Science.gov

Sample records for receivers back-end modules

  1. LFI 30 and 44 GHz receivers Back-End Modules

    NASA Astrophysics Data System (ADS)

    Artal, E.; Aja, B.; de la Fuente, M. L.; Pascual, J. P.; Mediavilla, A.; Martinez-Gonzalez, E.; Pradell, L.; de Paco, P.; Bara, M.; Blanco, E.; García, E.; Davis, R.; Kettle, D.; Roddis, N.; Wilkinson, A.; Bersanelli, M.; Mennella, A.; Tomasi, M.; Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Stringhetti, L.

    2009-12-01

    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented.

  2. VLBI2010 Receiver Back End Comparison

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill

    2013-01-01

    VLBI2010 requires a receiver back-end to convert analog RF signals from the receiver front end into channelized digital data streams to be recorded or transmitted electronically. The back end functions are typically performed in two steps: conversion of analog RF inputs into IF bands (see Table 2), and conversion of IF bands into channelized digital data streams (see Tables 1a, 1b and 1c). The latter IF systems are now completely digital and generically referred to as digital back ends (DBEs). In Table 2 two RF conversion systems are compared, and in Tables 1a, 1b, and 1c nine DBE systems are compared. Since DBE designs are advancing rapidly, the data in these tables are only guaranteed to be current near the update date of this document.

  3. Receiver Gain Modulation Circuit

    NASA Technical Reports Server (NTRS)

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  4. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    . Additionally, the use of a W-band isolator between the receiver module and the local oscillator source also improved the noise temperature substantially. This may be because the mixer was presented with a better impedance match with the use of the isolator. Cryogenic testing indicates a system noise temperature of 100 K or less at 166 GHz. Prior tests of the MMIC amplifiers alone have resulted in a system noise temperature of 65.70 K in the same frequency range (.160 GHz) when cooled to an ambient temperature of 20 K. While other detector systems may be slightly more sensitive (such as SIS mixers), they require more cooling (to 4 K ambient) and are not as easily scalable to build a large array, due to the need for large magnets and other equipment. When cooled to 20 K, this receiver module achieves approximately 100 K system noise temperature, which is slightly higher than single-amplifier module results obtained at JPL (65.70 K when an amplifier is corrected for back-end noise contributions). If this performance can be realized in practice, and a scalable array can be produced, the impact on cosmic microwave background experiments, astronomical and Earth spectroscopy, interferometry, and radio astronomy in general will be dramatic.

  5. Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Gaier, Todd C.; Cooperrider, Joelle T.; Samoska, Lorene A.; Soria, Mary M.; ODwyer, Ian J.; Weinreb, Sander; Custodero, Brian; Owen, Heahter; Grainge, Keith; Church, Sarah; Lai, Richard; Mei, Xiaobing

    2009-01-01

    A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.

  6. Back end of an enduring fuel cycle

    SciTech Connect

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

  7. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  8. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  9. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  10. Back end valves: history and modifications, status report, June 1983

    SciTech Connect

    Not Available

    1984-02-01

    At the Grimethorpe Experimental Facility the valves which control the combustor freeboard pressure are known as the back end valves. They are situated downstream of the main heat exchanger. They are required to work under adverse conditions and their operation has not been without problems. The report provides a description of the valves and a history of their operation and modifications from December 1980 to April 1983. Considerable erosion and control problems were experienced during 1981, however, operational and mechanical modifications have now been made which have greatly improved the reliability of the valves.

  11. Synchronization tracking in pulse position modulation receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    1987-01-01

    A clock pulse generator for decoding pulse position modulation in an optical communication receiver is synchronized by a delay tracking loop which multiplies impulses of a data pulse by the square wave clock pulses from the generator to produce positive impulses when the clock pulse is of one level, and negative impulses when the clock pulse is of another level. A delay tracking loop integrates the impulses and produces an error signal that adjusts the delay so the clock pulses will be synchronized with data pulses. A dead-time tau sub d is provided between data pulses of an interval tau sub p in the data pulse period tau. When synchronized, the average number of positive impulses integrated will equal the average number of negative impulses over the continuous stream of data pulses.

  12. Back-end of the fuel cycle - Indian scenario

    SciTech Connect

    Wattal, P.K.

    2013-07-01

    Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generated during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)

  13. 40 CFR 63.499 - Back-end process provisions-reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Compliance Status specified in § 63.506(e)(5). (1) The type of elastomer product processed in the back-end operation. (2) The type of process (solution process, emulsion process, etc.) (3) If the back-end...

  14. 40 CFR 63.499 - Back-end process provisions-reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compliance Status specified in § 63.506(e)(5). (1) The type of elastomer product processed in the back-end operation. (2) The type of process (solution process, emulsion process, etc.) (3) If the back-end...

  15. 40 CFR 63.499 - Back-end process provisions-reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Back-end process provisions-reporting... Back-end process provisions—reporting. (a) The owner or operator of an affected source with back-end process operations shall submit the information required in paragraphs (a)(1) through (a)(3) of...

  16. Receivers and Transmitters. Electronics Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Everett, Jim

    This module is the sixth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module and a cross-reference table of instructional materials. Two instructional units cover: (1) AM/FM transmitter and receiver basics; and (2) satellite systems, antennas, and analyzers.…

  17. Thermally Stabilized Transmit/Receive Modules

    NASA Technical Reports Server (NTRS)

    Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj

    2011-01-01

    RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.

  18. Flexible All-Digital Receiver for Bandwidth Efficient Modulations

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee

    2000-01-01

    An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.

  19. Interference-Detection Module in a Digital Radar Receiver

    NASA Technical Reports Server (NTRS)

    Fischman, Mark; Berkun, Andrew; Chu, Anhua; Freedman, Adam; Jourdan, Michael; McWatters, Dalia; Paller, Mimi

    2009-01-01

    A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems.

  20. Evaluation tests for photovoltaic concentrator receiver sections and modules

    SciTech Connect

    Woodworth, J.R.; Whipple, M.L.

    1992-06-01

    Sandia has developed a third-generation set of specifications for performance and reliability testing of photovoltaic concentrator modules. Several new requirements have been defined. The primary purpose of the tests is to screen new concentrator designs and new production runs for susceptibility to known failure mechanisms. Ultraviolet radiation testing of materials precedes receiver section and module performance and environmental tests. The specifications include the purpose, procedure, and requirements for each test. Recommendations for future improvements are presented.

  1. 40 CFR 63.499 - Back-end process provisions-reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation. (2) The type of process (solution process, emulsion process, etc.) (3) If the back-end process... design (i.e., steam-assisted, air-assisted, or non-assisted); all visible emission readings, heat...

  2. 40 CFR 63.499 - Back-end process provisions-reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation. (2) The type of process (solution process, emulsion process, etc.) (3) If the back-end process... readings, heat content determinations, flow rate measurements, and exit velocity determinations made...

  3. Transmitter and receiver modules in bacterial signaling proteins.

    PubMed Central

    Kofoid, E C; Parkinson, J S

    1988-01-01

    Prokaryotes are capable of sophisticated sensory behaviors. We have detected sequence motifs in bacterial signaling proteins that may act as transmitter or receiver modules in mediating protein-protein communication. These modules appear to retain their functional identities in many protein hosts, implying that they are structurally independent elements. We propose that the fundamental activity characterizing these domains is specific recognition and association of matched modules, accompanied by conformational changes in one or both of the interacting elements. Signal propagation is a natural consequence of this behavior. The versatility of this information-processing strategy is evident in the chemotaxis machinery of Escherichia coli, where proteins containing transmitters or receivers are linked in "dyadic relays" to form complex signaling networks. Images PMID:3293046

  4. Experimental and theoretical study of a solar thermochemical receiver module

    NASA Astrophysics Data System (ADS)

    Won, Y. S.; Voecks, G. E.; McCrary, J. H.

    1984-07-01

    A few years ago, a prototype test module of a solar thermochemical receiver using an SO2/SO3 reaction system was designed, built, and tested to establish a technical data base for future subsystem design efforts. Emphasis was placed on experimental verification of the computer simulation to establish a reliable design tool to predict the thermochemical performance of the receiver with a reasonable degree of confidence. The computational results were compared with experimental results obtained from the module tested at New Mexico State University. Reasonable agreement was found over a range of test conditions. It was concluded that the present design offers satisfactory conversion performance and operational flexibility for the construction of a complete reactor/receiver unit for use in a 10- to 15-kW dish collector system.

  5. A 30 GHz monolithic receive module technology assessment

    NASA Technical Reports Server (NTRS)

    Geddes, J.; Sokolov, V.; Bauhahn, P.; Contolatis, T.

    1988-01-01

    This report is a technology assessment relevant to the 30 GHz Monolithic Receive Module development. It is based on results obtained on the present NASA Contract (NAS3-23356) as well as on information gathered from literature and other industry sources. To date the on-going Honeywell program has concentrated on demonstrating the so-called interconnected receive module which consists of four monolithic chips - the low noise front-end amplifier (LNA), the five bit phase shifter (PS), the gain control amplifier (GC), and the RF to IF downconverter (RF/IF). Results on all four individual chips have been obtained and interconnection of the first three functions has been accomplished. Future work on this contract is aimed at a higher level of integration, i.e., integration of the first three functions (LNA + PS + GC) on a single GaAs chip. The report presents the status of this technology and projections of its future directions.

  6. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    PubMed

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth. PMID:27128069

  7. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    SciTech Connect

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  8. Source-Constrained Recall: Front-End and Back-End Control of Retrieval Quality

    ERIC Educational Resources Information Center

    Halamish, Vered; Goldsmith, Morris; Jacoby, Larry L.

    2012-01-01

    Research on the strategic regulation of memory accuracy has focused primarily on monitoring and control processes used to edit out incorrect information after it is retrieved (back-end control). Recent studies, however, suggest that rememberers also enhance accuracy by preventing the retrieval of incorrect information in the first place (front-end…

  9. Method and apparatus for receiving and tracking phase modulated signals

    NASA Technical Reports Server (NTRS)

    Villarreal, S.; Lenett, S. D.; Kobayashi, H. S.; Pawlowski, J. F. (Inventor)

    1984-01-01

    An apparatus and technique are described for receiving and tracking analog or digital phase modulated signals from 0 deg to 360 deg phase shift. In order to track a signal with many phases, a detector discerns the phase modulation of the incoming signal and a phase shifter generates a negative phase shift opposite in angle to the detected phase angle. This produces a converted series sideband component barrier signal. The residual carrier signal and the converted series sideband component carrier are added together to produce a tracking carrier signal. The tracking carrier signal is multiplied with the output from a voltage controlled oscillator in the tracking loop to obtain an error signal which drives the voltage controlled oscillator and tracks the incoming signal frequency. The technique is less susceptible to carrier interference which may degrade tracking and tracking may be performed at lower signal to noise ratios and for lower input signal power levels.

  10. A 150 GHz Receiver Module for Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Voll, Patricia; Lau, J.; Sieth, M.; Church, S.; Samoska, L. A.; Kangaslahti, P. P.; Soria, M.; Gaier, T. C.; Van Winkle, D.; Tantawi, S.

    2011-01-01

    A compact, wide-band, heterodyne amplifier module has been designed to operate in the 150 GHz atmospheric window using High Electron Mobility Transistor (HEMT) amplifier technology. This frequency range is important for many astrophysical science applications, including spectral line studies, separating the cosmic microwave background (CMB) radiation from foregrounds, and detecting the hot gas around galaxy clusters using the Sunyaev-Zeldovich effect. HEMT-based receiver arrays with excellent noise and scalability are already being manufactured around 100 GHz, but recent advances have made it possible to extend this technology to even higher frequencies. The prototype 150 GHz module housing utilizes Monolithic Millimeter-Wave Integrated Circuit (MMIC) InP Low Noise Amplifiers (LNAs). These amplifiers, along with a second harmonic mixer, bias circuitry, and connectors, are contained in a single, split-block housing approximately one inch cubed in size. Preliminary cryogenic tests have measured a system noise temperature of 150 K over a bandwidth of 25 GHz with a minimum noise temperature of less than 100 K at 168 GHz. The minimum noise temperature is less than 100 K at 168 GHz. Module improvements for the second phase are expected to reduce the noise temperature to the minimum allowed by the device limit. Development of a 4-element array to demonstrate the scalability of these receivers is currently underway, and will serve as a prototype for much larger, 100-element arrays for astrophysical applications. In the future, a space mission incorporating an array of these modules could be used to detect the curl modes (B-modes) of the CMB polarization, which is important for the search for the signature of inflation.

  11. Criticality classification of waste receiving and processing module 2A

    SciTech Connect

    Boothe, G.F.

    1994-10-01

    The purpose of this document is to evaluate the criticality potential of the Waste Receiving and Processing Module 2A (WRAP 2A) and to demonstrate that the facility is an exempt facility, under the provisions of the Nuclear Criticality Safety Manual. The WRAP 2A maximum potential transuranic (TRU) contents of feedstreams and product inventories are discussed. Total plant fissionable materials are estimated and compared with the fissionable material exempt quantity. The WRAP 2A operations and processes are also described, relative to the potential for concentrating or accumulating fissionable material within the facility.

  12. Multichip transmitter/receiver module for fiber optical sensors

    NASA Astrophysics Data System (ADS)

    Waegli, Peter; Morel, Philippe

    1997-09-01

    Amongst the various sensing principles studied for use in optical fiber sensors, color coding has proven to be successful in commercial applications. Color coded sensors are based on commercially available and easy to handle components (i.e. LED's, lasers, multimode fibers) and the same basic optoelectronics can be used for a wide variety of applications. Such applications are: the remote measurement of chemical composition (pH, hydrogen, oxygen, aromatic hydrocarbons, humidity etc.), biochemical reactions and physical parameters (e.g. temperature, pressure, etc.) in medical applications (e.g. blood gas analysis, immunosensors, etc.), environmental monitoring, process control and on the factory floor. A versatile transmitter/receiver-module, which can be easily customized, has been developed as a multi chip module (MCM). This MCM can be directly mounted onto the printed circuit board, is small in size (50 X 50 X 12 mm3) and contains all optical, optoelectronic and electronic components and circuits to interface optically with the sensors and electrically with the microprocessor and its associated circuitry used for data analysis. Up to four sensors can be connected to one module and individually interrogated under software control. The design and the characteristics of the MCM as well as its application in possible sensor arrangements will be discussed with special emphasis on its use in a four channel fiber optic temperature sensor.

  13. Novel Back End-of-Line Process Scheme for Improvement of Negative Bias Temperature Instability Lifetime

    NASA Astrophysics Data System (ADS)

    Ho, Won‑Joon; Park, Sung‑Hyung; Kim, Dong‑Sun; Han, In‑Shik; Lee, Hi‑Deok; Kim, Jae‑Yeong; Park, Yu‑Be; Kim, Dae‑Byung

    2006-04-01

    A novel back end-of-line (BEOL) process scheme is proposed to improve negative bias temperature instability (NBTI) characteristics through the characterization of the impact of each BEOL process on NBTI of p+ gate metal oxide semiconductor field-effect transistor (PMOSFETs). It is demonstrated that NBTI is strongly dependent on the plasma enhanced nitride (PE-SiN) passivation film and H2 sintering anneal. A new process scheme of N2 annealing instead of H2 annealing prior to PE-SiN deposition is proposed and proven to be highly efficient in improving NBTI without degradation of device performance and n+ gate metal oxide semiconductor (NMOS) hot carrier lifetime.

  14. Tests of CMS Phase 1 Pixel Upgrade Back-End Electronics

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Matthew

    2016-03-01

    The CMS detector will be upgraded so that it can handle the higher instantaneous luminosity of the 13-14 TeV collisions. The Phase 1 Pixel detector will experience a higher density of particle interactions requiring new front-end and read-out electronics. A front-end pixel data emulator was developed to validate the back-end readout electronics prior to installation and operation. A FPGA-based design emulates 400 Mbps data patterns from the front-end read-out chips and will be used to confirm that each Front End Driver (FED) can correctly decode and process the expected data patterns and error conditions. A FED test bench using the emulator can produce LHC-like conditions for stress testing FED hardware, firmware and online software. The design of the emulator and initial test results will be reported.

  15. Processor-controlled timing module for LORAN-C receiver

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1984-01-01

    Hardware documentation is provided for the modified LORAN-C timing module, which uses direct software control in determining loop sample times. Computer loading is reduced by eliminating polled operation of the timing loop.

  16. Waste Receiving and Processing (WRAP) Module 1 Hazards Assessment

    SciTech Connect

    CAMPBELL, L.R.

    1999-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the WRAP Module 1 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  17. The crucial importance of the back-end in multinational initiatives to enhance fuel cycle security

    SciTech Connect

    McCombie, Charles; Chapman, Neil; Isaacs, Thomas H.

    2007-07-01

    There have been repeated proposals for establishing multinational cooperation approaches that could reduce the security concerns of spreading nuclear technologies. Most recently, there have been initiatives by both Russia (GNPI ) and the USA (GNEP) - each aimed at promoting nuclear power whilst limiting security concerns. In practice, both initiatives place emphasis on the supply of reactors and enriched fuel but neither has made clear and specific proposals about the back-end part of the arrangement. The primary incentive offered to the user countries is 'security of supply' of the front end services. However, there is no current shortage of supply of front end services, so that the incentives are not large. A much greater incentive could be the provision of a spent fuel or waste disposal service. The fuel supplied to Tier 2 countries could be shipped back (with no return of wastes) to the supplier or else to an accepted third party country that is trusted to operate safe and secure disposal facilities. If a comprehensive service that obviates the need for a national deep repository is offered to small countries then there will be a really strong incentive for them to sign up to GNEP or GNPI type deals. (authors)

  18. Variations in nanomechanical properties of back-end Zr-2.5Nb pressure tube material

    NASA Astrophysics Data System (ADS)

    Gallaugher, Matthew; Peykov, Daniel; Brodusch, Nicolas; Chromik, Richard R.; Rodrigue, Lisa; Trudeau, Michel L.; Gauvin, Raynald

    2013-11-01

    The Zr-2.5Nb pressure tube alloy used in Canada Deuterium Uranium (CANDU) nuclear reactors consists of a dual-phase microstructure produced by a multi-step manufacturing process. The metallurgical characteristics of the pressure tubes influence their in-reactor behavior, especially with respect to reactor life-limiting properties such as diametral creep. In order to predict the in-reactor behavior of pressure tubes, a greater understanding of the influence of tube-to-tube variations in metallurgical factors such as texture, grain size, and β-phase percentage would be greatly beneficial. In this paper, a testing method combining high temperature nanoindentation with subsequent electron channeling contrast imaging (ECCI) in the scanning electron microscope (SEM) is presented to compare two back end pressure tube off-cuts. Nanoindentation was used to measure local mechanical properties such as hardness, modulus, and strain rate sensitivity. Post-examination of residual indents with ECCI allowed for the correlation of microstructural characteristics to nanomechanical properties. A difference in hardness was observed between the two tubes in the axial normal plane, which was correlated to differences in β-phase area percentage and/or morphology.

  19. Receivers

    NASA Astrophysics Data System (ADS)

    Donnelly, H.

    1983-07-01

    Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.

  20. Receivers

    NASA Technical Reports Server (NTRS)

    Donnelly, H.

    1983-01-01

    Before discussing Deep Space Network receivers, a brief description of the functions of receivers and how they interface with other elements of the Network is presented. Different types of receivers are used in the Network for various purposes. The principal receiver type is used for telemetry and tracking. This receiver provides the capability, with other elements of the Network, to track the space probe utilizing Doppler and range measurements, and to receive telemetry, including both scientific data from the onboard experiments and engineering data pertaining to the health of the probe. Another type of receiver is used for radio science applications. This receiver measures phase perturbations on the carrier signal to obtain information on the composition of solar and planetary atmospheres and interplanetary space. A third type of receiver utilizes very long baseline interferometry (VLBI) techniques for both radio science and spacecraft navigation data. Only the telemetry receiver is described in detail in this document. The integration of the Receiver-Exciter subsystem with other portions of the Deep Space Network is described.

  1. 40 CFR Table 8 to Subpart U of... - Summary of Compliance Alternative Requirements for the Back-End Process Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for the Back-End Process Provisions 8 Table 8 to Subpart U of Part 63 Protection of Environment...: Group I Polymers and Resins Pt. 63, Subpt. U, Table 8 Table 8 to Subpart U of Part 63—Summary of... be monitored Requirements Compliance Using Stripping Technology, Demonstrated through...

  2. 40 CFR Table 8 to Subpart U of... - Summary of Compliance Alternative Requirements for the Back-End Process Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Summary of Compliance Alternative Requirements for the Back-End Process Provisions 8 Table 8 to Subpart U of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  3. 40 CFR Table 8 to Subpart U of... - Summary of Compliance Alternative Requirements for the Back-End Process Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Summary of Compliance Alternative Requirements for the Back-End Process Provisions 8 Table 8 to Subpart U of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  4. 40 CFR Table 8 to Subpart U of... - Summary of Compliance Alternative Requirements for the Back-End Process Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements for the Back-End Process Provisions 8 Table 8 to Subpart U of Part 63 Protection of Environment...: Group I Polymers and Resins Pt. 63, Subpt. U, Table 8 Table 8 to Subpart U of Part 63—Summary of... be monitored Requirements Compliance Using Stripping Technology, Demonstrated through...

  5. 40 CFR Table 8 to Subpart U of... - Summary of Compliance Alternative Requirements for the Back-End Process Provisions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for the Back-End Process Provisions 8 Table 8 to Subpart U of Part 63 Protection of Environment...: Group I Polymers and Resins Pt. 63, Subpt. U, Table 8 Table 8 to Subpart U of Part 63—Summary of... be monitored Requirements Compliance Using Stripping Technology, Demonstrated through...

  6. AREVA Back-End Possibilities for the Used Fuel of Research Test Reactors

    SciTech Connect

    Auziere, P.; Emin, J.L.; Louvet, T.; Ohayon, D.; Hunter, I.

    2006-07-01

    One of the major issues faced by the Research and Test Reactor (RTR) operators is the back end management of the used fuel elements. RTR used fuel for both HEU and LEU types are problematic for storing and disposal as their Aluminium cladding degrades leading to activity release, possible loss of containment and criticality concerns. Thus, direct disposal of RTR used fuel, (without prior treatment and conditioning) is in this respect hardly suitable. In the same manner, long term interim storage of RTR used fuel has to take into account the issue of fuel corrosion. Treating RTR used fuel allows separating the content into recyclable materials and residues. It offers many advantages as compared to direct disposal such as the retrieval of valuable fissile material, the reduction of radio-toxicity and a very significant reduction of the volume of the ultimate waste package (reduction factor between 30 and 50). In addition, the vitrification of the residues provides a package that has been specifically designed to ensure long term durability for long term interim storage as well as final disposal (99% of the activity is encapsulated into a stable matrix). RTR fuel treatment process was developed several decades ago by AREVA with now thirty years of experience at an industrial level. The treatment process consists in dissolving the whole assembly (including the Al cladding) in nitric acid and then diluting it with standard Uranium Oxide fuel dissolution liquor prior to treatment with the nominal Tributylphosphate solvent extraction process. A wide range of RTR spent fuel has already been treated in the AREVA facilities. First, at the Marcoule plant over 18 tons of U-Al type RTR fuel from 21 reactors in 11 countries was processed. The treatment activities are now undertaken at the La Hague plant where 17 tons of RTR used fuel from Australia Belgium, and France aligned for treatment. In June 2005, AREVA started to treat at La Hague ANSTO's Australian RTR used fuel from

  7. A digital receiver module with direct data acquisition for magnetic resonance imaging systems

    NASA Astrophysics Data System (ADS)

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  8. ArF solutions for low-k1 back-end imaging

    NASA Astrophysics Data System (ADS)

    Wiaux, Vincent; Montgomery, Patrick K.; Vandenberghe, Geert; Monnoyer, Philippe; Ronse, Kurt G.; Conley, Will; Litt, Lloyd C.; Lucas, Kevin; Finders, Jo; Socha, Robert; Van Den Broeke, Douglas J.

    2003-06-01

    The requirements stated in the ITRS roadmap for back-end-of-line imaging of current and future technology nodes are very aggressive. Therefore, it is likely that high NA in combination with enhancement techniques will be necessary for the imaging of contacts and trenches, pushing optical lithography into the low-k1 regime. In this paper, we focus more specifically on imaging solutions for contact holes beyond the 90 nm node using high NA ArF lithography, as this is currently seen as one of the major challenges in optical lithography. We investigate the performance of various existing enhancement techniques in order to provide contact holes imaging solutions in a k1 range from 0.35 to 0.45, using the ASML PAS5500/1100 0.75NA ArF scanner installed at IMEC. For various resolution enhancement techniques (RET), the proof of concept has been demonstrated in literature. In this paper, we propose an experimental one-to-one comparison of these RET"s with fixed CD target, exposure tool, lithographic process, and metrology. A single exposure through pitch (dense through isolated) printing solution is preferred and is the largest challenge. The common approach using a 6% attenuated phase-shifted mask (attPSM) with a conventional illumination fails. The advantages and drawbacks of other techniques are discussed. High transmission (17%) attenuated phase shift, potentially beneficial for part of the pitch range, requires conflicting trade-offs when looking for a single exposure through pitch solution. More promising results are obtained combining a BIM or a 6% attPSM with assist slots and off-axis illumination, yielding a depth of focus (DOF) at 8% exposure latitude (EL) greater than 0.31 μm from 200 nm pitch through isolated. Chromeless phase lithography (CPL) is also discussed with promising results obtained at the densest pitch. At a 0.4 k1, an experimental extrapolation to 0.85NA demonstrates that a pitch of 180 nm can be resolved with 0.4 μm DOF at 8% EL. For all of these

  9. Quantification of Back-End Nuclear Fuel Cycle Metrics Uncertainties Due to Cross Sections

    SciTech Connect

    Tracy E. Stover, Jr.

    2007-11-01

    This work examines uncertainties in the back end fuel cycle metrics of isotopic composition, decay heat, radioactivity, and radiotoxicity. Most advanced fuel cycle scenarios, including the ones represented in this work, are limited by one or more of these metrics, so that quantification of them becomes of great importance in order to optimize or select one of these scenarios. Uncertainty quantification, in this work, is performed by propagating cross-section covariance data, and later number density covariance data, through a reactor physics and depletion code sequence. Propagation of uncertainty is performed primarily via the Efficient Subspace Method (ESM). ESM decomposes the covariance data into singular pairs and perturbs input data along independent directions of the uncertainty and only for the most significant values of that uncertainty. Results of these perturbations being collected, ESM directly calculates the covariance of the observed output posteriori. By exploiting the rank deficient nature of the uncertainty data, ESM works more efficiently than traditional stochastic sampling, but is shown to produce equivalent results. ESM is beneficial for very detailed models with large amounts of input data that make stochastic sampling impractical. In this study various fuel cycle scenarios are examined. Simplified, representative models of pressurized water reactor (PWR) and boiling water reactor (BWR) fuels composed of both uranium oxide and mixed oxides are examined. These simple models are intended to give a representation of the uncertainty that can be associated with open uranium oxide fuel cycles and closed mixed oxide fuel cycles. The simplified models also serve as a demonstration to show that ESM and stochastic sampling produce equivalent results, because these models require minimum computer resources and have amounts of input data small enough such that either method can be quickly implemented and a numerical experiment performed. The simplified

  10. Hyper Suprime-Cam: back-end electronics for CCD readout

    NASA Astrophysics Data System (ADS)

    Uchida, Tomohisa; Miyatake, Hironao; Nakaya, Hidehiko; Aihara, Hiroaki; Miyazaki, Satoshi

    2008-07-01

    The development status of a prototype readout module for Hyper Suprime-Cam, a next-generation prime-focus camera for the 8.2 m Subaru Telescope, is presented. The camera has a field of view 1.5° in diameter, and produces 2.1 Gbyte of data per exposure. The module transfers the data to computers of a data acquisition system using TCP/IP and Gigabit Ethernet. We have measured the performance of data processing and data transfer of the developed module. The results indicated sufficient performance to read data from all CCDs within the required readout time.

  11. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  12. Electroacoustic Evaluation of Frequency-Modulated Receivers Interfaced with Personal Hearing Aids

    ERIC Educational Resources Information Center

    Schafer, Erin C.; Thibodeau, Linda M.; Whalen, Holly S.; Overson, Gary J.

    2007-01-01

    Purpose: The purpose of this study was to compare the electroacoustic outputs of frequency-modulated (FM) systems coupled to hearing aids. Method: Electroacoustic performance of FM systems coupled to hearing aids was determined for 3 FM receivers: body-worn with neck loop, ear-level nonprogrammable, and ear-level programmable. Systems were…

  13. Driver-receiver combined optical transceiver modules for bidirectional optical interconnection

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Hoon; Kang, Sae-Kyoung; Kim, Do-Won; Nga, Nguyen T. H.; Hwang, Sung-Hwan; Lee, Tae-Woo

    2008-02-01

    We review a bidirectional optical link scheme for memory-interface applications. A driver-receiver combined optical transceiver (TRx) modules was demonstrated on an optical printed-circuit board (OPCB) platform. To select the bidirectional electric input/output signals, a driver-receiver combined TRx IC with a switching function was designed in 0.18-μm CMOS technology. The TRx IC was integrated with VCSEL/PD chips for optical link in the TRx module. The optical TRx module was assembled on a fiber-embedded OPCB, employing a 90°-bent fiber connector for 90° deflection of light beams between the TRx module and the OPCB. The TRx module and the 90° connector were passively assembled on the OPCB, using ferrule-type guide pins/ holes. Employing these constituent components, the bidirectional optical link between a pair of TRx modules has been successfully demonstrated up to 1.25 Gb/s on the OPCB.

  14. Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications

    SciTech Connect

    Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

    2006-01-01

    Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  15. Front-end and back-end electrochemistry of molten salt in accelerator-driven transmutation systems

    SciTech Connect

    Williamson, M.A.; Venneri, F.

    1995-07-01

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods (i.e., electrowinning). The same method provides the separation of the so-called noble metal fission products at the back-end of the fuel cycle. Both implementations would have important diversion safeguards. The proposed separation processes and a thermodynamic analysis of the electrochemical separation method are presented.

  16. Hybrid integration of an eight-channel WDM transmitter and receiver module at 980 nm

    NASA Astrophysics Data System (ADS)

    Berolo, Ezio; Coyne, W.; Hua, Heng; James, R.; Kuley, R. M.; Lisicka-Skrzek, Ewa; Millar, G.; Vineberg, Karen A.; Fallahi, Mahmoud; Barber, Richard A.; Chatenoud, F.; Wang, Weijian; Koteles, Emil S.

    1995-03-01

    The inherent information bandwidth of optical fibers between the wavelengths 1.3 and 1.6 micrometers is in the terahertz range. One obvious way to exploit this bandwidth is to use wavelength-division multiplexing (WDM). The Canadian Solid State Optoelectronics Consortium (SSOC), an association of industry, university, and federal government research laboratories, has been developing the component technologies required to demonstrate the operation of an eight channel WDM system. This paper discusses the integration of the transmitter (Tx) and the receiver (Rx) modules using a thin film process on alumina substrates. The Tx module contains a fully integrated eight channel DBR laser array with two quad-laser driver circuits. The signal from the lasers is combined into a single waveguide and is then carried off-chip via a polarization maintaining optical fiber. The Rx module is made up of an integrated receiver circuit, and a series of amplifiers providing the gain required for signal and clock recovery. The receiver circuit consists of an echelle grating which disperses the eight distinct wavelengths into a bank of InGaAs metal-semiconductor-metal (MSM) detectors. Some of the performance parameters of the Tx and Rx modules are presented.

  17. A hearing aid on-chip system based on accuracy optimized front- and back-end blocks

    NASA Astrophysics Data System (ADS)

    Fanyang, Li; Hao, Jiang

    2014-03-01

    A hearing aid on-chip system based on accuracy optimized front- and back-end blocks is presented for enhancing the signal processing accuracy of the hearing aid. Compared with the conventional system, the accuracy optimized system is characterized by the dual feedback network and the gain compensation technique used in the front- and back-end blocks, respectively, so as to alleviate the nonlinearity distortion caused by the output swing. By using the technique, the accuracy of the whole hearing aid system can be significantly improved. The prototype chip has been designed with a 0.13 μm standard CMOS process and tested with 1 V supply voltage. The measurement results show that, for driving a 16 Ω loudspeaker with a normalized output level of 300 mVp-p, the total harmonic distortion reached about -60 dB, achieving at least three times reduction compared to the previously reported works. In addition, the typical input referred noise is only about 5 μVrms.

  18. Pulse position modulated (PPM) ground receiver design for optical communications from deep space

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Vilnrotter, Victor; Farr, William H.; Fort, D.; Sigman, E.

    2002-04-01

    Pulse position modulation (PPM) provides a means of using high peak power lasers for transmitting communications signals from planetary spacecraft to earth-based receiving stations. Large aperture (approximately 10 m diameter) telescopes will be used to collect and focus the laser communications signal originating from a deep space transmitter on to a PPM receiver. Large area (1 - 3 mm diameter) sensitive detectors, preceded by appropriate narrow (0.1 - 0.2 nm) optical band-pass filters and followed by low-noise, high-gain, amplifiers will serve as the PPM receiver front end. A digital assembly will form the backbone of the receiver. The PPM receiver will achieve and maintain slot synchronization based on sub slot sums generated by a field programmable-gated array (FPGA). Spacecraft dynamics and timing issues between the ground- based receiver and the transmitter on board the spacecraft must be taken into account. In the present report, requirements and design of a prototype PPM receiver being developed over the next year will be elaborated. The design is driven by the need to demonstrate and validate PPM reception using a variety of detectors under simulated conditions representative of those to be encountered in a deep space optical communications link.

  19. Waste receiving and processing facility module 1 data management system software project management plan

    SciTech Connect

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  20. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    SciTech Connect

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  1. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    SciTech Connect

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  2. A linear receiver for visible light communication systems with phase modulated OFDM

    NASA Astrophysics Data System (ADS)

    Xie, Gui-Teng; Yu, Hong-Yi; Zhu, Yi-Jun; Ji, Xin-Sheng

    2016-07-01

    In the orthogonal frequency-division multiplexing (OFDM) systems for visible light communication (VLC), the peak-to-average power ratio (PAPR) of OFDM signals is the primary concern of high-speed data transmission. In order to get low PAPR signals and reduce the influence of nonlinearity of the light-emitting diode (LED), a phase modulated OFDM (PM-OFDM) system is developed and a linear receiver is presented. Unlike the conventional angle detection receiver implemented by arctangent calculator, the linear receiver has lower computation complexity and is immune to the threshold effect. Simulation results indicate that the proposed PM-OFDM obtains significant performance gains over DC-biased optical OFDM (DCO-OFDM) and precoded OFDM.

  3. L-Band Transmit/Receive Module for Phase-Stable Array Antennas

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has

  4. The Back End of the Fuel Cycle Moves Front and Center

    SciTech Connect

    Isaacs, T; Choi, J

    2006-02-16

    assurance that it will receive all the fresh fuel it needs for the lifetime of its nuclear power plants, there should be no reason for it to pursue the difficult and costly capability to enrich the fuel itself or to reprocess its spent fuel to recover the produced plutonium for recycle as a fuel in its reactors. However, such offers are unlikely to be fully persuasive if they are not connected to complementary offers for management of the spent nuclear fuel that is created during power production. In this paper, we discuss the complexity of the linkage to spent fuel take-back and the challenges and opportunities this present to nations repository programs.

  5. A direct modulated optical link for MRI RF receive coil interconnection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Wei, Juan; Shen, G. X.

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3 T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  6. Waste Receiving and Processing, Module 2A, feed specification: Revision 1

    SciTech Connect

    Kruger, O.L.; Sheriff, M.L.

    1994-11-14

    Detailed descriptions of the various mixed low-level waste feed streams that will be processed in the Waste Receiving and Processing Facility, Module 2A (WRAP 2A) are provided. Feed stream descriptions are based on available reports, the solid waste information tracking system database, and the 1993 solid waste forecast data. Available chemical and physical attributes, radionuclide data, waste codes, and packaging information are shown for 15 feed streams. The information sources and methodology for obtaining projections for WRAP 2A expected feed stream volumes also are described.

  7. Digital Intermediate Frequency Receiver Module For Use In Airborne Sar Applications

    DOEpatents

    Tise, Bertice L.; Dubbert, Dale F.

    2005-03-08

    A digital IF receiver (DRX) module directly compatible with advanced radar systems such as synthetic aperture radar (SAR) systems. The DRX can combine a 1 G-Sample/sec 8-bit ADC with high-speed digital signal processor, such as high gate-count FPGA technology or ASICs to realize a wideband IF receiver. DSP operations implemented in the DRX can include quadrature demodulation and multi-rate, variable-bandwidth IF filtering. Pulse-to-pulse (Doppler domain) filtering can also be implemented in the form of a presummer (accumulator) and an azimuth prefilter. An out of band noise source can be employed to provide a dither signal to the ADC, and later be removed by digital signal processing. Both the range and Doppler domain filtering operations can be implemented using a unique pane architecture which allows on-the-fly selection of the filter decimation factor, and hence, the filter bandwidth. The DRX module can include a standard VME-64 interface for control, status, and programming. An interface can provide phase history data to the real-time image formation processors. A third front-panel data port (FPDP) interface can send wide bandwidth, raw phase histories to a real-time phase history recorder for ground processing.

  8. The CMS fast beams condition monitor back-end electronics based on MicroTCA technology: status and development

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, Agnieszka A.; Dabrowski, Anne E.; Pozniak, Krzysztof T.

    2015-09-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is used to measure the online luminosity and machine induced background for the CMS experiment. The detector consists of 24 single-crystal CVD diamond sensors that are read out with a custom fast front-end chip fabricated in 130 nm CMOS technology. Since the signals from the sensors are used for real time monitoring of the LHC conditions they are processed by dedicated back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may cause partially overlapping events. Hence, novel signal processing techniques are deployed to resolve overlapping peaks. The high accuracy qualification of the signals is crucial to determine the luminosity and the machine induced background rates for the CMS experiment and the LHC.

  9. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    SciTech Connect

    Not Available

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  10. Delta Modulation Technique for Improving the Sensitivity of Monobit Subsamplers in Radar and Coherent Receiver Applications

    SciTech Connect

    Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; DuVerneay, Brian B.

    2014-08-01

    This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as “delta modulation” (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudo-stationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate DC offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve the same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop’s basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced DC offsets and wide temperature variation from -55°C to +85 °C. Examination of the corrected vs. uncorrected baseband spectrum under swept input signal-tonoise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. In conclusion, two-tone testing shows no impact of the DM technique on ADC linearity.

  11. Delta Modulation Technique for Improving the Sensitivity of Monobit Subsamplers in Radar and Coherent Receiver Applications

    DOE PAGESBeta

    Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; DuVerneay, Brian B.

    2014-08-01

    This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as “delta modulation” (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudo-stationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate DC offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve themore » same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop’s basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced DC offsets and wide temperature variation from -55°C to +85 °C. Examination of the corrected vs. uncorrected baseband spectrum under swept input signal-tonoise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. In conclusion, two-tone testing shows no impact of the DM technique on ADC linearity.« less

  12. Defect structure and electronic properties of SiOC:H films used for back end of line dielectrics

    NASA Astrophysics Data System (ADS)

    Pomorski, T. A.; Bittel, B. C.; Lenahan, P. M.; Mays, E.; Ege, C.; Bielefeld, J.; Michalak, D.; King, S. W.

    2014-06-01

    Back end of the line dielectrics (BEOL) with low dielectric constants, so called low-k dielectrics, are needed for current and future integrated circuit technology nodes. However, an understanding of the defects which limit reliability and cause leakage currents for these films is not yet developed. We primarily utilize conventional electron paramagnetic resonance (EPR) and leakage current measurements to investigate amorphous hydrogenated carbon doped oxide (a-SiOC:H) dielectrics, the most important in current BEOL technology. The resonance measurements were complemented by transmission Fourier-transform infra-red spectroscopy, x-ray reflectivity, and Rutherford backscattering measurements. Various compositions of a-SiOC:H films were deposited on 300 mm diameter Si (100) wafers. They exhibit a wide range of dielectric constant, composition, and porosity. Variations in deposition method, process chemistry, and post deposition curing were also investigated. We observe a remarkable range of paramagnetic defect populations within the films. In a large subset of the films with similar defect structure, we observe a strong correlation between carbon dangling bond paramagnetic defect densities and leakage currents, especially at lower electric fields. This correspondence strongly suggests that, in this subset, defects observed by EPR are in a large part responsible for the leakage currents at low electric fields. In addition, the results suggest that the observed defects likely limit the dielectric reliability in problems such as time dependent dielectric breakdown and stress induced leakage current in many of these films. However, the EPR results are complex, and a simple universal correspondence between defect populations and leakage does not seem to be present.

  13. Defect structure and electronic properties of SiOC:H films used for back end of line dielectrics

    SciTech Connect

    Pomorski, T. A.; Lenahan, P. M.; Bittel, B. C.; Mays, E.; Ege, C.; Bielefeld, J.; Michalak, D.; King, S. W.

    2014-06-21

    Back end of the line dielectrics (BEOL) with low dielectric constants, so called low-k dielectrics, are needed for current and future integrated circuit technology nodes. However, an understanding of the defects which limit reliability and cause leakage currents for these films is not yet developed. We primarily utilize conventional electron paramagnetic resonance (EPR) and leakage current measurements to investigate amorphous hydrogenated carbon doped oxide (a-SiOC:H) dielectrics, the most important in current BEOL technology. The resonance measurements were complemented by transmission Fourier-transform infra-red spectroscopy, x-ray reflectivity, and Rutherford backscattering measurements. Various compositions of a-SiOC:H films were deposited on 300 mm diameter Si (100) wafers. They exhibit a wide range of dielectric constant, composition, and porosity. Variations in deposition method, process chemistry, and post deposition curing were also investigated. We observe a remarkable range of paramagnetic defect populations within the films. In a large subset of the films with similar defect structure, we observe a strong correlation between carbon dangling bond paramagnetic defect densities and leakage currents, especially at lower electric fields. This correspondence strongly suggests that, in this subset, defects observed by EPR are in a large part responsible for the leakage currents at low electric fields. In addition, the results suggest that the observed defects likely limit the dielectric reliability in problems such as time dependent dielectric breakdown and stress induced leakage current in many of these films. However, the EPR results are complex, and a simple universal correspondence between defect populations and leakage does not seem to be present.

  14. Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance.

    PubMed

    Lee, Hak-Soon; Park, Jun-Young; Cha, Sang-Mo; Lee, Sang-Shin; Hwang, Gyo-Sun; Son, Yung-Sung

    2011-02-28

    Ribbon plastic optical fiber (POF) linked four-channel optical transmitter (Tx) and receiver (Rx) modules have been proposed and realized featuring an excellent alignment tolerance. The two modules share a common configuration involving an optical sub-assembly (OSA) with vertical cavity surface emitting lasers (VCSELs)/photodetectors (PDs), and their driver ICs, which are integrated onto a single printed circuit board (PCB) substrate. The OSA includes an alignment structure, a beam router and a fiber guide, which were produced by using plastic injection molding. We have accomplished a fully passive alignment between the VCSELs/PDs and the ribbon POF by taking advantage of the alignment structure that serves as a reference during the alignment of the constituent parts of the OSA. The electrical link, which largely determines the operation speed, has been remarkably shortened, due to a direct wire-bonding between the VCSELs/PDs and the driver circuits. The light sources and the detectors can be individually positioned, thereby overcoming the pitch limitations of the ribbon POF, which is made up of perfluorinated graded-index (GI) POF with a 62.5 μm core diameter. The overall alignment tolerance was first assessed by observing the optical coupling efficiency in terms of VCSEL/PD misalignment. The horizontal and vertical 3-dB alignment tolerances were about 20 μm and 150 μm for the Tx and 50 μm and over 200 μm for the Rx, respectively. The VCSEL-to-POF coupling loss for the Tx and the POF-to-PD loss for the Rx were 3.25 dB and 1.35 dB at a wavelength of 850 nm, respectively. Subsequently, a high-speed signal at 3.2 Gb/s was satisfactorily delivered via the Tx and Rx modules over a temperature range of -30 to 70°C with no significant errors; the channel crosstalk was below -30 dB. Finally, the performance of the prepared modules was verified by transmitting a 1080p HDMI video supplied by a Bluelay player to an LCD TV. PMID:21369260

  15. Use of dilute hydrofluoric acid and deep eutectic solvent systems for back end of line cleaning in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Padmanabhan Ramalekshmi Thanu, Dinesh

    Fabrication of current generation integrated circuits involves the creation of multilevel copper/low-k dielectric structures during the back end of line processing. This is done by plasma etching of low-k dielectric layers to form vias and trenches, and this process typically leaves behind polymer-like post etch residues (PER) containing copper oxides, copper fluorides and fluoro carbons, on underlying copper and sidewalls of low-k dielectrics. Effective removal of PER is crucial for achieving good adhesion and low contact resistance in the interconnect structure, and this is accomplished using wet cleaning and rinsing steps. Currently, the removal of PER is carried out using semi-aqueous fluoride based formulations. To reduce the environmental burden and meet the semiconductor industry's environmental health and safety requirements, there is a desire to completely eliminate solvents in the cleaning formulations and explore the use of organic solvent-free formulations. The main objective of this work is to investigate the selective removal of PER over copper and low-k (Coral and Black DiamondRTM) dielectrics using all-aqueous dilute HF (DHF) solutions and choline chloride (CC) -- urea (U) based deep eutectic solvent (DES) system. Initial investigations were performed on plasma oxidized copper films. Copper oxide and copper fluoride based PER films representative of etch products were prepared by ashing g-line and deep UV photoresist films coated on copper in CF4/O2 plasma. PER removal process was characterized using scanning electron microscopy and X-ray photoelectron spectroscopy and verified using electrochemical impedance spectroscopy measurements. A PER removal rate of ~60 A/min was obtained using a 0.2 vol% HF (pH 2.8). Deaeration of DHF solutions improved the selectivity of PER over Cu mainly due to reduced Cu removal rate. A PER/Cu selectivity of ~20:1 was observed in a 0.05 vol% deaerated HF (pH 3). DES systems containing 2:1 U/CC removed PER at a rate of

  16. The Air Force Manufacturing Technology (MANTECH): Technology transfer methodology as exemplified by the radar transmit/receive module program

    NASA Technical Reports Server (NTRS)

    Houpt, Tracy; Ridgely, Margaret

    1991-01-01

    The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.

  17. On IEEE 802.15.6 IR-UWB receivers - simulations for DBPSK modulation.

    PubMed

    Niemelä, Ville; Hämäläinen, Matti; Iinatti, Jari

    2013-01-01

    In 2002, Federal Communications Commission (FCC) was the first in defining regulations for ultra wideband (UWB) communications followed by Europe and Japan some years later. Focusing on impulse radio (IR) UWB, in 2007 was the time for the first published standard targeting in personal area networks, released by the IEEE. The second IEEE released standard including UWB definitions is targeted for wireless body area networks (WBAN) and was published in 2012. As the wireless communications has been and will be passing through almost any levels in society, the natural step with WBAN is using it in different medical, healthcare and wellbeing applications. The arguments for these are related to the modern lifestyle, in which people have increasingly more free time and are more interested in taking care of their health and wellbeing. Another challenge is the population composition, i.e., aging in developed countries which call for new solutions and procedures, particularly from cost wise. In this paper, we are evaluating UWB receivers based on the IEEE 802.15.6 physical layer definitions and capable of detecting differentially encoded modulation. The evaluation is performed using two different WBAN channel models. PMID:24110027

  18. W-band Heterodyne Receiver Module with 27 K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Gawande, R.; Reeves, R.; Cleary, K.; Readhead, A. C.; Gaier, T.; Kangaslahti, P.; Samoska, L.; Church, S.; Sieth, M.; Voll, P.; Harris, A.; Lai, R.; Sarkozy, S.

    2012-01-01

    We present noise temperature and gain measurements of a W-band heterodyne module populated with MMIC LNAs designed and fabricated using 35nm InP HEMT process. The module has a WR-10 waveguide input. GPPO connectors are used for the LO input and the I and and Q IF outputs. The module is tested at both ambient (300 K) and cryogenic (25 K) temperatures. At 25 K physical temperature, the module has a noise temperature in the range of 27-45 K over the frequency band of 75-111 GHz. The module gain varies between 15 dB and 27 dB. The band-averaged module noise temperature of 350 K and 33 K were measured over 80-110 GHz for the physical temperature of 300 K and 25 K, respectively. The resulting cooling factor is 10.6.

  19. Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves

    NASA Astrophysics Data System (ADS)

    Shinohara, Naoki; Hatano, Ken

    2014-11-01

    In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.

  20. Transmitter and Translating Receiver Design For 64-ary Pulse Position Modulation (PPM)

    SciTech Connect

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2010-01-20

    This paper explores the architecture and design of an optically-implemented 64-ary PPM transmitter and direct-translating receiver that effectively translates incoming electrically-generated bit streams into optical PPM symbols (and vice-versa) at > 1 Gb/s data rates. The PPM transmitter is a cascade of optical switches operating at the frame rate. A corresponding receiver design is more difficult to architect and implement, since increasing data rates lead to correspondingly shorter decision times (slot times and frame times). We describe a solution in the form of a time-to-space mapping arrayed receiver that performs a translating algorithm represented as a code map. The technique for generating the code map is described, and the implementation of the receiver as a planar lightwave circuit is given. The techniques for implementing the transmitter and receiver can be generalized for any case of M-ary PPM.

  1. Transmitter and translating receiver design for 64-ary pulse position modulation (PPM)

    NASA Astrophysics Data System (ADS)

    Mendez, Antonio J.; Hernandez, Vincent J.; Gagliardi, Robert M.; Bennett, Corey V.

    2010-02-01

    This paper explores the architecture and design of an optically-implemented 64-ary PPM transmitter and direct-translating receiver that effectively translates incoming electrically-generated bit streams into optical PPM symbols (and vice-versa) at > 1 Gb/s data rates. The PPM transmitter is a cascade of optical switches operating at the frame rate. A corresponding receiver design is more difficult to architect and implement, since increasing data rates lead to correspondingly shorter decision times (slot times and frame times). We describe a solution in the form of a time-to-space mapping arrayed receiver that performs a translating algorithm represented as a code map. The technique for generating the code map is described, and the implementation of the receiver as a planar lightwave circuit is given. The techniques for implementing the transmitter and receiver can be generalized for any case of M-ary PPM.

  2. Dual-beam ELF wave generation as a function of power, frequency, modulation waveform, and receiver location

    NASA Astrophysics Data System (ADS)

    Agrawal, D.; Moore, R. C.

    2012-12-01

    Dual-beam ELF wave generation experiments performed at the High-frequency Active Auroral Research Program (HAARP) HF transmitter are used to investigate the dependence of the generated ELF wave magnitude on HF power, HF frequency, modulation waveform, and receiver location. During the experiments, two HF beams transmit simultaneously: one amplitude modulated (AM) HF beam modulates the conductivity of the lower ionosphere at ELF frequencies while a second HF beam broadcasts a continuous waveform (CW) signal, modifying the efficiency of ELF conductivity modulation and thereby the efficiency of ELF wave generation. We report experimental results for different ambient ionospheric conditions, and we interpret the observations in the context of a newly developed dual-beam HF heating model. A comparison between model predictions and experimental observations indicates that the theoretical model includes the essential physics involved in multifrequency HF heating of the lower ionosphere. In addition to the HF transmission parameters mentioned above, the model is used to predict the dependence of ELF wave magnitude on the polarization of the CW beam and on the modulation frequency of the modulated beam. We consider how these effects vary with ambientD-region electron density and electron temperature.

  3. Virtual Array Receiver Options for 64-ary Pulse Position Modulation (PPM)

    SciTech Connect

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-01-12

    NASA is developing technology for 64 64-ary PPM using relatively large PPM time slots (10 ns) an and relatively simple d electronic electronic-based receiver logic. In this paper we describe photonic photonics-based receiver options for the case of much higher data rates and inherently shorter decision times. The receivers take the form of virtual ( array or quadrant) arrays with associated comparison tests. Previously we explored this concept for 4-ary and 16-ary PPM at data rates of up to 10 Gb/s. The lessons learned are applied to the case of 64 64-ary PPM at 1.25 Gb/s s. Various receiver designs are compare, and t the optimum design, based on virtual array he arrays, is s, evaluated using numerical simulations.

  4. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  5. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    SciTech Connect

    Not Available

    1994-03-01

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  6. The sROD module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Castillo, V.; Ferrer, A.; Fiorini, L.; Hernández, Y.; Higón, E.; Mellado, B.; March, L.; Moreno, P.; Reed, R.; Solans, C.; Valero, A.; Valls, J. A.

    2014-02-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will also provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be equipped with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II. The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes two Xilinx Series 7 Field Programmable Gate Arrays (FPGAs) for data receiving and processing, as well as the implementation of embedded systems. Related to optical connectors, the sROD uses 4 QSFPs to receive and transmit data from the front-end electronics and 1 Avago MiniPOD to send preprocessed data to the first level trigger system. An SFP module maintains the compatibility with the existing hardware. A complete description of the sROD module for the demonstrator including the main functionalities, circuit design and the control software and firmware will be presented.

  7. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    SciTech Connect

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V

    2008-07-11

    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  8. An analysis of the back end of the nuclear fuel cycle with emphasis on high-level waste management, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.

  9. Robust Three-Metallization Back End of Line Process for 0.18 μm Embedded Ferroelectric Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Kuk; Rhie, Hyoung-Seub; Kim, Hyun-Ho; Koo, Bon-Jae; Joo, Heung-Jin; Park, Jung-Hun; Kang, Young-Min; Choi, Do-Hyun; Lee, Sung-Young; Jeong, Hong-Sik; Kim, Kinam

    2005-04-01

    We developed ferroelectric random access memory (FRAM)-embedded smartcards in which FRAM replaces electrically erasable PROM (EEPROM) and static random access memory (SRAM) to improve the read/write cycle time and endurance of data memories during operation, in which the main time delay retardation observed in EEPROM embedded smartcards occurs because of slow data update time. EEPROM-embedded smartcards have EEPROM, ROM, and SRAM. To utilize FRAM-embedded smartcards, we should integrate submicron ferroelectric capacitors into embedded logic complementary metal oxide semiconductor (CMOS) without the degradation of the ferroelectric properties. We resolved this process issue from the viewpoint of the back end of line (BEOL) process. As a result, we realized a highly reliable sensing window for FRAM-embedded smartcards that were realized by novel integration schemes such as tungsten and barrier metal (BM) technology, multilevel encapsulating (EBL) layer scheme and optimized intermetallic dielectrics (IMD) technology.

  10. Statistical characteristics of lifetime distribution based on defect clustering for time-dependent dielectric breakdown in middle- and back-end-of-line

    NASA Astrophysics Data System (ADS)

    Yokogawa, Shinji

    2015-05-01

    The statistical characteristics of the lifetime distribution based on defect clustering were investigated for middle- and back-end-of-line time-dependent dielectric breakdown. The statistical precision of lifetime estimation was investigated. The maximum likelihood estimators of distribution parameters and their variations were developed by using asymptotic theory. The calculated asymptotic variation coefficient indicates that larger numbers of data are required to maintain the statistical precision of lifetime estimation for highly clustering conditions. However, the censoring of the test time to eliminate the tail of the lifetime distribution has a low impact on the asymptotic variation coefficient of the lifetime. These results provide valuable information for the experimental design of lifetime testing.

  11. Predictors of Radiation Pneumonitis in Patients Receiving Intensity-Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    PubMed Central

    Pinnix, Chelsea C.; Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F.; Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, Alma; Ahmed, Sairah; Nieto, Yago; Dabaja, Bouthaina

    2015-01-01

    Purpose Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP per the Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ2 test and logistic multivariate regression. Results Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grade 1–3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation (10%, P=0.019). Several dosimetric parameters predicted RP, including mean lung dose (MLD) >13.5 Gy, V20 >30%, V15 >35%, V10 >40% and V5>55%. The likelihood ratio (LR) χ2 value was highest for V5< 55% (LR χ2=19.37). Conclusions In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed or refractory lymphoma who received salvage chemotherapy and hematopoietic stem cell

  12. Design of a Virtual Quadrant Receiver for 4-ary Pulse Position Modulation/Optical CDMA (4-ary PPM/O-CDMA)

    SciTech Connect

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V; Lennon, W J

    2006-07-03

    We describe a receiver that performs optical code division multiple access (O-CDMA) decoding followed by pulse position modulation (PPM) symbol detection that behaves like a radar quadrant receiver. Simulations determine the impact of multi-access interference on symbol detection for up to 32 users.

  13. 52 Gbps PAM4 receiver sensitivity study for 400GBase-LR8 system using directly modulated laser.

    PubMed

    Motaghiannezam, Reza; Pham, Thang; Chen, Alan; Du, Tengda; Kocot, Chris; Xu, Jack; Huebner, Bernd

    2016-04-01

    Real-time 52 Gbps PAM4 transmission is demonstrated over single mode fiber (SMF) using a directly modulated laser (DML) and a PHY chip. The inner eye optical modulation amplitude (OMA) receiver sensitivities were measured and compared using avalanche photodetector (APD) and PIN photodetector (PD) for the maximum and minimum chromatic dispersions (CDs) of 400GBase-LR8 link. The measured inner eye OMAs were -17.8 dBm and -18.8 dBm for + 10 ps/nm and -58 ps/nm of CDs at the KP4 bit error rate (BER) threshold of 2 × 10-4 using a PIN PD, respectively. The measured inner eye OMA was improved to -21.0 dBm for -58 ps/nm of CD at the KP4 BER threshold using an APD. Negligible OMA penalty (< 0.4 dB) was captured for operating DML at different bias currents of 40 mA and 60 mA using a PIN PD and an APD for both positive and negative CDs at the KP4 BER threshold. PMID:27137027

  14. Use of formulations based on choline chloride-malonic acid deep eutectic solvent for back end of line cleaning in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Taubert, Jenny

    Interconnection layers fabricated during back end of line processing in semiconductor manufacturing involve dry etching of a low-k material and deposition of copper and metal barriers to create copper/dielectric stacks. After plasma etching steps used to form the trenches and vias in the dielectric, post etch residues (PER) that consist of organic polymer, metal oxides and fluorides, form on top of copper and low-k dielectric sidewalls. Currently, most semiconductor companies use semi aqueous fluoride (SAF) based formulations containing organic solvent(s) for PER removal. Unfortunately, these formulations adversely impact the environmental health and safety (EHS) requirements of the semiconductor industry. Environmentally friendly "green" formulations, free of organic solvents, are preferred as alternatives to remove PER. In this work, a novel low temperature molten salt system, referred as deep eutectic solvent (DES) has been explored as a back end of line cleaning (BEOL) formulation. Specifically, the DES system comprised of two benign chemicals, malonic acid (MA) and choline chloride (CC), is a liquid at room temperature. In certain cases, the formulation was modified by the addition of glacial acetic acid (HAc). Using these formulations, selective removal of three types of PER generated by timed CF4/O2 etching of DUV PR films on Cu was achieved. Type I PER was mostly organic in character (fluorocarbon polymer type) and had a measured thickness of 160 nm. Type II PER was much thinner (25 nm) and consisted of a mixture of organic and inorganic compounds (copper fluorides). Further etching generated 17 nm thick Type III PER composed of copper fluorides and oxides. Experiments were also conducted on patterned structures. Cleaning was performed by immersing samples in a temperature controlled (30 or 40° C) double jacketed vessel for a time between 1 and 5 minutes. Effectiveness of cleaning was characterized using SEM, XPS and single frequency impedance measurements

  15. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma

    SciTech Connect

    Pinnix, Chelsea C.; Smith, Grace L.; Milgrom, Sarah; Osborne, Eleanor M.; Reddy, Jay P.; Akhtari, Mani; Reed, Valerie; Arzu, Isidora; Allen, Pamela K.; Wogan, Christine F.; Fanale, Michele A.; Oki, Yasuhiro; Turturro, Francesco; Romaguera, Jorge; Fayad, Luis; Fowler, Nathan; Westin, Jason; Nastoupil, Loretta; Hagemeister, Fredrick B.; Rodriguez, M. Alma [Department of Lymphoma and others

    2015-05-01

    Purpose: Few studies to date have evaluated factors associated with the development of radiation pneumonitis (RP) in patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL), especially in patients treated with contemporary radiation techniques. These patients represent a unique group owing to the often large radiation target volumes within the mediastinum and to the potential to receive several lines of chemotherapy that add to pulmonary toxicity for relapsed or refractory disease. Our objective was to determine the incidence and clinical and dosimetric risk factors associated with RP in lymphoma patients treated with intensity modulated radiation therapy (IMRT) at a single institution. Methods and Materials: We retrospectively reviewed clinical charts and radiation records of 150 consecutive patients who received mediastinal IMRT for HL and NHL from 2009 through 2013. Clinical and dosimetric predictors associated with RP according to Radiation Therapy Oncology Group (RTOG) acute toxicity criteria were identified in univariate analysis using the Pearson χ{sup 2} test and logistic multivariate regression. Results: Mediastinal radiation was administered as consolidation therapy in 110 patients with newly diagnosed HL or NHL and in 40 patients with relapsed or refractory disease. The overall incidence of RP (RTOG grades 1-3) was 14% in the entire cohort. Risk of RP was increased for patients who received radiation for relapsed or refractory disease (25%) versus those who received consolidation therapy (10%, P=.019). Several dosimetric parameters predicted RP, including mean lung dose of >13.5 Gy, V{sub 20} of >30%, V{sub 15} of >35%, V{sub 10} of >40%, and V{sub 5} of >55%. The likelihood ratio χ{sup 2} value was highest for V{sub 5} >55% (χ{sup 2} = 19.37). Conclusions: In using IMRT to treat mediastinal lymphoma, all dosimetric parameters predicted RP, although small doses to large volumes of lung had the greatest influence. Patients with relapsed

  16. Relationship Between Pelvic Organ-at-Risk Dose and Clinical Target Volume in Postprostatectomy Patients Receiving Intensity-Modulated Radiotherapy

    SciTech Connect

    Stanic, Sinisa; Mathai, Mathew; Cui Jing; Purdy, James A.; Valicenti, Richard K.

    2012-04-01

    Purpose: To investigate dose-volume consequences of inclusion of the seminal vesicle (SV) bed in the clinical target volume (CTV) for the rectum and bladder using biological response indices in postprostatectomy patients receiving intensity-modulated radiotherapy (IMRT). Methods and Materials: We studied 10 consecutive patients who underwent prostatectomy for prostate cancer and subsequently received adjuvant or salvage RT to the prostate fossa. The CTV to planning target volume (PTV) expansion was 7 mm, except posterior expansion, which was 5 mm. Two IMRT plans were generated for each patient, including either the prostate fossa alone or the prostate fossa with the SV bed, but identical in all other aspects. Prescription dose was 68.4 Gy in 1.8-Gy fractions prescribed to {>=}95% PTV. Results: With inclusion of the SV bed in the treatment volume, PTV increased and correlated with PTV-bladder and PTV-rectum volume overlap (Spearman {rho} 0.91 and 0.86, respectively; p < 0.05). As a result, the dose delivered to the bladder and rectum was higher (p < 0.05): mean bladder dose increased from 11.3 {+-} 3.5 Gy to 21.2 {+-} 6.6 Gy, whereas mean rectal dose increased from 25.8 {+-} 5.5 Gy to 32.3 {+-} 5.5 Gy. Bladder and rectal equivalent uniform dose correlated with mean bladder and rectal dose. Inclusion of the SV bed in the treatment volume increased rectal normal tissue complication probability from 2.4% to 4.8% (p < 0.01). Conclusions: Inclusion of the SV bed in the CTV in postprostatectomy patients receiving IMRT increases bladder and rectal dose, as well as rectal normal tissue complication probability. The magnitude of PTV-bladder and PTV-rectal volume overlap and subsequent bladder and rectum dose increase will be higher if larger PTV expansion margins are used.

  17. Basic Performance of a Logic Intellectual Property Compatible Embedded Dynamic Random Access Memory with Cylinder Capacitors in Low-k/Cu Back End on the Line Layers

    NASA Astrophysics Data System (ADS)

    Kume, Ippei; Inoue, Naoya; Hijioka, Ken'ichiro; Kawahara, Jun; Takeda, Kouichi; Furutake, Naoya; Shirai, Hiroki; Kazama, Kenya; Kuwabara, Shin'ichi; Watarai, Msasatoshi; Sakoh, Takashi; Takahashi, Takafumi; Ogura, Takashi; Taiji, Toshiji; Kasama, Yoshiko; Sakamoto, Misato; Hane, Masami; Hayashi, Yoshihiro

    2012-02-01

    We have confirmed the basic performance of a new logic intellectual property (IP) compatible (LIC) embedded dynamic random access memory (eDRAM) with cylinder capacitors in the low-k/Cu back end on the line (BEOL) layers. The LIC-eDRAM reduces the contact (CT) height, or essentially the RC delays due to the parasitic component to the contact. By circuit simulation, a 28-nm-node LIC-eDRAM with the reduced CT height controls the logic delay with Δτd < 5% to that of 28-nm-node standard complementary metal oxide semiconductor (CMOS) logics, enabling us ensure the logic IP compatibility. This was confirmed also by a 40-nm-node LIC-eDRAM test-chip fabricated. The 40-nm-node inverter delays in the test-chip were controlled actually within Δτd < 5%, referred to those of a pure-CMOS logic LSI. Meanwhile the retention time of the DRAM macro was in the range of milliseconds, which has no difference to that of a conventional eDRAM with a capacitor-on-bitline (COB) structure. The LIC-eDRAM is one type of BEOL memory on standard CMOS devices, and is sustainable for widening eDRAM applications combined with a variety of leading-edge CMOS logic IPs, especially beyond 28-nm-nodes.

  18. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy.

    PubMed

    Jones, Lee W; Fels, Diane R; West, Miranda; Allen, Jason D; Broadwater, Gloria; Barry, William T; Wilke, Lee G; Masko, Elisabeth; Douglas, Pamela S; Dash, Rajesh C; Povsic, Thomas J; Peppercorn, Jeffrey; Marcom, P Kelly; Blackwell, Kimberly L; Kimmick, Gretchen; Turkington, Timothy G; Dewhirst, Mark W

    2013-09-01

    Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P < 0.001 and P = 0.07, respectively). These changes were accompanied by significant time × group interactions in CEPs and select CAFs [placenta growth factor, interleukin (IL)-1β, and IL-2], also favoring the AC+AET group (P < 0.05). (15)O-water positron emission tomography (PET) imaging revealed a 38% decrease in tumor blood flow in the AC+AET group. There were no differences in any tumor tissue markers (P > 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined. PMID:23842792

  19. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. PMID:26961103

  20. 128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator.

    PubMed

    Dong, Po; Chen, Xi; Kim, Kwangwoong; Chandrasekhar, S; Chen, Young-Kai; Sinsky, Jeffrey H

    2016-06-27

    Recently, there is increasing interest in utilizing Stokes vector receiver, which is a direct-detection technique with the capability to digitally track the polarization changes in fibers and decode information in multiple dimensions. Here, we report a monolithically integrated silicon photonic Stokes vector receiver, which consists of one polarization beam splitter, two polarization rotators, one 90-degree optical hybrid, and six germanium photodetectors. Paired with a silicon in-phase/quadrature modulator incorporating a power-tunable carrier in the orthogonal polarization, transmission at 128-Gb/s over 100-km fiber is achieved with direct detection. PMID:27410578

  1. The brain is not a radio receiver for wireless phone signals: Human tissue does not demodulate a modulated radiofrequency carrier

    NASA Astrophysics Data System (ADS)

    Davis, Christopher C.; Balzano, Quirino

    2010-11-01

    It has been suggested that the low frequency modulations of the radiofrequency (RF) signal from a wireless phone could be demodulated by human tissue. If this occurred it could lead to interactions with ions in the tissue, with possible biological consequences. In recent experiments it has been shown that biological cells do not exhibit significant electrical nonlinearity to be able to demodulate low frequency signals present as modulations of a RF carrier. This makes irrelevant any hypothetical interactions between RF electromagnetic waves and biological systems involving such demodulation mechanisms. Your wireless phone is not an athermal hazard to your brain.

  2. Design and Evaluation of a Virtual Quadrant Receiver for 4-ary Pulse Position Modulation/Optical Code Division Multiple Access (4-ary PPM/O-CDMA)

    SciTech Connect

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2006-12-29

    M-ary pulse position modulation (M-ary PPM) is an alternative to on-off-keying (OOK) that transmits multiple bits as a single symbol occupying a frame of M slots. PPM does not require thresholding as in OOK signaling, instead performing a comparison test among all slots in a frame to make the slot decision. Combining PPM with optical code division multiple access (PPM/O-CDMA) adds the benefit of supporting multiple concurrent, asynchronous bursty PPM users. While the advantages of PPM/O-CDMA are well known, implementing a receiver that performs comparison test can be difficult. This paper describes the design of a novel array receiver for M-ary PPM/O-CDMA (M = 4) where the received signal is mapped onto an xy-plane whose quadrants define the PPM slot decision by means of an associated control law. The receiver does not require buffering or nonlinear operations. In this paper we describe a planar lightwave circuit (PLCs) implementation of the receiver. We give detailed numerical simulations that test the concept and investigate the effects of multi-access interference (MAI) and optical beat interference (OBI) on the slot decisions. These simulations provide guidelines for subsequent experimental measurements that will be described.

  3. Comparison on the sensitivity of fiber optic SONET OC-48 PIN-TIA receivers measured by using synchronous modulation intermixing technique and bit-error-rate tester

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Liao, Yu-Sheng

    2004-04-01

    The sensitivity of SONET p-i-n photodiode receivers with transimpedance amplifier (PIN-TIA) from OC-3 to OC-48 data rates measured by using a standard bit-error-rate tester (BERT) and a novel synchronous-modulation inter-mixing (SMIM) technique are compared. A threshold inter-mixed voltage of below 15.8 mV obtained by SMIM method corresponding to the sensitivity of PIN-TIA receiver beyond -32 dBm determined by BERT for the SONET OC-48 PIN-TIA receivers with a required BER of better than 10-10 is reported. the analysis interprets that the inter-mixed voltage for improving the PIN-TIA receiver sensitivity from -31 dBm to -33 dBm has to be increased from 12.5 mV to 20.4 mV. As compared to the BERT, the SMIM is a relatively simplified and low-cost technique for on-line mass-production diagnostics for measureing the sensitivity and evaluationg the BER performances of PIN-TIA receivers.

  4. Sensitivity evaluation of fiber optic OC-48 p-i-n transimpedance amplifier receivers using sweep-frequency modulation and intermixing diagnostics

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Liao, Yu-Sheng

    2005-04-01

    The sensitivity of SONET p-i-n photodiode receivers with transimpedance amplifiers (PIN-TIA) from OC-3 to OC-48 data rates, measured by using a standard bit-error-rate tester (BERT) and a novel sweep-frequency-modulation/intermixing (SMIM) technique, are compared. A threshold intermixed voltage below 15.8 mV obtained by the SMIM method corresponding to the sensitivity of the PIN-TIA receiver beyond -32 dBm determined by BERT for the SONET OC-48 PIN-TIA receivers with a required BER of better than 10-10 is reported. The analysis interprets that the intermixed voltage for improving the PIN-TIA receiver sensitivity from -31 to -33 dBm has to be increased from 12.5 to 20.4 mV. As compared to the BERT, the SMIM is a relatively simplified, fast, and low-cost technique for on-line mass-production diagnostics for measuring the sensitivity and evaluating the BER performances of PIN-TIA receivers.

  5. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    SciTech Connect

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-06-30

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M.

  6. Free-field calibration of a pressure gradient receiver in a reflecting water tank using a linear frequency-modulated signal

    NASA Astrophysics Data System (ADS)

    Isaev, A. E.; Matveev, A. N.; Nekrich, G. S.; Polikarpov, A. M.

    2013-11-01

    This work continues a study of the method for constructing the frequency dependence for a projector-receiver pair in a free field by complex moving weighted averaging of the frequency dependence for a pair measured in the field of a reflecting water tank. The method is applied to the free-field calibration of a pressure gradient receiver using a reference hydrophone when radiating a complex linear frequency-modulated (LFM) signal. To improve the estimates of this method, we edited the initial frequency dependences using functions in the form of the product of the complex LFM projector current multiplied by the powerlaw function of the LFM signal frequency. We consider ways to use a priori information both to improve the results obtained by complex moving weighted averaging and to estimate the distortions introduced by this method are considered.

  7. Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovoltaics module with a central receiver.

    PubMed

    Ferrer-Rodríguez, Juan P; Fernández, Eduardo F; Almonacid, Florencia; Pérez-Higueras, Pedro

    2016-05-01

    Ultra-high concentrator photovoltaics (UHCPV), with concentrations higher than 1000 suns, have been pointed out by different authors as having great potential for being a cost-effective PV technology. This Letter presents a UHCPV Cassegrain-based optical design in which the sunrays are concentrated and sent from four different and independent paraboloid-hyperboloid pairs optical units onto a single central receiver. The optical design proposed has the main advantage of the achievement of ultra-high concentration ratios using relative small mirrors with similar performance values of efficiency, acceptance angle, and irradiance uniformity to other designs. PMID:27128055

  8. PAPR reduction and receiver sensitivity improvement in 16QAM-OFDM RoF system using DMT modulation and BTN-PS technique

    NASA Astrophysics Data System (ADS)

    Shao, Yufeng

    2016-03-01

    In this letter, we present the generation, the peak-to average power ratio (PAPR) reduction, the heterodyne detection, the self-mixing reception, and the transmission performance evaluation of 16QAM-OFDM signals in 60 GHz radio over fiber (RoF) system using Discrete multitone (DMT) modulation and Better Than Nyquist pulse shaping (BTN-PS) technique. DMT modulation is introduced in the RoF system, in-phase and quadrature (IQ) will not be required using BTN-PS method, and the computation complexity is much lower than other published techniques for reduced PAPR in the RoF system. In the experiment, 5 Gb/s 16QAM-OFDM downlink signals are transmitted over 42 km SMF-28 and a 0.4 m wireless channel. The experimental results show that the receiver sensitivity is effectively enhanced using this method. Therefore, the introduced BTN-PS technique and its application is a competitive scheme for reducing PAPR, and enhancing the receiver sensitivity in future RoF system.

  9. Modulation of Endothelial Injury Biomarkers by Traditional Chinese Medicine LC in Systemic Lupus Erythematosus Patients Receiving Standard Treatments

    PubMed Central

    Chang, Hen-Hong; Luo, Shue-Fen; Hsue, Yin-Tzu; Chang, Ching-Mao; Lee, Tzung-Yan; Huang, Yu-Chuen; Hsu, Ming-Ling; Chen, Yu-Jen

    2016-01-01

    LC is an herbal remedy effectively reduced therapeutic dosage of glucocorticoid for systemic lupus erythematosus (SLE) patients in clinical trial (ISRCTN81818883). This translational research examined the impact of LC on biomarkers of endothelial injury in the enrolled subjects. Fifty seven patients with SLE were randomized to receive standard treatment without or with LC supplements. Blood samples were taken serially for quantification of endothelial progenitor cells (EPCs), circulating endothelial cells (CECs) and serological factors. The proportion of EPCs in the placebo group continued to increase during trial and was further elevated after withdrawal of standard treatment. The EPC ratio of LC group remained stationary during the entire observation period. The CEC ratio in placebo group exhibited an increasing trend whereas that in LC group declined. The ratio of apoptotic CECs had an increasing trend in both groups, to a lesser extent in LC group. After treatment, the levels of VEGF and IL-18 have a trend declined to a level lower in the LC group than the placebo group. No significant alteration was noted in serum levels of IFN-α, IL-1β and IL-6. The reduction of the steroid dosage by adding LC might be correlated with less extensive endothelial injury in SLE patients. PMID:26847148

  10. Impact of Chemotherapy on Normal Tissue Complication Probability Models of Acute Hematologic Toxicity in Patients Receiving Pelvic Intensity Modulated Radiation Therapy

    SciTech Connect

    Bazan, Jose G.; Luxton, Gary; Kozak, Margaret M.; Anderson, Eric M.; Hancock, Steven L.; Kapp, Daniel S.; Kidd, Elizabeth A.; Koong, Albert C.; Chang, Daniel T.

    2013-12-01

    Purpose: To determine how chemotherapy agents affect radiation dose parameters that correlate with acute hematologic toxicity (HT) in patients treated with pelvic intensity modulated radiation therapy (P-IMRT) and concurrent chemotherapy. Methods and Materials: We assessed HT in 141 patients who received P-IMRT for anal, gynecologic, rectal, or prostate cancers, 95 of whom received concurrent chemotherapy. Patients were separated into 4 groups: mitomycin (MMC) + 5-fluorouracil (5FU, 37 of 141), platinum ± 5FU (Cis, 32 of 141), 5FU (26 of 141), and P-IMRT alone (46 of 141). The pelvic bone was contoured as a surrogate for pelvic bone marrow (PBM) and divided into subsites: ilium, lower pelvis, and lumbosacral spine (LSS). The volumes of each region receiving 5-40 Gy were calculated. The endpoint for HT was grade ≥3 (HT3+) leukopenia, neutropenia or thrombocytopenia. Normal tissue complication probability was calculated using the Lyman-Kutcher-Burman model. Logistic regression was used to analyze association between HT3+ and dosimetric parameters. Results: Twenty-six patients experienced HT3+: 10 of 37 (27%) MMC, 14 of 32 (44%) Cis, 2 of 26 (8%) 5FU, and 0 of 46 P-IMRT. PBM dosimetric parameters were correlated with HT3+ in the MMC group but not in the Cis group. LSS dosimetric parameters were well correlated with HT3+ in both the MMC and Cis groups. Constrained optimization (0received. Patients receiving P-IMRT ± 5FU have better bone marrow tolerance than those receiving irradiation concurrent with either Cis or MMC. Treatment with MMC has a lower TD{sub 50} and more steeply rising normal tissue complication probability curve compared with treatment with Cis. Dose tolerance of PBM and the LSS subsite may be lower for

  11. Risk of Late Toxicity in Men Receiving Dose-Escalated Hypofractionated Intensity Modulated Prostate Radiation Therapy: Results From a Randomized Trial

    SciTech Connect

    Hoffman, Karen E. Voong, K. Ranh; Pugh, Thomas J.; Skinner, Heath; Levy, Lawrence B.; Takiar, Vinita; Choi, Seungtaek; Du, Weiliang; Frank, Steven J.; Johnson, Jennifer; Kanke, James; Kudchadker, Rajat J.; Lee, Andrew K.; Mahmood, Usama; McGuire, Sean E.; Kuban, Deborah A.

    2014-04-01

    Objective: To report late toxicity outcomes from a randomized trial comparing conventional and hypofractionated prostate radiation therapy and to identify dosimetric and clinical parameters associated with late toxicity after hypofractionated treatment. Methods and Materials: Men with localized prostate cancer were enrolled in a trial that randomized men to either conventionally fractionated intensity modulated radiation therapy (CIMRT, 75.6 Gy in 1.8-Gy fractions) or to dose-escalated hypofractionated IMRT (HIMRT, 72 Gy in 2.4-Gy fractions). Late (≥90 days after completion of radiation therapy) genitourinary (GU) and gastrointestinal (GI) toxicity were prospectively evaluated and scored according to modified Radiation Therapy Oncology Group criteria. Results: 101 men received CIMRT and 102 men received HIMRT. The median age was 68, and the median follow-up time was 6.0 years. Twenty-eight percent had low-risk, 71% had intermediate-risk, and 1% had high-risk disease. There was no difference in late GU toxicity in men treated with CIMRT and HIMRT. The actuarial 5-year grade ≥2 GU toxicity was 16.5% after CIMRT and 15.8% after HIMRT (P=.97). There was a nonsignificant numeric increase in late GI toxicity in men treated with HIMRT compared with men treated with CIMRT. The actuarial 5-year grade ≥2 GI toxicity was 5.1% after CIMRT and 10.0% after HIMRT (P=.11). In men receiving HIMRT, the proportion of rectum receiving 36.9 Gy, 46.2 Gy, 64.6 Gy, and 73.9 Gy was associated with the development of late GI toxicity (P<.05). The 5-year actuarial grade ≥2 GI toxicity was 27.3% in men with R64.6Gy ≥ 20% but only 6.0% in men with R64.6Gy < 20% (P=.016). Conclusions: Dose-escalated IMRT using a moderate hypofractionation regimen (72 Gy in 2.4-Gy fractions) can be delivered safely with limited grade 2 or 3 late toxicity. Minimizing the proportion of rectum that receives moderate and high dose decreases the risk of late rectal toxicity after this

  12. Dosimetric benefits of placing dose constraints on the brachial plexus in patients with nasopharyngeal carcinoma receiving intensity-modulated radiation therapy: a comparative study

    PubMed Central

    Jiang, Hailan; Lu, Heming; Yuan, Hong; Huang, Huixian; Wei, Yinglin; Zhang, Yanxian; Liu, Xu

    2015-01-01

    This study aimed to evaluate whether placing dose constraints on the brachial plexus (BP) could provide dosimetric benefits in patients with nasopharyngeal carcinoma (NPC) undergoing intensity-modulated radiation therapy (IMRT). Planning CT images for 30 patients with NPC treated with definitive IMRT were retrospectively reviewed. Target volumes, the BP and other critical structures were delineated; two separate IMRT plans were designed for each patient: one set no restrictions for the BP; the other considered the BP as a critical structure for which a maximum dose limit of ≤66 Gy was set. No significant differences between the two plans were observed in the conformity index, homogeneity index, maximum dose to the planning target volumes (PTVs), minimum dose to the PTVs, percentages of the volume of the PTVnx and PTVnd receiving more than 110% of the prescribed dose, or percentages of the volume of the PTVs receiving 95% and > 93% of the prescribed dose. Dose constraints significantly reduced the maximum dose, mean dose, V45, V50, V54, V60, V66 and V70 to the BP. Dose constraints significantly reduced the maximum dose to the BP, V45, V60 and V66 in both N0–1 and N2–3 disease; however, the magnitude of the dosimetric gain for each parameter between N0–1 and N2–3 disease was not significantly different, except for the V60 and V66. In conclusion, placing dose constraints on the BP can significantly decrease the irradiated volume and dose, without compromising adequate dose delivery to the target volume. PMID:25173085

  13. A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver.

    PubMed

    Saillant, P A; Simmons, J A; Dear, S P; McMullen, T A

    1993-11-01

    The spectrogram correlation and transformation (SCAT) model of the sonar receiver in the big brown bat (Eptesicus fuscus) consists of a cochlear component for encoding the bat's frequency modulated (FM) sonar transmissions and multiple FM echoes in a spectrogram format, followed by two parallel pathways for processing temporal and spectral information in sonar echoes to reconstruct the absolute range and fine range structure of multiple targets from echo spectrograms. The outputs of computations taking place along these parallel pathways converge to be displayed along a computed image dimension of echo delay or target range. The resulting image depicts the location of various reflecting sources in different targets along the range axis. This series of transforms is equivalent to simultaneous, parallel forward and inverse transforms on sonar echoes, yielding the impulse responses of targets by deconvolution of the spectrograms. The performance of the model accurately reproduces the images perceived by Eptesicus in a variety of behavioral experiments on two-glint resolution in range, echo phase sensitivity, amplitude-latency trading of range estimates, dissociation of time- and frequency-domain image components, and ranging accuracy in noise. PMID:8270744

  14. Spaceborne receivers: Basic principles

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    The underlying principles of operation of microwave receivers for space observations of planetary surfaces were examined. The design philosophy of the receiver as it is applied to operate functionally as an efficient receiving system, the principle of operation of the key components of the receiver, and the important differences among receiver types are explained. The operating performance and the sensitivity expectations for both the modulated and total power receiver configurations are outlined. The expressions are derived from first principles and are developed through the important intermediate stages to form practicle and easily applied equations. The transfer of thermodynamic energy from point to point within the receiver is illustrated. The language of microwave receivers is applied statistics.

  15. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  16. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Ledvina, Brent M. (Inventor); Psiaki, Mark L. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  17. CALUTRON RECEIVER

    DOEpatents

    Barnes, S.W.

    1959-06-16

    An improved receiver and receiver mount for calutrons are described. The receiver can be manipulated from outside the tank by a single control to position it with respect to the beam. A door can be operated exteriorly also to prevent undesired portions of the beam from entering the receiver. The receiver has an improved pocket which is more selective in the ions collected. (T.R.H.)

  18. CALUTRON RECEIVER

    DOEpatents

    Brunk, W.O.

    1959-09-29

    A description is given for an improved calutron receiver having a face plate lying at an angle to the direction of the entering ion beams but having an opening, the plane of which is substantially perpendicular to that of the entering ion beams. By so positioning the opening in the receiver, the effective area through which the desired material may enter the receiver is increased, and at the same time the effective area through which containattng material may enter the receiver is reduced.

  19. Multichannel homodyne receiver

    DOEpatents

    Landt, Jeremy A.

    1982-01-01

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  20. Multichannel homodyne receiver

    DOEpatents

    Landt, J.A.

    1981-01-19

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  1. CALUTRON RECEIVER

    DOEpatents

    York, H.F.

    1959-07-01

    A receiver construction is presented for calutrons having two or more ion sources and an individual receiver unit for each source. Design requirements dictate that the face plate defining the receiver entrance slots be placed at an angle to the approaching beam, which means that ions striking the face plate are likely to be scattcred into the entrance slots of other receivers. According to the present invention, the face plate has a surface provided with parallel ridges so disposed that one side only of each ridge's exposed directly to the ion beam. The scattered ions are directed away from adjacent receivers by the ridges on the lace plate.

  2. Radio receivers

    NASA Astrophysics Data System (ADS)

    Bankov, V. N.; Barulin, L. G.; Zhodzishskii, M. I.; Malyshev, I. V.; Petrusinskii, V. V.

    The book is concerned with the design of microelectronic radio receivers and their components based on semiconductor and hybrid integrated circuits. Topics discussed include the hierarchical structure of radio receivers, the synthesis of structural schemes, the design of the principal functional units, and the design of radio receiver systems with digital signal processing. The discussion also covers the integrated circuits of multifunctional amplifiers, analog multipliers, charge-transfer devices, frequency filters, piezoelectronic devices, and microwave amplifiers, filters, and mixers.

  3. CALUTRON RECEIVERS

    DOEpatents

    Lofgren, E.J.

    1958-09-01

    Improvements are described in isotope separation devices of the calutron type and, in particular, deals with a novel caiutron receiver which passes the optimum portions of the ion beam to a collecting chamber. In broad aspects the receiver provides means for pass delimited pontion of the beam and an elongated collecting pocket disposed to receive ions passed by the beam delimiting means. The collecting pocket is transversely partitioned into a plurality of ion receiving compartments respectively defined by a corresponding plurality of separately removable liner elements.

  4. CALUTRON RECEIVERS

    DOEpatents

    Schmidt, F.H.; Stone, K.F.

    1958-09-01

    S>This patent relates to improvements in calutron devices and, more specifically, describes a receiver fer collecting the ion curreot after it is formed into a beam of non-homogeneous isotropic cross-section. The invention embodies a calutron receiver having an ion receiving pocket for separately collecting and retaining ions traveling in a selected portion of the ion beam and anelectrode for intercepting ions traveling in another selected pontion of the ion beam. The electrode is disposed so as to fix the limit of one side of the pontion of the ion beam admitted iato the ion receiving pocket.

  5. CALUTRON RECEIVERS

    DOEpatents

    MacKenzie, K.R.

    1958-09-16

    A novel calutron receiver is described for collecting the constituent material of two closely adjacent selected portions of an ion beam in separate compartments. The receiver is so conntructed that ion scatter and intermixing of the closely adjacent beam portions do nnt occur when the ions strike the receiver structure, and the beam is sharply separated Into the two compartments. In essence, these desirable results are achieved by inclining the adjoining wall of one compartment with respect to the approaching ions to reduce possible rebounding of ions from the compartment into the adjacent compartment.

  6. Data-fusion receiver

    DOEpatents

    Gabelmann, Jeffrey M.; Kattner, J. Stephen; Houston, Robert A.

    2006-12-19

    This invention is an ultra-low frequency electromagnetic telemetry receiver which fuses multiple input receive sources to synthesize a decodable message packet from a noise corrupted telemetry message string. Each block of telemetry data to be sent to the surface receiver from a borehole tool is digitally encoded into a data packet prior to transmission. The data packet is modulated onto the ULF EM carrier wave and transmitted from the borehole to the surface and then are simultaneously detected by multiple receive sensors disbursed within the rig environment. The receive sensors include, but are not limited to, electric field and magnetic field sensors. The spacing of the surface receive elements is such that noise generators are unequally coupled to each receive element due to proximity and/or noise generator type (i.e. electric or magnetic field generators). The receiver utilizes a suite of decision metrics to reconstruct the original, non noise-corrupted data packet from the observation matrix via the estimation of individual data frames. The receiver will continue this estimation process until: 1) the message validates, or 2) a preset "confidence threshold" is reached whereby frames within the observation matrix are no longer "trusted".

  7. Dehydrated citrus pulp alters feedlot performance of crossbred heifers during the receiving period and modulates serum metabolite concentrations pre- and post-endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    English x Continental heifers (n=180) were sourced in two loads (188.7 ± 18.0 kilograms and 225.2 ± 22.2 kilograms body weight, respectively) from commercial auction barns to study the effects of feeding dehydrated citrus pulp (DCP) on feedlot performance of newly received heifers. A completely ran...

  8. Galileo probe relay receiver

    NASA Technical Reports Server (NTRS)

    Prouty, D. A.; Von Der Embse, U. A.

    1982-01-01

    For the Jovian mission, the data link from the Galileo probe to the orbiter uses suppressed-carrier Manchester encoded BPSK modulation and is protected with R = 1/2, K = 7 convolutional coding. The receiver closes the link by acquiring, tracking, and demodulating the data. It has to operate in a highly stressed environment with severe frequency offset, frequency rate, wind gust, and antenna spin conditions. Salient features are described and breadboard test data presented.

  9. CALUTRON RECEIVER

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improvement in a calutron receiver for collecting the isotopes ts described. The electromagnetic separation of the isotopes produces a mass spectrum of closely adjacent beams of ions at the foci regions, and a dividing wall between the two pockets is arranged at an angle. Substantially all of the tons of the less abundant isotope enter one of the pockets and strike one side of the wall directly, while substantially none of the tons entering the other pocket strikes the wall directly.

  10. A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas.

    PubMed

    Lee, Seung Bae; Yin, Ming; Manns, Joseph R; Ghovanloo, Maysam

    2013-07-01

    A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403-490 MHz band with a wide bandwidth of 18 MHz. The frequency-shift keying (FSK) PWM demodulator in the FPGA is a time-to-digital converter with 304 ps resolution, which converts the analog pulse width information to 16-bit digital samples. Automated frequency tracking has been implemented in the Rx to lock onto the free-running voltage-controlled oscillator in the transmitter (Tx). Two antennas and two parallel RF paths are used to increase the wireless coverage area. BCI-2000 graphical user interface has been adopted and modified to acquire, visualize, and record the recovered neural signals in real time. The AO module picks three demultiplexed channels and converts them into analog signals for direct observation on an oscilloscope. One of these signals is further amplified to generate an audio output, offering users the ability to listen to ongoing neural activity. Bench-top testing of the Rx performance with a 32-channel WINeR-6 Tx showed that the input referred noise of the entire system at a Tx-Rx distance of 1.5 m was 4.58 μV rms with 8-bit resolution at 640 kSps. In an in vivo experiment, location-specific receptive fields of hippocampal place cells were mapped during a behavioral experiment in which a rat completed 40 laps in a large circular track. Results were compared against those acquired from the same animal and the same set of electrodes by a commercial hardwired recording system to validate the wirelessly recorded signals. PMID:23428612

  11. A Wideband Dual-Antenna Receiver for Wireless Recording From Animals Behaving in Large Arenas

    PubMed Central

    Lee, Seung Bae; Yin, Ming; Manns, Joseph R.

    2014-01-01

    A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403–490 MHz band with a wide bandwidth of 18 MHz. The frequency-shift keying (FSK) PWM demodulator in the FPGA is a time-to-digital converter with 304 ps resolution, which converts the analog pulse width information to 16-bit digital samples. Automated frequency tracking has been implemented in the Rx to lock onto the free-running voltage-controlled oscillator in the transmitter (Tx). Two antennas and two parallel RF paths are used to increase the wireless coverage area. BCI-2000 graphical user interface has been adopted and modified to acquire, visualize, and record the recovered neural signals in real time. The AO module picks three demultiplexed channels and converts them into analog signals for direct observation on an oscilloscope. One of these signals is further amplified to generate an audio output, offering users the ability to listen to ongoing neural activity. Bench-top testing of the Rx performance with a 32-channel WINeR-6 Tx showed that the input referred noise of the entire system at a Tx–Rx distance of 1.5 m was 4.58 μVrms with 8-bit resolution at 640 kSps. In an in vivo experiment, location-specific receptive fields of hippocampal place cells were mapped during a behavioral experiment in which a rat completed 40 laps in a large circular track. Results were compared against those acquired from the same animal and the same set of electrodes by a commercial hardwired recording system to validate the wirelessly recorded signals. PMID:23428612

  12. Simple nonlinearity evaluation and modeling of low-noise amplifiers with application to radio astronomy receivers.

    PubMed

    Casas, F J; Pascual, J P; de la Fuente, M L; Artal, E; Portilla, J

    2010-07-01

    This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA's nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experiment. PMID:20687750

  13. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    SciTech Connect

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Mackie, Thomas R.; Mehta, Minesh P.; Sugie, Chikao; Bentzen, Soren M.

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.

  14. Quality of Life and Survival Outcome for Patients With Nasopharyngeal Carcinoma Receiving Three-Dimensional Conformal Radiotherapy vs. Intensity-Modulated Radiotherapy-A Longitudinal Study

    SciTech Connect

    Fang, F.-M. Chien, C.-Y.; Tsai, W.-L.; Chen, H.-C.; Hsu, H.-C.; Lui, C.-C.; Huang, T.-L.

    2008-10-01

    Purpose: To investigate the changes of quality of life (QoL) and survival outcomes for patients with nasopharyngeal carcinoma (NPC) treated by three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT). Methods and Materials: Two hundred and three newly diagnosed NPC patients, who were curatively treated by 3D-CRT (n = 93) or IMRT (n = 110) between March 2002 and July 2004, were analyzed. The distributions of clinical stage according to American Joint Committee on Cancer 1997 were I: 15 (7.4%), II: 78 (38.4%), III: 74 (36.5%), and IV: 36 (17.7%). QoL was longitudinally assessed by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and the EORTC QLQ-H and N35 questionnaires at the five time points: before RT, during RT (36 Gy), and 3 months, 12 months, and 24 months after RT. Results: The 3-year locoregional control, metastasis-free survival, and overall survival rates were 84.8%, 76.7%, and 81.7% for the 3D-CRT group, respectively, compared with 84.2%, 82.6%, and 85.4% for the IMRT group (p value > 0.05). A general trend of maximal deterioration in most QoL scales was observed during RT, followed by a gradual recovery thereafter. There was no significant difference in most scales between the two groups at each time point. The exception was that patients treated by IMRT had a both statistically and clinically significant improvement in global QoL, fatigue, taste/smell, dry mouth, and feeling ill at the time point of 3 months after RT. Conclusions: The potential advantage of IMRT over 3D-CRT in treating NPC patients might occur in QoL outcome during the recovery phase of acute toxicity.

  15. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  16. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  17. Experimental evaluation of a misalignment tolerant FSO receiver

    NASA Astrophysics Data System (ADS)

    Pondelik, Stephen; LoPresti, Peter G.; Refai, Hazem

    2010-04-01

    In order to track, acquire and maintain a free-space optical link between mobile platforms experiencing misalignment due to movement and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. Recent investigations of alternative receiver configurations found that a lens array performed better than a collimator array as a light collector, and compared methods for summing light collected from different lenses in the array. This paper reports on experimental investigations of receiver performance for a coupling lens array at the front end and an aspheric-lens based summing approach at the back end. The receiver performance is evaluated using two different transmission systems, including a SONET bit-error-rate tester. Key evaluation parameters include the received power and achieved bit-error rate. Measurements are made under perfect alignment and under a variety of misalignment conditions. The investigation finds that size of the lenses used in the array, which dictates the number of collecting fibers used, impacts the effectiveness of the receiver and of the summing approach. Both a single lens and multiple lens solution are evaluated for implementing the summing function. Optimization of the summing optics is required for the receiver to be effective for high data rate communication.

  18. Performance of OOK and low-order PPM modulations in optical communications when using APD-based receivers. [Off-On Keying and Pulse Position Modulation using Avalanche PhotoDiodes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1984-01-01

    The paper computes direct detection laser communications receiver performance when using avalanche photodiode (APD) detectors. The performances are compared in terms of bit error probability vs average signal required per bit when the transmitter uses either on-off keying (OOK) or low-order PPM formats. It is shown that QPPM requires 3 dB less signal than OOK, while BPPM requires the same or slightly more than OOK for the same performance. Optimum APD gain values range from 200 to 400. When using QPPM, k(eff) = 0.006, and optimum gain, 60 signal counts/bit are required at 500 Mbits/s for a 0.000001 bit error probability. It is concluded that QPPM may be an attractive signaling format for some fiber or free space laser communication applications.

  19. RFID receiver apparatus and method

    DOEpatents

    Scott, Jeffrey Wayne

    2006-12-26

    An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.

  20. Development of an Air Brayton solar receiver

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various receiver configurations and operating conditions were examined. The interface requirements between the receiver/concentrator/power module were addressed. Production cost estimates were obtained to determine the cost of the receiver during the 1980 timeframe. A conceptual design of an air Brayton solar receiver is presented based on the results. The following design goals were established: (1)peak thermal input power - 85 KWt; (2)receiver outlet air temperature - 1500 F; (3)receiver inlet air temperature - 1050 F; (4)design mass flow rate - 0.533 lb/sec; and (5)design receiver inlet pressure - 36.75 psia.

  1. Monolithic amorphous silicon modules on continuous polymer substrates

    NASA Astrophysics Data System (ADS)

    Braymen, S.; Grimmer, D.; Jeffrey, F.; Martens, S.; Noack, M.; Scandrett, B.; Thomas, M.

    1999-03-01

    Iowa Thin Film Technologies is engaged in a 3 year contract under the PVMaT program to reduce manufacturing costs by 63%. The first two years of the project greatly improved throughput of the front end process steps which include the vacuum deposition steps and the monolithic integration process. During the third year, roll based processing is being extended through the back end of the line. This part of the process which includes busbar placement, lamination, and cutting had previously required hand work on discrete modules. An overall manufacturing cost reduction of 53% has been achieved to date.

  2. Visualization for Hyper-Heuristics: Back-End Processing

    SciTech Connect

    Simon, Luke

    2015-03-01

    Modern society is faced with increasingly complex problems, many of which can be formulated as generate-and-test optimization problems. Yet, general-purpose optimization algorithms may sometimes require too much computational time. In these instances, hyperheuristics may be used. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario, finding the solution significantly faster than its predecessor. However, it may be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics and an easy-to-understand scientific visualization for the produced solutions. To support the development of this GUI, my portion of the research involved developing algorithms that would allow for parsing of the data produced by the hyper-heuristics. This data would then be sent to the front-end, where it would be displayed to the end user.

  3. 40 CFR 63.493 - Back-end process provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... latex products, liquid rubber products, or products produced in a gas-phased reaction process, are not subject to the provisions of §§ 63.494 through 63.500. If latex or liquid rubber products are produced...

  4. 40 CFR 63.493 - Back-end process provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... latex products, liquid rubber products, or products produced in a gas-phased reaction process, are not subject to the provisions of §§ 63.494 through 63.500. If latex or liquid rubber products are produced...

  5. 40 CFR 63.493 - Back-end process provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... latex products, liquid rubber products, or products produced in a gas-phased reaction process, are not subject to the provisions of §§ 63.494 through 63.500. If latex or liquid rubber products are produced...

  6. 40 CFR 63.493 - Back-end process provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... latex products, liquid rubber products, or products produced in a gas-phased reaction process are not subject to the provisions of §§ 63.494 through 63.500. If latex or liquid rubber products are produced in... produce styrene butadiene rubber using an emulsion process. Table 8 to this subpart contains a summary...

  7. 40 CFR 63.493 - Back-end process provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... latex products, liquid rubber products, or products produced in a gas-phased reaction process, are not subject to the provisions of §§ 63.494 through 63.500. If latex or liquid rubber products are produced...

  8. Back-end Science Model Integration for Ecological Risk Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) relies on a number of ecological risk assessment models that have been developed over 30-plus years of regulating pesticide exposure and risks under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Endangered Spe...

  9. Back-end Science Model Integration for Ecological Risk Assessment.

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) relies on a number of ecological risk assessment models that have been developed over 30-plus years of regulating pesticide exposure and risks under Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Endangered Spe...

  10. An IPE back-end study for Turkey Point plant

    SciTech Connect

    Guey, C.; Kabadi, J. )

    1991-01-01

    This paper describes a study of Turkey Point plant's large dry containment as part of a response to the US Nuclear Regulatory Commission's individual plant examination Generic Letter 88-20. Two unique features of Turkey Point containment are discussed. This study includes an evaluation of the containment response to the physical processes occurring during an accident and probabilistic analysis of the spectrum of severe-accident progressions.

  11. Future GOES-R global ground receivers

    NASA Astrophysics Data System (ADS)

    Dafesh, P. A.; Grayver, E.

    2006-08-01

    The Aerospace Corporation has developed an end-to-end testbed to demonstrate a wide range of modern modulation and coding alternatives for future broadcast by the GOES-R Global Rebroadcast (GRB) system. In particular, this paper describes the development of a compact, low cost, flexible GRB digital receiver that was designed, implemented, fabricated, and tested as part of the development. This receiver demonstrates a 10-fold increase in data rate compared to the rate achievable by the current GOES generation, without a major impact on either cost or size. The digital receiver is integrated on a single PCI card with an FPGA device, and analog-to-digital converters. It supports a wide range of modulations (including 8-PSK and 16-QAM) and turbo coding. With appropriate FPGA firmware and software changes, it can also be configured to receive the current (legacy) GOES signals. The receiver has been validated by sending large image files over a high-fidelity satellite channel emulator, including a space-qualified power amplifier and a white noise source. The receiver is a key component of a future GOES-R weather receiver system (also called user terminal) that includes the antenna, low-noise amplifier, downconverter, filters, digital receiver, and receiver system software. This work describes this receiver proof of concept and its application to providing a very credible estimate of the impact of using modern modulation and coding techniques in the future GOES-R system.

  12. Solar dynamic heat receiver technology

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  13. PPM Receiver Implemented in Software

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A computer program has been written as a tool for developing optical pulse-position- modulation (PPM) receivers in which photodetector outputs are fed to analog-to-digital converters (ADCs) and all subsequent signal processing is performed digitally. The program can be used, for example, to simulate an all-digital version of the PPM receiver described in Parallel Processing of Broad-Band PPM Signals (NPO-40711), which appears elsewhere in this issue of NASA Tech Briefs. The program can also be translated into a design for digital PPM receiver hardware. The most notable innovation embodied in the software and the underlying PPM-reception concept is a digital processing subsystem that performs synchronization of PPM time slots, even though the digital processing is, itself, asynchronous in the sense that no attempt is made to synchronize it with the incoming optical signal a priori and there is no feedback to analog signal processing subsystems or ADCs. Functions performed by the software receiver include time-slot synchronization, symbol synchronization, coding preprocessing, and diagnostic functions. The program is written in the MATLAB and Simulink software system. The software receiver is highly parameterized and, hence, programmable: for example, slot- and symbol-synchronization filters have programmable bandwidths.

  14. Solar energy modulator

    NASA Technical Reports Server (NTRS)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  15. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect

    Mattos, L.

    2012-03-01

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  16. Solar heat receiver

    DOEpatents

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  17. Integrated Microphotonic Receiver for Ka-Band

    NASA Technical Reports Server (NTRS)

    Levi, A. F. J.

    2005-01-01

    This report consists of four main sections. Part I: LiNbO3 microdisk resonant optical modulator. Brief review of microdisk optical resonator and RF ring resonator. Microwave and photonic design challenges for achieving simultaneous RF-optical resonance are addressed followed by our solutions. Part II: Experimental demonstration of LiNbO3 microdisk modulator performance in wired and wireless RF-optical links. Part III: Microphotonic RF receiver architecture that exploits the nonlinear modulation in the LiNbO3 microdisk modulator to achieve direct photonic down-conversion from RF carrier without using any high-speed electronic elements. Part IV: Ultimate sensitivity of the microdisk photonic receiver and the future road map toward a practical device.

  18. Digital Signal Processing Based Biotelemetry Receivers

    NASA Technical Reports Server (NTRS)

    Singh, Avtar; Hines, John; Somps, Chris

    1997-01-01

    This is an attempt to develop a biotelemetry receiver using digital signal processing technology and techniques. The receiver developed in this work is based on recovering signals that have been encoded using either Pulse Position Modulation (PPM) or Pulse Code Modulation (PCM) technique. A prototype has been developed using state-of-the-art digital signal processing technology. A Printed Circuit Board (PCB) is being developed based on the technique and technology described here. This board is intended to be used in the UCSF Fetal Monitoring system developed at NASA. The board is capable of handling a variety of PPM and PCM signals encoding signals such as ECG, temperature, and pressure. A signal processing program has also been developed to analyze the received ECG signal to determine heart rate. This system provides a base for using digital signal processing in biotelemetry receivers and other similar applications.

  19. Optical superheterodyne receiver.

    NASA Technical Reports Server (NTRS)

    Duval, K.; Lang, K.; Lucy, R. F.; Peters, C. J.

    1967-01-01

    Optical communication experiments to compare coherent and noncoherent optical detection fading characteristics in different weather conditions, using laser transmitter and optical superheterodyne receiver

  20. Hybrid receiver study

    NASA Technical Reports Server (NTRS)

    Stone, M. S.; Mcadam, P. L.; Saunders, O. W.

    1977-01-01

    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions.

  1. High dynamic global positioning system receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J. (Inventor)

    1986-01-01

    A Global Positioning System (GPS) receiver having a number of channels, receives an aggregate of pseudorange code time division modulated signals. The aggregate is converted to baseband and then to digital form for separate processing in the separate channels. A fast fourier transform processor computes the signal energy as a function of Doppler frequency for each correlation lag, and a range and frequency estimator computes estimates of pseudorange, and frequency. Raw estimates from all channels are used to estimate receiver position, velocity, clock offset and clock rate offset in a conventional navigation and control unit, and based on the unit that computes smoothed estimates for the next measurement interval.

  2. Right to Receive.

    ERIC Educational Resources Information Center

    Oborn, Richard

    The concept of a United States citizen's right to receive information is acquiring increased judicial recognition. This report traces the evolution of that right from its philosophical basis in the United States Consitution, through its interpretation by the Supreme Court, up to the current concern that the public receive certain economic…

  3. CALUTRON RECEIVER STRUCTURE

    DOEpatents

    Roush, J.L.

    1959-09-01

    A receiver is described for collecting isotopes in a calutron The receiver has several compartments, formed by a sertes of parallel metal plates and an open front. Each plate has flanges which space it from the other plates and a flexible extension pressing against a common supporting red to maintain the plate in assembled relation when all but the last rod is removed. The plates may be removed individualy from the front of the receiver, cleaned ard replaced without disturbing the alignment of the other plates.

  4. Polarization Independent Electro-Optic Modulator

    NASA Technical Reports Server (NTRS)

    Yao, Xiao-Tian Steve (Inventor)

    1997-01-01

    A polarization insensitive electro-optic modulator is constructed by providing a polarization beamsplitter to separate an incoming light beam into two orthogonally plane polarized beams. Each of the polarized beams passes through a separate electro-optic modulator where each beam is modulated by the same data signal. After modulation the beams are combined to yield a modulated beam having modulated components that are orthogonally polarized. Not only is this device insensitive to changes in polarization of the input beam, the final modulated beam can be detected by optical receivers without regard to polarization alignment of the modulated beam and the receiver.

  5. Ultrasonic pulser-receiver

    SciTech Connect

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  6. Ceramic Solar Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C., Jr.

    1984-01-01

    Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.

  7. Solar energy receiver

    DOEpatents

    Schwartz, Jacob

    1978-01-01

    An improved long-life design for solar energy receivers provides for greatly reduced thermally induced stress and permits the utilization of less expensive heat exchanger materials while maintaining receiver efficiencies in excess of 85% without undue expenditure of energy to circulate the working fluid. In one embodiment, the flow index for the receiver is first set as close as practical to a value such that the Graetz number yields the optimal heat transfer coefficient per unit of pumping energy, in this case, 6. The convective index for the receiver is then set as closely as practical to two times the flow index so as to obtain optimal efficiency per unit mass of material.

  8. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  9. Central solar energy receiver

    DOEpatents

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  10. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    SciTech Connect

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M.; Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty; Barve, Indrajit V.; and others

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  11. Submillimeter wave heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)

    2011-01-01

    In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.

  12. Olympus beacon receiver

    NASA Technical Reports Server (NTRS)

    Ostergaard, Jens

    1988-01-01

    A medium-size Beacon Receiving System for reception and processing of the B1 (20 GHz) and B2 (30 GHz) beacons from Olympus has been developed. Integration of B1 and B2 receiving equipment into one system using one antenna and a common computer for control and data processing provides the advantages of a compact configuration and synchronization of the two receiver chains. Range for co-polar signal attenuation meaurement is about 30 dB for both beacons, increasing to 40 dB for B2 if the receivers are synchronized to B1. The accuracy is better than 0.5 dB. Cross-polarization discriminations of the order of 10 to 30 dB may be determined with an accuracy of 1 to 2 dB. A number of radiometers for complementary measurements of atmospheric attenuation of 13 to 30 GHz has also been constructed. A small multi-frequency system for operation around 22 GHz and 31 GHz is presently under development.

  13. Simplified OMEGA receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1974-01-01

    The details are presented of methods for providing OMEGA navigational information including the receiver problem at the antenna and informational display and housekeeping systems based on some 4 bit data processing concepts. Topics discussed include the problem of limiters, zero crossing detectors, signal envelopes, internal timing circuits, phase counters, lane position displays, signal integrators, and software mapping problems.

  14. Avalanche Photodiode Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  15. A digital beacon receiver

    NASA Technical Reports Server (NTRS)

    Ransome, Peter D.

    1988-01-01

    A digital satellite beacon receiver is described which provides measurement information down to a carrier/noise density ratio approximately 15 dB below that required by a conventional (phase locked loop) design. When the beacon signal fades, accuracy degrades gracefully, and is restored immediately (without hysteresis) on signal recovery, even if the signal has faded into the noise. Benefits of the digital processing approach used include the minimization of operator adjustments, stability of the phase measuring circuits with time, repeatability between units, and compatibility with equipment not specifically designed for propagation measuring. The receiver has been developed for the European Olympus satellite which has continuous wave (CW) beacons at 12.5 and 29.7 GHz, and a switched polarization beacon at 19.8 GHz approximately, but the system can be reconfigured for CW and polarization-switched beacons at other frequencies.

  16. Optical superheterodyne receiver uses laser for local oscillator

    NASA Technical Reports Server (NTRS)

    Lucy, R. F.

    1966-01-01

    Optical superheterodyne receiver uses a laser coupled to a frequency translator to supply both the incident signal and local oscillator signal and thus permit reception of amplitude modulated video bandwidth signals through the atmosphere. This receiver is useful in scientific propagation experiments, tracking experiments, and communication experiments.

  17. LANL receiver system development

    SciTech Connect

    Laubscher, B.; Cooke, B.; Cafferty, M.; Olivas, N.

    1997-08-01

    The CALIOPE receiver system development at LANL is the story of two technologies. The first of these technologies consists of off-the-shelf mercury-cadmium-telluride (MCT) detectors and amplifiers. The vendor for this system is Kolmar Technologies. This system was fielded in the Tan Trailer I (TTI) in 1995 and will be referred to in this paper as GEN I. The second system consists of a MCT detector procured from Santa Barbara Research Center (SBRC) and an amplifier designed and built by LANL. This system was fielded in the Tan Trailer II (TTII) system at the NTS tests in 1996 and will be referred to as GEN II. The LANL CALIOPE experimental plan for 1996 was to improve the lidar system by progressing to a higher rep rate laser to perform many shots in a much shorter period of time. In keeping with this plan, the receiver team set a goal of developing a detector system that was background limited for the projected 100 nanosecond (ns) laser pulse. A set of detailed simulations of the DIAL lidar experiment was performed. From these runs, parameters such as optimal detector size, field of view of the receiver system, nominal laser return power, etc. were extracted. With this information, detector physics and amplifier electronic models were developed to obtain the required specifications for each of these components. These derived specs indicated that a substantial improvement over commercially available, off-the-shelf, amplifier and detector technologies would be needed to obtain the goals. To determine if the original GEN I detector was usable, the authors performed tests on a 100 micron square detector at cryogenic temperatures. The results of this test and others convinced them that an advanced detector was required. Eventually, a suitable detector was identified and a number of these single element detectors were procured from SBRC. These single element detectors were witness for the detector arrays built for another DOE project.

  18. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  19. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  20. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  1. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  2. Emergency Locating Transmitter and Receiver System

    NASA Technical Reports Server (NTRS)

    Wren, Paul E. (Inventor)

    1988-01-01

    A receiver and transmitter are provided for a distress incident locating telecommunications system. The receiver is a superheterodyne AM receiver which applies the received distress transmissions to a normally unlocked phaselock loop which locks onto the unmodulated carrier signal portion of the distress transmission. The duration of the phaselock loop being locked, and unlocked immediately after being locked, are measured and compared to predetermined values to find a match. Each of the predetermined values corresponds to an item of information, and if a match is found, the receiver indicates it. The receiver is also capable of extracting audio information present in the distress transmission. The transmitter generates three signals which can be applied to a transmitting antenna. These signals are a radio frequency carrier signal, and a carrier signal modulated by a distress waveform or by an audio signal. The signal which is ultimately applied to the transmitting antenna will have four parameters where each set of parameters corresponds to a different item of information. The parameters are which one or more of the three signals will be applied to the antenna, the sequence of application of the signals to the antenna, the duration of each of the signals, and the frequency of the audio signal.

  3. Weather Data Receiver

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Northern Video Graphics, Inc. developed a low-cost satellite receiving system for users such as independent meteorologists, agribusiness firms, small airports or flying clubs, marine vessels and small TV stations. Called Video Fax, it is designed for use with certain satellites; the GOES (Geostationary Operational Environmental Satellite) spacecraft operated by the National Oceanic and Atmospheric Administration, the European Space Agency's Meteosat and Japan's Geostationary Meteorological Satellite. By dictum of the World Meteorological Organization, signals from satellites are available to anyone without cost so the Video Fax user can acquire signals directly from the satellite and cut out the middle man, enabling savings. Unit sells for about one-fifth the cost of the equipment used by TV stations. It consists of a two-meter antenna; a receiver; a microprocessor-controlled display computer; and a video monitor. Computer stores data from the satellites and converts it to an image which is displayed on the monitor. Weather map can be preserved as signal data on tape, or it can be stored in a video cassette as a permanent image.

  4. DOT Transmit Module

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Sahasrabudhe, Adit; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2013-01-01

    The Deep Space Optical Terminal (DOT) transmit module demonstrates the DOT downlink signaling in a flight electronics assembly that can be qualified for deep space. The assembly has the capability to generate an electronic pulse-position modulation (PPM) waveform suitable for driving a laser assembly to produce the optical downlink signal. The downlink data enters the assembly through a serializer/ deserializer (SERDES) interface, and is encoded using a serially concatenated PPM (SCPPM) forward error correction code. The encoded data is modulated using PPM with an inter-symbol guard time to aid in receiver synchronization. Monitor and control of the assembly is via a low-voltage differential signal (LVDS) interface

  5. Note: Optical receiver system for 152-channel magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-01

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  6. Note: Optical receiver system for 152-channel magnetoencephalography

    SciTech Connect

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2014-11-15

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  7. Digital Receiver Phase Meter

    NASA Technical Reports Server (NTRS)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  8. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  9. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  10. Advanced space solar dynamic receivers

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Coombs, Murray G.; Lacy, Dovie E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability (to enable power production during the substantial eclipse period which accompanies typical orbits) and are lighter and smaller than state-of-the-art systems, such as the Brayton solar receiver being designed and developed by AiResearch for the NASA Space Station. Two receiver concepts have been developed in detail: a packed bed receiver and a heat pipe receiver. The packed bed receiver is appropriate for a Brayton engine; the heat pipe receiver is applicable for either a Brayton or Stirling engine. The thermal storage for both concepts is provided by the melting and freezing of a salt. Both receiver concepts offer substantial improvements in size and weight compared to baseline receivers.

  11. Waste receiving and processing facility module 1, detailed design report

    SciTech Connect

    Not Available

    1993-10-01

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

  12. Improved thermal storage module for solar dynamic receivers

    SciTech Connect

    Beatty, R.L.; Lauf, R.J.

    1990-01-01

    This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

  13. Anchorage Receives Record Snowfall

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The forecast called for flurries, but the snow accumulated on the ground in Anchorage, Alaska, at the rate of 2 inches per hour (5 cm per hour) for much of Saturday, March 16, 2002. By the time the winter storm passed on Sunday afternoon, Anchorage had received 28.6 inches (72.6 cm) of snow, surpassing by far the previous record of 15.6 inches (39.6 cm) set on December 29, 1955. Flights were canceled and schools were closed as a result of the storm. This true-color image of Alaska was acquired by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 18. It appears another large, low-pressure system is heading toward the Anchorage region, which could bring substantially more snowfall. The low-pressure system can be identified by the characteristic spiral pattern of clouds located off Alaska's southwestern coast in this scene.

  14. ADMX Receiver and Analysis

    NASA Astrophysics Data System (ADS)

    Malagon, Ana; ADMX Collaboration

    2016-03-01

    ADMX looks for the excess radiation deposited into a cavity from the conversion of a dark matter axion into a microwave photon. The sensitivity of the experiment increases by reducing the background thermal noise and minimizing the electronic noise of the readout system. The axion masses that the experiment can detect are determined by the resonant frequency of the cavity mode of interest, which is tuned using a two rod configuration. One can also increase the search rate by measuring the output from two cavity modes at once, which requires two separate readout schemes. I will discuss the ADMX dual-channel receiver which has been upgraded to have near quantum-limited sensitivity on both channels, and describe how the correct modes are verified, using simulations, in the presence of dense electromagnetic structure. I conclude by describing upgrades to the ADMX analysis which allow for real-time exclusion limits. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.

  15. Soleus H-reflex modulation during receive stance in badminton players in the receive stance

    PubMed Central

    Masu, Yujiro; Muramatsu, Ken

    2015-01-01

    [Purpose] This study aimed to clarify the characteristics of motor neuron excitability by examining the soleus H-reflex in the ready position adopted immediately before making a return during badminton games. [Subjects] Sixteen individuals with (badminton group) and 16 without (control group) experience of playing badminton were studied. [Methods] Each subject was instructed to take up various stances for returning a shuttlecock to measure the H- and M-waves in the soleus. [Results] The H-wave was significantly decreased when gripping a racket was held in the dominant hand than compared to just standing in the badminton group. In contrast, in the control group, no significant differences were observed between when standing and the other stances. [Conclusion] Based on these results, the excitability of spinal motor neurons may have been reduced (H-wave suppression) by badminton training to increase the instantaneous force (power training). PMID:25642054

  16. Soleus H-reflex modulation during receive stance in badminton players in the receive stance.

    PubMed

    Masu, Yujiro; Muramatsu, Ken

    2015-01-01

    [Purpose] This study aimed to clarify the characteristics of motor neuron excitability by examining the soleus H-reflex in the ready position adopted immediately before making a return during badminton games. [Subjects] Sixteen individuals with (badminton group) and 16 without (control group) experience of playing badminton were studied. [Methods] Each subject was instructed to take up various stances for returning a shuttlecock to measure the H- and M-waves in the soleus. [Results] The H-wave was significantly decreased when gripping a racket was held in the dominant hand than compared to just standing in the badminton group. In contrast, in the control group, no significant differences were observed between when standing and the other stances. [Conclusion] Based on these results, the excitability of spinal motor neurons may have been reduced (H-wave suppression) by badminton training to increase the instantaneous force (power training). PMID:25642054

  17. Front-end technologies for robust ASR in reverberant environments—spectral enhancement-based dereverberation and auditory modulation filterbank features

    NASA Astrophysics Data System (ADS)

    Xiong, Feifei; Meyer, Bernd T.; Moritz, Niko; Rehr, Robert; Anemüller, Jörn; Gerkmann, Timo; Doclo, Simon; Goetze, Stefan

    2015-12-01

    This paper presents extended techniques aiming at the improvement of automatic speech recognition (ASR) in single-channel scenarios in the context of the REVERB (REverberant Voice Enhancement and Recognition Benchmark) challenge. The focus is laid on the development and analysis of ASR front-end technologies covering speech enhancement and feature extraction. Speech enhancement is performed using a joint noise reduction and dereverberation system in the spectral domain based on estimates of the noise and late reverberation power spectral densities (PSDs). To obtain reliable estimates of the PSDs—even in acoustic conditions with positive direct-to-reverberation energy ratios (DRRs)—we adopt the statistical model of the room impulse response explicitly incorporating DRRs, as well in combination with a novel proposed joint estimator for the reverberation time T 60 and the DRR. The feature extraction approach is inspired by processing strategies of the auditory system, where an amplitude modulation filterbank is applied to extract the temporal modulation information. These techniques were shown to improve the REVERB baseline in our previous work. Here, we investigate if similar improvements are obtained when using a state-of-the-art ASR framework, and to what extent the results depend on the specific architecture of the back-end. Apart from conventional Gaussian mixture model (GMM)-hidden Markov model (HMM) back-ends, we consider subspace GMM (SGMM)-HMMs as well as deep neural networks in a hybrid system. The speech enhancement algorithm is found to be helpful in almost all conditions, with the exception of deep learning systems in matched training-test conditions. The auditory feature type improves the baseline for all system architectures. The relative word error rate reduction achieved by combining our front-end techniques with current back-ends is 52.7% on average with the REVERB evaluation test set compared to our original REVERB result.

  18. New Packing Structure of Concentration Solar Receiver

    SciTech Connect

    Tsai, Shang-Yu; Lee, Yueh-Mu; Shih, Zun-Hao; Hong, Hwen-Fen; Shin, Hwa-Yuh; Kuo, Cherng-Tsong

    2010-10-14

    This paper presents a solution to the temperature issue in High Concentration Photovoltaic (HCPV) module device by using different thermal conductive material and packing structure. In general, the open-circuited voltage of a device reduces with the increase of temperature and therefore degrades its efficiency. The thermal conductive material we use in this paper, silicon, has a high thermal conductive coefficient (149 W/m{center_dot}K) and steady semiconductor properties which are suitable for the application of solar receiver in HCPV module. Solar cell was soldered on a metal-plated Si substrate with a thicker SiO{sub 2} film which acts as an insulating layer. Then it was mounted on an Al-based plate to obtain a better heat dissipating result.

  19. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  20. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  1. Receiving signals of any polarization

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.; Seidel, B. L.; Stelzried, C. H.

    1981-01-01

    Two-channel detection accomodates linear, circular, and elliptical polarization in one receiving unit. Receiver employs orthomode transducer which breaks any type signal into one left and one right circular component. These are processed in separate receiver channels with equal time-delay, and then recombined for data extraction. System eliminates losses due to polarization mismatch.

  2. Development of a digital receiver for range imaging atmospheric radar

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masayuki K.; Fujita, Toshiyuki; Abdul Aziz, Noor Hafizah Binti; Gan, Tong; Hashiguchi, Hiroyuki; Yu, Tian-You; Yamamoto, Mamoru

    2014-10-01

    In this paper, we describe a new digital receiver developed for a 1.3-GHz range imaging atmospheric radar. The digital receiver comprises a general-purpose software-defined radio receiver referred to as the Universal Software Radio Peripheral 2 (USRP2) and a commercial personal computer (PC). The receiver is designed to collect received signals at an intermediate frequency (IF) of 130 MHz with a sample rate of 10 MS s-1. The USRP2 digitizes IF received signals, produces IQ time series, and then transfers the IQ time series to the PC through Gigabit Ethernet. The PC receives the IQ time series, performs range sampling, carries out filtering in the range direction, decodes the phase-modulated received signals, integrates the received signals in time, and finally saves the processed data to the hard disk drive (HDD). Because only sequential data transfer from the USRP2 to the PC is available, the range sampling is triggered by transmitted pulses leaked to the receiver. For range imaging, the digital receiver performs real-time signal processing for each of the time series collected at different frequencies. Further, the receiver is able to decode phase-modulated oversampled signals. Because the program code for real-time signal processing is written in a popular programming language (C++) and widely used libraries, the signal processing is easy to implement, reconfigure, and reuse. From radar experiments using a 1-μs subpulse width and 1-MHz frequency span (i.e., 2-MHz frequency bandwidth), we demonstrate that range imaging in combination with oversampling, which was implemented for the first time by the digital receiver, is able to resolve the fine-scale structure of turbulence with a vertical scale as small as 100 m or finer.

  3. Reflux solar receiver design considerations

    NASA Astrophysics Data System (ADS)

    Diver, R. B.

    Reflux heat-pipe and pool-boiler receivers are being developed to improve upon the performance and life of directly-illuminated tube receiver technology used in previous successful demonstrations of dish-Stirling systems. The design of a reflux receiver involves engineering tradeoffs. In this paper, on-sun performance measurements of the Sandia pool-boiler receiver are compared with results from the reflux receiver thermal analysis model, AEETES. Flux and performance implications of various design options are analyzed and discussed.

  4. Advanced solar thermal receiver technology

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  5. Fiber alignment analysis of a receiver with integrated MEMS VOA

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Hickey, Ryan; Irwin, Rob; Li, Ming; Wang, Zhengxuan

    2006-09-01

    The structure of the optical path of a novel VOA integrated receiver is presented. The method to enhance the attenuation performance of the Receiver is described in detail. The standard coplanar package module exhibits a fluent attenuation curve and can achieve more than -20dB attenuation at ~ 6.5V drive voltage. S21, S22 performance and specifications of the module are explained in the paper. All these features provide customers considerable benefits, including high quality, low power consumption and cost, board real estate flexibility and ease of use.

  6. Bragg-cell receiver study

    NASA Technical Reports Server (NTRS)

    Wilson, Lonnie A.

    1987-01-01

    Bragg-cell receivers are employed in specialized Electronic Warfare (EW) applications for the measurement of frequency. Bragg-cell receiver characteristics are fully characterized for simple RF emitter signals. This receiver is early in its development cycle when compared to the IFM receiver. Functional mathematical models are derived and presented in this report for the Bragg-cell receiver. Theoretical analysis is presented and digital computer signal processing results are presented for the Bragg-cell receiver. Probability density function analysis are performed for output frequency. Probability density function distributions are observed to depart from assumed distributions for wideband and complex RF signals. This analysis is significant for high resolution and fine grain EW Bragg-cell receiver systems.

  7. RFI receiver. [deep space network

    NASA Technical Reports Server (NTRS)

    Lay, R.

    1980-01-01

    An S-band radio frequency interference (RFI) receiver to analyze and identify sources of RFI problems in the Deep Space Network DSN tracking stations is described. The RFI receiver is a constant gain, double conversion, open loop receiver with dual sine/cosine channel outputs, providing a total of 20 MHZ monitoring capability. This receiver is computer controlled using a MODCOMP II miniprocessor. The RFI receiver has been designed to operate at a 150 Kelvin system noise temperature accomplished by cascading two low noise field effect transistor (FET) amplifiers for the receiver front-end. The first stage low noise FET amplifier is mounted at the feed horn to minimize any cable losses to achieve a lower system noise temperature. The receiver is tunable over the frequency range of 2150 to 2450 MHz in both sine/cosine output channels with a resolution of 100 kHz.

  8. Performance testing of lidar receivers

    NASA Technical Reports Server (NTRS)

    Shams, M. Y.

    1986-01-01

    In addition to the considerations about the different types of noise sources, dynamic range, and linearity of a lidar receiver, one requires information about the pulse shape retaining capabilities of the receiver. For this purpose, relatively precise information about the height resolution as well as the recovery time of the receiver, due both to large transients and to fast changes in the received signal, is required. As more and more analog receivers using fast analog to digital converters and transient recorders will be used in the future lidar systems, methods to test these devices are essential. The method proposed for this purpose is shown. Tests were carried out using LCW-10, LT-20, and FTVR-2 as optical parts of the optical pulse generator circuits. A commercial optical receiver, LNOR, and a transient recorder, VK 220-4, were parts of the receiver system.

  9. Advanced Stirling receiver development program, phase 1

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1990-01-01

    Critical technology experiments were designed and developed to evaluate the Stirling cavity heat pipe receiver for a space solar power system. Theoretical criteria were applied to the design of a module for containing energy storage phase change material while avoiding thermal ratcheting. Zero-g drop tower tests, without phase change, were conducted to affirm that the bubble location required to avoid ratcheting could be achieved without the use of container materials that are wetted by the phase change material. A full scale module was fabricated, but not tested. A fabrication method was successfully developed for the sodium evaporator dome, with a sintered screen wick, to be used as the focal point for the receiver. Crushing of the screen during hydroforming was substantially reduced over the results of other researchers by using wax impregnation. Superheating of the sodium in the wick under average flux conditions is expected to be under 10K. A 2000K furnace which will simulate solar flux conditions for testing the evaporator dome was successfully built and tested.

  10. Stirling Module Development Overview

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1984-01-01

    The solar parabolic dish Stirling engine electrically generating module consists of a solar collector coupled to a Stirling engine powered electrical generator. The module is designed to convert solar power to electrical power in parallel with numerous identical units coupled to an electrical utility power grid. The power conversion assembly generates up to 25 kilowatts at 480 volts potential/3 phase/alternating current. Piston rings and seals with gas leakage have not occurred, however, operator failures resulted in two burnt out receivers, while material fatigue resulted in a broken piston rod between the piston rod seal and cap seal.

  11. Hole-thru-laminate mounting supports for photovoltaic modules

    SciTech Connect

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  12. Immigration: perspectives from receiving countries.

    PubMed

    Weiner, M

    1990-01-01

    The author examines the issue of international migration from the standpoint of receiving countries. He attempts "to understand how and why migrant-receiving countries respond as they do, and to suggest some of the new issues in international migration that arise in a world in which the supply of would-be migrants and refugees is now greater than receiving countries are willing to accept." PMID:12283227

  13. Processing module operating methods, processing modules, and communications systems

    DOEpatents

    McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy

    2014-09-09

    A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.

  14. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  15. Chemical release module facility

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.

    1980-01-01

    The chemical release module provides the capability to conduct: (1) thermite based metal vapor releases; (2) pressurized gas releases; (3) dispersed liquid releases; (4) shaped charge releases from ejected submodules; and (5) diagnostic measurements with pi supplied instruments. It also provides a basic R-F and electrical system for: (1) receiving and executing commands; (2) telemetering housekeeping data; (3) tracking; (4) monitoring housekeeping and control units; and (5) ultrasafe disarming and control monitoring.

  16. A Simple Radio Receiver Aids Understanding of Wireless Communication

    ERIC Educational Resources Information Center

    Straulino, S.; Orlando, A.

    2012-01-01

    The basic theory of radio broadcasting is discussed from an experimental point of view. First, concepts like wave modulation and tuning are explained with the use of instruments in the physics laboratory. Then, a very basic radio receiver is described and assembled, whose most important feature, like in the old "crystal radios", is the absence of…

  17. UWB delay and multiply receiver

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  18. QPPM receiver for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.

    1994-01-01

    A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.

  19. Multilevel polarization shift keying: Optimum receiver structure and performance evaluation

    SciTech Connect

    Benedetto, S.; Poggiolini, P.T.

    1994-02-01

    Multilevel digital coherent optical modulation schemes based on the state of polarization of a fully polarized lightwave are proposed and analyzed. Based on the complete statistical characterization of the Stokes parameters, extracted though appropriate signal processing in the presence of shot and additive gaussian noise, the optimum maximum likelihood receiver operating symbol by symbol is derived. The exact performance in terms of the average symbol error probability is found. Optimum constellations for the case of equipower 4, 8, 16 and 32 signals are found on the basis of the minimization of the error probability for a given average power. Their performance turns out to be promising as compared to other standard modulation techniques. The spectral analysis of polarization modulated signals is presented. A new receiver structure, which solves the problem of the excess penalties incurred in the presence of channel dichroism, is proposed and analyzed. 22 refs.

  20. Customizable Digital Receivers for Radar

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  1. Performance measurement results for a 220 Mbps QPPM optical communication receiver with an EG/G Slik APD

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The performance of a 220 Mbps quaternary pulse position modulation (QPPM) optical communication receiver with a 'Slik' silicon avalanche photodiode (APD) and a wideband transimpedance preamplifier in a small hybrid circuit module was measured. The receiver performance had been poor due to the lack of a wideband and low noise transimpedance preamplifier. With the new APB preamplifier module, the receiver achieved a bit error rate (BER) of 10 exp -6 at an average received input optical signal power of 4.2 nW, which corresponds to an average of 80 received (incident) signal photons per information bit.

  2. Design, fabrication, and bench testing of a solar chemical receiver

    NASA Technical Reports Server (NTRS)

    Summers, W. A.; Pierre, J. F.

    1981-01-01

    Solar thermal energy can be effectively collected, transported, stored, and utilized by means of a chemical storage and transport system employing the reversible SO2 oxidation reaction. A solar chemical receiver for SO3 thermal decomposition to SO2 and oxygen was analyzed. Bench tests of a ten foot section of a receiver module were conducted with dissociated sulfuric acid (SO3 and H2O) in an electrical furnace. Measured percent conversion of SO3 was 85% of the equilibrium value. Methods were developed to fabricate and assemble a complete receiver module. These methods included applying an aluminide coating to certain exposed surfaces, assembling concentric tubes with a wire spacer, applying a platinum catalyst to the tubing wall, and coiling the entire assembly into the desired configuration.

  3. SDR implementation of the receiver of adaptive communication system

    NASA Astrophysics Data System (ADS)

    Skarzynski, Jacek; Darmetko, Marcin; Kozlowski, Sebastian; Kurek, Krzysztof

    2016-04-01

    The paper presents software implementation of a receiver forming a part of an adaptive communication system. The system is intended for communication with a satellite placed in a low Earth orbit (LEO). The ability of adaptation is believed to increase the total amount of data transmitted from the satellite to the ground station. Depending on the signal-to-noise ratio (SNR) of the received signal, adaptive transmission is realized using different transmission modes, i.e., different modulation schemes (BPSK, QPSK, 8-PSK, and 16-APSK) and different convolutional code rates (1/2, 2/3, 3/4, 5/6, and 7/8). The receiver consists of a software-defined radio (SDR) module (National Instruments USRP-2920) and a multithread reception software running on Windows operating system. In order to increase the speed of signal processing, the software takes advantage of single instruction multiple data instructions supported by x86 processor architecture.

  4. Coe Receives 2007 Gilbert Award

    NASA Astrophysics Data System (ADS)

    Bogue, Scott W.; Coe, Robert S.

    2008-05-01

    Robert S. Coe received the 2007 William Gilbert Award at the 2007 AGU Fall Meeting in San Francisco, Calif. The award recognizes outstanding and unselfish work in magnetism of Earth materials and of the Earth and planets.

  5. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  6. Next generation digital GPS receiver

    NASA Astrophysics Data System (ADS)

    Frank, G. B.; Yakos, Michael D.

    1990-07-01

    The architecture and technology features of the next-generation (NGR) digital GPS receiver manufactured by Collins are described. The project's objective was to develop an advanced GPS receiver chipset with high antijam capabilities. The program, initiated in 1985, has provided the technology for miniature receiver products for both unmanned and manned vehicle applications. A two-channel version of the receiver is currently in full-scale development for tactical missile applications. A five-channel version is being tested and evaluated as a drop-in replacement for RCVR-3A, the US Department of Defense standard high dynamic receiver. The NGR design started with the digital signal processing architecture developed for the Defense Advanced Research Project Agency (DARPA) hand-held GPS receiver. Enhancements were made to improve the antijam and signal acquisition performance. Producible, qualifiable and cost-effective silicon monolithic microwave integrated circuits and semicustom digital technologies were used to develop the core GPS chipset. A system design approach was established to permit reuse of mature and validated GPS software.

  7. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  8. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  9. The Dolinar Receiver in an Information Theoretic Framework

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Birnbaum, Kevin M.; Moision, Bruce E.; Dolinar, Samuel J.

    2011-01-01

    Optical communication at the quantum limit requires that measurements on the optical field be maximally informative, but devising physical measurements that accomplish this objective has proven challenging. The Dolinar receiver exemplifies a rare instance of success in distinguishing between two coherent states: an adaptive local oscillator is mixed with the signal prior to photodetection, which yields an error probability that meets the Helstrom lower bound with equality. Here we apply the same local-oscillator-based architecture with aninformation-theoretic optimization criterion. We begin with analysis of this receiver in a general framework for an arbitrary coherent-state modulation alphabet, and then we concentrate on two relevant examples. First, we study a binary antipodal alphabet and show that the Dolinar receiver's feedback function not only minimizes the probability of error, but also maximizes the mutual information. Next, we study ternary modulation consistingof antipodal coherent states and the vacuum state. We derive an analytic expression for a near-optimal local oscillator feedback function, and, via simulation, we determine its photon information efficiency (PIE). We provide the PIE versus dimensional information efficiency (DIE) trade-off curve and show that this modulation and the our receiver combination performs universally better than (generalized) on-off keying plus photoncounting, although, the advantage asymptotically vanishes as the bits-per-photon diverges towards infinity.

  10. WRAP Module 1 sampling and analysis plan

    SciTech Connect

    Mayancsik, B.A.

    1995-03-24

    This document provides the methodology to sample, screen, and analyze waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing Module 1 facility. This includes Low-Level Waste, Transuranic Waste, Mixed Waste, and Dangerous Waste.

  11. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  12. A persistent back-end for the ATLAS TDAQ online information service (P-BEAST)

    NASA Astrophysics Data System (ADS)

    Sicoe, Alexandru D.; Lehmann Miotto, Giovanna; Magnoni, Luca; Kolos, Serguei; Soloviev, Igor

    2012-06-01

    This paper describes P-BEAST, a highly scalable, highly available and durable system for archiving monitoring information of the trigger and data acquisition (TDAQ) system of the ATLAS experiment at CERN. Currently this consists of 20,000 applications running on 2,400 interconnected computers but it is foreseen to grow further in the near future. P-BEAST stores considerable amounts of monitoring information which would otherwise be lost. Making this data accessible, facilitates long term analysis and faster debugging. The novelty of this research consists of using a modern key-value storage technology (Cassandra) to satisfy the massive time series data rates, flexibility and scalability requirements entailed by the project. The loose schema allows the stored data to evolve seamlessly with the information flowing within the Information Service. An architectural overview of P-BEAST is presented alongside a discussion about the technologies considered as candidates for storing the data. The arguments which ultimately lead to choosing Cassandra are explained. Measurements taken during operation in production environment illustrate the data volume absorbed by the system and techniques for reducing the required Cassandra storage space overhead.

  13. Development of back-end-of-the-line applications using optical digital profilometry (ODP)

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Ji; Yeh, J. H.; Luo, Ying; Wu, Li; Wen, Youxian

    2008-03-01

    In this paper, a scatterometry software named ODP (R) by Timbre Technologies was used to develop BEOL applications to measure the trench and complicated dual damascene structures. Diffraction spectra were collected with Nanometrics normal incidence polarized reflectometer system in the wavelength range of 220 800nm. The measured spectra were analyzed and used as target spectra by ODP-PAS (R) system. Then the associated models were built to generate the simulated spectra which were used to match the measured spectra. We studied four different structures related to the post trench-and-via etch and post copper CMP processes, including two two-dimensional (2D) linespace structures and two three-dimensional (3D) trench-over-via dual damascene structures. Cross-section TEM (transmitted electron microscopy) measurements were performed to evaluate the performance of ODP measurements. The results show that the correlation between TEM and ODP of CD measurements is good, and the correlation between TEM and ODP of the trench depth measurements is also good. ODP is able to measure the trench and complicated dual damascene structures and further to be used to optimize the process conditions.

  14. The Back End of the Fuel Cycle Moves Front and Center

    SciTech Connect

    Isaacs, T; Choi, J

    2005-11-02

    For many years, the commercial nuclear business has remained relatively stable in many ways. That is unlikely to be the case in the coming years. While some countries have called for the phase out of nuclear power and others have ordered a small number of new plants, the overall profile of the nuclear power business has changed little. The number of countries with nuclear power plants is not much different than 10 years ago and the total number of operating plants has increased only slightly. Commercial enrichment and reprocessing services have remained the province of a few countries and consortia. Repository programs have moved forward slowly in some cases, backward in others, with a very small number making substantial progress. We are now witnessing the beginnings of serious change, with significant consequences for the future nuclear regime. Business as usual will not be the business of the future. The way the nuclear and policy community respond will have much to do with energy adequacy, national security, international stability, and environmental consequences including waste management and disposal. A number of events and trends are becoming increasingly apparent and are cause for both opportunity and caution: (1) New nuclear power plant orders are likely to grow and spread, particularly in the developing world, e.g. China and India. (2) The growing recognition that the developing world will be a major competitor for limited energy resources is raising awareness in the developed world regarding concerns for future energy security. (3) Clearer evidence of the effects of greenhouse gas emissions on global warming, largely from the burning of fossil fuels, is creating more attention on the environmental benefits of nuclear power. (4) The last decade has shown unequivocal evidence of countries lying, cheating on their NPT obligation, and covertly carrying out nuclear weapons-related activities. Some countries have suggested their presumed need for a domestic nuclear fuel cycle as a rationale to pursue enrichment and/or reprocessing capabilities, which would move them to the doorstep of being nuclear weapons capable. The DPRK even took the action to abrogate the NPT to hold on to its nuclear weapons program. (5) 9/11 and other evidence have made it undeniable that terrorist groups would like to obtain weapons of mass destruction, particularly nuclear weapons, and would use them if they could. A number of initiatives have been proposed recently to allow for the growth and spread of nuclear power while limiting the justifications for additional countries to pursue the acquisition of enrichment or reprocessing capabilities. Enrichment or reprocessing are the only ways for countries to gain the indigenous capability to transform natural materials and fuel for and from nuclear power plants to directly weapons-usable materials.

  15. 40 CFR 63.498 - Back-end process provisions-recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator in accordance with § 63.497(b). For flares, the records specified in Table 3 of 40 CFR part 63... be the crumb rubber dry weight of the rubber leaving the stripper. (iv) The organic HAP content of... be the crumb rubber dry weight of the crumb rubber leaving the stripper. (iii) The hourly average...

  16. 40 CFR 63.498 - Back-end process provisions-recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator in accordance with § 63.497(b). For flares, the records specified in Table 3 of 40 CFR part 63... be the crumb rubber dry weight of the rubber leaving the stripper. (iv) The organic HAP content of... be the crumb rubber dry weight of the crumb rubber leaving the stripper. (iii) The hourly average...

  17. 40 CFR 63.498 - Back-end process provisions-recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrator in accordance with § 63.497(b). For flares, the records specified in Table 3 of 40 CFR part 63... be the crumb rubber dry weight of the rubber leaving the stripper. (iv) The organic HAP content of... be the crumb rubber dry weight of the crumb rubber leaving the stripper. (iii) The hourly average...

  18. 40 CFR 63.494 - Back-end process provisions-residual organic HAP limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... styrene butadiene rubber produced by the emulsion process: (i) A monthly weighted average of 0.40 kg... kg styrene per Mg latex for new sources; (2) For polybutadiene rubber and styrene butadiene rubber... rubber (dry weight) for existing affected sources; and (ii) A monthly weighted average of 6 kg...

  19. 40 CFR 63.498 - Back-end process provisions-recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrator in accordance with § 63.497(b). For flares, the records specified in Table 3 of 40 CFR part 63... be the crumb rubber dry weight of the rubber leaving the stripper. (iv) The organic HAP content of... be the crumb rubber dry weight of the crumb rubber leaving the stripper. (iii) The hourly average...

  20. 40 CFR 63.498 - Back-end process provisions-recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... records specified in Table 3 of 40 CFR part 63, subpart G shall be maintained in place of continuous... be the crumb rubber dry weight of the rubber leaving the stripper. (iv) The organic HAP content of... stripper. (B) For solution processes, this quantity shall be the crumb rubber dry weight of the...

  1. Working with Pedagogical Agents: Understanding the "Back End" of an Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Wolfe, Christopher; Widmer, Colin L.; Weil, Audrey M.; Cedillos-Whynott, Elizabeth M.

    2015-01-01

    Students in an undergraduate psychology course on Learning and Cognition used SKO (formerly AutoTutor Lite), an Intelligent Tutoring System, to create interactive lessons in which a pedagogic agent (animated avatar) engages users in a tutorial dialogue. After briefly describing the technology and underlying psychological theory, data from an…

  2. The Euro-VO Registry, Re-engineering the Back-end

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Perdikeas, M.; Osuna, P.; Gonzalez, J.

    2015-09-01

    The Euro-VO Registry, located, developed and operated at ESAC, is one of the full searchable registries available worldwide, gathering information about all VO-compliant resources. The Euro-VO Registry serves as a registration point for European - and other countries- VO actors and data centres wishing to publish VO services. It harvests other registries to ensure its completeness so VO applications developers and VO users can use it to discover all VO resources, from Europe and from all other VO projects. The Euro-VO Registry provides as well a harvesting interface to other registries in the world to make sure the European VO services are also included in all other worldwide full registries. In particular, the new Euro-VO registry will be supporting the new RegTAP search interface for the relational registry allowing arbitrary ADQL queries against its contents over a compliant TAP service. The recently obsolete (for future developments) SOAP-based legacy search interface will also be supported for backwards compatibility purposes. Furthermore, in the context of the IVOA, some quality control and curation procedures for the registry resources are being defined. The Euro-VO Registry implements these procedures to ensure the high quality of the VO resources it references. This paper gives an overview of the recent development of the new Euro-VO Registry, together with its new curation facilities, both of which are being performed under a contract awarded to Neuropublic, under ESA special initiative to Greece.

  3. Receiver-exciter controller design

    NASA Astrophysics Data System (ADS)

    Jansma, P. A.

    1982-06-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  4. Receiver-exciter controller design

    NASA Technical Reports Server (NTRS)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  5. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  6. Frequency synthesizers for telemetry receivers

    NASA Astrophysics Data System (ADS)

    Stirling, Ronald C.

    1990-07-01

    The design of a frequency synthesizer is presented for telemetry receivers. The synthesizer contains two phase-locked loops, each with a programmable frequency counter, and incorporates fractional frequency synthesis but does not use a phase accumulator. The selected receiver design has a variable reference loop operating as a part of the output loop. Within the synthesizer, a single VTO generates the output frequency that is voltage-tunable from 375-656 MHz. The single-sideband phase noise is measured with an HP 8566B spectrum analyzer, and the receiver's bit error rate (BER) is measured with a carrier frequency of 250 MHz, synthesized LO at 410 MHz, and the conditions of BPSK, NRZ-L, and 2.3 kHz bit rate. The phase noise measurement limits and the BER performance data are presented in tabular form.

  7. Central solar-energy receiver

    DOEpatents

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  8. Digital Receiver for Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Ellingson, Steven W.; Hampson, Grant A.; Johnson, Joel T.

    2005-01-01

    A receiver proposed for use in L-band microwave radiometry (for measuring soil moisture and sea salinity) would utilize digital signal processing to suppress interfering signals. Heretofore, radio frequency interference has made it necessary to limit such radiometry to a frequency band about 20 MHz wide, centered at .1,413 MHz. The suppression of interference in the proposed receiver would make it possible to expand the frequency band to a width of 100 MHz, thereby making it possible to obtain greater sensitivity and accuracy in measuring moisture and salinity

  9. Optical receivers using rough reflectors

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.

    1985-01-01

    This report examines the possible use of rough, or nondiffraction-limited, reflectors for collecting optical signals. It is shown that in the absence of background radiation, the reflector's surface quality has little effect on the performance of a properly designed receiver, but that the presence of even small amounts of background radiation can lead to severe performance degradation. Techniques are suggested for improving receiver performance in high-background environments, and bounds and approximations to the exact error-probability expressions are derived.

  10. The GBT 4mm Receiver

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; White, S.; Watts, G.; Stennes, M.; Maddalena, R. J.; Simon, R.; Pospieszalski, M.; Bryerton, E.

    2013-01-01

    The new 4mm receiver (67--93 GHz) for the Robert C. Byrd Green Bank Telescope (GBT) was built to take advantage of the improved surface accuracy of the dish. The low frequency end of the 3mm atmospheric window is not available with ALMA (<84 GHz), and the sensitivity of the GBT is better than any other facility within this band. We discuss the design and performance of this new receiver for the GBT, and highlight the science opportunities available with the instrument. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.