Science.gov

Sample records for receptor agonist treatment

  1. Selexipag: An Oral and Selective IP Prostacyclin Receptor Agonist for the Treatment of Pulmonary Arterial Hypertension.

    PubMed

    Asaki, Tetsuo; Kuwano, Keiichi; Morrison, Keith; Gatfield, John; Hamamoto, Taisuke; Clozel, Martine

    2015-09-24

    Prostacyclin controls cardiovascular function via activation of the prostacyclin receptor. Decreased prostacyclin production occurs in several cardiovascular diseases. However, the clinical use of prostacyclin and its analogues is complicated by their chemical and metabolic instability. A medicinal chemistry program searched for novel nonprostanoid prostacyclin receptor agonists not subject to these limitations. A compound with a diphenylpyrazine structural core was synthesized. Metabolic stability and agonist potency were optimized through modification of the linear side chain. Compound 12b (MRE-269, ACT-333679) was identified as a potent and highly selective prostacyclin receptor agonist. Replacement of the terminal carboxyl group with an N-acylsulfonamide group yielded parent compound 26a (selexipag, NS-304, ACT-293987), which is orally active and provides sustained plasma exposure of 12b. Compound 26a was developed for the treatment of pulmonary arterial hypertension and shown to reduce the risk of the composite morbidity/mortality end point in a phase 3 event-driven clinical trial. PMID:26291199

  2. Thyroid receptor agonists for the treatment of androgenetic alopecia.

    PubMed

    Li, Jie Jack; Mitchell, Lorna H; Dow, Robert L

    2010-01-01

    A thyroid hormone receptor beta subtype-selective thyromimetic 5 was found to be efficacious in both mouse and monkey hair growth models after topical applications. It penetrates the skin according to the test in human cadaver skin mounted onto Franz diffusion chambers. The serum drug level of 5 is below the limit of quantification during tests in the bald stump-tailed macaques (Macaca arctoides). It is tested negative in the 3T3 neutral red uptake (NRU) phototoxicity test, indicating a low risk for causing photo-irritation. It is also rapidly metabolized according to the PK data, thus the systemic exposure is limited. PMID:19900809

  3. Peroxisome Proliferator-Activated Receptor Agonist Treatment of Alcohol-Induced Hepatic Insulin Resistance

    PubMed Central

    de la Monte, Suzanne M.; Pang, Maoyin; Chaudhry, Rajeeve; Duan, Kevin; Longato, Lisa; Carter, Jade; Ouh, Jiyun; Wands, Jack R.

    2011-01-01

    Chronic ethanol exposure impairs insulin signaling in the liver. Peroxisome-proliferator activated receptor (PPAR) agonists function as insulin sensitizers and are used to treat type 2 diabetes mellitus. We examined the therapeutic effectiveness of PPAR agonists in reducing alcoholic hepatitis and hepatic insulin resistance in a model of chronic ethanol feeding. Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% (control) or 37% ethanol (caloric content; 9.2% v/v) for 8 weeks. After 3 weeks on the diets, the rats were treated with vehicle, or a PPAR-α, PPAR-δ, or PPAR-γ agonist twice weekly by i.p. injection. Livers were harvested for histopathological, gene expression (RT-PCR), protein (Western and ELISA), and receptor binding studies. Ethanol-fed rats developed steatohepatitis with disordered hepatic chord architecture, increased hepatocellular apoptosis, reduced binding to the insulin, IGF-1, and IGF-2 receptors, and decreased expression of glyceraldehyde-3-phosphate dehydrogenase and aspartyl-(asparaginyl)-β-hydroxylase (mediates remodeling), which are regulated by insulin/IGF signaling. PPAR-α, PPAR-δ, or PPAR-γ agonist treatments reduced the severity of ethanol-mediated liver injury, including hepatic architectural disarray and steatosis. In addition, PPAR-δ and PPAR-γ agonists reduced insulin/IGF resistance and increased insulin/IGF-responsive gene expression. In conclusion, PPAR agonists may help reduce the severity of chronic ethanol-induced liver injury and insulin/IGF resistance, even in the context of continued high-level ethanol consumption. PMID:21426453

  4. Recovery of brain biomarkers following peroxisome proliferator-activated receptor agonist neuroprotective treatment before ischemic stroke

    PubMed Central

    2014-01-01

    Background Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to “normal” following pre-treatments with PPARα agonists. Results In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPARα agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia – reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction – a protein instrumental to the unfolded protein response system - was shown to be reduced following PPARα agonists treatment while it was strongly increased in ischemia-reperfusion. Conclusions Pre-treatment with PPARα agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPARα agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis

  5. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder

    PubMed Central

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  6. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder.

    PubMed

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  7. Detection of glucocorticoid receptor agonists in effluents from sewage treatment plants in Japan.

    PubMed

    Suzuki, Go; Sato, Kentaro; Isobe, Tomohiko; Takigami, Hidetaka; Brouwer, Abraham; Nakayama, Kei

    2015-09-15

    Glucocorticoids (GCs) are widely used as anti-inflammatory drugs. Our previous study demonstrated that several GCs such as cortisol and dexamethasone (Dex) were frequently detected in effluents collected from Japanese sewage treatment plants (STPs) in 2012. In this study, we used the GC-Responsive Chemical-Activated LUciferase gene eXpression (GR-CALUX) assay to elucidate GC receptor (GR) agonistic activities of ten pure synthetic GCs and selected STP effluents in Japan for assessment of the risks associated with the presence of GR agonists. The tested GCs demonstrated dose-dependent agonistic effects in the GR-CALUX assay and their EC50 values were calculated for estimation of relative potencies (REPs) compared to Dex. The GR agonistic potency was in the rank of: clobetasol propionate > clobetasone butyrate > betamethasone 17-valerate > difluprednate > betamethasone 17,21-dipropionate > Dex > betamethasone > 6α-methylprednisolone > prednisolone > cortisol. The GR agonistic activity in STP effluents as measured in Dex-equivalent (Dex-EQ) activities ranged from < 3.0-78 ng L(-1) (median: 29 ng L(-1), n = 50). To evaluate the contribution of the target GCs, theoretical Dex-EQs were calculated by multiplying the concentrations of each GC by its respective REP. Our calculation of Dex-EQ contribution for individual GR agonists indicated that the well-known GCs cortisol and Dex should not be given priority for subsequent in vivo testing, monitoring and removal experiments, but rather the highly potent synthetic GCs clobetasol propionate and betamethasone 17-valerate (REP = 28 and 3.1) as well as other unidentified compounds are important GR agonists in STP effluents in Japan. PMID:25965047

  8. Agonists of the tissue-protective erythropoietin receptor in the treatment of Parkinson's disease.

    PubMed

    Punnonen, Juha; Miller, James L; Collier, Timothy J; Spencer, Jeffrey R

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disease affecting more than a million people in the USA alone. While there are effective symptomatic treatments for PD, there is an urgent need for new therapies that slow or halt the progressive death of dopaminergic neurons. Significant progress has been made in understanding the pathophysiology of PD, which has substantially facilitated the discovery efforts to identify novel drugs. The tissue-protective erythropoietin (EPO) receptor, EPOR/CD131, has emerged as one promising target for disease-modifying therapies. Recombinant human EPO (rhEPO), several variants of EPO, EPO-mimetic peptides, cell-based therapies using cells incubated with or expressing EPO, gene therapy vectors encoding EPO, and small molecule EPO mimetic compounds all show potential as therapeutic candidates. Agonists of the EPOR/CD131 receptor demonstrate potent anti-apoptotic, antioxidant, and anti-inflammatory effects and protect neurons, including dopaminergic neurons, from diverse insults in vitro and in vivo. When delivered directly to the striatum, rhEPO protects dopaminergic neurons in animal models of PD. Early-stage clinical trials testing systemic rhEPO have provided encouraging results, while additional controlled studies are required to fully assess the potential of the treatment. Poor CNS availability of proteins and challenges related to invasive delivery limit delivery of EPO protein. Several variants of EPO and small molecule agonists of the EPO receptors are making progress in preclinical studies and may offer solutions to these challenges. While EPO was initially discovered as the primary modulator of erythropoiesis, the discovery and characterization of the tissue-protective EPOR/CD131 receptor offer an opportunity to selectively target the neuroprotective receptor as an approach to identify disease-modifying treatments for PD. PMID:25832721

  9. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Chandraratna, Roshantha As; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4(+) T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4(+) T cells that produce pro-inflammatory cytokines. In addition, CD4(+) T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  10. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Chandraratna, Roshantha AS; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4+ T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4+ T cells that produce pro-inflammatory cytokines. In addition, CD4+ T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  11. Detection of retinoic acid receptor agonistic activity and identification of causative compounds in municipal wastewater treatment plants in Japan.

    PubMed

    Sawada, Kazuko; Inoue, Daisuke; Wada, Yuichiro; Sei, Kazunari; Nakanishi, Tsuyoshi; Ike, Michihiko

    2012-02-01

    Retinoic acid (RA) receptor (RAR) agonists are potential toxicants that can cause teratogenesis in vertebrates. To determine the occurrence of RAR agonists in municipal wastewater treatment plants (WWTPs), we examined the RARα agonistic activities of influent and effluent samples from several municipal WWTPs in Osaka, Japan, using a yeast two-hybrid assay. Significant RARα agonistic activity was detected in all the influent samples investigated, suggesting that municipal wastewater consistently contains RAR agonists. Fractionations using high-performance liquid chromatography, directed by the bioassay, found several bioactive peaks from influent samples. The RAR agonists, all-trans RA (atRA), 13-cis RA (13cRA), 4-oxo-atRA, and 4-oxo-13cRA, possibly arising from human urine, were identified by liquid chromatography ion trap time-of-flight mass spectrometry. Quantification of the identified compounds in municipal WWTPs confirmed that they were responsible for the majority of RARα agonistic activity in WWTP influents, and also revealed they were readily removed from wastewater by activated sludge treatment. Simultaneous measurement of the RARα agonistic activity revealed that although total activity typically declined concomitant with the reduction of the four identified compounds, it remained high after the decline of RAs and 4-oxo-RAs in one WWTP, suggesting the occurrence of unidentified RAR agonists during the activated sludge treatment. PMID:22095885

  12. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-09-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy. PMID:25437463

  13. Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    PubMed Central

    Liu, Ruijie; Li, Zhengzhe; Chen, Yibang; Evans, Todd; Chuang, Peter; Das, Bhaskar; He, John Cijiang

    2011-01-01

    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN. PMID:22125642

  14. Selexipag: an oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension.

    PubMed

    Simonneau, Gérald; Torbicki, Adam; Hoeper, Marius M; Delcroix, Marion; Karlócai, Kristóf; Galiè, Nazzareno; Degano, Bruno; Bonderman, Diana; Kurzyna, Marcin; Efficace, Michela; Giorgino, Ruben; Lang, Irene M

    2012-10-01

    In this phase 2 proof-of-concept study we examined the safety and efficacy of selexipag, an orally available, selective prostacyclin receptor (IP receptor) agonist, as a treatment for pulmonary arterial hypertension (PAH). 43 adult patients with symptomatic PAH (receiving stable endothelin receptor antagonist and/or a phosphodiesterase type-5 inhibitor therapy) were randomised three to one to receive either selexipag or placebo. Dosage was up-titrated in 200-μg increments from 200 μg twice daily on day 1 to the maximum tolerated dose by day 35 (maximum allowed dose of 800 μg twice daily). Change in pulmonary vascular resistance at week 17 expressed as a percentage of the baseline value was the primary efficacy end-point, and was analysed in the per protocol set first and then in the all-treated set to assess robustness of results. A statistically significant 30.3% reduction in geometric mean pulmonary vascular resistance was observed after 17 weeks' treatment with selexipag compared with placebo (95% confidence limits -44.7- -12.2; p=0.0045, Wilcoxon rank sum test). This was supported by a similar result from the all-treated set. Selexipag was well tolerated with a safety profile in line with the expected pharmacological effect. Our results encourage the further investigation of selexipag for the treatment of PAH. PMID:22362844

  15. Letter: Iatrogenic lipomatosis: a rare manifestation of treatment with a peroxisome proliferator-activated receptor gamma agonist.

    PubMed

    Femia, Alisa; Klein, Peter A

    2010-01-01

    Lipomas are common benign neoplasms of adipose tissue. Lipomatosis, the progressive appearance of multiple lipomas, is most often associated with specific congenital, familial, or idiopathic syndromes. In one reported case, the development of multiple lipomas occurred as a result of treatment with rosiglitazone, a peroxisome proliferator-activated receptor (PPAR) gamma agonist. We report a second case of lipomatosis occurring as a result of treatment with a PPAR gamma agonist. This case occurred in a 77-year-old woman who developed multiple lipomas two years after beginning treatment with pioglitazone, a PPAR gamma agonist. Histopathologic examination confirmed these lesions to be lipomas. Within four weeks of discontinuation of pioglitazone, regression of the lipomas began. We describe a case of PPAR agonist-induced lipoma formation, review relevant literature, and provide a molecular mechanism for this side effect. PMID:20409422

  16. Effects of repeated treatment with the dopamine D2/D3 receptor partial agonist aripiprazole on striatal D2/D3 receptor availability in monkeys

    PubMed Central

    Czoty, Paul W.; Gage, H. Donald; Garg, Pradeep K.; Garg, Sudha; Nader, Michael A.

    2013-01-01

    Rationale Chronic treatment with dopamine (DA) receptor agonists and antagonists can differentially affect measures of DA D2/D3 receptor number and function, but the effects of chronic treatment with a partial D2/D3 receptor agonist are not clear. Objective We used a within-subjects design in male cynomolgus monkeys to determine the effects of repeated (17-day) treatment with the D2/D3 receptor partial agonist aripiprazole (ARI; 0.03 mg/kg and 0.1 mg/kg i.m.) on food-reinforced behavior (n=5) and on D2/D3 receptor availability as measured with positron emission tomography (PET; n=9). Methods Five monkeys responded under a fixed-ratio 50 schedule of food reinforcement and D2/D3 receptor availability was measured before and four days after ARI treatment using PET and the D2/D3 receptor-selective radioligand [18F]fluoroclebopride (FCP). Four additional monkeys were studied using [11C]raclopride and treated sequentially with each dose of ARI for 17 days. Results ARI decreased food-maintained responding with minimal evidence of tolerance. Repeated ARI administration increased FCP and raclopride distribution volume ratios (DVRs) in the caudate nucleus and putamen in most monkeys, but decreases were observed in monkeys with the highest baseline DVRs. Conclusions The results indicate that repeated treatment with a low efficacy DA receptor partial agonist produces effects on brain D2/D3 receptor availability that are qualitatively different from those of both high-efficacy receptor agonists and antagonists, and suggest that the observed individual differences in response to ARI treatment may reflect its partial agonist activity. PMID:24077804

  17. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    PubMed

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression. PMID:27474687

  18. Treatment of experimental autoimmune uveoretinitis with peroxisome proliferator-activated receptor α agonist fenofibrate

    PubMed Central

    Osada, Miho; Kuroyanagi, Kana; Kohno, Hideo; Tsuneoka, Hiroshi

    2014-01-01

    Purpose The peroxisome proliferator-activated receptor α (PPARα) agonist has been approved for treating hypercholesterolemia and lipid abnormalities. Researchers have recently discovered that an anti-inflammatory effect of PPAR agonist may have the potential to treat autoimmune disease. This study aims to investigate the therapeutic effects of fenofibrate on experimental autoimmune uveoretinitis (EAU). Methods EAU was induced in Lewis rats using bovine S-antigen (S-Ag) peptide. Fenofibrate was suspended in 3% arabic gum and administered orally at a high dose of 100 mg/kg and at a low dose of 20 mg/kg every day. Fenofibrate treatment was initiated after the clinical onset once daily for 14 days. The rats were examined every other day for clinical signs of EAU. The histological scores and delayed-type hypersensitivity (DTH) were evaluated on day 28 post-immunization. Morphologic and immunohistochemical examinations were performed with light and confocal microscopy, respectively. Lymphocyte proliferation was measured with [3H] thymidine incorporation into antigen-stimulated T cells from inguinal lymph nodes. Results Clinical and histological scores of EAU were decreased in the fenofibrate-treated groups. The expression of inflammatory cytokines and Müller cell proliferation were inhibited in the fenofibrate-treated groups. DTH was significantly inhibited in the fenofibrate-treated groups, compared with the vehicle-treated groups (controls). Lymphocyte proliferation assay demonstrated decreased proliferation in the presence of 25 mg/ml S-Ag peptide in the fenofibrate-treated groups compared with controls. Conclusions The current results indicate that fenofibrate administered orally following clinical onset has therapeutic effect in EAU. Fenofibrate may be useful for treating intraocular inflammation. PMID:25489225

  19. The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity.

    PubMed

    Hagmann, William K

    2008-07-01

    The cannabinoid-1 receptor (CB1R) has emerged as one of the most important targets for the treatment of obesity. Pioneering studies with rimonabant helped to validate animal models of food intake reduction and weight loss and made the connection to weight loss in the clinic. A novel, acyclic amide was identified from a high throughput screen (HTS) of the Merck sample collection and found to be a potent and selective CB1R inhibitor. Further optimization led to more potent compounds that were orally active in reducing food intake and weight loss in diet-induced obese (DIO) rats. However, many of these analogues exhibited a high potential for bioactivation and the formation of reactive intermediates and covalent protein binding. Identification of the products of oxidative metabolism guided medicinal chemistry efforts to minimize the formation of these unwanted products. These efforts resulted in the identification of the CB1R inverse agonist, taranabant, which is currently in Phase-III clinical studies for the treatment of obesity. This mini-review will describe some of the medicinal chemistry strategies that were followed from the original high throughput screen hit to the discovery of taranabant. PMID:18574849

  20. Treatment of cocaine craving with as-needed nalmefene, a partial κ opioid receptor agonist: first clinical experience.

    PubMed

    Grosshans, Martin; Mutschler, Jochen; Kiefer, Falk

    2015-07-01

    The treatment of cocaine dependence is difficult as no approved pharmacotherapy is available as yet. However, in preclinical and clinical trials, a variety of compounds were tested for suitability as inhibitors of craving for and relapse into the use of cocaine, among these antidepressants, antiepileptics, dopamine agonists, disulfiram, and naltrexone. Nalmefene, a structural derivative of naltrexone, shares with its parent compound approval (granted by the European Medical Agency in 2013) as a medication for the treatment of alcohol addiction in the European Union. It differs from naltrexone by a higher affinity for the δ opioid-receptors and a partial agonistic affinity to the κ opioid-receptors. It should be noted that patients addicted to cocaine show a considerable increase in κ receptors in the nucleus accumbens. This report describes the case of an abstinent cocaine-addicted patient regularly afflicted with cravings for cocaine. The patient took as-needed nalmefene for 5 months whenever she developed a craving for cocaine. For most of these interventions, the patient reported an abatement of craving and could avoid relapsing into cocaine consumption. This effect may be accounted for by nalmefene acting, other than naltrexone, as a partial agonist of the κ opioid-receptors. Therefore, nalmefene might be a promising new option in the pharmacological repertoire for the treatment of cocaine addiction. PMID:25647453

  1. Functionalized Ergot-alkaloids as potential dopamine D3 receptor agonists for treatment of schizophrenia

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2012-12-01

    The relationship between the molecular structure and physical properties of functionalized naturally occurred Ergot-alkaloids as potential dopamine D3 receptor agonists is presented. The molecular modeling of the ergoline-skeleton is based on the comprehensive theoretical study of the binding affinity of the isolated chemicals towards the active sites of the D3 sub-type receptor (D3R) loops. The studied proton accepting ability under physiological conditions allows classifying four types of monocationics, characterizing with the different binding modes to D3R involving selected amino acid residues to the active sites. These results marked the pharmaceutical potential and clinical usage of the reported compounds as antipsychotic drugs for Schizophrenia treatment, since they allowed evaluating the highlights of the different hypothesizes of the biochemical causes the illness. The applied complex approach for theoretical and experimental elucidation, including quantum chemistry method, electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometric (MS) methods, nuclear magnetic resonance and vibrational IR and Raman spectroscopy on the isolated fifteen novel derivatives (1)-(15) and their different protonated forms (1a)-(15a) evidenced a strong dependence of molecular conformation, physical properties and binding affinity. Thus, the semi-synthetic functionalization of the naturally occurred products (NPs), provided significant possibilities to further molecular drugs-design and development of novel derivatives with wanted biological function, using the established profile of selected classes/families of NPs. The work described chiefly the non-linear (NL) approach for the interpretation of the mass chromatograms on the performed hybrid high performance liquid chromatography (HPLC) tandem MS/MS and MS/MS/MS experiments, discussing the merits and great diversity of instrumentation flexibility, thus achieving fundamental

  2. Effects of Long-Term Treatment with Estradiol and Estrogen Receptor Subtype Agonists on Serotonergic Function in Ovariectomized Rats.

    PubMed

    Benmansour, Saloua; Adeniji, Opeyemi S; Privratsky, Anthony A; Frazer, Alan

    2016-01-01

    Acute estradiol treatment was reported to slow the clearance of serotonin via activation of estrogen receptors (ER)β and/or GPR30 and to block the ability of a selective serotonin reuptake inhibitor (SSRI) to slow serotonin clearance via activation of ERα. In this study, the behavioral consequences of longer-term treatments with estradiol or ER subtype-selective agonists and/or an SSRI were examined in the forced swim test (FST). Ovariectomized rats were administered the following for 2 weeks: estradiol, ERβ agonist (diarylpropionitrile, DPN), GPR30 agonist (G1), ERα agonist (PPT), and/or the SSRI sertraline. Similar to sertraline, longer-term treatment with estradiol, DPN or G1 induced an antidepressant-like effect. By contrast, PPT did not, even though it blocked the antidepressant-like effect of sertraline. Uterus weights, used as a peripheral measure of estrogenic activity, were increased by estradiol and PPT but not DPN or G1 treatment. A second part of this study investigated, using Western blot analyses in homogenates from hippocampus, whether these behavioral effects are accompanied by changes in the activation of specific signaling pathways and/or TrkB. Estradiol and G1 increased phosphorylation of Akt, ERK and TrkB. These effects were similar to those obtained after treatment with sertraline. Treatment with DPN increased phosphorylation of ERK and TrkB, but it did not alter that of Akt. Treatment with PPT increased phosphorylation of Akt and ERK without altering that of TrkB. In conclusion, activation of at least TrkB and possibly ERK may be involved in the antidepressant-like effect of estradiol, ERβ and GPR30 agonists whereas Akt activation may not be necessary. PMID:26159182

  3. Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity.

    PubMed

    Miller, Keith J

    2005-10-01

    Obesity continues to be a burgeoning health problem worldwide. Before their removal from the market, fenfluramine and the more active enantiomer dexfenfluramine were considered to be among the most effective of weight loss agents. Much of the weight loss produced by fenfluramine was attributed to the direct activation of serotonin 5-HT(2C) receptors in the central nervous system via the desmethyl-metabolite of fenfluramine, norfenfluramine. Norfenfluramine, however, is non-selective, activating additional serotonin receptors, such as 5-HT(2A) and 5-HT(2B), which likely mediated the heart valve hypertrophy seen in many patients. Development of highly selective 5-HT(2C) agonists may recapitulate the clinical anti-obesity properties observed with fenfluramine while avoiding the significant cardiovascular and pulmonary side effects. PMID:16249524

  4. P2Y2 receptor agonists for the treatment of dry eye disease: a review

    PubMed Central

    Lau, Oliver C F; Samarawickrama, Chameen; Skalicky, Simon E

    2014-01-01

    Recent advances in the understanding of dry eye disease (DED) have revealed previously unexplored targets for drug therapy. One of these drugs is diquafosol, a uridine nucleotide analog that is an agonist of the P2Y2 receptor. Several randomized controlled trials have demonstrated that the application of topical diquafosol significantly improves objective markers of DED such as corneal and conjunctival fluorescein staining and, in some studies, tear film break-up time and Schirmer test scores. However, this has been accompanied by only partial improvement in patient symptoms. Although evidence from the literature is still relatively limited, early studies have suggested that diquafosol has a role in the management of DED. Additional studies would be helpful to delineate how different subgroups of DED respond to diquafosol. The therapeutic combination of diquafosol with other topical agents also warrants further investigation. PMID:24511227

  5. Tasimelteon (Hetlioz™): A New Melatonin Receptor Agonist for the Treatment of Non-24-Hour Sleep-Wake Disorder.

    PubMed

    Bonacci, Janene M; Venci, Jineane V; Gandhi, Mona A

    2015-10-01

    In January 2014, the US Food and Drug Administration approved tasimelteon (Hetlioz™), a melatonin-receptor agonist for the treatment of non-24-hour sleep-wake disorder. This article provides an overview of the mechanism of action, pharmacokinetic properties, as well as the clinical efficacy, safety, and tolerability of tasimelteon. Relevant information was identified through a comprehensive literature search of several databases using the key words tasimelteon, Non-24-hour Sleep-Wake disorder, Non-24, and melatonin. Further information was obtained from the tasimelteon package insert, fda.gov, clinicaltrials.gov, briefing materials provided by Vanda Pharmaceuticals, and posters from scientific meetings. PMID:25092604

  6. Farnesoid X Receptor Agonists and Other Bile Acid Signaling Strategies for Treatment of Liver Disease.

    PubMed

    Halilbasic, Emina; Fuchs, Claudia; Traussnigg, Stefan; Trauner, Michael

    2016-01-01

    The intracellular nuclear receptor farnesoid X receptor (FXR) and the transmembrane G protein-coupled receptor 5 (TGR5) respond to bile acids (BAs) by activating transcriptional networks and/or signaling cascades. These cascades affect the expression of a great number of target genes relevant for BA, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. FXR activation in the liver tissue and beyond, such as the gut-liver axis, kidney and adipose tissue, plays a role in metabolic diseases. These BA receptors activators hold promise to become a new class of drugs to be used in the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This review discusses the relevant BA receptors, the new drugs that target BA transport and signaling and their possible applications. PMID:27332721

  7. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  8. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    PubMed

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  9. GLP-1 receptor agonist liraglutide reverses long-term atypical antipsychotic treatment associated behavioral depression and metabolic abnormalities in rats.

    PubMed

    Sharma, Ajaykumar N; Ligade, Sagar S; Sharma, Jay N; Shukla, Praveen; Elased, Khalid M; Lucot, James B

    2015-04-01

    Mood disorder patients that are on long-term atypical antipsychotics treatment frequently experience metabolic dysfunctions. In addition to this, accumulating evidences points to increased risk of structural abnormalities, brain volume changes, altered neuroplasticity and behavioral depression with long-term antipsychotics use. However, there is paucity of preclinical evidences for long-term antipsychotic associated depression-like behavior. The objectives of the present study were: (1) to evaluate influence of long-term antipsychotic (olanzapine) treatment on rat behavior in forced swim test (FST) as a model for depression and; (2) to examine impact of glucagon-like peptide 1 (GLP-1) receptor agonist liraglutide - an antidiabetic medication for type II diabetes, on long-term olanzapine associated metabolic and behavioral changes in rats. Daily olanzapine treatment (0.5 mg/kg; p.o.) for 8-9 weeks significantly increased body weights, food and water intake, plasma cholesterol and triglycerides and immobility time in FST with parallel reduction in plasma HDL cholesterol levels. These results points to development of metabolic abnormalities and depression-like behavior with long-term olanzapine treatment. Acute liraglutide (50 μg/kg; i.p.) and imipramine (10 mg/kg, i. p.) treatment per se significantly decreased duration of immobility in FST compared to vehicle treated rats. Additionally, 3-week liraglutide treatment (50 μg/kg; i.p., daily) partially reversed metabolic abnormalities and depression-like behavior with long-term olanzapine-treatment in rats. None of these treatment regimens affected locomotor behavior of rats. In summary, add-on GLP-1 receptor agonists promise novel alternatives to counteract long-term antipsychotics associated behavioral and metabolic complications. PMID:25023888

  10. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Potts, Jessica E.; Gray, Laura J.; Brady, Emer M.; Khunti, Kamlesh; Davies, Melanie J.; Bodicoat, Danielle H.

    2015-01-01

    Aims To determine the effects of glucagon-like peptide-1 receptor agonists compared with placebo and other anti-diabetic agents on weight loss in overweight or obese patients with type 2 diabetes mellitus. Methods Electronic searches were conducted for randomised controlled trials that compared a glucagon-like peptide-1 receptor agonist therapy at a clinically relevant dose with a comparator treatment (other type 2 diabetes treatment or placebo) in adults with type 2 diabetes and a mean body mass index ≥ 25kg/m2. Pair-wise meta-analyses and mixed treatment comparisons were conducted to examine the difference in weight change at six months between the glucagon-like peptide-1 receptor agonists and each comparator. Results In the mixed treatment comparison (27 trials), the glucagon-like peptide-1 receptor agonists were the most successful in terms of weight loss; exenatide 2mg/week: -1.62kg (95% CrI: -2.95kg, -0.30kg), exenatide 20μg: -1.37kg (95% CI: -222kg, -0.52kg), liraglutide 1.2mg: -1.01kg (95%CrI: -2.41kg, 0.38kg) and liraglutide 1.8mg: -1.51 kg (95% CI: -2.67kg, -0.37kg) compared with placebo. There were no differences between the GLP-1 receptor agonists in terms of weight loss. Conclusions This review provides evidence that glucagon-like peptide-1 receptor agonist therapies are associated with weight loss in overweight or obese patients with type 2 diabetes with no difference in weight loss seen between the different types of GLP-1 receptor agonists assessed. PMID:26121478

  11. Brexpiprazole: a new dopamine D₂receptor partial agonist for the treatment of schizophrenia and major depressive disorder.

    PubMed

    Citrome, L

    2015-07-01

    Brexpiprazole is a dopamine D₂receptor partial agonist. Compared with aripiprazole, it is more potent at 5-HT1A receptors and displays less intrinsic activity at D₂receptors. Brexpiprazole also has potent antagonistic activity at 5-HT2A as well as alpha-adrenergic receptors. In addition to results from phase II trials, data are available from two pivotal phase III, randomized, placebo-controlled trials of brexpiprazole for the acute treatment of schizophrenia and two pivotal phase III, randomized, placebo-controlled trials of adjunctive brexpiprazole for the acute treatment of major depressive disorder in patients with inadequate response to antidepressant medication treatment. Overall tolerability is promising, with rates of discontinuation due to adverse events lower or slightly higher than that observed for placebo. Although overall akathisia was more commonly observed with brexpiprazole than with placebo, the absolute risk increase attributable to brexpiprazole appears small. Short-term weight gain appears modest; however, outliers with an increase of ≥ 7% of body weight were evident in open-label long-term safety studies. PMID:26261843

  12. Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats

    PubMed Central

    Hammond, R.; Mauk, R.; Ninaci, D.; Nelson, D.; Gibbs, RB

    2009-01-01

    Previous work has shown that continuous estradiol replacement in young ovariectomized rats enhances acquisition of a delayed matching-to-position (DMP) T-maze task over that of ovariectomized controls. The mechanism by which estradiol confers this benefit has not been fully elucidated. This study examined the role of selective estrogen receptor agonists of ERα, ERβ, and GPR30 in the enhancement of spatial learning on a DMP task by comparing continuous estradiol replacement with continuous administration of PPT (an agonist of ERα), DPN (an agonist of ERβ), or G-1 (an agonist of GPR30) relative to gonadally intact and ovariectomized vehicle-treated controls. It was found that ovariectomy impaired acquisition on this task, whereas all ER selective agonists restored the rate of acquisition to that of gonadally intact controls. These data suggest that estradiol can work through any of several estrogen receptors to enhance the rate of acquisition on this task. PMID:19560466

  13. Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity.

    PubMed

    Alig, Leo; Alsenz, Jochem; Andjelkovic, Mirjana; Bendels, Stefanie; Bénardeau, Agnès; Bleicher, Konrad; Bourson, Anne; David-Pierson, Pascale; Guba, Wolfgang; Hildbrand, Stefan; Kube, Dagmar; Lübbers, Thomas; Mayweg, Alexander V; Narquizian, Robert; Neidhart, Werner; Nettekoven, Matthias; Plancher, Jean-Marc; Rocha, Cynthia; Rogers-Evans, Mark; Röver, Stephan; Schneider, Gisbert; Taylor, Sven; Waldmeier, Pius

    2008-04-10

    The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed. PMID:18335976

  14. Piperidine derivatives as nonprostanoid IP receptor agonists.

    PubMed

    Hayashi, Ryoji; Sakagami, Hideki; Koiwa, Masakazu; Ito, Hiroaki; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-05-01

    The discovery of a new class of nonprostanoid prostaglandin I2 receptor (IP receptor) agonists is reported. Among them, the unique piperidine derivative 31b (2-((1-(2-(N-(4-tolyl)benzamido)ethyl)piperidin-4-yl)oxy)acetic acid) was a good IP receptor agonist and was 50-fold more selective for the human IP receptor than for other human prostanoid receptors. This compound showed good pharmacokinetic properties in dog. PMID:26996371

  15. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25326839

  16. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25437461

  17. Treatment with Adenosine Receptor Agonist Ameliorates Pain Induced by Acute and Chronic Inflammation.

    PubMed

    Montes, Guilherme Carneiro; Hammes, Nathalia; da Rocha, Miguel Divino; Montagnoli, Tadeu Lima; Fraga, Carlos Alberto Manssour; Barreiro, Eliezer J; Sudo, Roberto Takashi; Zapata-Sudo, Gisele

    2016-08-01

    Rheumatoid arthritis is an inflammatory autoimmune condition, and tumor necrosis factor-α (TNF-α) plays an important role in its pathophysiology. In vitro, (E)-N'-(3,4-dimethoxybenzylidene)-N-methylbenzohydrazide (LASSBio-1359) has exhibited anti-TNF-α properties, and in vivo these effects are mediated via activation of adenosine receptor. This work investigates the antinociceptive action of LASSBio-1359 in murine models of acute and chronic inflammatory pain. Male mice received an intraperitoneal injection of LASSBio-1359 and then were evaluated in formalin- and carrageenan-induced paw edema assays. Complete Freund's adjuvant (CFA) was used to induce a mouse model of monoarthritis. These mice were treated with LASSBio-1359 by oral gavage to evaluate thermal and mechanical hyperalgesia. TNF-α and inducible nitric oxide synthase (iNOS) expression as well as histologic features were analyzed. The time of reactivity to formalin in the neurogenic phase was reduced from 56.3 ± 6.0 seconds to 32.7 ± 2.2 seconds and 23.8 ± 2.6 seconds after treatment with LASSBio-1359 at doses of 10 mg/kg and 20 mg/kg, respectively. A reversal of the antinociceptive action of LASSBio-1359 was observed in the inflammatory phase after treatment with ZM 241385 [4-(2-[7-amino-2-(2-furly)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol], an adenosine A2A antagonist. Carrageenan-induced thermal and mechanical hyperalgesia were reduced after treatment with LASSBio-1359. Similarly, CFA-induced thermal and mechanical hyperalgesia were reduced after treatment with LASSBio-1359 (25 and 50 mg/kg). Levels of TNF-α and iNOS expression increased in the monoarthritis model and were normalized in animals treated with LASSBio-1359, which was also associated with beneficial effects in the histologic analysis. These results suggest that LASSBio-1359 represents an alternative treatment of monoarthritis. PMID:27194479

  18. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats

    PubMed Central

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  19. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats.

    PubMed

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  20. Design, synthesis, and evaluation of conformationally restricted acetanilides as potent and selective β3 adrenergic receptor agonists for the treatment of overactive bladder.

    PubMed

    Moyes, Christopher R; Berger, Richard; Goble, Stephen D; Harper, Bart; Shen, Dong-Ming; Wang, Liping; Bansal, Alka; Brown, Patricia N; Chen, Airu S; Dingley, Karen H; Di Salvo, Jerry; Fitzmaurice, Aileen; Gichuru, Loise N; Hurley, Amanda L; Jochnowitz, Nina; Miller, Randall R; Mistry, Shruty; Nagabukuro, Hiroshi; Salituro, Gino M; Sanfiz, Anthony; Stevenson, Andra S; Villa, Katherine; Zamlynny, Beata; Struthers, Mary; Weber, Ann E; Edmondson, Scott D

    2014-02-27

    A series of conformationally restricted acetanilides were synthesized and evaluated as β3-adrenergic receptor agonists (β3-AR) for the treatment of overactive bladder (OAB). Optimization studies identified a five-membered ring as the preferred conformational lock of the acetanilide. Further optimization of both the aromatic and thiazole regions led to compounds such as 19 and 29, which have a good balance of potency and selectivity. These compounds have significantly reduced intrinsic clearance compared to our initial series of pyridylethanolamine β3-AR agonists and thus have improved unbound drug exposures. Both analogues demonstrated dose dependent β3-AR mediated responses in a rat bladder hyperactivity model. PMID:24437735

  1. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  2. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future.

    PubMed

    Kalra, Sanjay; Baruah, Manash P; Sahay, Rakesh K; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)-based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  3. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh K.; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  4. Melanocortin 1 Receptor Agonists Reduce Proteinuria

    PubMed Central

    Ebefors, Kerstin; Johansson, Martin E.; Stefánsson, Bergur; Granqvist, Anna; Arnadottir, Margret; Berg, Anna-Lena; Nyström, Jenny; Haraldsson, Börje

    2010-01-01

    Membranous nephropathy is one of the most common causes of nephrotic syndrome in adults. Recent reports suggest that treatment with adrenocorticotropic hormone (ACTH) reduces proteinuria, but the mechanism of action is unknown. Here, we identified gene expression of the melanocortin receptor MC1R in podocytes, glomerular endothelial cells, mesangial cells, and tubular epithelial cells. Podocytes expressed most MC1R protein, which colocalized with synaptopodin but not with an endothelial-specific lectin. We treated rats with passive Heymann nephritis (PHN) with MS05, a specific MC1R agonist, which significantly reduced proteinuria compared with untreated PHN rats (P < 0.01). Furthermore, treatment with MC1R agonists improved podocyte morphology and reduced oxidative stress. In summary, podocytes express MC1R, and MC1R agonism reduces proteinuria, improves glomerular morphology, and reduces oxidative stress in nephrotic rats with PHN. These data may explain the proteinuria-reducing effects of ACTH observed in patients with membranous nephropathy, and MC1R agonists may provide a new therapeutic option for these patients. PMID:20507942

  5. Discovery of Vibegron: A Potent and Selective β3 Adrenergic Receptor Agonist for the Treatment of Overactive Bladder.

    PubMed

    Edmondson, Scott D; Zhu, Cheng; Kar, Nam Fung; Di Salvo, Jerry; Nagabukuro, Hiroshi; Sacre-Salem, Beatrice; Dingley, Karen; Berger, Richard; Goble, Stephen D; Morriello, Gregori; Harper, Bart; Moyes, Christopher R; Shen, Dong-Ming; Wang, Liping; Ball, Richard; Fitzmaurice, Aileen; Frenkl, Tara; Gichuru, Loise N; Ha, Sookhee; Hurley, Amanda L; Jochnowitz, Nina; Levorse, Dorothy; Mistry, Shruty; Miller, Randy R; Ormes, James; Salituro, Gino M; Sanfiz, Anthony; Stevenson, Andra S; Villa, Katherine; Zamlynny, Beata; Green, Stuart; Struthers, Mary; Weber, Ann E

    2016-01-28

    The discovery of vibegron, a potent and selective human β3-AR agonist for the treatment of overactive bladder (OAB), is described. An early-generation clinical β3-AR agonist MK-0634 (3) exhibited efficacy in humans for the treatment of OAB, but development was discontinued due to unacceptable structure-based toxicity in preclinical species. Optimization of a series of second-generation pyrrolidine-derived β3-AR agonists included reducing the risk for phospholipidosis, the risk of formation of disproportionate human metabolites, and the risk of formation of high levels of circulating metabolites in preclinical species. These efforts resulted in the discovery of vibegron, which possesses improved druglike properties and an overall superior preclinical profile compared to MK-0634. Structure-activity relationships leading to the discovery of vibegron and a summary of its preclinical profile are described. PMID:26709102

  6. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes.

    PubMed

    Christiansen, Elisabeth; Hansen, Steffen V F; Urban, Christian; Hudson, Brian D; Wargent, Edward T; Grundmann, Manuel; Jenkins, Laura; Zaibi, Mohamed; Stocker, Claire J; Ullrich, Susanne; Kostenis, Evi; Kassack, Matthias U; Milligan, Graeme; Cawthorne, Michael A; Ulven, Trond

    2013-05-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing. PMID:23687558

  7. α7 Nicotinic Receptor Agonists: Potential Therapeutic Drugs for Treatment of Cognitive Impairments in Schizophrenia and Alzheimer’s Disease

    PubMed Central

    Toyohara, Jun; Hashimoto, Kenji

    2010-01-01

    Accumulating evidence suggests that α7 nicotinic receptors (α7 nAChRs), a subtype of nAChRs, play a role in the pathophysiology of neuropsychiatric diseases, including schizophrenia and Alzheimer’s disease (AD). A number of psychopharmacological and genetic studies shown that α7 nAChRs play an important role in the deficits of P50 auditory evoked potential in patients with schizophrenia, and that (α nAChR agonists would be potential therapeutic drugs for cognitive impairments associated with P50 deficits in schizophrenia. Furthermore, some studies have demonstrated that α7 nAChRs might play a key role in the amyloid-β (Aβ)-mediated pathology of AD, and that α7 nAChR agonists would be potential therapeutic drugs for Aβ deposition in the brains of patients with AD. Interestingly, the altered expression of α7 nAChRs in the postmortem brain tissues from patients with schizophrenia and AD has been reported. Based on all these findings, selective α7 nAChR agonists can be considered potential therapeutic drugs for cognitive impairments in both schizophrenia and AD. In this article, we review the recent research into the role of α7 nAChRs in the pathophysiology of these diseases and into the potential use of novel α7 nAChR agonists as therapeutic drugs. PMID:21249164

  8. Apparent histological changes of adipocytes after treatment with CL 316,243, a β-3-adrenergic receptor agonist

    PubMed Central

    Ghorbani, Masoud; Teimourian, Shahram; Farzad, Reza; Asl, Nabiollah Namvar

    2015-01-01

    Background and objectives The objective of this experiment was to study the effect of CL 316,243 (CL) (a highly selective β3-adrenergic receptor agonist) on cellular changes occurring in retroperitoneal white adipose tissue (RWAT) of lean and obese rats. Methods Ten-month-old lean and obese Zucker rats were implanted subcutaneously with osmotic mini-pumps, infusing either saline or CL (1 mg/kg body weight/day) for 4 weeks. Results There was no effect of CL on food intake. However, the resting metabolic rate in lean and obese rats increased by 55% and 96% per rat, respectively. Total RWAT weight decreased in both lean and obese rats under influence of CL treatment by 65% and 38%, respectively. Total body weight and body fat were lower in CL treated rats. Detection of uncoupling protein 1 (UCP1) in RWAT was confirmed qualitatively by both immunohistochemistry and immunofluorescence using a rabbit anti rat UCP1 antibody which showed the appearance of a marked increase of this protein in the adipose tissue. Stained semi-thin sections (0.5 μm) also demonstrated abundant nuclei in multilocular adipocytes, in endothelial cells associated with the vasculature, and in interstitial cells. In CL-treated obese rats, a clustering of several multilocular cells around the periphery of a white adipocyte was seen. Conclusion These results indicate that treatment of both lean and obese Zucker rats with CL induces extensive remodeling of RWAT that includes shrinkage of white adipose tissue, appearance of abundant multilocular cells in RWAT together with the appearance of a marked increase of UCP, preferentially in lean rats. PMID:25709398

  9. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders

    PubMed Central

    Cheng, Jianjun; Kozikowski, Alan P.

    2016-01-01

    The serotonin 2C (5-HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. PMID:26507582

  10. Design, synthesis and Structure-activity relationship studies of new thiazole-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes.

    PubMed

    Li, Zheng; Qiu, Qianqian; Xu, Xue; Wang, Xuekun; Jiao, Lei; Su, Xin; Pan, Miaobo; Huang, Wenlong; Qian, Hai

    2016-05-01

    The free fatty acid receptor 1 (FFA1/GPR40) has attracted interest as a novel target for the treatment of type 2 diabetes. Several series of FFA1 agonists including TAK-875, the most advanced compound terminated in phase III studies due to concerns about liver toxicity, have been hampered by relatively high molecular weight and lipophilicity. Aiming to develop potent FFA1 agonists with low risk of liver toxicity by decreasing the lipophilicity, the middle phenyl of TAK-875 was replaced by 11 polar five-membered heteroaromatics. Subsequently, systematic exploration of SAR and application of molecular modeling, leads to the identification of compound 44, which was an excellent FFA1 agonist with robustly hypoglycemic effect both in normal and type 2 diabetic mice, low risks of hypoglycemia and liver toxicity even at the twice molar dose of TAK-875. Meanwhile, two important findings were noted. First, the methyl group in our thiazole series occupied a small hydrophobic subpocket which had no interactions with TAK-875. Furthermore, the agonistic activity revealed a good correlation with the dihedral angle between thiazole core and the terminal benzene ring. These results promote the understanding of ligand-binding pocket and might help to design more promising FFA1 agonists. PMID:26945112

  11. Non-Benzodiazepine Receptor Agonists for Insomnia.

    PubMed

    Becker, Philip M; Somiah, Manya

    2015-03-01

    Because of proven efficacy, reduced side effects, and less concern about addiction, non-benzodiazepine receptor agonists (non-BzRA) have become the most commonly prescribed hypnotic agents to treat onset and maintenance insomnia. First-line treatment is cognitive-behavioral therapy. When pharmacologic treatment is indicated, non-BzRA are first-line agents for the short-term and long-term management of transient and chronic insomnia related to adjustment, psychophysiologic, primary, and secondary causation. In this article, the benefits and risks of non-BzRA are reviewed, and the selection of a hypnotic agent is defined, based on efficacy, pharmacologic profile, and adverse events. PMID:26055674

  12. Glucagon-Like Peptide-1 Receptor Agonists: Beta-Cell Protection or Exhaustion?

    PubMed

    van Raalte, Daniël H; Verchere, C Bruce

    2016-07-01

    Glucagon-like peptide (GLP)-1 receptor agonists enhance insulin secretion and may improve pancreatic islet cell function. However, GLP-1 receptor (GLP-1R) agonist treatment may have more complex, and sometimes deleterious, effects on beta cells. We discuss the concepts of beta cell protection versus exhaustion for different GLP-1R agonists based on recent data. PMID:27160799

  13. Chronic Treatment with Novel Brain-Penetrating Selective NOP Receptor Agonist MT-7716 Reduces Alcohol Drinking and Seeking in the Rat

    PubMed Central

    Ciccocioppo, Roberto; Stopponi, Serena; Economidou, Daina; Kuriyama, Makoto; Kinoshita, Hiroshi; Heilig, Markus; Roberto, Marisa; Weiss, Friedbert; Teshima, Koji

    2014-01-01

    Since its discovery, the nociceptin/orphanin FQ (N/OFQ)-NOP receptor system has been extensively investigated as a promising target to treat alcoholism. Encouraging results obtained with the endogenous ligand N/OFQ stimulated research towards the development of novel brain-penetrating NOP receptor agonists with a pharmacological and toxicological profile compatible with clinical development. Here we describe the biochemical and alcohol-related behavioral effects of the novel NOP receptor agonist MT-7716. MT-7716 has high affinity for human NOP receptors expressed in HEK293 cells with a Ki value of 0.21 nM. MT-7716 concentration-dependently stimulated GTPγ35S binding with an EC50 value of 0.30 nM and its efficacy was similar to N/OFQ, suggesting that MT7716 is a full agonist at NOP receptors. In the two bottle choice test MT-7716 (0, 0.3, 1, and 3 mg/kg, bid) given orally for 14 days dose-dependently decreased voluntary alcohol intake in Marchigian Sardinian rats. The effect became gradually stronger following repeated administration, and was still significant 1 week after discontinuation of the drug. Oral naltrexone (30 mg/kg, bid) for 14 days also reduced ethanol intake; however, the effect decreased over the treatment period and rapidly disappeared when drug treatment was discontinued. MT-7716 is also effective for preventing reinstatement caused by both ethanol-associated environmental stimuli and stress. Finally, to investigate the effect of MT-7716 on alcohol withdrawal symptoms, Wistar rats were withdrawn from a 7-day alcohol liquid diet. MT-7716 significantly attenuated somatic alcohol withdrawal symptoms. Together these findings indicate that MT-7716 is a promising candidate for alcoholism treatment remaining effective with chronic administration. PMID:24863033

  14. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques.

    PubMed

    Kievit, Paul; Halem, Heather; Marks, Daniel L; Dong, Jesse Z; Glavas, Maria M; Sinnayah, Puspha; Pranger, Lindsay; Cowley, Michael A; Grove, Kevin L; Culler, Michael D

    2013-02-01

    The melanocortin-4 receptor (MC4R) is well recognized as an important mediator of body weight homeostasis. Activation of MC4R causes dramatic weight loss in rodent models, and mutations in human are associated with obesity. This makes MC4R a logical target for pharmacological therapy for the treatment of obesity. However, previous studies in rodents and humans have observed a broad array of side effects caused by acute treatment with MC4R agonists, including increased heart rate and blood pressure. We demonstrate that treatment with a highly-selective novel MC4R agonist (BIM-22493 or RM-493) resulted in transient decreases in food intake (35%), with persistent weight loss over 8 weeks of treatment (13.5%) in a diet-induced obese nonhuman primate model. Consistent with weight loss, these animals significantly decreased adiposity and improved glucose tolerance. Importantly, we observed no increases in blood pressure or heart rate with BIM-22493 treatment. In contrast, treatment with LY2112688, an MC4R agonist previously shown to increase blood pressure and heart rate in humans, caused increases in blood pressure and heart rate, while modestly decreasing food intake. These studies demonstrate that distinct melanocortin peptide drugs can have widely different efficacies and side effects. PMID:23048186

  15. Therapeutic Potential of 5-HT6 Receptor Agonists.

    PubMed

    Karila, Delphine; Freret, Thomas; Bouet, Valentine; Boulouard, Michel; Dallemagne, Patrick; Rochais, Christophe

    2015-10-22

    Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox. PMID:26099069

  16. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  17. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Darcet, Flavie; Gardier, Alain M; David, Denis J; Guilloux, Jean-Philippe

    2016-03-11

    Cognitive disturbances are often reported as serious invalidating symptoms in patients suffering from major depression disorders (MDD) and are not fully corrected by classical monoaminergic antidepressant drugs. If the role of 5-HT4 receptor agonists as cognitive enhancers is well established in naïve animals or in animal models of cognitive impairment, their cognitive effects in the context of stress need to be examined. Using a mouse model of anxiety/depression (CORT model), we reported that a chronic 5-HT4 agonist treatment (RS67333, 1.5mg/kg/day) restored chronic corticosterone-induced cognitive deficits, including episodic-like, associative and spatial learning and memory impairments. On the contrary, a chronic monoaminergic antidepressant drug treatment with fluoxetine (18mg/kg/day) only partially restored spatial learning and memory deficits and had no effect in the associative/contextual task. These results suggest differential mechanisms underlying cognitive effects of these drugs. Finally, the present study highlights 5-HT4 receptor stimulation as a promising therapeutic mechanism to alleviate cognitive symptoms related to MDD. PMID:26850572

  18. Treatment with a GnRH receptor agonist, but not the GnRH receptor antagonist degarelix, induces atherosclerotic plaque instability in ApoE(-/-) mice.

    PubMed

    Knutsson, Anki; Hsiung, Sabrina; Celik, Selvi; Rattik, Sara; Mattisson, Ingrid Yao; Wigren, Maria; Scher, Howard I; Nilsson, Jan; Hultgårdh-Nilsson, Anna

    2016-01-01

    Androgen-deprivation therapy (ADT) for prostate cancer has been associated with increased risk for development of cardiovascular events and recent pooled analyses of randomized intervention trials suggest that this primarily is the case for patients with pre-existing cardiovascular disease treated with gonadotropin-releasing hormone receptor (GnRH-R) agonists. In the present study we investigated the effects of the GnRH-R agonist leuprolide and the GnRH-R antagonist degarelix on established atherosclerotic plaques in ApoE(-/-) mice. A shear stress modifier was used to produce both advanced and more stable plaques in the carotid artery. After 4 weeks of ADT, increased areas of necrosis was observed in stable plaques from leuprolide-treated mice (median and IQR plaque necrotic area in control, degarelix and leuprolide-treated mice were 0.6% (IQR 0-3.1), 0.2% (IQR 0-4.4) and 11.0% (IQR 1.0-19.8), respectively). There was also evidence of increased inflammation as assessed by macrophage immunohistochemistry in the plaques from leuprolide-treated mice, but we found no evidence of such changes in plaques from control mice or mice treated with degarelix. Necrosis destabilizes plaques and increases the risk for rupture and development of acute cardiovascular events. Destabilization of pre-existing atherosclerotic plaques could explain the increased cardiovascular risk in prostate cancer patients treated with GnRH-R agonists. PMID:27189011

  19. Treatment with a GnRH receptor agonist, but not the GnRH receptor antagonist degarelix, induces atherosclerotic plaque instability in ApoE−/− mice

    PubMed Central

    Knutsson, Anki; Hsiung, Sabrina; Celik, Selvi; Rattik, Sara; Mattisson, Ingrid Yao; Wigren, Maria; Scher, Howard I.; Nilsson, Jan; Hultgårdh-Nilsson, Anna

    2016-01-01

    Androgen-deprivation therapy (ADT) for prostate cancer has been associated with increased risk for development of cardiovascular events and recent pooled analyses of randomized intervention trials suggest that this primarily is the case for patients with pre-existing cardiovascular disease treated with gonadotropin-releasing hormone receptor (GnRH-R) agonists. In the present study we investigated the effects of the GnRH-R agonist leuprolide and the GnRH-R antagonist degarelix on established atherosclerotic plaques in ApoE−/− mice. A shear stress modifier was used to produce both advanced and more stable plaques in the carotid artery. After 4 weeks of ADT, increased areas of necrosis was observed in stable plaques from leuprolide-treated mice (median and IQR plaque necrotic area in control, degarelix and leuprolide-treated mice were 0.6% (IQR 0–3.1), 0.2% (IQR 0–4.4) and 11.0% (IQR 1.0-19.8), respectively). There was also evidence of increased inflammation as assessed by macrophage immunohistochemistry in the plaques from leuprolide-treated mice, but we found no evidence of such changes in plaques from control mice or mice treated with degarelix. Necrosis destabilizes plaques and increases the risk for rupture and development of acute cardiovascular events. Destabilization of pre-existing atherosclerotic plaques could explain the increased cardiovascular risk in prostate cancer patients treated with GnRH-R agonists. PMID:27189011

  20. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  1. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  2. G Protein-Coupled Receptor 119 (GPR119) Agonists for the Treatment of Diabetes: Recent Progress and Prevailing Challenges.

    PubMed

    Ritter, Kurt; Buning, Christian; Halland, Nis; Pöverlein, Christoph; Schwink, Lothar

    2016-04-28

    In this Perspective, recent advances and challenges in the development of GPR119 agonists as new oral antidiabetic drugs will be discussed. Such agonists are expected to exhibit a low risk to induce hypoglycemia as well as to have a beneficial impact on body weight. Many pharmaceutical companies have been active in the search for GPR119 agonists, making it a highly competitive area in the industrial environment. Several GPR119 agonists have been entered into clinical studies, but many have failed either in phase I or II and none has progressed beyond phase II. Herein we describe the strategies chosen by the different medicinal chemistry teams in academia and the pharmaceutical industry to improve potency, physicochemical properties, pharmacokinetics, and the safety profile of GPR119 agonists in the discovery phase in order to improve the odds for successful development. PMID:26512410

  3. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease

    PubMed Central

    Farah, Benjamin L.; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M.; Young, Sarah P.; Koeberl, Dwight D.

    2014-01-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders.—Farah, B. L., Madden, L., Li, S., Nance, S., Bird, A., Bursac, N., Yen, P. M., Young, S. P., Koeberl, D. D. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with

  4. Physician perceptions of GLP-1 receptor agonists in the UK.

    PubMed

    Matza, Louis S; Curtis, Sarah E; Jordan, Jessica B; Adetunji, Omolara; Martin, Sherry A; Boye, Kristina S

    2016-05-01

    Objectives Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetes for almost a decade, and new treatments in this class have recently been introduced. The purpose of this study was to examine perceptions of GLP-1 receptor agonists among physicians who treat patients with type 2 diabetes in the UK. Methods A total of 670 physicians (226 diabetes specialists; 444 general practice [GP] physicians) completed a survey in 2014. Results Almost all physicians had prescribed GLP-1 receptor agonists (95.4% total sample; 99.1% specialists; 93.5% GP), most frequently to patients whose glucose levels are not adequately controlled with oral medications (85.9% of physicians) and obese/overweight patients (83.7%). Physicians' most common reasons for prescribing a GLP-1 receptor agonist were: associated with weight loss (65.8%), good efficacy (55.7%), less hypoglycemia risk than insulin (55.2%), not associated with weight gain (34.5%), and better efficacy than oral medications (32.7%). Factors that most commonly cause hesitation when prescribing this class were: not considered first line therapy according to guidelines (56.9%), injectable administration (44.6%), cost (36.7%), gastrointestinal side effects (33.4%), and risk of pancreatitis (26.7%). Almost all specialists (99.1%) believed they had sufficient knowledge to prescribe a GLP-1 receptor agonist, compared with 76.1% of GPs. Conclusions Results highlight the widespread use of GLP-1 receptor agonists for treatment of type 2 diabetes in the UK. However, almost a quarter of GPs reported that they do not have enough knowledge to prescribe GLP-1s, suggesting a need for increased dissemination of information to targeted groups of physicians. Study limitations were that the generalizability of the clinician sample is unknown; survey questions required clinicians to select answers from multiple response options rather than generating the responses themselves; and responses to this survey conducted

  5. Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-Preferring D3/D2 Receptor Partial Agonist.

    PubMed

    Citrome, Leslie

    2016-01-01

    Cariprazine is an antipsychotic medication and received approval by the U.S. Food and Drug Administration for the treatment of schizophrenia in September 2015. Cariprazine is a dopamine D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors. The recommended dose range of cariprazine for the treatment of schizophrenia is 1.5-6 mg/d; the starting dose of 1.5 mg/d is potentially therapeutic. Cariprazine is administered once daily and is primarily metabolized in the liver through the CYP3A4 enzyme system and, to a lesser extent, by CYP2D6. There are two active metabolites of note, desmethyl-cariprazine and didesmethyl-cariprazine; the latter's half-life is substantially longer than that for cariprazine and systemic exposure to didesmethyl-cariprazine is several times higher than that for cariprazine. Three positive, 6-week, Phase 2/3, randomized controlled trials in acute schizophrenia demonstrated superiority of cariprazine over placebo. Pooled responder rates were 31% for cariprazine 1.5-6 mg/d vs. 21% for placebo, resulting in a number needed to treat (NNT) of 10. In a 26-72 week, randomized withdrawal study, significantly fewer patients relapsed in the cariprazine group compared with placebo (24.8% vs. 47.5%), resulting in an NNT of 5. The most commonly encountered adverse events (incidence ≥5% and at least twice the rate of placebo) are extrapyramidal symptoms (number needed to harm [NNH] 15 for cariprazine 1.5-3 mg/d vs. placebo and NNH 10 for 4.5-6 mg/d vs. placebo) and akathisia (NNH 20 for 1.5-3 mg/d vs. placebo and NNH 12 for 4.5-6 mg/d vs. placebo). Short-term weight gain appears small (approximately 8% of patients receiving cariprazine 1.5-6 mg/d gained ≥7% body weight from baseline, compared with 5% for those randomized to placebo, resulting in an NNH of 34). Cariprazine is associated with no clinically

  6. Hyperthermia induced by the dopamine D1 receptor agonist SK&F38393 in combination with the dopamine D2 receptor agonist talipexole in the rat.

    PubMed

    Nagashima, M; Yamada, K; Kimura, H; Matsumoto, S; Furukawa, T

    1992-12-01

    The present experiments were performed to investigate the effects of dopamine D1 receptor agonists given alone or in combination with dopamine D2 receptor agonists on body temperature in rats. The selective dopamine D1 receptor agonist, 1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SK&F38393), produced hyperthermia. However, the dopamine D2 receptor agonist, B-HT 920 (talipexole), and the newly synthesized dopamine D2 receptor agonist, (S)-2-amino-4,5,6,7-tetrahydro-6-propylamino-benzothiazole (SND 919), did not change the temperature. Interestingly, the SK&F38393-induced hyperthermia was enhanced by talipexole and SND 919. The drastic hyperthermia induced by combined administration of dopamine D1 and D2 receptor agonists was blocked by either the dopamine D1 receptor antagonist, SCH23390, or the dopamine D2 receptor antagonist, spiperone. On the other hand, treatment with prazosin, yohimbine, propranolol, scopolamine, or methysergide failed to affect the marked hyperthermia. The present results suggest that a functional link between dopamine D1 and D2 receptors may be synergistic in the regulation of body temperature and that concurrent stimulation of both dopamine D1 and D2 receptors thereby produces marked hyperthermia in the rat. PMID:1361996

  7. Impact of Efficacy at the μ-Opioid Receptor on Antinociceptive Effects of Combinations of μ-Opioid Receptor Agonists and Cannabinoid Receptor Agonists

    PubMed Central

    Maguire, David R.

    2014-01-01

    Cannabinoid receptor agonists, such as Δ9-tetrahydrocannabinol (Δ9-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ9-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ9-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ9-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ9-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain. PMID:25194020

  8. Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner.

    PubMed

    Barrett, Catherine E; Modi, Meera E; Zhang, Billy C; Walum, Hasse; Inoue, Kiyoshi; Young, Larry J

    2014-10-01

    The melanocortin receptor (MCR) system has been studied extensively for its role in feeding and sexual behavior, but effects on social behavior have received little attention. α-MSH interacts with neural systems involved in sociality, including oxytocin, dopamine, and opioid systems. Acute melanotan-II (MTII), an MC3/4R agonist, potentiates brain oxytocin (OT) release and facilitates OT-dependent partner preference formation in socially monogamous prairie voles. Here we examined the long-term impact of early-life MCR stimulation on hypothalamic neuronal activity and social development in prairie voles. Male and female voles were given daily subcutaneous injections of 10 mg/kg MTII or saline between postnatal days (PND) 1-7. Neonatally-treated males displayed a reduction in initiated play fighting bouts as juveniles compared to control males. Neonatal exposure to MTII facilitated partner preference formation in adult females, but not males, after a brief cohabitation with an opposite-sex partner. Acute MTII injection elicited a significant burst of the immediate early gene EGR-1 immunoreactivity in hypothalamic OT, vasopressin, and corticotrophin releasing factor neurons, when tested in PND 6-7 animals. Daily neonatal treatment with 1 mg/kg of a more selective, brain penetrant MC4R agonist, PF44687, promoted adult partner preferences in both females and males compared with vehicle controls. Thus, developmental exposure to MCR agonists lead to a persistent change in social behavior, suggestive of structural or functional changes in the neural circuits involved in the formation of social relationships. PMID:24923239

  9. A Toll-Like Receptor 5 Agonist Improves the Efficacy of Antibiotics in Treatment of Primary and Influenza Virus-Associated Pneumococcal Mouse Infections

    PubMed Central

    Porte, Rémi; Fougeron, Delphine; Muñoz-Wolf, Natalia; Tabareau, Julien; Georgel, Anne-France; Wallet, Fréderic; Paget, Christophe; Trottein, François; Chabalgoity, José A.; Carnoy, Christophe

    2015-01-01

    Prophylactic intranasal administration of the Toll-like receptor 5 (TLR5) agonist flagellin protects mice against respiratory pathogenic bacteria. We hypothesized that TLR5-mediated stimulation of lung immunity might improve the therapeutic index of antibiotics for the treatment of Streptococcus pneumoniae respiratory infections in mice. Intranasal administration of flagellin was combined with either oral administration of amoxicillin or intraperitoneal injection of trimethoprim-sulfamethoxazole to treat S. pneumoniae-infected animals. Compared with standalone treatments, the combination of antibiotic and flagellin resulted in a lower bacterial load in the lungs and greater protection against S. pneumoniae dissemination and was associated with an early increase in neutrophil infiltration in the airways. The antibiotic-flagellin combination treatment was, however, not associated with any exacerbation of inflammation. Moreover, combination treatment was more efficacious than standalone antibiotic treatments in the context of post-influenza virus pneumococcal infection. Lastly, TLR5 signaling was shown to be mandatory for the efficacy of the combined antibacterial therapy. This report is the first to show that combining antibiotic treatment with the stimulation of mucosal innate immunity is a potent antibacterial strategy against pneumonia. PMID:26195519

  10. Design, synthesis and structure-activity relationship studies of novel phenoxyacetamide-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes.

    PubMed

    Li, Zheng; Wang, Xuekun; Xu, Xue; Yang, Jianyong; Qiu, Qianqian; Qiang, Hao; Huang, Wenlong; Qian, Hai

    2015-10-15

    The free fatty acid receptor 1 (FFA1) has attracted extensive attention as a novel antidiabetic target in the last decade. Several FFA1 agonists reported in the literature have been suffered from relatively high molecular weight and lipophilicity. We have previously reported the FFA1 agonist 1. Based on the common amide structural characteristic of SAR1 and NIH screened compound, we here describe the continued structure-activity exploration to decrease the molecular weight and lipophilicity of the compound 1 series by converting various amide linkers. All of these efforts lead to the discovery of the preferable lead compound 18, a compound with considerable agonistic activity, high LE and LLE values, lower lipophilicity than previously reported agonists, and appreciable efficacy on glucose tolerance in both normal and type 2 diabetic mice. PMID:26420383

  11. Pharmacological characterization of FE 202158, a novel, potent, selective, and short-acting peptidic vasopressin V1a receptor full agonist for the treatment of vasodilatory hypotension.

    PubMed

    Laporte, Régent; Kohan, Arash; Heitzmann, Joshua; Wisniewska, Halina; Toy, Jeannine; La, Erin; Tariga, Hiroe; Alagarsamy, Sudarkodi; Ly, Brian; Dykert, John; Qi, Steve; Wisniewski, Kazimierz; Galyean, Robert; Croston, Glenn; Schteingart, Claudio D; Rivière, Pierre J-M

    2011-06-01

    FE 202158, ([Phe(2),Ile(3),Hgn(4),Orn(iPr)(8)]vasopressin, where Hgn is homoglutamine and iPr is isopropyl), a peptidic analog of the vasoconstrictor hormone [Arg(8)]vasopressin (AVP), was designed to be a potent, selective, and short-acting vasopressin type 1a receptor (V(1a)R) agonist. In functional reporter gene assays, FE 202158 was a potent and selective human V(1a)R agonist [EC(50) = 2.4 nM; selectivity ratio of 1:142:1107:440 versus human vasopressin type 1b receptor, vasopressin type 2 receptor (V(2)R), and oxytocin receptor, respectively] contrasting with AVP's lack of selectivity, especially versus the V(2)R (selectivity ratio of 1:18:0.2:92; human V(1a)R EC(50) = 0.24 nM). This activity and selectivity profile was confirmed in radioligand binding assays. FE 202158 was a potent vasoconstrictor in the isolated rat common iliac artery ex vivo (EC(50) = 3.6 nM versus 0.8 nM for AVP) and reduced rat ear skin blood flow after intravenous infusion in vivo (ED(50) = 4.0 versus 3.4 pmol/kg/min for AVP). The duration of its vasopressor effect by intravenous bolus in rats was as short as AVP at submaximally effective doses. FE 202158 had no V(2)R-mediated antidiuretic activity in rats by intravenous infusion at its ED(50) for reduction of ear skin blood flow, in contrast with the pronounced antidiuretic effect of AVP. Thus, FE 202158 seems suitable for treatment of conditions where V(1a)R activity is desirable but V(2)R activity is potentially deleterious, such as vasodilatory hypotension in septic shock. In addition to the desirable selectivity profile, its short-acting nature should allow dose titration with rapid onset and offset of action to optimize vasoconstriction efficacy and safety. PMID:21411496

  12. NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat.

    PubMed

    Iderberg, H; McCreary, A C; Varney, M A; Kleven, M S; Koek, W; Bardin, L; Depoortère, R; Cenci, M A; Newman-Tancredi, A

    2015-09-01

    L-DOPA is the gold-standard treatment for Parkinson's disease (PD), but induces troublesome dyskinesia after prolonged treatment. This is associated with the 'false neurotransmitter' conversion of L-DOPA to dopamine by serotonin neurons projecting from the raphe to the dorsal striatum. Reducing their activity by targeting pre-synaptic 5-HT1A receptors should thus be an attractive therapeutic strategy, but previous 5-HT1A agonists have yielded disappointing results. Here, we describe the activity of a novel, highly selective and potent 5-HT1A agonist, NLX-112 (also known as befiradol or F13640) in rat models relevant to PD and its associated affective disorders. NLX-112 (0.16 mg/kg, i.p.) potently and completely reversed haloperidol-induced catalepsy in intact rats and abolished L-DOPA-induced Abnormal Involuntary Movements (AIMs) in hemiparkinsonian rats, an effect that was reversed by the selective 5-HT1A antagonist, WAY100635. In microdialysis experiments, NLX-112 profoundly decreased striatal 5-HT extracellular levels, indicative of inhibition of serotonergic function. NLX-112 also blunted the L-DOPA-induced surge in dopamine levels on the lesioned side of the brain, an action that likely underlies its anti-dyskinetic effects. NLX-112 (0.16 mg/kg, i.p.) robustly induced rotations in hemiparkinsonian rats, suggesting that it has a motor facilitatory effect. Rotations were abolished by WAY100635 and were ipsilateral to the lesioned side, suggesting a predominant stimulation of the dopamine system on the non-lesioned side of the brain. NLX-112 also efficaciously reduced immobility time in the forced swim test (75% reduction at 0.16 mg/kg, i.p.) and eliminated stress-induced ultrasonic vocalization at 0.08 mg/kg, i.p., effects consistent with potential antidepressant- and anxiolytic-like properties. In other tests, NLX-112 (0.01-0.16 mg/kg, i.p.) did not impair the ability of L-DOPA to rescue forepaw akinesia in the cylinder test but decreased rotarod performance

  13. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  14. Randomized clinical trial: effect of the 5-HT4 receptor agonist revexepride on reflux parameters in patients with persistent reflux symptoms despite PPI treatment

    PubMed Central

    Tack, J; Zerbib, F; Blondeau, K; des Varannes, S B; Piessevaux, H; Borovicka, J; Mion, F; Fox, M; Bredenoord, A J; Louis, H; Dedrie, S; Hoppenbrouwers, M; Meulemans, A; Rykx, A; Thielemans, L; Ruth, M

    2015-01-01

    Background Approximately, 20–30% of patients with gastro-esophageal reflux disease (GERD) experience persistent symptoms despite treatment with proton pump inhibitors (PPIs). These patients may have underlying dysmotility; therefore, targeting gastric motor dysfunction in addition to acid inhibition may represent a new therapeutic avenue. The aim of this study was to assess the pharmacodynamic effect of the prokinetic agent revexepride (a 5-HT4 receptor agonist) in patients with GERD who have persistent symptoms despite treatment with a PPI. Methods This was a phase II, exploratory, multicenter, randomized, placebo-controlled, double-blind, parallel-group study in patients with GERD who experienced persistent symptoms while taking a stable dose of PPIs (http://ClinicalTrials.gov identifier: NCT01370863). Patients were randomized to either revexepride (0.5 mg, three times daily) or matching placebo for 4 weeks. Reflux events and associated characteristics were assessed by pH/impedance monitoring and disease symptoms were assessed using electronic diaries and questionnaires. Key Results In total, 67 patients were enrolled in the study. There were no significant differences between study arms in the number, the mean proximal extent or the bolus clearance times of liquid-containing reflux events. Changes from baseline in the number of heartburn, regurgitation, and other symptom events were minimal for each treatment group and no clear trends were observed. Conclusions & Inferences No clear differences were seen in reflux parameters between the placebo and revexepride groups. PMID:25530111

  15. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  16. Estrogen receptor beta agonists in neurobehavioral investigations.

    PubMed

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research. PMID:18600582

  17. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs.

    PubMed

    Kaplan, G B; Sears, M T

    1996-01-01

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. Adenosine receptors and their functions have been shown to be regulated by chronic opiate treatment. This study examines the role of adenosine receptors in the expression of opiate withdrawal behaviors. The effects of single doses of parenterally administered adenosine receptor subtype-selective agonists and antagonists on opiate withdrawal signs in morphine-dependent mice were measured. Mice received subcutaneous morphine pellet treatment for 72 h and then underwent naloxone-precipitated withdrawal after pretreatment with adenosinergic agents. Adenosine agonists attenuated different opiate withdrawal signs. The A1 agonist R-N6(phenylisopropyl)adenosine (0, 0.01, 0.02 mg/kg, IP) significantly reduced wet dog shakes and withdrawal diarrhea, while the A2a-selective agonist 2-p-(2-carboxethyl)phenylethylamino-5'-N-ethylcarboxamido adenosine or CGS 21680 (0, 0.01, 0.05 mg/kg, IP) significantly inhibited teeth chattering and forepaw treads. Adenosine receptor antagonists enhanced different opiate withdrawal signs. The adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (0, 1, 10 mg/kg, IP) significantly increased weight loss and the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (0, 1 and 10 mg/kg, IP) enhanced wet dog shakes and withdrawal diarrhea. Treatment effects of adenosinergic agents were not due to nonspecific motor effects, as demonstrated by activity monitoring studies. These results support a role for adenosine receptors in the expression of opiate withdrawal and suggest the potential utility of adenosine agonists in its treatment. PMID:8741956

  18. The pharmacological profile and clinical prospects of the oral 5-HT1F receptor agonist lasmiditan in the acute treatment of migraine

    PubMed Central

    Israel, Heike; Neeb, Lars

    2015-01-01

    More than 20 years have passed without the launch of a new substance class for acute migraine therapy. Triptans were the latest class of substances which successfully passed all developmental stages with a significant antimigraine efficacy and a sufficient safety profile. New drugs with a better adverse event profile and at least similar efficacy are needed for migraine subjects who cannot tolerate triptans for attack treatment. Lasmiditan is a novel highly specific 5-HT1F receptor agonist currently in clinical trials for acute migraine therapy and devoid of vasoconstriction in coronary arteries as determined in a surrogate assay. In both phase II randomized, placebo-controlled trials in acute migraine the primary endpoint was met. For the intravenous formulation a clear dose-dependent effect on headaches could be determined. Lasmiditan tablets in doses of 50–400 mg show significant headache relief after 2 hours compared with placebo and improved accompanying symptoms. This substance is chemically clearly different from other antimigraine drugs, which is also reflected by its dose-dependent adverse event profile chiefly including dizziness, vertigo, paresthesia and fatigue. Adverse events are usually linked to the central nervous system. Future phase III clinical trials with an active triptan comparator or in a preferential trial design will allow a better comparison of lasmiditan and triptans. They will also determine whether lasmiditan will become available to the migraine patient. PMID:25584073

  19. Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists.

    PubMed

    Lin, Hsiang-Ru; Chou, Tsung-Hsien; Huang, Din-Wen; Chen, Ih-Sheng

    2014-09-01

    Cryptochinones A-D are tetrahydroflavanones isolated from the leaves of Cryptocarya chinensis, an evergreen tree whose extracts are believed to have a variety of health benefits. The origin of their possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and for hyperglycemia. We studied whether cryptochinones A-D, which are structurally similar to known FXR ligands, may act at this target. Indeed, in mammalian one-hybrid and transient transfection reporter assays, cryptochinones A-D transactivated FXR to modulate promoter action including GAL4, SHP, CYP7A1, and PLTP promoters in dose-dependent manner, while they exhibited similar agonistic activity as chenodeoxycholic acid (CDCA), an endogenous FXR agonist. Through molecular modeling docking studies we evaluated their ability to bind to the FXR ligand binding pocket. Our results indicate that cryptochinones A-D can behave as FXR agonists. PMID:25127166

  20. Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA(1)/GPR40), a potential target for the treatment of type II diabetes.

    PubMed

    Christiansen, Elisabeth; Urban, Christian; Merten, Nicole; Liebscher, Kathrin; Karlsen, Kasper K; Hamacher, Alexandra; Spinrath, Andreas; Bond, Andrew D; Drewke, Christel; Ullrich, Susanne; Kassack, Matthias U; Kostenis, Evi; Ulven, Trond

    2008-11-27

    A series of 4-phenethynyldihydrocinnamic acid agonists of the free fatty acid receptor 1 (FFA(1)) has been discovered and explored. The preferred compound 20 (TUG-424, EC(50) = 32 nM) significantly increased glucose-stimulated insulin secretion at 100 nM and may serve to explore the role of FFA(1) in metabolic diseases such as diabetes or obesity. PMID:18947221

  1. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.

    PubMed

    Farah, Benjamin L; Madden, Lauran; Li, Songtao; Nance, Sierra; Bird, Andrew; Bursac, Nenad; Yen, Paul M; Young, Sarah P; Koeberl, Dwight D

    2014-05-01

    Enzyme or gene replacement therapy with acid α-glucosidase (GAA) has achieved only partial efficacy in Pompe disease. We evaluated the effect of adjunctive clenbuterol treatment on cation-independent mannose-6-phosphate receptor (CI-MPR)-mediated uptake and intracellular trafficking of GAA during muscle-specific GAA expression with an adeno-associated virus (AAV) vector in GAA-knockout (KO) mice. Clenbuterol, which increases expression of CI-MPR in muscle, was administered with the AAV vector. This combination therapy increased latency during rotarod and wirehang testing at 12 wk, in comparison with vector alone. The mean urinary glucose tetrasaccharide (Glc4), a urinary biomarker, was lower in GAA-KO mice following combination therapy, compared with vector alone. Similarly, glycogen content was lower in cardiac and skeletal muscle following 12 wk of combination therapy in heart, quadriceps, diaphragm, and soleus, compared with vector alone. These data suggested that clenbuterol treatment enhanced trafficking of GAA to lysosomes, given that GAA was expressed within myofibers. The integral role of CI-MPR was demonstrated by the lack of effectiveness from clenbuterol in GAA-KO mice that lacked CI-MPR in muscle, where it failed to reverse the high glycogen content of the heart and diaphragm or impaired wirehang performance. However, the glycogen content of skeletal muscle was reduced by the addition of clenbuterol in the absence of CI-MPR, as was lysosomal vacuolation, which correlated with increased AKT signaling. In summary, β2-agonist treatment enhanced CI-MPR-mediated uptake and trafficking of GAA in mice with Pompe disease, and a similarly enhanced benefit might be expected in other lysosomal storage disorders. PMID:24448824

  2. Synthesis and SAR of Imidazo[1,5-a]pyridine derivatives as 5-HT4 receptor partial agonists for the treatment of cognitive disorders associated with Alzheimer's disease.

    PubMed

    Nirogi, Ramakrishna; Mohammed, Abdul Rasheed; Shinde, Anil K; Bogaraju, Narsimha; Gagginapalli, Shankar Reddy; Ravella, Srinivasa Rao; Kota, Laxman; Bhyrapuneni, Gopinadh; Muddana, Nageswara Rao; Benade, Vijay; Palacharla, Raghava Chowdary; Jayarajan, Pradeep; Subramanian, Ramkumar; Goyal, Vinod Kumar

    2015-10-20

    Alzheimer's disease (AD) is a neurodegenerative disease which has a higher prevalence and incidence in older people. The need for improved AD therapies is unmet. The 5-hydroxytryptamine4 receptor (5-HT4R) partial agonists may be of benefit for both the symptomatic and disease-modifying treatment of cognitive disorders associated with AD. Herein, we report the design, synthesis and SAR of imidazo[1,5-a] pyridine derivatives as 5-HT4R partial agonists. The focused SAR, optimization of ADME properties resulted the discovery of compound 5a as potent, selective, brain penetrant 5-HT4 partial agonist as a lead compound with good ADME properties and efficacy in both symptomatic and disease modifying animal models of cognition. PMID:26363507

  3. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  4. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  5. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis.

    PubMed

    Cheng, Huawei; Shang, Yuping; Jiang, Ling; Shi, Tian-lu; Wang, Lin

    2016-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease and there is no effective therapy for it. Peroxisome proliferators activated receptor-gamma (PPAR-γ) agonists is a promising therapeutic approach for AD and has been widely studied recently, but no consensus was available up to now. To clarify this point, a meta-analysis was performed. We searched MEDLINE, EMBASE, Cochrane Central database, PUBMED, Springer Link database, SDOS database, CBM, CNKI and Wan fang database by December 2014. Standardized mean difference (SMD), relative risk (RR) and 95% confidence interval (CI) were calculated to assess the strength of the novel therapeutics for AD and mild-to-moderate AD. A total of nine studies comprising 1314 patients and 1311 controls were included in the final meta-analysis. We found the effect of PPAR-γ agonists on Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) scores by using STATA software. There was no evidence for obvious publication bias in the overall meta-analysis. There is insufficient evidence of statistically incognition of AD and mild-to-moderate AD patients have been improved who were treated with PPAR-γ agonists in our research. However, PPAR-γ agonists may be a promising therapeutic approach in future, especially pioglitazone, with large-scale randomized controlled trials to confirm. PMID:26001206

  6. Randomized, Double-Blind, Placebo-Controlled Study of Encenicline, an α7 Nicotinic Acetylcholine Receptor Agonist, as a Treatment for Cognitive Impairment in Schizophrenia

    PubMed Central

    Keefe, Richard SE; Meltzer, Herbert A; Dgetluck, Nancy; Gawryl, Maria; Koenig, Gerhard; Moebius, Hans J; Lombardo, Ilise; Hilt, Dana C

    2015-01-01

    Encenicline is a novel, selective α7 nicotinic acetylcholine receptor agonist in development for treating cognitive impairment in schizophrenia and Alzheimer's disease. A phase 2, double-blind, randomized, placebo-controlled, parallel-design, multinational study was conducted. Patients with schizophrenia on chronic stable atypical antipsychotics were randomized to encenicline 0.27 or 0.9 mg once daily or placebo for 12 weeks. The primary efficacy end point was the Overall Cognition Index (OCI) score from the CogState computerized battery. Secondary end points include MATRICS Consensus Cognitive Battery (MCCB) (in US patients), the Schizophrenia Cognition Rating Scale (SCoRS) total score, SCoRS global rating, and Positive and Negative Syndrome Scale (PANSS) total and subscale and cognition factor scores. Of 319 randomized patients, 317 were included in the safety population, and 307 were included in the intent-to-treat population. Notable trends in improvement were demonstrated across all cognition scales. For the OCI score, the LS mean difference for encenicline 0.27 mg vs placebo was significant (Cohen's d=0.257; P=0.034). Mean SCoRS total scores decreased showing improvement in function over time, and the difference was significant for encenicline 0.9 mg vs placebo (P=0.011). Furthermore, the difference between encenicline 0.9 mg and placebo was significant for the PANSS Cognition Impairment Domain (P=0.0098, Cohen's d=0.40) and for the PANSS Negative scale (P=0.028, Cohen's d=0.33). Treatment-emergent adverse events were reported at similar frequencies across all treatment groups (39.0% with placebo, 23.4% with encenicline 0.27 mg, and 33.3% with encenicline 0.9 mg). Overall, encenicline was generally well tolerated and demonstrated clinically meaningful improvements in cognition and function in patients with schizophrenia. PMID:26089183

  7. Sustained wash-resistant receptor activation responses of GPR119 agonists.

    PubMed

    Hothersall, J Daniel; Bussey, Charlotte E; Brown, Alastair J; Scott, James S; Dale, Ian; Rawlins, Philip

    2015-09-01

    G protein-coupled receptor 119 (GPR119) is involved in regulating metabolic homoeostasis, with GPR119 agonists targeted for the treatment of type-2 diabetes and obesity. Using the endogenous agonist oleoylethanolamide and a number of small molecule synthetic agonists we have investigated the temporal dynamics of receptor signalling. Using both a dynamic luminescence biosensor-based assay and an endpoint cAMP accumulation assay we show that agonist-driven desensitization is not a major regulatory mechanism for GPR119 despite robust activation responses, regardless of the agonist used. Temporal analysis of the cAMP responses demonstrated sustained signalling resistant to washout for some, but not all of the agonists tested. Further analysis indicated that the sustained effects of one synthetic agonist AR-231,453 were consistent with a role for slow dissociation kinetics. In contrast, the sustained responses to MBX-2982 and AZ1 appeared to involve membrane deposition. We also detect wash-resistant responses to AR-231,453 at the level of physiologically relevant responses in an endogenous expression system (GLP-1 secretion in GLUTag cells). In conclusion, our findings indicate that in a recombinant expression system GPR119 activation is sustained, with little evidence of pronounced receptor desensitization, and for some ligands persistent agonist responses continue despite removal of excess agonist. This provides novel understanding of the temporal responses profiles of potential drug candidates targetting GPR119, and highlights the importance of carefully examining the the mechanisms through which GPCRs generate sustained responses. PMID:26101059

  8. Antinociceptive properties of selective MT(2) melatonin receptor partial agonists.

    PubMed

    López-Canul, Martha; Comai, Stefano; Domínguez-López, Sergio; Granados-Soto, Vinicio; Gobbi, Gabriella

    2015-10-01

    Melatonin is a neurohormone involved in the regulation of both acute and chronic pain whose mechanism is still not completely understood. We have recently demonstrated that selective MT2 melatonin receptor partial agonists have antiallodynic properties in animal models of chronic neuropathic pain by modulating ON/OFF cells of the descending antinociceptive system. Here, we examined the antinociceptive properties of the selective MT2 melatonin receptor partial agonists N-{2-[(3-methoxyphenyl)phenylamino]ethyl}acetamide (UCM765) and N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino]ethyl}acetamide (UCM924) in two animal models of acute and inflammatory pain: the hot-plate and formalin tests. UCM765 and UCM924 (5-40 mg/kg, s.c.) dose-dependently increased the temperature of the first hind paw lick in the hot-plate test, and decreased the total time spent licking the injected hind paw in the formalin test. Antinociceptive effects of UCM765 and UCM924 were maximal at the dose of 20mg/kg. At this dose, the effects of UCM765 and UCM924 were similar to those produced by 200 mg/kg acetaminophen in the hot-plate test, and by 3 mg/kg ketorolac or 150 mg/kg MLT in the formalin test. Notably, antinociceptive effects of the two MT2 partial agonists were blocked by the pre-treatment with the MT2 antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT, 10 mg/kg) in both paradigms. These results demonstrate the antinociceptive properties of UCM765 and UCM924 in acute and inflammatory pain models and corroborate the concept that MT2 melatonin receptor may be a novel target for analgesic drug development. PMID:26162699

  9. Electrospray Encapsulation of Toll-Like Receptor Agonist Resiquimod in Polymer Microparticles for the Treatment of Visceral Leishmaniasis

    PubMed Central

    Duong, Anthony D.; Sharma, Sadhana; Peine, Kevin J.; Gupta, Gaurav; Satoskar, Abhay R.; Bachelder, Eric M.; Wyslouzil, Barbra E.; Ainslie, Kristy M.

    2013-01-01

    Leishmaniasis is a disease caused by the intracellular protozoan, Leishmania. A current treatment for cutaneous leishmaniasis involves the delivery of imidazoquinolines via a topical cream. However, there are no parenteral formulations of imidazoquinolines for the most deadly version of the disease, visceral leishmaniasis. This work investigates the use of electrospray to encapsulate the imidazoquinoline adjuvant resiquimod in acid sensitive microparticles composed of acetalated dextran (Ac-DEX) or Ac-DEX/Tween blends. The particles were characterized and tested both in vitro and in vivo. Solutions of Ac-DEX and resiquimod in ethanol were electrosprayed to generate approximately 2 µm Ac-DEX particles containing resiquimod with an encapsulation efficiency of 85%. To prevent particle aggregation, blends of Ac-DEX with Tween 20 and Tween 80 were investigated. Tween 80 was then blended with the Ac-DEX at ~10% (w/w) of total polymer and particles containing resiquimod were formed via electrospray with encapsulation efficiencies between 40% and 60%. In vitro release profiles of resiquimod from Ac-DEX/Tween 80 particles exhibited the acid-sensitive nature of Ac-DEX, with 100% drug release after 8 h at pH 5 (phagosomal pH) and after 48 h at pH 7.4 (physiological pH). Treatment with Ac-DEX/Tween 80 particles elicited significantly greater immune response in RAW macrophages over free drug. When injected intravenously into mice inoculated with Leishmania, parasite load reduced significantly in the bone marrow compared to blank particles and phosphate-buffered saline controls. Overall, electrospray appears to offer an elegant, scalable way to encapsulate adjuvant into an acid sensitive delivery vehicle for use in treating visceral leishmaniasis. PMID:23320733

  10. The adenosine A2A receptor antagonist, istradefylline enhances anti-parkinsonian activity induced by combined treatment with low doses of L-DOPA and dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-11-01

    The adenosine A2A receptor antagonist, istradefylline improves motor function in patients with advanced Parkinson's disease (PD) optimally treated with a combination of L-DOPA and a dopamine agonist without increasing the risk of troublesome dyskinesia. However, the effects of istradefylline on motor function when administered in combination with low dose of L-DOPA and dopamine agonists as occurs in early PD are unknown. We investigated whether istradefylline enhances the combined anti-parkinsonian effects of a suboptimal dose of L-DOPA and a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Threshold doses of ropinirole (0.025-0.075 mg/kg p.o.) and pergolide (0.01 mg/kg p.o.) produced a weak anti-parkinsonian effect. Co-administration of a suboptimal dose of L-DOPA (2.5mg/kg p.o.) with threshold doses of the dopamine agonists enhanced their anti-parkinsonian effect that led to increased 'ON' time without dyskinesia appearing. Administering istradefylline (10mg/kg p.o.) with the threshold doses of dopamine agonists and the suboptimal dose of L-DOPA in a triple combination caused a further enhancement of the anti-parkinsonian response but dyskinesia was still absent. In early PD, dopamine agonists are often used as first-line monotherapy, but efficacy is usually lost within a few years, at which time L-DOPA is added but with the risk of dyskinesia appearance. These results show that istradefylline is effective in improving motor function in combination with low dose dopaminergic drug treatment without provoking dyskinesia. PMID:26415982

  11. Use of Thrombopoietin Receptor Agonists in Childhood Immune Thrombocytopenia

    PubMed Central

    Garzon, Angelica Maria; Mitchell, William Beau

    2015-01-01

    Most children with immune thrombocytopenia (ITP) will have spontaneous remission regardless of therapy, while about 20% will go on to have chronic ITP. In those children with chronic ITP who need treatment, standard therapies for acute ITP may have adverse effects that complicate their long-term use. Thus, alternative treatment options are needed for children with chronic ITP. Thrombopoietin receptor agonists (TPO-RA) have been shown to be safe and efficacious in adults with ITP, and represent a new treatment option for children with chronic ITP. One TPO-RA, eltrombopag, is now approved for children. Clinical trials in children are ongoing and data are emerging on safety and efficacy. This review will focus on the physiology of TPO-RA, their clinical use in children, as well as the long-term safety issues that need to be considered when using these agents. PMID:26322297

  12. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  13. Characterizing novel metabolic pathways of melatonin receptor agonist agomelatine using metabolomic approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agomelatine (AGM), an analog of melatonin, is a potential agonist at melatonin receptors 1/2 and a selective antagonist at 5-hydroxytryptamine 2C receptors. AGM is widely used for the treatment of major depressive episodes in adults. However, multiple adverse effects associated with AGM have been re...

  14. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  15. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-01

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. PMID:21968142

  16. Glucagon-Like Peptide-1 Receptor Agonist Treatment Prevents Glucocorticoid-Induced Glucose Intolerance and Islet-Cell Dysfunction in Humans

    PubMed Central

    van Raalte, Daniël H.; van Genugten, Renate E.; Linssen, Margot M.L.; Ouwens, D. Margriet; Diamant, Michaela

    2011-01-01

    OBJECTIVE Glucocorticoids (GCs) are regarded as diabetogenic because they impair insulin sensitivity and islet-cell function. This study assessed whether treatment with the glucagon-like peptide receptor agonist (GLP-1 RA) exenatide (EXE) could prevent GC-induced glucose intolerance. RESEARCH DESIGN AND METHODS A randomized, placebo-controlled, double-blind, crossover study in eight healthy men (age: 23.5 [20.0–28.3] years; BMI: 26.4 [24.3–28.0] kg/m2) was conducted. Participants received three therapeutic regimens for 2 consecutive days: 1) 80 mg of oral prednisolone (PRED) every day (q.d.) and intravenous (IV) EXE infusion (PRED+EXE); 2) 80 mg of oral PRED q.d. and IV saline infusion (PRED+SAL); and 3) oral placebo-PRED q.d. and intravenous saline infusion (PLB+SAL). On day 1, glucose tolerance was assessed during a meal challenge test. On day 2, participants underwent a clamp procedure to measure insulin secretion and insulin sensitivity. RESULTS PRED+SAL treatment increased postprandial glucose levels (vs. PLB+SAL, P = 0.012), which was prevented by concomitant EXE (vs. PLB+SAL, P = NS). EXE reduced PRED-induced hyperglucagonemia during the meal challenge (P = 0.018) and decreased gastric emptying (vs. PRED+SAL, P = 0.028; vs. PLB+SAL, P = 0.046). PRED+SAL decreased first-phase glucose- and arginine-stimulated C-peptide secretion (vs. PLB+SAL, P = 0.017 and P = 0.05, respectively), whereas PRED+EXE improved first- and second-phase glucose- and arginine-stimulated C-peptide secretion (vs. PLB+SAL; P = 0.017, 0.012, and 0.093, respectively). CONCLUSIONS The GLP-1 RA EXE prevented PRED-induced glucose intolerance and islet-cell dysfunction in healthy humans. Incretin-based therapies should be explored as a potential strategy to prevent steroid diabetes. PMID:21216851

  17. Site of action of a pentapeptide agonist at the glucagon-like peptide-1 receptor. Insight into a small molecule agonist-binding pocket

    PubMed Central

    Dong, Maoqing; Pinon, Delia I.; Miller, Laurence J.

    2011-01-01

    The development of small molecule agonists for class B G protein-coupled receptors (GPCRs) has been quite challenging. With proof-of-concept that exenatide, the parenterally administered peptide agonist of the glucagon-like peptide-1 (GLP1) receptor, is an effective treatment for patients with diabetes mellitus, the development of small molecule agonists could have substantial advantages. We previously reported a lead for small molecule GLP1 receptor agonist development representing the pentapeptide NRTFD. In this work, we have prepared an NRTFD derivative incorporating a photolabile benzoylphenylalanine and used it to define its site of action. This peptide probe was a full agonist with potency similar to NRTFD, which bound specifically and saturably to a single, distinct site within the GLP1 receptor. Peptide mapping using cyanogen bromide and endoproteinase Lys-C cleavage of labeled wild type and M397L mutant receptor constructs identified the site of covalent attachment of NRTFD within the third extracellular loop above the sixth transmembrane segment. This region is the same as that identified using an analogous photolabile probe based on secretin receptor sequences, and has been shown in mutagenesis studies to be important for natural agonist action of several members of this family. While these observations suggest that small molecule ligands can act at a site bordering the third extracellular loop to activate this class B GPCR, the relationship of this site to the site of action of the amino-terminal end of the natural agonist peptide is unclear. PMID:22079758

  18. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.

    PubMed

    Yu, Shan; Li, Sijia; Henke, Adam; Muse, Evan D; Cheng, Bo; Welzel, Gustav; Chatterjee, Arnab K; Wang, Danling; Roland, Jason; Glass, Christopher K; Tremblay, Matthew

    2016-07-01

    Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. PMID:27025962

  19. Mechanisms of inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Strange, Philip G

    2005-05-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  20. Antidiabetic Actions of an Estrogen Receptor β Selective Agonist

    PubMed Central

    Alonso-Magdalena, Paloma; Ropero, Ana B.; García-Arévalo, Marta; Soriano, Sergi; Quesada, Iván; Muhammed, Sarheed J.; Salehi, Albert; Gustafsson, Jan-Ake; Nadal, Ángel

    2013-01-01

    The estrogen receptor β (ERβ) is emerging as an important player in the physiology of the endocrine pancreas. We evaluated the role and antidiabetic actions of the ERβ selective agonist WAY200070 as an insulinotropic molecule. We demonstrate that WAY200070 enhances glucose-stimulated insulin secretion both in mouse and human islets. In vivo experiments showed that a single administration of WAY200070 leads to an increase in plasma insulin levels with a concomitant improved response to a glucose load. Two-week treatment administration increased glucose-induced insulin release and pancreatic β-cell mass and improved glucose and insulin sensitivity. In addition, streptozotocin-nicotinamide–induced diabetic mice treated with WAY200070 exhibited a significant improvement in plasma insulin levels and glucose tolerance as well as a regeneration of pancreatic β-cell mass. Studies performed in db/db mice demonstrated that this compound restored first-phase insulin secretion and enhanced pancreatic β-cell mass. We conclude that ERβ agonists should be considered as new targets for the treatment of diabetes. PMID:23349481

  1. Mechanisms of agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-12-01

    In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [35S]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [35S]GTPgammaS, increasing GDP decreased the [35S]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [35S]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [35S]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [35S]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [35S]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [35S]GTPgammaS to the G protein. At the higher [35S]GTPgammaS concentration, for full agonists, [35S]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining. PMID:15340043

  2. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats.

    PubMed

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Liposits, Zsolt

    2014-01-01

    The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER) agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands), local estradiol synthesis (P450 aromatase) and estrogen reception (ER). Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b) and complement (C3, factor B, properdin) genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a) expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu. In

  3. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. PMID:27132867

  4. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist.

    PubMed

    Kühnen, Peter; Clément, Karine; Wiegand, Susanna; Blankenstein, Oliver; Gottesdiener, Keith; Martini, Lea L; Mai, Knut; Blume-Peytavi, Ulrike; Grüters, Annette; Krude, Heiko

    2016-07-21

    Patients with rare defects in the gene encoding proopiomelanocortin (POMC) have extreme early-onset obesity, hyperphagia, hypopigmentation, and hypocortisolism, resulting from the lack of the proopiomelanocortin-derived peptides melanocyte-stimulating hormone and corticotropin. In such patients, adrenal insufficiency must be treated with hydrocortisone early in life. No effective pharmacologic treatments have been available for the hyperphagia and obesity that characterize the condition. In this investigator-initiated, open-label study, two patients with proopiomelanocortin deficiency were treated with setmelanotide, a new melanocortin-4 receptor agonist. The patients had a sustainable reduction in hunger and substantial weight loss (51.0 kg after 42 weeks in Patient 1 and 20.5 kg after 12 weeks in Patient 2). PMID:27468060

  5. Antiinfective applications of toll-like receptor 9 agonists.

    PubMed

    Krieg, Arthur M

    2007-07-01

    The innate immune system detects pathogens by the presence of highly conserved pathogen-expressed molecules, which trigger host immune defenses. Toll-like receptor (TLR) 9 detects unmethylated CpG dinucleotides in bacterial or viral DNA, and can be stimulated for therapeutic applications with synthetic oligodeoxynucleotides containing immune stimulatory "CpG motifs." TLR9 activation induces both innate and adaptive immunity. The TLR9-induced innate immune activation can be applied in the prevention or treatment of infectious diseases, and the adaptive immune-enhancing effects can be harnessed for improving vaccines. This article highlights the current understanding of the mechanism of action of CpG oligodeoxynucleotides, and provides an overview of the preclinical data and early human clinical trial results, applying these TLR9 agonists in the field of infectious diseases. PMID:17607015

  6. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  7. Lepidozenolide from the liverwort Lepidozia fauriana acts as a farnesoid X receptor agonist.

    PubMed

    Lin, Hsiang-Ru

    2015-01-01

    Lepidozenolide is a sesquiterpenoid isolated from the liverwort Lepidozia fauriana and its possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and hyperglycemia. In this study, whether lepidozenolide may act as a FXR agonist was determined. Indeed, in mammalian one-hybrid and transient transfection reporter assays, lepidozenolide transactivated FXR to modulate promoter action including GAL4, CYP7A1, and PLTP promoters in a dose-dependent manner, while it exhibited slightly less agonistic activity than chenodeoxycholic acid, an endogenous FXR agonist. Through the molecular modeling docking studies lepidozenolide was shown to bind to FXR ligand binding pocket fairly well. All these results indicate that lepidozenolide acts as a FXR agonist. PMID:25315435

  8. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) AGONISTS AS PROMISING NEW MEDICATIONS FOR DRUG ADDICTION: PRECLINICAL EVIDENCE

    PubMed Central

    Foll, Bernard Le; Ciano, Patricia Di; Panlilio, Leigh V.; Goldberg, Steven R.; Ciccocioppo, Roberto

    2013-01-01

    This review examines the growing literature on the role of peroxisome proliferator-activated receptors (PPARs) in addiction. There are two subtypes of PPAR receptors that have been studied in addiction: PPAR-α and PPAR-γ. The role of each PPAR subtype in common models of addictive behavior, mainly pre-clinical models, is summarized. In particular, studies are reviewed that investigated the effects of PPAR-α agonists on relapse, sensitization, conditioned place preference, withdrawal and drug intake, and effects of PPAR-γ agonists on relapse, withdrawal and drug intake. Finally, studies that investigated the effects of PPAR agonists on neural pathways of addiction are reviewed. Taken together this preclinical data indicates that PPAR agonists are promising new medications for drug addiction treatment. PMID:23614675

  9. Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593.

    PubMed

    Acri, J B; Thompson, A C; Shippenberg, T

    2001-03-15

    The repeated administration of selective kappa-opioid receptor agonists prevents the locomotor activation produced by acute cocaine administration and the development of cocaine-induced behavioral sensitization. Previous studies have shown that dopamine (DA) D2 autoreceptors modulate the synthesis and release of DA in the striatum. Evidence that kappa agonist treatment downregulates DA D2 receptors in this same brain region has recently been obtained. Accordingly, the present studies were undertaken to examine the influence of repeated kappa-opioid receptor agonist administration on pre- and postsynaptic DA D2 receptor function in the dorsal striatum using pre- and postsynaptic receptor-selective doses of quinpirole. Rats were injected once daily with the selective kappa-opioid receptor agonist U69593 (0.16-0.32 mg/kg s.c.) or vehicle for 3 days. Microdialysis studies assessing basal and quinpirole-evoked (0.05 mg/kg s.c.) DA levels were conducted 2 days later. Basal and quinpirole-stimulated locomotor activity were assessed in a parallel group of animals. The no-net flux method of quantitative microdialysis revealed no effect of U69593 on basal DA dynamics, in that extracellular DA concentration and extraction fraction did not differ in control and U69593-treated animals. Acute administration of quinpirole significantly decreased striatal DA levels in control animals, but in animals treated with U69593, the inhibitory effects of quinpirole were significantly reduced. Quinpirole produced a dose-related increase in locomotor activity in control animals, and this effect was significantly attenuated in U69593-treated animals. These data reveal that prior repeated administration of a selective kappa-opioid receptor agonist attenuates quinpirole-induced alterations in DA neurotransmission and locomotor activity. These results suggest that both pre- and postsynaptic striatal DA D2 receptors may be downregulated following repeated kappa-opioid receptor agonist

  10. Principles of agonist recognition in Cys-loop receptors

    PubMed Central

    Lynagh, Timothy; Pless, Stephan A.

    2014-01-01

    Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term “chemoreceptor” emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands. PMID:24795655

  11. Antinociceptive effects of imidazoline I2 receptor agonists in the formalin test in rats.

    PubMed

    Thorn, David A; Qiu, Yanyan; Jia, Shushan; Zhang, Yanan; Li, Jun-Xu

    2016-06-01

    The imidazoline I2 receptor is an emerging drug target for analgesics. This study extended previous studies by examining the antinociceptive effects of three I2 receptor agonists (2-BFI, BU224, and CR4056) in the formalin test. The receptor mechanisms and anatomical mediation of I2 receptor agonist-induced antinociception were also examined. Formalin-induced flinching responses (2%, 50 μl) were quantified after treatment with I2 receptor agonists alone or in combination with the I2 receptor antagonist idazoxan. Anatomical mediation was studied by locally administering 2-BFI into the plantar surface or into the right lateral ventricle through cannulae (intracerebroventricular). The locomotor activity was also examined after central (intracerebroventricular) administration of 2-BFI. 2-BFI (1-10 mg/kg, intraperitoneal) and BU224 (1-10 mg/kg, intraperitoneal) attenuated the spontaneous flinching response observed during 10 min (phase 1) and 20-60 min (phase 2) following formalin treatment, whereas CR4056 (1-32 mg/kg, intraperitoneal) decreased only phase 2 flinching response. The I2 receptor antagonist idazoxan attenuated the antinociceptive effects of 2-BFI and BU224 during phase 1, but not phase 2. Peripheral administration of 2-BFI (1-10 mg/kg, intraplantar) to the hind paw of rats had no antinociceptive effect. In contrast, centrally delivered 2-BFI (10-100 µg, intracerebroventricular) dose-dependently attenuated phase 1 and phase 2 flinching at doses that did not reduce the locomotor activity. Together, these data revealed the differential antinociceptive effects of I2 receptor agonists and the differential antagonism profiles by idazoxan, suggesting the involvement of different I2 receptor subtypes in reducing different phases of formalin-induced pain-like behaviors. In addition, the results also suggest the central mediation of I2 receptor agonist-induced antinociceptive actions. PMID:26599907

  12. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  13. Piperidine derivatives as nonprostanoid IP receptor agonists 2.

    PubMed

    Hayashi, Ryoji; Ito, Hiroaki; Ishigaki, Takeshi; Morita, Yasuhiro; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-06-15

    We searched for a strong and selective nonprostanoid IP agonist bearing piperidine and benzanilide moieties. Through optimization of substituents on the benzanilide moiety, the crucial part of the agonist, 43 (2-((1-(2-(N-(4-tolyl)benzo[d][1,3]dioxole-5-carboxamido)ethyl)piperidin-4-yl)oxy)acetic acid monohydrate monohydrochloride) was discovered and exhibited strong platelet aggregation inhibition (IC50=21nM) and 100-fold selectivity for IP receptor over other PG receptors. The systemic exposure level and bioavailability after oral administration of 43 were also good in dog. PMID:27133594

  14. Influence of idazoxan on the dopamine D2 receptor agonist-induced behavioural effects in rats.

    PubMed

    Ferrari, F; Giuliani, D

    1993-11-30

    The behavioural effects in rats of the dopamine D2 receptor agonists, lisuride, B-HT 920 and SND 919, were variously influenced by pre-treatment with the selective alpha 2-adrenoceptor antagonist, idazoxan (2 mg/kg), depending on the nature of the effect in question and the doses of agonist employed. The influence of idazoxan on drug-induced stretching-yawning, penile erection, sedation, stereotyped behaviour, aggressiveness and mounting is described and tentatively interpreted in neurochemical terms, account being taken of the activity of respective alpha 2-adrenoceptor antagonist and dopamine receptor agonists used, at alpha 2-adrenoceptors and at different dopamine D2 receptor subtypes, pre- and postsynaptically located. PMID:7907024

  15. The Vitamin D Receptor Agonist BXL-01-0029 as a Potential New Pharmacological Tool for the Treatment of Inflammatory Myopathies

    PubMed Central

    Antinozzi, Cristina; Vannelli, Gabriella Barbara; Romanelli, Francesco; Riccieri, Valeria; Valesini, Guido; Lenzi, Andrea; Crescioli, Clara

    2013-01-01

    Objective This study aims to investigate in vitro the effect of the VDR agonist BXL-01-0029 onto IFNγ/TNFα-induced CXCL10 secretion by human skeletal muscle cells compared to elocalcitol (VDR agonist), methylprednisolone, methotrexate, cyclosporin A, infliximab and leflunomide; to assess in vivo circulating CXCL10 level in subjects at time of diagnosis with IMs, before therapy, together with TNFα, IFNγ, IL-8, IL-6, MCP-1, MIP-1β and IL-10, vs. healthy subjects. Methods Human fetal skeletal muscle cells were used for in vitro studies; ELISA and Bio-Plex were used to measure cell supernatant and IC50 determination or serum cytokines; Western blot and Bio-Plex were for cell signaling analysis. Results BXL-01-0029 decreased with the highest potency IFNγ/TNFα-induced CXCL10 protein secretion and targeted cell signaling downstream of TNFα in human skeletal muscle cells; CXCL10 level was the highest in sera of subjects diagnosed with IMs before therapy and the only one significantly different vs. healthy controls. Conclusions Our in vitro and in vivo data, while confirm the relevance of CXCL10 in IMs, suggested BXL-01-0029 as a novel pharmacological tool for IM treatment, hypothetically to be used in combination with the current immunosuppressants to minimize side effects. PMID:24204948

  16. Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice

    PubMed Central

    Olson, Katherine E.; Kosloski-Bilek, Lisa M.; Anderson, Kristi M.; Diggs, Breha J.; Clark, Barbara E.; Gledhill, John M.; Shandler, Scott J.; Mosley, R. Lee

    2015-01-01

    Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4+ T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating

  17. Highly selective agonists for substance P receptor subtypes.

    PubMed Central

    Wormser, U; Laufer, R; Hart, Y; Chorev, M; Gilon, C; Selinger, Z

    1986-01-01

    The existence of a third tachykinin receptor (SP-N) in the mammalian nervous system was demonstrated by development of highly selective agonists. Systematic N-methylation of individual peptide bonds in the C-terminal hexapeptide of substance P gave rise to agonists which specifically act on different receptor subtypes. The most selective analog of this series, succinyl-[Asp6,Me-Phe8]SP6-11, elicits half-maximal contraction of the guinea pig ileum through the neuronal SP-N receptor at a concentration of 0.5 nM. At least 60,000-fold higher concentrations of this peptide are required to stimulate the other two tachykinin receptors (SP-P and SP-E). The action of selective SP-N agonists in the guinea pig ileum is antagonized by opioid peptides, suggesting a functional counteraction between opiate and SP-N receptors. These results indicate that the tachykinin receptors are distinct entities which may mediate different physiological functions. PMID:2431898

  18. Effect of AVE 0991 angiotensin-(1-7) receptor agonist treatment on elemental and biomolecular content and distribution in atherosclerotic plaques of apoE-knockout mice

    NASA Astrophysics Data System (ADS)

    Kowalska, J.; Gajda, M.; Jawień, J.; Kwiatek, W. M.; Appel, K.; Dumas, P.

    2013-12-01

    Gene-targeted apolipoprotein E-knockout (apoE-KO) mice display early and highly progressive vascular lesions containing lipid deposits and they became a reliable animal model to study atherosclerosis. The aim of the present study was to investigate the effect of AVE 0991 angiotensin-(1-7) receptor agonist on the distribution of selected pro- and anti- inflammatory elements as well as biomolecules in atherosclerotic plaques of apoE-knockout mice. Synchrotron radiation-based X-ray fluorescence (micro-XRF) and Fourier Transform Infrared (micro-FTIR) microspectroscopies were applied. Two-month-old apoE-KO mice were fed for following four months diet supplemented with AVE 0991 (0.58 μmol/kg b.w. per day). Histological sections of ascending aortas were analyzed spectroscopically. The distribution of P, Ca, Fe and Zn were found to correspond with histological structure of the lesion. Significantly lower contents of P, Ca, Zn and significantly higher content of Fe were observed in animals treated with AVE 0991. Biomolecular analysis showed lower lipids saturation level and lower lipid to protein ratio in AVE 0991 treated group. Protein secondary structure was studied according to the composition of amide I band (1660 cm-1) and it demonstrated higher proportion of β-sheet structure as compared to α-helix in both studied groups.

  19. Discovery of A-971432, An Orally Bioavailable Selective Sphingosine-1-Phosphate Receptor 5 (S1P5) Agonist for the Potential Treatment of Neurodegenerative Disorders.

    PubMed

    Hobson, Adrian D; Harris, Christopher M; van der Kam, Elizabeth L; Turner, Sean C; Abibi, Ayome; Aguirre, Ana L; Bousquet, Peter; Kebede, Tegest; Konopacki, Donald B; Gintant, Gary; Kim, Youngjae; Larson, Kelly; Maull, John W; Moore, Nigel S; Shi, Dan; Shrestha, Anurupa; Tang, Xiubo; Zhang, Peng; Sarris, Kathy K

    2015-12-10

    S1P5 is one of 5 receptors for sphingosine-1-phosphate and is highly expressed on endothelial cells within the blood-brain barrier, where it maintains barrier integrity in in vitro models (J. Neuroinflamm. 2012, 9, 133). Little more is known about the effects of S1P5 modulation due to the absence of tool molecules with suitable selectivity and drug-like properties. We recently reported that molecule A-971432 (Harris, 2010) (29 in this paper) is highly efficacious in reversing lipid accumulation and age-related cognitive decline in rats (Van der Kam , , AAIC 2014). Herein we describe the development of a series of selective S1P5 agonists that led to the identification of compound 29, which is highly selective for S1P5 and has excellent plasma and CNS exposure after oral dosing in preclinical species. To further support its suitability for in vivo studies of S1P5 biology, we extensively characterized 29, including confirmation of its selectivity in pharmacodynamic assays of S1P1 and S1P3 function in rats. In addition, we found that 29 improves blood-brain barrier integrity in an in vitro model and reverses age-related cognitive decline in mice. These results suggest that S1P5 agonism is an innovative approach with potential benefit in neurodegenerative disorders involving lipid imbalance and/or compromised blood-brain barrier such as Alzheimer's disease or multiple sclerosis. PMID:26509640

  20. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  1. Discovery of novel acetanilide derivatives as potent and selective beta3-adrenergic receptor agonists.

    PubMed

    Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki

    2009-06-01

    In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model. PMID:19232786

  2. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  3. Saralasin and Sarile Are AT2 Receptor Agonists

    PubMed Central

    2014-01-01

    Saralasin and sarile, extensively studied over the past 40 years as angiotensin II (Ang II) receptor blockers, induce neurite outgrowth in a NG108-15 cell assay to a similar extent as the endogenous Ang II. In their undifferentiated state, these cells express mainly the AT2 receptor. The neurite outgrowth was inhibited by preincubation with the AT2 receptor selective antagonist PD 123,319, which suggests that the observed outgrowth was mediated by the AT2 receptor. Neither saralasin nor sarile reduced the neurite outgrowth induced by Ang II proving that the two octapeptides do not act as antagonists at the AT2 receptor and may be considered as AT2 receptor agonists. PMID:25313325

  4. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  5. Pharmacological and Therapeutic Effects of A3 Adenosine Receptor (A3AR) Agonists

    PubMed Central

    Fishman, Pnina; Bar-Yehuda, Sara; Liang, Bruce T.; Jacobson, Kenneth A.

    2011-01-01

    The Gi-coupled A3 adenosine receptor (A3AR) mediates anti-inflammatory, anticancer and anti-ischemic protective effects. The receptor is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A3AR as a potential therapeutic target. Highly selective A3AR agonists have been synthesized and molecular recognition in the binding site has been characterized. The present review summarizes preclinical and clinical human studies demonstrating that A3AR agonists induce specific anti-inflammatory and anticancer effects via a molecular mechanism that entails modulation of the Wnt and the NF-κB signal transduction pathways. Currently, A3AR agonists are being developed for the treatment of inflammatory diseases including rheumatoid arthritis and psoriasis; ophthalmic diseases such as dry eye syndrome and glaucoma; liver diseases such as hepatocellular carcinoma and hepatitis. PMID:22033198

  6. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  7. Peptide agonists of the thrombopoietin receptor.

    PubMed

    Dower, W J; Cwirla, S E; Balasubramanian, P; Schatz, P J; Baccanari, D P; Barrett, R W

    1998-01-01

    We have screened a variety of L-amino acid peptide libraries against the extracellular domain of the human thrombopoietin (HuTPO) receptor, c-Mpl. A large number of peptide ligands were recovered and categorized into two families. Peptides from each family compete with the binding of HuTPO and with the binding of peptides from the other familiy. Representative peptides were synthesized and found to activate the full-length HuTPO receptor expressed in Ba/F3 cells to promote proliferation. These peptide families show no apparent homology to the primary sequence of TPO. We have focused our optimization efforts on one of the peptides, a linear 14-mer (IEGPTLRQWLAARA) with an IC50 of 2 nM in a competition binding assay and an EC50 of 400 nM in the proliferation assay. In order to enhance the potency of the compound, we constructed dimeric peptides by linking the carboxy-termini of the 14-mers to a lysine branch. These molecules exhibited slightly higher affinity (0.5 nM) and greatly increased potency (0.1 nM). The EC50 of the dimeric peptide was equivalent to that of the 332 aa form of baculovirus-expressed recombinant HuTPO. As previously shown for the erythropoietin-mimetic peptides, the TPO-mimetic peptides probably activate the TPO receptor by binding and inducing receptor dimerization. This supposition is supported by the observation that covalent dimerization of the peptide enhances its potency by 4,000-fold over that of the monomer. The peptide dimer is also active in stimulating in vitro proliferation of progenitors and maturation of megakaryocytes from human bone marrow, and in promoting an increase in platelet count when administered to normal mice. PMID:11012174

  8. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  9. Octopaminergic agonists for the cockroach neuronal octopamine receptor

    PubMed Central

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor. Abbreviation: AEA arylethanolamine AII 2-(arylimino)imidazolidine AIO 2-(arylimino)oxazolidine AIT 2-(arylimino)thiazolidine APAT 2-(α-phenylethylamino)-2-thiazoline BPAT 2-(β-phenylethylamino)-2-thiazoline CAO 2-(3-chlorobenzylamino)-2-oxazoline DCAO 2-(3,5-dichlorobenzylamino)-2-oxazoline DET5 2-(2,6-diethylphenylimino)-5-methylthiazolidine DET6 2-(2,6-diethylphenylimino)thiazine EGTA ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid GFA genetic function approximation G/PLS genetic partial least squares IND 2-aminomethyl-2-indanol LAH lithium aluminum hydride MCSG maximum common subgroup MCT6 2-(2-methyl-4-chlorophenylimino)thiazine OA octopamine PLS partial least squares QSAR quantitative structure-activity relationship SBAT 2-(substituted benzylamino)-2-thiazoline SD the sum of squared deviations of the dependent variable values from their mean SPIT 3-(substituted phenyl)imidazolidine-2-thione THI 2-amino-1-(2-thiazoyl)ethanol TMS tetramethyl silane PMID:15841226

  10. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  11. In vivo and in vitro evaluation of novel μ-opioid receptor agonist compounds.

    PubMed

    Nikaido, Yoshiaki; Kurosawa, Aya; Saikawa, Hitomi; Kuroiwa, Satoshi; Suzuki, Chiharu; Kuwabara, Nobuo; Hoshino, Hazime; Obata, Hideaki; Saito, Shigeru; Saito, Tamio; Osada, Hiroyuki; Kobayashi, Isao; Sezutsu, Hideki; Takeda, Shigeki

    2015-11-15

    Opioids are the most effective and widely used drugs for pain treatment. Morphine is an archetypal opioid and is an opioid receptor agonist. Unfortunately, the clinical usefulness of morphine is limited by adverse effects such as analgesic tolerance and addiction. Therefore, it is important to study the development of novel opioid agonists as part of pain control. The analgesic effects of opioids are mediated by three opioid receptors, namely opioid μ-, δ-, and κ-receptors. They belong to the G protein-coupled receptor superfamily and are coupled to Gi proteins. In the present study, we developed a ligand screening system to identify novel opioid μ-receptor agonists that measures [(35)S]GTPγS binding to cell membrane fractions prepared from the fat body of transgenic silkworms expressing μ-receptor-Gi1α fusion protein. We screened the RIKEN Natural Products Depository (NPDepo) chemical library, which contains 5848 compounds, and analogs of hit compounds. We successfully identified a novel, structurally unique compound, that we named GUM1, with agonist activity for the opioid μ-receptor (EC50 of 1.2 µM). The Plantar Test (Hargreaves' Method) demonstrated that subcutaneous injection of 3mg/kg of GUM1 into wild-type rats significantly extended latency time. This extension was also observed in a rat model of morphine tolerance and was inhibited by pre-treatment of naloxone. The unique molecular skeleton of GUM1 makes it an attractive molecule for further ligand-opioid receptor binding studies. PMID:26476280

  12. Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist.

    PubMed

    Młyniec, Katarzyna; Starowicz, Gabriela; Gaweł, Magdalena; Frąckiewicz, Ewelina; Nowak, Gabriel

    2016-09-01

    Some forms of depression appear to be more related to the glutamatergic system. G-coupled protein receptor 39 (GPR39) is the metabotropic zinc receptor, which may be involved in the pathophysiology of depression and in the antidepressant response. Its deficiency abolishes the antidepressant response, which means that GPR39 is required to obtain a therapeutic effect in depression. This raises the possibility that agonists of the zinc receptor may have a role in antidepressant treatment. To explore this possibility we investigated animal behaviour in the forced swim test, the tail suspension test (to assess antidepressant-like properties), the light/dark test and the elevated plus maze test (to assess anxiolytic-like properties), following acute administration of a GPR39 agonist (TC G-1008). We found an antidepressant response (as measured by the forced swim test but not by the tail suspension test) in mice following the GPR39 agonist treatment. Additionally, we observed the opposite results in the light/dark box (decreased overall distance; increased time spent in the lit compartment; decreased time spent in the dark compartment; increased freezing time) and elevated plus maze (no significant changes), which may be a consequence of the sedative effect of TC G-1008. We also found hippocampal GPR39 and brain-derived neurotrophic factor (BDNF) up-regulation following administration of the GPR39 agonist, which may be undiscovered so far as a possible novel agent in the treatment of mood disorders. PMID:27235821

  13. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  14. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  15. Synthesis of fluorinated agonist of sphingosine-1-phosphate receptor 1.

    PubMed

    Aliouane, Lucie; Chao, Sovy; Brizuela, Leyre; Pfund, Emmanuel; Cuvillier, Olivier; Jean, Ludovic; Renard, Pierre-Yves; Lequeux, Thierry

    2014-09-01

    The bioactive metabolite sphingosine-1-phosphate (S1P), a product of sphingosine kinases (SphKs), mediates diverse biological processes such as cell differentiation, proliferation, survival and angiogenesis. A fluorinated analogue of S1P receptor agonist has been synthesized by utilizing a ring opening reaction of oxacycles by a lithiated difluoromethylphosphonate anion as the key reaction. In vitro activity of this S1P analogue is also reported. PMID:25047939

  16. MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models

    PubMed Central

    Naguib, M; Diaz, P; Xu, J J; Astruc-Diaz, F; Craig, S; Vivas-Mejia, P; Brown, D L

    2008-01-01

    Background and purpose: There is growing interest in using cannabinoid type 2 (CB2) receptor agonists for the treatment of neuropathic pain. In this report, we describe the pharmacological characteristics of MDA7 (1-[(3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl)carbonyl]piperidine), a novel CB2 receptor agonist. Experimental approach: We characterized the pharmacological profile of MDA7 by using radioligand-binding assays and in vitro functional assays at human cannabinoid type 1 (CB1) and CB2 receptors. In vitro functional assays were performed at rat CB1 and CB2 receptors. The effects of MDA7 in reversing neuropathic pain were assessed in spinal nerve ligation and paclitaxel-induced neuropathy models in rats. Key results: MDA7 exhibited selectivity and agonist affinity at human and rat CB2 receptors. MDA7 treatment attenuated tactile allodynia produced by spinal nerve ligation or by paclitaxel in a dose-related manner. These effects were selectively antagonized by a CB2 receptor antagonist but not by CB1 or opioid receptor antagonists. MDA7 did not affect rat locomotor activity. Conclusion and implications: MDA7, a novel selective CB2 agonist, was effective in suppressing neuropathic nociception in two rat models without affecting locomotor behaviour. These results confirm the potential for CB2 agonists in the treatment of neuropathic pain. PMID:18846037

  17. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  18. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists.

    PubMed

    Kang, Yu Mi; Jung, Chang Hee

    2016-06-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  19. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  20. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  1. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  2. Systemic chemotherapy is modulated by platelet-activating factor-receptor agonists.

    PubMed

    Sahu, Ravi P; Ferracini, Matheus; Travers, Jeffrey B

    2015-01-01

    Chemotherapy is used to treat numerous cancers including melanoma. However, its effectiveness in clinical settings is often hampered by various mechanisms. Previous studies have demonstrated that prooxidative stressor-mediated generation of oxidized lipids with platelet-activating factor-receptor (PAF-R) agonistic activity induces systemic immunosuppression that augments the growth of experimental melanoma tumors. We have recently shown that treatment of murine B16F10 melanoma cells in vitro or tumors implanted into syngeneic mice and treated intratumorally with various chemotherapeutic agents generated PAF-R agonists in a process blocked by antioxidants. Notably, these intratumoral chemotherapy-generated PAF-R agonists augmented the growth of secondary (untreated) tumors in a PAF-R dependent manner. As both localized and systemic chemotherapies are used based on tumor localization/stage and metastases, the current studies were sought to determine effects of PAF-R agonists on systemic chemotherapy against experimental melanoma. Here, we show that systemic chemotherapy with etoposide (ETOP) attenuates the growth of melanoma tumors when given subsequent to the tumor cell implantation. Importantly, this ETOP-mediated suppression of melanoma tumor growth was blocked by exogenous administration of a PAF-R agonist, CPAF. These findings indicate that PAF-R agonists not only negatively affect the ability of localized chemotherapy but also compromise the efficacy of systemic chemotherapy against murine melanoma. PMID:25922565

  3. Group II Metabotropic Glutamate Receptor Agonist LY379268 Regulates AMPA Receptor Trafficking in Prefrontal Cortical Neurons

    PubMed Central

    Wang, Min-Juan; Li, Yan-Chun; Snyder, Melissa A.; Wang, Huaixing; Li, Feng; Gao, Wen-Jun

    2013-01-01

    Group II metabotropic glutamate receptor (mGluR) agonists have emerged as potential treatment drugs for schizophrenia and other neurological disorders, whereas the mechanisms involved remain elusive. Here we examined the effects of LY379268 (LY37) on the expression and trafficking of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluA1 and GluA2 in prefrontal neurons. We show that LY37 significantly increased the surface and total expression of both GluA1 and GluA2 subunits in cultured prefrontal neurons and in vivo. This effect was mimicked by the selective mGluR2 agonist LY395756 and was blocked by mGluR2/3 antagonist LY341495. Moreover, we found that both GluA1 and GluA2 subunits were colocalized with PSD95 but not synapsin I, suggesting a postsynaptic localization. Consistently, treatment with LY37 significantly increased the amplitude, but not frequency, of miniature excitatory postsynaptic currents. Further, actinomycin-D blocked LY37's effects, suggesting a transcriptional regulation. In addition, application of glycogen synthase kinase-3beta (GSK-3β) inhibitor completely blocked LY37's effect on GluA2 surface expression, whereas GSK-3β inhibitor itself induced decreases in the surface and total protein levels of GluA1, but not GluA2 subunits. This suggests that GSK-3β differentially mediates GluA1 and GluA2 trafficking. Further, LY37 significantly increased the phosphorylation, but not total protein, of extracellular signal-regulated kinase 1/2 (ERK1/2). Neither ERK1/2 inhibitor PD98059 alone nor PD98059 combined with LY37 treatment induced changes in GluA1 or GluA2 surface expression or total protein levels. Our data thus suggest that mGluR2/3 agonist regulates postsynaptic AMPA receptors by affecting the synaptic trafficking of both GluA1 and GluA2 subunits and that the regulation is likely through ERK1/2 signaling in GluA1 and/or both ERK1/2 and GSK-3β signaling pathways in the GluA2 subunit. PMID:23593498

  4. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease

    PubMed Central

    Lee, Hyun Jung; Yeon, Jong Eun; Ko, Eun Jung; Yoon, Eileen L; Suh, Sang Jun; Kang, Keunhee; Kim, Hae Rim; Kang, Seoung Hee; Yoo, Yang Jae; Je, Jihye; Lee, Beom Jae; Kim, Ji Hoon; Seo, Yeon Seok; Yim, Hyung Joon; Byun, Kwan Soo

    2015-01-01

    AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models. METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW. RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α. CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD. PMID:26668503

  5. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    PubMed

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  6. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells.

    PubMed

    Sharma, Pawan; Panebra, Alfredo; Pera, Tonio; Tiegs, Brian C; Hershfeld, Alena; Kenyon, Lawrence C; Deshpande, Deepak A

    2016-02-15

    Airway remodeling is a hallmark feature of asthma and chronic obstructive pulmonary disease. Clinical studies and animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM thickness is correlated with severity of the disease. Current medications control inflammation and reverse airway obstruction effectively but have limited effect on remodeling. Recently we identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R agonists on ASM growth and promitogenic signaling. Pretreatment of healthy and asthmatic human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM proliferation. The antimitogenic effect of TAS2R ligands was not dependent on activation of protein kinase A, protein kinase C, or high/intermediate-conductance calcium-activated K(+) channels. Immunoblot analyses revealed that TAS2R agonists inhibit growth factor-activated protein kinase B phosphorylation without affecting the availability of phosphatidylinositol 3,4,5-trisphosphate, suggesting TAS2R agonists block signaling downstream of phosphatidylinositol 3-kinase. Furthermore, the antimitogenic effect of TAS2R agonists involved inhibition of induced transcription factors (activator protein-1, signal transducer and activator of transcription-3, E2 factor, nuclear factor of activated T cells) and inhibition of expression of multiple cell cycle regulatory genes, suggesting a direct inhibition of cell cycle progression. Collectively, these findings establish the antimitogenic effect of TAS2R agonists and identify a novel class of receptors and signaling pathways that can be targeted to reduce or prevent airway remodeling as well as

  7. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  8. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  9. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014. PMID:25870913

  10. Therapeutic Effects of Melatonin Receptor Agonists on Sleep and Comorbid Disorders

    PubMed Central

    Laudon, Moshe; Frydman-Marom, Anat

    2014-01-01

    Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions. PMID:25207602

  11. Novel heterocyclic scaffolds of GW4064 as farnesoid X receptor agonists.

    PubMed

    Smalley, Terrence L; Boggs, Sharon; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Kaldor, Istvan; Parks, Derek J

    2015-01-15

    The farnesoid X receptor (FXR) may play a crucial role in a number of metabolic diseases and, as such, could potentially serve as a target for the development of therapeutics as a treatment for those diseases. Previous work has described GW4064 as an FXR agonist with an interesting activity profile. This manuscript will describe the synthesis of novel analogs of GW4064 and the activity profile of those analogs. PMID:25499883

  12. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis. PMID:26770990

  13. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  14. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  15. Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation.

    PubMed

    O'Boyle, Graeme; Fox, Christopher R J; Walden, Hannah R; Willet, Joseph D P; Mavin, Emily R; Hine, Dominic W; Palmer, Jeremy M; Barker, Catriona E; Lamb, Christopher A; Ali, Simi; Kirby, John A

    2012-03-20

    The recruitment of T lymphocytes during diseases such as rheumatoid arthritis is regulated by stimulation of the chemokine receptors expressed by these cells. This study was designed to assess the potential of a CXCR3-specific small-molecule agonist to inhibit the migration of activated human T cells toward multiple chemokines. Further experiments defined the molecular mechanism for this anti-inflammatory activity. Analysis in vitro demonstrated agonist induced internalization of both CXCR3 and other chemokine receptors coexpressed by CXCR3(+) T cells. Unlike chemokine receptor-specific antagonists, the CXCR3 agonist inhibited migration of activated T cells toward the chemokine mixture in synovial fluid from patients with active rheumatoid arthritis. A humanized mouse air-pouch model showed that intravenous treatment with the CXCR3 agonist prevented inflammatory migration of activated human T cells toward this synovial fluid. A potential mechanism for this action was defined by demonstration that the CXCR3 agonist induces receptor cross-phosphorylation within CXCR3-CCR5 heterodimers on the surface of activated T cells. This study shows that generalized chemokine receptor desensitization can be induced by specific stimulation of a single chemokine receptor on the surface of activated human T cells. A humanized mouse model was used to demonstrate that this receptor desensitization inhibits the inflammatory response that is normally produced by the chemokines present in synovial fluid from patients with active rheumatoid arthritis. PMID:22392992

  16. Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor

    PubMed Central

    Callaghan, Brid; Kosari, Samin; Pustovit, Ruslan V; Sartor, Daniela M; Ferens, Dorota; Ban, Kung; Baell, Jonathan; Nguyen, Trung V; Rivera, Leni R; Brock, James A; Furness, John B

    2014-01-01

    BACKGROUND AND PURPOSE Some agonists of ghrelin receptors cause rapid decreases in BP. The mechanisms by which they cause hypotension and the pharmacology of the receptors are unknown. EXPERIMENTAL APPROACH The effects of ligands of ghrelin receptors were investigated in rats in vivo, on isolated blood vessels and on cells transfected with the only molecularly defined ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR1a). KEY RESULTS Three agonists of GHSR1a receptors, ulimorelin, capromorelin and CP464709, caused a rapid decrease in BP in the anaesthetized rat. The effect was not reduced by either of two GHSR1a antagonists, JMV2959 or YIL781, at doses that blocked effects on colorectal motility, in vivo. The rapid hypotension was not mimicked by ghrelin, unacylated ghrelin or the unacylated ghrelin receptor agonist, AZP531. The early hypotension preceded a decrease in sympathetic nerve activity. Early hypotension was not reduced by hexamethonium or by baroreceptor (sino-aortic) denervation. Ulimorelin also relaxed isolated segments of rat mesenteric artery, and, less potently, relaxed aorta segments. The vascular relaxation was not reduced by JMV2959 or YIL781. Ulimorelin, capromorelin and CP464709 activated GHSR1a in transfected HEK293 cells at nanomolar concentrations. JMV2959 and YIL781 both antagonized effects in these cells, with their pA2 values at the GHSR1a receptor being 6.55 and 7.84. CONCLUSIONS AND IMPLICATIONS Our results indicate a novel vascular receptor or receptors whose activation by ulimorelin, capromorelin and CP464709 lowered BP. This receptor is activated by low MW GHSR1a agonists, but is not activated by ghrelin. PMID:24670149

  17. From the cell to the clinic: a comparative review of the partial D₂/D₃receptor agonist and α2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson's disease.

    PubMed

    Millan, Mark J

    2010-11-01

    Though L-3,4-dihydroxyphenylalanine (L-DOPA) is universally employed for alleviation of motor dysfunction in Parkinson's disease (PD), it is poorly-effective against co-morbid symptoms like cognitive impairment and depression. Further, it elicits dyskinesia, its pharmacokinetics are highly variable, and efficacy wanes upon long-term administration. Accordingly, "dopaminergic agonists" are increasingly employed both as adjuncts to L-DOPA and as monotherapy. While all recognize dopamine D(2) receptors, they display contrasting patterns of interaction with other classes of monoaminergic receptor. For example, pramipexole and ropinirole are high efficacy agonists at D(2) and D(3) receptors, while pergolide recognizes D(1), D(2) and D(3) receptors and a broad suite of serotonergic receptors. Interestingly, several antiparkinson drugs display modest efficacy at D(2) receptors. Of these, piribedil displays the unique cellular signature of: 1), signal-specific partial agonist actions at dopamine D(2)and D(3) receptors; 2), antagonist properties at α(2)-adrenoceptors and 3), minimal interaction with serotonergic receptors. Dopamine-deprived striatal D(2) receptors are supersensitive in PD, so partial agonism is sufficient for relief of motor dysfunction while limiting undesirable effects due to "over-dosage" of "normosensitive" D(2) receptors elsewhere. Further, α(2)-adrenoceptor antagonism reinforces adrenergic, dopaminergic and cholinergic transmission to favourably influence motor function, cognition, mood and the integrity of dopaminergic neurones. In reviewing the above issues, the present paper focuses on the distinctive cellular, preclinical and therapeutic profile of piribedil, comparisons to pramipexole, ropinirole and pergolide, and the core triad of symptoms that characterises PD-motor dysfunction, depressed mood and cognitive impairment. The article concludes by highlighting perspectives for clarifying the mechanisms of action of piribedil and other

  18. Ligand-based virtual screening identifies a family of selective cannabinoid receptor 2 agonists

    PubMed Central

    Gianella-Borradori, Matteo; Christou, Ivy; Bataille, Carole J.R.; Cross, Rebecca L.; Wynne, Graham M.; Greaves, David R.; Russell, Angela J.

    2015-01-01

    The cannabinoid receptor 2 (CB2R) has been linked with the regulation of inflammation, and selective receptor activation has been proposed as a target for the treatment of a range of inflammatory diseases such as atherosclerosis and arthritis. In order to identify selective CB2R agonists with appropriate physicochemical and ADME properties for future evaluation in vivo, we first performed a ligand-based virtual screen. Subsequent medicinal chemistry optimisation studies led to the identification of a new class of selective CB2R agonists. Several examples showed high levels of activity (EC50 < 200 nM) and binding affinity (Ki < 200 nM) for the CB2R, and no detectable activity at the CB1R. The most promising example, DIAS2, also showed favourable in vitro metabolic stability and absorption properties along with a clean selectivity profile when evaluated against a panel of GPCRs and kinases. PMID:25487422

  19. Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging.

    PubMed

    Delfino, Marina; Kalisch, Raffael; Czisch, Michael; Larramendy, Celia; Ricatti, Jimena; Taravini, Irene R E; Trenkwalder, Claudia; Murer, Mario Gustavo; Auer, Dorothee P; Gershanik, Oscar S

    2007-09-01

    The mechanisms underlying dopamine agonist-induced dyskinesia in Parkinson's disease remain poorly understood. Similar to patients, rats with severe nigrostriatal degeneration induced by 6-hydroxydopamine are more likely to show dyskinesia during chronic treatment with unselective dopamine receptor agonists than with D2 agonists, suggesting that D1 receptor stimulation alone or in conjunction with D2 receptor stimulation increases the chances of experiencing dyskinesia. As a first step towards disclosing drug-induced brain activation in dyskinesia, we examined the effects of dopamine agonists on behavior and blood oxygenation level-dependent (BOLD) signal in the striatum and motor cortex of rats with unilateral nigrostriatal lesions. Rats were rendered dyskinetic before pharmacologic functional magnetic resonance imaging by means of a repeated treatment regime with dopamine agonists. The unselective agonist apomorphine and the selective D1/D5 agonist SKF-81297 induced strong forelimb dyskinesia (FD) and axial dystonia and increased BOLD signal in the denervated striatum. Besides, SKF-81297 produced a significant but smaller BOLD increase in the intact striatum and a symmetric bilateral increase in the motor cortex. The D2 family agonist quinpirole, which induced mild dyskinesia on chronic treatment, did not produce BOLD changes in the striatum or motor cortex. Further evidence to support an association between BOLD changes and dyskinesia comes from a direct correlation between scores of FD and magnitude of drug-induced BOLD increases in the denervated striatum and motor cortex. Our results suggest that striatal and cortical activation induced by stimulation of D1/D5 receptors has a primary role in the induction of peak dose dyskinesia in parkinsonism. PMID:17287822

  20. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  1. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    PubMed

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration. PMID:27471203

  2. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  3. Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability.

    PubMed

    Christiansen, Elisabeth; Due-Hansen, Maria E; Urban, Christian; Grundmann, Manuel; Schmidt, Johannes; Hansen, Steffen V F; Hudson, Brian D; Zaibi, Mohamed; Markussen, Stine B; Hagesaether, Ellen; Milligan, Graeme; Cawthorne, Michael A; Kostenis, Evi; Kassack, Matthias U; Ulven, Trond

    2013-02-14

    The free fatty acid receptor 1 (FFA1, also known as GPR40) mediates enhancement of glucose-stimulated insulin secretion and is emerging as a new target for the treatment of type 2 diabetes. Several FFA1 agonists are known, but the majority of these suffer from high lipophilicity. We have previously reported the FFA1 agonist 3 (TUG-424). We here describe the continued structure-activity exploration and optimization of this compound series, leading to the discovery of the more potent agonist 40, a compound with low lipophilicity, excellent in vitro metabolic stability and permeability, complete oral bioavailability, and appreciable efficacy on glucose tolerance in mice. PMID:23294321

  4. A Cluster Headache Responsive to Ramelteon, a Selective Melatonin MT1/MT2 Receptor Agonist.

    PubMed

    Imai, Noboru

    2016-01-01

    Patients with cluster headaches occasionally fail to respond to conventional preventive treatments. We herein report a case of a patient with a cluster headache in which the symptoms were refractory to conventional preventive treatments except for high-dose glucocorticoids. The headache attacks occurred daily while sleeping, thus the patient suffered from insomnia. Ramelteon, a selective melatonin receptor agonist and a member of a new class of insomnia therapies, completely suppressed the attacks during sleep and provided rapid relief from insomnia. This is the first English case report to describe the efficacy of ramelteon as a preventive treatment for cluster headaches. PMID:27580554

  5. Computational Study and Modified Design of Selective Dopamine D3 Receptor Agonists.

    PubMed

    Duan, Xinli; Zhang, Xin; Xu, Binglin; Wang, Fang; Lei, Ming

    2016-07-01

    Dopamine D3 receptor (D3 R) is considered as a potential target for the treatment of nervous system disorders, such as Parkinson's disease. Current research interests primarily focus on the discovery and design of potent D3 agonists. In this work, we selected 40 D3 R agonists as the research system. Comparative molecular field analysis (CoMFA) of three-dimensional quantitative structure-activity relationship (3D-QSAR), structure-selectivity relationship (3D-QSSR), and molecular docking was performed on D3 receptor agonists to obtain the details at atomic level. The results indicated that both the CoMFA model (r(2) = 0.982, q(2) = 0.503, rpred2 = 0.893, SEE  = 0.057, F = 166.308) for structure-activity and (r(2) = 0.876, q(2) = 0.436, rpred2 = 0.828, F = 52.645) for structure-selectivity have good predictive capabilities. Furthermore, docking studies on three compounds binding to D3 receptor were performed to analyze the binding modes and interactions. The results elucidate that agonists formed hydrogen bond and hydrophobic interactions with key residues. Finally, we designed six molecules under the guidance of 3D-QSAR/QSSR models. The activity and selectivity of designed molecules have been improved, and ADMET properties demonstrate they have low probability of hepatotoxicity (<0.5). These results from 3D-QSAR/QSSR and docking studies have great significance for designing novel dopamine D3 selective agonists in the future. PMID:26851125

  6. Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors.

    PubMed

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-09-01

    We measured the functional agonist potencies of dopamine agonists including antiparkinson drugs, and functional antagonist potencies of antipsychotics at human dopamine D(2) and D(3) receptors. In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cells expressing low and high densities of human dopamine D(2L) and D(2S) receptors (hD(2L)-Low, hD(2L)-High, hD(2S)-Low and hD(2S)-High, respectively) and human dopamine D(3) Ser-9 and D(3) Gly-9 receptors (hD(3)-Ser-9 and hD(3)-Gly-9, respectively). Cabergoline, bromocriptine, pergolide, (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), talipexole, pramipexole, R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-olhydrochloride (PD128907) and ropinirole behaved as dopamine D(2) and D(3) receptor full agonists and showed higher potencies in hD(2L)-High and hD(2S)-High compared to hD(2L)-Low and hD(2S)-Low. In hD(3)-Ser-9 and hD(3)-Gly-9 compared to hD(2L)-Low and hD(2S)-Low, dopamine, ropinirole, PD128907, and pramipexole potencies were clearly higher; talipexole and 7-OH-DPAT showed slightly higher potencies; pergolide showed slightly lower potency; and, cabergoline and bromocriptine potencies were lower. Aripiprazole acted as an antagonist in hD(2L)-Low; a low intrinsic activity partial agonist in hD(2S)-Low; a moderate partial agonist in hD(3)-Ser-9 and hD(3)-Gly-9; a robust partial agonist in hD(2L)-High; and a full agonist in hD(2S)-High. Amisulpride, sulpiride and perphenazine behaved as preferential antagonists; and chlorpromazine and asenapine behaved as modest preferential antagonists; whereas fluphenazine, haloperidol, and blonanserin behaved as non-preferential antagonists in hD(2S)-Low and hD(2S)-High compared to hD(3)-Ser-9 and hD(3)-Gly-9. These findings may help to elucidate the basis of therapeutic benefit observed with these drugs, with

  7. Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function.

    PubMed

    Morrison, Keith; Ernst, Roland; Hess, Patrick; Studer, Rolf; Clozel, Martine

    2010-10-01

    Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is an orally available prostacyclin (PGI(2)) receptor (IP receptor) agonist that is chemically distinct from PGI(2) and is in clinical development for the treatment of pulmonary arterial hypertension. Selexipag is highly selective for the human IP receptor in vitro, whereas analogs of PGI(2) can activate prostanoid receptors other than the IP receptor. The goal of this study was to determine the impact of selectivity for the IP receptor on gastric function by measuring 1) contraction of rat gastric fundus ex vivo and 2) the rates of gastric emptying and intestinal transport in response to selexipag in comparison with other PGI(2) analogs. The rat gastric fundus expresses mRNA encoding multiple prostanoid receptors to different levels: prostaglandin E receptor 1 (EP(1)) > prostaglandin E receptor 3 (EP(3)), IP receptor > prostaglandin D(2) receptor 1, thromboxane receptor. Selexipag and metabolite {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) did not contract gastric fundus at concentrations up to 10(-3) M. In contrast, the PGI(2) analogs iloprost and beraprost evoked concentration-dependent contraction of gastric fundus. Contraction to treprostinil was observed at high concentration (10(-4) M). Contraction to all PGI(2) analogs was mediated via activation of EP(3) receptors, although EP(1) receptors also contributed to the contraction of gastric fundus to iloprost and beraprost. Antagonism of IP receptors did not affect responses. Oral selexipag did not significantly alter gastric function in vivo, as measured by rates of stomach emptying and intestinal transport, whereas beraprost slowed gastrointestinal transport. The high functional selectivity of selexipag and ACT-333679 for the IP receptor precludes a stimulatory action on gastric smooth muscle and may help minimize gastric side effects such as nausea and vomiting. PMID:20660124

  8. Disease Modification of Breast Cancer–Induced Bone Remodeling by Cannabinoid 2 Receptor Agonists

    PubMed Central

    Symons-Liguori, Ashley M; Largent-Milnes, Tally M; Havelin, Josh J; Ferland, Henry L; Chandramouli, Anupama; Owusu-Ankomah, Mabel; Nikolich-Zugich, Tijana; Bloom, Aaron P; Jimenez-Andrade, Juan Miguel; King, Tamara; Porreca, Frank; Nelson, Mark A; Mantyh, Patrick W; Vanderah, Todd W

    2015-01-01

    Most commonly originating from breast malignancies, metastatic bone cancer causes bone destruction and severe pain. Although novel chemotherapeutic agents have increased life expectancy, patients are experiencing higher incidences of fracture, pain, and drug-induced side effects; furthermore, recent findings suggest that patients are severely undertreated for their cancer pain. Strong analgesics, namely opiates, are first-line therapy in alleviating cancer-related pain despite the severe side effects, including enhanced bone destruction with sustained administration. Bone resorption is primarily treated with bisphosphonates, which are associated with highly undesirable side effects, including nephrotoxicity and osteonecrosis of the jaw. In contrast, cannabinoid receptor 2 (CB2) receptor-specific agonists have been shown to reduce bone loss and stimulate bone formation in a model of osteoporosis. CB2 agonists produce analgesia in both inflammatory and neuropathic pain models. Notably, mixed CB1/CB2 agonists also demonstrate a reduction in ErbB2-driven breast cancer progression. Here we demonstrate for the first time that CB2 agonists reduce breast cancer–induced bone pain, bone loss, and breast cancer proliferation via cytokine/chemokine suppression. Studies used the spontaneously-occurring murine mammary cell line (66.1) implanted into the femur intramedullary space; measurements of spontaneous pain, bone loss, and cancer proliferation were made. The systemic administration of a CB2 agonist, JWH015, for 7 days significantly attenuated bone remodeling, assuaged spontaneous pain, and decreased primary tumor burden. CB2-mediated effects in vivo were reversed by concurrent treatment with a CB2 antagonist/inverse agonist but not with a CB1 antagonist/inverse agonist. In vitro, JWH015 reduced cancer cell proliferation and inflammatory mediators that have been shown to promote pain, bone loss, and proliferation. Taken together, these results suggest CB2 agonists as a

  9. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent.

    PubMed

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  10. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    PubMed Central

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  11. Therapeutic applications of TRAIL receptor agonists in cancer and beyond.

    PubMed

    Amarante-Mendes, Gustavo P; Griffith, Thomas S

    2015-11-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  12. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  13. Oral serotonin receptor agonists: a review of their cost effectiveness in migraine.

    PubMed

    Lofland, Jennifer H; Nash, David B

    2005-01-01

    Migraine headache is a highly prevalent chronic, episodic condition. The direct and indirect costs of migraine headache have a tremendous economic impact in the US. Research has shown that serotonin (5HT(1B/D)) receptor agonists reduce healthcare costs, improve health-related QOL (HR-QOL), decrease migraine disability and keep patients effective in the workplace. The purpose of this manuscript is to examine the cost effectiveness of oral 5HT(1B/D) receptor agonists for the treatment of migraine headache. In general, 5HT(1B/D) receptor agonists are associated with increases in direct healthcare costs; however, they are also associated with reductions in the indirect costs associated with migraine headache. Therefore, it appears that the relatively high acquisition cost of these medications is offset and, as a class, these medications appear to be cost effective and demonstrate net benefits from the societal perspective. Based on meta-analyses in which data on eletriptan were not available, it appears that within the class, almotriptan and rizatriptan are the most cost effective. In a prospective study comparing eletriptan with sumatriptan, it appears that the former may be more cost effective than the latter. Additional investigations are needed to further explore the application of the friction-cost approach and QALYs to cost-effectiveness analyses of this class of medication. PMID:15836007

  14. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond

    PubMed Central

    Prasad-Reddy, Lalita; Isaacs, Diana

    2015-01-01

    The prevalence of type 2 diabetes is increasing at an astounding rate. Many of the agents used to treat type 2 diabetes have undesirable adverse effects of hypoglycemia and weight gain. Glucagon-like peptide-1 (GLP-1) receptor agonists represent a unique approach to the treatment of diabetes, with benefits extending outside glucose control, including positive effects on weight, blood pressure, cholesterol levels, and beta-cell function. They mimic the effects of the incretin hormone GLP-1, which is released from the intestine in response to food intake. Their effects include increasing insulin secretion, decreasing glucagon release, increasing satiety, and slowing gastric emptying. There are currently four approved GLP-1 receptor agonists in the United States: exenatide, liraglutide, albiglutide, and dulaglutide. A fifth agent, lixisenatide, is available in Europe. There are important pharmacodynamic, pharmacokinetic, and clinical differences of each agent. The most common adverse effects seen with GLP-1 therapy include nausea, vomiting, and injection-site reactions. Other warnings and precautions include pancreatitis and thyroid cell carcinomas. GLP-1 receptor agonists are an innovative and effective option to improve blood glucose control, with other potential benefits of preserving beta-cell function, weight loss, and increasing insulin sensitivity. Once-weekly formulations may also improve patient adherence. Overall, these are effective agents for patients with type 2 diabetes, who are either uncontrolled on metformin or intolerant to metformin. PMID:26213556

  15. Immobilized thrombin receptor agonist peptide accelerates wound healing in mice.

    PubMed

    Strukova, S M; Dugina, T N; Chistov, I V; Lange, M; Markvicheva, E A; Kuptsova, S; Zubov, V P; Glusa, E

    2001-10-01

    To accelerate the healing processes in wound repair, attempts have been repeatedly made to use growth factors including thrombin and its peptide fragments. Unfortunately, the employment of thrombin is limited because of its high liability and pro-inflammatory actions at high concentrations. Some cellular effects of thrombin in wound healing are mediated by the activation of protease activated receptor-1 (PAR-1). The thrombin receptor agonist peptide (TRAP:SFLLRN) activates this receptor and mimics the effects of thrombin, but TRAP is a relatively weak agonist. We speculated that the encapsulated peptide may be more effective for PAR-1 activation than nonimmobilized peptide and developed a novel method for TRAP encapsulation in hydrogel films based on natural and synthetic polymers. The effects of an encapsulated TRAP in composite poly(N-vinyl caprolactam)-calcium alginate (PVCL) hydrogel films were investigated in a mouse model of wound healing. On day 7 the wound sizes decreased by about 60% under TRAP-chitosan-containing PVCL films, as compared with control films without TRAP. In the case of TRAP-polylysine-containing films no significant decrease in wound sizes was found. The fibroblast/macrophage ratio increased under TRAP-containing films on day 3 and on day 7. The number of proliferating fibroblasts increased to 150% under TRAP-chitosan films on day 7 as compared with control films. The number of [3H]-thymidine labeled endothelial and epithelial cells in granulation tissues was also enhanced. Thus, the immobilized TRAP to PVCL-chitosan hydrogel films were found to promote wound healing following the stimulation of fibroblast and epithelial cell proliferation and neovascularization. Furthermore, TRAP was shown to inhibit the secretion of the inflammatory mediator PAF from stimulated rat peritoneal mast cells due to augmentation of NO release from the mast cells. The encapsulated TRAP is suggested to accelerate wound healing due to the anti-inflammatory effects

  16. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists

    PubMed Central

    Raab, Susanne; Wang, Haiyan; Uhles, Sabine; Cole, Nadine; Alvarez-Sanchez, Ruben; Künnecke, Basil; Ullmer, Christoph; Matile, Hugues; Bedoucha, Marc; Norcross, Roger D.; Ottaway-Parker, Nickki; Perez-Tilve, Diego; Conde Knape, Karin; Tschöp, Matthias H.; Hoener, Marius C.; Sewing, Sabine

    2015-01-01

    Objective Type 2 diabetes and obesity are emerging pandemics in the 21st century creating worldwide urgency for the development of novel and safe therapies. We investigated trace amine-associated receptor 1 (TAAR1) as a novel target contributing to the control of glucose homeostasis and body weight. Methods We investigated the peripheral human tissue distribution of TAAR1 by immunohistochemistry and tested the effect of a small molecule TAAR1 agonist on insulin secretion in vitro using INS1E cells and human islets and on glucose tolerance in C57Bl6, and db/db mice. Body weight effects were investigated in obese DIO mice. Results TAAR1 activation by a selective small molecule agonist increased glucose-dependent insulin secretion in INS1E cells and human islets and elevated plasma PYY and GLP-1 levels in mice. In diabetic db/db mice, the TAAR1 agonist normalized glucose excursion during an oral glucose tolerance test. Sub-chronic treatment of diet-induced obese (DIO) mice with the TAAR1 agonist resulted in reduced food intake and body weight. Furthermore insulin sensitivity was improved and plasma triglyceride levels and liver triglyceride content were lower than in controls. Conclusions We have identified TAAR1 as a novel integrator of metabolic control, which acts on gastrointestinal and pancreatic islet hormone secretion. Thus TAAR1 qualifies as a novel and promising target for the treatment of type 2 diabetes and obesity. PMID:26844206

  17. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    PubMed

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer. PMID:17696823

  18. γ-Aminobutyric acid type A (GABA(A)) receptor subtype inverse agonists as therapeutic agents in cognition.

    PubMed

    Gabriella, Guerrini; Giovanna, Ciciani

    2010-01-01

    The gabaergic system has been identified as a relevant regulator of cognitive and emotional processing. In fact, the discovery that negative allosteric regulators (or inverse agonists) at GABA(A) (γ-aminobutyric acid) α5 subtype receptors improve learning and memory tasks, has further validated this concept. The localization of these extrasynaptic subtype receptors, mainly in the hippocampus, has suggested that they play a key role in the three stages of memory: acquisition, consolidation, and retrieval. The "α5 inverse agonist" binds to an allosteric site at GABA(A) receptor, provoking a reduction of chlorine current, but to elicit this effect, the necessary condition is the binding of agonist neurotransmitter (γ-amino butyric acid) at its orthosteric site. In this case, the GABA(A) receptor is not a "constitutively active receptor" and, however, the presence of spontaneous opening channels for native GABA(A) receptors is rare. Here, we present various classes of nonselective and α5 selective GABA(A) receptor ligands, and the in vitro and in vivo tests to elucidate their affinity and activity. The study of the GABA(A) α5 inverse agonists is one of the important tools, although not the only one, for the development of clinical strategies for treatment of Alzheimer disease and mild cognitive impairment. PMID:21050918

  19. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  20. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells.

    PubMed

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination. PMID:22027145

  1. Use of microdoses for induction of buprenorphine treatment with overlapping full opioid agonist use: the Bernese method

    PubMed Central

    Hämmig, Robert; Kemter, Antje; Strasser, Johannes; von Bardeleben, Ulrich; Gugger, Barbara; Walter, Marc; Dürsteler, Kenneth M; Vogel, Marc

    2016-01-01

    Background Buprenorphine is a partial µ-opioid receptor agonist used for maintenance treatment of opioid dependence. Because of the partial agonism and high receptor affinity, it may precipitate withdrawal symptoms during induction in persons on full µ-opioid receptor agonists. Therefore, current guidelines and drug labels recommend leaving a sufficient time period since the last full agonist use, waiting for clear and objective withdrawal symptoms, and reducing pre-existing full agonist therapies before administering buprenorphine. However, even with these precautions, for many patients the induction of buprenorphine is a difficult experience, due to withdrawal symptoms. Furthermore, tapering of the full agonist bears the risk of relapse to illicit opioid use. Cases We present two cases of successful initiation of buprenorphine treatment with the Bernese method, ie, gradual induction overlapping with full agonist use. The first patient began buprenorphine with overlapping street heroin use after repeatedly experiencing relapse, withdrawal, and trauma reactivation symptoms during conventional induction. The second patient was maintained on high doses of diacetylmorphine (ie, pharmaceutical heroin) and methadone during induction. Both patients tolerated the induction procedure well and reported only mild withdrawal symptoms. Discussion Overlapping induction of buprenorphine maintenance treatment with full µ-opioid receptor agonist use is feasible and may be associated with better tolerability and acceptability in some patients compared to the conventional method of induction. PMID:27499655

  2. Novel free fatty acid receptor 1 (GPR40) agonists based on 1,3,4-thiadiazole-2-carboxamide scaffold.

    PubMed

    Krasavin, Mikhail; Lukin, Alexey; Zhurilo, Nikolay; Kovalenko, Alexey; Zahanich, Ihor; Zozulya, Sergey; Moore, Daniel; Tikhonova, Irina G

    2016-07-01

    Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, LogD, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency. PMID:27229618

  3. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  4. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment

  5. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  6. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  7. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  8. Recent advances in the development of farnesoid X receptor agonists.

    PubMed

    Ali, Ahmad H; Carey, Elizabeth J; Lindor, Keith D

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  9. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics. PMID:26675887

  10. Graft versus host disease: New insights into A2A receptor agonist therapy.

    PubMed

    Jones, Karlie R; Kang, Elizabeth M

    2015-01-01

    Allogeneic transplantation can cure many disorders, including sickle cell disease, chronic granulomatous disease (CGD), severe combined immunodeficiency (SCID) and many types of cancers. However, there are several associated risks that can result in severe immunological reactions and, in some cases, death. Much of this morbidity is related to graft versus host disease (GVHD) [1]. GVHD is an immune mediated reaction in which donor T cells recognize the host as antigenically foreign, causing donor T cells to expand and attack host tissues. The current method of treating recent transplant patients with immunosuppressants to prevent this reaction has met with only partial success, emphasizing a need for new methods of GVHD treatment and prevention. Recently, a novel strategy has emerged targeting adenosine A2A receptors (A2AR) through the use of adenosine agonists. These agonists have been shown in vitro to increase the TGFβ-induced generation of FoxP3(+) regulatory T cells (Tregs) and in vivo to improve weight gain and mortality as well as inhibit the release of pro-inflammatory cytokines in GVHD murine models [2,3]. Positive results involving A2AR agonists in vitro and in vivo are promising, suggesting that A2AR agonists should be a part of the management of clinical GvHD. PMID:25709759

  11. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity.

    PubMed

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N; Fakira, Amanda K; Massaro, Nicholas P; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E; Parello, Joseph; Devi, Lakshmi A

    2016-05-24

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non-histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  12. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  13. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    PubMed

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  14. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress.

    PubMed

    Cho, Nobuo; Momose, Yu

    2008-01-01

    An epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis. The discovery of PPARgamma as a target of multimodal insulin sensitizers, represented by thiazolidinediones (TZDs), has attracted remarkable scientific interest and had a great impact on the pharmaceutical industry. With the clinical success of the PPARgamma agonists, pioglitazone (Actos) and rosiglitazone (Avandia), development of novel and potent insulin-sensitizing agents with diverse clinical profiles has been accelerated. Currently, a number of PPARgamma agonists from different chemical classes and with varying pharmacological profiles are being developed. Despite quite a few obstacles to the development of PPAR-related drugs, PPARgamma-targeted agents still hold promise. There are new concepts and encouraging evidence emerging that suggest this class can yield improved anti-diabetic agents. This review covers the discovery of TZDs, provides an overview of PPARgamma including the significance of PPARgamma as a drug target, describes the current status of a wide variety of novel PPARgamma ligands including PPAR dual and pan agonists and selective PPARgamma modulators (SPPARgammaMs), and highlights new approaches for identifying agents targeting PPARgamma in the treatment of type 2 diabetes. PMID:19075761

  15. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  16. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  17. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  18. A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

    PubMed Central

    Ahn, Seyeon; Yi, Sodam; Seo, Won Jong; Lee, Myeong Jung; Song, Young Keun; Baek, Seung Yong; Yu, Jinha; Hong, Soo Hyun; Lee, Jinyoung; Shin, Dong Wook; Jeong, Lak Shin; Noh, Minsoo

    2015-01-01

    Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor γ (PPARγ). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARγ. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARγ transactivation. AEA can directly activate PPARγ. The effect of AEA on PPARγ in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARγ activity in the PPARγ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARγ activity inhibit adipogenesis in hBM-MSCs. PMID:25995819

  19. Agonist treatment in opioid use: advances and controversy.

    PubMed

    Viswanath, Biju; Chand, Prabhat; Benegal, Vivek; Murthy, Pratima

    2012-06-01

    Opioid dependence is a chronic relapsing condition which requires comprehensive care; pharmacological agents form the mainstay of its long term treatment. The two most popular approaches are the harm reduction method using agonists and the complete abstinence method using antagonists. Currently, particularly from the harm minimization perspective and the low feasibility of an abstinence based approach, there is an increasing trend toward agonist treatment. The use of buprenorphine has gained popularity in view of its safety profile and the availability of the buprenorphine-naloxone combination has made it popular as a take-home treatment. This review outlines the pharmacological advances and controversies in this area. PMID:22813654

  20. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. PMID:25882246

  1. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR.

    PubMed

    Huang, Wendong; Zhang, Jun; Wei, Ping; Schrader, William T; Moore, David D

    2004-10-01

    The constitutive androstane receptor (CAR, NR1I3) is a key regulator of xenobiotic and endobiotic metabolism. The ligand-binding domains of murine (m) and human (h) CAR are divergent relative to other nuclear hormone receptors, resulting in species-specific differences in xenobiotic responses. Here we identify the widely used antiemetic meclizine (Antivert; Bonine) as both an agonist ligand for mCAR and an inverse agonist for hCAR. Meclizine increases mCAR transactivation in a dose-dependent manner. Like the mCAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, meclizine stimulates binding of steroid receptor coactivator 1 to the murine receptor in vitro. Meclizine administration to mice increases expression of CAR target genes in a CAR-dependent manner. In contrast, meclizine suppresses hCAR transactivation and inhibits the phenobarbital-induced expression of the CAR target genes, cytochrome p450 monooxygenase (CYP)2B10, CYP3A11, and CYP1A2, in primary hepatocytes derived from mice expressing hCAR, but not mCAR. The inhibitory effect of meclizine also suppresses acetaminophen-induced liver toxicity in humanized CAR mice. These results demonstrate that a single compound can induce opposite xenobiotic responses via orthologous receptors in rodents and humans. PMID:15272053

  2. Opiate receptor agonists regulate phosphorylation of synapsin I in cocultures of rat spinal cord and dorsal root ganglion.

    PubMed Central

    Nah, S Y; Saya, D; Barg, J; Vogel, Z

    1993-01-01

    Kappa opiate receptor agonists applied to cocultures of spinal cord and dorsal root ganglion neurons have been previously shown to inhibit voltage-dependent Ca2+ influx and adenylate cyclase activity. Here we describe the effect of kappa opiate receptor agonists on phosphorylation of synapsin I, a synaptic-vesicle-associated protein whose phosphorylation was shown to be regulated by cAMP and Ca2+ concentrations. Depolarization of spinal cord-dorsal root ganglion cocultured cells (by high K+ or veratridine) and the addition of forskolin (which activates adenylate cyclase) led to increased phosphorylation of synapsin I. Addition of kappa opiate agonists attenuated both the depolarization- and the forskolin-induced phosphorylation of synapsin I. This attenuation was blocked by the opiate antagonist naloxone. mu and delta opiate receptor agonists had much weaker effects on the depolarization-induced phosphorylation of synapsin I. Similarly, kappa opiate agonists decreased (by 40-60%) the high-K+- or veratridine-induced phosphorylation of synapsin I in spinal cord synaptosomes. These results show that opiate ligands modulate synapsin I phosphorylation. Moreover, the data could explain the reduction in synaptic efficacy observed after opiate treatment. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 7 PMID:8097883

  3. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma

    PubMed Central

    Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  4. Trialkyltin Rexinoid-X Receptor Agonists Selectively Potentiate Thyroid Hormone Induced Programs of Xenopus laevis Metamorphosis.

    PubMed

    Mengeling, Brenda J; Murk, Albertinka J; Furlow, J David

    2016-07-01

    The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the environment prompted us to test whether they could also affect TH signaling. Both trialkyltins induced the integrated luciferase reporter alone and potentiated TH activation at low doses. Trimethyltin, which is not an RXR agonist, did not. We turned to a simple, robust, and specific in vivo model system of TH action: metamorphosis of Xenopus laevis, the African clawed frog. Using a precocious metamorphosis assay, we found that 1nM TBT and TPT, but not trimethyltin, greatly potentiated the effect of TH treatment on resorption phenotypes of the tail, which is lost at metamorphosis, and in the head, which undergoes extensive remodeling including gill loss. Consistent with these responses, TH-induced caspase-3 activation in the tail was enhanced by cotreatment with TBT. Induction of a transgenic reporter gene and endogenous collagenase 3 (mmp13) and fibroblast-activating protein-α (fap) genes were not induced by TBT alone, but TH induction was significantly potentiated by TBT. However, induction of other TH receptor target genes such as TRβ and deiodinase 3 by TH were not affected by TBT cotreatment. These data indicate that trialkyltins that can function as RXR agonists can selectively potentiate gene expression and resultant morphological programs directed by TH signaling in vivo. PMID:27167774

  5. GABAB Receptor-Positive Modulators: Enhancement of GABAB Receptor Agonist Effects In Vivo

    PubMed Central

    France, Charles P.; Cheng, Kejun; Rice, Kenner C.

    2010-01-01

    In vivo effects of GABAB receptor-positive modulators suggest that they have therapeutic potential for treating central nervous system disorders such as anxiety, depression, and drug abuse. Although these effects generally are thought to be mediated by positive modulation of GABAB receptors, such modulation has been examined primarily in vitro. The present study was aimed at further examining the in vivo positive modulatory properties of the GABAB receptor-positive modulators, 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl) phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF). Both compounds enhanced loss of righting induced by baclofen in mice. However, CGP7930 was less effective and rac-BHFF was less potent for enhancing loss of righting induced by γ-hydroxybutyrate (GHB), which, like baclofen, has GABAB receptor agonist properties. In contrast with baclofen- and GHB-induced loss of righting, the hypothermic effects of baclofen and GHB were not enhanced by rac-BHFF but were enhanced by CGP7930 only at doses that produced hypothermia when given alone. CGP7930-induced hypothermia was not attenuated by the GABAB receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348), at doses that blocked baclofen-induced hypothermia, and was not increased by the nitric-oxide synthase inhibitor Nω-nitro-l-arginine methyl ester, at doses that increased the hypothermic effects of baclofen and GHB. The results provide evidence that CGP7930 and rac-BHFF act in vivo as positive modulators at GABAB receptors mediating loss of righting, but not at GABAB receptors mediating hypothermia. Conceivably, CGP7930, but not rac-BHFF, acts as an allosteric agonist at these latter receptors. Taken together, the results provide further evidence of pharmacologically distinct GABAB receptor subtypes, possibly allowing for a more selective therapeutic interference with the GABAB system. PMID:20628000

  6. Discovery of potent and selective nonsteroidal indazolyl amide glucocorticoid receptor agonists.

    PubMed

    Sheppeck, James E; Gilmore, John L; Xiao, Hai-Yun; Dhar, T G Murali; Nirschl, David; Doweyko, Arthur M; Sack, Jack S; Corbett, Martin J; Malley, Mary F; Gougoutas, Jack Z; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Dodd, John H; Nadler, Steven G; Somerville, John E; Barrish, Joel C

    2013-10-01

    Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure. PMID:23953070

  7. Chronic immune thrombocytopenia in a child responding only to thrombopoietin receptor agonist

    PubMed Central

    2012-01-01

    Immune thrombocytopenia (ITP) is an acquired hematological disease in which the body produces antibodies against its own platelets leading to platelet destruction resulting in isolated thrombocytopenia. Childhood ITP may enter complete remission in the majority of cases within six months from diagnosis. However, 20-30% of affected children may develop chronic ITP (lasting for more than 12 months). First line treatment includes intravenous immunoglobulin (IVIG), corticosteroids or anti-D immunoglobulin. Second line treatment includes splenectomy, immunosuppressive therapy or Rituximab. Recently two thrombopoietin (TPO) receptor agonists (Romiplostim and Eltrombopag) are used to increase platelet count in refractory chronic ITP by increasing platelet production in bone marrow. Here is a case report on an 8 ½ -year-old boy with refractory chronic ITP who failed therapy with IVIG, corticosteroids, splenectomy and Rituximab. He showed excellent response to treatment with TPO receptor agonist (Romiplostim). His platelet count increased from less than 10 x103/dl and maintained between 100x103/dl to 200x103/dl after few weeks of starting Romiplostim therapy.

  8. 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin(1F) receptor agonist in rabbit saphenous vein.

    PubMed

    Cohen, M L; Schenck, K

    1999-09-01

    Recently, several novel approaches to the treatment of migraine have been advanced, including selective 5-hydroxytryptamine (or serotonin) 1B/1D (5-HT(1B/1D)) receptor agonists such as sumatriptan and 5-HT(1F) receptor agonists such as LY344864. Many 5-HT(1B/1D) receptor agonists have been identified based on their ability to produce cerebral vascular contraction, whereas LY344864 was identified as an inhibitor of trigeminal nerve-mediated dural extravasation. In our study, several triptan derivatives were compared with LY344864 for their ability to contract the rabbit saphenous vein, a tissue used in the preclinical identification of sumatriptan-related agonists. Sumatriptan, zolmitriptan, rizatriptan, and naratriptan all contracted the rabbit saphenous vein from baseline tone, whereas LY344864 in concentrations up to 10(-4) M did not contract the rabbit saphenous vein. Furthermore, vascular contractions to sumatriptan were markedly augmented in the presence of prostaglandin F(2alpha) (PGF(2alpha)). However, even in the presence of PGF(2alpha) (3 x 10(-7) M), LY344864 did not contract the rabbit saphenous vein in concentrations well in excess of its 5-HT(1F) receptor affinity (pK(i) = 8.2). Only when concentrations exceeded those likely to activate 5-HT(1B) and 5-HT(1D) receptors (>10(-5) M) did modest contractile responses occur in the presence of PGF(2alpha). Use of these serotonergic agonists revealed a significant correlation between the contractile potency in the rabbit saphenous vein and the affinities of these agonists at 5-HT(1B) and 5-HT(1D) receptors, although contractile agonist potencies were not quantitatively similar to 5-HT(1B) or 5-HT(1D) receptor affinities. In contrast, no significant correlation existed between the contractile potencies of these serotonergic agonists in the rabbit saphenous vein and their affinity at 5-HT(1F) receptors. These data support the contention that activation of 5-HT(1F) receptors will not result in vascular

  9. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection

    PubMed Central

    Kawabata, Atsufumi; Kinoshita, Mitsuhiro; Nishikawa, Hiroyuki; Kuroda, Ryotaro; Nishida, Minoru; Araki, Hiromasa; Arizono, Naoki; Oda, Yasuo; Kakehi, Kazuaki

    2001-01-01

    Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2–activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsaicin, which stimulates and ablates specific sensory neurons, but it was resistant to cyclo-oxygenase inhibition. In contrast, capsaicin treatment failed to block PAR-2–mediated secretion from the salivary glands. Intravenous calcitonin gene–related peptide (CGRP) and neurokinin A markedly elicited gastric mucus secretion, as did substance P to a lesser extent. Specific antagonists of the CGRP1 and NK2, but not the NK1, receptors inhibited PAR-2–mediated mucus secretion. Pretreatment with the PAR-2 agonist strongly prevented gastric injury caused by HCl-ethanol or indomethacin. Thus, PAR-2 activation triggers the cytoprotective secretion of gastric mucus by stimulating the release of CGRP and tachykinins from sensory neurons. In contrast, the PAR-2–mediated salivary exocrine secretion appears to be independent of capsaicin-sensitive sensory neurons. PMID:11390426

  10. Exploring pharmacological activities and signaling of morphinans substituted in position 6 as potent agonists interacting with the μ opioid receptor

    PubMed Central

    2014-01-01

    Background Opioid analgesics are the most effective drugs for the treatment of moderate to severe pain. However, they also produce several adverse effects that can complicate pain management. The μ opioid (MOP) receptor, a G protein-coupled receptor, is recognized as the opioid receptor type which primarily mediates the pharmacological actions of clinically used opioid agonists. The morphinan class of analgesics including morphine and oxycodone are of main importance as therapeutically valuable drugs. Though the natural alkaloid morphine contains a C-6-hydroxyl group and the semisynthetic derivative oxycodone has a 6-carbonyl function, chemical approaches have uncovered that functionalizing position 6 gives rise to a range of diverse activities. Hence, position 6 of N-methylmorphinans is one of the most manipulated sites, and is established to play a key role in ligand binding at the MOP receptor, efficacy, signaling, and analgesic potency. We have earlier reported on a chemically innovative modification in oxycodone resulting in novel morphinans with 6-acrylonitrile incorporated substructures. Results This study describes in vitro and in vivo pharmacological activities and signaling of new morphinans substituted in position 6 with acrylonitrile and amido functions as potent agonists and antinociceptive agents interacting with MOP receptors. We show that the presence of a 6-cyano group in N-methylmorphinans has a strong influence on the binding to the opioid receptors and post-receptor signaling. One 6-cyano-N-methylmorphinan of the series was identified as the highest affinity and most selective MOP agonist, and very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, this MOP agonist showed to be greatly effective against thermal and chemical nociception in mice with marked increased antinociceptive potency than the lead molecule oxycodone. Conclusion Development of such novel chemotypes by targeting

  11. Inverse agonist and pharmacochaperone properties of MK-0524 on the prostanoid DP1 receptor.

    PubMed

    Labrecque, Pascale; Roy, Sébastien J; Fréchette, Louis; Iorio-Morin, Christian; Gallant, Maxime A; Parent, Jean-Luc

    2013-01-01

    Prostaglandin D₂ (PGD₂) acts through two G protein-coupled receptors (GPCRs), the prostanoid DP receptor and CRTH2 also known as DP1 and DP2, respectively. Several previously characterized GPCR antagonists are now classified as inverse agonists and a number of GPCR ligands are known to display pharmacochaperone activity towards a given receptor. Here, we demonstrate that a DP1 specific antagonist, MK-0524 (also known as laropiprant), decreased basal levels of intracellular cAMP produced by DP1, a Gα(s)-coupled receptor, in HEK293 cells. This reduction in cAMP levels was not altered by pertussis toxin treatment, indicating that MK-0524 did not induce coupling of DP1 to Gα(i/o) proteins and that this ligand is a DP1 inverse agonist. Basal ERK1/2 activation by DP1 was not modulated by MK-0524. Interestingly, treatment of HEK293 cells expressing Flag-tagged DP1 with MK-0524 promoted DP1 cell surface expression time-dependently to reach a maximum increase of 50% compared to control after 24 h. In contrast, PGD₂ induced the internalization of 75% of cell surface DP1 after the same time of stimulation. The increase in DP1 cell surface targeting by MK-0524 was inhibited by Brefeldin A, an inhibitor of transport from the endoplasmic reticulum-Golgi to the plasma membrane. Confocal microscopy confirmed that a large population of DP1 remained trapped intracellularly and co-localized with calnexin, an endoplasmic reticulum marker. Redistribution of DP1 from intracellular compartments to the plasma membrane was observed following treatment with MK-0524 for 24 h. Furthermore, MK-0524 promoted the interaction between DP1 and the ANKRD13C protein, which we showed previously to display chaperone-like effects towards the receptor. We thus report that MK-0524 is an inverse agonist and a pharmacochaperone of DP1. Our findings may have important implications during therapeutic treatments with MK-0524 and for the development of new molecules targeting DP1. PMID:23762421

  12. Effective antibody therapy induces host protective antitumor immunity that is augmented by TLR4 agonist treatment

    PubMed Central

    Wang, Shangzi; Astsaturov, Igor A.; Bingham, Catherine A.; McCarthy, Kenneth M.; von Mehren, Margaret; Xu, Wei; Alpaugh, R. Katherine; Tang, Yong; Littlefield, Bruce A.; Hawkins, Lynn D.; Ishizaka, Sally T.; Weiner, Louis M.

    2012-01-01

    Toll-like receptors are potent activators of the innate immune system and generate signals leading to the initiation of the adaptive immune response that can be utilized for therapeutic purposes. We tested the hypothesis that combined treatment with a toll-like receptor agonist and an anti-tumor monoclonal antibody is effective and induces host-protective anti-tumor immunity. C57BL/6 human mutated HER2 (hmHER2) transgenic mice that constitutively express kinase-deficient human HER2 under control of the CMV promoter were established. These mice demonstrate immunological tolerance to D5-HER2, a syngeneic human HER2-expressing melanoma cell line. This human HER2 tolerant model offers the potential to serve as a preclinical model to test both antibody therapy and the immunization potential of human HER2 targeted therapeutics. Here we show that E6020, a toll like receptor-4 (TLR4) agonist effectively boosted the antitumor efficacy of the monoclonal antibody trastuzumab in immunodeficient C57BL/6 SCID mice as well as in C57BL/6 hmHER2 transgenic mice. E6020 and trastuzumab co-treatment resulted in significantly greater inhibition of tumor growth than was observed with either agent individually. Furthermore, mice treated with the combination of trastuzumab and the TLR4 agonist were protected against re-challenge with human HER2 transfected tumor cells in hmHER2 transgenic mouse strains. These findings suggest that combined treatment with trastuzumab and a TLR4 agonist not only promotes direct anti-tumor effects but also induces a host-protective human HER2-directed adaptive immune response indicative of a memory response. These data provide an immunological rationale for testing TLR4 agonists in combination with antibody therapy in patients with cancer. PMID:21842208

  13. Desensitization of Functional µ-Opioid Receptors Increases Agonist Off-Rate

    PubMed Central

    2014-01-01

    Desensitization of µ-opioid receptors (MORs) develops over 5–15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein–coupled K+ channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu5]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity. PMID:24748657

  14. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    PubMed Central

    Mhashilkar, Amruta S.; Vankayala, Sai L.; Liu, Canhui; Kearns, Fiona; Mehrotra, Priyanka; Tzertzinis, George; Palli, Subba R.; Woodcock, H. Lee; Unnasch, Thomas R.

    2016-01-01

    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. PMID:27300294

  15. Fluorescence characteristics of hydrophobic partial agonist probes of the cholecystokinin receptor.

    PubMed

    Harikumar, Kaleeckal G; Pinon, Delia I; Miller, Laurence J

    2006-04-01

    Fluorescence spectroscopic studies are powerful tools for the evaluation of receptor structure and the dynamic changes associated with receptor activation. Here, we have developed two chemically distinct fluorescent probes of the cholecystokinin (CCK) receptor by attaching acrylodan or a nitrobenzoxadiazole moiety to the amino terminus of a partial agonist CCK analogue. These two probes were able to bind to the CCK receptor specifically and with high affinity, and were able to elicit only submaximal intracellular calcium responses typical of partial agonists. The fluorescence characteristics of these probes were compared with those previously reported for structurally-related full agonist and antagonist probes. Like the previous probes, the partial agonist probes exhibited longer fluorescence lifetimes and increased anisotropy when bound to the receptor than when free in solution. The receptor-bound probes were not easily quenched by potassium iodide, suggesting that the fluorophores were protected from the extracellular aqueous milieu. The fluorescence characteristics of the partial agonist probes were quite similar to those of the analogous full agonist probes and quite distinct from the analogous antagonist probes. These data suggest that the partially activated conformational state of this receptor is more closely related to its fully active state than to its inactive state. PMID:16779661

  16. Kisspeptin receptor agonist (FTM080) increased plasma concentrations of luteinizing hormone in anestrous ewes

    PubMed Central

    Daniel, Joseph A.; Amelse, Lisa L.; Tanco, Valeria M.; Chameroy, Kelly A.; Schrick, F. Neal

    2015-01-01

    Kisspeptin receptor (KISS1R) agonists with increased half-life and similar efficacy to kisspeptin in vitro may provide beneficial applications in breeding management of many species. However, many of these agonists have not been tested in vivo. These studies were designed to test and compare the effects of a KISS1R agonist (FTM080) and kisspeptin on luteinizing hormone (LH) in vivo. In experiment 1 (pilot study), sheep were treated with FTM080 (500 pmol/kg BW) or sterile water (VEH) intravenosuly. Blood was collected every 15 min before (1 h) and after (1 h) treatment. In experiment 2, sheep were treated with KP-10 (human Metastin 45-54; 500 pmol/kg BW), one of three dosages of FTM080 (500 (FTM080:500), 2500 (FTM080:2500), or 5000 (FTM080:5000) pmol/kg BW), or VEH intravenously. Blood was collected every 15 min before (1 h) and after (4 h) treatment. In experiment 1, FTM080:500 increased (P < 0.05) plasma LH concentrations when compared to VEH. The area under the curve (AUC) of LH following FTM080:500 treatment was also increased (P < 0.05). In experiment 2, plasma LH concentrations increased (P < 0.05) following treatment with KP-10 and FTM080:5000 when compared to VEH and FTM080:500. The AUC of LH following KP-10 was greater than (P < 0.05) all other treatments and the AUC of LH following FTM080:5000 was greater than (P < 0.05) all treatments except KP-10. These data provide evidence to suggest that FTM080 stimulates the gonadotropic axis of ruminants in vivo. Any increased half-life and comparable efficacy of FTM080 to KP-10 in vitro does not appear to translate to in vivo in sheep. PMID:26587345

  17. β-Arrestin-Selective G Protein-Coupled Receptor Agonists Engender Unique Biological Efficacy in Vivo

    PubMed Central

    Gesty-Palmer, Diane; Yuan, Ling; Martin, Bronwen; Wood, William H.; Lee, Mi-Hye; Janech, Michael G.; Tsoi, Lam C.; Zheng, W. Jim; Maudsley, Stuart

    2013-01-01

    Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, d-Trp12,Tyr34-bPTH(7–34) [bPTH(7–34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7–34) and the conventional agonist hPTH(1–34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7–34) or hPTH(1–34). Treatment of wild-type mice with bPTH(7–34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1–34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1–34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7–34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7–34) and hPTH(1–34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy. PMID:23315939

  18. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  19. Neuroprotective actions of GR89696, a highly potent and selective kappa-opioid receptor agonist.

    PubMed Central

    Birch, P. J.; Rogers, H.; Hayes, A. G.; Hayward, N. J.; Tyers, M. B.; Scopes, D. I.; Naylor, A.; Judd, D. B.

    1991-01-01

    1. The effect of a novel, highly potent and selective kappa-opioid receptor agonist, GR89696, has been evaluated in two animal models of cerebral ischaemia: transient bilateral carotid artery occlusion in the Mongolian gerbil and permanent, unilateral middle cerebral artery occlusion in the mouse. 2. In the Mongolian gerbil model, administration of GR89696 (3 to 30 micrograms kg-1, s.c.), immediately before and at 4 h after insult, produced a dose-dependent reduction in the hippocampal CA1 neuronal cell loss resulting from a 7-min bilateral carotid occlusion. Similar effects were obtained with two other kappa-agonists, GR86014 (1 mgkg-1, s.c.) and GR91272 (1 mgkg-1, s.c.). The neuroprotective effect of GR89696 was completely blocked by prior administration of the opioid receptor antagonist, naltrexone, at 10 mgkg-1, s.c. Repeated post-treatment with GR89696 (100 micrograms kg-1, s.c.) or GR44821 (10 mgkg-1, s.c.) was also effective in protecting completely the hippocampal CA1 neurones from ischaemia-induced neurodegeneration. 3. In the permanent, unilateral middle cerebral artery occlusion model in the mouse, repeated administration of GR89696 at 300 micrograms kg-1, s.c. produced a 50% reduction in cerebrocortical infarct volume. In these experiments GR89696 was dosed 5 min, 4, 8, 12, 16, 20 and 24 h after occlusion on the first day and then three times daily for the next three days. GR89696 (300 micrograms kg-1) also produced a significant 35% reduction in infarct volume in this model when the initiation of dosing was delayed for 6 h after the insult. 4. The results indicate that the potent kappa-opioid receptor agonist, GR89696, is neuroprotective in both global and focal cerebral ischaemia models and suggest that, with this class of compound, there may be a considerable time window for pharmacological intervention. PMID:1657267

  20. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  1. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  2. Potent achiral agonists of the ghrelin (growth hormone secretagogue) receptor. Part I: Lead identification.

    PubMed

    Heightman, Tom D; Scott, Jackie S; Longley, Mark; Bordas, Vincent; Dean, David K; Elliott, Richard; Hutley, Gail; Witherington, Jason; Abberley, Lee; Passingham, Barry; Berlanga, Manuela; de Los Frailes, Maite; Wise, Alan; Powney, Ben; Muir, Alison; McKay, Fiona; Butler, Sharon; Winborn, Kim; Gardner, Christopher; Darton, Jill; Campbell, Colin; Sanger, Gareth

    2007-12-01

    High throughput screening combined with efficient datamining and parallel synthesis led to the discovery of a novel series of indolines showing potent in vitro ghrelin receptor agonist activity and acceleration of gastric emptying in rats. PMID:17942309

  3. Aryl sulphonyl amides as potent agonists of the growth hormone secretagogue (ghrelin) receptor.

    PubMed

    Witherington, Jason; Abberley, Lee; Bellenie, Benjamin R; Boatman, Rio; Collis, Katharine; Dean, David K; Gaiba, Alessandra; King, N Paul; Shuker, Nicola; Steadman, Jon G A; Takle, Andrew K; Sanger, Gareth; Butler, Sharon; McKay, Fiona; Muir, Alison; Winborn, Kim; Ward, Robert W; Heightman, Tom D

    2009-02-01

    As part of an on-going lead optimisation effort, a cross screening exercise identified an aryl sulphonyl amide hit that was optimised to afford a highly potent series of ghrelin receptor agonists. PMID:19128969

  4. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions. PMID:17383145

  5. 5-Hydroxytryptamine 4(a) receptor expressed in Sf9 cells is palmitoylated in an agonist-dependent manner.

    PubMed Central

    Ponimaskin, E G; Schmidt, M F; Heine, M; Bickmeyer, U; Richter, D W

    2001-01-01

    The mouse 5-hydroxytryptamine 4(a) receptor [5-HT(4(a))] was expressed with a baculovirus system in insect cells and analysed for acylation. [(3)H]Palmitic acid was effectively incorporated into 5-HT(4(a)) and label was sensitive to the treatment with reducing agents indicating a thioester-type bond. Analysis of protein-bound fatty acids revealed that 5-HT(4(a)) contains predominantly palmitic acid. Treatment of infected Sf9 (Spodoptera frugiperda) cells with BIMU8 [(endo-N-8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-2,3-dehydro-2-oxo-3-(prop-2-yl)-1H-benzimid-azole-1-carboxamide], a 5-HT(4) receptor-selective agonist, generated a dose-dependent increase in [(3)H]palmitate incorporation into 5-HT(4(a)) with an EC(50) of approx. 10 nM. The change in receptor labelling after stimulation with agonist was receptor-specific and did not result from general metabolic effects. We also used both pulse labelling and pulse-chase labelling to address the dynamics of 5-HT(4(a)) palmitoylation. Incorporation studies revealed that the rate of palmitate incorporation was increased approx. 3-fold after stimulation with agonist. Results of pulse-chase experiments show that activation with BIMU8 promoted the release of radiolabel from 5-HT(4(a)), thereby reducing the levels of receptor-bound palmitate to approximately one-half. Taken together, our results demonstrate that palmitoylation of 5-HT(4(a)) is a reversible process and that stimulation of 5-HT(4(a)) with agonist increases the turnover rate for receptor-bound palmitate. This provides evidence for a regulated cycling of receptor-bound palmitate and suggests a functional role for palmitoylation/depalmitoylation in 5-hydroxytryptamine-mediated signalling. PMID:11171060

  6. Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist

    PubMed Central

    Cypess, Aaron M.; Weiner, Lauren S.; Roberts-Toler, Carla; Elía, Elisa Franquet; Kessler, Skyler H.; Kahn, Peter A.; English, Jeffrey; Chatman, Kelly; Trauger, Sunia A.; Doria, Alessandro; Kolodny, Gerald M.

    2015-01-01

    SUMMARY Increasing energy expenditure through activation of endogenous brown adipose tissue (BAT) is a potential approach to treat obesity and diabetes. The class of β3-adrenergic receptor (AR) agonists stimulates rodent BAT, but this activity has never been demonstrated in humans. Here we determined the ability of 200 mg oral mirabegron (Myrbetriq, Astellas Pharma, Inc.), a β3-AR agonist currently approved to treat overactive bladder, to stimulate BAT as compared to placebo. Mirabegron led to higher BAT metabolic activity as measured via 18F-fluorodeoxyglucose (18F-FDG) using positron emission tomography (PET) combined with computed tomography (CT) in all twelve healthy male subjects (p = 0.001), and it increased resting metabolic rate (RMR) by 203 ± 40 kcal/day (+13%; p = 0.001). BAT metabolic activity was also a significant predictor of the changes in RMR (p = 0.006). Therefore, a β3-AR agonist can stimulate human BAT thermogenesis and may be a promising treatment for metabolic disease. PMID:25565203

  7. Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief.

    PubMed

    Remadevi, Radhika; Szallisi, Arpad

    2008-02-01

    Anesiva Inc is developing Adlea (ALRGX-4975) - an injectable preparation of capsaicin, a TRPV1 (transient receptor potential vanilloid subfamily 1) receptor agonist - for the potential management of pain associated with osteoarthritis, tendonitiand postsurgical conditions, as well as for neuropathic pain occurring secondary to nerve injury. Adlea functions by desensitizing those neurons that conduct a long-lasting, throbbing form of pain. In phase II clinical trials, a single injection of Adlea significantly reduced pain levels in patients following total knee arthroplasty (TKA) or bunionectomy, and reduced pain in patients with osteoarthritis (OA) or Morton's neuroma. Phase II trials are ongoing to test Adlea in patients who are undergoing total hip arthroplasty or arthroscopic shoulder surgery and in patients with knee OA. Phase III clinical trials for the compound have been slated to begin in 2008 in patients following TKA or bunionectomy. Adlea appears to exhibit promise as a new medication in the treatment of conditions of chronic neuropathic pain. PMID:18240098

  8. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  9. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  10. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice

    PubMed Central

    Pradhan, Amynah A; Smith, Monique L; Zyuzin, Jekaterina; Charles, Andrew

    2014-01-01

    Background and Purpose Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. Experimental Approach Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. Key Results NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. Conclusions and Implications These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder. PMID:24467301

  11. Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine and κ-opioid receptors in rat spinal cord nociceptive reflexes.

    PubMed

    Ramos-Zepeda, Guillermo A; Herrero-Zorita, Carlos; Herrero, Juan F

    2014-12-01

    Antinociception induced by the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) is linked to opioid receptors. We studied the subtype of receptors to which CPA action is related, as well as a possible enhancement of antinociception when CPA is coadministered with opioid receptor agonists. Spinal cord neuronal nociceptive responses of male Wistar rats with inflammation were recorded using the single motor unit technique. CPA antinociception was challenged with naloxone or norbinaltorphimine. The antinociceptive activity of fentanyl and U-50488H was studied alone and combined with CPA. Reversal of CPA antinociception was observed with norbinaltorphimine (82.9±13% of control) but not with low doses of naloxone (27±8% of control), indicating an involvement of κ-opioid but not µ-opioid receptors. Low doses of CPA did not modify fentanyl antinociception. However, a significant enhancement of the duration of antinociception was seen when U-50488H was coadministered with CPA. We conclude that antinociception mediated by CPA in the spinal cord is associated with activation of κ-opioid but not µ-opioid receptors in inflammation. In addition, coadministration of CPA and κ-opioid receptor agonists is followed by significantly longer antinociception, opening new perspectives in the treatment of chronic inflammatory pain. PMID:25325292

  12. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors.

    PubMed

    Jakubík, J; Bacáková, L; El-Fakahany, E E; Tucek, S

    1997-07-01

    It is well known that allosteric modulators of muscarinic acetylcholine receptors can both diminish and increase the affinity of receptors for their antagonists. We investigated whether the allosteric modulators can also increase the affinity of receptors for their agonists. Twelve agonists and five allosteric modulators were tested in experiments on membranes of CHO cells that had been stably transfected with genes for the M1-M4 receptor subtypes. Allosterically induced changes in the affinities for agonists were computed from changes in the ability of a fixed concentration of each agonist to compete with [3H]N-methylscopolamine for the binding to the receptors in the absence and the presence of varying concentrations of allosteric modulators. The effects of allosteric modulators varied greatly depending on the agonists and the subtypes of receptors. The affinity for acetylcholine was augmented by (-)-eburnamonine on the M2 and M4 receptors and by brucine on the M1 and M3 receptors. Brucine also enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pilocarpine, 3-(3-pentylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1- methylpyridine (pentylthio-TZTP), oxotremorine-M, and McN-A-343 on the M1, M3, and M4 receptors, for pentylthio-TZTP on the M2 receptors, and for arecoline on the M3 receptors. (-)-Eburnamonine enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pentylthio-TZTP, pilocarpine, oxotremorine and oxotremorine-M on the M2 receptors and for pilocarpine on the M4 receptors. Vincamine, strychnine, and alcuronium displayed fewer positive allosteric interactions with the agonists, but each allosteric modulator displayed positive cooperativity with at least one agonist on at least one muscarinic receptor subtype. The highest degrees of positive cooperativity were observed between (-)-eburnamonine and pilocarpine and (-)-eburnamonine and oxotremorine-M on the M2 receptors (25- and 7-fold increases in

  13. Effects of combination PPARγ agonist and angiotensin receptor blocker on glomerulosclerosis.

    PubMed

    Matsushita, Keizo; Yang, Hai-Chun; Mysore, Manu M; Zhong, Jianyong; Shyr, Yu; Ma, Li-Jun; Fogo, Agnes B

    2016-06-01

    We previously observed that high-dose angiotensin receptor blocker (ARB) can induce regression of existing glomerulosclerosis. We also found that proliferator-activated recepto-γ (PPARγ) agonist can attenuate glomerulosclerosis in a nondiabetic model of kidney disease, with specific protection of podocytes. We now assessed effects of combination therapy with ARB and pioglitazone on established glomerulosclerosis. Sprague-Dawley male rats underwent 5/6 nephrectomy (5/6 Nx) at week 0 and renal biopsy at week 8. Rats were randomized to groups with equal starting moderate glomerulosclerosis, and treated with ARB, PPARγ agonist (pioglitazone), combination or vehicle from weeks 8 to 12. Body weight, systolic blood pressure (SBP), and urinary protein (UP) were measured at intervals. In rats with established sclerosis, SBP, UP, and GS were equal in all groups at week 8 before treatment by study design. Untreated control rats had hypertension, decreased GFR, and progressive proteinuria and glomerulosclerosis at week 12. Only combination therapy significantly ameliorated hypertension and proteinuria. ARB alone or pioglitazone alone had only numerically lower SBP and UP than vehicle at week 12. Both pioglitazone alone and combination had significantly less decline in GFR than vehicle. Combination-induced regression of glomerulosclerosis in more rats from weeks 8 to 12 than ARB or pioglitazone alone. In parallel, combination treatment reduced plasminogen activator inhibitor-1 expression and macrophage infiltration, and preserved podocytes compared with vehicle. These results were linked to increased AT2 receptor and Mas1 mRNA in the combination group. PPARγ agonists in combination with ARB augment regression of glomerulosclerosis, with downregulation of injurious RAAS components vs PPARγ alone, with increased anti-fibrotic/healing RAAS components, enhanced podocyte preservation, and decreased inflammation and profibrotic mechanisms. PMID:26999660

  14. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer's disease.

    PubMed

    Yahiaoui, Samir; Hamidouche, Katia; Ballandonne, Céline; Davis, Audrey; de Oliveira Santos, Jana Sopkova; Freret, Thomas; Boulouard, Michel; Rochais, Christophe; Dallemagne, Patrick

    2016-10-01

    5-HT4 receptor (5-HT4R) activation and blockade of the 5-HT6 receptor (5-HT6R) are known to enhance the release of numerous neurotransmitters whose depletion is implicated in Alzheimer's disease (AD). Furthermore, 5-HT4R agonists seem to favor production of the neurotrophic soluble amyloid protein precursor alpha (sAPPα). Consequently, combining 5-HT4R agonist/5-HT6R antagonist activities in a single chemical compound would constitute a novel approach able to display both a symptomatic and disease-modifying effect in AD. Seventeen novel derivatives of RS67333 (1) were synthesized and evaluated as potential dual-target compounds. Among them, four agents showed nanomolar and submicromolar affinities toward 5-HT4R and 5-HT6R, respectively; one of them, 7m, was selected on the basis of its in vitro affinity (Ki5-HT4R = 5.3 nM, Ki5-HT6R = 219 nM) for further in vivo experiments, where 7m showed an antiamnesic effect in the mouse at 1 mg/kg ip. PMID:27266998

  15. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  16. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  17. Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice.

    PubMed

    Bell, J K; McQueen, D S; Rees, J L

    2004-05-01

    The role of histamine H(1), H(2), H(3) and H(4) receptors in acute itch induced by histamine was investigated in female BalbC mice. Scratching was induced by intradermal injections of pruritogen into the back of the neck and "itch" assessed by quantifying the scratching evoked. Histamine (0.03-80 micromol), histamine-trifluoromethyl-toluidine (HTMT, H(1) agonist, 0.002-2 micromol), clobenpropit (H(4) agonist, H(3) antagonist, 0.002-0.6 micromol) and to a lesser extent imetit (H(3)/H(4) agonist, 0.03-3 micromol) all induced dose-dependent scratching. Dimaprit (H(2) agonist, 0.04-40 micromol) did not cause scratching. Mepyramine (H(1) antagonist, 20 mg kg(-1), i.p.) reduced scratching evoked by histamine and HTMT, but not that caused by H(3) or H(4) agonists. Thioperamide (H(3)/H(4) antagonist, 20 mg kg(-1), i.p.) reduced scratching induced by histamine, H(3) and H(4) agonists, but not that caused by HTMT. The non-sedating H(1) antagonist, terfenadine, also significantly reduced the scratching induced by the H(1) agonist, HTMT. Cimetidine (H(2) antagonist, 20 mg kg(-1), i.p.) did not affect histamine-induced scratching. These results indicate that activation of histamine H(4) receptors causes itch in mice, in addition to the previously recognised role for H(1) receptors in evoking itch. Histamine H(4) receptor antagonists therefore merit investigation as antipruritic agents. PMID:15066908

  18. Agonistic TAM-163 antibody targeting tyrosine kinase receptor-B

    PubMed Central

    Vugmeyster, Yulia; Rohde, Cynthia; Perreault, Mylene; Gimeno, Ruth E.; Singh, Pratap

    2013-01-01

    TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h−1). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level < 10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action. PMID:23529133

  19. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  20. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach

    PubMed Central

    Niu, Ai-qin; Xie, Liang-jun; Wang, Hui; Zhu, Bing; Wang, Sheng-qi

    2016-01-01

    Background Estrogen receptors (ERs) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal approach to elicit beneficial estrogen-like activities and reduce side effects. Methods Herein, we focused on ER-β and developed its in silico quantitative structure-activity relationship models using machine learning (ML) methods. Results The chemical structures and ER-β bioactivity data were extracted from public chemogenomics databases. Four types of popular fingerprint generation methods including MACCS fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, k-nearest neighbor, random forest, and support vector machine were used to train the models. The range of classification accuracies was 77.10% to 88.34%, and the range of area under the ROC (receiver operating characteristic) curve values was 0.8151 to 0.9475, evaluated by the 5-fold cross-validation. Comparison analysis suggests that both the random forest and the support vector machine are superior for the classification of selective ER-β agonists. Chemistry Development Kit extended fingerprints and MACCS fingerprint performed better in structural representation between active and inactive agonists. Conclusion These results demonstrate that combining the fingerprint and ML approaches leads to robust ER-β agonist prediction models, which are potentially applicable to the identification of selective ER-β agonists. PMID:27486309

  1. Behavioural evidence of agonist-like effect of isoteoline at 5-HT1B serotonergic receptors in mice.

    PubMed

    Zhelyazkova-Savova, Maria D; Zhelyazkov, Delcho K

    2003-01-01

    Isoteoline is a compound of aporphine structure derived from the alkaloid glaucine. Previous studies with isoteoline have shown antagonistic activity at 5-HT(2C) serotonergic receptors. We have investigated whether isoteoline interacts with 5-HT(1B) receptors. An isolation-induced social behavioural deficit test in mice was used as a model of stimulation of these receptors. The deficit in the behaviour of isolated mice in this experimental procedure was reported to be sensitive to 5-HT(1B)-receptor stimulation, since agonists at these receptors are capable of reversing it. In our study, we used N-(3-trifluoromethylphenyl)piperazine (TFMPP) (2 mg kg(-1)) as a reference agonist at these receptor sites. TFMPP completely restored the normal behaviour of the isolated mice. Its effect was prevented by propranolol (4 mg kg(-1)), a beta-adrenergic receptor antagonist with a high affinity for 5-HT(1B) receptors, which was inactive by itself. When isoteoline was given before TFMPP, it did not prevent the effect of the latter. Given alone at doses of 0.25, 1, 4 or 8 mg kg(-1), isoteoline showed an effect of its own to normalize the behaviour of isolated mice. The effect of isoteoline (1 mg kg(-1), i.p.) was antagonized by pretreatment with propranolol, indicating that it was mediated through stimulation of 5-HT(1B) receptors. Repeated treatment with isoteoline (1 mg kg(-1), 2 x 3 days, i.p.) produced tolerance to its effect and significantly attenuated the effect of TFMPP, when animals were tested 16 h after the last injection. In conclusion, the results provided functional evidence of agonist-like activity of isoteoline at the 5-HT(1B) receptors. PMID:12625876

  2. Use of Toll-Like Receptor 3 Agonists Against Respiratory Viral Infections

    PubMed Central

    Christopher, ME; Wong, JP

    2011-01-01

    Respiratory RNA viruses are constantly evolving, thus requiring development of additional prophylactic and therapeutic strategies. Harnessing the innate immune system to non-specifically respond to viral infection has the advantage of being able to circumvent viral mutations that render the virus resistant to a particular therapeutic agent. Viruses are recognized by various cellular receptors, including Toll-like receptor (TLR) 3 which recognizes double-stranded (ds)RNA produced during the viral replication cycle. TLR3 agonists include synthetic dsRNA such as poly (IC), poly (ICLC) and poly (AU). These agents have been evaluated and found to be effective against a number of viral agents. One major limitation has been the toxicity associated with administration of these drugs. Significant time and effort have been spent to develop alternatives/modifications that will minimize these adverse effects. This review will focus on the TLR3 agonist, poly (IC)/(ICLC) with respect to its use in treatment/prevention of respiratory viral infections.

  3. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    PubMed

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte; Werge, Thomas; Bymaster, Frank P; Felder, Christian C; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia. PMID:25880220

  4. Antipsychotic-Like Effect of the Muscarinic Acetylcholine Receptor Agonist BuTAC in Non-Human Primates

    PubMed Central

    Dencker, Ditte; Werge, Thomas; Bymaster, Frank P.; Felder, Christian C.; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia. PMID:25880220

  5. Vitamin D Receptor Agonists: Suitable Candidates as Novel Therapeutic Options in Autoimmune Inflammatory Myopathy

    PubMed Central

    Crescioli, Clara

    2014-01-01

    The primary aim in the treatment of autoimmune inflammatory myopathies (IMs) is to recover muscle function. The presence of immune/inflammatory cell infiltrates within muscle tissues represents the common feature of different IM subtypes, albeit a correlation between muscular damage extent and inflammation degree is often lacking. Treatments for IMs are based on life-long immunosuppressive therapy, with the well known adverse effects; recovery is incomplete for many patients. More effective therapies, with reduced side-effects, are highly desirable. Vitamin D receptor (VDR) agonists emerge to retain pleiotropic anti-inflammatory properties, since they regulate innate and adaptive immunity by switching the immune response from proinflammatory T helper 1 (Th1) type to tolerogenic T helper 2 (Th2) type dominance. In skeletal muscle cells less hypercalcemic VDR ligands target powerful mediators of inflammation, such as TNFα and TNFα driven paths, without affecting immune or muscle cells viability, retaining the potentiality to counteract Th1 driven overreactivity established by the self-enhancing inflammatory loop between immune and skeletal muscle cells. This review summarizes those features of VDR agonists as candidates in future treatment of IM. PMID:24895631

  6. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

    PubMed Central

    Hanlon, Katherine E; Lozano-Ondoua, Alysia N; Umaretiya, Puja J; Symons-Liguori, Ashley M; Chandramouli, Anupama; Moy, Jamie K; Kwass, William K; Mantyh, Patrick W; Nelson, Mark A; Vanderah, Todd W

    2016-01-01

    Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor. PMID:27186076

  7. An in vitro investigation of the cardiovascular effects of the 5-HT(4) receptor selective agonists, velusetrag and TD-8954.

    PubMed

    Beattie, D T; Higgins, D L; Ero, M P; Amagasu, S M; Vickery, R G; Kersey, K; Hopkins, A; Smith, J A M

    2013-01-01

    The 5-HT(4) receptor agonists, and gastrointestinal (GI) prokinetic agents, cisapride and tegaserod, lack selectivity for the 5-HT(4) receptor. Cisapride is a potent human ether-à-go-go-related gene (hERG) potassium channel inhibitor while cisapride and tegaserod have significant affinity for 5-HT(1) and 5-HT(2) receptor subtypes. Marketing of both compounds was discontinued due to cardiovascular concerns (cardiac arrhythmias with cisapride and ischemic events with tegaserod). The reported association of tegaserod with ischemia has been postulated to involve coronary artery constriction or augmentation of platelet aggregation. This in vitro study investigated the effects of two of the new generation of highly selective 5-HT(4) receptor agonists, velusetrag and TD-8954, on canine, porcine and human coronary artery tone, human platelet aggregation and hERG potassium channel conductance. No significant off-target actions of velusetrag or TD-8954 were identified in these, and prior, studies. While cisapride inhibited potently the hERG channel currents, tegaserod failed to affect platelet aggregation, and had only a small contractile effect on the canine coronary artery at high concentrations. Tegaserod inhibited the 5-HT-induced contractile response in the porcine coronary artery. New generation 5-HT(4) receptor agonists hold promise for the treatment of patients suffering from GI motility disorders with a reduced cardiovascular risk. PMID:23201772

  8. Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications.

    PubMed

    Saidak, Zuzana; Brazier, Michel; Kamel, Saïd; Mentaverri, Romuald

    2009-12-01

    The calcium-sensing receptor (CaR) belongs to the G protein-coupled receptor superfamily, with a characteristic structure consisting of seven transmembrane helices, an intracellular C-terminal and an extracellular N terminal domain. The primary physiological function of the CaR is the maintenance of constant blood Ca2+ levels, as a result of its ability to sense very small changes in extracellular Ca2+ (Ca2+(o)). Nevertheless, in addition to being expressed in tissues involved in Ca2+(o) homeostasis, the CaR is also expressed in tissues not involved in mineral homeostasis, suggestive of additional physiological functions. Numerous agonists and modulators of the CaR are now known in addition to Ca2+(o), including various divalent and trivalent cations, aromatic l-amino acids, polyamines, and aminoglycoside antibiotics. The signaling of the CaR is also regulated by extracellular pH and ionic strength. The activated CaR couples mainly to the phospholipase Cbeta and extracellular signal-regulated kinase 1/2 signaling pathways, and it decreases intracellular cAMP levels, leading to various physiological effects. The recent identification of synthetic allosteric modulators of the CaR has opened up a new field of research possibilities. Calcimimetics and calcilytics, which increase and decrease agonist signaling via the CaR, respectively, may facilitate the manipulation of the CaR and thus aid in further investigations of its precise signaling. These allosteric modulators, as well as strontium, have been demonstrated to have therapeutic potential for the treatment of disorders involving the CaR. This review discusses the various agonists and modulators of the CaR, differences in their binding and signaling, and their roles as therapeutics in various diseases. PMID:19779033

  9. β-adrenergic receptor agonist, Compound 49b, inhibits TLR4 signaling pathway in diabetic retina

    PubMed Central

    Berger, Elizabeth A.; Carion, Thomas W.; Jiang, Youde; Liu, Li; Chahine, Adam; Walker, Robert Jason; Steinle, Jena J.

    2016-01-01

    Diabetic retinopathy has recently become associated with complications similar to chronic inflammatory diseases. While it is clear that tumor necrosis factor- alpha (TNF-α) is increased in diabetes, the role of innate immunity is only recently being investigated. As such, we hypothesized that diabetes would increase toll-like receptor 4 (TLR4) signaling, which could be inhibited by a β-adrenergic receptor agonist (Compound 49b) previously shown to have anti-inflammatory actions. In order to investigate β-adrenergic receptor signaling and TLR4 in the diabetic retina, streptozotocin-injected diabetic mice, as well as human primary retinal endothelial cells (REC) and rat retinal Müller cells (rMC-1) exposed to high glucose (25mM), were treated with a novel β-adrenergic receptor agonist, Compound 49b (50nM), or PBS (control). TLR4 and its downstream signaling partners (MyD88, IRAK1, TRAF6, total and phosphorylated NF-κB) were examined. In addition, we assessed high mobility box group 1 (HMGB1) protein levels. Our data showed that diabetes or high glucose culture conditions significantly increased TLR4 and downstream signaling partners. Compound 49b was able to significantly reduce TLR4 and related molecules in the diabetic animal and retinal cells. HMGB1 was significantly increased in REC and Müller cells grown in high glucose, which was subsequently reduced with Compound 49b treatment. Our findings suggest that high glucose may increase HMGB1 levels that lead to increased TLR4 signaling. Compound 49b significantly inhibited this pathway providing a potential mechanism for its protective actions. PMID:26888251

  10. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    SciTech Connect

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.