proteins in cellular metabolism within that tissue. The purpose of the present study was to investigate the expression of these same proteins in the pineal gland of the mouse brain. Mouse pineal gland and neural retina RNA and protein were subjected to quantitative reverse transcription-polymerase chain reaction and immunoblotting analyses. In addition, paraffin-embedded sections of each tissue were analyzed for expression of Basigin gene products and MCT1 via immunohistochemistry. The results indicate that MCT1 and Basigin variant-2, but not Basigin variant-1, are expressed within the mouse pineal gland. The expression of Basigin variant-2 and MCT1 was localized to the capsule surrounding the gland. The position and relative amounts of the gene products suggest that they play a much less prominent role within the pineal gland than in the neural retina.

  12. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    PubMed

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted

  13. Genetic diversity of Burkholderia (Proteobacteria) species from the Caatinga and Atlantic rainforest biomes in Bahia, Brazil.

    PubMed

    Santini, A C; Santos, H R M; Gross, E; Corrêa, R X

    2013-03-11

    The genus Burkholderia (β-Proteobacteria) currently comprises more than 60 species, including parasites, symbionts and free-living organisms. Several new species of Burkholderia have recently been described showing a great diversity of phenotypes. We examined the diversity of Burkholderia spp in environmental samples collected from Caatinga and Atlantic rainforest biomes of Bahia, Brazil. Legume nodules were collected from five locations, and 16S rDNA and recA genes of the isolated microorganisms were analyzed. Thirty-three contigs of 16S rRNA genes and four contigs of the recA gene related to the genus Burkholderia were obtained. The genetic dissimilarity of the strains ranged from 0 to 2.5% based on 16S rDNA analysis, indicating two main branches: one distinct branch of the dendrogram for the B. cepacia complex and another branch that rendered three major groups, partially reflecting host plants and locations. A dendrogram designed with sequences of this research and those designed with sequences of Burkholderia-type strains and the first hit BLAST had similar topologies. A dendrogram similar to that constructed by analysis of 16S rDNA was obtained using sequences of the fragment of the recA gene. The 16S rDNA sequences enabled sufficient identification of relevant similarities and groupings amongst isolates and the sequences that we obtained. Only 6 of the 33 isolates analyzed via 16S rDNA sequencing showed high similarity with the B. cepacia complex. Thus, over 3/4 of the isolates have potential for biotechnological applications.

  14. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

    PubMed Central

    Chen, Xi; Liang, Yong; Hua, Jing; Tao, Li; Qin, Wensheng; Chen, Sanfeng

    2010-01-01

    In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase gene and pgk I promoter from T. reesei 3-phosphoglycerate kinase I gene. After transforming into T. reesei QM9414, 43 stable transformants were obtained by PCR amplification and ethylene determination. Southern blot analysis of 14 transformants demonstrated that the efe gene was integrated into chromosomal DNA with copy numbers from 1 to 4. Reverse transcription polymerase chain reaction (RT-PCR) analysis of 6 transformants showed that the heterologous gene was transcribed. By using wheat straw as a carbon source, the ethylene production rates of aforementioned 14 transformants were measured. Transformant C30-3 with pgk I promoter had the highest ethylene production (4,012 nl h-1 l-1). This indicates that agricultural wastes could be used to produce ethylene in recombinant filamentous fungus T. reesei. PMID:20150979

  15. Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus.

    PubMed

    Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S

    2017-11-01

    imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Overexpression of D-Xylose Reductase (xyl1) Gene and Antisense Inhibition of D-Xylulokinase (xyiH) Gene Increase Xylitol Production in Trichoderma reesei

    PubMed Central

    Hong, Yuanyuan; Dashtban, Mehdi; Kepka, Greg; Chen, Sanfeng; Qin, Wensheng

    2014-01-01

    T. reesei is an efficient cellulase producer and biomass degrader. To improve xylitol production in Trichoderma reesei strains by genetic engineering, two approaches were used in this study. First, the presumptive D-xylulokinase gene in T. reesei (xyiH), which has high homology to known fungi D-xylulokinase genes, was silenced by transformation of T. reesei QM9414 strain with an antisense construct to create strain S6-2-2. The expression of the xyiH gene in the transformed strain S6-2-2 decreased at the mRNA level, and D-xylulokinase activity decreased after 48 h of incubation. This led to an increase in xylitol production from undetectable levels in wild-type T. reesei QM9414 to 8.6 mM in S6-2-2. The T. reesei Δxdh is a xylose dehydrogenase knockout strain with increased xylitol production compared to the wild-type T. reesei QM9414 (22.8 mM versus undetectable). The copy number of the xylose reductase gene (xyl1) in T. reesei Δxdh strain was increased by genetic engineering to create a new strain Δ9-5-1. The Δ9-5-1 strain showed a higher xyl1 expression and a higher yield of xylose reductase, and xylitol production was increased from 22.8 mM to 24.8 mM. Two novel strains S6-2-2 and Δ9-5-1 are capable of producing higher yields of xylitol. T. reesei has great potential in the industrial production of xylitol. PMID:25013760

  17. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  18. Role of plnB gene in the regulation of bacteriocin production in Lactobacillus paraplantarum L-XM1.

    PubMed

    Zhang, Xiangmei; Shang, Nan; Zhang, Xu; Gui, Meng; Li, Pinglan

    2013-06-12

    Homologues of plnB gene have been shown to participate in regulation of bacteriocin production through quorum sensing system in other organisms, to investigate the possible role of plnB gene in Lactobacillus paraplantarum L-XM1, we cloned and insertionally inactivated the plnB gene. The plnB knockout mutant ΔplnB21 showed loss of bacteriocin production, its Bac⁺ phenotype could not be restored even after the addition of PlnA. Furthermore, reverse transcription-PCR analysis from total RNA preparations showed that the bacteriocin structural genes of the plnEF and plnJK were not transcribed in the plnB knockout mutant compared with the wild-type strain. It was therefore concluded that plnB is invovled in a quorum sensing based bacteriocin production. This is the first demonstration of a role for plnB by gene knockout in L. paraplantarum. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.a

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulationmore » of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.« less

  20. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O'Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  1. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes.

    PubMed

    Fang, J; Cai, C; Wang, Q; Lin, P; Zhao, Z; Cheng, F

    2017-03-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  2. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGES

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; ...

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  3. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    PubMed

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes.

  4. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  5. Diversity of Antibiotic Resistance Genes in Enterococcus Strains Isolated from Ready-to-Eat Meat Products.

    PubMed

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Łaniewska-Trokenheim, Łucja

    2016-10-25

    The objective of the study was to answer the question of whether the ready-to-eat meat products can pose indirect hazard for consumer health serving as reservoir of Enterococcus strains harboring tetracyclines, aminoglycosides, and macrolides resistance genes. A total of 390 samples of ready-to-eat meat products were investigated. Enterococcus strains were found in 74.1% of the samples. A total of 302 strains were classified as: Enterococcus faecalis (48.7%), Enterococcus faecium (39.7%), Enterococcus casseliflavus (4.3%), Enterococcus durans (3.0%), Enterococcus hirae (2.6%), and other Enterococcus spp. (1.7%). A high percentage of isolates were resistant to streptomycin high level (45%) followed by erythromycin (42.7%), fosfomycin (27.2%), rifampicin (19.2%), tetracycline (36.4%), tigecycline (19.9%). The ant(6')-Ia gene was the most frequently found gene (79.6%). Among the other genes that encode aminoglycosides-modifying enzymes, the highest portion of the strains had the aac(6')-Ie-aph(2'')-Ia (18.5%) and aph(3'')-IIIa (16.6%), but resistance of isolates from food is also an effect of the presence of aph(2'')-Ib, aph(2'')-Ic, aph(2'')-Id genes. Resistance to tetracyclines was associated with the presence of tetM (43.7%), tetL (32.1%), tetK (14.6%), tetW (0.7%), and tetO (0.3%) genes. The ermB and ermA genes were found in 33.8% and 18.9% of isolates, respectively. Nearly half of the isolates contained a conjugative transposon of the Tn916/Tn1545 family. Enterococci are widely present in retail ready-to-eat meat products. Many isolated strains (including such species as E. casseliflavus, E. durans, E. hirae, and Enterococcus gallinarum) are antibiotic resistant and carry transferable resistance genes. © 2016 Institute of Food Technologists®.

  6. Methods to identify and analyze gene products involved in neuronal intracellular transport using Drosophila

    PubMed Central

    Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.

    2017-01-01

    Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520

  7. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin.

    PubMed

    Makitrynskyy, Roman; Ostash, Bohdan; Tsypik, Olga; Rebets, Yuriy; Doud, Emma; Meredith, Timothy; Luzhetskyy, Andriy; Bechthold, Andreas; Walker, Suzanne; Fedorenko, Victor

    2013-10-23

    Unlike the majority of actinomycete secondary metabolic pathways, the biosynthesis of peptidoglycan glycosyltransferase inhibitor moenomycin in Streptomyces ghanaensis does not involve any cluster-situated regulators (CSRs). This raises questions about the regulatory signals that initiate and sustain moenomycin production. We now show that three pleiotropic regulatory genes for Streptomyces morphogenesis and antibiotic production-bldA, adpA and absB-exert multi-layered control over moenomycin biosynthesis in native and heterologous producers. The bldA gene for tRNA(Leu)UAA is required for the translation of rare UUA codons within two key moenomycin biosynthetic genes (moe), moeO5 and moeE5. It also indirectly influences moenomycin production by controlling the translation of the UUA-containing adpA and, probably, other as-yet-unknown repressor gene(s). AdpA binds key moe promoters and activates them. Furthermore, AdpA interacts with the bldA promoter, thus impacting translation of bldA-dependent mRNAs-that of adpA and several moe genes. Both adpA expression and moenomycin production are increased in an absB-deficient background, most probably because AbsB normally limits adpA mRNA abundance through ribonucleolytic cleavage. Our work highlights an underappreciated strategy for secondary metabolism regulation, in which the interaction between structural genes and pleiotropic regulators is not mediated by CSRs. This strategy might be relevant for a growing number of CSR-free gene clusters unearthed during actinomycete genome mining.

  8. Roles of the 2 microns gene products in stable maintenance of the 2 microns plasmid of Saccharomyces cerevisiae.

    PubMed Central

    Reynolds, A E; Murray, A W; Szostak, J W

    1987-01-01

    We have examined the replication and segregation of the Saccharomyces cerevisiae 2 microns circle. The amplification of the plasmid at low copy numbers requires site-specific recombination between the 2 microns inverted repeat sequences catalyzed by the plasmid-encoded FLP gene. No other 2 microns gene products are required. The overexpression of FLP in a strain carrying endogenous 2 microns leads to uncontrolled plasmid replication, longer cell cycles, and cell death. Two different assays show that the level of Flp activity decreases with increasing 2 microns copy number. This regulation requires the products of the REP1 and REP2 genes. These gene products also act together to ensure that 2 microns molecules are randomly segregated between mother and daughter cells at cell division. Images PMID:3316982

  9. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation

    PubMed Central

    Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika

    2014-01-01

    Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than

  10. TAC1 Gene Products Regulate Pituitary Hormone Secretion and Gene Expression in Prepubertal Grass Carp Pituitary Cells.

    PubMed

    Hu, Guangfu; He, Mulan; Ko, Wendy K W; Wong, Anderson O L

    2017-06-01

    Tachykinin-1 (TAC1) is known to have diverse functions in mammals, but similar information is scarce in fish species. Using grass carp as a model, the pituitary actions, receptor specificity and postreceptor signaling of TAC1 gene products, namely substance P (SP) and neurokinin A (NKA), were examined. TAC1 encoding SP and NKA as well as tachykinin receptors NK1R and NK2R were cloned in the carp pituitary. The newly cloned receptors were shown to be functional with properties similar to mammalian counterparts. In carp pituitary cells, SP and NKA could trigger luteinizing hormone (LH), prolactin (PRL), and somatolactin α (SLα) secretion, with parallel rises in PRL and SLα transcripts. Short-term SP treatment (3 hours) induced LH release, whereas prolonged induction (24 hours) could attenuate LHβ messenger RNA (mRNA) expression. At pituitary cell level, LH, PRL, and SLα regulation by TAC1 gene products were mediated by NK1R, NK2R, and NK3R, respectively. Apparently, SP- and NKA-induced LH and SLα secretion and transcript expression were mediated by adenylyl cyclase/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholiphase C (PLC)/inositol 1,4,5-triphosphate/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/CaM-dependent protein kinase-II pathways. The signal transduction for PRL responses was similar, except for the absence of a PKC component. Regarding SP inhibition of LHβ mRNA expression, the cAMP/PKA- and PLC/PKC-dependent (but not Ca2+/CaM-dependent) cascades were involved. These results, as a whole, suggest that TAC1 gene products play a role in LH, PRL, and SLα regulation via overlapping postreceptor signaling coupled to different subtypes of tachykinin receptor expressed in the carp pituitary. Copyright © 2017 Endocrine Society.

  11. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis

    PubMed Central

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-01-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level. PMID:22442419

  12. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis.

    PubMed

    Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Li, Rong-Jun; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong

    2012-06-01

    Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.

  13. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  14. Characterization of the Drosophila Methoprene -tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation.

    PubMed

    Miura, Ken; Oda, Masahito; Makita, Sumiko; Chinzei, Yasuo

    2005-03-01

    Juvenile hormones (JHs) of insects are sesquiterpenoids that regulate a great diversity of processes in development and reproduction. As yet the molecular modes of action of JH are poorly understood. The Methoprene-tolerant (Met) gene of Drosophila melanogaster has been found to be responsible for resistance to a JH analogue (JHA) insecticide, methoprene. Previous studies on Met have implicated its involvement in JH signaling, although direct evidence is lacking. We have now examined the product of Met (MET) in terms of its binding to JH and ligand-dependent gene regulation. In vitro synthesized MET directly bound to JH III with high affinity (Kd = 5.3 +/- 1.5 nm, mean +/- SD), consistent with the physiological JH concentration. In transient transfection assays using Drosophila S2 cells the yeast GAL4-DNA binding domain fused to MET exerted JH- or JHA-dependent activation of a reporter gene. Activation of the reporter gene was highly JH- or JHA-specific with the order of effectiveness: JH III > JH II > JH I > methoprene; compounds which are only structurally related to JH or JHA did not induce any activation. Localization of MET in the S2 cells was nuclear irrespective of the presence or absence of JH. These results suggest that MET may function as a JH-dependent transcription factor.

  15. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    PubMed

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  16. Genome-Wide Discovery of Genes Required for Capsule Production by Uropathogenic Escherichia coli.

    PubMed

    Goh, Kelvin G K; Phan, Minh-Duy; Forde, Brian M; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Ulett, Glen C; Sweet, Matthew J; Beatson, Scott A; Schembri, Mark A

    2017-10-24

    Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn 5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes ( mprA and lrhA ) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn 5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production. IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival

  17. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

    PubMed Central

    2013-01-01

    Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be

  18. Production and pathogenicity of hepatitis C virus core gene products

    PubMed Central

    Li, Hui-Chun; Ma, Hsin-Chieh; Yang, Chee-Hing; Lo, Shih-Yen

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis. PMID:24966583

  19. tif-dependent induction of colicin E1, prophage lambda, and filamentation in Escherichia coli K-12.

    PubMed

    Tessman, E S; Peterson, P K

    1980-09-01

    To help understand how the tif-1 mutation of the recA gene of Escherichia coli confers adenine activability on the recA protein, we used the fact that cytidine plus guanosine inhibits induction of prophage lambda and cell filamentation in a tif-1 mutant, and that adenine reverses this inhibition. We varied the amount of adenine in agar plates containing a fixed amount of cytidine and scored for survivors of three different tif-dependent lethal induction processes. Much more adenine was required for cell killing when cytidine was present than when it was absent. Therefore adenine does not override cytidine inhibition, but instead appears to compete with it for a site of action which may be on the recA protein. The competition is not at the cell transport level. Our results lead to a model in which the tif form of the recA protein is an allosteric enzyme that binds both negative and positive modulators. By varying the adenine-cytidine ratio of the medium it is possible to control the degree of induction in a tif-1 cell. For the three different tif-dependent inductions studied here, least adenine was required for lambda induction and most for lethal filamentation, presumably reflecting requirements for different amounts of activated recA protein in each process. Varying the adenine-cytidine ratio revealed two stable intermediate stages in lambda induction, as well as a stage of colicin E1 induction in which the cells produced colicin without cell death. The rate of filament formation could be similarly controlled. Experiments with tif (ColE1, lambda) gave evidence of a competition between colicin repressor and lambda repressor for activated recA protein.

  20. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    PubMed

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l -1 , monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  1. Taxonomically Different Co-Microsymbionts of a Relict Legume, Oxytropis popoviana, Have Complementary Sets of Symbiotic Genes and Together Increase the Efficiency of Plant Nodulation.

    PubMed

    Safronova, Vera I; Belimov, Andrey A; Sazanova, Anna L; Chirak, Elizaveta R; Verkhozina, Alla V; Kuznetsova, Irina G; Andronov, Evgeny E; Puhalsky, Jan V; Tikhonovich, Igor A

    2018-06-20

    Ten rhizobial strains were isolated from root nodules of a relict legume Oxytropis popoviana Peschkova. For identification of the isolates, sequencing of rrs, the internal transcribed spacer region, and housekeeping genes recA, glnII, and rpoB was used. Nine fast-growing isolates were Mesorhizobium-related; eight strains were identified as M. japonicum and one isolate belonged to M. kowhaii. The only slow-growing isolate was identified as a Bradyrhizobium sp. Two strains, M. japonicum Opo-242 and Bradyrhizobium sp. strain Opo-243, were isolated from the same nodule. Symbiotic genes of these isolates were searched throughout the whole-genome sequences. The common nodABC genes and other symbiotic genes required for plant nodulation and nitrogen fixation were present in the isolate Opo-242. Strain Opo-243 did not contain the principal nod, nif, and fix genes; however, five genes (nodP, nodQ, nifL, nolK, and noeL) affecting the specificity of plant-rhizobia interactions but absent in isolate Opo-242 were detected. Strain Opo-243 could not induce nodules but significantly accelerated the root nodule formation after coinoculation with isolate Opo-242. Thus, we demonstrated that taxonomically different strains of the archaic symbiotic system can be co-microsymbionts infecting the same nodule and promoting the nodulation process due to complementary sets of symbiotic genes.

  2. The PSO4 gene is responsible for an error-prone recombinational DNA repair pathway in Saccharomyces cerevisiae.

    PubMed

    de Andrade, H H; Marques, E K; Schenberg, A C; Henriques, J A

    1989-06-01

    The induction of mitotic gene conversion and crossing-over in Saccharomyces cerevisiae diploid cells homozygous for the pso4-1 mutation was examined in comparison to the corresponding wild-type strain. The pso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for the pso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of the PSO4 gene. On the other hand, the pso4-1 mutant is mutationally defective for all agents used. Therefore, the pso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that the PSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy between the pso4-1 mutation and the RecA or LexA mutation of Escherichia coli.

  3. New PHA products using unrelated carbon sources

    PubMed Central

    Matias, Fernanda; de Andrade Rodrigues, Maria Filomena

    2011-01-01

    Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used. PMID:24031764

  4. Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene.

    PubMed

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2016-12-07

    Phloroglucinol (1,3,5-trihydroxybenzene; PG) and its derivatives are phenolic compounds that are used for various industrial applications. Current methods to synthesize PG are not sustainable due to the requirement for carbon-based precursors and co-production of toxic byproducts. Here, we describe a more sustainable production of PG using plants expressing a native bacterial or a codon-optimized synthetic PhlD targeted to either the cytosol or chloroplasts. Transgenic lines were analyzed for the production of PG using gas and liquid chromatography coupled to mass spectroscopy. Phloroglucinol was produced in all transgenic lines and the line with the highest PhlD transcript level showed the most accumulation of PG. Over 80% of the produced PG was glycosylated to phlorin. Arabidopsis leaves have the machinery to glycosylate PG to form phlorin, which can be hydrolyzed enzymatically to produce PG. Furthermore, the metabolic profile of plants with PhlD in either the cytosol or chloroplasts was altered. Our results provide evidence that plants can be engineered to produce PG using a bacterial gene. Phytoproduction of PG using a bacterial gene paves the way for further genetic manipulations to enhance the level of PG with implications for the commercial production of this important platform chemical in plants.

  5. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus

    PubMed Central

    Abdel-Hadi, Ahmed; Schmidt-Heydt, Markus; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2012-01-01

    A microarray analysis was used to examine the effect of combinations of water activity (aw, 0.995–0.90) and temperature (20–42°C) on the activation of aflatoxin biosynthetic genes (30 genes) in Aspergillus flavus grown on a conducive YES (20 g yeast extract, 150 g sucrose, 1 g MgSO4·7H2O) medium. The relative expression of 10 key genes (aflF, aflD, aflE, aflM, aflO, aflP, aflQ, aflX, aflR and aflS) in the biosynthetic pathway was examined in relation to different environmental factors and phenotypic aflatoxin B1 (AFB1) production. These data, plus data on relative growth rates and AFB1 production under different aw × temperature conditions were used to develop a mixed-growth-associated product formation model. The gene expression data were normalized and then used as a linear combination of the data for all 10 genes and combined with the physical model. This was used to relate gene expression to aw and temperature conditions to predict AFB1 production. The relationship between the observed AFB1 production provided a good linear regression fit to the predicted production based in the model. The model was then validated by examining datasets outside the model fitting conditions used (37°C, 40°C and different aw levels). The relationship between structural genes (aflD, aflM) in the biosynthetic pathway and the regulatory genes (aflS, aflJ) was examined in relation to aw and temperature by developing ternary diagrams of relative expression. These findings are important in developing a more integrated systems approach by combining gene expression, ecophysiological influences and growth data to predict mycotoxin production. This could help in developing a more targeted approach to develop prevention strategies to control such carcinogenic natural metabolites that are prevalent in many staple food products. The model could also be used to predict the impact of climate change on toxin production. PMID:21880616

  6. Genetic characterization of Anaplasma marginale strains from Tunisia using single and multiple gene typing reveals novel variants with an extensive genetic diversity.

    PubMed

    Ben Said, Mourad; Ben Asker, Alaa; Belkahia, Hanène; Ghribi, Raoua; Selmi, Rachid; Messadi, Lilia

    2018-05-12

    Anaplasma marginale, which is responsible for bovine anaplasmosis in tropical and subtropical regions, is a tick-borne obligatory intraerythrocytic bacterium of cattle and wild ruminants. In Tunisia, information about the genetic diversity and the phylogeny of A. marginale strains are limited to the msp4 gene analysis. The purpose of this study is to investigate A. marginale isolates infecting 16 cattle located in different bioclimatic areas of northern Tunisia with single gene analysis and multilocus sequence typing methods on the basis of seven partial genes (dnaA, ftsZ, groEL, lipA, secY, recA and sucB). The single gene analysis confirmed the presence of different and novel heterogenic A. marginale strains infecting cattle from the north of Tunisia. The concatenated sequence analysis showed a phylogeographical resolution at the global level and that most of the Tunisian sequence types (STs) formed a separate cluster from a South African isolate and from all New World isolates and strains. By combining the characteristics of each single locus with those of the multi-loci scheme, these results provide a more detailed understanding on the diversity and the evolution of Tunisian A. marginale strains. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    PubMed

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  8. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  9. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    PubMed

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (P<0.05) in aerobiosis than in microaerobiosis and anaerobiosis. Cellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. V67L Mutation Fills an Internal Cavity To Stabilize RecA Mtu Intein

    DOE PAGES

    Zwarycz, Allison S.; Fossat, Martin; Akanyeti, Otar; ...

    2017-05-10

    Inteins mediate protein splicing, which has found extensive applications in protein science and biotechnology. In the Mycobacterium tuberculosis RecA mini–mini intein (ΔΔIhh), a single valine to leucine substitution at position 67 (V67L) dramatically increases intein stability and activity. However, crystal structures show that the V67L mutation causes minimal structural rearrangements, with a root-mean-square deviation of 0.2 Å between ΔΔIhh-V67 and ΔΔIhh-L67. Thus, the structural mechanisms for V67L stabilization and activation remain poorly understood. In this paper, we used intrinsic tryptophan fluorescence, high-pressure nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations to probe the structural basis of V67L stabilization ofmore » the intein fold. Guanidine hydrochloride denaturation monitored by fluorescence yielded free energy changes (ΔG f°) of -4.4 and -6.9 kcal mol –1 for ΔΔIhh-V67 and ΔΔIhh-L67, respectively. High-pressure NMR showed that ΔΔIhh-L67 is more resistant to pressure-induced unfolding than ΔΔIhh-V67 is. The change in the volume of folding (ΔV f) was significantly larger for V67 (71 ± 2 mL mol –1) than for L67 (58 ± 3 mL mol –1) inteins. The measured difference in ΔV f (13 ± 3 mL mol –1) roughly corresponds to the volume of the additional methylene group for Leu, supporting the notion that the V67L mutation fills a nearby cavity to enhance intein stability. In addition, we performed MD simulations to show that V67L decreases side chain dynamics and conformational entropy at the active site. Finally, it is plausible that changes in cavities in V67L can also mediate allosteric effects to change active site dynamics and enhance intein activity.« less

  11. V67L Mutation Fills an Internal Cavity To Stabilize RecA Mtu Intein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwarycz, Allison S.; Fossat, Martin; Akanyeti, Otar

    Inteins mediate protein splicing, which has found extensive applications in protein science and biotechnology. In the Mycobacterium tuberculosis RecA mini–mini intein (ΔΔIhh), a single valine to leucine substitution at position 67 (V67L) dramatically increases intein stability and activity. However, crystal structures show that the V67L mutation causes minimal structural rearrangements, with a root-mean-square deviation of 0.2 Å between ΔΔIhh-V67 and ΔΔIhh-L67. Thus, the structural mechanisms for V67L stabilization and activation remain poorly understood. In this paper, we used intrinsic tryptophan fluorescence, high-pressure nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations to probe the structural basis of V67L stabilization ofmore » the intein fold. Guanidine hydrochloride denaturation monitored by fluorescence yielded free energy changes (ΔG f°) of -4.4 and -6.9 kcal mol –1 for ΔΔIhh-V67 and ΔΔIhh-L67, respectively. High-pressure NMR showed that ΔΔIhh-L67 is more resistant to pressure-induced unfolding than ΔΔIhh-V67 is. The change in the volume of folding (ΔV f) was significantly larger for V67 (71 ± 2 mL mol –1) than for L67 (58 ± 3 mL mol –1) inteins. The measured difference in ΔV f (13 ± 3 mL mol –1) roughly corresponds to the volume of the additional methylene group for Leu, supporting the notion that the V67L mutation fills a nearby cavity to enhance intein stability. In addition, we performed MD simulations to show that V67L decreases side chain dynamics and conformational entropy at the active site. Finally, it is plausible that changes in cavities in V67L can also mediate allosteric effects to change active site dynamics and enhance intein activity.« less

  12. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli.

    PubMed

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-09-23

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.

  13. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli

    PubMed Central

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-01-01

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545

  14. A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid.

    PubMed

    Wang, Jing; Wang, Haoyuan; Yang, Le; Lv, Liping; Zhang, Zhe; Ren, Bin; Dong, Lichun; Li, Ning

    2018-04-01

    In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between "ON" and "OFF" by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA-RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at "ON" state and that of pepc and ecaA genes were controlled at the "OFF" state in the lag phase and switched to the "OFF" and "ON" state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g -1 and 3.25 g L -1  h -1 , respectively, much higher than those using the strains without harboring the riboregulator switch system.

  15. Association of methionine synthase gene polymorphisms with wool production and quality traits in Chinese Merino population.

    PubMed

    Rong, E G; Yang, H; Zhang, Z W; Wang, Z P; Yan, X H; Li, H; Wang, N

    2015-10-01

    Methionine synthase (MTR) plays a crucial role in maintaining homeostasis of intracellular methionine, folate, and homocysteine, and its activity correlates with DNA methylation in many mammalian tissues. Our previous genomewide association study identified that 1 SNP located in the gene was associated with several wool production and quality traits in Chinese Merino. To confirm the potential involvement of the gene in sheep wool production and quality traits, we performed sheep tissue expression profiling, SNP detection, and association analysis with sheep wool production and quality traits. The semiquantitative reverse transcription PCR analysis showed that the gene was differentially expressed in skin from Merino and Kazak sheep. The sequencing analysis identified a total of 13 SNP in the gene from Chinese Merino sheep. Comparison of the allele frequencies revealed that these 13 identified SNP were significantly different among the 6 tested Chinese Merino strains ( < 0.001). Linkage disequilibrium analysis showed that SNP 3 to 11 were strongly linked in a single haplotype block in the tested population. Association analysis showed that SNP 2 to 11 were significantly associated with the average wool fiber diameter and the fineness SD and that SNP 4 to 11 were significantly associated with the CV of fiber diameter trait ( < 0.05). Single nucleotide polymorphism 2 and SNP 5 to 12 were weakly associated with wool crimp. Similarly, the haplotypes derived from these 13 identified SNP were also significantly associated with the average wool fiber diameter, fineness SD, and the CV of fiber diameter ( < 0.05). Our results suggest that is a candidate gene for sheep wool production and quality traits, and the identified SNP might be used in sheep breeding.

  16. Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius.

    PubMed

    El Khoury, Rachelle; Atoui, Ali; Verheecke, Carol; Maroun, Richard; El Khoury, Andre; Mathieu, Florence

    2016-08-19

    Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 µL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 µL/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 µL/mL of fennel E.O.As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium.

  17. The Rice Tungro Bacilliform Virus Gene II Product Interacts with the Coat Protein Domain of the Viral Gene III Polyprotein

    PubMed Central

    Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas

    2000-01-01

    Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237

  18. Productive performance of the dairy cattle Girolando breed mediated by the fat-related genes DGAT1 and LEP and their polymorphisms.

    PubMed

    Cardoso, S R; Queiroz, L B; Goulart, V Alonso; Mourão, G B; Benedetti, E; Goulart, L R

    2011-12-01

    Candidate genes have been associated with milk production in bovines, such as the diacylglycerol O-acyltransferase 1 (DGAT1) and leptin (LEP); however, they have not been simultaneously investigated nor have been evaluated in the Brazilian Girolando breed (Gir×Holstein, backcrossed to Holstein). Our aim was to determine the influence of fat-related genes, DGAT1 and LEP, and their polymorphisms on performance traits of milk production in the Girolando breed. Results indicated that the K allele of the DGAT1 gene showed a significant association with total and average daily milk production with additive effect. The LEP gene showed that the A allele and its homozygote are highly prevalent and almost fixed in this population and may have been favorably selected during backcrossing for the origin of this breed. The important impact of the K allele of the DGAT1 gene on milk production corroborates the initiative of performing marker-assisted selections with this gene in breeding programs of the Girolando breed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Analysis of the neuronal marker protein gene product 9.5 in internal limiting membranes after indocyanine-green assisted peeling.

    PubMed

    Peters, Swaantje; Tatar, Olcay; Spitzer, Martin S; Szurman, Peter; Aisenbrey, Sabine; Lüke, Matthias; Adam, Annemarie; Yoeruek, Efdal; Grisanti, Salvatore

    2009-02-01

    Indocyanine green-assisted internal limiting membrane (ILM) peeling was suspected to disrupt the innermost layer of the neural retina. We examined whether surgically excised specimens contain remnants of neuronal tissue. Ten patients with macular hole underwent pars plana vitrectomy and indocyanine green-assisted ILM peeling. A total of 0.1 mL of a 0.5% indocyanine green solution was applied for 15 seconds. The ILM specimens were prepared for immunohistochemistry, using a polyclonal antibody against protein gene product 9.5. Protein gene product 9.5 is a pan-neuronal marker labeling human neuronal cells. Appropriate controls to show selectivity of the antibody were performed on neuronal tissue of donor eyes. One ILM was prepared for electron microscopy. A selective expression of protein gene product 9.5 was found in neuronal fibers of the retina and optic nerve of donor eyes. Only 1 of the 10 surgical ILM specimens showed a minimal focal positivity for protein gene product 9.5. No neuronal tissue was detected on the ILM by electron microscopy. Focal expression of protein gene product 9.5 in only 1 of 10 surgical ILM specimens argues against a general indocyanine green-related disruption of the innermost retinal layers. However, higher concentrations of the dye, longer incubation times or different solvents than used in this study may lead to different results.

  20. In Vivo-Expressed Proteins of Virulent Leptospira interrogans Serovar Autumnalis N2 Elicit Strong IgM Responses of Value in Conclusive Diagnosis.

    PubMed

    Raja, Veerapandian; Shanmughapriya, Santhanam; Kanagavel, Murugesan; Artiushin, Sergey C; Velineni, Sridhar; Timoney, John F; Natarajaseenivasan, Kalimuthusamy

    2016-01-01

    Leptospirosis is a serious zoonosis that is underdiagnosed because of limited access to laboratory facilities in Southeast Asia, Central and South America, and Oceania. Timely diagnosis of locally distributed serovars of high virulence is crucial for successful care and outbreak management. Using pooled patient sera, an expression gene library of a virulent Leptospira interrogans serovar Autumnalis strain N2 isolated in South India was screened. The identified genes were characterized, and the purified recombinant proteins were used as antigens in IgM enzyme-linked immunosorbent assay (ELISA) either singly or in combination. Sera (n = 118) from cases of acute leptospirosis along with sera (n = 58) from healthy subjects were tested for reactivity with the identified proteins in an ELISA designed to detect specific IgM responses. We have identified nine immunoreactive proteins, ArgC, RecA, GlpF, FliD, TrmD, RplS, RnhB, Lp28.6, and Lrr44.9, which were found to be highly conserved among pathogenic leptospires. Apparently, the proteins ArgC, RecA, GlpF, FliD, TrmD, and Lrr44.9 are expressed during natural infection of the host and undetectable in in vitro cultures. Among all the recombinant proteins used as antigens in IgM ELISA, ArgC had the highest sensitivity and specificity, 89.8% and 95.5%, respectively, for the conclusive diagnosis of leptospirosis. The use of ArgC and RecA in combination for IgM ELISA increased the sensitivity and specificity to 95.7% and 94.9%, respectively. ArgC and RecA thus elicited specific IgM responses and were therefore effective in laboratory confirmation of Leptospira infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina.

    PubMed

    Park, Soohyun; Chang, Kwang Suk; Jin, Eonseon; Pack, Seung Pil; Lee, Jinwon

    2013-01-01

    A new phosphoenolpyruvate carboxylase (PEPC) gene of Dunaliella salina is identified using homology analysis was conducted using PEPC gene of Chlamydomonas reinhardtii and Arabidopsis thaliana. Recombinant E. coli SGJS115 with increased production of malate and oxaloacetate was developed by introducing codon-optimized phosphoenolpyruvate carboxylase2 (OPDSPEPC2) gene of Dunaliella salina. E. coli SGJS115 yielded a 9.9 % increase in malate production. In addition, E. coli SGJS115 exhibited two times increase in the yield of oxaloacetate over the E. coli SGJS114 having identified PEPC2 gene obtained from Dunaliella salina.

  2. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  3. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    USGS Publications Warehouse

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  4. Detection of classical enterotoxins and identification of enterotoxin genes in Staphylococcus aureus from milk and dairy products.

    PubMed

    Morandi, S; Brasca, M; Lodi, R; Cremonesi, P; Castiglioni, B

    2007-09-20

    Milk and dairy products are frequently contaminated with enterotoxigenic Staphylococcus aureus, which is often involved in staphylococcal food poisoning. The distribution of genes encoding staphylococcal enterotoxins (SE) in S. aureus isolated from bovine, goat, sheep and buffalo milk and dairy products was verified by the presence of the corresponding SE production. A total of 112 strains of S. aureus were tested for SE production by immuno-enzymatic (SEA-SEE) and reversed passive latex agglutination (SEA-SED) methods, while multiplex-PCR was applied for SE genes (sea, sec, sed, seg, seh, sei, sej and sel). Of the total strains studied, 67% were detected to have some SE genes (se), but only 52% produced a detectable amount of the classic antigenic SE types. The bovine isolates frequently had enterotoxin SEA, SED and sej, while SEC and sel predominated in the goat and sheep strains. The results demonstrated (i) marked enterotoxigenic S. aureus strain variations, in accordance with strain origin and (ii) the two methods resulted in different information but concurred on the risk of foodstuff infection by S. aureus.

  5. EMEA and Gene Therapy Medicinal Products Development in the European Union

    PubMed Central

    2003-01-01

    The evaluation of quality, safety, and efficacy of medicinal products by the European Medicines Evaluation Agency (EMEA) via the centralized procedure is the only available regulatory procedure for obtaining marketing authorization for gene therapy (GT) medicinal products in the European Union. The responsibility for the authorization of clinical trials remains with the national competent authorities (NCA) acting in a harmonized framework from the scientific viewpoint. With the entry into force of a new directive on good clinical practice implementation in clinical trials as of 1 May 2004, procedural aspects will also be harmonized at EU level. Scientifically sound development of medicinal products is the key for the successful registration of dossiers and for contributing to the promotion and protection of public health. The objective of this paper is to introduce the EMEA regulatory processes and scientific activities relevant to GT medicinal products. PMID:12686717

  6. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes.

    PubMed

    Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich

    2017-02-16

    Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.

  7. Phylogenetic Analysis of the Incidence of lux Gene Horizontal Transfer in Vibrionaceae▿ †

    PubMed Central

    Urbanczyk, Henryk; Ast, Jennifer C.; Kaeding, Allison J.; Oliver, James D.; Dunlap, Paul V.

    2008-01-01

    Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib2 operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib2

  8. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W.

    PubMed

    Arikawa, Hisashi; Matsumoto, Keiji; Fujiki, Tetsuya

    2017-10-01

    Cupriavidus necator H16 is the most promising bacterium for industrial production of polyhydroxyalkanoates (PHAs) because of their remarkable ability to accumulate them in the cells. With genetic modifications, this bacterium can produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), which has better physical properties, as well as poly(3-hydroxybutyrate) (PHB) using plant oils and sugars as a carbon source. Considering production cost, sucrose is a very attractive raw material because it is inexpensive; however, this bacterium cannot assimilate sucrose. Here, we used the sucrose utilization (csc) genes of Escherichia coli W to generate C. necator strains that can assimilate sucrose. Especially, glucose-utilizing recombinant C. necator strains harboring the sucrose hydrolase gene (cscA) and sucrose permease gene (cscB) of E. coli W grew well on sucrose as a sole carbon source and accumulated PHB. In addition, strains introduced with a crotonyl-CoA reductase gene (ccr), ethylmalonyl-CoA decarboxylase gene (emd), and some other genetic modifications besides the csc genes and the glucose-utilizing mutations produced PHBHHx with a 3-hydroxyhexanoate (3HHx) content of maximum approximately 27 mol% from sucrose. Furthermore, when one of the PHBHHx-producing strains was cultured with sucrose solution in a fed-batch fermentation, PHBHHx with a 3HHx content of approximately 4 mol% was produced and reached 113 g/L for 65 h, which is approximately 1.5-fold higher than that produced using glucose solution.

  9. A Brain Membrane Protein Similar to the Rat src Gene Product

    NASA Astrophysics Data System (ADS)

    Scheinberg, David A.; Strand, Mette

    1981-01-01

    We report the purification to homogeneity of a 20,000-dalton, transformation-related, rat cell membrane protein. This protein, p20, was originally identified in preparations of a defective woolly monkey leukemia virus pseudotype of Kirsten sarcoma virus. The chromatographically purified p20 was an acidic hydrophobic protein, capable of specifically binding GTP (dissociation constant = 15 μ M). This nucleotide binding property and other previously reported characteristics were similar to properties ascribed to the Harvey sarcoma virus src gene product. p20 also appeared similar to this src gene product when immunoprecipitates of both proteins were directly compared by one- and two-dimensional NaDodSO4 gel electrophoreses. However, the proteins were not identical, because their tryptic maps differed. Using a competition radioimmunoassay, we have measured the concentration of p20 in cells, viruses, and rat tissues: p20 was not encoded by rat sarcoma viruses because it was increased only slightly after Kirsten sarcoma virus transformation of rat cells and was not increased in nonrat cells transformed by the Kirsten or Harvey sarcoma virus. Remarkably, of 10 rat tissues examined, p20 was found predominantly in brain, specifically in the membranes.

  10. Isolation of Propionibacterium acnes among the microbiota of primary endodontic infections with and without intraoral communication.

    PubMed

    Niazi, Sadia Ambreen; Al Kharusi, Hana Suleiman; Patel, Shanon; Bruce, Kenneth; Beighton, David; Foschi, Federico; Mannocci, Francesco

    2016-11-01

    The presence of opportunistic pathogens such as Propionibacterium acnes (P. acnes) may contribute to the endodontic pathology. The presence of P. acnes may be influenced by different endodontic conditions. The aims of the study were firstly, to identify P. acnes within the whole cultivable microbiota of primary endodontic infections, to investigate which P. acnes phylotypes predominate in such infections and secondly to determine if the presence of an "open" communication (e.g. a sinus) can be associated with the isolation of P. acnes from the root canal. The predominant cultivable microbiota of 15 primary endodontic lesions (7 without communication with the oral environment and 8 with an open communication) were identified using partial 16S ribosomal RNA (rRNA) gene sequence analysis. The identification of the organism was determined by interrogating the Human Oral Microbiome Database. The P. acnes isolates were typed on the basis of the recA gene sequence comparison. A neighbor-joining tree was constructed using MEGA 4.1 with the inclusion of known recA sequences. There was no difference in the number of species identified from lesions without communication (5.86 ± 3.7) and those with communication (5.37 ± 3.6) (P > 0.05). PCR-based 16S rRNA gene sequencing revealed P. acnes as the most prevalent isolate recovered from lesions with communication. recA gene sequencing revealed two phylogenetic lineages present in lesion with communication, with mainly type I (further split into type IA and type IB) and type II. The presence of P. acnes as opportunistic pathogens has been confirmed and may sustain the traits observed in specific clinical presentations. Clinical management of open lesions may require further disinfection to eliminate opportunistic bacteria.

  11. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: Considering them in empirical studies on divergence with gene flow.

    PubMed

    Kulmuni, J; Westram, A M

    2017-06-01

    The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  12. Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum.

    PubMed

    de Jonge, Ronnie; Ebert, Malaika K; Huitt-Roehl, Callie R; Pal, Paramita; Suttle, Jeffrey C; Spanner, Rebecca E; Neubauer, Jonathan D; Jurick, Wayne M; Stott, Karina A; Secor, Gary A; Thomma, Bart P H J; Van de Peer, Yves; Townsend, Craig A; Bolton, Melvin D

    2018-06-12

    Species in the genus Cercospora cause economically devastating diseases in sugar beet, maize, rice, soy bean, and other major food crops. Here, we sequenced the genome of the sugar beet pathogen Cercospora beticola and found it encodes 63 putative secondary metabolite gene clusters, including the cercosporin toxin biosynthesis ( CTB ) cluster. We show that the CTB gene cluster has experienced multiple duplications and horizontal transfers across a spectrum of plant pathogenic fungi, including the wide-host range Colletotrichum genus as well as the rice pathogen Magnaporthe oryzae Although cercosporin biosynthesis has been thought to rely on an eight-gene CTB cluster, our phylogenomic analysis revealed gene collinearity adjacent to the established cluster in all CTB cluster-harboring species. We demonstrate that the CTB cluster is larger than previously recognized and includes cercosporin facilitator protein, previously shown to be involved with cercosporin autoresistance, and four additional genes required for cercosporin biosynthesis, including the final pathway enzymes that install the unusual cercosporin methylenedioxy bridge. Lastly, we demonstrate production of cercosporin by Colletotrichum fioriniae , the first known cercosporin producer within this agriculturally important genus. Thus, our results provide insight into the intricate evolution and biology of a toxin critical to agriculture and broaden the production of cercosporin to another fungal genus containing many plant pathogens of important crops worldwide. Copyright © 2018 the Author(s). Published by PNAS.

  13. Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.

    PubMed

    Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A

    2017-01-20

    Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.

  14. Improved polysaccharide production in a submerged culture of Ganoderma lucidum by the heterologous expression of Vitreoscilla hemoglobin gene.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Yue, Tong-Hui; Jiang, Lu-Xi; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2016-01-10

    Expression of Vitreoscilla hemoglobin (VHb) gene was used to improve polysaccharide production in Ganoderma lucidum. The VHb gene, vgb, under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase gene promoter was introduced into G. lucidum. The activity of expressed VHb was confirmed by the observation of VHb specific CO-difference spectrum with a maximal absorption at 419 nm for the transformant. The effects of VHb expression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production and transcription levels of three genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), uridine diphosphate glucose pyrophosphorylase (UGP), and β-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in the vgb-bearing G. lucidum were 26.4 mg/100mg dry weight and 0.83 g/L, respectively, which were higher by 30.5% and 88.2% than those of the wild-type strain. The transcription levels of PGM, UGP and GLS were up-regulated by 1.51-, 1.55- and 3.83-fold, respectively, in the vgb-bearing G. lucidum. This work highlights the potential of VHb to enhance G. lucidum polysaccharide production by large scale fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production].

    PubMed

    Dai, Guanping; Sun, Tao; Miao, Liangtian; Li, Qingyan; Xiao, Dongguang; Zhang, Xueli

    2014-08-01

    β-carotene belongs to carotenoids family, widely applied in pharmaceuticals, neutraceuticals, cosmetics and food industries. In this study, three key genes (dxs, idi, and crt operon) within β-carotene synthetic pathway in recombinant Escherichia coli strain CAR005 were modulated with RBS Library to improve β-carotene production. There were 7%, 11% and 17% increase of β-carotene yield respectively after modulating dxs, idi and crt operon genes with RBS Library, demonstrating that modulating gene expression with regulatory parts libraries would have more opportunities to obtain optimal production of target compound. Combined modulation of crt operon, dxs and idi genes led to 35% increase of β-carotene yield compared to parent strain CAR005. The optimal gene expression strength identified in single gene modulation would not be the optimal strength when used in combined modulation. Our study provides a new strategy for improving production of target compound through modulation of gene expression.

  16. Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators.

    PubMed

    Westbye, Alexander B; Beatty, J Thomas; Lang, Andrew S

    2017-08-01

    Gene transfer agents (GTAs) are bacteriophage-like particles produced by many prokaryotes. Several members of the Alphaproteobacteria produce a class of genetically-related GTAs that is best studied in Rhodobacter capsulatus. DNA transfer by the R. capsulatus GTA (RcGTA) combines aspects of both transduction and natural transformation, as recipient cells require a natural transformation-like system to incorporate donated DNA. The genes involved in RcGTA production and recipient capability are located at multiple loci in the bacterial genome; however, a conserved phosphorelay containing the response regulator CtrA and a quorum sensing system regulate both RcGTA production and recipient capability. This review highlights recent discoveries in RcGTA biology, and focuses on the co-regulation of genes involved in RcGTA production and recipient capability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Optimization of Multilocus Sequence Analysis for Identification of Species in the Genus Vibrio

    PubMed Central

    Gabriel, Michael W.; Matsui, George Y.; Friedman, Robert

    2014-01-01

    Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species. PMID:24951781

  18. [Cloning of Enterobacter aerogenes fh1A gene and overexpression of hydrogen production].

    PubMed

    Zhao, Jinfang; Song, Wenlu; Cheng, Jun; Zhang, Chuanxi

    2010-06-01

    We amplified and overexpressed the FHL activator (fh1A) in E. aerogenes ATCC13408 to enhance hydrogen production. By using universal primers and genome walking, we cloned the full open reading frame (ORF) of fh1A gene. We inserted it into the glutathion S-transferase (GST) fusion expression vector pGEX4T-2-Cat, and transformed the recombinant plasmid into E. aerogenes ATCC13408 via electroporation for expression. Then we measured the hydrogen production of the recombinant strain in a batch culture. We found that the ORF of fh1A was 2073 base pair in length, potential to encode a 690 amino acid peptide (GenBank accession GU188474). The Fh1A protein from E. aerogenes ATCC13408 shared high amino acid identities with those from other bacterial species. By using SDS-PAGE and Western blot analysis, we confirmed that the fh1A gene had successfully expressed in the strain. The hydrogen yield of the recombinant strain was increased from 1.23 to 1.48 mol H2/mol glucose. [ Conclusion ] Enhancement of hydrogen productivity was attained under anaerobic conditions with the recombinant strain.

  19. Control of aflatoxin production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing technology by targeting aflD (nor-1) gene.

    PubMed

    Abdel-Hadi, Ahmed M; Caley, Daniel P; Carter, David R F; Magan, Naresh

    2011-06-01

    Aspergillus flavus and Aspergillus parasiticus are important pathogens of cotton, corn, peanuts and other oil-seed crops, producing toxins both in the field and during storage. We have designed three siRNA sequences (Nor-Ia, Nor-Ib, Nor-Ic) to target the mRNA sequence of the aflD gene to examine the potential for using RNA silencing technology to control aflatoxin production. Thus, the effect of siRNAs targeting of two key genes in the aflatoxin biosynthetic pathway, aflD (structural) and aflR (regulatory gene) and on aflatoxin B(1 )(AFB(1)), and aflatoxin G(1) (AFG(1)) production was examined. The study showed that Nor-Ib gave a significant decrease in aflD mRNA, aflR mRNA abundance, and AFB(1) production (98, 97 and 97% when compared to the controls) in A. flavus NRRL3357, respectively. Reduction in aflD and aflR mRNA abundance and AFB(1 )production increased with concentration of siRNA tested. There was a significant inhibition in aflD and AFB(1) production by A. flavus EGP9 and AFG(1 )production by A. parasiticus NRRL 13005. However, there was no significant decrease in AFG(1) production by A. parasiticus SSWT 2999. Changes in AFB(1) production in relation to mRNA levels of aflD showed a good correlation (R = 0.88; P = 0.00001); changes in aflR mRNA level in relation to mRNA level of aflD also showed good correlation (R = 0.82; P = 0.0001). The correlations between changes in aflR and aflD gene expression suggests a strong relationship between these structural and regulatory genes, and that aflD could be used as a target gene to develop efficient means for aflatoxin control using RNA silencing technology.

  20. Type II thioesterase gene (ECO-orf27) from Amycolatopsis orientalis influences production of the polyketide antibiotic, ECO-0501 (LW01).

    PubMed

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2012-11-01

    ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.

  1. Production of Null Mutants in the Major Intestinal Esterase Gene (Ges-1) of the Nematode Caenorhabditis Elegans

    PubMed Central

    McGhee, J. D.; Birchall, J. C.; Chung, M. A.; Cottrell, D. A.; Edgar, L. G.; Svendsen, P. C.; Ferrari, D. C.

    1990-01-01

    The ges-1 gene of the nematode Caenorhabditis elegans codes for a nonspecific carboxylesterase that is expressed only in the intestinal lineage. This esterase has turned out to be a convenient biochemical marker for lineage-specific differentiation. In the present paper, we describe the production of several C. elegans strains that lack detectable activity of the ges-1 esterase. To isolate these ges-1 null strains, we first produced a strain of hermaphrodites in which the wild-type copy of the ges-1 gene was stably balanced over a previously isolated isoelectric focusing allele, ges-1(ca6); this parental strain was then mutagenized with EMS and isoelectric focusing gels were used to identify progeny populations that lacked either ges-1(+) or ges-1(ca6) esterase activity. This method is a straightforward and general approach to obtaining null mutations in any gene that has a biochemical or immunological assay. The ges-1 gene is not essential to worm survival, development or reproduction. Furthermore, lack of the ges-1 product has no obvious effect on the ability of worms (containing either normal or greatly reduced levels of acetylcholinesterases) to survive exposure to esterase inhibitors. The ges-1 gene product provides roughly half of the total esterase activity measured in crude extracts of L1 larvae or mixed worm populations. However, histochemical staining of individual ges-1(0) embryos shows that the ges-1 esterase is the first and essentially the only esterase to be produced during embryonic development, from the midproliferation phase up to at least the twofold stage of morphogenesis. These ges-1(0) strains now allow us to investigate the developmental control of the ges-1 gene by DNA-mediated transformation, in which the ges-1 gene acts as its own reporter. PMID:2379823

  2. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents

    USDA-ARS?s Scientific Manuscript database

    Natural products are rich source of gene modulators for prevention and treatment of cancer. In recent days, nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1) has been focused as a new target of diverse cancers like colorectal, pancreatic, prostate, and breast. A variety of natural...

  3. Association between a polymorphism of the α-lactalbumin gene and milk production traits in Chinese Holstein cows.

    PubMed

    Zhou, J P; Dong, C H

    2013-09-04

    The traits particularly important for milk production include milk yield, protein percentage, fat percentage, and the somatic cell score. Alpha-lactalbumin (α-LA) is an important whey protein of cow milk, and is also present in the milk of many other mammalian species. In this study, we analyzed the genetic polymorphisms of the α-LA gene and their relationship to milk production traits (milk yield, protein percentage, fat percentage, and somatic cell score) in Chinese Holstein cows. The goal of this study was to contribute further molecular genetic information related to dairy cattle, to determine the molecular markers that are most closely linked with milk production traits, and to provide a scientific basis for the improvement of economically relevant traits in cows. Fluorescence-based conformation-sensitive gel electrophoresis, DNA sequencing, and ligation detection reaction techniques were used to analyze genetic variations of the α-LA gene (5'-UTR, exons 1, 2, 3, 4, and 3'-UTR) in 923 Chinese Holstein cows. One novel single nucleotide polymorphism (SNP), α-LA2516, was identified in exon 4 of the α-LA gene. Allele frequencies were as follows: T 0.674, C 0.326. Association analysis revealed that α-LA2516 was not associated with milk yield, protein percentage, fat percentage, or somatic cell score (P > 0.05). These findings suggest that the SNP α-LA2516 in the α-LA gene likely does not have potential as a molecular marker for milk production traits in Chinese Holstein cows.

  4. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  5. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    PubMed

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  6. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  7. Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans

    PubMed Central

    O'Brien, Greg; Maricic, Natalie; Kesterson, Alexandria; Grace, Megan

    2017-01-01

    ABSTRACT A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes. IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans

  8. Genome-wide screens reveal new gene products that influence genetic competence in Streptococcus mutans.

    PubMed

    Shields, Robert C; O'Brien, Greg; Maricic, Natalie; Kesterson, Alexandria; Grace, Megan; Hagen, Stephen J; Burne, Robert A

    2017-11-06

    A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro , including increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome with a screen to identify mutants that aberrantly expressed comX , coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g. comR , comS , comD , comE , cipB , clpX , rcrR , ciaH , but disclosed an additional 20 genes that were not previously competence-associated. The competence phenotypes of mutants were characterized, including using fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans , while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes. IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we

  9. Vibrio parahaemolyticus isolates from southeastern Chinese coast are genetically diverse with circulation of clonal complex 3 strains since 2002.

    PubMed

    Yu, Ying; Hu, Weizhao; Wu, Beibei; Zhang, Peipei; Chen, Jianshun; Wang, Shuna; Fang, Weihuan

    2011-11-01

    Multilocus sequence typing (MLST) was used to examine the clonal relationship and genetic diversity of 71 Vibrio parahaemolyticus isolates from clinical and seafood-related sources in southeastern Chinese coast between 2002 and 2009. The tested isolates fell into 61 sequence types (STs). Of 17 clinical isolates, 7 belonged to ST3 of the pandemic clonal complex 3, with 3 strains isolated in 2002. Although there was no apparent clonal relationship found between clinical strains and those from seafood-related sources positive with pathogenic markers, there were clonal relationships between clinical strains from this study and those from environmental sources in other parts of China. Phylogenetic analysis showed that strains of 112 STs (61 STs from this study and 51 retrieved from PUBMLST database covering different continents) could be divided into four branches. The vast majority of our isolates and those from other countries were genetically diverse and clustered into two major branches of mixed distribution (of geographic origins and sample sources), whereas five STs representing six isolates split as two minor branches because of divergence of their recA genes, which had 80%-82% nucleotide identity to typical V. parahaemolyticus strains and 73.3%-76.9% identity to the CDS24 of a Vibrio sp. plasmid p23023, indicating that the recA gene might have recombined by lateral gene transfer. This was further supported by a high ratio of recombination to mutation (3.038) for recA. In conclusion, MLST with fully extractable database is a powerful system for analysis of clonal relationship for strains of a particular region in a national or global scale as well as between clinical and environmental or food-related strains.

  10. Crystallization and preliminary X-ray analysis of gene product 44 from bacteriophage Mu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondou, Youhei; Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama; Kitazawa, Daisuke

    2005-01-01

    Bacteriophage Mu baseplate protein gene product 44 was crystallized. The crystal belongs to space group R3, with unit-cell parameters a = b = 126.6, c = 64.2 Å. Bacteriophage Mu baseplate protein gene product 44 (gp44) is an essential protein required for the assembly of viable phages. To investigate the roles of gp44 in baseplate assembly and infection, gp44 was crystallized at pH 6.0 in the presence of 20% 2-methyl-2,4-pentanediol. The crystals belong to space group R3, with unit-cell parameters a = b = 127.47, c = 63.97 Å. The crystals diffract X-rays to at least 2.1 Å resolution andmore » are stable in the X-ray beam and are therefore appropriate for structure determination. Native data have been collected to 2.1 Å resolution using a DIP6040 image-plate system at beamline BL44XU at the SPring-8 facility in Japan.« less

  11. Prevalence and Identification of Burkholderia pseudomallei and Near-Neighbor Species in the Malabar Coastal Region of India

    PubMed Central

    Peddayelachagiri, Bhavani V.; Paul, Soumya; Nagaraj, Sowmya; Gogoi, Madhurjya; Sripathy, Murali H.; Batra, Harsh V.

    2016-01-01

    Accurate identification of pathogens with biowarfare importance requires detection tools that specifically differentiate them from near-neighbor species. Burkholderia pseudomallei, the causative agent of a fatal disease melioidosis, is one such biothreat agent whose differentiation from its near-neighbor species is always a challenge. This is because of its phenotypic similarity with other Burkholderia species which have a wide spread geographical distribution with shared environmental niches. Melioidosis is a major public health concern in endemic regions including Southeast Asia and northern Australia. In India, the disease is still considered to be emerging. Prevalence surveys of this saprophytic bacterium in environment are under-reported in the country. A major challenge in this case is the specific identification and differentiation of B. pseudomallei from the growing list of species of Burkholderia genus. The objectives of this study included examining the prevalence of B. pseudomallei and near-neighbor species in coastal region of South India and development of a novel detection tool for specific identification and differentiation of Burkholderia species. Briefly, we analyzed soil and water samples collected from Malabar coastal region of Kerala, South India for prevalence of B. pseudomallei. The presumptive Burkholderia isolates were identified using recA PCR assay. The recA PCR assay identified 22 of the total 40 presumptive isolates as Burkholderia strains (22.72% and 77.27% B. pseudomallei and non-pseudomallei Burkholderia respectively). In order to identify each isolate screened, we performed recA and 16S rDNA sequencing. This two genes sequencing revealed that the presumptive isolates included B. pseudomallei, non-pseudomallei Burkholderia as well as non-Burkholderia strains. Furthermore, a gene termed D-beta hydroxybutyrate dehydrogenase (bdha) was studied both in silico and in vitro for accurate detection of Burkholderia genus. The optimized bdha

  12. The YJR127C/ZMS1 gene product is involved in glycerol-based respiratory growth of the yeast Saccharomyces cerevisiae.

    PubMed

    Lu, Lin; Roberts, George G; Oszust, Cynthia; Hudson, Alan P

    2005-10-01

    A putative yeast mitochondrial upstream activating sequence (UAS) was used in a one-hybrid screening procedure that identified the YJR127C ORF on chromosome X. This gene was previously designated ZMS1 and is listed as a transcription factor on the SGD website. Real time RT-PCR assays showed that expression of YJR127C/ZMS1 was glucose-repressible, and a deletion mutant for the gene showed a growth defect on glycerol-based but not on glucose- or ethanol-based medium. Real time RT-PCR analyses identified severely attenuated transcript levels from GUT1 and GUT2 to be the source of that growth defect, the products of GUT1 and GUT2 are required for glycerol utilization. mRNA levels from a large group of mitochondria- and respiration-related nuclear genes also were shown to be attenuated in the deletion mutant. Importantly, transcript levels from the mitochondrial OLI1 gene, which has an associated organellar UAS, were attenuated in the DeltaYJR127C mutant during glycerol-based growth, but those from COX3 (OXI2), which lacks an associated mitochondrial UAS, were not. Transcriptome analysis of the glycerol-grown deletion mutant showed that genes in several metabolic and other categories are affected by loss of this gene product, including protein transport, signal transduction, and others. Thus, the product of YJR127C/ZMS1 is involved in transcriptional control for genes in both cellular genetic compartments, many of which specify products required for glycerol-based growth, respiration, and other functions.

  13. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer.

    PubMed

    Naito, Mariko; Sato, Keiko; Shoji, Mikio; Yukitake, Hideharu; Ogura, Yoshitoshi; Hayashi, Tetsuya; Nakayama, Koji

    2011-07-01

    In our previous study, extensive genomic rearrangements were found in two strains of the Gram-negative anaerobic bacterium Porphyromonas (Por.) gingivalis, and most of these rearrangements were associated with mobile genetic elements such as insertion sequences and conjugative transposons (CTns). CTnPg1, identified in Por. gingivalis strain ATCC 33277, was the first complete CTn reported for the genus Porphyromonas. In the present study, we found that CTnPg1 can be transferred from strain ATCC 33277 to another Por. gingivalis strain, W83, at a frequency of 10(-7) to 10(-6). The excision of CTnPg1 from the chromosome in a donor cell depends on an integrase (Int; PGN_0094) encoded in CTnPg1, whereas CTnPg1 excision is independent of PGN_0084 (a DNA topoisomerase I homologue; Exc) encoded within CTnPg1 and recA (PGN_1057) on the donor chromosome. Intriguingly, however, the transfer of CTnPg1 between Por. gingivalis strains requires RecA function in the recipient. Sequencing analysis of CTnPg1-integrated sites on the chromosomes of transconjugants revealed that the consensus attachment (att) sequence is a 13 bp sequence, TTTTCNNNNAAAA. We further report that CTnPg1 is able to transfer to two other bacterial species, Bacteroides thetaiotaomicron and Prevotella oralis. In addition, CTnPg1-like CTns are located in the genomes of other oral anaerobic bacteria, Porphyromonas endodontalis, Prevotella buccae and Prevotella intermedia, with the same consensus att sequence. These results suggest that CTns in the CTnPg1 family are widely distributed among oral anaerobic Gram-negative bacteria found in humans and play important roles in horizontal gene transfer among these bacteria.

  14. Identification of Linkages between EDCs in Personal Care Products and Breast Cancer through Data Integration Combined with Gene Network Analysis.

    PubMed

    Jeong, Hyeri; Kim, Jongwoon; Kim, Youngjun

    2017-09-30

    Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer.

  15. Identification of Linkages between EDCs in Personal Care Products and Breast Cancer through Data Integration Combined with Gene Network Analysis

    PubMed Central

    Kim, Jongwoon

    2017-01-01

    Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer. PMID:28973975

  16. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    PubMed

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  17. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine whether 5-lipoxygenase (ALOX5) gene variants associated with cardiovascular disease affect eicosanoid production by monocytes. The study was a randomized, double-masked, parallel intervention trial with fish oil (5.0 g of fish oil daily, containing 2.0 g ...

  18. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  19. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  20. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes.

    PubMed

    Hou, Xiaohu; Ge, Xiangyang; Wu, Di; Qian, He; Zhang, Weiguo

    2012-01-01

    Brevibacterium flavum ATCC14067 was engineered for L: -valine production by overexpression of different ilv genes; the ilvEBN(r)C genes from B. flavum NV128 provided the best candidate for L: -valine production. In traditional fermentation, L: -valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the L: -valine production and conversion efficiency based on the optimum temperatures of L: -valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and L: -valine biosynthesis enzymes activity were obtained at high temperature, and the maximum L: -valine production, conversion efficiency, and specific L: -valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g(-1) h(-1), respectively, at 37°C in 48 h fermentation. The strategy for enhancing L: -valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.

  1. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    PubMed

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  2. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis

    PubMed Central

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    Abstract China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production. PMID:28981563

  3. Identification of genes related to high royal jelly production in the honey bee (Apis mellifera) using microarray analysis.

    PubMed

    Nie, Hongyi; Liu, Xiaoyan; Pan, Jiao; Li, Wenfeng; Li, Zhiguo; Zhang, Shaowu; Chen, Shenglu; Miao, Xiaoqing; Zheng, Nenggan; Su, Songkun

    2017-01-01

    China is the largest royal jelly producer and exporter in the world, and high royal jelly-yielding strains have been bred in the country for approximately three decades. However, information on the molecular mechanism underlying high royal jelly production is scarce. Here, a cDNA microarray was used to screen and identify differentially expressed genes (DEGs) to obtain an overview on the changes in gene expression levels between high and low royal jelly producing bees. We developed a honey bee gene chip that covered 11,689 genes, and this chip was hybridised with cDNA generated from RNA isolated from heads of nursing bees. A total of 369 DEGs were identified between high and low royal jelly producing bees. Amongst these DEGs, 201 (54.47%) genes were up-regulated, whereas 168 (45.53%) were down-regulated in high royal jelly-yielding bees. Gene ontology (GO) analyses showed that they are mainly involved in four key biological processes, and pathway analyses revealed that they belong to a total of 46 biological pathways. These results provide a genetic basis for further studies on the molecular mechanisms involved in high royal jelly production.

  4. Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigham, CJ; Speth, DR; Rha, C

    Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectivelymore » repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor sigma(54) increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with DL-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.« less

  5. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid.

    PubMed Central

    Stevenson, G; Andrianopoulos, K; Hobbs, M; Reeves, P R

    1996-01-01

    Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell. PMID:8759852

  6. Functional Analysis of the Gene Cluster Involved in Production of the Bacteriocin Circularin A by Clostridium beijerinckii ATCC 25752

    PubMed Central

    Kemperman, Robèr; Jonker, Marnix; Nauta, Arjen; Kuipers, Oscar P.; Kok, Jan

    2003-01-01

    A region of 12 kb flanking the structural gene of the cyclic antibacterial peptide circularin A of Clostridium beijerinckii ATCC 25752 was sequenced, and the putative proteins involved in the production and secretion of circularin A were identified. The genes are tightly organized in overlapping open reading frames. Heterologous expression of circularin A in Enterococcus faecalis was achieved, and five genes were identified as minimally required for bacteriocin production and secretion. Two of the putative proteins, CirB and CirC, are predicted to contain membrane-spanning domains, while CirD contains a highly conserved ATP-binding domain. Together with CirB and CirC, this ATP-binding protein is involved in the production of circularin A. The fifth gene, cirE, confers immunity towards circularin A when expressed in either Lactococcus lactis or E. faecalis and is needed in order to allow the bacteria to produce bacteriocin. Additional resistance against circularin A is conferred by the activity of the putative transporter consisting of CirB and CirD. PMID:14532033

  7. The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain.

    PubMed

    Wang, Zhe; Shen, Yan

    2017-03-01

    The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.

  8. Association of polymorphisms of exon 2 of the growth hormone gene with production performance in Huoyan goose.

    PubMed

    Zhang, Yang; Zhu, Zhen; Xu, Qi; Chen, Guohong

    2014-01-07

    Primers based on the cDNA sequence of the goose growth hormone (GH) gene in GenBank were designed to amplify exon 2 of the GH gene in Huoyan goose. A total of 552 individuals were brooded in one batch and raised in Liaoning and Jiangsu Provinces, China. Single nucleotide polymorphisms (SNPs) of exon 2 in the GH gene were detected by the polymerase chain reaction (single strand conformation polymorphism method). Homozygotes were subsequently cloned, sequenced and analyzed. Two SNP mutations were detected, and 10 genotypes (referred to as AA, BB, CC, DD, AB, AC, AD, BC, BD and CD) were obtained. Allele D was predominant, and the frequencies of the 10 genotypes fit the Hardy-Weinberg equilibrium in the male, female and whole populations according to the chi-square test. Based on SNP types, the 10 genotypes were combined into three main genotypes. Multiple comparisons were carried out between different genotypes and production traits when the geese were 10 weeks old. Some indices of production performance were significantly (p < 0.05) associated with the genotype. Particularly, geese with genotype AB or BB were highly productive. Thus, these genotypes may serve as selection markers for production traits in Huoyan geese.

  9. Acetate ester production by Chinese yellow rice wine yeast overexpressing the alcohol acetyltransferase-encoding gene ATF2.

    PubMed

    Zhang, J; Zhang, C; Qi, Y; Dai, L; Ma, H; Guo, X; Xiao, D

    2014-11-27

    Acetate ester, which are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction, are responsible for the fruity character of fermented alcoholic beverages such as Chinese yellow rice wine. Alcohol acetyltransferase (AATase) is currently believed to be the key enzyme responsible for the production of acetate ester. In order to determine the precise role of the ATF2 gene in acetate ester production, an ATF2 gene encoding a type of AATase was overexpressed and the ability of the mutant to form acetate esters (including ethyl acetate, isoamyl acetate, and isobutyl acetate) was investigated. The results showed that after 5 days of fermentation, the concentrations of ethyl acetate, isoamyl acetate, and isobutyl acetate in yellow rice wines fermented with EY2 (pUC-PIA2K) increased to 137.79 mg/L (an approximate 4.9-fold increase relative to the parent cell RY1), 26.68 mg/L, and 7.60 mg/L, respectively. This study confirms that the ATF2 gene plays an important role in the production of acetate ester production during Chinese yellow rice wine fermentation, thereby offering prospects for the development of yellow rice wine yeast starter strains with optimized ester-producing capabilities.

  10. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae.

    PubMed

    Zhu, Lin; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-07-01

    The filamentous fungus Aspergillus oryzae is used as one of the most favored hosts for heterologous protein production due to its ability to secrete large amounts of proteins into the culture medium. We previously generated a hyper-producing mutant strain of A. oryzae, AUT1, which produced 3.2- and 2.6-fold higher levels of bovine chymosin (CHY) and human lysozyme (HLY), respectively, compared with the wild-type strain. However, further enhancement of heterologous protein production by multiple gene disruption is difficult because of the low gene-targeting efficiency in strain AUT1. Here, we disrupted the ligD gene, which is involved in nonhomologous recombination, and the pyrG gene to create uridine/uracil auxotrophy in strain AUT1, to generate a hyper-producing mutant applicable to pyrG marker recycling with highly efficient gene targeting. We generated single and double disruptants of the tripeptidyl peptidase gene AosedD and vacuolar sorting receptor gene Aovps10 in the hyper-producing mutant background, and found that all disruptants showed significant increases in heterologous protein production. Particularly, double disruption of the Aovps10 and AosedD genes increased the production levels of CHY and HLY by 1.6- and 2.1-fold, respectively, compared with the parental strain. Thus, we successfully generated a fungal host for further enhancing the heterologous protein production ability by combining mutational and molecular breeding techniques.

  11. RecA-mediated SOS response provides a geraniol tolerance in Escherichia coli.

    PubMed

    Shah, Asad Ali; Wang, Chonglong; Yoon, Sang-Hwal; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-09-20

    Geraniol is an important industrial material and a potential candidate of advanced biofuels. One challenge of microbial geraniol production is the toxicity to hosts. However, the poor understanding on geraniol tolerance mechanism is an obstacle for developing geraniol tolerant host. This study genome-widely screened a shot-gun DNA library of Escherichia coli and found that recA is able to confer geraniol tolerance in E. coli. The recA knockout mutant was found extremely sensitive to geraniol. Based on our data, it was deciphered that recA provided tolerance through SOS response network responding to DNA damage caused by geraniol. RecA-mediated SOS response activates the homologous recombinational repair by RecB and RecN for corrective DNA maintenance. This protection mechanism suggests an effective strategy to combat geraniol toxicity in E. coli. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. RBM20 Regulates Circular RNA Production From the Titin Gene.

    PubMed

    Khan, Mohsin A F; Reckman, Yolan J; Aufiero, Simona; van den Hoogenhof, Maarten M G; van der Made, Ingeborg; Beqqali, Abdelaziz; Koolbergen, Dave R; Rasmussen, Torsten B; van der Velden, Jolanda; Creemers, Esther E; Pinto, Yigal M

    2016-10-14

    RNA-binding motif protein 20 (RBM20) is essential for normal splicing of many cardiac genes, and loss of RBM20 causes dilated cardiomyopathy. Given its role in splicing, we hypothesized an important role for RBM20 in forming circular RNAs (circRNAs), a novel class of noncoding RNA molecules. To establish the role of RBM20 in the formation of circRNAs in the heart. Here, we performed circRNA profiling on ribosomal depleted RNA from human hearts and identified the expression of thousands of circRNAs, with some of them regulated in disease. Interestingly, we identified 80 circRNAs to be expressed from the titin gene, a gene that is known to undergo highly complex alternative splicing. We show that some of these circRNAs are dynamically regulated in dilated cardiomyopathy but not in hypertrophic cardiomyopathy. We generated RBM20-null mice and show that they completely lack these titin circRNAs. In addition, in a cardiac sample from an RBM20 mutation carrier, titin circRNA production was severely altered. Interestingly, the loss of RBM20 caused only a specific subset of titin circRNAs to be lost. These circRNAs originated from the RBM20-regulated I-band region of the titin transcript. We show that RBM20 is crucial for the formation of a subset of circRNAs that originate from the I-band of the titin gene. We propose that RBM20, by excluding specific exons from the pre-mRNA, provides the substrate to form this class of RBM20-dependent circRNAs. © 2016 American Heart Association, Inc.

  13. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products.

    PubMed

    Owusu-Kwarteng, James; Wuni, Alhassan; Akabanda, Fortune; Tano-Debrah, Kwaku; Jespersen, Lene

    2017-03-14

    B. cereus are of particular interest in food safety and public health because of their capacity to cause food spoilage and disease through the production of various toxins. The aim of this study was to determine the prevalence, virulence factor genes and antibiotic resistance profile of B. cereus sensu lato isolated from cattle grazing soils and dairy products in Ghana. A total of 114 samples made up of 25 soil collected from cattle grazing farm land, 30 raw milk, 28 nunu (yoghurt-like product) and 31 woagashie (West African soft cheese). Ninety-six B. cereus sensu lato isolates from 54 positive samples were screened by PCR for the presence of 8 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK and entFM), and one emetic gene (ces). Phenotypic resistance to 15 antibiotics were also determined for 96 B. cereus sensu lato isolates. About 72% (18 of 25 soil), 47% (14 of 30 raw milk), 35% (10 of 28 nunu) and 39% (12 of 31 woagashi) were positive for B. cereus sensu lato with mean counts (log 10 cfu/g) of 4.2 ± 1.8, 3.3 ± 2.0, 1.8 ± 1.4 and 2.6 ± 1.8 respectively. The distribution of enterotoxigenic genes revealed that 13% (12/96 isolates) harboured all three gene encoding for haemolytic enterotoxin HBL complex genes (hblA, hblC and hblD), 25% (24/96 isolates) possessed no HBL gene, whereas 63% (60/96 isolates) possessed at least one of the three HBL genes. All three genes encoding for non-haemolytic enterotoxin (nheA, nheB and nheC) were detected in 60% (57/96) isolates, 14% (13/96) harboured only one gene, 19% (18/96) whereas 8% possessed none of the NHE genes. The detection rates of cytk, entFM, and ces genes were 75, 67 and 9% respectively. Bacillus cereus s. l. isolates were generally resistant to β-lactam antibiotics such as ampicillin (98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime (100%) but susceptible to other antibiotics tested. Bacillus cereus s. l. is prevalent in soil, raw milk and dairy

  14. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  15. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madiraju, M.V.; Templin, A.; Clark, A.J.

    A mutation partially suppressing the UV sensitivity caused by recF143 in a uvrA6 background was located at codon 37 of recA where GTG (valine) became ATG (methionine). This mutation, originally named srf-803, was renamed recA803. Little if any suppression of the recF143 defect in UV induction of a lexA regulon promoter was detected. This led to the hypothesis that a defect in recombination repair of UV damage was suppressed by recA803. The mutant RecA protein (RecA803) was purified and compared with wild-type protein (RecA+) as a catalyst of formation of joint molecules. Under suboptimal conditions, RecA803 produces both a highermore » rate of formation and a higher yield of joint molecules. The suboptimal conditions tested included addition of single-stranded DNA binding protein to single-stranded DNA prior to addition of RecA. We hypothesize that the ability of RecA803 to overcome interference by single-stranded DNA binding protein is the property that allows recA803 to suppress partially the deficiency in repair caused by recF mutations in the uvrA6 background. Implications of this hypothesis for the function of RecF protein in recombination are discussed.« less

  16. [Adeno-associated viral vectors: methods for production and purification for gene therapy applications].

    PubMed

    Mena-Enriquez, Mayra; Flores-Contreras, Lucia; Armendáriz-Borunda, Juan

    2012-01-01

    Viral vectors based on adeno-associated virus (AAV) are widely used in gene therapy protocols, because they have characteristics that make them valuable for the treatment of genetic and chronic degenerative diseases. AAV2 serotype had been the best characterized to date. However, the AAV vectors developed from other serotypes is of special interest, since they have organ-specific tropism which increases their potential for transgene delivery to target cells for performing their therapeutic effects. This article summarizes AAV generalities, methods for their production and purification. It also discusses the use of these vectors in vitro, in vivo and their application in gene therapy clinical trials.

  17. Leptin and leptin receptor gene polymorphisms are correlated with production performance in the Arctic fox.

    PubMed

    Zhang, M; Bai, X J

    2015-05-25

    The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species.

  18. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    PubMed

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  19. Determination of transcriptional units and gene products from the ftsA region of Escherichia coli.

    PubMed Central

    Lutkenhaus, J F; Wu, H C

    1980-01-01

    Lambda transducing phage gamma 16-2 carries the genes envA, ftsZ, ftsA, ddl, and murC and directs the synthesis of six unique proteins in ultraviolet-irradiated cells. Various derivatives of gamma 16-2 carrying smaller segments of the bacterial deoxyribonucleic acid have also been analyzed for their capacity to direct protein synthesis in ultraviolet-irradiated cells. These results, in combination with genetic results, have allowed the gene product of each of these genes to be assigned. In addition, an unidentified gene was located counterclockwise to murC between murC and murF. Analysis of the direction of transcription indicates that murC, ddl, ftsA, and ftsZ are transcribed clockwise on the Escherichia coli genetic map, and envA is transcribed counterclockwise. In addition, it is shown that each of the genes envA, ftsZ, and ftsA can be expressed independently. Images PMID:6447690

  20. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production.

    PubMed

    Steglich, Matthias; Hofmann, Julia D; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich

    2018-01-01

    We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p -cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile , with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile , we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291.

  1. Convergent Loss of ABC Transporter Genes From Clostridioides difficile Genomes Is Associated With Impaired Tyrosine Uptake and p-Cresol Production

    PubMed Central

    Steglich, Matthias; Hofmann, Julia D.; Helmecke, Julia; Sikorski, Johannes; Spröer, Cathrin; Riedel, Thomas; Bunk, Boyke; Overmann, Jörg; Neumann-Schaal, Meina; Nübel, Ulrich

    2018-01-01

    We report the frequent, convergent loss of two genes encoding the substrate-binding protein and the ATP-binding protein of an ATP-binding cassette (ABC) transporter from the genomes of unrelated Clostridioides difficile strains. This specific genomic deletion was strongly associated with the reduced uptake of tyrosine and phenylalanine and production of derived Stickland fermentation products, including p-cresol, suggesting that the affected ABC transporter had been responsible for the import of aromatic amino acids. In contrast, the transporter gene loss did not measurably affect bacterial growth or production of enterotoxins. Phylogenomic analysis of publically available genome sequences indicated that this transporter gene deletion had occurred multiple times in diverse clonal lineages of C. difficile, with a particularly high prevalence in ribotype 027 isolates, where 48 of 195 genomes (25%) were affected. The transporter gene deletion likely was facilitated by the repetitive structure of its genomic location. While at least some of the observed transporter gene deletions are likely to have occurred during the natural life cycle of C. difficile, we also provide evidence for the emergence of this mutation during long-term laboratory cultivation of reference strain R20291. PMID:29867812

  2. Colocalization and Membrane Association of Murine Hepatitis Virus Gene 1 Products and De Novo-Synthesized Viral RNA in Infected Cells

    PubMed Central

    Shi, Stephanie T.; Schiller, Jennifer J.; Kanjanahaluethai, Amornrat; Baker, Susan C.; Oh, Jong-Won; Lai, Michael M. C.

    1999-01-01

    Murine hepatitis virus (MHV) gene 1, the 22-kb polymerase (pol) gene, is first translated into a polyprotein and subsequently processed into multiple proteins by viral autoproteases. Genetic complementation analyses suggest that the majority of the gene 1 products are required for viral RNA synthesis. However, there is no physical evidence supporting the association of any of these products with viral RNA synthesis. We have now performed immunofluorescent-staining studies with four polyclonal antisera to localize various MHV-A59 gene 1 products in virus-infected cells. Immunoprecipitation experiments showed that these antisera detected proteins representing the two papain-like proteases and the 3C-like protease encoded by open reading frame (ORF) 1a, the putative polymerase (p100) and a p35 encoded by ORF 1b, and their precursors. De novo-synthesized viral RNA was labeled with bromouridine triphosphate in lysolecithin-permeabilized MHV-infected cells. Confocal microscopy revealed that all of the viral proteins detected by these antisera colocalized with newly synthesized viral RNA in the cytoplasm, particularly in the perinuclear region of infected cells. Several cysteine and serine protease inhibitors, i.e., E64d, leupeptin, and zinc chloride, inhibited viral RNA synthesis without affecting the localization of viral proteins, suggesting that the processing of the MHV gene 1 polyprotein is tightly associated with viral RNA synthesis. Dual labeling with antibodies specific for cytoplasmic membrane structures showed that MHV gene 1 products and RNA colocalized with the Golgi apparatus in HeLa cells. However, in murine 17CL-1 cells, the viral proteins and viral RNA did not colocalize with the Golgi apparatus but, instead, partially colocalized with the endoplasmic reticulum. Our results provide clear physical evidence that several MHV gene 1 products, including the proteases and the polymerase, are associated with the viral RNA replication-transcription machinery

  3. Characterization and Heterologous Expression of the Genes Encoding Enterocin A Production, Immunity, and Regulation in Enterococcus faecium DPC1146

    PubMed Central

    O’Keeffe, Triona; Hill, Colin; Ross, R. Paul

    1999-01-01

    Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the

  4. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    PubMed

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  5. Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants

    USDA-ARS?s Scientific Manuscript database

    Direct cellobiose production from cellulose by a genetically modified fungus—Neurospora crassa, was explored in this study. A library of N. crassa sextuple beta-glucosidase (bgl) gene deletion strains was constructed. Various concentrations of cellobiose were detected in the culture broth of the N. ...

  6. RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewg, William P.; Poovaiah, Charleson; Lan, Wu

    Sugarcane is a subtropical crop that produces large amounts of biomass annually. It is a key agricultural crop in many countries for the production of sugar and other products. Residual bagasse following sucrose extraction is currently underutilized and it has potential as a carbohydrate source for the production of biofuels. As with all lignocellulosic crops, lignin acts as a barrier to accessing the polysaccharides, and as such, is the focus of transgenic efforts. In this study, we used RNAi to individually reduce the expression of three key genes in the lignin biosynthetic pathway in sugarcane. Furthermore, these genes, caffeoyl-CoA O-methyltransferasemore » ( CCoAOMT), ferulate 5-hydroxylase ( F5H) and caffeic acid O-methyltransferase ( COMT), impact lignin content and/or composition.« less

  7. RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production

    DOE PAGES

    Bewg, William P.; Poovaiah, Charleson; Lan, Wu; ...

    2016-12-20

    Sugarcane is a subtropical crop that produces large amounts of biomass annually. It is a key agricultural crop in many countries for the production of sugar and other products. Residual bagasse following sucrose extraction is currently underutilized and it has potential as a carbohydrate source for the production of biofuels. As with all lignocellulosic crops, lignin acts as a barrier to accessing the polysaccharides, and as such, is the focus of transgenic efforts. In this study, we used RNAi to individually reduce the expression of three key genes in the lignin biosynthetic pathway in sugarcane. Furthermore, these genes, caffeoyl-CoA O-methyltransferasemore » ( CCoAOMT), ferulate 5-hydroxylase ( F5H) and caffeic acid O-methyltransferase ( COMT), impact lignin content and/or composition.« less

  8. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Identification and characterization of the Myxococcus xanthus bsgA gene product.

    PubMed Central

    Gill, R E; Bornemann, M C

    1988-01-01

    The bsgA mutants of Myxococcus xanthus are blocked at a very early stage of the developmental program. They fail to produce fruiting bodies or to sporulate under normal conditions but can be rescued by extracellular complementation in mixtures with wild-type cells. A bsgA-lacZ gene fusion was constructed and expressed in Escherichia coli. The resulting fusion protein, which has beta-galactosidase enzyme activity, was partially purified by affinity chromatography and preparative polyacrylamide gel electrophoresis. The protein was used to immunize mice, which produced a hybridoma secreting monoclonal antibody that was specific for the bsgA gene product. The monoclonal antibody was used in Western blot (immunoblot) experiments to determine the apparent cellular location of the bsgA protein in M. xanthus and to compare the level of this protein at various times in the Myxococcus life cycle. Images PMID:2846515

  10. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus.

    PubMed

    Sun, Wei-Wen; Guo, Chun-Jun; Wang, Clay C C

    2016-04-01

    Genome sequencing of the fungus Aspergillus terreus uncovered a number of silent core structural biosynthetic genes encoding enzymes presumed to be involved in the production of cryptic secondary metabolites. There are five nonribosomal peptide synthetase (NRPS)-like genes with the predicted A-T-TE domain architecture within the A. terreus genome. Among the five genes, only the product of pgnA remains unknown. The Tet-on system is an inducible, tunable and metabolism-independent expression system originally developed for Aspergillus niger. Here we report the adoption of the Tet-on system as an effective gene activation tool in A. terreus. Application of this system in A. terreus allowed us to uncover the product of the cryptic NRPS-like gene, pgnA. Furthermore expression of pgnA in the heterologous Aspergillus nidulans host suggested that the pgnA gene alone is necessary for phenguignardic acid (1) biosynthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    PubMed

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides. © 2014 Society for Experimental Biology, Association of Applied Biologists and

  12. Detection and Diversity Evaluation of Tetracycline Resistance Genes in Grassland-Based Production Systems in Colombia, South America

    PubMed Central

    Santamaría, Johanna; López, Liliana; Soto, Carlos Yesid

    2011-01-01

    Grassland-based production systems use ∼26% of land surface on earth. However, there are no evaluations of these systems as a source of antibiotic pollution. This study was conducted to evaluate the presence, diversity, and distribution of tetracycline resistance genes in the grasslands of the Colombian Andes, where administration of antibiotics to animals is limited to treat disease and growth promoters are not included in animals’ diet. Animal (ruminal fluid and feces) and environmental (soil and water) samples were collected from different dairy cattle farms and evaluated by PCR for the genes tet(M), tet(O), tetB(P), tet(Q), tet(W), tet(S), tet(T), otr(A), which encode ribosomal protection proteins (RPPs), and the genes tet(A), tet(B), tet(D), tet(H), tet(J), and tet(Z), encoding efflux pumps. A wide distribution and high frequency for genes tet(W) and tet(Q) were found in both sample types. Genes tet(O) and tetB(P), detected in high frequencies in feces, were detected in low frequencies or not detected at all in the environment. Other genes encoding RPPs, such as tet(M), tet(S), and tet(T), were detected at very low frequencies and restricted distributions. Genes encoding efflux pumps were not common in this region, and only two of them, tet(B) and tet(Z), were detected. DGGE–PCR followed by comparative sequence analysis of tet(W) and tet(Q) showed that the sequences detected in animals did not differ from those coming from soil and water. Finally, the farms sampled in this study showed more than 50% similarity in relation to the tet genes detected. In conclusion, there was a remarkable presence of tet genes in these production systems and, although not all genes detected in animal reservoirs were detected in the environment, there is a predominant distribution of tet(W) and tet(Q) in both animal and environmental reservoirs. Sequence similarity analysis suggests the transmission of these genes from animals to the environment. PMID:22174707

  13. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

    PubMed Central

    Renau-Morata, Begoña; Molina, Rosa V.; Carrillo, Laura; Cebolla-Cornejo, Jaime; Sánchez-Perales, Manuel; Pollmann, Stephan; Domínguez-Figueroa, José; Corrales, Alba R.; Flexas, Jaume; Vicente-Carbajosa, Jesús; Medina, Joaquín; Nebauer, Sergio G.

    2017-01-01

    Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. PMID:28515731

  14. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses.

    PubMed

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3-100%. However, the inter-species similarities were

  15. Intra-Genomic Heterogeneity in 16S rRNA Genes in Strictly Anaerobic Clinical Isolates from Periodontal Abscesses

    PubMed Central

    Chen, Jiazhen; Miao, Xinyu; Xu, Meng; He, Junlin; Xie, Yi; Wu, Xingwen; Chen, Gang; Yu, Liying; Zhang, Wenhong

    2015-01-01

    Background Members of the genera Prevotella, Veillonella and Fusobacterium are the predominant culturable obligate anaerobic bacteria isolated from periodontal abscesses. When determining the cumulative number of clinical anaerobic isolates from periodontal abscesses, ambiguous or overlapping signals were frequently encountered in 16S rRNA gene sequencing chromatograms, resulting in ambiguous identifications. With the exception of the genus Veillonella, the high intra-chromosomal heterogeneity of rrs genes has not been reported. Methods The 16S rRNA genes of 138 clinical, strictly anaerobic isolates and one reference strain were directly sequenced, and the chromatograms were carefully examined. Gene cloning was performed for 22 typical isolates with doublet sequencing signals for the 16S rRNA genes, and four copies of the rrs-ITS genes of 9 Prevotella intermedia isolates were separately amplified by PCR, sequenced and compared. Five conserved housekeeping genes, hsp60, recA, dnaJ, gyrB1 and rpoB from 89 clinical isolates of Prevotella were also amplified by PCR and sequenced for identification and phylogenetic analysis along with 18 Prevotella reference strains. Results Heterogeneity of 16S rRNA genes was apparent in clinical, strictly anaerobic oral bacteria, particularly in the genera Prevotella and Veillonella. One hundred out of 138 anaerobic strains (72%) had intragenomic nucleotide polymorphisms (SNPs) in multiple locations, and 13 strains (9.4%) had intragenomic insertions or deletions in the 16S rRNA gene. In the genera Prevotella and Veillonella, 75% (67/89) and 100% (19/19) of the strains had SNPs in the 16S rRNA gene, respectively. Gene cloning and separate amplifications of four copies of the rrs-ITS genes confirmed that 2 to 4 heterogeneous 16S rRNA copies existed. Conclusion Sequence alignment of five housekeeping genes revealed that intra-species nucleotide similarities were very high in the genera Prevotella, ranging from 94.3–100%. However, the

  16. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    PubMed

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  17. Plant-derived isoprenoid sweeteners: recent progress in biosynthetic gene discovery and perspectives on microbial production.

    PubMed

    Seki, Hikaru; Tamura, Keita; Muranaka, Toshiya

    2018-06-01

    Increased public awareness of negative health effects associated with excess sugar consumption has triggered increasing interest in plant-derived natural sweeteners. Steviol glycosides are a group of highly sweet diterpene glycosides contained in the leaves of stevia (Stevia rebaudiana). Mogrosides, extracted from monk fruit (Siraitia grosvenorii), are a group of cucurbitane-type triterpenoid glycosides. Glycyrrhizin is an oleanane-type triterpenoid glycoside derived from the underground parts of Glycyrrhiza plants (licorice). This review focuses on the natural isoprenoid sweetening agents steviol glycosides, mogrosides, and glycyrrhizin, and describes recent progress in gene discovery and elucidation of the catalytic functions of their biosynthetic enzymes. Recently, remarkable progress has been made in engineering the production of various plant-specialized metabolites in microbial hosts such as Saccharomyces cerevisiae via the introduction of biosynthetic enzyme genes. Perspectives on the microbial production of plant-derived natural sweeteners are also discussed.

  18. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture.

    PubMed

    Haus, Sylvia; Jabbari, Sara; Millat, Thomas; Janssen, Holger; Fischer, Ralf-Jörg; Bahl, Hubert; King, John R; Wolkenhauer, Olaf

    2011-01-19

    Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  19. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    PubMed Central

    2011-01-01

    Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required. PMID:21247470

  20. Use of Staby® technology for development and production of DNA vaccines free of antibiotic resistance gene

    PubMed Central

    Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric

    2013-01-01

    The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby® technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby® technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1). PMID:24051431

  1. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene.

    PubMed

    Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric

    2013-10-01

    The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).

  2. Three genes in the human MHC class III region near the junction with the class II: Gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugaya, K.; Fukagawa, T.; Matsumoto, K.

    Cosmid walking of about 250 kb from MHC class III gene CYP21 to class II was conducted. The gene for receptor of advanced glycosylation end products of proteins (RAGE, a member of immunoglobulin super-family molecules), the PBX2 homeobox gene designated HOX12, and the human counterpart of the mouse mammary tumor gene int-3 were found. The contiguous RAGE and HOX12 genes were completely sequenced, and the human int-3 counterpart was partially sequenced and assigned to a Notch homolog. This human Notch homolog, designated NOTCH3, showed both the intracellular portion present in the mouse int-3 sequence and the extracellular portion absent inmore » the int-3. It thus corresponds to the intact form of a Notch-type transmembrane protein. About 20 kb of dense Alu clustering was found just centromeric to the NOTCH3. 48 refs., 9 figs., 2 tabs.« less

  3. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations.

    PubMed

    Pereira, Francisco B; Guimarães, Pedro Mr; Gomes, Daniel G; Mira, Nuno P; Teixeira, Miguel C; Sá-Correia, Isabel; Domingues, Lucília

    2011-12-09

    The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as required for maximal fermentation performance under industrial conditions. Chemogenomics data were used to identify eight genes whose expression confers simultaneous resistance to high concentrations of glucose, acetic acid and ethanol, chemical stresses relevant for VHG fermentations; and eleven genes conferring simultaneous resistance to stresses relevant during lignocellulosic fermentations. These eleven genes were identified based on two different sets: one with five genes granting simultaneous resistance to ethanol, acetic acid and furfural, and the other with six genes providing simultaneous resistance to ethanol, acetic acid and vanillin. The expression of Bud31 and Hpr1 was found to lead to the increase of both ethanol yield and fermentation rate, while Pho85, Vrp1 and Ygl024w expression is required for maximal ethanol production in VHG fermentations. Five genes, Erg2, Prs3, Rav1, Rpb4 and Vma8, were found to contribute to the maintenance of cell viability in wheat straw hydrolysate and/or the maximal fermentation rate of this substrate. The identified genes stand as preferential targets for genetic engineering manipulation in order to generate more robust industrial strains, able to cope with the most significant fermentation stresses and, thus, to increase ethanol production rate and final ethanol titers.

  4. Detection of Acinetobacter baumannii in human head and body lice from Ethiopia and identification of new genotypes.

    PubMed

    Kempf, Marie; Abdissa, Alemseged; Diatta, Georges; Trape, Jean-François; Angelakis, Emmanouil; Mediannikov, Oleg; La Scola, Bernard; Raoult, Didier

    2012-09-01

    Acinetobacter baumannii has previously been detected and genotyped in human body lice. The objectives of this study were to determine the presence of this bacterium in head and body lice collected from healthy individuals in Ethiopia by molecular methods and to characterize the genotype. Human lice from locations at different altitudes in Ethiopia were screened for the presence of Acinetobacter sp by targeting the rpoB gene. Acinetobacter baumannii was detected and genotyped using recA PCR amplification. A total of 115 head and 109 body lice were collected from 134 healthy individuals. Acinetobacter sp were found in 54 head (47%) and 77 body (71%) lice. The recA gene was sequenced for 60 of the Acinetobacter sp and 67% were positive for A. baumannii; genotype 1 was retrieved the most frequently. Our study is the first to show the presence of A. baumannii in human body lice, and also in head lice, in Ethiopia. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. [Enhanced nisin production by overexpression of nisin immunity gene nisI in the nisin-producing strain].

    PubMed

    Hu, Hongmei; Jiang, Like; Lin, Yuheng; Huan, Liandong; Zhong, Jin

    2010-10-01

    Our aim was to enhance nisin production by overexpression of nisin immunity gene nisI in nisin-producing strains. Nisin immunity gene nisI with a strong promoter P59 was cloned into vector pHJ201 and introduced into Lacotococcus lactis NZ9800, resulting in a recombinant strain L. lactis NZ9800/pHMI. Then the differences between the recombinant strain and the control strain L. lactis NZ9800/pHJ201 were analyzed in several aspects, including their growth curves, nisin resistance level and antibacterial activity against indicator strain Microccus flavus NCIB 8166. The overexpression of nisI had no significant difference in growth rate between recombinant strain and contrast strain. However, it promoted recombinant strain tolerance 25% higer nisin resistance level and stronger antibacterial activity against M. flavus NCIB 8166, which was increased by 32% and 25% when fermented for 6 and 8 hours, respectively. These results indicated that overexpression of nisI gene in the nisin producing strain can effectively enhance nisin resistence level and thus improve nisin production.

  6. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli.

    PubMed

    Stephenson, Stacy Ann-Marie; Brown, Paul D

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of

  7. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production

    PubMed Central

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S.; Oddy, V. Hutton; Vercoe, Phil E.; McEwan, John C.; Dalrymple, Brian P.

    2016-01-01

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems. PMID:27966600

  8. MeSH-informed enrichment analysis and MeSH-guided semantic similarity among functional terms and gene products in chicken

    USDA-ARS?s Scientific Manuscript database

    Such Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation of gene products is mainly accelerated by Gene Ontology (GO) and more recently by Medical Subject Headings (MeSH). MeSH is the National Library of Medicine's controlled vocabulary and it is making ...

  9. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  10. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia.

    PubMed

    Dan, Tong; Liu, Wenjun; Sun, Zhihong; Lv, Qiang; Xu, Haiyan; Song, Yuqin; Zhang, Heping

    2014-06-09

    Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics.

  11. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia

    PubMed Central

    2014-01-01

    Background Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Results Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Conclusions Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics. PMID:24912963

  12. The RecF protein antagonizes RecX function via direct interaction

    PubMed Central

    Lusetti, Shelley L.; Hobbs, Michael D.; Stohl, Elizabeth A.; Chitteni-Pattu, Sindhu; Inman, Ross B.; Seifert, H. Steven; Cox, Michael M.

    2014-01-01

    Summary The RecX protein inhibits RecA filament extension leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto SSB-coated circular single-stranded DNA in the presence of RecX occurs only when all of the RecFOR proteins are present. The RecOR proteins contribute only to RecA filament nucleation onto SSB-coated single-stranded DNA and are unable to counter the inhibitory effects of RecX on RecA filaments. RecF protein uniquely supports substantial RecA filament extension in the presence of RecX. In vivo, RecF protein counters a RecX-mediated inhibition of plasmid recombination. Thus, a significant positive contribution of RecF to RecA filament assembly is to antagonize the effects of the negative modulator, RecX, specifically during the extension phase. PMID:16387652

  13. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria.

    PubMed

    Peng, Yun-Feng; Chen, Wen-Chao; Xiao, Kang; Xu, Lin; Wang, Lian; Wan, Xia

    2016-01-01

    The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10-15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.

  14. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less

  15. RecA-Dependent DNA Repair Results in Increased Heteroplasmy of the Arabidopsis Mitochondrial Genome1[C][W

    PubMed Central

    Miller-Messmer, Marie; Kühn, Kristina; Bichara, Marc; Le Ret, Monique; Imbault, Patrice; Gualberto, José M.

    2012-01-01

    Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution. PMID:22415515

  16. Relationship between fumonisin production and FUM gene expression in Fusarium verticillioides under different environmental conditions.

    PubMed

    Fanelli, Francesca; Iversen, Anita; Logrieco, Antonio F; Mulè, Giuseppina

    2013-01-01

    Fusarium verticillioides is the main source of fumonisins, a group of mycotoxins that can contaminate maize-based food and feed and cause diseases in humans and animals. The study of the effect of different environmental conditions on toxin production should provide information that can be used to develop strategies to minimize the risk. This study analysed the effect of temperature (15°C-35°C), water activity (a(w): 0.999-0.93), salinity (0-125 g l(-1) NaCl) and pH (5-8) on the growth and production of fumonisins B(1) (FB1), B(2) (FB2) and B(3) (FB3) and the expression of FUM1 and FUM21 in F. verticillioides. The highest growth rate was measured at 25°C, a(w) of 0.998-0.99 and 0-25 g l(-1) of NaCl. Optimal conditions for fumonisin production were 30°C, a(w) of 0.99, 25 g l(-1) of NaCl and pH 5; nevertheless, the strain showed a good adaptability and was able to produce moderate levels of fumonisins under a wide range of conditions. Gene expression mirrored fumonisin production profile under all conditions with the exception of temperature: FUM1 and FUM21 expression was highest at 15°C, while maximum fumonisin production was at 30°C. These data indicate that a post-transcriptional regulation mechanism could account for the different optimal temperatures for FUM gene expression and fumonisin production.

  17. Stable long-term indigo production by overexpression of dioxygenase genes using a chromosomal integrated cascade expression circuit.

    PubMed

    Royo, Jose Luis; Moreno-Ruiz, Emilia; Cebolla, Angel; Santero, Eduardo

    2005-03-16

    In our laboratory we have analyzed different factors to maximize the yield in heterologous protein expression for long-term cultivation, by combination of an efficient cascade expression system and stable integration in the bacterial chromosome. In this work, we have explored this system for the production of indigo dye as a model for biotechnological production, by expressing in Escherichia coli the thnA1A2A3A4 genes from Sphingomonas macrogolitabida strain TFA, which encode the components of a tetralin dioxygenase activity. We compared Ptac, and the Pm-based cascade expression circuit in a multicopy plasmid and stably integrated into the bacterial chromosome. Plasmid-based expression systems resulted in instability of indigo production when serially diluted batch experiments were performed without a selective pressure. This problem was solved by integrating the expression module in the chromosome. Despite the gene dosage reduction, the synergic effect of the cascade expression system produced comparable expression to the dioxygenase activity in the plasmid configuration but could be stably maintained for at least 5 days. Here, we show that the cascade amplification circuit integrated in the chromosome could be an excellent system for tight control and stable production of recombinant products.

  18. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  19. [Reconstruction of Leptospira interrogans lipL21 gene and characteristics of its expression product].

    PubMed

    Luo, Dong-jiao; Hu, Ye; Dennin, R H; Yan, Jie

    2007-09-01

    To reconstruct the nucleotide sequence of Leptospira interrogans lipL21 gene for increasing the output of prokaryotic expression and to understand the changes on immunogenicity of the expression products before and after reconstruction, and to determine the position of envelope lipoprotein LipL21 on the surface of leptospiral body. According to the preferred codons of E.coli, the nucleotide sequence of lipL21 gene was designed and synthesized, and then its prokaryotic expression system was constructed. By using SDS-PAGE plus BioRad agarose image analysor, the expression level changes of lipL21 genes before and after reconstruction were measured. A Western blot assay using rabbit anti-TR/Patoc I serum as the first antibody was performed to identify the immunoreactivity of the two target recombinant proteins rLipL21s before and after reconstruction. The changes of cross agglutination titers of antisera against two rLipL21s before and after reconstruction to the different leptospiral serogroups were demonstrated using microscope agglutination test (MAT). Immuno-electronmicroscopy was applied to confirm the location of LipL21s. The expression outputs of original and reconstructed lipL21 genes were 8.5 % and 46.5 % of the total bacterial proteins, respectively. Both the two rLipL21s could take place immune conjugation reaction with TR/Patoc I antiserum. After immunization with each of the two rLipL21s in rabbits, the animals could produce specific antibody. Similar MAT titers with 1:80 - 1:320 of the two antisera against rLipL21s were present. LipL21 was confirmed to locate on the surface of leptospiral envelope. LipL21 is a superficial antigen of Leptospira interrogans. The expression output of the reconstructed lipL21 gene is remarkably increased. The expression rLipL21 maintains fine antigenicity and immunoreactivity and its antibody still shows an extensive cross immunoagglutination activity. The high expression of the reconstructed lipL21 gene will offer a

  20. Direct Capture and Heterologous Expression of Salinispora Natural Product Genes for the Biosynthesis of Enterocin

    PubMed Central

    2015-01-01

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora’s promising secondary metabolome. PMID:25382643

  1. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.

    PubMed

    Bonet, Bailey; Teufel, Robin; Crüsemann, Max; Ziemert, Nadine; Moore, Bradley S

    2015-03-27

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.

  2. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei.

    PubMed

    Guo, Hui; Li, Kexu; Wang, Wei; Wang, Chenggui; Shen, Yuchun

    2017-10-01

    Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L -1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6-48 h among shrimp exposed to 1 mg L -1 Cu and at each time points in 5 mg L -1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

  3. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  4. Structure-Function Analysis of a Broad Specificity Populus trichocarpa Endo-β-glucanase Reveals an Evolutionary Link between Bacterial Licheninases and Plant XTH Gene Products*

    PubMed Central

    Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry

    2013-01-01

    The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521

  5. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  6. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    PubMed Central

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  7. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    PubMed

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.

  8. Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus.

    PubMed

    Liu, Yang; Fang, Shengzuo; Yang, Wanxia; Shang, Xulan; Fu, Xiangxiang

    2018-02-01

    Understanding the responses of plant growth and secondary metabolites to differential light conditions is very important to optimize cultivation conditions of medicinal woody plants. As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. In this study, LED-based light including white light (WL), blue light (BL), red light (RL), and green light (GL) were used to affect leaf biomass production, flavonoid accumulation and related gene expression of one-year C. paliurus seedlings in controlled environments. After the treatments of 60 days, the highest leaf biomass appeared in the treatment of WL, while the lowest leaf biomass was found under GL. Compared to WL, the total flavonoid contents of C. paliurus leaves were significantly higher in BL, RL, and GL, but the highest values of selected flavonoids (kaempferol, isoquercitrin and quercetin) were observed under BL. Furthermore, the greatest yields of total and selected flavonoids in C. paliurus leaves per seedling were also achieved under BL, indicating that blue light was effective for inducing the production of flavonoids in C. paliurus leaves. Pearson's correlation analysis showed that there were significantly positive correlations between leaf flavonoid content and relative gene expression of key enzymes (phenylalanine ammonia lyase, PAL; 4-coumaroyl CoA-ligase, 4CL; and chalcone synthase, CHS) in the upstream, which converting phenylalanine into the flavonoid skeleton of tetrahydroxy chalcone. It is concluded that manipulating light quality may be potential mean to achieve the highest yields of flavonoids in C. paliurus cultivation, however this needs to be further verified by more field trials. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis.

    PubMed Central

    Borchert, S; Stachelhaus, T; Marahiel, M A

    1994-01-01

    The deduced amino acid sequence of the gsp gene, located upstream of the 5' end of the gramicidin S operon (grs operon) in Bacillus brevis, showed a high degree of similarity to the sfp gene product, which is located downstream of the srfA operon in B. subtilis. The gsp gene complemented in trans a defect in the sfp gene (sfpO) and promoted production of the lipopeptide antibiotic surfactin. The functional homology of Gsp and Sfp and the sequence similarity of these two proteins to EntD suggest that the three proteins represent a new class of proteins involved in peptide secretion, in support of a hypothesis published previously (T. H. Grossman, M. Tuckman, S. Ellestad, and M. S. Osburne, J. Bacteriol. 175:6203-6211, 1993). Images PMID:7512553

  10. The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt.

    PubMed

    Shamseldin, Abdelaal; Carro, Lorena; Peix, Alvaro; Velázquez, Encarna; Moawad, Hassan; Sadowsky, Michael J

    2016-06-01

    In the present work we analyzed the taxonomic status of several Rhizobium strains isolated from Trifolium alexandrinum L. nodules in Egypt. The 16S rRNA genes of these strains were identical to those of Rhizobium bangladeshense BLR175(T) and Rhizobium binae BLR195(T). However, the analyses of recA and atpD genes split the strains into two clusters. Cluster II strains are identified as R. bangladeshense with >98% similarity values in both genes. The cluster I strains are phylogenetically related to Rhizobium etli CFN42(T) and R. bangladeshense BLR175(T), but with less than 94% similarity values in recA and atpD genes. DNA-DNA hybridization analysis showed 42% and 48% average relatedness between the strain 1010(T) from cluster I with respect to R. bangladeshense BLR175(T) and R. etli CFN42(T), respectively. Phenotypic characteristics of cluster I strains also differed from those of their closest related Rhizobium species. Analysis of the nodC gene showed that the strains belong to two groups within the symbiovar trifolii which was identified in Egypt linked to the species R. bangladeshense. Based on the genotypic and phenotypic characteristics, the group I strains belong to a new species for which the name Rhizobium aegyptiacum sp. nov. (sv. trifolii) is proposed, with strain 1010(T) being designated as the type strain (= USDA 7124(T)=LMG 29296(T)=CECT 9098(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    PubMed

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  12. Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli

    PubMed Central

    Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.

    2001-01-01

    Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439

  13. Genes encoding novel lipid transporters and their use to increase oil production in vegetative tissues of plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Changcheng; Fan, Jilian; Yan, Chengshi

    The present invention discloses a novel gene encoding a transporter protein trigalactosyldiacylglycerol-5 (TGD5), mutations thereof and their use to enhance TAG production and retention in plant vegetative tissue.

  14. Transcription of lignocellulose-decomposition associated genes, enzyme activities and production of ethanol upon bioconversion of waste substrate by Phlebia radiata.

    PubMed

    Mäkinen, Mari A; Risulainen, Netta; Mattila, Hans; Lundell, Taina K

    2018-05-04

    Previously identified twelve plant cell wall degradation-associated genes of the white rot fungus Phlebia radiata were studied by RT-qPCR in semi-aerobic solid-state cultures on lignocellulose waste material, and on glucose-containing reference medium. Wood-decay-involved enzyme activities and ethanol production were followed to elucidate both the degradative and fermentative processes. On the waste lignocellulose substrate, P. radiata carbohydrate-active enzyme (CAZy) genes encoding cellulolytic and hemicellulolytic activities were significantly upregulated whereas genes involved in lignin modification displayed a more complex response. Two lignin peroxidase genes were differentially expressed on waste lignocellulose compared to glucose medium, whereas three manganese peroxidase-encoding genes were less affected. On the contrary, highly significant difference was noticed for three cellulolytic genes (cbhI_1, eg1, bgl1) with higher expression levels on the lignocellulose substrate than on glucose. This indicates expression of the wood-attacking degradative enzyme system by the fungus also on the recycled, waste core board material. During the second week of cultivation, ethanol production increased on the core board to 0.24 g/L, and extracellular activities against cellulose, xylan, and lignin were detected. Sugar release from the solid lignocellulose resulted with concomitant accumulation of ethanol as fermentation product. Our findings confirm that the fungus activates its white rot decay system also on industrially processed lignocellulose adopted as growth substrate, and under semi-aerobic cultivation conditions. Thus, P. radiata is a good candidate for lignocellulose-based renewable biotechnology to make biofuels and biocompounds from materials with less value for recycling or manufacturing.

  15. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    PubMed Central

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  16. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    Isopentenyl diphosphate isomerase (idi) and farnesyl diphosphate synthase (ispA) genes were overexpressed in Escherichia coli. The resulting transformant showed 6.8-fold higher production of farnesol (389 microg/l). In a similar manner, overexpression of idi and mutated ispA led to high production of geranylgeraniol (128 microg/l).

  17. [The effect of polymorphism F279Y of GHR gene on milk production trait in Chinese Holstein cattle].

    PubMed

    Ma, Yan-Nan; He, Peng-Jia; Zhu, Jing; Lei, Zhao-Min; Liu, Zhe; Wu, Jian-Ping

    2013-09-01

    To study the effect of the polymorphism F279Y of the growth hormone receptor (GHR) gene on milk yield and composition in Chinese Holstein cattle. Hundred thirty two Chinese Holstein cattle were selected as study materials, according to DHI production performance method to get the data of milk yield and composition; PCR- SSCP and sequencing method were used to detect the genotypes; least square method was used to acquire correlation analysis. Chinese Holstein cattle F279Y of GHR gene loci A and T allele frequency were 0.68 and 0.32, respectively, the experimental group significantly deviated from Hardy Weinberg equilibrium (P < 0.01); 305 d milk yield of AA genotype was significantly higher than AT type (P < 0.05), 305 d milk fat yield, 305 d milk protein yield and 305 d lactose of AT type had better trend than those of AA type in numeric; Therefore, allele A was dominant gene of high milk yield, allele T has positive effect on milk composition. Mutation F279Y of GHR gene can be used as genetic markers in Chinese Holstein milk production traits of marker assisted selection (MAS) breeding.

  18. Converting cancer genes into killer genes.

    PubMed Central

    Da Costa, L T; Jen, J; He, T C; Chan, T A; Kinzler, K W; Vogelstein, B

    1996-01-01

    Over the past decade, it has become clear that tumorigenesis is driven by alterations in genes that control cell growth or cell death. Theoretically, the proteins encoded by these genes provide excellent targets for new therapeutic agents. Here, we describe a gene therapy approach to specifically kill tumor cells expressing such oncoproteins. In outline, the target oncoprotein binds to exogenously introduced gene products, resulting in transcriptional activation of a toxic gene. As an example, we show that this approach can be used to specifically kill cells overexpressing a mutant p53 gene in cell culture. The strategy may be generally applicable to neoplastic diseases in which the underlying patterns of genetic alterations or abnormal gene expression are known. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8633039

  19. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes

    PubMed Central

    Heussler, Gary E.; Cady, Kyle C.; Koeppen, Katja; Bhuju, Sabin; Stanton, Bruce A.

    2015-01-01

    ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (CRISPR/Cas) system is an adaptive immune system present in many archaea and bacteria. CRISPR/Cas systems are incredibly diverse, and there is increasing evidence of CRISPR/Cas systems playing a role in cellular functions distinct from phage immunity. Previously, our laboratory reported one such alternate function in which the type 1-F CRISPR/Cas system of the opportunistic pathogen Pseudomonas aeruginosa strain UCBPP-PA14 (abbreviated as P. aeruginosa PA14) inhibits both biofilm formation and swarming motility when the bacterium is lysogenized by the bacteriophage DMS3. In this study, we demonstrated that the presence of just the DMS3 protospacer and the protospacer-adjacent motif (PAM) on the P. aeruginosa genome is necessary and sufficient for this CRISPR-dependent loss of these group behaviors, with no requirement of additional DMS3 sequences. We also demonstrated that the interaction of the CRISPR system with the DMS3 protospacer induces expression of SOS-regulated phage-related genes, including the well-characterized pyocin operon, through the activity of the nuclease Cas3 and subsequent RecA activation. Furthermore, our data suggest that expression of the phage-related genes results in bacterial cell death on a surface due to the inability of the CRISPR-engaged strain to downregulate phage-related gene expression, while these phage-related genes have minimal impact on growth and viability under planktonic conditions. Deletion of the phage-related genes restores biofilm formation and swarming motility while still maintaining a functional CRISPR/Cas system, demonstrating that the loss of these group behaviors is an indirect effect of CRISPR self-targeting. PMID:25968642

  20. Isolation of Penicillium nalgiovense strains impaired in penicillin production by disruption of the pcbAB gene and application as starters on cured meat products.

    PubMed

    Laich, Federico; Fierro, Francisco; Martin, Juan F

    2003-06-01

    The presence of some fungi on a variety of food products, like cheeses or cured meat products, is beneficial for the ripening of the product and for the development of specific flavour features. The utilization of these fungi as starters, which are inoculated normally as asexual spores on the food products at the beginning of the ripening process, is becoming a usual procedure in the food industry. The starter culture also prevents undesirable fungi or bacteria from growing on the product. Penicillium nalgiovense is the most frequently used starter for cured and fermented meat products, but the fact that this fungus can secrete penicillin to the meat product makes it important to get strains unable to synthesize this antibiotic. In this work we report that P. nalgiovense strains impaired in penicillin production can be obtained by disruption of the pcbAB gene (the first gene of the penicillin biosynthetic pathway). When applied as starter on cecina (a salted, smoke-cured beef meat product from the region of León, Spain), the pcbAB-disrupted strain showed no differences with respect to the parental penicillin-producing strain in its ability to colonize the meat pieces and to control their normal mycoflora. Both strains exerted a similar control on the presence of bacteria in cecina. A similar proportion of penicillin-sensitive and penicillin-resistant bacteria were isolated from pieces inoculated with the penicillin-producing or the non-producing P. nalgiovense strains. The decrease of the bacterial population on the surface of cecina seems to be due to the higher competition for nutrients as a consequence of the inoculation and development of the P. nalgiovense mycelium and not due to the production of penicillin by this fungus. Penicillin production was less affected than growth in a solid medium with high NaCl concentrations; this suggests that the high salt concentration present in cecina is not a limiting factor for penicillin production by P. nalgiovense.

  1. Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.

    PubMed

    Rana, N F; Gente, S; Rincé, A; Auffray, Y; Laplace, J M

    2012-09-01

    Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase (ldh) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase (pdc) gene (from Sarcina ventriculi or Clostridium acetobutylicum) in place ldh1. When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg(-1) of pdc specific activity, respectively. Highest activity (47 U mg(-1)) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.

  2. Identification of the Pr1 Gene Product Completes the Anthocyanin Biosynthesis Pathway of Maize

    PubMed Central

    Sharma, Mandeep; Cortes-Cruz, Moises; Ahern, Kevin R.; McMullen, Michael; Brutnell, Thomas P.; Chopra, Surinder

    2011-01-01

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3′H encoding gene (Zmf3′h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3′H1 promoter–gene construct established that the encoded protein product was sufficient to perform a 3′-hydroxylation reaction. The Zmf3′h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5′-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize. PMID:21385724

  3. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives.

    PubMed

    Sala, Francesco; Manuela Rigano, M; Barbante, Alessandra; Basso, Barbara; Walmsley, Amanda M; Castiglione, Stefano

    2003-01-30

    Stable integration of a gene into the plant nuclear or chloroplast genome can transform higher plants (e.g. tobacco, potato, tomato, banana) into bioreactors for the production of subunit vaccines for oral or parental administration. This can also be achieved by using recombinant plant viruses as transient expression vectors in infected plants. The use of plant-derived vaccines may overcome some of the major problems encountered with traditional vaccination against infectious diseases, autoimmune diseases and tumours. They also offer a convenient tool against the threat of bio-terrorism. State of the art, experimental strategies, safety and perspectives are discussed in this article.

  4. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  5. Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    Flavohemoglobins are widely distributed proteins in both prokaryotic and eukaryotic organisms, conferring resistance against nitrosative stress. In the present study we investigated the role of two flavohemoglobin homologous genes, fhbA and fhbB, in morphogenesis and in the production of the mycotox...

  6. Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene.

    PubMed

    Pourzardosht, Navid; Rasaee, Mohammad Javad

    2017-06-01

    Despite the significant potential of Streptococcus zooepidemicus for hyaluronic acid (HA) production with high molecular weight (MW), the HA degrading properties of hyaluronidase prevents the bacteria to achieve enhanced HA yield with high MW. In the present study, we aim to knockout the hyaluronidase enzyme and assess its effects on the yield and MW of the produced HA. The kanamycin resistance gene between the left and right arms of hyaluronidase gene was inserted into pUC18 plasmid to construct pUC18-L-kana r -R as a recombinant suicide plasmid. The construct was then transferred into S. zooepidemicus to induce the homologous recombination between the hyaluronidase gene and the kanamycin resistance gene. Gene deletion was confirmed by PCR and enzyme assay. The product was cultured on selectable medium in which the MW of HA was increased from 1.5 to 3.8 MDa. The yield of HA production using the mutant strain was higher in all different concentrations of glucose from 40 to 120 g/l. Moreover, glucose increase results in higher HA production within both wild-type and recombinant strains. However, the growth rate of HA concentration (the slope of the plot), as a consequence of increased glucose concentration, is always higher for the recombinant strain. Unlike the wild-type strain, there was no sharp HA production drop approaching the 6 g/l HA concentration. In conclusion, hyaluronidase activity and HA concentration and MW exhibited a mutual control on each other. Based on our results, deletion of the hyaluronidase gene positively affects the yield and MW of HA.

  7. Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes.

    PubMed

    Zhang, Z; Ding, Z T; Zhong, J; Zhou, J Y; Shu, D; Luo, D; Yang, J; Tan, H

    2017-06-01

    Bacillus subtilis ZK0, which was isolated from cotton, produces a type of lipopeptide antibiotic iturin A that inhibits the growth of pathogenic fungi on agricultural crops. However, the low level of iturin A production by B. subtilis ZK0 does not support its large-scale application. In this study, B. subtilis ZK0 was subjected to genetic manipulation to improve iturin A production. By the independent or simultaneous overexpression of two regulatory genes (comA and sigA), iturin A production by B. subtilis ZK0 was significantly increased. When both genes were simultaneously overexpressed under optimal conditions, iturin A production increased up to 215 mg l -1 (an approximate 43-fold increase compared with B. subtilis ZK0). Moreover, overexpression of both genes was unexpectedly found to inhibit biofilm formation by B. subtilis ZK0, indicating that the phenomenon of 'stuck fermentation' would be avoided during B. subtilis ZK0 fermentation. In conclusion, a genetic manipulation method that improves iturin A production and inhibits biofilm formation in B. subtilis ZK0 is reported for the first time and this method has the potential to be widely applied in B. subtilis ZK0 commercial fermentation. This study provides new perspectives on improving iturin A production by Bacillus subtilis. Our newly engineered strains could be applied to commercial fermentation by enhancing yields of iturin A and reducing the rate of 'stuck fermentation'. Increased production would facilitate more widespread application of this powerful antibiotic. © 2017 The Society for Applied Microbiology.

  8. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145.

    PubMed

    Kato, Hiroki; Tsunematsu, Yuta; Yamamoto, Tsuyoshi; Namiki, Takuya; Kishimoto, Shinji; Noguchi, Hiroshi; Watanabe, Kenji

    2016-07-01

    To rapidly identify novel natural products and their associated biosynthetic genes from underutilized and genetically difficult-to-manipulate microbes, we developed a method that uses (1) chemical screening to isolate novel microbial secondary metabolites, (2) bioinformatic analyses to identify a potential biosynthetic gene cluster and (3) heterologous expression of the genes in a convenient host to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. The chemical screen was achieved by searching known natural product databases with data from liquid chromatographic and high-resolution mass spectrometric analyses collected on the extract from a target microbe culture. Using this method, we were able to isolate two new meroterpenes, subglutinols C (1) and D (2), from an entomopathogenic filamentous fungus Metarhizium robertsii ARSEF 23. Bioinformatics analysis of the genome allowed us to identify a gene cluster likely to be responsible for the formation of subglutinols. Heterologous expression of three genes from the gene cluster encoding a polyketide synthase, a prenyltransferase and a geranylgeranyl pyrophosphate synthase in Aspergillus nidulans A1145 afforded an α-pyrone-fused uncyclized diterpene, the expected intermediate of the subglutinol biosynthesis, thereby confirming the gene cluster to be responsible for the subglutinol biosynthesis. These results indicate the usefulness of our methodology in isolating new natural products and identifying their associated biosynthetic gene cluster from microbes that are not amenable to genetic manipulation. Our method should facilitate the natural product discovery efforts by expediting the identification of new secondary metabolites and their associated biosynthetic genes from a wider source of microbes.

  9. Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production.

    PubMed

    Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme

    2017-06-07

    Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia

  10. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle.

    PubMed

    Yue, S J; Zhao, Y Q; Gu, X R; Yin, B; Jiang, Y L; Wang, Z H; Shi, K R

    2017-12-01

    A genome-wide association study (GWAS) was conducted on 15 milk production traits in Chinese Holstein. The experimental population consisted of 445 cattle, each genotyped by the GGP (GeneSeek genomic profiling)-BovineLD V3 SNP chip, which had 26 151 public SNPs in its manifest file. After data cleaning, 20 326 SNPs were retained for the GWAS. The phenotypes were estimated breeding values of traits, provided by a public dairy herd improvement program center that had been collected once a month for 3 years. Two statistical models, a fixed-effect linear regression model and a mixed-effect linear model, were used to estimate the association effects of SNPs on each of the phenotypes. Genome-wide significant and suggestive thresholds were set at 2.46E-06 and 4.95E-05 respectively. The two statistical models concurrently identified two genome-wide significant (P < 0.05) SNPs on milk production traits in this Chinese Holstein population. The positional candidate genes, which were the ones closest to these two identified SNPs, were EEF2K (eukaryotic elongation factor 2 kinase) and KLHL1 (kelch like family member 1). These two genes could serve as new candidate genes for milk yield and lactation persistence, yet their roles need to be verified in further function studies. © 2017 Stichting International Foundation for Animal Genetics.

  11. Mechanism of the formation of the RecA-ssDNA nucleoprotein filament structure: a coarse-grained approach.

    PubMed

    Mukherjee, Goutam; Pal, Arumay; Levy, Yaakov

    2017-11-21

    In prokaryotes, the RecA protein catalyzes the repair and strand exchange of double-stranded DNA. RecA binds to single-stranded DNA (ssDNA) and forms a presynaptic complex in which the protein polymerizes around the ssDNA to form a right-handed helical nucleoprotein filament structure. In the present work, the mechanism for the formation of the RecA-ssDNA filament structure is modeled using coarse-grained molecular dynamics simulations. Information from the X-ray structure was used to model the protein itself but not its interactions; the interactions between the protein and the ssDNA were modeled solely by electrostatic, aromatic, and repulsive energies. For the present study, the monomeric, dimeric, and trimeric units of RecA and 4, 8, and 11 NT-long ssDNA, respectively, were studied. Our results indicate that monomeric RecA is not sufficient for nucleoprotein filament formation; rather, dimeric RecA is the elementary binding unit, with higher multimeric units of RecA facilitating filament formation. Our results reveal that loop region flexibility at the primary binding site of RecA is essential for it to bind the incoming ssDNA, that the aromatic residues present in the loop region play an important role in ssDNA binding, and that ATP may play a role in guiding the ssDNA by changing the electrostatic potential of the RecA protein.

  12. Roles of Bacillus subtilis DprA and SsbA in RecA-mediated genetic recombination.

    PubMed

    Yadav, Tribhuwan; Carrasco, Begoña; Serrano, Ester; Alonso, Juan C

    2014-10-03

    Bacillus subtilis competence-induced RecA, SsbA, SsbB, and DprA are required to internalize and to recombine single-stranded (ss) DNA with homologous resident duplex. RecA, in the ATP · Mg(2+)-bound form (RecA · ATP), can nucleate and form filament onto ssDNA but is inactive to catalyze DNA recombination. We report that SsbA or SsbB bound to ssDNA blocks the RecA filament formation and fails to activate recombination. DprA facilitates RecA filamentation; however, the filaments cannot engage in DNA recombination. When ssDNA was preincubated with SsbA, but not SsbB, DprA was able to activate DNA strand exchange dependent on RecA · ATP. This work demonstrates that RecA · ATP, in concert with SsbA and DprA, catalyzes DNA strand exchange, and SsbB is an accessory factor in the reaction. In contrast, RecA · dATP efficiently catalyzes strand exchange even in the absence of single-stranded binding proteins or DprA, and addition of the accessory factors marginally improved it. We proposed that the RecA-bound nucleotide (ATP and to a lesser extent dATP) might dictate the requirement for accessory factors. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    PubMed

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  14. Identification and characterization of a gene product that regulates type 1 piliation in Escherichia coli.

    PubMed Central

    Orndorff, P E; Falkow, S

    1984-01-01

    The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation. Images PMID:6148338

  15. SOS response and its regulation on the fluoroquinolone resistance.

    PubMed

    Qin, Ting-Ting; Kang, Hai-Quan; Ma, Ping; Li, Peng-Peng; Huang, Lin-Yan; Gu, Bing

    2015-12-01

    Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.

  16. SOS response and its regulation on the fluoroquinolone resistance

    PubMed Central

    Qin, Ting-Ting; Kang, Hai-Quan; Ma, Ping; Li, Peng-Peng; Huang, Lin-Yan

    2015-01-01

    Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change—mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo. PMID:26807413

  17. Searching new signals for production traits through gene-based association analysis in three Italian cattle breeds.

    PubMed

    Capomaccio, Stefano; Milanesi, Marco; Bomba, Lorenzo; Cappelli, Katia; Nicolazzi, Ezequiel L; Williams, John L; Ajmone-Marsan, Paolo; Stefanon, Bruno

    2015-08-01

    Genome-wide association studies (GWAS) have been widely applied to disentangle the genetic basis of complex traits. In cattle breeds, classical GWAS approaches with medium-density marker panels are far from conclusive, especially for complex traits. This is due to the intrinsic limitations of GWAS and the assumptions that are made to step from the association signals to the functional variations. Here, we applied a gene-based strategy to prioritize genotype-phenotype associations found for milk production and quality traits with classical approaches in three Italian dairy cattle breeds with different sample sizes (Italian Brown n = 745; Italian Holstein n = 2058; Italian Simmental n = 477). Although classical regression on single markers revealed only a single genome-wide significant genotype-phenotype association, for Italian Holstein, the gene-based approach identified specific genes in each breed that are associated with milk physiology and mammary gland development. As no standard method has yet been established to step from variation to functional units (i.e., genes), the strategy proposed here may contribute to revealing new genes that play significant roles in complex traits, such as those investigated here, amplifying low association signals using a gene-centric approach. © 2015 Stichting International Foundation for Animal Genetics.

  18. Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    PubMed Central

    Dresser, Ashley R.; Hardy, Pierre-Olivier; Chaconas, George

    2009-01-01

    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the

  19. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    NASA Astrophysics Data System (ADS)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  20. Gene doping: gene delivery for olympic victory

    PubMed Central

    Gould, David

    2013-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place. PMID:23082866

  1. VH Replacement Footprint Analyzer-I, a Java-Based Computer Program for Analyses of Immunoglobulin Heavy Chain Genes and Potential VH Replacement Products in Human and Mouse

    PubMed Central

    Huang, Lin; Lange, Miles D.; Zhang, Zhixin

    2014-01-01

    VH replacement occurs through RAG-mediated secondary recombination between a rearranged VH gene and an upstream unrearranged VH gene. Due to the location of the cryptic recombination signal sequence (cRSS, TACTGTG) at the 3′ end of VH gene coding region, a short stretch of nucleotides from the previous rearranged VH gene can be retained in the newly formed VH–DH junction as a “footprint” of VH replacement. Such footprints can be used as markers to identify Ig heavy chain (IgH) genes potentially generated through VH replacement. To explore the contribution of VH replacement products to the antibody repertoire, we developed a Java-based computer program, VH replacement footprint analyzer-I (VHRFA-I), to analyze published or newly obtained IgH genes from human or mouse. The VHRFA-1 program has multiple functional modules: it first uses service provided by the IMGT/V-QUEST program to assign potential VH, DH, and JH germline genes; then, it searches for VH replacement footprint motifs within the VH–DH junction (N1) regions of IgH gene sequences to identify potential VH replacement products; it can also analyze the frequencies of VH replacement products in correlation with publications, keywords, or VH, DH, and JH gene usages, and mutation status; it can further analyze the amino acid usages encoded by the identified VH replacement footprints. In summary, this program provides a useful computation tool for exploring the biological significance of VH replacement products in human and mouse. PMID:24575092

  2. The Cyclic Di-GMP Phosphodiesterase Gene Rv1357c/BCG1419c Affects BCG Pellicle Production and In Vivo Maintenance.

    PubMed

    Flores-Valdez, Mario Alberto; Aceves-Sánchez, Michel de Jesús; Pedroza-Roldán, César; Vega-Domínguez, Perla Jazmín; Prado-Montes de Oca, Ernesto; Bravo-Madrigal, Jorge; Laval, Françoise; Daffé, Mamadou; Koestler, Ben; Waters, Christopher M

    2015-02-01

    Bacteria living in a surface-attached community that contains a heterogeneous population, coated with an extracellular matrix, and showing drug tolerance (biofilms) are often linked to chronic infections. In mycobacteria, the pellicle mode of growth has been equated to an in vitro biofilm and meets several of the criteria mentioned above, while tuberculosis infection presents a chronic (latent) phase of infection. As mycobacteria lack most genes required to control biofilm production by other microorganisms, we deleted or expressed from the hsp60 strong promoter the only known c-di-GMP phosphodiesterase (PDE) gene in Mycobacterium bovis BCG. We found changes in pellicle production, cellular protein profiles, lipid production, resistance to nitrosative stress and maintenance in lungs and spleens of immunocompetent BALB/mice. Our results show that pellicle production and capacity to remain within the host are linked in BCG. © 2015 International Union of Biochemistry and Molecular Biology.

  3. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-08-03

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.

  4. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer

    PubMed Central

    Leygue, Etienne

    2007-01-01

    The steroid receptor RNA activator (SRA) is a unique modulator of steroid receptor transcriptional activity, as it is able to mediate its coregulatory effects as a RNA molecule. Recent findings, however, have painted a more complex picture of the SRA gene (SRA1) products. Indeed, even though SRA was initially thought to be noncoding, several RNA isoforms have now been found to encode an endogenous protein (SRAP), which is well conserved among Chordata. Although the function of SRAP remains largely unknown, it has been proposed that, much like its corresponding RNA, the protein itself might regulate estrogen and androgen receptor signaling pathways. As such, data suggest that both SRA and SRAP might participate in the mechanisms underlying breast, as well as prostate tumorigenesis. This review summarizes the published literature dealing with these two faces of the SRA gene products and underscores the relevance of this bifaceted system to breast cancer development. PMID:17710122

  5. Polyketide synthesis genes associated with toxin production in two species of Gambierdiscus (Dinophyceae).

    PubMed

    Kohli, Gurjeet S; John, Uwe; Figueroa, Rosa I; Rhodes, Lesley L; Harwood, D Tim; Groth, Marco; Bolch, Christopher J S; Murray, Shauna A

    2015-05-28

    Marine microbial protists, in particular, dinoflagellates, produce polyketide toxins with ecosystem-wide and human health impacts. Species of Gambierdiscus produce the polyether ladder compounds ciguatoxins and maitotoxins, which can lead to ciguatera fish poisoning, a serious human illness associated with reef fish consumption. Genes associated with the biosynthesis of polyether ladder compounds are yet to be elucidated, however, stable isotope feeding studies of such compounds consistently support their polyketide origin indicating that polyketide synthases are involved in their biosynthesis. Here, we report the toxicity, genome size, gene content and transcriptome of Gambierdiscus australes and G. belizeanus. G. australes produced maitotoxin-1 and maitotoxin-3, while G. belizeanus produced maitotoxin-3, for which cell extracts were toxic to mice by IP injection (LD50 = 3.8 mg kg(-1)). The gene catalogues comprised 83,353 and 84,870 unique contigs, with genome sizes of 32.5 ± 3.7 Gbp and 35 ± 0.88 Gbp, respectively, and are amongst the most comprehensive yet reported from a dinoflagellate. We found three hundred and six genes involved in polyketide biosynthesis, including one hundred and ninety-two ketoacyl synthase transcripts, which formed five unique phylogenetic clusters. Two clusters were unique to these maitotoxin-producing dinoflagellate species, suggesting that they may be associated with maitotoxin biosynthesis. This work represents a significant step forward in our understanding of the genetic basis of polyketide production in dinoflagellates, in particular, species responsible for ciguatera fish poisoning.

  6. Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco.

    PubMed

    Ji, Chang Yoon; Kim, Yun-Hee; Kim, Ho Soo; Ke, Qingbo; Kim, Gun-Woo; Park, Sung-Chul; Lee, Haeng-Soon; Jeong, Jae Cheol; Kwak, Sang-Soo

    2016-09-01

    Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The Product of the fimI Gene Is Necessary for Escherichia coli Type 1 Pilus Biosynthesis

    PubMed Central

    Valenski, Mary L.; Harris, Sandra L.; Spears, Patricia A.; Horton, John R.; Orndorff, Paul E.

    2003-01-01

    Site-directed mutagenesis was employed to create lesions in fimI, a gene of uncertain function located in the chromosomal gene cluster (fim) involved in Escherichia coli type 1 pilus biosynthesis. Chromosomal fimI mutations produced a piliation-negative phenotype. Complementation analysis indicated that a fimI′-kan insertion mutation and a fimI frameshift mutation produced polarity-like effects not seen with an in-frame fimI deletion mutation. Minicell analysis associated fimI with a 16.4-kDa noncytoplasmic protein product (FimI). We conclude that FimI has a required role in normal pilus biosynthesis. PMID:12897022

  8. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  9. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase.

    PubMed

    Farb, Joshua N; Morrical, Scott W

    2009-01-16

    Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.

  10. Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages.

    PubMed

    Huang, Guan-Cheng; Chow, Jyh-Ming; Shen, Shing-Chuan; Yang, Liang-Yo; Lin, Cheng-Wei; Chen, Yen-Chou

    2007-08-01

    Wogonin (Wog; 5,7-dihydroxy-8-methoxy flavone) has been shown to effectively inhibit lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) gene expression and nitric oxide production in our previous study. In the present study, we found that Nor-wogonin (N-Wog; 5,7,8-trihydroxyl flavone), a structural analogue of Wog with an OH substitution at C8, performed different effect on LPS- or lipoteichoic acid (LTA)-induced iNOS gene expression and nitric oxide (NO) production in macrophages. Wog, but not N-Wog, significantly inhibits LPS- or LTA-induced NO production through suppressing iNOS gene expression at both protein and mRNA without affecting NO donor sodium nitroprusside-induced NO production, NOS enzyme activity, and cells viability. Activation of JNKs (not ERKs) via phosphorylation induction, and an increase in c-Jun (not c-Fos) protein expression were involved in LPS- and LTA-treated RAW264.7 cells, and those events were blocked by Wog, but not N-Wog, addition. Furthermore, 5,7-diOH flavone, but not 5-OH flavone, 7-OH flavone, 5-OH-7-OCH(3) flavone, significantly inhibits LPS-induced iNOS protein expression and NO production, and 7,8-diOCH(3) flavone performs more effective inhibitory activity on LPS-induced NO production and iNOS protein expression than 7-OCH(3)-8-OH flavone. These data suggest that OHs at both C5 and C7 are essential for NO inhibition of flavonoids, and OCH(3) at C8 may contribute to this activity, and suppression of JNKs-c-Jun activation is involved.

  11. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    PubMed

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa.

    PubMed

    Catalano, Domenico; Licciulli, Flavio; Turi, Antonio; Grillo, Giorgio; Saccone, Cecilia; D'Elia, Domenica

    2006-01-24

    Mitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism. In this context, the problem of the optimal extraction of representative datasets of genomic and proteomic data assumes a crucial importance. Specialised resources for nuclear-encoded mitochondria-related proteins already exist; however, no mitochondrial database is currently available with the same features of MitoRes, which is an update of the MitoNuc database extensively modified in its structure, data sources and graphical interface. It contains data on nuclear-encoded mitochondria-related products for any metazoan species for which this type of data is available and also provides comprehensive sequence datasets (gene, transcript and protein) as well as useful tools for their extraction and export. MitoRes http://www2.ba.itb.cnr.it/MitoRes/ consolidates information from publicly external sources and automatically annotates them into a relational database. Additionally, it also clusters proteins on the basis of their sequence similarity and interconnects them with genomic data. The search engine and sequence management tools allow the query/retrieval of the database content and the extraction and export of sequences (gene, transcript, protein) and related sub-sequences (intron, exon, UTR, CDS, signal peptide and gene flanking regions) ready to be used for in silico analysis. The tool we describe here has been developed to support lab scientists and bioinformaticians alike in the characterization of molecular features and evolution of mitochondrial targeting sequences. The

  13. Identification of genes for melatonin synthetic enzymes in 'Red Fuji' apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development.

    PubMed

    Lei, Qiong; Wang, Lin; Tan, Dun-Xian; Zhao, Yu; Zheng, Xiao-Dong; Chen, Hao; Li, Qing-Tian; Zuo, Bi-Xiao; Kong, Jin

    2013-11-01

    Melatonin is present in many edible fruits; however, the presence of melatonin in apple has not previously been reported. In this study, the genes for melatonin synthetic enzymes including tryptophan decarboxylase, tryptamine 5-hydroxylase (T5H), arylalkylamine N-acetyltransferase, and N-acetylserotonin methyltransferase were identified in 'Red Fuji' apple. Each gene has several homologous genes. Sequence analysis shows that these genes have little homology with those of animals and they only have limited homology with known genes of rice melatonin synthetic enzymes. Multiple origins of melatonin synthetic genes during the evolution are expected. The expression of these genes is fully coordinated with melatonin production in apple development. Melatonin levels in apple exhibit an inverse relationship with the content of malondialdehyde, a product of lipid peroxidation. Two major melatonin synthetic peaks appeared on July 17 and on October 8 in both unbagged and bagged apple samples. At the periods mentioned above, apples experienced rapid expansion and increased respiration. These episodes significantly elevate reactive oxygen species production in the apple. Current data further confirmed that melatonin produced in apple was used to neutralize the toxic oxidants and protect the developing apple against oxidative stress. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    PubMed Central

    Saikaly, Pascal E.; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can

  15. Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors

    PubMed Central

    Medina, Angel; Schmidt-Heydt, Markus; Cárdenas-Chávez, Diana L.; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2013-01-01

    The objective of this study was to integrate data on the effect of water activity (aw; 0.995–0.93) and temperature (20–35°C) on activation of the biosynthetic FUM genes, growth and the mycotoxins fumonisin (FB1, FB2) by Fusarium verticillioides in vitro. The relative expression of nine biosynthetic cluster genes (FUM1, FUM7, FUM10, FUM11, FUM12, FUM13, FUM14, FUM16 and FUM19) in relation to the environmental factors was determined using a microarray analysis. The expression was related to growth and phenotypic FB1 and FB2 production. These data were used to develop a mixed-growth-associated product formation model and link this to a linear combination of the expression data for the nine genes. The model was then validated by examining datasets outside the model fitting conditions used (35°C). The relationship between the key gene (FUM1) and other genes in the cluster (FUM11, FUM13, FUM9, FUM14) were examined in relation to aw, temperature, FB1 and FB2 production by developing ternary diagrams of relative expression. This model is important in developing an integrated systems approach to develop prevention strategies to control fumonisin biosynthesis in staple food commodities and could also be used to predict the potential impact that climate change factors may have on toxin production. PMID:23697716

  16. Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.

    USDA-ARS?s Scientific Manuscript database

    Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...

  17. Gene doping: gene delivery for olympic victory.

    PubMed

    Gould, David

    2013-08-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  18. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    PubMed

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    Paraffinic n -alkanes (>C 17 ) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n -octacosane (C 28 H 58 ). Compared with that in controls, the consumption of n -octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C 28 H 58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C 28 H 58 -degrading cultures compared with that in controls, suggesting n -octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C 28 H 58 -degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important

  19. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production

    PubMed Central

    Oberding, Lisa K.

    2017-01-01

    ABSTRACT Paraffinic n-alkanes (>C17) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n-octacosane (C28H58). Compared with that in controls, the consumption of n-octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C28H58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C28H58-degrading cultures compared with that in controls, suggesting n-octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C28H58-degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important applications for

  20. Immunomodulatory Effects of Saccharomyces cerevisiae Fermentation Product Supplementation on Immune Gene Expression and Lymphocyte Distribution in Immune Organs in Broilers.

    PubMed

    Chou, Wen K; Park, Jungwoo; Carey, John B; McIntyre, Don R; Berghman, Luc R

    2017-01-01

    A study was conducted to evaluate the molecular and cellular immunomodulatory effects of a Saccharomyces cerevisiae fermentation product (Original XPC, Diamond V) in broilers. Our lab has previously demonstrated that broilers fed XPC generate faster and stronger antigen-specific humoral immune responses to Newcastle disease virus (NDV) vaccination. This study aims at investigating the mechanism behind this increased immunocompetence. One-day-old broilers were randomly assigned to one of two treatments: 1.25 kg/ton S. cerevisiae fermentation product (XPC treatment group) or control diet. Birds were vaccinated against NDV on day 1 (B1 strain) and day 21 (LaSota strain) post-hatch. Innate and adaptive immune-related gene expression profiles in central (thymus and bursa of Fabricius) and peripheral (spleen) immune organs were investigated at 14 and 28 days of age by qPCR array. Fold changes larger than 1.2 ( P  < 0.05) between treated and control were considered significant. Lymphocyte subpopulations in central and peripheral immune organs and blood leukocytes were analyzed by flow cytometry at 14, 21, 28, and 42 days of age. In the spleen, Th1 immune responses and antiviral genes, such as IFN-γ, and its downstream genes signal transducer and activator of transcription (STAT4) and NFκB, were significantly upregulated in the treated group by 14 days of age. In the thymus, genes belonging to different functional groups were influenced at different time points. Cytokine genes associated with lymphocyte maturation, differentiation, and proliferation, such as IL-1R, IL-2, and IL-15 were significantly upregulated in the treated group by 28 days of age. Genes preferentially expressed in the medulla of the thymus and mature thymocytes, such as Myxovirus resistance gene 1, interferon regulatory factor-1, interferon regulatory factor-7, and STAT1, were upregulated in the birds supplemented with XPC. Birds supplemented with XPC had significantly higher percentages

  1. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  2. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  3. Identifying genes involved in the interaction of Aggregatibacter actinomycetemcomitans with Maillard reaction products (MRP)

    NASA Astrophysics Data System (ADS)

    Jaha, Raniah Abdulmohsen

    Aggregatibacter (Actinobacillus) actinomycelemcomitcrns is a gram-negative bacterium that is a facultative anaerobe which can grow in either aerobic or anaerobic conditions. The bacteria cause localized aggressive periodontitis that can result in the loss of teeth and endocarditis, which is an infection of the heart valves. A rich medium is an essential requirement for its growth. There arc some difficulties associated with growing the bacteria as they easily switch from the rough to smooth phenotype under no specific conditions. The bacteria start to lose viability after about 19 hours of growth in broth or about three days on plates. Colonies in the dense part of the streak on plates die earlier. It was shown that acid secreted by the colonies is responsible for the loss of viability as the bacteria are extremely sensitive to low pH. Autoclaving the growth medium for A. actinomycetemcomitans causes the bacteria to grow slowly because of the formation of Maillard reaction products (MRPs). A method has been developed to make the A. actinomycetemcomitans growth medium using the microwave instead of the autoclave. This method produces much less of the inhibitory product since the heating time is only six minutes, compared to more than an hour when using the autoclave. Two approaches were sought in this research. The first approach was the identification of genes responsible for the interaction between the MRP and A. actinomycetemcomitans. The gene responsible for this interaction was found to be a Lys M protein which is found in many genes responsible for the cell wall integrity. The second approach was to develop a new drug made of glucose and lysine with a minimum inhibitory concentration as 75mM.

  4. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    PubMed

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  5. mcrA Gene abundance correlates with hydrogenotrophic methane production rates in full-scale anaerobic waste treatment systems.

    PubMed

    Morris, R L; Tale, V P; Mathai, P P; Zitomer, D H; Maki, J S

    2016-02-01

    Anaerobic treatment is a sustainable and economical technology for waste stabilization and production of methane as a renewable energy. However, the process is under-utilized due to operational challenges. Organic overload or toxicants can stress the microbial community that performs waste degradation, resulting in system failure. In addition, not all methanogenic microbial communities are equally capable of consistent, maximum biogas production. Opinion varies as to which parameters should be used to monitor the fitness of digester biomass. No standard molecular tools are currently in use to monitor and compare full-scale operations. It was hypothesized that determining the number of gene copies of mcrA, a methanogen-specific gene, would positively correlate with specific methanogenic activity (SMA) rates from biomass samples from six full-scale anaerobic digester systems. Positive correlations were observed between mcrA gene copy numbers and methane production rates against H2  : CO2 and propionate (R(2)  = 0·67-0·70, P < 0·05) but not acetate (R(2)  = 0·49, P > 0·05). Results from this study indicate that mcrA gene targeted qPCR can be used as an alternate tool to monitor and compare certain methanogen communities in anaerobic digesters. Using quantitative PCR (qPCR), we demonstrate that the abundance of mcrA, a gene specific to methane producing archaea, correlated with specific methanogenic activity (SMA) measurements when H2 and CO2 , or propionate were provided as substrates. However, mcrA abundance did not correlate with SMA with acetate. SMA values are often used as a fitness indicator of anaerobic biomass. Results from qPCR can be obtained within a day while SMA analysis requires days to weeks to complete. Therefore, qPCR for mcrA abundance is a sensitive and fast method to compare and monitor the fitness of certain anaerobic biomass. As a monitoring tool, qPCR of mcrA will help anaerobic digester operators optimize treatment and encourage

  6. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    PubMed

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  7. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi).

    PubMed

    Chimetto, L A; Brocchi, M; Gondo, M; Thompson, C C; Gomez-Gil, B; Thompson, F L

    2009-06-01

    A taxonomic survey of the vibrios associated with the Brazilian endemic coral Mussismilia hispida and the sympatric zoanthids (i.e. Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). Mucus of 54 cnidarian specimens collected in three different places at São Sebastião in two consecutive years (i.e. 2005 and 2006) was used for taxonomic characterization of the cnidarian microbiota. Ninety-eight of the 151 vibrio isolates fell within the vibrio core group according to partial 16S rDNA sequences. We performed the sequencing of recA and pyrH genes of all vibrio isolates. The most abundant taxa belonged to the vibrio core group (Vibrio harveyi, Vibrio rotiferianus, Vibrio campbellii and Vibrio alginolyticus), Vibrio mediterranei (=Vibrio shillonii) and Vibrio chagasii. With the exception of V. chagasii which was found only in the mucus of M. hispida, the other species appeared in different hosts with no evidence for the presence of host-specific clones or species. Using rep-PCR analysis, we observed a high genomic heterogeneity within the vibrios. Each vibrio isolate generated a different rep-PCR fingerprint pattern. There was a complete agreement between the grouping based on rep-PCR and concatenated sequences of pyrH, recA and 16S rDNA, but the pyrH gene has the highest discriminatory power for vibrio species identification. The vibrio core group is dominant in the mucus of these cnidarians. There is a tremendous diversity of vibrio lineages within the coral mucus. pyrH gene sequences permit a clear-cut identification of vibrios. The taxonomic resolution provided by pyrH (but not recA) appears to be enough for identifying species of vibrios and for disclosing putative new taxa. The vibrio core group appears to be dominant in the mucus of the Brazilian cnidarians. The overrepresentation of these vibrios may reflect as yet unknown ecological functions in the coral holobiont.

  8. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain.

    PubMed

    Okuda, Naoyuki; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Hoshino, Tamotsu

    2016-10-01

    We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.

  9. Characterization of the Polyoxin Biosynthetic Gene Cluster from Streptomyces cacaoi and Engineered Production of Polyoxin H*S⃞

    PubMed Central

    Chen, Wenqing; Huang, Tingting; He, Xinyi; Meng, Qingqing; You, Delin; Bai, Linquan; Li, Jialiang; Wu, Mingxuan; Li, Rui; Xie, Zhoujie; Zhou, Huchen; Zhou, Xiufen; Tan, Huarong; Deng, Zixin

    2009-01-01

    A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics. PMID:19233844

  10. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    PubMed Central

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  11. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    PubMed

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    PubMed

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    PubMed

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.

  14. Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain.

    PubMed

    Durán, David; Rey, L; Sánchez-Cañizares, C; Navarro, A; Imperial, J; Ruiz-Argueso, T

    2013-03-01

    The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    PubMed

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  16. Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae.

    PubMed

    Negoro, Hiroaki; Sakamoto, Mitsuru; Kotaka, Atsushi; Matsumura, Kengo; Hata, Yoji

    2018-02-01

    Saccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated. This mutant was sensitive to dimethyl succinate (DMS) and harbored a nonsense mutation in the peroxin gene PEX22, which was identified as the cause of high malate production by comparative genome analysis. This mutation, which appeared to cause Pex22p dysfunction, was sufficient to confer increased malate productivity and DMS sensitivity to yeast cells. Next, we investigated the mechanism by which this mutation led to high malate production in yeast cells. Peroxins, such as Pex22p, maintain peroxisomal biogenesis. Analysis of 29 PEX disruptants revealed an increased malate production by deletion of the genes encoding peroxins responsible for importing proteins (containing peroxisomal targeting signal 1, PTS1) into the peroxisomal matrix, and those responsible for the assembly of peroxins themselves in the peroxisomal membrane. A defect in peroxisomal malate dehydrogenase (Mdh3p), harboring endogenous PTS1, inhibited the high malate-producing phenotype in the PEX22 mutant. Moreover, Mdh3p, which was normally sorted to the peroxisomal matrix, was potentially mislocalized to the cytosol in the PEX22 mutant. This suggested that an increase in malate production resulted from the mislocalization of Mdh3p from the peroxisome to the cytoplasm due to the loss of peroxin-mediated transportation. Thus, the present study revealed a novel mechanism for organic acid productions in yeast during sake brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Associations of Leptin and Pituitary-Specific Transcription Factor Genes' Polymorphisms with Reproduction and Production Traits in Dairy Buffalo.

    PubMed

    Nasr, Maf; Awad, A; El Araby, I E

    2016-08-01

    This study aimed to detect the genetic variability in Leptin and Pit-1 genes using polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing also to explore their possible associations with reproductive and productive traits of Egyptian buffaloes. Regarding Leptin gene, three genotypes (AA, AG and GG) were identified with frequency of 0.54, 0.40 and 0.06, respectively, and the genotypes were distributed according to the Hardy-Weinberg equilibrium. Allele A was comparatively higher than G with frequency of 0.74 and 0.26, respectively. For Pit-1 gene, the association could not be performed due to the monomorphism (BB). The results showed that AA genotypes were found to be superior in most of production and reproduction traits. AA genotypes yielded more milk (2332.34 kg, p = 0.04) with higher fat% (6.10, p = 0.004) and fat yield (155.75 kg, p = 0.06), reach peak milk production at 42.19 days and required 2.19 services for conception in comparison with GG genotypes. Birthweight of animals with AA genotype was lesser than with GG genotype (39.35 and 43.67 kg, p = 0.02, respectively). The days open is numerically better in AA genotype animals (99.35 days), but the difference between the three genotypes was non-significant. The distinct significant associations reported in this study suggested that Leptin is reputable candidate genetic marker, which might be used to enhance animals' genetic potential for milk production in conjunction with reproduction. © 2016 Blackwell Verlag GmbH.

  18. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    PubMed

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cloning and identification of bacteriophage T4 gene 2 product gp2 and action of gp2 on infecting DNA in vivo.

    PubMed Central

    Lipinska, B; Rao, A S; Bolten, B M; Balakrishnan, R; Goldberg, E B

    1989-01-01

    We sequenced bacteriophage T4 genes 2 and 3 and the putative C-terminal portion of gene 50. They were found to have appropriate open reading frames directed counterclockwise on the T4 map. Mutations in genes 2 and 64 were shown to be in the same open reading frame, which we now call gene 2. This gene codes for a protein of 27,068 daltons. The open reading frame corresponding to gene 3 codes for a protein of 20,634 daltons. Appropriate bands on polyacrylamide gels were identified at 30 and 20 kilodaltons, respectively. We found that the product of the cloned gene 2 can protect T4 DNA double-stranded ends from exonuclease V action. Images PMID:2644202

  20. Improved Polysaccharide Production by Homologous Co-overexpression of Phosphoglucomutase and UDP Glucose Pyrophosphorylase Genes in the Mushroom Coprinopsis cinerea.

    PubMed

    Zhou, Jiangsheng; Bai, Yang; Dai, Rujuan; Guo, Xiaoli; Liu, Zhong-Hua; Yuan, Sheng

    2018-05-09

    Coprinopsis polysaccharides exhibit hypoglycemic and antioxidant activities. In this report, increases in polysaccharide production by homologous co-overexpression or individual homologous overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase gene in Coprinopsis cinerea, which participate in polysaccharide biosynthesis. The transcription levels of the target genes were upregulated significantly in the oePGM-UGP strain when compared with the oePGM or oeUGP strain. The maximum intracellular polysaccharide content obtained in the oePGM-UGP strain was 1.49-fold higher than that of the WT strain, whereas a slight improvement in polysaccharide production was obtained in the oePGM and oeUGP strains. Extracellular polysaccharide production was enhanced by 75% in the oePGM-UGP strain when compared with that of the WT strain, whereas improvements of 30% and 16% were observed for the oePGM and oeUGP strains, respectively. These results show that multiple interventions in polysaccharide biosynthesis pathways of Basidiomycetes might improve polysaccharide yields when compared with that of single interventions.

  1. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less

  2. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  3. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk

    PubMed Central

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-01-01

    β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine. PMID:25994151

  4. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk.

    PubMed

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-05-21

    β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.

  5. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus.

    PubMed

    Yahyaraeyat, R; Khosravi, A R; Shahbazzadeh, D; Khalaj, V

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  6. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    PubMed Central

    Yahyaraeyat, R.; Khosravi, A.R.; Shahbazzadeh, D.; Khalaj, V.

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity. PMID:24294264

  7. [Prokaryotic expression of Leptospira interrogans groEL gene and immunoprotection of its products in hamsters].

    PubMed

    Li, Xiaoyu; Wang, Yinhuan; Yan, Jie; Cheng, Dongqing

    2013-03-01

    To construct a prokaryotic expression system of groEL gene of Leptospira interrogans serogroup Icterohaemorrhagia serovar Lai strain Lai, and to determine the immunoprotective effect of recombinant GroEL protein (rGroEL) in LVG hamsters. The groEL gene was amplified by high fidelity PCR and the amplification products were then sequenced. A prokaryotic expression system of groEL gene was constructed using routine genetic engineering technique. SDS-PAGE plus Bio-Rad Gel Image Analyzer was applied to examine the expression and dissolubility of rGroEL protein while Ni-NTA affinity chromatography was used to extract the expressed rGroEL. The immunoprotective rate in rGroEL-immunized LVG hamsters was determined after challenge with L.interrogans strain Lai. The cross agglutination titers of sera from immunized hamsters with different L.interrogans serogroups were detected using MAT. The nucleotide and amino acid sequences of the cloned groEL gene were the same as those reported in GenBank. The constructed prokaryotic expression system of groEL gene expressed soluble rGroEL. The immunoprotective rates of 100 and 200 μg rGroEL in LVG hamsters were 50.0 % and 75.0%, respectively. The sera from the rGroEL-immunized LVG hamsters agglutinated all the L.interrogans serogroups tested with different levels. The GroEL protein is a genus-specific immunoprotective antigen of L.interrogans and can be used to develop an universal genetically engineering vaccine of Leptospira.

  8. CFH Y402H polymorphism and the complement activation product C5a: effects on NF-κB activation and inflammasome gene regulation.

    PubMed

    Cao, Sijia; Wang, Jay Ching Chieh; Gao, Jiangyuan; Wong, Matthew; To, Elliott; White, Valerie A; Cui, Jing Z; Matsubara, Joanne A

    2016-05-01

    The Y402H polymorphism in the complement factor H (CFH) gene is an important risk factor for age-related macular degeneration (AMD). Complement activation products and proinflammatory cytokines are associated with this polymorphism at the systemic level, but less is known of the associations in the outer retina of the genotyped eye. Here we investigate complement activation products and their role in nuclear factor (NF)-κB activation and gene expression of the NLRP3 inflammasome pathway. Postmortem donor eyes were genotyped for the CFH Y402H polymorphism and assessed for complement C3a, C5a, interleukin (IL)-18 and tumour necrosis factor (TNF)-α. ARPE19 cells were stimulated basolaterally with C5a or TNF-α in polarised cultures. NF-κB activation was assessed with a reporter cell line. Gene expression of inflammasome-related (NLRP3, caspase-1, IL-1β and IL-18) and classic inflammatory (IL-6 and IL-8) genes was studied. The distribution of inflammasome products, IL-1β and IL-18, was studied in postmortem donor eyes with AMD pathologies. Eyes with the homozygous at-risk variant demonstrated higher levels of C5a, IL-18 and TNF-α in Bruch's membrane and choroid. C5a promoted NF-κB activation and upregulation of IL-18 in polarised ARPE19. TNF-α promoted NF-κB activation and gene expression of caspase-1, IL-1β, IL-18, IL-6 and IL-8, but downregulated NLRP3. In eyes with geographic atrophy, strong immunoreactivity was observed for inflammasome products IL-1β and IL-18 compared with age-matched controls. The at-risk polymorphism of the CFH Y402H may contribute to AMD disease process through increased complement and NF-κB activation, and the upregulation of IL-18, a product of inflammasome activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628.

    PubMed

    Ma, Zheng; Luo, Shuai; Xu, Xianhao; Bechthold, Andreas; Yu, Xiaoping

    2016-04-01

    Modification of enzymes involved in transcription- or translation-processes is an interesting way to increase secondary metabolite production in Streptomycetes. However, application of such methods has not been widely described for strains which produce nucleoside antibiotics. The nucleoside antibiotic toyocamycin (TM) is produced by Streptomyces diastatochromogenes 1628. For improving TM production in S. diastatochromogenes 1628, the strain was spread on rifamycin-resistant (Rif(r)) medium. Several spontaneous mutants were obtained with mutations in the rpoB gene which encodes a RNA polymerase β-subunit. The mutants which showed increased TM production were detected at a frequency of 7.5 % among the total Rif(r) mutants. Mutant 1628-T15 harboring amino acid substitution His437Arg was the best TM producer with a 4.5-fold increase in comparison to that of the wild-type strain. The worst producer was mutant 1628-T62 which also showed a poor sporulation behavior. RT-PCR was performed to study the transcription levels of the TM biosynthetic gene toyG in the parental strain as well as in mutants 1628-T15 and 1628-T62. The transcriptional level of toyG was higher in mutant 1628-T15 than that in parental strain 1628, while much lower in mutant 1628-T62. In mutant strain 1628-T62 the expression of adpA sd gene, which is required for morphological differentiation, was also much lower. Our studies also indicate that the introduction of mutations into rpoB is an effective strategy to improve the production of TM which is an important nucleoside antibiotic.

  10. Enhancement of welan gum production in Sphingomonas sp. HT-1 via heterologous expression of Vitreoscilla hemoglobin gene.

    PubMed

    Liu, Xiaoliu; Zhu, Ping; Jiang, Ruifan; Wu, Lingtian; Feng, Xiaohai; Li, Sha; Xu, Hong

    2017-01-20

    Welan gum is a microbial polysaccharide produced by Sphingomonas sp. Its production is limited by the dissolved oxygen levels in the highly viscous fermentation. A strategy of heterologous expression of the Vitreoscilla hemoglobin gene in Sphingomonas sp. HT-1 was investigated to alleviate oxygen limitation and improve the yield of welan gum. Ultimately, the welan gum production increased from 25.3g/L to 34.6g/L, whereas the rheological behavior of welan gum solutions remained virtually unchanged. The transcriptional levels of the key genes in the electron transfer chain, TCA cycle and welan gum synthesis pathway, as well as ATP level revealed that the VHb expression in Sphingomonas sp. HT-1 enhanced welan gum biosynthesis by improving respiration and ATP supply. This study would pave the genetic manipulation way for enhancing welan gum yield, and it's also of great importance for the industrial applications of welan gum under harsh conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Gene cloning, protein characterization, and alteration of product selectivity for the trehalulose hydrolase and trehalulose synthase from "Pseudomonas mesoacidophila" MX-45.

    PubMed

    Watzlawick, Hildegard; Mattes, Ralf

    2009-11-01

    The naturally occurring structural isomer of sucrose, trehalulose, is produced by sucrose isomerase (SI). Screening of chromosomal DNA from "Pseudomonas mesoacidophila" MX-45 with an SI-specific probe facilitated the cloning of two adjacent gene homologs, mutA and mutB. Both genes were expressed separately in Escherichia coli, and their enzyme products were characterized. MutA hydrolyzed the substrates trehalulose, isomaltulose, and sucrose into glucose and fructose. Due to its highest activity on trehalulose, MutA was referred to as trehalulase. mutB encodes the SI (trehalulose synthase) and catalyzes the isomerization of sucrose to mainly trehalulose. From Northern blot analysis it is apparent that the mutB gene is not transcribed as part of an operon and was transcriptionally upregulated when P. mesoacidophila MX-45 cells were grown in sucrose medium, whereas under investigated conditions no transcript for mutA was detected. Mutants of mutB were created by a random mutagenesis approach in order to alter the product specificity of MutB. Two types of mutants have emerged, one type that prefers the hydrolytic reaction on sucrose and another type that still acts as an SI but with a significant shift in the product from trehalulose to isomaltulose. The hydrolytic character of MutB R311C was demonstrated through its higher catalytic efficiency for glucose production over trehalulose production. MutB D442N favored the transfer reaction, with an isomer preference for isomaltulose.

  12. Hox genes and study of Hox genes in crustacean

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Chen, Zhijuan; Xu, Mingyu; Lin, Shengguo; Wang, Lu

    2004-12-01

    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla. The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  13. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    PubMed

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein Cattle.

    PubMed

    Alim, M A; Dong, T; Xie, Y; Wu, X P; Zhang, Yi; Zhang, Shengli; Sun, D X

    2014-11-01

    This study was designed to evaluate significant associations between single nucleotide polymorphisms (SNPs) and milk composition and milk production traits in Chinese Holstein cows. Six SNPs were identified in the κ-casein gene using pooled DNA sequencing. The identified SNPs were genotyped by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) methods from 507 individuals. Out of six, we identified three non-synonymous SNPs (g.10888T>C, g.10924C>A and g.10944A>G) that changed in the protein product. SIFT (Sorting_Intolerant_From_Tolerant) prediction score (0.01) demonstrated that protein changed Isoleucine > Threonine (g.10888T>C) will affect the phenotypes. Significant associations between identified SNPs and three yield traits (milk, protein and fat) and two composition traits (fat and protein percentages) were found whereas it did not reach significance for fat percentage in haplotypes association. Importantly, the significant SNPs in our results showed a large proportion of the phenotypic variation of milk protein yield and concentration. Our results suggest that CSN3 is an important candidate gene that influences milk production traits, and identified polymorphisms and haplotypes could be used as a genetic marker in programs of marker-assisted selection for the genetic improvement of milk production traits in dairy cattle.

  15. New Japanese Regulatory Frameworks for Clinical Research and Marketing Authorization of Gene Therapy and Cellular Therapy Products.

    PubMed

    Nagai, Sumimasa; Ozawa, Keiya

    2017-01-01

    In Japan, the Pharmaceuticals and Medical Devices Law was passed in 2014. In this new law, regenerative medical products were defined, and a conditional and term-limited approval system only for regenerative medical products was instituted. Therefore, regenerative medical products can be approved based on phase I and/or II trials. Gene therapy and adoptive cellular therapy are categorized as regenerative medical products. This law is intended for registration trials for marketing authorization. The Act on the Safety of Regenerative Medicine was also implemented in 2014. This act is intended for clinical research and medical practice involving processed cells other than registration trials. Under this act, a review of plans on medical treatments or clinical studies by a certified committee and submission of the plans to the Ministry of Health, Labour and Welfare (MHLW) are mandatory. The MHLW instituted the SAKIGAKE (meaning a pioneer or forerunner in Japanese) designation system in 2015. This designation is similar to the breakthrough therapy designation in the US and PRIME in the EU. In addition, the MHLW started the "Project for Enhanced Practical Application of Innovative Drugs, Medical Devices and Regenerative Medical Products" to promote personnel exchange and cooperation in writing of guidelines on the evaluation of innovative medical products between the Pharmaceuticals and Medical Devices Agency and academia. Some new guidelines regarding gene and cellular therapy were published. In this review, we comprehensively described these complicated regulations and problems to be solved in order to facilitate global readers' understanding of Japanese regulatory frameworks. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  17. Gene trap and gene inversion methods for conditional gene inactivation in the mouse

    PubMed Central

    Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.

    2005-01-01

    Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575

  18. Targeted gene panels and microbiota analysis provide insight into the effects of effects of alternative production diet formulations on channel catfish nutritional physiology

    USDA-ARS?s Scientific Manuscript database

    The present research evaluated targeted gene panels and microbiota analysis to provide greater insight into the effects of alternatively-sourced dietary ingredients on production indices, gut health, changes in the gut microbiota and genes involved in the regulation of appetite, growth, metabolism, ...

  19. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

    PubMed

    Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G

    2017-10-01

    The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H 2 O 2 (2.5 mM) induced the expression of stx 2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H 2 O 2 H 2 O 2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H 2 O 2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the

  20. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food

    PubMed Central

    Fang, Yuan; Mercer, Ryan G.; McMullen, Lynn M.

    2017-01-01

    ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single

  1. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation

    PubMed Central

    Park, Jin Hwan; Lee, Kwang Ho; Kim, Tae Yong; Lee, Sang Yup

    2007-01-01

    The l-valine production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on transcriptome analysis and gene knockout simulation of the in silico genome-scale metabolic network. Feedback inhibition of acetohydroxy acid synthase isoenzyme III by l-valine was removed by site-directed mutagenesis, and the native promoter containing the transcriptional attenuator leader regions of the ilvGMEDA and ilvBN operon was replaced with the tac promoter. The ilvA, leuA, and panB genes were deleted to make more precursors available for l-valine biosynthesis. This engineered Val strain harboring a plasmid overexpressing the ilvBN genes produced 1.31 g/liter l-valine. Comparative transcriptome profiling was performed during batch fermentation of the engineered and control strains. Among the down-regulated genes, the lrp and ygaZH genes, which encode a global regulator Lrp and l-valine exporter, respectively, were overexpressed. Amplification of the lrp, ygaZH, and lrp-ygaZH genes led to the enhanced production of l-valine by 21.6%, 47.1%, and 113%, respectively. Further improvement was achieved by using in silico gene knockout simulation, which identified the aceF, mdh, and pfkA genes as knockout targets. The VAMF strain (Val ΔaceF Δmdh ΔpfkA) overexpressing the ilvBN, ilvCED, ygaZH, and lrp genes was able to produce 7.55 g/liter l-valine from 20 g/liter glucose in batch culture, resulting in a high yield of 0.378 g of l-valine per gram of glucose. These results suggest that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification, transcriptome profiling, and systems-level in silico analysis. PMID:17463081

  2. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    PubMed

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Insecticidal properties of a crystal protein gene product isolated from Bacillus thuringiensis subsp. kenyae.

    PubMed

    Masson, L; Moar, W J; van Frankenhuyzen, K; Bossé, M; Brousseau, R

    1992-02-01

    A protoxin gene, localized to a high-molecular-weight plasmid from Bacillus thuringiensis subsp. kenyae, was cloned on a 19-kb BamHI DNA fragment into Escherichia coli. Characterization of the gene revealed it to be a member of the CryIE toxin subclass which has been reported to be as toxic as the CryIC subclass to larvae from Spodoptera exigua in assays with crude E. coli extracts. To directly test the purified recombinant gene product, the gene was subcloned as a 4.8-kb fragment into an expression vector resulting in the overexpression of a 134-kDa protein in the form of phase-bright inclusions in E. coli. Treatment of solubilized inclusion bodies with either trypsin or gut juice from the silkworm Bombyx mori resulted in the appearance of a protease-resistant 65-kDa protein. In force-feeding bioassays, the purified activated protein was highly toxic to larvae of B. mori but not to larvae of Choristoneura fumiferana. In diet bioassays with larvae from S. exigua, the purified protoxin was nontoxic. However, prior activation of the protoxin by tryptic digestion resulted in the appearance of some toxic activity. These results demonstrate that this new subclass of protein toxin may not be useful for the control of Spodoptera species as previously reported. Hierarchical clustering of the nine known lepidopteran-specific CryI toxin subclasses through multiple sequence alignment suggests that the toxins fall into four possible subgroups or clusters.

  4. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.

    PubMed

    La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H

    2012-11-30

    Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene.

    PubMed

    Jiang, Ling; Wu, Qian; Xu, Qing; Zhu, Liying; Huang, He

    2017-08-11

    Clostridium tyrobutyricum ATCC25755 has been reported as being able to produce significant quantities of hydrogen. In this study, the exo-inulinase encoding gene cloned from Paenibacillus polymyxa SC-2 was into the expression plasmid pSY6 and expressed in the cells of C. tyrobutyricum. The engineered C. tyrobutyricum strain efficiently fermented the inulin-type carbohydrates from Jerusalem artichoke, without any pretreatment being necessary for the production of hydrogen. A comparatively high hydrogen yield (3.7 mol/mol inulin-type sugar) was achieved after 96 h in a batch process with simultaneous saccharification and fermentation (SSF), with an overall volumetric productivity rate of 620 ± 60 mL/h/L when the initial total sugar concentration of the inulin extract was increased to 100 g/L. Synthesis of inulinase in the batch SSF culture was closely associated with strain growth until the end of the exponential phase, reaching a maximum activity of 28.4 ± 0.26 U/mL. The overall results show that the highly productive and abundant biomass crop Jerusalem artichoke can be a good substrate for hydrogen production, and that the application of batch SSF for its conversion has the potential to become a cost-effective process in the near future.

  6. Enhanced Production of Polysaccharide Through the Overexpression of Homologous Uridine Diphosphate Glucose Pyrophosphorylase Gene in a Submerged Culture of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Ji, Sen-Lin; Liu, Rui; Ren, Meng-Fei; Li, Huan-Jun; Xu, Jun-Wei

    2015-01-01

    This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.

  7. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Staphylococcus aureus from Retail Aquatic Products in China

    PubMed Central

    Rong, Dongli; Wu, Qingping; Xu, Mingfang; Zhang, Jumei; Yu, Shubo

    2017-01-01

    Staphylococcus aureus is an important food-borne opportunistic pathogen that frequently causes severe blood and tissue infections or even fatal illnesses. Although S. aureus has been extensively studied in livestock and poultry foods in China, limited information has been reported in aquatic products. Accordingly, in this study, we aimed to characterize S. aureus in aquatic products purchased from retail markets in China. In total, 320 aquatic food samples were collected from 32 provincial capitals in China. The results showed that 119 samples (37.2%, 119/320) were positive for S. aureus by both qualitative and quantitative analyses. The contamination levels of 78.2% of samples ranged from 0.3 to 10 MPN/g, and six samples exceeded 110 MPN/g. A total of 119 S. aureus isolates from positive samples were selected to evaluate virulence factors, antibiotic resistance, and molecular characteristics. All S. aureus isolates were evaluated for the presence of 11 virulence genes by multiplex polymerase chain reaction, and α-hemolysin (hlα, 84.9%), fibronectin-binding protein A (fnbA, 79.0%), S. aureus enterotoxin E (see, 53.8%), and Panton-Valentine leucocidin (pvl, 50.4%) were identified as the major genes. These genes formed 56 different profiles, with the major profile identified as pvl-hlα-fnbA (28.6%). The antimicrobial susceptibility of all isolates was analyzed through the disk diffusion method, and the results showed high resistance to β-lactams, macrolides and tetracyclines, but susceptibility to linezolid and vancomycin. In addition, 26 sequence types (STs) were obtained via multilocus sequence typing, including seven novel STs, among which ST1 (20.2%), ST15 (18.5%), and ST188 (13.4%) were the most common STs. All the isolates were mecC negative, but nine isolates carrying mecA were evaluated by staphylococcal cassette chromosome mec (SCCmec) typing, all of which were SCCmecIII or SCCmecIV types. Isolates of SCCmecIII showed a high prevalence and were multidrug

  8. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. Copyright © 2015. Published by Elsevier GmbH.

  9. Analysis of the K1 capsule biosynthesis genes of Escherichia coli: definition of three functional regions for capsule production.

    PubMed

    Boulnois, G J; Roberts, I S; Hodge, R; Hardy, K R; Jann, K B; Timmis, K N

    1987-06-01

    Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.

  10. Isolation and characterization of Agouti: a diabetes/obesity related gene

    DOEpatents

    Woychik, Richard P.

    1998-01-01

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  11. Isolation and characterization of Agouti: a diabetes/obesity related gene

    DOEpatents

    Woychik, Richard P.

    2000-06-27

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  12. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.

    PubMed

    Zhang, Junjiao; Zhao, Xiangying; Zhang, Jiaxiang; Zhao, Chen; Liu, Jianjun; Tian, Yanjun; Yang, Liping

    2017-09-14

    The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20 g/L of glucose media. The acetoin yield of BS168D reached 6.61 g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47 g/L). Then, when the glucose concentration was increased to 100 g/L, the acetoin yield reached 24.6 g/L, but 2.4 g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.

  13. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum.

    PubMed

    Zong, Yuanyuan; Li, Boqiang; Tian, Shiping

    2015-08-03

    Patulin, a potent mycotoxin which can cause serious health concerns, is mainly produced in foods by Penicillium expansum. Environmental factors play important roles in regulating biosynthesis of mycotoxins; however, information about the effects of environmental factors on patulin production and the involved mechanisms in P. expansum is limited. Here, we investigated the effects of different carbon (C) and nitrogen (N) sources, and ambient pH on patulin production in three P. expansum strains T01, M1 and Pe21, and the expression profile of 15 genes involved in patulin biosynthetic pathway. It was found that C and N sources and pH had great influence on patulin production in P. expansum. In general, patulin production of all three P. expansum strains showed similar trends under different C and N sources and pH conditions, though there were some differences in the optimal conditions among these strains. Glucose-containing sugars, complex N sources, and acidic conditions were favorable conditions for patulin production. The results of RT-qPCR showed that the relative expressions of most of the patulin genes were up-regulated under patulin-permissive conditions, indicating that patulin biosynthesis was mainly regulated at transcriptional level by these environmental factors. These findings will provide useful information to better understand the regulation mechanisms of patulin biosynthesis, and be helpful in developing effective means for controlling patulin contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes

    PubMed Central

    Catone, Mariela V.; Ruiz, Jimena A.; Castellanos, Mildred; Segura, Daniel; Espin, Guadalupe; López, Nancy I.

    2014-01-01

    Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. PMID:24887088

  15. Design and construction of a first-generation high-throughput integrated molecular biology platform for production of optimized synthetic genes and improved industrial strains

    USDA-ARS?s Scientific Manuscript database

    The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...

  16. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.

    PubMed

    Gilbert, Matthew K; Majumdar, Rajtilak; Rajasekaran, Kanniah; Chen, Zhi-Yuan; Wei, Qijian; Sickler, Christine M; Lebar, Matthew D; Cary, Jeffrey W; Frame, Bronwyn R; Wang, Kan

    2018-06-01

    Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.

  17. The isolated MUC5AC gene product from human ocular mucin displays intramolecular conformational heterogeneity.

    PubMed

    Round, Andrew N; McMaster, Terence J; Miles, Mervyn J; Corfield, Anthony P; Berry, Monica

    2007-06-01

    Atomic force microscopy (AFM) has been used to show that human ocular mucins contain at least three distinct polymer conformations, separable by isopycnic density gradient centrifugation. In this work we have used affinity purification against the anti(mucin peptide core) monoclonal antibody 45M1 to isolate MUC5AC gene products, a major component of human ocular mucins. AFM images confirm that the affinity-purified polymers adopt distinct conformations that coidentify with two of those observed in the parent population, and further reveal that these two different conformations can be present within the same polymer. AFM images of the complexes formed after incubation of 45M1 with the parent sample reveal different rates of binding to the two MUC5AC polymer types. The variability of gene products within a mucin population was revealed by analyzing the height distributions along the polymer contour and periodicities in distances between occupied antibody binding sites. AFM analysis of mucin polymers at the single molecule level provides new information about the genetic origins of individual polymers and the contributions of glycosylation to the physicochemical properties of mucins, which can be correlated with information obtained from biochemistry, antibody binding assays, and molecular biology techniques.

  18. Characterization of Clostridium perfringens TpeL Toxin Gene Carriage, Production, Cytotoxic Contributions, and Trypsin Sensitivity

    PubMed Central

    Chen, Jianming

    2015-01-01

    Large clostridial toxins (LCTs) are produced by at least four pathogenic clostridial species, and several LCTs are proven pivotal virulence factors for both human and veterinary diseases. TpeL is a recently identified LCT produced by Clostridium perfringens that has received relatively limited study. In response, the current study surveyed carriage of the tpeL gene among different C. perfringens strains, detecting this toxin gene in some type A, B, and C strains but not in any type D or E strains. This study also determined that all tested strains maximally produce, and extracellularly release, TpeL at the late-log or early-stationary growth stage during in vitro culture, which is different from the maximal late-stationary-phase production reported previously for other LCTs and for TpeL production by C. perfringens strain JIR12688. In addition, the present study found that TpeL levels in culture supernatants can be repressed by either glucose or sucrose. It was also shown that, at natural production levels, TpeL is a significant contributor to the cytotoxic activity of supernatants from cultures of tpeL-positive strain CN3685. Lastly, this study identified TpeL, which presumably is produced in the intestines during diseases caused by TpeL-positive type B and C strains, as a toxin whose cytotoxicity decreases after treatment with trypsin; this finding may have pathophysiologic relevance by suggesting that, like beta toxin, TpeL contributes to type B and C infections in hosts with decreased trypsin levels due to disease, diet, or age. PMID:25824828

  19. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

    PubMed Central

    Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko

    2015-01-01

    In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575

  20. Twenty Years of European Union Support to Gene Therapy and Gene Transfer.

    PubMed

    Gancberg, David

    2017-11-01

    For 20 years and throughout its research programmes, the European Union has supported the entire innovation chain for gene transfer and gene therapy. The fruits of this investment are ripening as gene therapy products are reaching the European market and as clinical trials are demonstrating the safety of this approach to treat previously untreatable diseases.

  1. Analysis of the L1 gene product of human papillomavirus type 16 by expression in a vaccinia virus recombinant.

    PubMed

    Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C

    1988-06-01

    The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.

  2. Targeted gene disruption in Koji mold Aspergillus oryzae.

    PubMed

    Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2011-01-01

    Filamentous fungi have received attentions as hosts for heterologous protein production because of their high secretion capability and eukaryotic post-translational modifications. One of the safest hosts for heterologous protein production is Koji mold Aspergillus oryzae since it has been used in the production of Japanese fermented foods for over 1,000 years. The production levels of proteins from higher eukaryotes are much lower than those of homologous (fungal) proteins. Bottlenecks in the heterologous protein production are suggested to be proteolytic degradation of the produced protein in the medium and the secretory pathway. For construction of excellent host strains, many genes causing the bottlenecks should be disrupted rapidly and efficiently. We developed a marker recycling system with the highly efficient gene-targeting background in A. oryzae. By employing this technique, we performed multiple gene disruption of the ten protease genes. The decuple protease gene disruptant showed fourfold production level of a heterologous protein compared with the wild-type strain.

  3. Lovastatin in Aspergillus terreus: fermented rice straw extracts interferes with methane production and gene expression in Methanobrevibacter smithii.

    PubMed

    Faseleh Jahromi, Mohammad; Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa; Chin, James

    2013-01-01

    Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3 methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants.

  4. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose.

    PubMed

    Ismail, Ku Syahidah Ku; Sakamoto, Takatoshi; Hatanaka, Haruyo; Hasunuma, Tomohisa; Kondo, Akihiko

    2013-01-10

    Production of ethanol from xylose at high temperature would be an economical approach since it reduces risk of contamination and allows both the saccharification and fermentation steps in SSF to be running at elevated temperature. Eight recombinant xylose-utilizing Saccharomyces cerevisiae strains developed from industrial strains were constructed and subjected to high-temperature fermentation at 38 °C. The best performing strain was sun049T, which produced up to 15.2 g/L ethanol (63% of the theoretical production), followed by sun048T and sun588T, both with 14.1 g/L ethanol produced. Via transcriptomic analysis, expression profiling of the top three best ethanol producing strains compared to a negative control strain, sun473T, led to the discovery of genes in common that were regulated in the same direction. Identification of the 20 most highly up-regulated and the 20 most highly down-regulated genes indicated that the cells regulate their central metabolism and maintain the integrity of the cell walls in response to high temperature. We also speculate that cross-protection in the cells occurs, allowing them to maintain ethanol production at higher concentration under heat stress than the negative controls. This report provides further transcriptomics information in the interest of producing a robust microorganism for high-temperature ethanol production utilizing xylose. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Lovastatin in Aspergillus terreus: Fermented Rice Straw Extracts Interferes with Methane Production and Gene Expression in Methanobrevibacter smithii

    PubMed Central

    Liang, Juan Boo; Ho, Yin Wan; Mohamad, Rosfarizan; Goh, Yong Meng; Shokryazdan, Parisa; Chin, James

    2013-01-01

    Lovastatin, a natural byproduct of some fungi, is able to inhibit HMG-CoA (3-hydroxy-3methyl glutaryl CoA) reductase. This is a key enzyme involved in isoprenoid synthesis and essential for cell membrane formation in methanogenic Archaea. In this paper, experiments were designed to test the hypothesis that lovastatin secreted by Aspergillus terreus in fermented rice straw extracts (FRSE) can inhibit growth and CH4 production in Methanobrevibacter smithii (a test methanogen). By HPLC analysis, 75% of the total lovastatin in FRSE was in the active hydroxyacid form, and in vitro studies confirmed that this had a stronger effect in reducing both growth and CH4 production in M. smithii compared to commercial lovastatin. Transmission electron micrographs revealed distorted morphological divisions of lovastatin- and FRSE-treated M. smithii cells, supporting its role in blocking normal cell membrane synthesis. Real-time PCR confirmed that both commercial lovastatin and FRSE increased (P < 0.01) the expression of HMG-CoA reductase gene (hmg). In addition, expressions of other gene transcripts in M. smithii. with a key involvement in methanogenesis were also affected. Experimental confirmation that CH4 production is inhibited by lovastatin in A. terreus-fermented rice straw paves the way for its evaluation as a feed additive for mitigating CH4 production in ruminants. PMID:23710454

  6. Gene Architectures that Minimize Cost of Gene Expression.

    PubMed

    Frumkin, Idan; Schirman, Dvir; Rotman, Aviv; Li, Fangfei; Zahavi, Liron; Mordret, Ernest; Asraf, Omer; Wu, Song; Levy, Sasha F; Pilpel, Yitzhak

    2017-01-05

    Gene expression burdens cells by consuming resources and energy. While numerous studies have investigated regulation of expression level, little is known about gene design elements that govern expression costs. Here, we ask how cells minimize production costs while maintaining a given protein expression level and whether there are gene architectures that optimize this process. We measured fitness of ∼14,000 E. coli strains, each expressing a reporter gene with a unique 5' architecture. By comparing cost-effective and ineffective architectures, we found that cost per protein molecule could be minimized by lowering transcription levels, regulating translation speeds, and utilizing amino acids that are cheap to synthesize and that are less hydrophobic. We then examined natural E. coli genes and found that highly expressed genes have evolved more forcefully to minimize costs associated with their expression. Our study thus elucidates gene design elements that improve the economy of protein expression in natural and heterologous systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Identification of the glutaminase genes of Aspergillus sojae involved in glutamate production during soy sauce fermentation.

    PubMed

    Ito, Kotaro; Koyama, Yasuji; Hanya, Yoshiki

    2013-01-01

    Glutaminase, an enzyme that catalyzes the conversion of L-glutamine to L-glutamate, enhances the umami taste in soy sauce. The Aspergillus sojae genome contains 10 glutaminase genes. In this study, we estimated that approximately 60% of the glutamate in soy sauce is produced through the glutaminase reaction. To determine which glutaminase is involved in soy sauce glutamate production, we prepared soy sauces using single and multiple glutaminase gene disruptants of A. sojae. The glutamate concentration in soy sauce prepared using the ΔgahA-ΔgahB-ΔggtA-Δgls disruptant was approximately 60% lower than that in the control strain, whereas it was decreased by approximately 20-30% in the ΔgahA-ΔgahB disruptant. However, the glutamate concentration was unchanged in the soy sauces prepared using the ΔgahA-ΔggtA-Δgls and ΔgahB-ΔggtA-Δgls disruptants. These results indicate that four glutaminases are involved in glutamate production in soy sauce, and that the peptidoglutaminase activities of GahA and GahB increase the glutamate concentration in soy sauce.

  8. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing.

    PubMed

    Sun, Xiaowen; Wu, Hefang; Zhao, Genhai; Li, Zhemin; Wu, Xihua; Liu, Hui; Zheng, Zhiming

    2018-04-02

    The mycelial morphology of Aspergillus niger, a major filamentous fungus used for citric acid production, is important for citric acid synthesis during submerged fermentation. To investigate the involvement of the chitin synthase gene, chsC, in morphogenesis and citric acid production in A. niger, an RNAi system was constructed to silence chsC and the morphological mutants were screened after transformation. The compactness of the mycelial pellets was obviously reduced in the morphological mutants, with lower proportion of dispersed mycelia. These morphological changes have caused a decrease in viscosity and subsequent improvement in oxygen and mass transfer efficiency, which may be conducive for citric acid accumulation. All the transformants exhibited improvements in citric acid production; in particular, chsC-3 showed 42.6% higher production than the original strain in the shake flask. Moreover, the high-yield strain chsC-3 exhibited excellent citric acid production potential in the scale-up process.The citric acid yield and the conversion rate of glucose of chsC-3 were both improved by 3.6%, when compared with that of the original strain in the stirred tank bioreactor.

  9. Characterization of the Burkholderia thailandensis SOS Response by Using Whole-Transcriptome Shotgun Sequencing

    PubMed Central

    Ulrich, Ricky L.; DeShazer, David; Kenny, Tara A.; Ulrich, Melanie P.; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L.; Moir, Donald T.

    2013-01-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P < 0.01) resulted in the differential expression of 344 genes in B. thailandensis and 210 genes in RU0643. Several genes associated with the SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated ϕE264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage. PMID:23872555

  10. Characterization of the Burkholderia thailandensis SOS response by using whole-transcriptome shotgun sequencing.

    PubMed

    Ulrich, Ricky L; Deshazer, David; Kenny, Tara A; Ulrich, Melanie P; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L; Moir, Donald T; Panchal, Rekha G

    2013-10-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P < 0.01) resulted in the differential expression of 344 genes in B. thailandensis and 210 genes in RU0643. Several genes associated with the SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.

  11. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

    PubMed

    Lo, Jonathan; Zheng, Tianyong; Hon, Shuen; Olson, Daniel G; Lynd, Lee R

    2015-04-01

    Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol dehydrogenases which could be

  12. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  13. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    PubMed

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed

  15. Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene.

    PubMed

    Jasim, B; Jimtha John, C; Shimil, V; Jyothis, M; Radhakrishnan, E K

    2014-09-01

    The study mainly aimed quantitative analysis of IAA produced by endophytic bacteria under various conditions including the presence of extract from Piper nigrum. Analysis of genetic basis of IAA production was also conducted by studying the presence and diversity of the ipdc gene among the selected isolates. Five endophytic bacteria isolated previously from P. nigrum were used for the study. The effect of temperature, pH, agitation, tryptophan concentration and plant extract on modulating IAA production of selected isolates was analysed by colorimetric method. Comparative and quantitative analysis of IAA production by colorimetric isolates under optimal culture condition was analysed by HPTLC method. Presence of ipdc gene and thereby biosynthetic basis of IAA production among the selected isolates were studied by PCR-based amplification and subsequent insilico analysis of sequence obtained. Among the selected bacterial isolates from P. nigrum, isolate PnB 8 (Klebsiella pneumoniae) was found to have the maximum yield of IAA under various conditions optimized and was confirmed by colorimetric, HPLC and HPTLC analysis. Very interestingly, the study showed stimulating effect of phytochemicals from P. nigrum on IAA production by endophytic bacteria isolated from same plant. This study is unique because of the selection of endophytes from same source for comparative and quantitative analysis of IAA production under various conditions. Study on stimulatory effect of phytochemicals on bacterial IAA production as explained in the study is a novel approach. Studies on molecular basis of IAA production which was confirmed by sequence analysis of ipdc gene make the study scientifically attractive. Even though microbial production of IAA is well known, current report on detailed optimization, effect of plant extract and molecular confirmation of IAA biosynthesis is comparatively novel in its approach. © 2014 The Society for Applied Microbiology.

  16. Purification and DNA binding properties of the blaI gene product, repressor for the beta-lactamase gene, blaP, of Bacillus licheniformis.

    PubMed Central

    Grossman, M J; Lampen, J O

    1987-01-01

    The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148

  17. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application.

    PubMed

    Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki

    2017-06-01

    A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.

  18. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  19. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    PubMed Central

    Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.

    2013-01-01

    The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005

  20. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).