Sample records for receptor selectively coupled

  1. Selective targeting of G-protein-coupled receptor subtypes with venom peptides.

    PubMed

    Näreoja, K; Näsman, J

    2012-02-01

    The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  2. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booe, Jason M.; Walker, Christopher S.; Barwell, James

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  3. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE PAGES

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; ...

    2015-05-14

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  4. Lifetime of muscarinic receptor-G-protein complexes determines coupling efficiency and G-protein subtype selectivity.

    PubMed

    Ilyaskina, Olga S; Lemoine, Horst; Bünemann, Moritz

    2018-05-08

    G-protein-coupled receptors (GPCRs) are essential for the detection of extracellular stimuli by cells and transfer the encoded information via the activation of functionally distinct subsets of heterotrimeric G proteins into intracellular signals. Despite enormous achievements toward understanding GPCR structures, major aspects of the GPCR-G-protein selectivity mechanism remain unresolved. As this can be attributed to the lack of suitable and broadly applicable assays, we set out to develop a quantitative FRET-based assay to study kinetics and affinities of G protein binding to activated GPCRs in membranes of permeabilized cells in the absence of nucleotides. We measured the association and dissociation kinetics of agonist-induced binding of G i/o , G q/11 , G s , and G 12/13 proteins to muscarinic M 1 , M 2 , and M 3 receptors in the absence of nucleotides between fluorescently labeled G proteins and receptors expressed in mammalian cells. Our results show a strong quantitative correlation between not the on-rates of G-protein-M 3 -R interactions but rather the affinities of G q and G o proteins to M 3 -Rs, their GPCR-G-protein lifetime and their coupling efficiencies determined in intact cells, suggesting that the G-protein subtype-specific affinity to the activated receptor in the absence of nucleotides is, in fact, a major determinant of the coupling efficiency. Our broadly applicable FRET-based assay represents a fast and reliable method to quantify the intrinsic affinity and relative coupling selectivity of GPCRs toward all G-protein subtypes.

  5. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.

    PubMed

    Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  6. Engineered Context-Sensitive Agonism: Tissue-Selective Drug Signaling through a G Protein-Coupled Receptor.

    PubMed

    Seemann, Wiebke K; Wenzel, Daniela; Schrage, Ramona; Etscheid, Justine; Bödefeld, Theresa; Bartol, Anna; Warnken, Mareille; Sasse, Philipp; Klöckner, Jessica; Holzgrabe, Ulrike; DeAmici, Marco; Schlicker, Eberhard; Racké, Kurt; Kostenis, Evi; Meyer, Rainer; Fleischmann, Bernd K; Mohr, Klaus

    2017-02-01

    Drug discovery strives for selective ligands to achieve targeted modulation of tissue function. Here we introduce engineered context-sensitive agonism as a postreceptor mechanism for tissue-selective drug action through a G protein-coupled receptor. Acetylcholine M 2 -receptor activation is known to mediate, among other actions, potentially dangerous slowing of the heart rate. This unwanted side effect is one of the main reasons that limit clinical application of muscarinic agonists. Herein we show that dualsteric (orthosteric/allosteric) agonists induce less cardiac depression ex vivo and in vivo than conventional full agonists. Exploration of the underlying mechanism in living cells employing cellular dynamic mass redistribution identified context-sensitive agonism of these dualsteric agonists. They translate elevation of intracellular cAMP into a switch from full to partial agonism. Designed context-sensitive agonism opens an avenue toward postreceptor pharmacologic selectivity, which even works in target tissues operated by the same subtype of pharmacologic receptor. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    PubMed Central

    Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  8. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, Gary W., E-mail: gary.cline@yale.edu; Zhao, Xiaojian; Jakowski, Amy B.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity tomore » islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  9. Functional selectivity induced by mGlu₄ receptor positive allosteric modulation and concomitant activation of Gq coupled receptors.

    PubMed

    Yin, Shen; Zamorano, Rocio; Conn, P Jeffrey; Niswender, Colleen M

    2013-03-01

    Metabotropic glutamate receptors (mGlus) are a group of Family C Seven Transmembrane Spanning Receptors (7TMRs) that play important roles in modulating signaling transduction, particularly within the central nervous system. mGlu(4) belongs to a subfamily of mGlus that is predominantly coupled to G(i/o) G proteins. We now report that the ubiquitous autacoid and neuromodulator, histamine, induces substantial glutamate-activated calcium mobilization in mGlu(4)-expressing cells, an effect which is observed in the absence of co-expressed chimeric G proteins. This strong induction of calcium signaling downstream of glutamate activation of mGlu(4) depends upon the presence of H(1) histamine receptors. Interestingly, the potentiating effect of histamine activation does not extend to other mGlu(4)-mediated signaling events downstream of G(i/o) G proteins, such as cAMP inhibition, suggesting that the presence of G(q) coupled receptors such as H(1) may bias normal mGlu(4)-mediated G(i/o) signaling events. When the activity induced by small molecule positive allosteric modulators of mGlu(4) is assessed, the potentiated signaling of mGlu(4) is further biased by histamine toward calcium-dependent pathways. These results suggest that G(i/o)-coupled mGlus may induce substantial, and potentially unexpected, calcium-mediated signaling events if stimulation occurs concomitantly with activation of G(q) receptors. Additionally, our results suggest that signaling induced by small molecule positive allosteric modulators may be substantially biased when G(q) receptors are co-activated. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can bemore » clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.« less

  11. Forskolin-free cAMP assay for Gi-coupled receptors.

    PubMed

    Gilissen, Julie; Geubelle, Pierre; Dupuis, Nadine; Laschet, Céline; Pirotte, Bernard; Hanson, Julien

    2015-12-01

    G protein-coupled receptors (GPCRs) represent the most successful receptor family for treating human diseases. Many are poorly characterized with few ligands reported or remain completely orphans. Therefore, there is a growing need for screening-compatible and sensitive assays. Measurement of intracellular cyclic AMP (cAMP) levels is a validated strategy for measuring GPCRs activation. However, agonist ligands for Gi-coupled receptors are difficult to track because inducers such as forskolin (FSK) must be used and are sources of variations and errors. We developed a method based on the GloSensor system, a kinetic assay that consists in a luciferase fused with cAMP binding domain. As a proof of concept, we selected the succinate receptor 1 (SUCNR1 or GPR91) which could be an attractive drug target. It has never been validated as such because very few ligands have been described. Following analyses of SUCNR1 signaling pathways, we show that the GloSensor system allows real time, FSK-free detection of an agonist effect. This FSK-free agonist signal was confirmed on other Gi-coupled receptors such as CXCR4. In a test screening on SUCNR1, we compared the results obtained with a FSK vs FSK-free protocol and were able to identify agonists with both methods but with fewer false positives when measuring the basal levels. In this report, we validate a cAMP-inducer free method for the detection of Gi-coupled receptors agonists compatible with high-throughput screening. This method will facilitate the study and screening of Gi-coupled receptors for active ligands. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Probing receptor structure/function with chimeric G-protein-coupled receptors.

    PubMed

    Yin, Dezhong; Gavi, Shai; Wang, Hsien-yu; Malbon, Craig C

    2004-06-01

    Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.

  13. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  14. Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors.

    PubMed

    Guo, Shuohan; Zhang, Xiaohan; Zheng, Mei; Zhang, Xiaowei; Min, Chengchun; Wang, Zengtao; Cheon, Seung Hoon; Oak, Min-Ho; Nah, Seung-Yeol; Kim, Kyeong-Man

    2015-10-01

    Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  16. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  17. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).

    PubMed

    Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A; Manglik, Aashish; Tesmer, John J G; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2015-04-24

    G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Identification of novel selective V2 receptor non-peptide agonists.

    PubMed

    Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice

    2008-10-30

    Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.

  19. G protein-coupled receptor mutations and human genetic disease.

    PubMed

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  20. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-08-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

  1. A Dynamic View of Molecular Switch Behavior at Serotonin Receptors: Implications for Functional Selectivity

    PubMed Central

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636

  2. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    PubMed

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  3. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    PubMed

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds.

  4. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    PubMed

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  5. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  6. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.

    PubMed

    Kargl, Julia; Brown, Andrew J; Andersen, Liisa; Dorn, Georg; Schicho, Rudolf; Waldhoer, Maria; Heinemann, Akos

    2013-07-01

    The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyrazol-5-yl] benzoic acid) is a selective GPR55 antagonist. In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney (HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca²⁺ release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2 (CB₁ or CB₂). CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor κ of activated B cells (NF-κB) and serum response element, translocation of NFAT and NF-κB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.

  7. Gi-Coupled γ-Aminobutyric Acid–B Receptors Cross-Regulate Phospholipase C and Calcium in Airway Smooth Muscle

    PubMed Central

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A.

    2011-01-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABAA) and metabotropic (GABAB) receptors. Although the functional expression of GABAB receptors coupled to the Gi protein was reported for airway smooth muscle, the role of GABAB receptors in airway responsiveness remains unclear. We investigated whether Gi-coupled GABAB receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by Gq-coupled receptors in human airway smooth muscle cells. Both the GABAB-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABAA receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca2+]i were blocked by CGP35348 and CGP55845 (selective GABAB antagonists), pertussis toxin (PTX, which inactivates the Gi protein), gallein (a Gβγ signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca2+]i, which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P–induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABAB receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca2+ stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by Gβγ protein liberated from Gi proteins coupled to GABAB receptors. Furthermore, crosstalk between GABAB receptors and Gq-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca2+]i, and smooth muscle contraction through Gi proteins. PMID:21719794

  8. A Novel Method for Analyzing Extremely Biased Agonism at G Protein–Coupled Receptors

    PubMed Central

    Zhou, Lei; Ehlert, Frederick J.; Bohn, Laura M.

    2015-01-01

    Seven transmembrane receptors were originally named and characterized based on their ability to couple to heterotrimeric G proteins. The assortment of coupling partners for G protein–coupled receptors has subsequently expanded to include other effectors (most notably the βarrestins). This diversity of partners available to the receptor has prompted the pursuit of ligands that selectively activate only a subset of the available partners. A biased or functionally selective ligand may be able to distinguish between different active states of the receptor, and this would result in the preferential activation of one signaling cascade more than another. Although application of the “standard” operational model for analyzing ligand bias is useful and suitable in most cases, there are limitations that arise when the biased agonist fails to induce a significant response in one of the assays being compared. In this article, we describe a quantitative method for measuring ligand bias that is particularly useful for such cases of extreme bias. Using simulations and experimental evidence from several κ opioid receptor agonists, we illustrate a “competitive” model for quantitating the degree and direction of bias. By comparing the results obtained from the competitive model with the standard model, we demonstrate that the competitive model expands the potential for evaluating the bias of very partial agonists. We conclude the competitive model provides a useful mechanism for analyzing the bias of partial agonists that exhibit extreme bias. PMID:25680753

  9. Application of RGS box proteins to evaluate G-protein selectivity in receptor-promoted signaling.

    PubMed

    Hains, Melinda D; Siderovski, David P; Harden, T Kendall

    2004-01-01

    Regulator of G-protein signaling (RGS) domains bind directly to GTP-bound Galpha subunits and accelerate their intrinsic GTPase activity by up to several thousandfold. The selectivity of RGS proteins for individual Galpha subunits has been illustrated. Thus, the expression of RGS proteins can be used to inhibit signaling pathways activated by specific G protein-coupled receptors (GPCRs). This article describes the use of specific RGS domain constructs to discriminate among G(i/o), Gq-and G(12/13)-mediated activation of phospholipase C (PLC) isozymes in COS-7 cells. Overexpression of the N terminus of GRK2 (amino acids 45-178) or p115 RhoGEF (amino acids 1-240) elicited selective inhibition of Galphaq- or Galpha(12/13)-mediated signaling to PLC activation, respectively. In contrast, RGS2 overexpression was found to inhibit PLC activation by both G(i/o)- and Gq-coupled GPCRs. RGS4 exhibited dramatic receptor selectivity in its inhibitory actions; of the G(i/o)- and Gq-coupled GPCRs tested (LPA1, LPA2, P2Y1, S1P3), only the Gq-coupled lysophosphatidic acid-activated LPA2 receptor was found to be inhibited by RGS4 overexpression.

  10. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  11. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less

  12. Receptor recruitment: A mechanism for interactions between G protein-coupled receptors

    PubMed Central

    Holtbäck, Ulla; Brismar, Hjalmar; DiBona, Gerald F.; Fu, Michael; Greengard, Paul; Aperia, Anita

    1999-01-01

    There is a great deal of evidence for synergistic interactions between G protein-coupled signal transduction pathways in various tissues. As two specific examples, the potent effects of the biogenic amines norepinephrine and dopamine on sodium transporters and natriuresis can be modulated by neuropeptide Y and atrial natriuretic peptide, respectively. Here, we report, using a renal epithelial cell line, that both types of modulation involve recruitment of receptors from the interior of the cell to the plasma membrane. The results indicate that recruitment of G protein-coupled receptors may be a ubiquitous mechanism for receptor sensitization and may play a role in the modulation of signal transduction comparable to that of the well established phenomenon of receptor endocytosis and desensitization. PMID:10377404

  13. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G

  14. Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions*

    PubMed Central

    Molinari, Paola; Vezzi, Vanessa; Sbraccia, Maria; Grò, Cristina; Riitano, Daniela; Ambrosio, Caterina; Casella, Ida; Costa, Tommaso

    2010-01-01

    The addictive potential of opioids may be related to their differential ability to induce G protein signaling and endocytosis. We compared the ability of 20 ligands (sampled from the main chemical classes of opioids) to promote the association of μ and δ receptors with G protein or β-arrestin 2. Receptor-arrestin binding was monitored by bioluminescence resonance energy transfer (BRET) in intact cells, where pertussis toxin experiments indicated that the interaction was minimally affected by receptor signaling. To assess receptor-G protein coupling without competition from arrestins, we employed a cell-free BRET assay using membranes isolated from cells expressing luminescent receptors and fluorescent Gβ1. In this system, the agonist-induced enhancement of BRET (indicating shortening of distance between the two proteins) was Gα-mediated (as shown by sensitivity to pertussis toxin and guanine nucleotides) and yielded data consistent with the known pharmacology of the ligands. We found marked differences of efficacy for G protein and arrestin, with a pattern suggesting more restrictive structural requirements for arrestin efficacy. The analysis of such differences identified a subset of structures showing a marked discrepancy between efficacies for G protein and arrestin. Addictive opiates like morphine and oxymorphone exhibited large differences both at δ and μ receptors. Thus, they were effective agonists for G protein coupling but acted as competitive enkephalins antagonists (δ) or partial agonists (μ) for arrestin. This arrestin-selective antagonism resulted in inhibition of short and long term events mediated by arrestin, such as rapid receptor internalization and down-regulation. PMID:20189994

  15. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2009-09-01

    GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7-transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications.

  16. Promiscuity and selectivity of bitter molecules and their receptors.

    PubMed

    Di Pizio, Antonella; Niv, Masha Y

    2015-07-15

    Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Functional selectivity of G-protein-coupled receptors: from recombinant systems to native human cells.

    PubMed

    Seifert, Roland

    2013-10-01

    In the mid 1990s, it was assumed that a two-state model, postulating an inactive (R) state and an active (R*) state provides the molecular basis for GPCR activation. However, it became clear that this model could not accommodate many experimental observations. Accordingly, the two-state model was superseded by a multi-state model according to which any given ligand stabilizes a unique receptor conformation with distinct capabilities of activating down-stream G-proteins and β-arrestin. Much of this research was conducted with the β2-adrenoceptor in recombinant systems. At the molecular level, there is now no doubt anymore that ligand-specific receptor conformations, also referred to as functional selectivity, exist. This concept holds great potential for drug discovery in terms of developing drugs with higher selectivity for specific cells and/or cell functions and fewer side effects. A major challenge is the analysis for functional selectivity in native cells. Here, I discuss our current knowledge on functional selectivity of three representative GPCRs, the β2-adrenoceptor and the histamine H2- and H4-receptors, in recombinant systems and native human cells. Studies with human neutrophils and eosinophils support the concept of functional selectivity. A major strategy for the analysis of functional selectivity in native cells is to generate complete concentration/response curves with a large set of structurally diverse ligands for multiple parameters. Next, correlations of potencies and efficacies are analyzed, and deviations of the correlations from linearity are indicative for functional selectivity. Additionally, pharmacological inhibitors are used to dissect cell functions from each other. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    PubMed

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D1-D3 Receptor Heterotetramer

    PubMed Central

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T.; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.

    2014-01-01

    The dopamine D1 receptor–D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa–induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R–D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. PMID:25097189

  20. Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.

    PubMed

    Rojas, Asheebo; Dingledine, Raymond

    2013-04-01

    The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.

  1. Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation

    PubMed Central

    Joseph, Prem Raj B.; Sawant, Kirti V.; Isley, Angela; Pedroza, Mesias; Garofalo, Roberto P.; Richardson, Ricardo M.; Rajarathnam, Krishna

    2014-01-01

    Chemokines mediate diverse functions from organogenesis to mobilizing leucocytes, and are unusual agonists for class-A GPCRs (G-protein-coupled receptors) because of their large size and multi-domain structure. The current model for receptor activation, which involves interactions between chemokine N-loop and receptor N-terminal residues (Site-I) and between chemokine N-terminal and receptor extracellular loop/transmembrane residues (Site-II), fails to describe differences in ligand/receptor selectivity and the activation of multiple signalling pathways. In the present study, we show in neutrophil-activating chemokine CXCL8 that the highly conserved GP (glycine-proline) motif located distal to both N-terminal and N-loop residues couples Site-I and Site-II interactions. Mutations in the GP motif caused various differences from native-like function to complete loss of activity that could not be correlated with the specific mutation, receptor affinity or subtype, or a specific signalling pathway. NMR studies indicated that the GP motif does not influence Site-I interactions, but molecular dynamics simulations suggested that this motif dictates substates of the CXCL8 conformational ensemble. We conclude that the GP motif enables diverse receptor functions by controlling cross-talk between Site-I and Site-II, and further propose that the repertoire of chemokine functions is best described by a conformational ensemble model in which a network of long-range coupled indirect interactions mediate receptor activity. PMID:24032673

  2. Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex.

    PubMed

    Choi, Se-Young; Chang, Jeff; Jiang, Bin; Seol, Geun-Hee; Min, Sun-Seek; Han, Jung-Soo; Shin, Hee-Sup; Gallagher, Michela; Kirkwood, Alfredo

    2005-12-07

    Long-term depression (LTD) in sensory cortices depends on the activation of NMDA receptors. Here, we report that in visual cortical slices, the induction of LTD (but not long-term potentiation) also requires the activation of receptors coupled to the phospholipase C (PLC) pathway. Using immunolesions in combination with agonists and antagonists, we selectively manipulated the activation of alpha1 adrenergic, M1 muscarinic, and mGluR5 glutamatergic receptors. Inactivation of these PLC-coupled receptors prevents the induction of LTD, but only when the three receptors were inactivated together. LTD is fully restored by activating any one of them or by supplying intracellular D-myo-inositol-1,4,5-triphosphate (IP3). LTD was also impaired by intracellular application of PLC or IP3 receptor blockers, and it was absent in mice lacking PLCbeta1, the predominant PLC isoform in the forebrain. We propose that visual cortical LTD requires a minimum of PLC activity that can be supplied independently by at least three neurotransmitter systems. This essential requirement places PLC-linked receptors in a unique position to control the induction of LTD and provides a mechanism for gating visual cortical plasticity via extra-retinal inputs in the intact organism.

  3. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.

  4. Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling.

    PubMed

    Semack, Ansley; Sandhu, Manbir; Malik, Rabia U; Vaidehi, Nagarajan; Sivaramakrishnan, Sivaraj

    2016-08-19

    Although the importance of the C terminus of the α subunit of the heterotrimeric G protein in G protein-coupled receptor (GPCR)-G protein pairing is well established, the structural basis of selective interactions remains unknown. Here, we combine live cell FRET-based measurements and molecular dynamics simulations of the interaction between the GPCR and a peptide derived from the C terminus of the Gα subunit (Gα peptide) to dissect the molecular mechanisms of G protein selectivity. We observe a direct link between Gα peptide binding and stabilization of the GPCR conformational ensemble. We find that cognate and non-cognate Gα peptides show deep and shallow binding, respectively, and in distinct orientations within the GPCR. Binding of the cognate Gα peptide stabilizes the agonist-bound GPCR conformational ensemble resulting in favorable binding energy and lower flexibility of the agonist-GPCR pair. We identify three hot spot residues (Gαs/Gαq-Gln-384/Leu-349, Gln-390/Glu-355, and Glu-392/Asn-357) that contribute to selective interactions between the β2-adrenergic receptor (β2-AR)-Gαs and V1A receptor (V1AR)-Gαq The Gαs and Gαq peptides adopt different orientations in β2-AR and V1AR, respectively. The β2-AR/Gαs peptide interface is dominated by electrostatic interactions, whereas the V1AR/Gαq peptide interactions are predominantly hydrophobic. Interestingly, our study reveals a role for both favorable and unfavorable interactions in G protein selection. Residue Glu-355 in Gαq prevents this peptide from interacting strongly with β2-AR. Mutagenesis to the Gαs counterpart (E355Q) imparts a cognate-like interaction. Overall, our study highlights the synergy in molecular dynamics and FRET-based approaches to dissect the structural basis of selective G protein interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk.

    PubMed

    Tóth, András D; Turu, Gábor; Hunyady, László; Balla, András

    2018-04-01

    AT 1 angiotensin receptor (AT 1 R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT 1 R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT 1 R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT 1 R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT 1 R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT 1 R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB 1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT 1 R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases. Copyright © 2018. Published by Elsevier Ltd.

  6. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    PubMed

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  7. Homology Modeling of Class A G Protein-Coupled Receptors

    PubMed Central

    Costanzi, Stefano

    2012-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of membrane bound signaling proteins that hold great pharmaceutical interest. Since experimentally elucidated structures are available only for a very limited number of receptors, homology modeling has become a widespread technique for the construction of GPCR models intended to study the structure-function relationships of the receptors and aid the discovery and development of ligands capable of modulating their activity. Through this chapter, various aspects involved in the constructions of homology models of the serpentine domain of the largest class of GPCRs, known as class A or rhodopsin family, are illustrated. In particular, the chapter provides suggestions, guidelines and critical thoughts on some of the most crucial aspect of GPCR modeling, including: collection of candidate templates and a structure-based alignment of their sequences; identification and alignment of the transmembrane helices of the query receptor to the corresponding domains of the candidate templates; selection of one or more templates receptor; election of homology or de novo modeling for the construction of specific extracellular and intracellular domains; construction of the three-dimensional models, with special consideration to extracellular regions, disulfide bridges, and interhelical cavity; validation of the models through controlled virtual screening experiments. PMID:22323225

  8. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  9. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    PubMed Central

    Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O.; Agnati, Luigi F.; Fuxe, Kjell

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia. PMID:23956775

  10. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  11. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain.

    PubMed

    Zielińska, M; Fichna, J; Bashashati, M; Habibi, S; Sibaev, A; Timmermans, J-P; Storr, M

    2017-07-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy. © 2017 John Wiley & Sons Ltd.

  12. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    PubMed

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1997-10-31

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  13. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    PubMed

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1998-02-27

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  14. Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes.

    PubMed

    Yousefi, S; Cooper, P R; Potter, S L; Mueck, B; Jarai, G

    2001-06-01

    The migration of neutrophils into sites of acute and chronic inflammation is mediated by chemokines. We used degenerate-primer reverse transcriptase-polymerase chain reaction (RT-PCR) to analyze chemokine receptor expression in neutrophils and identify novel receptors. RNA was isolated from human peripheral blood neutrophils and from neutrophils that had been stimulated for 5 h with granulocyte-macrophage colony-stimulating factor or by coculturing with primary human bronchial epithelial cells. Amplification products were cloned, and clone redundancy was determined. Seven known G-protein-coupled receptors were identified among 38 clones-CCR1, CCR4, CXCR1, CXCR2, CXCR4, HM63, and FPR1-as well as a novel gene, EX33. The full-length EX33 clone was obtained, and an in silico approach was used to identify the putative murine homologue. The EX33 gene encodes a 396-amino-acid protein with limited sequence identity to known receptors. Expression studies of several known chemokine receptors and EX33 revealed that resting neutrophils expressed higher levels of CXCRs and EX33 compared with activated neutrophils. Northern blot experiments revealed that EX33 is expressed mainly in bone marrow, lung, and peripheral blood leukocytes. Using RT-PCR analysis, we showed more abundant expression of EX33 in neutrophils and eosinophils, in comparison with that in T- or B-lymphocytes, indicating cell-specific expression among leukocytes.

  15. What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?

    PubMed Central

    Michino, Mayako; Beuming, Thijs; Donthamsetti, Prashant; Newman, Amy Hauck; Javitch, Jonathan A.

    2015-01-01

    G protein–coupled receptors (GPCRs) are integral membrane proteins that represent an important class of drug targets. In particular, aminergic GPCRs interact with a significant portion of drugs currently on the market. However, most drugs that target these receptors are associated with undesirable side effects, which are due in part to promiscuous interactions with close homologs of the intended target receptors. Here, based on a systematic analysis of all 37 of the currently available high-resolution crystal structures of aminergic GPCRs, we review structural elements that contribute to and can be exploited for designing subtype-selective compounds. We describe the roles of secondary binding pockets (SBPs), as well as differences in ligand entry pathways to the orthosteric binding site, in determining selectivity. In addition, using the available crystal structures, we have identified conformational changes in the SBPs that are associated with receptor activation and explore the implications of these changes for the rational development of selective ligands with tailored efficacy. PMID:25527701

  16. G protein-coupled estrogen receptor 1/G protein-coupled receptor 30 localizes in the plasma membrane and traffics intracellularly on cytokeratin intermediate filaments.

    PubMed

    Sandén, Caroline; Broselid, Stefan; Cornmark, Louise; Andersson, Krister; Daszkiewicz-Nilsson, Joanna; Mårtensson, Ulrika E A; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2011-03-01

    G protein-coupled receptor 30 [G protein-coupled estrogen receptor 1 (GPER1)], has been introduced as a membrane estrogen receptor and a candidate cancer biomarker and therapeutic target. However, several questions surround the subcellular localization and signaling of this receptor. In native cells, including mouse myoblast C(2)C(12) cells, Madin-Darby canine kidney epithelial cells, and human ductal breast epithelial tumor T47-D cells, G-1, a GPER1 agonist, and 17β-estradiol stimulated GPER1-dependent cAMP production, a defined plasma membrane (PM) event, and recruitment of β-arrestin2 to the PM. Staining of fixed and live cells showed that GPER1 was localized both in the PM and on intracellular structures. One such intracellular structure was identified as cytokeratin (CK) intermediate filaments, including those composed of CK7 and CK8, but apparently not endoplasmic reticulum, Golgi, or microtubules. Reciprocal coimmunoprecipitation of GPER1 and CKs confirmed an association of these proteins. Live staining also showed that the PM receptors constitutively internalize apparently to reach CK filaments. Receptor localization was supported using FLAG- and hemagglutinin-tagged GPER1. We conclude that GPER1-mediated stimulation of cAMP production and β-arrestin2 recruitment occur in the PM. Furthermore, the PM receptors constitutively internalize and localize intracellularly on CK. This is the first observation that a G protein-coupled receptor is capable of associating with intermediate filaments, which may be important for GPER1 regulation in epithelial cells and the relationship of this receptor to cancer.

  17. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1).

    PubMed

    Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano

    2014-09-25

    Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.

  18. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives.

    PubMed

    Barton, Matthias; Filardo, Edward J; Lolait, Stephen J; Thomas, Peter; Maggiolini, Marcello; Prossnitz, Eric R

    2018-02-01

    Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial

  19. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  20. G-protein-coupled receptors signaling pathways in new antiplatelet drug development.

    PubMed

    Gurbel, Paul A; Kuliopulos, Athan; Tantry, Udaya S

    2015-03-01

    Platelet G-protein-coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein-coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein-coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein-coupled receptor-mediated signaling may allow the tailoring of antiplatelet therapy. © 2015 American Heart Association, Inc.

  1. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists.

    PubMed

    Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J

    2017-08-15

    Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.

  2. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions.

    PubMed

    Fuxe, Kjell; Marcellino, Daniel; Borroto-Escuela, Dasiel Oscar; Frankowska, Malgorzata; Ferraro, Luca; Guidolin, Diego; Ciruela, Francisco; Agnati, Luigi F

    2010-10-01

    Based on indications of direct physical interactions between neuropeptide and monoamine receptors in the early 1980s, the term receptor-receptor interactions was introduced and later on the term receptor heteromerization in the early 1990s. Allosteric mechanisms allow an integrative activity to emerge either intramolecularly in G protein-coupled receptor (GPCR) monomers or intermolecularly via receptor-receptor interactions in GPCR homodimers, heterodimers, and receptor mosaics. Stable heteromers of Class A receptors may be formed that involve strong high energy arginine-phosphate electrostatic interactions. These receptor-receptor interactions markedly increase the repertoire of GPCR recognition, signaling and trafficking in which the minimal signaling unit in the GPCR homomers appears to be one receptor and one G protein. GPCR homomers and GPCR assemblies are not isolated but also directly interact with other proteins to form horizontal molecular networks at the plasma membrane.

  3. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.

  4. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    PubMed

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation.

    PubMed

    Sharma, Geetanjali; Mauvais-Jarvis, Franck; Prossnitz, Eric R

    2018-02-01

    Metabolic homeostasis is differentially regulated in males and females. The lower incidence of obesity and associated diseases in pre-menopausal females points towards the beneficial role of the predominant estrogen, 17β-estradiol (E2). The actions of E2 are elicited by nuclear and extra-nuclear estrogen receptor (ER) α and ERβ, as well as the G protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in the regulation of metabolism are only beginning to emerge and much remains unclear. The present review highlights recent advances implicating the importance of GPER in metabolic regulation. Assessment of the specific metabolic roles of GPER employing GPER-deficient mice and highly selective GPER-targeted pharmacological agents, agonist G-1 and antagonists G-15 and G36, is also presented. Evidence from in vitro and in vivo studies involving either GPER deficiency or selective activation suggests that GPER is involved in body weight regulation, glucose and lipid homeostasis as well as inflammation. The therapeutic potential of activating GPER signaling through selective ligands for the treatment of obesity and diabetes is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  7. The G protein-coupled receptors deorphanization landscape.

    PubMed

    Laschet, Céline; Dupuis, Nadine; Hanson, Julien

    2018-07-01

    G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  9. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    PubMed Central

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  10. Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Chun, Eugene; Thompson, Aaron A.; Liu, Wei; Roth, Christopher B.; Griffith, Mark T.; Katritch, Vsevolod; Kunken, Joshua; Xu, Fei; Cherezov, Vadim; Hanson, Michael A.; Stevens, Raymond C.

    2012-01-01

    SUMMARY Structural studies of human G protein-coupled receptors (GPCRs) have recently been accelerated through the use of the T4 lysozyme fusion partner that was inserted into the third intracellular loop. Using chimeras of the human β2-adrenergic and human A2A adenosine receptors, we present the methodology and data for the selection of five new fusion partners for crystallizing GPCRs. In particular, the use of the thermostabilized apocytochrome b562RIL as a fusion partner displays certain advantages over the previously utilized T4 lysozyme, resulting in a significant improvement in stability and structure in GPCR-fusion constructs. PMID:22681902

  11. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors.

    PubMed

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Christopher Octeau, J; Kovoor, Abraham

    2013-10-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. © 2013 International Society for Neurochemistry.

  12. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith

    2016-01-01

    G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063

  13. Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER).

    PubMed

    Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T

    2016-01-01

    The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.

  14. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  15. Autophagy selectivity through receptor clustering

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  16. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  17. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  18. Synthesis and biological evaluation of bivalent cannabinoid receptor ligands based on hCB₂R selective benzimidazoles reveal unexpected intrinsic properties.

    PubMed

    Nimczick, Martin; Pemp, Daniela; Darras, Fouad H; Chen, Xinyu; Heilmann, Jörg; Decker, Michael

    2014-08-01

    The design of bivalent ligands targeting G protein-coupled receptors (GPCRs) often leads to the development of new, highly selective and potent compounds. To date, no bivalent ligands for the human cannabinoid receptor type 2 (hCB₂R) of the endocannabinoid system (ECS) are described. Therefore, two sets of homobivalent ligands containing as parent structure the hCB2R selective agonist 13a and coupled at different attachment positions were synthesized. Changes of the parent structure at these positions have a crucial effect on the potency and efficacy of the ligands. However, we discovered that bivalency has an influence on the effect at both cannabinoid receptors. Moreover, we found out that the spacer length and the attachment position altered the efficacy of the bivalent ligands at the receptors by turning agonists into antagonists and inverse agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  20. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.

    PubMed

    Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.

  1. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  2. Arrestin–dependent but G–protein coupled receptor kinase–independent uncoupling of D2–dopamine receptors

    PubMed Central

    Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Octeau, J. Christopher; Kovoor, Abraham

    2016-01-01

    We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. PMID:23815307

  3. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling.

    PubMed

    Alvarez-Curto, Elisa; Inoue, Asuka; Jenkins, Laura; Raihan, Sheikh Zahir; Prihandoko, Rudi; Tobin, Andrew B; Milligan, Graeme

    2016-12-30

    G protein-coupled receptors (GPCRs) can initiate intracellular signaling cascades by coupling to an array of heterotrimeric G proteins and arrestin adaptor proteins. Understanding the contribution of each of these coupling options to GPCR signaling has been hampered by a paucity of tools to selectively perturb receptor function. Here we employ CRISPR/Cas9 genome editing to eliminate selected G proteins (Gα q and Gα 11 ) or arrestin2 and arrestin3 from HEK293 cells together with the elimination of receptor phosphorylation sites to define the relative contribution of G proteins, arrestins, and receptor phosphorylation to the signaling outcomes of the free fatty acid receptor 4 (FFA4). A lack of FFA4-mediated elevation of intracellular Ca 2+ in Gα q /Gα 11 -null cells and agonist-mediated receptor internalization in arrestin2/3-null cells confirmed previously reported canonical signaling features of this receptor, thereby validating the genome-edited HEK293 cells. FFA4-mediated ERK1/2 activation was totally dependent on G q / 11 but intriguingly was substantially enhanced for FFA4 receptors lacking sites of regulated phosphorylation. This was not due to a simple lack of desensitization of G q / 11 signaling because the G q / 11 -dependent calcium response was desensitized by both receptor phosphorylation and arrestin-dependent mechanisms, whereas a substantially enhanced ERK1/2 response was only observed for receptors lacking phosphorylation sites and not in arrestin2/3-null cells. In conclusion, we validate CRISPR/Cas9 engineered HEK293 cells lacking G q / 11 or arrestin2/3 as systems for GPCR signaling research and employ these cells to reveal a previously unappreciated interplay of signaling pathways where receptor phosphorylation can impact on ERK1/2 signaling through a mechanism that is likely independent of arrestins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A receptor-G protein coupling-independent step in the internalization of the thyrotropin-releasing hormone receptor.

    PubMed

    Petrou, C; Chen, L; Tashjian, A H

    1997-01-24

    To determine whether functional receptor-G protein coupling or signaling are required for internalization of the thyrotropin-releasing hormone receptor (TRHR), we compared the endocytosis of Gq-coupled and uncoupled receptors. A hemagglutinin epitope-tagged TRHR (HA-TRHR) was in the Gq-coupled state when bound to the agonist, MeTRH, and in a nonsignaling state when bound to the HA antibody (12CA5). 12CA5 did not induce an increase in [Ca2+]i or inositol phosphates and did not inhibit [3H]MeTRH binding or MeTRH-induced production of second messengers. Both agonist- and antibody-bound HA-TRHRs were rapidly internalized via the same pathway; internalization was sensitive to hypertonic shock, and both types of internalized receptors were sorted into lysosomes. In addition, the amino acid sequence CNC (positions 335-337) in the C-terminal tail of the TRHR, which is important in ligand-induced receptor internalization as determined by deletion mutagenesis (Nussenzveig, D. R., Heinflink, M., and Gershengorn, M. C. (1993) J. Biol. Chem. 268, 2389-2392), was also important for 12CA5-induced internalization. We expressed two truncated receptors, HA-K338STOP and HA-C335STOP, in GH12C1 pituitary cells. Both HA-TRHR and HA-K338STOP were localized at the plasma membrane of untreated cells and were translocated to intracellular vesicles after MeTRH or 12CA5 binding; however, HA-C335STOP was internalized and recycled constitutively. The intracellular localization of HA-C335STOP was not altered by MeTRH; however, 12CA5 binding induced the disappearance of internalized HA-C335STOP and caused its localization at the plasma membrane, indicating that constitutively cycling HA-C335STOP cannot be reinternalized after antibody binding. Thus, amino acids 335-337, which are important for the internalization of Gq-coupled TRHRs, are also required for the sequestration of functionally uncoupled TRHRs, and in addition, they act as an inhibitory signal that prevents constitutive receptor

  5. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  6. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  7. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives.

    PubMed

    Guccione, Manuela; Ettari, Roberta; Taliani, Sabrina; Da Settimo, Federico; Zappalà, Maria; Grasso, Silvana

    2016-10-27

    G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.

  8. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    PubMed

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  9. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story.

    PubMed

    Gaudet, H M; Cheng, S B; Christensen, E M; Filardo, E J

    2015-12-15

    GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

    PubMed Central

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P.S.; Ward, Robert D.; Clegg, Deborah J.; Marcelli, Marco; Korach, Kenneth S.; Mauvais-Jarvis, Franck

    2009-01-01

    OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival. PMID:19587358

  11. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival.

    PubMed

    Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck

    2009-10-01

    We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.

  12. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes

    PubMed Central

    Dalet, Farfán-García Eunice; Guadalupe, Trujillo-Ferrara José; María del Carmen, Castillo-Hernández; Humberto, Guerra-Araiza Christian; Antonio, Soriano-Ursúa Marvin

    2013-01-01

    In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway. PMID:25206539

  13. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  14. Cardioprotective role of G-Protein Coupled Estrogen Receptor 1 (GPER1).

    PubMed

    Koganti, Sivaramakrishna

    2015-01-01

    G-Protein Coupled Estrogen Receptor 1 (GPER1), also known as G-Protein Coupled Receptor 30 (GPR30) and initially considered an orphan receptor, has become one of the most important pharmacological targets in cardiovascular research. Since the gene encoding this putative receptor was cloned nearly 20 years ago, researchers have addressed its role in various aspects of physiology, including cardioprotection. Although extensive research has been carried out to understand the role of GPER1 as a pharmacological target to treat cardiovascular diseases, there are few current reviews addressing the overall cardioprotective benefits of this receptor and the signaling intermediates involved. This review considers the origins of GPER1, its cell biology, its physiological and pharmacological roles as a therapeutic target in cardiovascular disease, and what future research on GPER1 might entail. More specifically, the review focuses on GPER1 regulation of Angiotensin Type I Receptor (AT1R) and the role of estrogen receptors, epidermal growth factor receptor (EGFR) and matrix metalloproteinases (MMPs) in bringing about the cardioprotective effects of GPER1. Areas where improved knowledge of GPER1 biology is still needed to better understand the receptor's cardioprotective effects are also discussed.

  15. A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors

    PubMed Central

    Chan, John D.; McCorvy, John D.; Acharya, Sreemoyee; Day, Timothy A.; Roth, Bryan L.; Marchant, Jonathan S.

    2016-01-01

    Schistosomiasis is a tropical parasitic disease afflicting ~200 million people worldwide and current therapy depends on a single drug (praziquantel) which exhibits several non-optimal features. These shortcomings underpin the need for next generation anthelmintics, but the process of validating physiologically relevant targets (‘target selection’) and pharmacologically profiling them is challenging. Remarkably, even though over a quarter of current human therapeutics target rhodopsin-like G protein coupled receptors (GPCRs), no library screen of a flatworm GPCR has yet been reported. Here, we have pharmacologically profiled a schistosome serotonergic GPCR (Sm.5HTR) implicated as a downstream modulator of PZQ efficacy, in a miniaturized screening assay compatible with high content screening. This approach employs a split luciferase based biosensor sensitive to cellular cAMP levels that resolves the proximal kinetics of GPCR modulation in intact cells. Data evidence a divergent pharmacological signature between the parasitic serotonergic receptor and the closest human GPCR homolog (Hs.5HTR7), supporting the feasibility of optimizing parasitic selective pharmacophores. New ligands, and chemical series, with potency and selectivity for Sm.5HTR over Hs.5HTR7 are identified in vitro and validated for in vivo efficacy against schistosomules and adult worms. Sm.5HTR also displayed a property resembling irreversible inactivation, a phenomenon discovered at Hs.5HTR7, which enhances the appeal of this abundantly expressed parasite GPCR as a target for anthelmintic ligand design. Overall, these data underscore the feasibility of profiling flatworm GPCRs in a high throughput screening format competent to resolve different classes of GPCR modulators. Further, these data underscore the promise of Sm.5HTR as a chemotherapeutically vulnerable node for development of next generation anthelmintics. PMID:27187180

  16. Selective androgen receptor modulators: in pursuit of tissue-selective androgens.

    PubMed

    Omwancha, Josephat; Brown, Terry R

    2006-10-01

    The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.

  17. Structural studies of G protein-coupled receptors.

    PubMed

    Lu, Mengjie; Wu, Beili

    2016-11-01

    G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y 1 R and P2Y 12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  18. The recent progress in research on effects of anesthetics and analgesics on G protein-coupled receptors.

    PubMed

    Minami, Kouichiro; Uezono, Yasuhito

    2013-04-01

    The exact mechanisms of action behind anesthetics and analgesics are still unclear. Much attention was focused on ion channels in the central nervous system as targets for anesthetics and analgesics in the 1980s. During the 1990s, major advances were made in our understanding of the physiology and pharmacology of G protein coupled receptor (GPCR) signaling. Thus, several lines of studies have shown that G protein coupled receptors (GPCRs) are one of the targets for anesthetics and analgesics and especially, that some of them inhibit the functions of GPCRs, i.e,, muscarinic receptors and substance P receptors. However, these studies had been focused on only G(q) coupled receptors. There has been little work on G(s)- and G(i)-coupled receptors. In the last decade, a new assay system, using chimera G(i/o)-coupled receptor fused to Gq(i5), has been established and the effects of anesthetics and analgesics on the function of G(i)-coupled receptors is now more easily studied. This review highlights the recent progress of the studies regarding the effects of anesthetics and analgesics on GPCRs.

  19. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1).

    PubMed

    Bruno, Agostino; Aiello, Francesca; Costantino, Gabriele; Radi, Marco

    2016-09-01

    Estrogens exert their action mainly by binding three receptors, namely estrogen receptors α and β (ERα and ERβ) and GPER-1 (G-protein coupled estrogen receptor 1). While the patho-physiological role of both ERα and ERβ has been deeply investigated, the role of GPER-1 in estrogens' signaling has not been clearly defined yet. Unfortunately, only few GPER-1 selective ligands were discovered so far, and the real efficiency of such compounds is still matter of debate. To better understand the physiological relevance of GPER-1, new selective chemical probes are higly needed. In this scenario, we report herein the generation and validation of a three-dimensional (3-D) GPER-1 homology model by means of docking studies and molecular dynamics simulations. The model thus generated was employed to (i) decipher the structural basis underlying the ability of estrogens and some Selective Estrogen Receptor Modulators (SERMs) to bind GPER-1 and classical ERα and ERβ, and (ii) generate a reliable G1/GPER-1 complex useful in rationalizing the pharmacological profile of G1 reported in the literature. The G1/GPER-1 complex herein reported could be further exploited in drug design approaches aimed at improving the pharmacological profile of G1 or at identifying new chemical entities (NCEs) as potential modulators of GPER-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  2. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells.

    PubMed

    Ariazi, Eric A; Brailoiu, Eugen; Yerrum, Smitha; Shupp, Heather A; Slifker, Michael J; Cunliffe, Heather E; Black, Michael A; Donato, Anne L; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R; Dun, Nae J; Jordan, V Craig

    2010-02-01

    The G protein-coupled receptor GPR30 binds 17beta-estradiol (E(2)) yet differs from classic estrogen receptors (ERalpha and ERbeta). GPR30 can mediate E(2)-induced nongenomic signaling, but its role in ERalpha-positive breast cancer remains unclear. Gene expression microarray data from five cohorts comprising 1,250 breast carcinomas showed an association between increased GPR30 expression and ERalpha-positive status. We therefore examined GPR30 in estrogenic activities in ER-positive MCF-7 breast cancer cells using G-1 and diethylstilbestrol (DES), ligands that selectively activate GPR30 and ER, respectively, and small interfering RNAs. In expression studies, E(2) and DES, but not G-1, transiently downregulated both ER and GPR30, indicating that this was ER mediated. In Ca(2+) mobilization studies, GPR30, but not ERalpha, mediated E(2)-induced Ca(2+) responses because E(2), 4-hydroxytamoxifen (activates GPR30), and G-1, but not DES, elicited cytosolic Ca(2+) increases not only in MCF-7 cells but also in ER-negative SKBr3 cells. Additionally, in MCF-7 cells, GPR30 depletion blocked E(2)-induced and G-1-induced Ca(2+) mobilization, but ERalpha depletion did not. Interestingly, GPR30-coupled Ca(2+) responses were sustained and inositol triphosphate receptor mediated in ER-positive MCF-7 cells but transitory and ryanodine receptor mediated in ER-negative SKBr3 cells. Proliferation studies involving GPR30 depletion indicated that the role of GPR30 was to promote SKBr3 cell growth but reduce MCF-7 cell growth. Supporting this, G-1 profoundly inhibited MCF-7 cell growth, potentially via p53 and p21 induction. Further, flow cytometry showed that G-1 blocked MCF-7 cell cycle progression at the G(1) phase. Thus, GPR30 antagonizes growth of ERalpha-positive breast cancer and may represent a new target to combat this disease.

  3. Diindolylmethane Derivatives: Potent Agonists of the Immunostimulatory Orphan G Protein-Coupled Receptor GPR84.

    PubMed

    Pillaiyar, Thanigaimalai; Köse, Meryem; Sylvester, Katharina; Weighardt, Heike; Thimm, Dominik; Borges, Gleice; Förster, Irmgard; von Kügelgen, Ivar; Müller, Christa E

    2017-05-11

    The G i protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and β-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC 50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC 50 41.3 nM). In β-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.

  4. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling.

    PubMed

    Casella, Ida; Ambrosio, Caterina; Grò, Maria Cristina; Molinari, Paola; Costa, Tommaso

    2011-08-15

    The functional selectivity of adrenergic ligands for activation of β1- and β2-AR (adrenoceptor) subtypes has been extensively studied in cAMP signalling. Much less is known about ligand selectivity for arrestin-mediated signalling pathways. In the present study we used resonance energy transfer methods to compare the ability of β1- and β2-ARs to form a complex with the G-protein β-subunit or β-arrestin-2 in response to a variety of agonists with various degrees of efficacy. The profiles of β1-/β2-AR selectivity of the ligands for the two receptor-transducer interactions were sharply different. For G-protein coupling, the majority of ligands were more effective in activating the β2-AR, whereas for arrestin coupling the relationship was reversed. These data indicate that the β1-AR interacts more efficiently than β2-AR with arrestin, but less efficiently than β2-AR with G-protein. A group of ligands exhibited β1-AR-selective efficacy in driving the coupling to arrestin. Dobutamine, a member of this group, had 70% of the adrenaline (epinephrine) effect on arrestin via β1-AR, but acted as a competitive antagonist of adrenaline via β2-AR. Thus the structure of such ligands appears to induce an arrestin-interacting form of the receptor only when bound to the β1-AR subtype. © The Authors Journal compilation © 2011 Biochemical Society

  5. GPR30: A G protein-coupled receptor for estrogen.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B; Sklar, Larry A

    2007-02-01

    Estrogen is a critical steroid in human physiology exerting its effect both at the transcriptional level as well as at the level of rapid intracellular signaling through second messengers. Many of estrogen's transcriptional effects have long been known to be mediated through classical nuclear steroid receptors but recent studies also demonstrate the existence of a 7-transmembrane G protein-coupled receptor, GPR30 that responds to estrogen with rapid cellular signaling. There is currently controversy over the ability of classical estrogen receptors to recapitulate GPR30-mediated signaling mechanisms and vice versa. This article will summarize recent literature and address the relationship between GPR30 and conventional estrogen receptor signaling.

  6. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  7. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors.

    PubMed

    Carre-Pierrat, Maïté; Baillie, David; Johnsen, Robert; Hyde, Rhonda; Hart, Anne; Granger, Laure; Ségalat, Laurent

    2006-12-01

    Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.

  8. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia.

    PubMed

    Tong, Chao; Feng, Xiang; Chen, Jun; Qi, Xingchen; Zhou, Liyuan; Shi, Shuming; Kc, Kamana; Stanley, Joanna L; Baker, Philip N; Zhang, Hua

    2016-04-01

    Preeclampsia is known to be associated with reduced circulating levels of estrogen. The effects of estrogen in preeclampsia are normally mediated by the classical estrogen receptors. Intriguingly, a novel estrogen receptor, G protein-coupled receptor 30 (GPR30), has been recently found to play an important role in several estrogenic effects. However, the mechanisms by which GPR30 may mediate the development of preeclampsia remain unknown. We observed that the expression of GPR30 in placental trophoblast cells is lower in preeclamptic placentas compared with normotensive controls. We then investigated the role of GPR30 in trophoblast cell invasion by utilizing placental explants and the immortalized human trophoblast cell line (HTR8/SVneo). The selective GPR30 agonist G1 and a general estrogen receptors agonist 17-β-estradiol (E2) both improved trophoblast cells invasion by upregulating MMP9 expression and the PI3K-Akt signaling pathway. This effect was abolished by a selective GPR30 inhibitor G15, implying that GPR30 may be involved in regulating trophoblast invasion, and that down-regulation of this receptor may result in the development of preeclampsia. The present study suggests that GPR30 is a critical regulator of trophoblast cell invasion, and as such may be a potential therapeutic interventional target for preeclampsia and other pregnancy complications resulting from impaired trophoblast invasion.

  9. Development of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    Narayanan, Ramesh; Coss, Christopher C.; Dalton, James T.

    2018-01-01

    The Androgen Receptor (AR), a member of the steroid hormone receptor family, plays important roles in the physiology and pathology of diverse tissues. AR ligands, which include circulating testosterone and locally synthesized dihydrotestosterone, bind to and activate the AR to elicit their effects. Ubiquitous expression of the AR, metabolism and cross reactivity with other receptors limit broad therapeutic utilization of steroidal androgens. However, the discovery of selective androgen receptor modulators (SARMs) and other tissue-selective nuclear hormone receptor modulators that activate their cognate receptors in a tissue-selective manner provides an opportunity to promote the beneficial effects of androgens and other hormones in target tissues with greatly reduced unwanted side-effects. In the last two decades, significant resources have been dedicated to the discovery and biological characterization of SARMs in an effort to harness the untapped potential of the AR. SARMs have been proposed as treatments of choice for various diseases, including muscle-wasting, breast cancer, and osteoporosis. This review provides insight into the evolution of SARMs from proof-of-concept agents to the cusp of therapeutic use in less than two decades, while covering contemporary views of their mechanisms of action and therapeutic benefits. PMID:28624515

  10. G protein-coupled estrogen receptor (GPER) mediates NSCLC progression induced by 17β-estradiol (E2) and selective agonist G1.

    PubMed

    Liu, Changyu; Liao, Yongde; Fan, Sheng; Tang, Hexiao; Jiang, Zhixiao; Zhou, Bo; Xiong, Jing; Zhou, Sheng; Zou, Man; Wang, Jianmiao

    2015-04-01

    Estrogen classically drives lung cancer development via estrogen receptor β (ERβ). However, fulvestrant, an anti-estrogen-based endocrine therapeutic treatment, shows limited effects for non-small cell lung cancer (NSCLC) in phase II clinical trials. G protein-coupled estrogen receptor (GPER), a third estrogen receptor that binds to estrogen, has been found to be activated by fulvestrant, stimulating the progression of breast, endometrial, and ovarian cancers. We here demonstrated that cytoplasm-GPER (cGPER) (80.49 %) and nucleus-GPER (53.05 %) were detected by immunohistochemical analysis in NSCLC samples. cGPER expression was related to stages IIIA-IV, lymph node metastasis, and poorly differentiated NSCLC. Selective agonist G1 and 17β-estradiol (E2) promoted the GPER-mediated proliferation, invasion, and migration of NSCLC cells. Additionally, in vitro administration of E2 and G1 increased the number of tumor nodules, tumor grade, and tumor index in a urethane-induced adenocarcinoma model. Importantly, the pro-tumorigenic effects of GPER induced by E2 were significantly reduced by co-administering the GPER inhibitor G15 and the ERβ inhibitor fulvestrant, as compared to administering fulvestrant alone both in vitro and in vivo. Moreover, the phosphorylation of MAPK and Akt was involved in E2/G1-induced GPER activation. In conclusion, our results indicated that a pro-tumor function of GPER exists that mediated E2-/G1-dependent NSCLC progression and showed better efficiency regarding the co-targeting of GPER and ERβ, providing a rationale for further investigation of anti-estrogen clinical therapy.

  11. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    PubMed

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  12. Role of G protein-coupled receptor kinases in the homologous desensitization of the human and mouse melanocortin 1 receptors.

    PubMed

    Sánchez-Más, Jesús; Guillo, Lidia A; Zanna, Paola; Jiménez-Cervantes, Celia; García-Borrón, José C

    2005-04-01

    The melanocortin 1 receptor, a G protein-coupled receptor positively coupled to adenylyl cyclase, is a key regulator of epidermal melanocyte proliferation and differentiation and a determinant of human skin phototype and skin cancer risk. Despite its potential importance for regulation of pigmentation, no information is available on homologous desensitization of this receptor. We found that the human melanocortin 1 receptor (MC1R) and its mouse ortholog (Mc1r) undergo homologous desensitization in melanoma cells. Desensitization is not dependent on protein kinase A, protein kinase C, calcium mobilization, or MAPKs, but is agonist dose-dependent. Both melanoma cells and normal melanocytes express two members of the G protein-coupled receptor kinase (GRK) family, GRK2 and GRK6. Cotransfection of the receptor and GRK2 or GRK6 genes in heterologous cells demonstrated that GRK2 and GRK6 impair agonist-dependent signaling by MC1R or Mc1r. However, GRK6, but not GRK2, was able to inhibit MC1R agonist-independent constitutive signaling. Expression of a dominant negative GRK2 mutant in melanoma cells increased their cAMP response to agonists. Agonist-stimulated cAMP production decreased in melanoma cells enriched with GRK6 after stable transfection. Therefore, GRK2 and GRK6 seem to be key regulators of melanocortin 1 receptor signaling and may be important determinants of skin pigmentation.

  13. Antagonists for the orphan G-protein-coupled receptor GPR55 based on a coumarin scaffold.

    PubMed

    Rempel, Viktor; Volz, Nicole; Gläser, Franziska; Nieger, Martin; Bräse, Stefan; Müller, Christa E

    2013-06-13

    The orphan G-protein-coupled receptor GPR55, which is activated by 1-lysophosphatidylinositol and interacts with cannabinoid (CB) receptor ligands, has been proposed as a new potential drug target for the treatment of diabetes, Parkinson's disease, neuropathic pain, and cancer. We applied β-arrestin assays to identify 3-substituted coumarins as a novel class of antagonists and performed an extensive structure-activity relationship study for GPR55. Selectivity versus the related receptors CB1, CB2, and GPR18 was assessed. Among the 7-unsubstituted coumarins selective, competitive GPR55 antagonists were identified, such as 3-(2-hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (12, PSB-SB-489, IC50 = 1.77 μM, pA2 = 0.547 μM). Derivatives with long alkyl chains in position 7 were potent, possibly allosteric GPR55 antagonists which showed ancillary CB receptor affinity. 7-(1,1-Dimethyloctyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (69, PSB-SB-487, IC50 = 0.113 μM, KB = 0.561 μM) and 7-(1,1-dimethylheptyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (67, PSB-SB-1203, IC50 = 0.261 μM) were the most potent GPR55 antagonists of the present series.

  14. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  16. The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors.

    PubMed

    Bondar, Alexey; Lazar, Josef

    2017-06-09

    The G i/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of G i/o -GPCR coupling and the high rate of G i/o signal transduction have been hypothesized to be enabled by the existence of stable associates between G i/o proteins and their cognate GPCRs in the inactive state (G i/o -GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gα i1 subunits labeled with fluorescent proteins and four GPCRs: the α 2A -adrenergic receptor, GABA B , cannabinoid receptor type 1 (CB 1 R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gα i1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gα i1 subunits and α 2A -adrenergic receptor, GABA B , or dopamine receptor type 2 receptors did not reveal any interaction between the G i1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB 1 R exhibited an interaction with the G i1 protein. Further experiments revealed that this interaction is caused solely by CB 1 R basal activity; no preassembly between CB 1 R and the G i1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active G i1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and G i1 (basal coupling). These findings suggest that G i1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.

    PubMed

    Prokop, Susanne; Perry, Nicole A; Vishnivetskiy, Sergey A; Toth, Andras D; Inoue, Asuka; Milligan, Graeme; Iverson, Tina M; Hunyady, Laszlo; Gurevich, Vsevolod V

    2017-08-01

    Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M 2 muscarinic receptor, so that agonist activation of the M 2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M 2 , whereas its interactions with other receptors, including the β 2 -adrenergic receptor and the D 1 and D 2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β 2 -adrenergic and D 2 dopamine receptors, while reducing its interaction with the D 1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes. Copyright © 2017. Published by Elsevier Inc.

  18. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  19. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B

    2015-07-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. Copyright

  20. Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors

    PubMed Central

    Naganathan, Saranga; Grunbeck, Amy; Tian, He; Huber, Thomas; Sakmar, Thomas P.

    2013-01-01

    To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes. PMID:24056801

  1. Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling

    PubMed Central

    2012-01-01

    Background A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β2-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling. Results C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface. Conclusions We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer. PMID:22429589

  2. Regulation of prostate cancer by hormone-responsive G protein-coupled receptors.

    PubMed

    Wang, Wei; Chen, Zhao-Xia; Guo, Dong-Yu; Tao, Ya-Xiong

    2018-06-15

    Regulation of prostate cancer by androgen and androgen receptor (AR), and blockade of AR signaling by AR antagonists and steroidogenic enzyme inhibitors have been extensively studied. G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate almost all physiological processes. Nearly 40% of FDA-approved drugs in the market target GPCRs. A variety of GPCRs that mediate reproductive function have been demonstrated to be involved in the regulation of prostate cancer. These GPCRs include gonadotropin-releasing hormone receptor, luteinizing hormone receptor, follicle-stimulating hormone receptor, relaxin receptor, ghrelin receptor, and kisspeptin receptor. We highlight here GPCR regulation of prostate cancer by these GPCRs. Further therapeutic approaches targeting these GPCRs for the treatment of prostate cancer are summarized. Copyright © 2018. Published by Elsevier Inc.

  3. In vitro pharmacological characterization of CJ-042794, a novel, potent, and selective prostaglandin EP(4) receptor antagonist.

    PubMed

    Murase, Akio; Taniguchi, Yasuhito; Tonai-Kachi, Hiroko; Nakao, Kazunari; Takada, Junji

    2008-01-16

    Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.

  4. MOLECULAR PROBES FOR MUSCARINIC RECEPTORS: FUNCTIONALIZED CONGENERS OF SELECTIVE MUSCARINIC ANTAGONISTS

    PubMed Central

    Jacobson, Kenneth A.; Fischer, Bilha; van Rhee, A. Michiel

    2012-01-01

    Summary The muscarinic agonist oxotremorine and the tricyclic muscarinic antagonists pirenzepine and telenzepine have been derivatized using a functionalized congener approach for the purpose of synthesizing high affinity ligand probes that are suitable for conjugation with prosthetic groups, for receptor cross-linking, fluorescent and radioactive detection, etc. A novel fluorescent conjugate of TAC (telenzepine amine congener), an n-decylamino derivative of the ml-selective antagonist, with the fluorescent trisulfonated pyrene dye Cascade Blue may be useful for assaying the receptor as an alternative to radiotracers. In a rat m3 receptor mutant containing a single amino acid substitution in the sixth transmembrane domain (Asn507 to Ala) the parent telenzepine lost 636-fold in affinity, while TAC lost only 27-fold. Thus, the decylamino group of TAC stabilizes the bound state and thus enhances potency by acting as a distal anchor in the receptor binding site. We have built a computer-assisted molecular model of the transmembrane regions of muscarinic receptors based on homology with the G-protein coupled receptor rhodopsin, for which a low resolution structure is known. We have coordinated the antagonist pharmacophore (tricyclic and piperazine moieties) with residues of the third and seventh helices of the rat m3 receptor. Although the decylamino chain of TAC is likely to be highly flexible and may adopt many conformations, we located one possible site for a salt bridge formation with the positively charged −NH3+ group, i.e. Asp113 in helix II. PMID:10188781

  5. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor.

    PubMed

    Urizar, Eneko; Claeysen, Sylvie; Deupí, Xavier; Govaerts, Cedric; Costagliola, Sabine; Vassart, Gilbert; Pardo, Leonardo

    2005-04-29

    We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.

  6. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2017-01-01

    Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.

  7. Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.

    PubMed

    Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J

    2009-04-07

    The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.

  8. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models

    PubMed Central

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-01-01

    ABSTRACT Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. PMID:26183213

  9. A calixpyrrole derivative acts as an antagonist to GPER, a G-protein coupled receptor: mechanisms and models.

    PubMed

    Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello

    2015-10-01

    Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. © 2015. Published by The Company of Biologists Ltd.

  10. Minireview: G Protein-Coupled Estrogen Receptor-1, GPER-1: Its Mechanism of Action and Role in Female Reproductive Cancer, Renal and Vascular Physiology

    PubMed Central

    Thomas, Peter

    2012-01-01

    Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its “pregenomic” signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology. PMID:22495674

  11. Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology.

    PubMed

    Filardo, Edward J; Thomas, Peter

    2012-07-01

    Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its "pregenomic" signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology.

  12. How much do we know about the coupling of G-proteins to serotonin receptors?

    PubMed Central

    2014-01-01

    Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis. PMID:25011628

  13. How much do we know about the coupling of G-proteins to serotonin receptors?

    PubMed

    Giulietti, Matteo; Vivenzio, Viviana; Piva, Francesco; Principato, Giovanni; Bellantuono, Cesario; Nardi, Bernardo

    2014-07-10

    Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis.

  14. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  15. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go.

    PubMed

    García-Nafría, Javier; Nehmé, Rony; Edwards, Patricia C; Tate, Christopher G

    2018-06-20

    G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of G s to four different GPCRs have been elucidated 1-4 , but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT 1B receptor (5-HT 1B R) bound to the agonist donitriptan and coupled to an engineered G o heterotrimer. In this complex, 5-HT 1B R is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the β 2 -adrenoceptor (β 2 AR) 3 or the adenosine A 2A receptor (A 2A R) 1 in complex with G s . In contrast to the complexes with G s , the gap between the receptor and the Gβ-subunit in the G o -5-HT 1B R complex precludes molecular contacts, and the interface between the Gα-subunit of G o and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the G o α-subunit. The molecular variations between the interfaces of G o and G s in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.

  16. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR).

    PubMed

    Wolf, Steffen; Jovancevic, Nikolina; Gelis, Lian; Pietsch, Sebastian; Hatt, Hanns; Gerwert, Klaus

    2017-11-22

    We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.

  17. Synthesis and Characterization of Tricarbonyl-Re/Tc(I) Chelate Probes Targeting the G Protein-Coupled Estrogen Receptor GPER/GPR30

    PubMed Central

    Burai, Ritwik; Ramesh, Chinnasamy; Nayak, Tapan K.; Dennis, Megan K.; Bryant, Bj K.; Prossnitz, Eric R.; Arterburn, Jeffrey B.

    2012-01-01

    The discovery of the G protein-coupled estrogen receptor GPER (also GPR30) and the resulting development of selective chemical probes have revealed new aspects of estrogen receptor biology. The potential clinical relevance of this receptor has been suggested from numerous studies that have identified GPER expression in breast, endometrial, ovarian and other cancers. Thus GPER can be considered a candidate biomarker and target for non-invasive imaging and therapy. We have designed and synthesized a series of organometallic tricarbonyl-rhenium complexes conjugated to a GPER-selective small molecule derived from tetrahydro-3H-cyclopenta[c]quinoline. The activity and selectivity of these chelates in GPER-mediated signaling pathways were evaluated. These results demonstrate that GPER targeting characteristics depend strongly on the structure of the chelate and linkage. Ethanone conjugates functioned as agonists, a 1,2,3-triazole spacer yielded an antagonist, and derivatives with increased steric volume exhibited decreased activities. Promising GPER selectivity was observed, as none of the complexes interacted with the nuclear estrogen receptors. Radiolabeling with technetium-99m in aqueous media was efficient and gave radioligands with high radiochemical yields and purity. These chelates have favorable physicochemical properties, show excellent stability in biologically relevant media, exhibit receptor specificity and are promising candidates for continuing development as diagnostic imaging agents targeting GPER expression in cancer. PMID:23077529

  18. Selective progesterone receptor modulators 2: use in reproductive medicine.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    Synthetic compounds can bind to progesterone receptors and these progesterone receptor ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. These substances have been classified as antiprogestins or as selective progesterone receptor modulators. There are several hundred selective progesterone receptor modulators available, although only a dozen or so have been evaluated to any significant extent. The best-known selective progesterone receptor modulators are mifepristone (RU 486), asoprisnil (J 867), onapristone (ZK 98299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. A careful evaluation of existing major review papers and of recently published articles was carried out for the indications under review, focusing not only on mifepristone, but also on those other selective progesterone receptor modulators for which data are available. Outside pregnancy, selective progesterone receptor modulators are used or have been tested clinically for a number of indications in reproductive medicine: as oral contraceptives, alone or in combination with a progestin, to improve cycle control in users of progestin-only contraceptives, as emergency contraceptives, for the medical treatment of uterine fibroids, in cases of endometriosis and premenstrual syndrome and to improve ovarian stimulation prior to in vitro fertilisation. In the authors' opinion, as of today, few applications outside pregnancy seem worthy of large-scale use: emergency contraception and long-term medical management of uterine fibroids and possibly of endometriosis.

  19. An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension.

    PubMed

    Adebiyi, Adebowale; Thomas-Gatewood, Candice M; Leo, M Dennis; Kidd, Michael W; Neeb, Zachary P; Jaggar, Jonathan H

    2012-11-01

    Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP(3)) that activates sarcoplasmic reticulum IP(3) receptors. In cerebral artery myocytes, IP(3) receptors release sarcoplasmic reticulum Ca(2+) and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP(3) receptors control vascular contractility in systemic arteries and IP(3)R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ≈2.7- and 2-fold higher in mesenteric arteries of spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP(3)R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-SHRs and WKY rats. Control, IP(3)-induced and endothelin-1 (ET-1)-induced fluorescence resonance energy transfer between IP3R1 and TRPC3 was higher in SHR than WKY myocytes. IP3-induced cation current was ≈3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and calmodulin and IP(3) receptor binding domain peptide, an IP(3)R-TRP physical coupling inhibitor, reduced IP(3)-induced cation current and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP(3)R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP(3)R1 to TRPC3 channel molecular coupling augments

  20. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF ormore » thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).« less

  1. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells.

    PubMed

    Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; Andò, Sebastiano; Maggiolini, Marcello

    2008-08-01

    Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-alpha and -beta, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17beta-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5'-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5'-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells.

  2. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support

    PubMed Central

    Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  3. [Functional selectivity of opioid receptors ligands].

    PubMed

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  4. Persistence of evolutionary memory: primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling.

    PubMed

    Kream, Richard M; Sheehan, Melinda; Cadet, Patrick; Mantione, Kirk J; Zhu, Wei; Casares, Federico; Stefano, George B

    2007-12-01

    Biochemical, molecular and pharmacological evidence for two unique six-transmembrane helical (TMH) domain opiate receptors expressed from the micro opioid receptor (MOR) gene have been shown. Designated micro3 and micro4 receptors, both protein species are Class A rhodopsin-like members of the superfamily of G-protein coupled receptors but are selectively tailored to mediate the cellular regulatory effects of endogenous morphine and related morphinan alkaloids via stimulation of nitric oxide (NO) production and release. Both micro3 and micro4 receptors lack an amino acid sequence of approximately 90 amino acids that constitute the extracellular N-terminal and TMH1 domains and part of the first intracellular loop of the micro1 receptor, but retain the empirically defined ligand binding pocket distributed across conserved TMH2, TMH3, and TMH7 domains of the micro1 sequence. Additionally, the receptor proteins are terminated by unique intracellular C-terminal amino acid sequences that serve as putative coupling or docking domains required for constitutive NO synthase activation. Because the recognition profile of micro3 and micro4 receptors is restricted to rigid benzylisoquinoline alkaloids typified by morphine and its extended family of chemical congeners, it is hypothesized that conformational stabilization provided by interaction of extended extracellular N-terminal protein domains and the extracellular loops is required for binding of endogenous opioid peptides as well as synthetic flexible opiate alkaloids.

  5. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides.more » The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.« less

  6. G protein-coupled receptors: the inside story.

    PubMed

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  7. Structural organization of G-protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Lomize, Andrei L.; Pogozheva, Irina D.; Mosberg, Henry I.

    1999-07-01

    Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur-aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.

  8. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases.

    PubMed

    Calebiro, Davide; Godbole, Amod

    2018-04-01

    G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Selective and non-selective OT receptor agonists induce different locomotor behaviors in male rats via central OT receptors and peripheral V1a receptors.

    PubMed

    Wolfe, Monica; Wisniewska, Halina; Tariga, Hiroe; Ibanez, Gerardo; Collins, James C; Wisniewski, Kazimierz; Qi, Steve; Srinivasan, Karthik; Hargrove, Diane; Lindstrom, Beatriz Fioravanti

    2018-05-21

    Oxytocin (OT) continues to inspire much research due to its diverse physiological effects. While the best-understood actions of OT are uterine contraction and milk ejection, OT is also implicated in maternal and bonding behaviors, and potentially in CNS disorders such as autism, schizophrenia, and pain. The dissection of the mechanism of action of OT is complicated by the fact that this peptide activates not only its cognate receptor but also vasopressin type 1a (V1a) receptors. In this study, we evaluated OT and a selective OT receptor (OTR) agonist, FE 204409, in an automated assay that measures rat locomotor activity. The results showed: 1) Subcutaneous (sc) administration of OT decreased locomotor behavior (distance traveled, stereotypy, and rearing). This effect was reversed by a V1a receptor (V1aR) antagonist ([Pmp1,Tyr(ME)2]AVP, sc), suggesting that OT acts through peripheral V1aR to inhibit locomotor activity. 2) A selective OTR agonist (FE 204409, sc) increased stereotypy. This effect was reversed by an OTR antagonist dosed icv, suggesting a central OTR site of action. Our findings identify distinct behavioral effects for OT and the selective agonist FE 204409, adding to the growing body of evidence that the V1aR mediates many effects attributed to OT and that peptides administered systemically at supra-physiological doses may activate receptors in the brain. Our studies further emphasize the importance of utilizing selective agonists and antagonists to assess therapeutic indications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    PubMed

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  11. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  12. Drug Discovery Targeting Serotonin G Protein-Coupled Receptors in the Treatment of Neuropsychiatric Disorders

    NASA Astrophysics Data System (ADS)

    Felsing, Daniel E.

    Clinical data show that activation of 5-HT2C G protein-coupled receptors (GPCRs) can treat obesity (lorcaserin/BelviqRTM) and psychotic disorders (aripiprazole/Abilify.), including schizophrenia. 5-HT2C GPCRs are members of the 5-HT2 sub-family of 5-HT GPCRs, which include 5-HT2A, 5-HT2B, and 5-HT 2C GPCRs. 5-HT2C is structurally similar to 5-HT2A and 5-HT2B GPCRs, but activation of 5-HT2A and/or 5-HT 2B causes deleterious effects, including hallucinations and cardiac valvulopathy. Thus, there is a challenge to develop drugs that selectively activate only 5-HT2C. Prolonged activation of GPCRs by agonists reduces their function via a regulatory process called desensitization. This has clinical relevance, as 45% of drugs approved by the FDA target GPCRs, and agonist drugs (e.g., morphine) typically lose efficacy over time due to desensitization, which invites tolerance. Agonists that cause less desensitization may show extended clinical efficacy as well as a more acceptable clinical dose range. We hypothesized that structurally distinct agonists of the 5-HT2C receptor may cause varying degrees of desensitization by stabilizing unique 5-HT2C receptor conformations. Discovery of 5-HT2C agonists that exhibit minimal desensitization is therapeutically relevant for the pharmacotherapeutic treatment of chronic diseases such as obesity and psychotic disorders. The 5-HT7 receptor has recently been discovered as a druggable target, and selective activation of the 5-HT7 receptor has been shown to alleviate locomotor deficits in mouse models of Rett Syndrome. Additionally, buspirone has been shown to display therapeutically relevant affinity at 5-HT 1A and is currently in phase II clinical trials to treat stereotypy in children with autism. The 5-PAT chemical scaffold shows high affinity towards the 5-HT7 and 5-HT1A receptors. Modulations around the 5-phenyl moiety were able to improve selectivity in binding towards the 5-HT 7 receptor, whereas modulations of the alkyl chains

  13. Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane.

    PubMed

    Filardo, E; Quinn, J; Pang, Y; Graeber, C; Shaw, S; Dong, J; Thomas, P

    2007-07-01

    G protein-coupled receptor 30 (GPR30), a seven-transmembrane receptor (7TMR), is associated with rapid estrogen-dependent, G protein signaling and specific estrogen binding. At present, the subcellular site of GPR30 action is unclear. Previous studies using antibodies and fluorochrome-labeled estradiol (E2) have failed to detect GPR30 on the cell surface, suggesting that GPR30 may function uniquely among 7TMRs as an intracellular receptor. Here, we show that detectable expression of GPR30 on the surface of transfected HEK-293 cells can be selected by fluorescence-activated cell sorting. Expression of GPR30 on the cell surface was confirmed by confocal microscopy using the lectin concanavalin A as a plasma membrane marker. Stimulation of GPR30-expressing HEK-293 cells with 17beta-E2 caused sequestration of GPR30 from the cell surface and resulted in its codistribution with clathrin and mobilization of intracellular calcium stores. Evidence that GPR30 signals from the cell surface was obtained from experiments demonstrating that the cell-impermeable E2-protein conjugates E2-BSA and E2-horseradish peroxidase promote GPR30-dependent elevation of intracellular cAMP concentrations. Subcellular fractionation studies further support the plasma membrane as a site of GPR30 action with specific [3H]17beta-E2 binding and G protein activation associated with plasma membrane but not microsomal, or other fractions, prepared from HEK-293 or SKBR3 breast cancer cells. These results suggest that GPR30, like other 7TMRs, functions as a plasma membrane receptor.

  14. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  15. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    PubMed Central

    Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim

    2014-01-01

    X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322

  16. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application.

    PubMed

    Kratochwil, Nicole A; Malherbe, Pari; Lindemann, Lothar; Ebeling, Martin; Hoener, Marius C; Mühlemann, Andreas; Porter, Richard H P; Stahl, Martin; Gerber, Paul R

    2005-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.

  17. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.

    PubMed

    Ye, Shixin; Zaitseva, Ekaterina; Caltabiano, Gianluigi; Schertler, Gebhard F X; Sakmar, Thomas P; Deupi, Xavier; Vogel, Reiner

    2010-04-29

    Rhodopsin is a prototypical heptahelical family A G-protein-coupled receptor (GPCR) responsible for dim-light vision. Light isomerizes rhodopsin's retinal chromophore and triggers concerted movements of transmembrane helices, including an outward tilting of helix 6 (H6) and a smaller movement of H5, to create a site for G-protein binding and activation. However, the precise temporal sequence and mechanism underlying these helix rearrangements is unclear. We used site-directed non-natural amino acid mutagenesis to engineer rhodopsin with p-azido-l-phenylalanine residues incorporated at selected sites, and monitored the azido vibrational signatures using infrared spectroscopy as rhodopsin proceeded along its activation pathway. Here we report significant changes in electrostatic environments of the azido probes even in the inactive photoproduct Meta I, well before the active receptor state was formed. These early changes suggest a significant rotation of H6 and movement of the cytoplasmic part of H5 away from H3. Subsequently, a large outward tilt of H6 leads to opening of the cytoplasmic surface to form the active receptor photoproduct Meta II. Thus, our results reveal early conformational changes that precede larger rigid-body helix movements, and provide a basis to interpret recent GPCR crystal structures and to understand conformational sub-states observed during the activation of other GPCRs.

  18. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84.

    PubMed

    Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin

    2016-05-01

    G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2.

    PubMed

    Burczyk, Martina; Burkhalter, Martin D; Blätte, Tamara; Matysik, Sabrina; Caron, Marc G; Barak, Lawrence S; Philipp, Melanie

    2015-01-27

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m(93) (mil(m93)), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling.

  20. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  1. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  2. Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques

    PubMed Central

    Provasi, Davide; Artacho, Marta Camacho; Negri, Ana; Mobarec, Juan Carlos; Filizola, Marta

    2011-01-01

    Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally. PMID:22022248

  3. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    PubMed

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    PubMed

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  5. G Protein-Coupled Estrogen Receptor in Energy Homeostasis and Obesity Pathogenesis

    PubMed Central

    Shi, Haifei; Dharshan Senthil Kumar, Shiva Priya; Liu, Xian

    2013-01-01

    Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. PMID:23317786

  6. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  7. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    PubMed

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  8. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    PubMed Central

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  9. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation

    PubMed Central

    Douglas, Steven D.; Leeman, Susan E.

    2010-01-01

    The G-protein coupled receptor (GPCR), Neurokinin-1 Receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and substance P are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa-b (NF-κb) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by substance P are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major Class 1, rhodopsin-like GPCR ligand-receptor interaction. PMID:21091716

  10. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  11. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  12. G protein-coupled receptor 30 in tumor development.

    PubMed

    Wang, Dengfeng; Hu, Lina; Zhang, Guonan; Zhang, Lin; Chen, Chen

    2010-08-01

    Estrogen plays several important physiological and pathological functions in not only reproductive system but many other systems as well. Its transcriptional activation has been traditionally described as being mediated by classic nuclear estrogen receptors (ERs). It is however established recently that a novel functional estrogen transmembrane receptor, G protein-coupled receptor 30 (GPR30), modulates both rapid non-genomic events and genomic transcriptional events of estrogen. It has been demonstrated that GPR30 promotes the progress of estrogen-related tumors through mitogen-activated protein kinase (MAPK) signaling pathways. Effects mediated by GPR30 are maintained when classic ERs are absent or blocked. In addition, GPR30 is involved in drug resistance, which is often occurring during cancer treatments. All these new findings strongly imply that GPR30 may be an important therapeutic target for estrogen-related tumors. Simultaneously blocking both GPR30 and classic ERs may be a better strategy for the treatment of estrogen-related tumors.

  13. G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation.

    PubMed

    Chakrabarti, Subhadeep; Davidge, Sandra T

    2012-01-01

    Estrogen, the female sex hormone, is known to exert anti-inflammatory and anti-atherogenic effects. Traditionally, estrogen effects were believed to be largely mediated through the classical estrogen receptors (ERs). However, there is increasing evidence that G-protein coupled receptor 30 (GPR30), a novel estrogen receptor, can mediate many estrogenic effects on the vasculature. Despite this, the localization and functional significance of GPR30 in the human vascular endothelium remains poorly understood. Given this background, we examined the subcellular location and potential anti-inflammatory roles of GPR30 using human umbilical vein endothelial cells as a model system. Inflammatory changes were induced by treatment with tumor necrosis factor (TNF), a pro-inflammatory cytokine involved in atherogenesis and many other inflammatory conditions. We found that GPR30 was located predominantly in the endothelial cell nuclei. Treatment with the selective GPR30 agonist G-1 partially attenuated the TNF induced upregulation of pro-inflammatory proteins such as intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was completely abolished by the selective GPR30 antagonist G-15, suggesting that it was indeed mediated in a GPR30 dependent manner. Interestingly, estrogen alone had no effects on TNF-treated endothelium. Concomitant activation of the classical ERs blocked the anti-inflammatory effects of G-1, indicating opposing effects of GPR30 and the classical ERs. Our findings demonstrate that endothelial GPR30 is a novel regulator of the inflammatory response which could be a potential therapeutic target against atherosclerosis and other inflammatory diseases.

  14. N-Arachidonyl Glycine Does Not Activate G Protein–Coupled Receptor 18 Signaling via Canonical Pathways

    PubMed Central

    Lu, Van B.; Puhl, Henry L.

    2013-01-01

    Recent studies propose that N-arachidonyl glycine (NAGly), a carboxylic analogue of anandamide, is an endogenous ligand of the Gαi/o protein–coupled receptor 18 (GPR18). However, a high-throughput β-arrestin–based screen failed to detect activation of GPR18 by NAGly (Yin et al., 2009; JBC, 18:12328). To address this inconsistency, this study investigated GPR18 coupling in a native neuronal system with endogenous signaling pathways and effectors. GPR18 was heterologously expressed in rat sympathetic neurons, and the modulation of N-type (Cav2.2) calcium channels was examined. Proper expression and trafficking of receptor were confirmed by the “rim-like” fluorescence of fluorescently tagged receptor and the positive staining of external hemagglutinin-tagged GPR18-expressing cells. Application of NAGly on GPR18-expressing neurons did not inhibit calcium currents but instead potentiated currents in a voltage-dependent manner, similar to what has previously been reported (Guo et al., 2008; J Neurophysiol, 100:1147). Other proposed agonists of GPR18, including anandamide and abnormal cannabidiol, also failed to induce inhibition of calcium currents. Mutants of GPR18, designed to constitutively activate receptors, did not tonically inhibit calcium currents, indicating a lack of GPR18 activation or coupling to endogenous G proteins. Other downstream effectors of Gαi/o-coupled receptors, G protein–coupled inwardly rectifying potassium channels and adenylate cyclase, were not modulated by GPR18 signaling. Furthermore, GPR18 did not couple to other G proteins tested: Gαs, Gαz, and Gα15. These results suggest NAGly is not an agonist for GPR18 or that GPR18 signaling involves noncanonical pathways not examined in these studies. PMID:23104136

  15. Molecular evolution of a chordate specific family of G protein-coupled receptors

    PubMed Central

    2011-01-01

    Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become

  16. Relaxant Effects of the Selective Estrogen Receptor Modulator, Bazedoxifene, and Estrogen Receptor Agonists in Isolated Rabbit Basilar Artery.

    PubMed

    Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique

    2016-10-01

    We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).

  17. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment

    PubMed Central

    Bagley, Elena E.

    2014-01-01

    Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1 effector. PMID

  18. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    PubMed

    Bagley, Elena E

    2014-01-01

    Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than E k . Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1 effector.

  19. Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems.

    PubMed Central

    Robb, S; Cheek, T R; Hannan, F L; Hall, L M; Midgley, J M; Evans, P D

    1994-01-01

    A cloned seven transmembrane-spanning Drosophila octopamine/tyramine receptor, permanently expressed in a Chinese hamster ovary cell line, both inhibits adenylate cyclase activity and leads to the elevation of intracellular Ca2+ levels by separate G-protein-coupled pathways. Agonists of this receptor (octopamine and tyramine), differing by only a single hydroxyl group in their side chain, may be capable of differentially coupling it to different second messenger systems. Thus, a single receptor may have a different pharmacological profile depending on which second messenger system is used to assay its efficacy. PMID:8137817

  20. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  1. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers.

    PubMed

    Harding, Peter J; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H; Smith, Eleanor; Armitage, Judith P; Watts, Anthony

    2009-02-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.

  2. Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem

    PubMed Central

    Freeman, Sara M.; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.

    2017-01-01

    Intranasal oxytocin affects a suite of human social behaviors, including trust, eye contact, and emotion recognition. However, it is unclear where oxytocin receptors (OXTR) and the structurally related vasopressin 1a receptors (AVPR1a) are expressed in the human brain. We have previously described a reliable, pharmacologically informed receptor autoradiography protocol for visualizing these receptors in postmortem primate brain tissue. We used this technique in human brainstem tissue to identify the neural targets of oxytocin and vasopressin. To determine binding selectivity of the OXTR radioligand and AVPR1a radioligand, sections were incubated in four conditions: radioligand alone, radioligand with the selective AVPR1a competitor SR49059, and radioligand with a low or high concentration of the selective OXTR competitor ALS-II-69. We found selective OXTR binding in the spinal trigeminal nucleus, a conserved region of OXTR expression in all primate species investigated to date. We found selective AVPR1a binding in the nucleus prepositus, an area implicated in eye gaze stabilization. The tissue's postmortem interval was not correlated with either the specific or nonspecific binding of either radioligand, indicating that it will not likely be a factor in similar postmortem studies. This study provides critical data for future studies of OXTR and AVPR1a in human brain tissue. PMID:26911439

  3. Expression, Purification, and Analysis of G-Protein-Coupled Receptor Kinases

    PubMed Central

    Sterne-Marr, Rachel; Baillargeon, Alison I.; Michalski, Kevin R.; Tesmer, John J.G.

    2015-01-01

    G-protein-coupled receptor (GPCR) kinases (GRKs) were first identified based on their ability to specifically phosphorylate activated GPCRs. Although many soluble substrates have since been identified, the chief physiological role of GRKs still remains the uncoupling of GPCRs from heterotrimeric G-proteins by promoting β-arrestin binding through the phosphorylation of the receptor. It is expected that GRKs recognize activated GPCRs through a docking site that not only recognizes the active conformation of the transmembrane domain of the receptor but also stabilizes a more catalytically competent state of the kinase domain. Many of the recent gains in understanding GRK-receptor interactions have been gleaned through biochemical and structural analysis of recombinantly expressed GRKs. Described herein are current techniques and procedures being used to express, purify, and assay GRKs in both in vitro and living cells. PMID:23351749

  4. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions.

    PubMed

    Krieger, James; Lee, Ji Young; Greger, Ingo H; Bahar, Ivet

    2018-02-23

    Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are key players in synaptic transmission and plasticity. They are composed of four subunits, each containing four functional domains, the quaternary packing and collective structural dynamics of which are important determinants of their molecular mechanism of function. With the explosion of structural studies on different members of the family, including the structures of activated open channels, the mechanisms of action of these central signaling machines are now being elucidated. We review the current state of computational studies on two major members of the family, AMPA and NMDA receptors, with focus on molecular simulations and elastic network model analyses that have provided insights into the coupled movements of extracellular and transmembrane domains. We describe the newly emerging mechanisms of activation, allosteric signaling and desensitization, as mainly a selective triggering of pre-existing soft motions, as deduced from computational models and analyses that leverage structural data on intact AMPA and NMDA receptors in different states. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  7. Visualization of arrestin recruitment by a G Protein-Coupled Receptor

    PubMed Central

    Reis, Rosana I.; Huang, Li-Yin; Tripathi-Shukla, Prachi; Qian, Jiang; Li, Sheng; Blanc, Adi; Oleskie, Austin N.; Dosey, Anne M.; Su, Min; Liang, Cui-Rong; Gu, Ling-Ling; Shan, Jin-Ming; Chen, Xin; Hanna, Rachel; Choi, Minjung; Yao, Xiao Jie; Klink, Bjoern U.; Kahsai, Alem W.; Sidhu, Sachdev S.; Koide, Shohei; Penczek, Pawel A.; Kossiakoff, Anthony A.; Jr, Virgil L. Woods; Kobilka, Brian K.; Skiniotis, Georgios; Lefkowitz, Robert J.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins. PMID:25043026

  8. Direction selective structural-acoustic coupled radiator

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Seon; Kim, Yang-Hann

    2005-04-01

    This paper presents a method of designing a structural-acoustic coupled radiator that can emit sound in the desired direction. The structural-acoustic coupled system is consisted of acoustic spaces and wall. The wall composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. An equation is developed that predicts energy distribution and energy flow in the two spaces separated by the wall, and its computational examples are presented including near field acoustic characteristics. To design the directional coupled radiator, Pareto optimization method is adapted. An objective is selected to maximize radiation power on a main axis and minimize a side lobe level and a subjective is selected direction of the main axis and dimensions of the walls geometry. Pressure and intensity distribution of the designed radiator is also presented.

  9. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  10. G protein-coupled odorant receptors: From sequence to structure.

    PubMed

    de March, Claire A; Kim, Soo-Kyung; Antonczak, Serge; Goddard, William A; Golebiowski, Jérôme

    2015-09-01

    Odorant receptors (ORs) are the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date and atomic-level insights are likely to be obtained by means of molecular modeling. In this article, we critically align sequences of ORs with those GPCRs for which a structure is available. Here, an alignment consistent with available site-directed mutagenesis data on various ORs is proposed. Using this alignment, the choice of the template is deemed rather minor for identifying residues that constitute the wall of the binding cavity or those involved in G protein recognition. © 2015 The Protein Society.

  11. G protein-coupled odorant receptors: From sequence to structure

    PubMed Central

    de March, Claire A; Kim, Soo-Kyung; Antonczak, Serge; Goddard, William A; Golebiowski, Jérôme

    2015-01-01

    Odorant receptors (ORs) are the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date and atomic-level insights are likely to be obtained by means of molecular modeling. In this article, we critically align sequences of ORs with those GPCRs for which a structure is available. Here, an alignment consistent with available site-directed mutagenesis data on various ORs is proposed. Using this alignment, the choice of the template is deemed rather minor for identifying residues that constitute the wall of the binding cavity or those involved in G protein recognition. PMID:26044705

  12. Phosphatidic acid phospholipase A1 mediates ER–Golgi transit of a family of G protein–coupled receptors

    PubMed Central

    Kunduri, Govind; Yuan, Changqing; Parthibane, Velayoudame; Nyswaner, Katherine M.; Kanwar, Ritu; Nagashima, Kunio; Britt, Steven G.; Mehta, Nickita; Kotu, Varshika; Porterfield, Mindy; Tiemeyer, Michael; Dolph, Patrick J.; Acharya, Usha

    2014-01-01

    The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking. PMID:25002678

  13. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    PubMed Central

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319

  14. Velocity selection in coupled-map lattices

    NASA Astrophysics Data System (ADS)

    Parekh, Nita; Puri, Sanjay

    1993-02-01

    We investigate the phenomenon of velocity selection for traveling wave fronts in a class of coupled-map lattices, derived by discretizations of the Fisher equation [Ann. Eugenics 7, 355 (1937)]. We find that the velocity selection can be understood in terms of a discrete analog of the marginal-stability hypothesis. A perturbative approach also enables us to estimate the selected velocity accurately for small values of the discretization mesh sizes.

  15. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.

    PubMed

    Zekas, Erin; Prossnitz, Eric R

    2015-10-15

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  16. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    PubMed

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Expression of fatty acid sensing G-protein coupled receptors in peripartal Holstein cows.

    PubMed

    Agrawal, Alea; Alharthi, Abdulrahman; Vailati-Riboni, Mario; Zhou, Zheng; Loor, Juan J

    2017-01-01

    G-protein coupled receptors (GPCR), also referred as Free Fatty Acid Receptors (FFAR), are widely studied within human medicine as drug targets for metabolic disorders. To combat metabolic disorders prevalent in dairy cows during the transition period, which co-occur with negative energy balance and changes to lipid and glucose metabolism, it may be helpful to identify locations and roles of FFAR and other members of the GPCR family in bovine tissues. Quantitative RT-PCR (qPCR) of subcutaneous adipose, liver, and PMNL samples during the transition period (-10, +7, and +20 or +30 d) were used for expression profiling of medium- (MCFA) and long-chain fatty acid (LCFA) receptors GPR120 and GPR40 , MCFA receptor GPR84 , and niacin receptor HCAR2/3 . Adipose samples were obtained from cows with either high (HI; BCS ≥ 3.75) or low (LO; BCS ≤ 3.25) body condition score (BCS) to examine whether FFAR expression is correlated with this indicator of health and body reserves. Supplementation of rumen-protected methionine (MET), which may improve immune function and production postpartum, was also compared with unsupplemented control (CON) cows for liver and blood polymorphonuclear leukocytes (PMNL) samples. In adipose tissue, GPR84 and GPR120 were differentially expressed over time, while GPR40 was not expressed; in PMNL, GPR40 was differentially expressed over time and between MET vs. CON, GPR84 expression differed only between dietary groups, and GPR120 was not expressed; in liver, GPCR were either not expressed or barely detectable. The data indicate that there is likely not a direct role in liver for the selected GPCR during the transition period, but they do play variable roles in adipose and PMN. In future, these receptors may prove useful targets and/or markers for peripartal metabolism and immunity.

  18. Automated large-scale purification of a G protein-coupled receptor for neurotensin.

    PubMed

    White, Jim F; Trinh, Loc B; Shiloach, Joseph; Grisshammer, Reinhard

    2004-04-30

    Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.

  19. Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases.

    PubMed

    Cabral-Marques, Otavio; Riemekasten, Gabriela

    2017-11-01

    G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.

  20. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.

    PubMed

    Wan, Qingwen; Okashah, Najeah; Inoue, Asuka; Nehmé, Rony; Carpenter, Byron; Tate, Christopher G; Lambert, Nevin A

    2018-05-11

    G protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells. Mini G (mG) proteins are engineered GTPase domains of Gα subunits that were developed for structural studies of active-state GPCRs. Confocal imaging revealed that mG proteins fused to fluorescent proteins were located diffusely in the cytoplasm and translocated to sites of receptor activation at the cell surface and at intracellular organelles. Bioluminescence resonance energy transfer (BRET) assays with mG proteins fused to either a fluorescent protein or luciferase reported agonist, superagonist, and inverse agonist activities. Variants of mG proteins (mGs, mGsi, mGsq, and mG12) corresponding to the four families of Gα subunits displayed appropriate coupling to their cognate GPCRs, allowing quantitative profiling of subtype-specific coupling to individual receptors. BRET between luciferase-mG fusion proteins and fluorescent markers indicated the presence of active GPCRs at the plasma membrane, Golgi apparatus, and endosomes. Complementation assays with fragments of NanoLuc luciferase fused to GPCRs and mG proteins reported constitutive receptor activity and agonist-induced activation with up to 20-fold increases in luminescence. We conclude that mG proteins are versatile tools for studying GPCR activation and coupling specificity in cells and should be useful for discovering and characterizing G protein subtype-biased ligands. © 2018 Wan et al.

  1. Oligomerization of G protein-coupled receptors: computational methods.

    PubMed

    Selent, J; Kaczor, A A

    2011-01-01

    Recent research has unveiled the complexity of mechanisms involved in G protein-coupled receptor (GPCR) functioning in which receptor dimerization/oligomerization may play an important role. Although the first high-resolution X-ray structure for a likely functional chemokine receptor dimer has been deposited in the Protein Data Bank, the interactions and mechanisms of dimer formation are not yet fully understood. In this respect, computational methods play a key role for predicting accurate GPCR complexes. This review outlines computational approaches focusing on sequence- and structure-based methodologies as well as discusses their advantages and limitations. Sequence-based approaches that search for possible protein-protein interfaces in GPCR complexes have been applied with success in several studies, but did not yield always consistent results. Structure-based methodologies are a potent complement to sequence-based approaches. For instance, protein-protein docking is a valuable method especially when guided by experimental constraints. Some disadvantages like limited receptor flexibility and non-consideration of the membrane environment have to be taken into account. Molecular dynamics simulation can overcome these drawbacks giving a detailed description of conformational changes in a native-like membrane. Successful prediction of GPCR complexes using computational approaches combined with experimental efforts may help to understand the role of dimeric/oligomeric GPCR complexes for fine-tuning receptor signaling. Moreover, since such GPCR complexes have attracted interest as potential drug target for diverse diseases, unveiling molecular determinants of dimerization/oligomerization can provide important implications for drug discovery.

  2. Specificity of arrestin subtypes in regulating airway smooth muscle G protein-coupled receptor signaling and function.

    PubMed

    Pera, Tonio; Hegde, Akhil; Deshpande, Deepak A; Morgan, Sarah J; Tiegs, Brian C; Theriot, Barbara S; Choi, Yeon H; Walker, Julia K L; Penn, Raymond B

    2015-10-01

    Arrestins have been shown to regulate numerous G protein-coupled receptors (GPCRs) in studies employing receptor/arrestin overexpression in artificial cell systems. Which arrestin isoforms regulate which GPCRs in primary cell types is poorly understood. We sought to determine the effect of β-arrestin-1 or β-arrestin-2 inhibition or gene ablation on signaling and function of multiple GPCRs endogenously expressed in airway smooth muscle (ASM). In vitro [second messenger (calcium, cAMP generation)], ex vivo (ASM tension generation in suspended airway), and in vivo (invasive airway resistance) analyses were performed on human ASM cells and murine airways/whole animal subject to β-arrestin-1 or -2 knockdown or knockout (KO). In both human and murine model systems, knockdown or KO of β-arrestin-2 relative to control missense small interfering RNA or wild-type mice selectively increased (40-60%) β2-adrenoceptor signaling and function. β-arrestin-1 knockdown or KO had no effect on signaling and function of β2-adrenoceptor or numerous procontractile GPCRs, but selectively inhibited M3 muscarinic acetylcholine receptor signaling (∼50%) and function (∼25% ex vivo, >50% in vivo) without affecting EC50 values. Arrestin subtypes differentially regulate ASM GPCRs and β-arrestin-1 inhibition represents a novel approach to managing bronchospasm in obstructive lung diseases. © FASEB.

  3. Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target?

    PubMed

    Nehra, Deepika; Pan, Amy H; Le, Hau D; Fallon, Erica M; Carlson, Sarah J; Kalish, Brian T; Puder, Mark

    2014-05-15

    To determine the effect of docosahexaenoic acid (DHA) on the growth of human melanoma in vitro and in vivo and to better understand the potential role of the G protein-coupled receptors (GPRs) in mediating this effect. For in vitro studies, human melanoma and control fibroblast cells were treated with DHA and TAK-875 (selective GPR40 agonist) and a cell viability assay was performed to determine cell counts. A murine subcutaneous xenograft model of human melanoma was used to test the effect of dietary treatment with an omega-3 fatty acid (FA) rich diet compared with an omega-6 FA rich diet on the growth of human melanoma in vivo. A similar animal model was used to test the effect of oral TAK-875 on the growth of established melanoma tumors in vivo. DHA has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals on the omega-3 FA rich diet were 69% smaller in weight (P = 0.005) and 76% smaller in volume compared with tumors from animals on the omega-6 FA rich diet. TAK-875 has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals treated with TAK-875 were 46% smaller in weight (P = 0.07), 62% smaller in volume (P = 0.03), and grew 77% slower (P = 0.04) compared with the placebo group. DHA and TAK-875 have a profound and selective inhibitory effect on the growth of human melanoma both in vitro and in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  5. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    PubMed

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.; Cohen, V.I.; Paek, R.

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potencymore » at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.« less

  7. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    PubMed

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  8. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors

    PubMed Central

    Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  9. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less

  10. Induction of Cardiac Fibrosis by β-Blocker in G Protein-independent and G Protein-coupled Receptor Kinase 5/β-Arrestin2-dependent Signaling Pathways*

    PubMed Central

    Nakaya, Michio; Chikura, Satsuki; Watari, Kenji; Mizuno, Natsumi; Mochinaga, Koji; Mangmool, Supachoke; Koyanagi, Satoru; Ohdo, Shigehiro; Sato, Yoji; Ide, Tomomi; Nishida, Motohiro; Kurose, Hitoshi

    2012-01-01

    G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers. PMID:22888001

  11. Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*

    PubMed Central

    Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.

    2014-01-01

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280

  12. GPCRdb: an information system for G protein-coupled receptors

    PubMed Central

    Isberg, Vignir; Mordalski, Stefan; Munk, Christian; Rataj, Krzysztof; Harpsøe, Kasper; Hauser, Alexander S.; Vroling, Bas; Bojarski, Andrzej J.; Vriend, Gert; Gloriam, David E.

    2016-01-01

    Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis. PMID:26582914

  13. Modulation of Pain Transmission by G Protein-Coupled Receptors

    PubMed Central

    Pan, Hui-Lin; Wu, Zi-Zhen; Zhou, Hong-Yi; Chen, Shao-Rui; Zhang, Hong-Mei; Li, De-Pei

    2010-01-01

    The heterotrimeric G protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors and proteins. GPCRs are widely distributed in the peripheral and central nervous systems and are one of the most important therapeutic targets in pain medicine. GPCRs are present on the plasma membrane of neurons and their terminals along the nociceptive pathways and are closely associated with the modulation of pain transmission. GPCRs that can produce analgesia upon activation include opioid, cannabinoid, α2-adrenergic, muscarinic acetylcholine, γ-aminobutyric acidB (GABAB), group II and III metabotropic glutamate, and somatostatin receptors. Recent studies have led to a better understanding of the role of these GPCRs in the regulation of pain transmission. Here, we review the current knowledge about the cellular and molecular mechanisms that underlie the analgesic actions of GPCR agonists, with a focus on their effects on ion channels expressed on nociceptive sensory neurons and on synaptic transmission at the spinal cord level. PMID:17959251

  14. Expression pattern of G protein-coupled receptor 30 in human seminiferous tubular cells.

    PubMed

    Oliveira, Pedro F; Alves, Marco G; Martins, Ana D; Correia, Sara; Bernardino, Raquel L; Silva, Joaquina; Barros, Alberto; Sousa, Mário; Cavaco, José E; Socorro, Sílvia

    2014-05-15

    The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERβ) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Bombyx neuropeptide G protein-coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm.

    PubMed

    Ma, Qiang; Cao, Zheng; Yu, Yena; Yan, Lili; Zhang, Wenjuan; Shi, Ying; Zhou, Naiming; Huang, Haishan

    2017-12-15

    The short neuropeptide F (sNPF) neuropeptides, closely related to vertebrate neuropeptide Y (NPY), have been suggested to exert pleiotropic effects on many physiological processes in insects. In the silkworm ( Bombyx mori ) two orphan G protein-coupled receptors, Bombyx neuropeptide G protein-coupled receptor (BNGR) A10 and A11, have been identified as cognate receptors for sNPFs, but other sNPF receptors and their signaling mechanisms in B. mori remain unknown. Here, we cloned the full-length cDNA of the orphan receptor BNGR-A7 from the brain of B. mori larvae and identified it as a receptor for Bombyx sNPFs. Further characterization of signaling and internalization indicated that BNGR-A7, -A10, and -A11 are activated by direct interaction with synthetic Bombyx sNPF-1 and -3 peptides. This activation inhibited forskolin or adipokinetic hormone-induced adenylyl cyclase activity and intracellular Ca 2+ mobilization via a G i/o -dependent pathway. Upon activation by sNPFs, BNGR-A7, -A10, and -A11 evoked ERK1/2 phosphorylation and underwent internalization. On the basis of these findings, we designated the receptors BNGR-A7, -A10, and -A11 as Bommo -sNPFR-1, -2, and -3, respectively. Moreover, the results obtained with quantitative RT-PCR analysis revealed that the three Bombyx sNPF receptor subtypes exhibit differential spatial and temporal expression patterns, suggesting possible roles of sNPF signaling in the regulation of a wide range of biological processes. Our findings provide the first in-depth information on sNPF signaling for further elucidation of the roles of the Bombyx sNPF/sNPFR system in the regulation of physiological activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  17. CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.

    PubMed

    Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng

    2011-08-11

    We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.

  18. Quantitative properties and receptor reserve of the IP3 and calcium branch of Gq-coupled receptor signaling

    PubMed Central

    Dickson, Eamonn J.; Falkenburger, Björn H.

    2013-01-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition. PMID:23630337

  19. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function

    PubMed Central

    Gahbauer, Stefan; Böckmann, Rainer A.

    2016-01-01

    The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function. PMID:27826255

  20. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.

    PubMed

    Bridge, L J; Mead, J; Frattini, E; Winfield, I; Ladds, G

    2018-04-07

    Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (α GTP ), towards the analysis of dynamic functional responses. The model is generally applicable to systems with N G G proteins and N* active receptor states. Numerical simulations for N G =N * =2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (G i and G s ) that become activated upon stimulation of the adenosine A 1

  1. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH,more » but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.« less

  2. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways.

    PubMed

    Narayanan, Ramesh; Coss, Christopher C; Yepuru, Muralimohan; Kearbey, Jeffrey D; Miller, Duane D; Dalton, James T

    2008-11-01

    Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.

  3. A modern ionotropic glutamate receptor with a K(+) selectivity signature sequence.

    PubMed

    Janovjak, H; Sandoz, G; Isacoff, E Y

    2011-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K(+) channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.

  4. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observedmore » for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.« less

  5. Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors.

    PubMed

    Iglarz, Marc; Steiner, Pauline; Wanner, Daniel; Rey, Markus; Hess, Patrick; Clozel, Martine

    2015-10-01

    The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade.

  6. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30.

    PubMed

    Ramesh, Chinnasamy; Nayak, Tapan K; Burai, Ritwik; Dennis, Megan K; Hathaway, Helen J; Sklar, Larry A; Prossnitz, Eric R; Arterburn, Jeffrey B

    2010-02-11

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ER alpha/beta and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC(50) values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with (125)I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal, and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally related differences in the pharmacokinetic profiles, target tissue uptake, and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands and suggests that further optimization of this parameter may lead to improved targeting characteristics.

  7. Discovery and therapeutic promise of selective androgen receptor modulators.

    PubMed

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  8. Discovery AND Therapeutic Promise OF Selective Androgen Receptor Modulators

    PubMed Central

    Chen, Jiyun; Kim, Juhyun; Dalton, James T.

    2007-01-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects. PMID:15994457

  9. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.

    PubMed

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A; Gurevich, Vsevolod V; Lambert, Nevin A

    2015-09-01

    G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs. Copyright © 2015 John Wiley & Sons, Inc.

  11. Analysing home-ownership of couples: the effect of selecting couples at the time of the survey.

    PubMed

    Mulder, C H

    1996-09-01

    "The analysis of events encountered by couple and family households may suffer from sample selection bias when data are restricted to couples existing at the moment of interview. The paper discusses the effect of sample selection bias on event history analyses of buying a home [in the Netherlands] by comparing analyses performed on a sample of existing couples with analyses of a more complete sample including past as well as current partner relationships. The results show that, although home-buying in relationships that have ended differs clearly from behaviour in existing relationships, sample selection bias is not alarmingly large." (SUMMARY IN FRE) excerpt

  12. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    PubMed

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Aberrant ligand-induced activation of G protein-coupled estrogen receptor 1 (GPER) results in developmental malformations during vertebrate embryogenesis.

    PubMed

    Jayasinghe, B Sumith; Volz, David C

    2012-01-01

    G protein-coupled estrogen receptor 1 (GPER) is a G protein-coupled receptor (GPCR) unrelated to nuclear estrogen receptors but strongly activated by 17β-estradiol in both mammals and fish. To date, the distribution and functional characterization of GPER within reproductive and nonreproductive vertebrate organs have been restricted to juvenile and adult animals. In contrast, virtually nothing is known about the spatiotemporal distribution and function of GPER during vertebrate embryogenesis. Using zebrafish as an animal model, we investigated the potential functional role and expression of GPER during embryogenesis. Based on real-time PCR and whole-mount in situ hybridization, gper was expressed as early as 1 h postfertilization (hpf) and exhibited strong stage-dependent expression patterns during embryogenesis. At 26 and 38 hpf, gper mRNA was broadly distributed throughout the body, whereas from 50 to 98 hpf, gper expression was increasingly localized to the heart, brain, neuromasts, craniofacial region, and somite boundaries of developing zebrafish. Continuous exposure to a selective GPER agonist (G-1)-but not continuous exposure to a selective GPER antagonist (G-15)-from 5 to 96 hpf, or within three developmental windows ranging from 10 to 72 hpf, resulted in adverse concentration-dependent effects on survival, gross morphology, and somite formation within the trunk of developing zebrafish embryos. Importantly, based on co-exposure studies, G-15 blocked severe G-1-induced developmental toxicity, suggesting that G-1 toxicity is mediated via aberrant activation of GPER. Overall, our findings suggest that xenobiotic-induced GPER activation represents a potentially novel and understudied mechanism of toxicity for environmentally relevant chemicals that affect vertebrate embryogenesis.

  14. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  15. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  16. Structure-Guided Screening for Functionally Selective D2 Dopamine Receptor Ligands from a Virtual Chemical Library.

    PubMed

    Männel, Barbara; Jaiteh, Mariama; Zeifman, Alexey; Randakova, Alena; Möller, Dorothee; Hübner, Harald; Gmeiner, Peter; Carlsson, Jens

    2017-10-20

    Functionally selective ligands stabilize conformations of G protein-coupled receptors (GPCRs) that induce a preference for signaling via a subset of the intracellular pathways activated by the endogenous agonists. The possibility to fine-tune the functional activity of a receptor provides opportunities to develop drugs that selectively signal via pathways associated with a therapeutic effect and avoid those causing side effects. Animal studies have indicated that ligands displaying functional selectivity at the D 2 dopamine receptor (D 2 R) could be safer and more efficacious drugs against neuropsychiatric diseases. In this work, computational design of functionally selective D 2 R ligands was explored using structure-based virtual screening. Molecular docking of known functionally selective ligands to a D 2 R homology model indicated that such compounds were anchored by interactions with the orthosteric site and extended into a common secondary pocket. A tailored virtual library with close to 13 000 compounds bearing 2,3-dichlorophenylpiperazine, a privileged orthosteric scaffold, connected to diverse chemical moieties via a linker was docked to the D 2 R model. Eighteen top-ranked compounds that occupied both the orthosteric and allosteric site were synthesized, leading to the discovery of 16 partial agonists. A majority of the ligands had comparable maximum effects in the G protein and β-arrestin recruitment assays, but a subset displayed preference for a single pathway. In particular, compound 4 stimulated β-arrestin recruitment (EC 50 = 320 nM, E max = 16%) but had no detectable G protein signaling. The use of structure-based screening and virtual libraries to discover GPCR ligands with tailored functional properties will be discussed.

  17. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor.

    PubMed

    Nakajima, Ken-ichiro; Wess, Jürgen

    2012-10-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M₃ muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types.

  18. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs

    PubMed Central

    Meltzer, Herbert Y.; Roth, Bryan L.

    2013-01-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype–selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson’s disease psychosis, respectively. PMID:24292660

  19. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.

    PubMed

    Meltzer, Herbert Y; Roth, Bryan L

    2013-12-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively.

  20. Structural basis for selectivity and diversity in angiotensin II receptors

    DOE PAGES

    Zhang, Haitao; Han, Gye Won; Batyuk, Alexander; ...

    2017-04-20

    The angiotensin II receptors AT 1R and AT 2R serve as key components of the renin–angiotensin–aldosterone system. AT 1R has a central role in the regulation of blood pressure, but the function of AT 2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT 2R bound to an AT 2R-selective ligand and to an AT 1R/AT 2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position,more » stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less

  1. Structural basis for selectivity and diversity in angiotensin II receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haitao; Han, Gye Won; Batyuk, Alexander

    The angiotensin II receptors AT 1R and AT 2R serve as key components of the renin–angiotensin–aldosterone system. AT 1R has a central role in the regulation of blood pressure, but the function of AT 2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT 2R bound to an AT 2R-selective ligand and to an AT 1R/AT 2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position,more » stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Finally, our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.« less

  2. The therapeutic potential of G-protein coupled receptors in Huntington's disease.

    PubMed

    Dowie, Megan J; Scotter, Emma L; Molinari, Emanuela; Glass, Michelle

    2010-11-01

    Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Development of generic calcium imaging assay for monitoring Gi-coupled receptors and G-protein interaction.

    PubMed

    Ueda, Takashi; Ugawa, Shinya; Ishida, Yusuke; Hondoh, Aki; Shimada, Shoichi

    2009-08-01

    G-protein-coupled receptors (GPCRs) are important therapeutic targets for many areas of drug research and development. Although chimeric Galpha16 proteins are valuable tools for detecting the activation of Galpha(i/o)-coupled receptors, the details of the activation process remain unclear. The authors introduce a series of chimeras that combine both Galpha16 and Galpha(i/o) (Galpha(16/o), Galpha(16/i2), and Galpha(16/i3)) into a well-established transient expression system to examine the ability of these chimeras to interact with D2 long-form (D2L) dopamine and 5-HT1A serotonin receptors. The pEC50 data obtained for known agonists were similar to results from previous studies that used other cell-based assays, thus indicating sufficient sensitivity for the assay. Moreover, quinpirole exhibited similar intrinsic activity to dopamine at the D2L receptor, whereas S-(-)-3-PPP displayed partial activity of dopamine and quinpirole in the presence of the Galpha(16/o) chimera. The potency of dopamine for D2L receptors was similar among Galpha(16/o), Galpha(16/i2), and Galpha(16/i3). In contrast, the 5-HT1A receptor exhibited a significantly preferential coupling for Galpha(16/i3) compared with Galpha(16/i2) when serotonin was used as a ligand. This finding was in close agreement with the results of previous reports. The present system could therefore be used as a rapid functional assay for high-throughput screening and deorphanization.

  4. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    PubMed

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    PubMed

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  6. Customizing G Protein-coupled receptor models for structure-based virtual screening.

    PubMed

    de Graaf, Chris; Rognan, Didier

    2009-01-01

    This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.

  7. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening

    PubMed Central

    Harini, K.; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors. PMID:26221959

  8. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.

    PubMed

    Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil

    2013-05-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.

  9. Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR-C118925.

    PubMed

    Rafehi, Muhammad; Burbiel, Joachim C; Attah, Isaac Y; Abdelrahman, Aliaa; Müller, Christa E

    2017-03-01

    The G q protein-coupled, ATP- and UTP-activated P2Y 2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y 2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y 2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.

  10. Pharmacology, signaling and physiological relevance of the G protein-coupled receptor 55.

    PubMed

    Balenga, Nariman A B; Henstridge, Christopher M; Kargl, Julia; Waldhoer, Maria

    2011-01-01

    According to The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), ∼70 million European adults have consumed cannabis on at least one occasion. Cannabis consumption leads to a variety of psychoactive effects due to the presence of the constituent Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Δ(9)-THC interacts with the endocannabinoid system (ECS), which consists of the seven transmembrane spanning (7TM)/G protein-coupled receptors (GPCRs) CB(1) and CB(2), their respective ligands (endocannabinoids), and enzymes involved in their biosynthesis and degradation. This system plays a critical role in many physiological processes such as learning and memory, appetite control, pain sensation, motor coordination, lipogenesis, modulation of immune response, and the regulation of bone mass. Therefore, a huge effort has been spent trying to fully elucidate the composition and function of the ECS. The G protein-coupled receptor 55 (GPR55) was recently proposed as a novel component of this system; however, its classification as a cannabinoid receptor has been significantly hampered by its complex pharmacology, signaling, and cellular function. GPR55 is phylogenetically distinct from the traditional cannabinoid receptors, but in some experimental paradigms, it is activated by endocannabinoids, phytocannabinoids, and synthetic cannabinoid ligands. However, the most potent compound appears to be a lysophospholipid known as lysophosphatidylinositol (LPI). Here, we provide a comprehensive evaluation of the current pharmacology and signaling of GPR55 and review the proposed role of this receptor in a number of physiological and pathophysiological processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The G protein-coupled estrogen receptor GPER in health and disease

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2012-01-01

    Estrogens mediate profound effects throughout the body, and regulate physiological and pathological processes in both women and men. The decreased incidence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, however, several manmade and plant-derived molecules also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1, (GPER, formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in cell experiments and preclinical studies, and the use of GPER-knockout mice, many more potential roles for GPER are currently being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer. GPER is emerging as a novel therapeutic target and prognostic indicator for these diseases. PMID:21844907

  12. Drug-target residence time--a case for G protein-coupled receptors.

    PubMed

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  13. The G-protein-coupled estrogen receptor GPER in health and disease.

    PubMed

    Prossnitz, Eric R; Barton, Matthias

    2011-08-16

    Estrogens mediate profound effects throughout the body and regulate physiological and pathological processes in both women and men. The low prevalence of many diseases in premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most potent endogenous estrogen. In addition to endogenous estrogens, several man-made and plant-derived molecules, such as bisphenol A and genistein, also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via pathways that involve transmembrane ERs, such as G-protein-coupled ER 1 (GPER; formerly known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and transcriptional regulation. With the discovery of GPER-selective ligands that can selectively modulate GPER function in vitro and in preclinical studies and with the use of Gper knockout mice, many more potential roles for GPER are being elucidated. This Review highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and cardiovascular systems, as well as its pathological roles in a diverse array of disorders including cancer, for which GPER is emerging as a novel therapeutic target and prognostic indicator.

  14. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. PMID:26093261

  15. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol.

    PubMed

    Otto, Christiane; Rohde-Schulz, Beate; Schwarz, Gilda; Fuchs, Iris; Klewer, Mario; Brittain, Dominic; Langer, Gernot; Bader, Benjamin; Prelle, Katja; Nubbemeyer, Reinhard; Fritzemeier, Karl-Heinrich

    2008-10-01

    The classical estrogen receptor (ER) mediates genomic as well as rapid nongenomic estradiol responses. In case of genomic responses, the ER acts as a ligand-dependent transcription factor that regulates gene expression in estrogen target tissues. In contrast, nongenomic effects are initiated at the plasma membrane and lead to rapid activation of cytoplasmic signal transduction pathways. Recently, an orphan G protein-coupled receptor, GPR30, has been claimed to bind to and to signal in response to estradiol. GPR30 therefore might mediate some of the nongenomic estradiol effects. The present study was performed to clarify the controversy about the subcellular localization of GPR30 and to gain insight into the in vivo function of this receptor. In transiently transfected cells as well as cells endogenously expressing GPR30, we confirmed that the receptor localized to the endoplasmic reticulum. However, using radioactive estradiol, we observed only saturable, specific binding to the classical ER but not to GPR30. Estradiol stimulation of cells expressing GPR30 had no impact on intracellular cAMP or calcium levels. To elucidate the physiological role of GPR30, we performed in vivo experiments with estradiol and G1, a compound that has been claimed to act as selective GPR30 agonist. In two classical estrogen target organs, the uterus and the mammary gland, G1 did not show any estrogenic effect. Taken together, we draw the conclusion that GPR30 is still an orphan receptor.

  16. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-07-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Decahydrobenzoquinolin-5-one sigma receptor ligands: Divergent development of both sigma 1 and sigma 2 receptor selective examples.

    PubMed

    McLeod, Michael C; Aubé, Jeffrey; Frankowski, Kevin J

    2016-12-01

    Analogues of the decahydrobenzoquinolin-5-one class of sigma (σ) receptor ligands were used to probe the structure-activity relationship trends for this recently discovered series of σ ligands. In all, 29 representatives were tested for σ and opioid receptor affinity, leading to the identification of compounds possessing improved σ 1 selectivity and, for the first time in this series, examples possessing preferential σ 2 affinity. Several structural features associated with these selectivity trends have been identified. Two analogues of improved selectivity were evaluated in a binding panel of 43 CNS-relevant targets to confirm their sigma receptor preference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Molecular Dynamics Simulations of G Protein-Coupled Receptors.

    PubMed

    Bruno, Agostino; Costantino, Gabriele

    2012-04-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane-bound receptors with more than 800 members encoded by 351 genes in humans. It has been estimated that more than 50 % of clinically available drugs act on GPCRs, with an amount of 400, 50 and 25 druggable proteins for the class A, B and C, respectively. Furthermore, Class A GPCRs with approximately 25 % of marketed small drugs represent the most attractive pharmaceutical class. The recent availability of high-resolution 3-dimensional structures of some GPCRs supports the notion that GPCRs are dynamically versatile, and their functions can be modulated by several factors. In this scenario, molecular dynamics (MD) simulations techniques appear to be crucial when studying GPCR flexibility associated to functioning and ligand recognition. A general overview of biased and unbiased MD techniques is here presented with special emphasis on the recent results obtained in the GPCRs field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20.

    PubMed

    Tallent, M; Liapakis, G; O'Carroll, A M; Lolait, S J; Dichter, M; Reisine, T

    1996-04-01

    The somatostatin receptor subtypes SSTR2 and SSTR5 mediate distinct endocrine and exocrine functions of somatostatin and may also be involved in mediating the neuromodulatory actions of somatostatin in the brain. To investigate whether these receptors couple to voltage-sensitive Ca2+ channels, SSTR2 and SSTR5 selective agonists were tested for their effects on AtT-20 cells using whole cell patch clamp techniques. The SSTR2 selective agonist MK 678 inhibited Ca2+ currents in AtT-20 cells. The effects of MK 678 were reversible and blocked by pertussis toxin pretreatment, suggesting that SSTR2 couples to the L-type Ca2+ channels via G proteins. Other SSTR2-selective agonists, including BIM 23027 and NC8-12, were able to inhibit the Ca2+ currents in these cells. The SSTR5 selective agonist BIM 23052 also inhibited the Ca2+ currents in these cells and this effect was reversible and blocked by pertussis toxin treatment. The ability of SSTR5 to mediate inhibition of the Ca2+ current was greatly attenuated by pretreatment with the SSTR5-selective agonist BIM 23052, whereas SSTR2-mediated inhibition of the Ca2+ current was not altered by pretreatment with the SSTR2-selective agonist MK 678. Thus, the SSTR2 and SSTR5 couplings to the Ca2+ current are differentially regulated. The peptide L362,855, which we previously have shown to have high affinity for the cloned SSTR5, had minimal effects on Ca2+ currents in AtT-20 cells at concentrations up to 100 nM and did not alter the ability of MK 678 to inhibit Ca2+ currents. However, it completely antagonized the effects of the SSTR5-selective agonist BIM 23052 on the Ca2+ currents. L362,855 is an antagonist/partial agonist at SSTR5 since it can reduce Ca2+ currents in these cells at concentrations above 100 nM. L362,855 is also an antagonist/partial agonist at the cloned rat SSTR5 expressed in CHO cells since it is able to block the inhibition of cAMP accumulation induced by somatostatin at concentrations below 100 nM but at

  20. Using bioluminescent resonance energy transfer (BRET) to characterize agonist-induced arrestin recruitment to modified and unmodified G protein-coupled receptors (GPCRs)

    PubMed Central

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A.; Gurevich, Vsevolod V.; Lambert, Nevin A.

    2015-01-01

    G protein-coupled receptors (GPCRs) represent ~25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Functionally selective or biased ligands activate one of these two pathways and may be superior medications for certain diseases states. The identification of these ligands requires robust drug screening assays for both G protein and arrestin activity. Here we describe in detail the technical aspects of two bioluminescence resonance energy (BRET)-based assays that can be used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect recruitment of arrestin to unmodified GPCRs. PMID:26331887

  1. Extracellular acidification activates ovarian cancer G-protein-coupled receptor 1 and GPR4 homologs of zebra fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochimaru, Yuta; Azuma, Morio; Oshima, Natsuki

    2015-02-20

    Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1more » overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors. - Highlights: • Zebra fish OGR1 and GPR4 homologs (zOGR1, zGPR4) are proton-sensing receptors. • The signaling pathways activated by zOGR1 and zGPR4 are different. • Histidine residues critical for sensing protons are conserved.« less

  2. Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled Receptor

    PubMed Central

    Nakajima, Ken-ichiro

    2012-01-01

    Mutational modification of distinct muscarinic receptor subtypes has yielded novel designer G protein-coupled receptors (GPCRs) that are unable to bind acetylcholine (ACh), the endogenous muscarinic receptor ligand, but can be efficiently activated by clozapine-N-oxide (CNO), an otherwise pharmacologically inert compound. These CNO-sensitive designer GPCRs [alternative name: designer receptors exclusively activated by designer drug (DREADDs)] have emerged as powerful new tools to dissect the in vivo roles of distinct G protein signaling pathways in specific cell types or tissues. As is the case with other GPCRs, CNO-activated DREADDs not only couple to heterotrimeric G proteins but can also recruit proteins of the arrestin family (arrestin-2 and -3). Accumulating evidence suggests that arrestins can act as scaffolding proteins to promote signaling through G protein-independent signaling pathways. To explore the physiological relevance of these arrestin-dependent signaling pathways, the availability of an arrestin-biased DREADD would be highly desirable. In this study, we describe the development of an M3 muscarinic receptor-based DREADD [Rq(R165L)] that is no longer able to couple to G proteins but can recruit arrestins and promote extracellular signal-regulated kinase-1/2 phosphorylation in an arrestin- and CNO-dependent fashion. Moreover, CNO treatment of mouse insulinoma (MIN6) cells expressing the Rq(R165L) construct resulted in a robust, arrestin-dependent stimulation of insulin release, directly implicating arrestin signaling in the regulation of insulin secretion. This newly developed arrestin-biased DREADD represents an excellent novel tool to explore the physiological relevance of arrestin signaling pathways in distinct tissues and cell types. PMID:22821234

  3. Functional assay for T4 lysozyme-engineered G protein-coupled receptors with an ion channel reporter.

    PubMed

    Niescierowicz, Katarzyna; Caro, Lydia; Cherezov, Vadim; Vivaudou, Michel; Moreau, Christophe J

    2014-01-07

    Structural studies of G protein-coupled receptors (GPCRs) extensively use the insertion of globular soluble protein domains to facilitate their crystallization. However, when inserted in the third intracellular loop (i3 loop), the soluble protein domain disrupts their coupling to G proteins and impedes the GPCRs functional characterization by standard G protein-based assays. Therefore, activity tests of crystallization-optimized GPCRs are essentially limited to their ligand binding properties using radioligand binding assays. Functional characterization of additional thermostabilizing mutations requires the insertion of similar mutations in the wild-type receptor to allow G protein-activation tests. We demonstrate that ion channel-coupled receptor technology is a complementary approach for a comprehensive functional characterization of crystallization-optimized GPCRs and potentially of any engineered GPCR. Ligand-induced conformational changes of the GPCRs are translated into electrical signal and detected by simple current recordings, even though binding of G proteins is sterically blocked by the added soluble protein domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Interest of selective progesterone receptor modulators in endometriosis].

    PubMed

    Merviel, P; Lourdel, E; Sanguin, S; Gagneur, O; Cabry, R; Nasreddine, A

    2013-09-01

    The SPRM (selective progesterone receptor modulators) are agonists and/or antagonists of progesterone receptor. They are responsible for anovulation, amenorrhea and a lower prostaglandin levels, which leads to an improvement in pain and regression of lesions in endometriosis. On the endometrium, a particular aspect, the progesterone receptor modulator-associated endometrial changes (PAEC), raises additional studies to verify its harmlessness. However, due to the lack of hypoestrogenism and metabolic effects with these drugs, it is very likely that the SPRM will in the near future an important place in the treatment of endometriosis. Copyright © 2013. Published by Elsevier SAS.

  5. Molecular Features Underlying Selectivity in Chicken Bitter Taste Receptors.

    PubMed

    Di Pizio, Antonella; Shy, Nitzan; Behrens, Maik; Meyerhof, Wolfgang; Niv, Masha Y

    2018-01-01

    Chickens sense the bitter taste of structurally different molecules with merely three bitter taste receptors ( Gallus gallus taste 2 receptors, ggTas2rs), representing a minimal case of bitter perception. Some bitter compounds like quinine, diphenidol and chlorpheniramine, activate all three ggTas2rs, while others selectively activate one or two of the receptors. We focus on bitter compounds with different selectivity profiles toward the three receptors, to shed light on the molecular recognition complexity in bitter taste. Using homology modeling and induced-fit docking simulations, we investigated the binding modes of ggTas2r agonists. Interestingly, promiscuous compounds are predicted to establish polar interactions with position 6.51 and hydrophobic interactions with positions 3.32 and 5.42 in all ggTas2rs; whereas certain residues are responsible for receptor selectivity. Lys 3.29 and Asn 3.36 are suggested as ggTas2r1-specificity-conferring residues; Gln 6.55 as ggTas2r2-specificity-conferring residue; Ser 5.38 and Gln 7.42 as ggTas2r7-specificity conferring residues. The selectivity profile of quinine analogs, quinidine, epiquinidine and ethylhydrocupreine, was then characterized by combining calcium-imaging experiments and in silico approaches. ggTas2r models were used to virtually screen BitterDB compounds. ~50% of compounds known to be bitter to human are likely to be bitter to chicken, with 25, 20, 37% predicted to be ggTas2r1, ggTas2r2, ggTas2r7 agonists, respectively. Predicted ggTas2rs agonists can be tested with in vitro and in vivo experiments, contributing to our understanding of bitter taste in chicken and, consequently, to the improvement of chicken feed.

  6. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies.

    PubMed

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-06-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD.

  7. Expression pattern and signalling pathways in neutrophil like HL-60 cells after treatment with estrogen receptor selective ligands.

    PubMed

    Blesson, Chellakkan Selvanesan; Sahlin, Lena

    2012-09-25

    Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    PubMed

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  9. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Zelman-Femiak, Monika; Brugarolas, Marc; Moreno, Estefania; Aguinaga, David; Perez-Benito, Laura; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Pardo, Leonardo; García-Sáez, Ana J; McCormick, Peter J; Franco, Rafael

    2016-04-05

    G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.

  10. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  11. G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

    PubMed Central

    Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier; Wang, Jue; Santarelli, Lindsey C.; Savigner, Agnes; Qiao, Xin; Wang, Zhenshan; Storm, Daniel R.; Ma, Minghong

    2015-01-01

    Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction. PMID:25550517

  12. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors.

    PubMed

    Khan, Muhammad Zahid; He, Ling

    2017-04-01

    In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.

  13. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  14. Mechanisms of Disease: the first kiss-a crucial role for kisspeptin-1 and its receptor, G-protein-coupled receptor 54, in puberty and reproduction.

    PubMed

    Seminara, Stephanie B

    2006-06-01

    Although the hypothalamic secretion of gonadotropin-releasing hormone (GnRH) is the defining hormonal event of puberty, the physiologic mechanisms that drive secretion of GnRH at the time of sexual maturation have been difficult to identify. After puberty is initiated, the factors that modulate the frequency and amplitude of GnRH secretion in rapidly changing sex-steroid environments (i.e. the female menstrual cycle) also remain unknown. The discovery that, in both humans and mouse models, loss-of-function mutations in the gene that encodes G-protein-coupled receptor 54 result in phenotypes of hypogonadotropic hypogonadism with an absence of pubertal development has unearthed a novel pathway regulating GnRH secretion. Ligands for G-protein-coupled receptor 54 (KiSS-1R), including metastin (derived from the parent compound, kisspeptin-1) and metastin's C-terminal peptide fragments, have been shown to be powerful stimulants for GnRH release in vivo via their stimulation of G-protein-coupled receptor 54. This article reviews the discovery of the GPR54 gene, places it into the appropriate biological context, and explores the data from in vitro and in vivo studies that point to this ligand-receptor system as a major driver of GnRH secretion.

  15. Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice.

    PubMed

    Spetea, Mariana; Eans, Shainnel O; Ganno, Michelle L; Lantero, Aquilino; Mairegger, Michael; Toll, Lawrence; Schmidhammer, Helmut; McLaughlin, Jay P

    2017-08-01

    The κ receptor has a central role in modulating neurotransmission in central and peripheral neuronal circuits that subserve pain and other behavioural responses. Although κ receptor agonists do not produce euphoria or lead to respiratory suppression, they induce dysphoria and sedation. We hypothesized that brain-penetrant κ receptor ligands possessing biased agonism towards G protein signalling over β-arrestin2 recruitment would produce robust antinociception with fewer associated liabilities. Two new diphenethylamines with high κ receptor selectivity, HS665 and HS666, were assessed following i.c.v. administration in mouse assays of antinociception with the 55°C warm-water tail withdrawal test, locomotor activity in the rotorod and conditioned place preference. The [ 35 S]-GTPγS binding and β-arrestin2 recruitment in vitro assays were used to characterize biased agonism. HS665 (κ receptor agonist) and HS666 (κ receptor partial agonist) demonstrated dose-dependent antinociception after i.c.v. administration mediated by the κ receptor. These highly selective κ receptor ligands displayed varying biased signalling towards G protein coupling in vitro, consistent with a reduced liability profile, reflected by reduced sedation and absence of conditioned place aversion for HS666. HS665 and HS666 activate central κ receptors to produce potent antinociception, with HS666 displaying pharmacological characteristics of a κ receptor analgesic with reduced liability for aversive effects correlating with its low efficacy in the β-arrestin2 signalling pathway. Our data provide further understanding of the contribution of central κ receptors in pain suppression, and the prospect of dissociating the antinociceptive effects of HS665 and HS666 from κ receptor-mediated adverse effects. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  16. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    PubMed

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J; DeVree, Brian T; Yang, Yang; Sunahara, Roger K; Yan, Elsa C Y

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  17. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor

    PubMed Central

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J.; DeVree, Brian T.; Yang, Yang; Sunahara, Roger K.; Yan, Elsa C. Y.

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms. PMID:28609478

  18. Design of selective nuclear receptor modulators: RAR and RXR as a case study.

    PubMed

    de Lera, Angel R; Bourguet, William; Altucci, Lucia; Gronemeyer, Hinrich

    2007-10-01

    Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) are members of the nuclear receptor superfamily whose effects on cell growth and survival can be modulated therapeutically by small-molecule ligands. Although compounds that target these receptors are powerful anticancer drugs, their use is limited by toxicity. An improved understanding of the structural biology of RXRs and RARs and recent advances in the chemical synthesis of modified retinoid and rexinoid ligands should enable the rational design of more selective agents that might overcome such problems. Here, we review structural data for RXRs and RARs, discuss strategies in the design of selective RXR and RAR modulators, and consider lessons that can be learned for the design of selective nuclear-receptor modulators in general.

  19. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach.

    PubMed

    Arnatt, Christopher K; Zhang, Yan

    2013-07-01

    G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β 2 -adrenergic receptors (β 2 AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications.

  20. G Protein-Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses toward Understanding of its Activation Mechanism: A Comparative Homology Modeling Approach

    PubMed Central

    Arnatt, Christopher K.; Zhang, Yan

    2015-01-01

    G protein-coupled estrogen receptor (GPER) has been shown to be important in several disease states such as estrogen sensitive cancers. While several selective ligands have been identified for the receptor, little is known about how they interact with GPER and how their structures influence their activity. Specifically, within one series of ligands, whose structure varied only at one position, the replacement of a hydrogen atom with an acetyl group changed a potent antagonist into a potent agonist. In this study, two GPER homology models were constructed based on the x-ray crystal structures of both the active and inactive β2-adrenergic receptors (β2AR) in an effort to characterize the differences of binding modes between agonists and antagonists to the receptor, and to understand their activity in relation to their structures. The knowledge attained in this study is expected to provide valuable information on GPER ligands structure activity relationship to benefit future rational design of potent agonists and antagonists of the receptor for potential therapeutic applications. PMID:26229572

  1. [G protein-coupled receptors in the spot light].

    PubMed

    Benleulmi-Chaachoua, Abla; Wojciech, Stefanie; Jockers, Ralf

    2013-01-01

    G protein-coupled receptors (GPCRs), also known as seven transmembrane domain-spanning proteins (7TM), play an important role in tissue homeostasis and cellular and hormonal communication. GPCRs are targeted by a large panel of natural ligands such as photons, ions, metabolites, lipids and proteins but also by numerous drugs. Research efforts in the GPCR field have been rewarded in 2012 by the Nobel Price in Chemistry. The present article briefly summarizes our current knowledge on GPCRs and discusses future challenges in terms of fundamental aspects and therapeutic applications. © Société de Biologie, 2013.

  2. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  3. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2016-10-25

    G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 μs in total) to investigate structural dynamics of the M 2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M 2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M 2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.

  4. Pharmacology of Ramelteon, a Selective MT1/MT2 Receptor Agonist: A Novel Therapeutic Drug for Sleep Disorders

    PubMed Central

    Miyamoto, Masaomi

    2009-01-01

    An estimated one-third of the general population is affected by insomnia, and this number is increasing due to more stressful working conditions and the progressive aging of society. However, current treatment of insomnia with hypnotics, gamma-aminobutyric acid A (GABAA) receptor modulators, induces various side effects, including cognitive impairment, motor disturbance, dependence, tolerance, hangover, and rebound insomnia. Ramelteon (Rozerem; Takeda Pharmaceutical Company Limited, Osaka, Japan) is an orally active, highly selective melatonin MT1/MT2 receptor agonist. Unlike the sedative hypnotics that target GABAA receptor complexes, ramelteon is a chronohypnotic that acts on the melatonin MT1 and MT2 receptors, which are primarily located in the suprachiasmatic nucleus, the body's “master clock.” As such, ramelteon possesses the first new therapeutic mechanism of action for a prescription insomnia medication in over three decades. Ramelteon has demonstrated sleep-promoting effects in clinical trials, and coupled with its favorable safety profile and lack of abuse potential or dependence, this chronohypnotic provides an important treatment option for insomnia. PMID:19228178

  5. Recombinant G protein-coupled receptor expression in Saccharomyces cerevisiae for protein characterization.

    PubMed

    Blocker, Kory M; Britton, Zachary T; Naranjo, Andrea N; McNeely, Patrick M; Young, Carissa L; Robinson, Anne S

    2015-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that mediate signaling across the cellular membrane and facilitate cellular responses to external stimuli. Due to the critical role that GPCRs play in signal transduction, therapeutics have been developed to influence GPCR function without an extensive understanding of the receptors themselves. Closing this knowledge gap is of paramount importance to improving therapeutic efficacy and specificity, where efforts to achieve this end have focused chiefly on improving our knowledge of the structure-function relationship. The purpose of this chapter is to review methods for the heterologous expression of GPCRs in Saccharomyces cerevisiae, including whole-cell assays that enable quantitation of expression, localization, and function in vivo. In addition, we describe methods for the micellular solubilization of the human adenosine A2a receptor and for reconstitution of the receptor in liposomes that have enabled its biophysical characterization. © 2015 Elsevier Inc. All rights reserved.

  6. Modeling G Protein-Coupled Receptors: a Concrete Possibility

    PubMed Central

    Costanzi, Stefano

    2010-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of membrane bound signaling proteins that are involved in the regulation of a wide range of physiological functions and constitute the most common target for therapeutic intervention. Due to the paucity of crystal structures, homology modeling has become a widespread technique for the construction of GPCR models, which have been applied to the study of their structure-function relationships and to the identification of lead ligands through virtual screening. Rhodopsin has been for years the only available template. However, recent breakthroughs in GPCR crystallography have led to the solution of the structures of a few additional receptors. In light of these newly elucidated crystal structures, we have been able to produce a substantial amount of data to demonstrate that accurate models of GPCRs in complex with their ligands can be constructed through homology modeling followed by fully flexible molecular docking. These results have been confirmed by our success in the first blind assessment of GPCR modeling and docking, organized in coordination with the solution of the X-ray structure of the adenosine A2A receptor. Taken together, these data indicate that: a) the transmembrane helical bundle can be modeled with considerable accuracy; b) predicting the binding mode of a ligand, although doable, is challenging; c) modeling of the extracellular and intracellular loops is still problematic. PMID:21253444

  7. Altered M(1) muscarinic acetylcholine receptor (CHRM1)-Galpha(q/11) coupling in a schizophrenia endophenotype.

    PubMed

    Salah-Uddin, Hasib; Scarr, Elizabeth; Pavey, Geoffrey; Harris, Kriss; Hagan, Jim J; Dean, Brian; Challiss, R A John; Watson, Jeannette M

    2009-08-01

    Alterations in muscarinic acetylcholine receptor (CHRM) populations have been implicated in the pathology of schizophrenia. Here we have assessed whether the receptor function of the M(1) subtype (CHRM1) is altered in a sub-population of patients with schizophrenia, defined by marked (60-80%) reductions in cortical [3H]-pirenzepine (PZP) binding, and termed 'muscarinic receptor-deficit schizophrenia' (MRDS). Using a [35S]-GTPgammaS-Galpha(q/11) immunocapture method we have assessed whether CHRM1 signalling in human cortex (Brodmann area 9 (BA9)) is altered in post mortem tissue from a MRDS group compared with a subgroup of patients with schizophrenia displaying normal PZP binding, and controls with no known history of psychiatric or neurological disorders. The CHRM agonist (oxotremorine-M) and a CHRM1-selective agonist (AC-42) increased Galpha(q/11)-[35S]-GTPgammaS binding, with AC-42 producing responses that were approximately 50% of those maximally evoked by the full agonist, oxotremorine-M, in control and subgroups of patients with schizophrenia. However, the potency of oxotremorine-M to stimulate Galpha(q/11)-[35S]-GTPgammaS binding was significantly decreased in the MRDS group (pEC(50) (M)=5.69+/-0.16) compared with the control group (6.17+/-0.10) and the non-MRDS group (6.05+/-0.07). The levels of Galpha(q/11) protein present in BA9 did not vary with diagnosis. Maximal oxotremorine-M-stimulated Galpha(q/11)-[35S]-GTPgammaS binding in BA9 membranes was significantly increased in the MRDS group compared with the control group. Similar, though non-statistically significant, trends were observed for AC-42. These data provide evidence that both orthosterically and allosterically acting CHRM agonists can stimulate a receptor-driven functional response ([35S]-GTPgammaS binding to Galpha(q/11)) in membranes prepared from post mortem human dorsolateral prefrontal cortex of patients with schizophrenia and controls . Furthermore, in a subgroup of patients with

  8. Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism.

    PubMed

    Kato, Akihiko S; Burris, Kevin D; Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon; Ding, Chunjin; Tu, Yuan; Schober, Douglas A; Lee, Matthew R; Heinz, Beverly A; Fitch, Thomas E; Gleason, Scott D; Catlow, John T; Yu, Hong; Fitzjohn, Stephen M; Pasqui, Francesca; Wang, He; Qian, Yuewei; Sher, Emanuele; Zwart, Ruud; Wafford, Keith A; Rasmussen, Kurt; Ornstein, Paul L; Isaac, John T R; Nisenbaum, Eric S; Bredt, David S; Witkin, Jeffrey M

    2016-12-01

    Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.

  9. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors.

    PubMed

    Zhou, X Edward; He, Yuanzheng; de Waal, Parker W; Gao, Xiang; Kang, Yanyong; Van Eps, Ned; Yin, Yanting; Pal, Kuntal; Goswami, Devrishi; White, Thomas A; Barty, Anton; Latorraca, Naomi R; Chapman, Henry N; Hubbell, Wayne L; Dror, Ron O; Stevens, Raymond C; Cherezov, Vadim; Gurevich, Vsevolod V; Griffin, Patrick R; Ernst, Oliver P; Melcher, Karsten; Xu, H Eric

    2017-07-27

    G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular β sheet with the N-terminal β strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to β-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery

    PubMed Central

    Salon, John A.; Lodowski, David T.

    2011-01-01

    Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination. PMID:21969326

  11. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors.

    PubMed Central

    Hermans, E; Challiss, R A

    2001-01-01

    In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders. PMID:11672421

  12. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors.

    PubMed

    Wittenberger, T; Schaller, H C; Hellebrand, S

    2001-03-30

    We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families. Copyright 2001 Academic Press.

  13. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Homan, Kristoff T.; Chen, Jun

    2012-08-10

    G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. In this paper we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine–Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice withmore » paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.« less

  14. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making.

    PubMed

    Jain, Roshan A; Wolman, Marc A; Marsden, Kurt C; Nelson, Jessica C; Shoenhard, Hannah; Echeverry, Fabio A; Szi, Christina; Bell, Hannah; Skinner, Julianne; Cobbs, Emilia N; Sawada, Keisuke; Zamora, Amy D; Pereda, Alberto E; Granato, Michael

    2018-05-07

    Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gα i/o and Gα q/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Molecular Signature That Determines the Acute Tolerance of G Protein-Coupled Receptors

    PubMed Central

    Min, Chengchun; Zhang, Xiaohan; Zheng, Mei; Sun, Ningning; Acharya, Srijan; Zhang, Xiaowei; Kim, Kyeong-Man

    2017-01-01

    Desensitization and acute tolerance are terms used to describe the attenuation of receptor responsiveness by prolonged or intermittent exposure to an agonist. Unlike desensitization of G protein-coupled receptors (GPCRs), which is commonly explained by steric hindrance caused by the β-arrestins that are translocated to the activated receptors, molecular mechanisms involved in the acute tolerance of GPCRs remain unclear. Our studies with several GPCRs and related mutants showed that the acute tolerance of GPCRs could occur independently of agonist-induced β-arrestin translocation. A series of co-immunoprecipitation experiments revealed a correlation between receptor tolerance and interactions among receptors, β-arrestin2, and Gβγ. Gβγ displayed a stable interaction with receptors and β-arrestin2 in cells expressing GPCRs that were prone to undergo tolerance compared to the GPCRs that were resistant to acute tolerance. Strengthening the interaction between Gβγ and β-arrestin rendered the GPCRs to acquire the tendency of acute tolerance. Overall, stable interaction between the receptor and Gβγ complex is required for the formation of a complex with β-arrestin, and determines the potential of a particular GPCR to undergo acute tolerance. Rather than turning off the signal, β-arrestins seem to contribute on continuous signaling when they are in the context of complex with receptor and Gβγ. PMID:27956717

  16. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  17. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies

    PubMed Central

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-01-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD. PMID:26585287

  18. Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.

    PubMed

    Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C

    2012-09-01

    What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate

  19. Functional kainate-selective glutamate receptors in cultured hippocampal neurons.

    PubMed

    Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B

    1993-12-15

    Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors.

  20. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    PubMed

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  1. An Elevation in Physical Coupling of Type 1 IP3 Receptors to TRPC3 Channels Constricts Mesenteric Arteries in Genetic Hypertension

    PubMed Central

    Adebiyi, Adebowale; Thomas-Gatewood, Candice M.; Leo, M. Dennis; Kidd, Michael W.; Neeb, Zachary P.; Jaggar, Jonathan H.

    2013-01-01

    Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP3) that activates sarcoplasmic reticulum (SR) IP3 receptors (IP3Rs). In cerebral artery myocytes, IP3Rs release SR Ca2+ and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current (ICat) activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP3Rs control vascular contractility in systemic arteries and IP3R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ~2.7- and 2-fold higher in mesenteric arteries of hypertensive spontaneously hypertensive rats (SHR) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP3R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-hypertensive SHR and WKY rats. Control, IP3- and endothelin-1 (ET-1)-induced FRET between IP3R1 and TRPC3 was higher in hypertensive SHR than WKY myocytes. IP3-induced ICat was ~3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and CIRBP-TAT, an IP3R-TRP physical coupling inhibitor, reduced IP3-induced ICat and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a SR Ca2+-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP3R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP3R1 to TRPC3 channel molecular coupling augments ET-1-induced vasoconstriction during hypertension. PMID:23045459

  2. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  3. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor α and G-Protein-Coupled Estrogen Receptor.

    PubMed

    Gros, Robert; Hussain, Yasin; Chorazyczewski, Jozef; Pickering, J Geoffrey; Ding, Qingming; Feldman, Ross D

    2016-11-01

    Estrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen's effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension. © 2016 American Heart Association, Inc.

  4. Pharmacodynamics of selective androgen receptor modulators.

    PubMed

    Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T

    2003-03-01

    The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.

  5. Kinetic operational models of agonism for G-protein-coupled receptors.

    PubMed

    Hoare, Samuel R J; Pierre, Nicolas; Moya, Arturo Gonzalez; Larson, Brad

    2018-06-07

    The application of kinetics to research and therapeutic development of G-protein-coupled receptors has become increasingly valuable. Pharmacological models provide the foundation of pharmacology, providing concepts and measurable parameters such as efficacy and potency that have underlain decades of successful drug discovery. Currently there are few pharmacological models that incorporate kinetic activity in such a way as to yield experimentally-accessible drug parameters. In this study, a kinetic model of pharmacological response was developed that provides a kinetic descriptor of efficacy (the transduction rate constant, k τ ) and allows measurement of receptor-ligand binding kinetics from functional data. The model assumes: (1) receptor interacts with a precursor of the response ("Transduction potential") and converts it to the response. (2) The response can decay. Familiar response vs time plots emerge, depending on whether transduction potential is depleted and/or response decays. These are the straight line, the "association" exponential curve, and the rise-and-fall curve. Convenient, familiar methods are described for measuring the model parameters and files are provided for the curve-fitting program Prism (GraphPad Software) that can be used as a guide. The efficacy parameter k τ is straightforward to measure and accounts for receptor reserve; all that is required is measurement of response over time at a maximally-stimulating concentration of agonist. The modular nature of the model framework allows it to be extended. Here this is done to incorporate antagonist-receptor binding kinetics and slow agonist-receptor equilibration. In principle, the modular framework can incorporate other cellular processes, such as receptor desensitization. The kinetic response model described here can be applied to measure kinetic pharmacological parameters than can be used to advance the understanding of GPCR pharmacology and optimize new and improved therapeutics

  6. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  7. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  8. β2-Adrenergic receptors and G-protein-coupled receptor kinase 2 in rabbit pleural mesothelium.

    PubMed

    Sironi, Chiara; Bodega, Francesca; Armilli, Marta; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2010-09-30

    Former studies on net rate of liquid absorption from small Ringer or 1% albumin-Ringer hydrothoraces in rabbits indicated that Na+ transport and solute-coupled liquid absorption by mesothelium is increased by pleural liquid dilution, and stimulation of β2-adrenoreceptors (β2AR). In this research we tried to provide molecular evidence for β2AR in visceral and parietal mesothelium of rabbit pleura. Moreover, because prolonged stimulation of β2AR may lead to desensitization mediated by G-protein-coupled receptor kinase 2 (GRK2), we also checked whether GRK2 is expressed in pleural mesothelium. To this end we performed immunoblot assays on total protein extracts from scraped visceral and parietal mesothelium, and from cultured pleural mesothelial cells of rabbits. All three samples showed β2AR and GRK2 specific bands. Copyright 2010 Elsevier B.V. All rights reserved.

  9. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells.

    PubMed

    Albanito, Lidia; Madeo, Antonio; Lappano, Rosamaria; Vivacqua, Adele; Rago, Vittoria; Carpino, Amalia; Oprea, Tudor I; Prossnitz, Eric R; Musti, Anna Maria; Andò, Sebastiano; Maggiolini, Marcello

    2007-02-15

    Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein-coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17beta-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor alpha (ERalpha) also contributes to GPR30/EGFR signaling is less understood. Here, we show that, in ERalpha-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE-responsive reporter gene, indicating that GPR30 signaling does not activate ERalpha-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERalpha expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression. Interestingly, we show that both GPR30 and ERalpha expression along with active EGFR signaling are required for E2-stimulated and G-1-stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERalpha-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERalpha expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.

  10. Identification of Breast Cancer Inhibitors Specific for G Protein-Coupled Estrogen Receptor (GPER)-Expressing Cells.

    PubMed

    Aiello, Francesca; Carullo, Gabriele; Giordano, Francesca; Spina, Elena; Nigro, Alessandra; Garofalo, Antonio; Tassini, Sabrina; Costantino, Gabriele; Vincetti, Paolo; Bruno, Agostino; Radi, Marco

    2017-08-22

    Together with estrogen receptors ERα and ERβ, the G protein-coupled estrogen receptor (GPER) mediates important pathophysiological signaling pathways induced by estrogens and is currently regarded as a promising target for ER-negative (ER-) and triple-negative (TN) breast cancer. Only a few selective GPER modulators have been reported to date, and their use in cancer cell lines has often led to contradictory results. Herein we report the application of virtual screening and cell-based studies for the identification of new chemical scaffolds with a specific antiproliferative effect against GPER-expressing breast cancer cell lines. Out of the four different scaffolds identified, 8-chloro-4-(4-chlorophenyl)pyrrolo[1,2-a]quinoxaline 14 c was found to be the most promising compound able to induce: 1) antiproliferative activity in GPER-expressing cell lines (MCF7 and SKBR3), similarly to G15; 2) no effect on cells that do not express GPER (HEK293); 3) a decrease in cyclin D1 expression; and 4) a sustained induction of cell-cycle negative regulators p53 and p21. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    PubMed Central

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  12. Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction

    PubMed Central

    Mnpotra, Jagjeet S.; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L.; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P.; Pitman, Michael C.; Song, Zhao-Hui; Reggio, Patricia H.

    2014-01-01

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. PMID:24855641

  13. Ligand recognition by RAR and RXR receptors: binding and selectivity.

    PubMed

    Sussman, Fredy; de Lera, Angel R

    2005-10-06

    Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.

  14. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  15. Tamoxifen regulation of bone growth and endocrine function in the ovariectomized rat: discrimination of responses involving estrogen receptor α/estrogen receptor β, G protein-coupled estrogen receptor, or estrogen-related receptor γ using fulvestrant (ICI 182780).

    PubMed

    Fitts, James M; Klein, Robert M; Powers, C Andrew

    2011-07-01

    Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterine and somatic growth, bone, the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis, and pituitary prolactin were analyzed to pharmacologically discriminate tamoxifen effects that may be mediated by ERα/ERβ versus ERRγ versus GPER. Ovariectomized rats received tamoxifen (0.6 mg/kg/daily) plus fulvestrant at 0, 3, 6, or 12 mg/kg/daily for 5 weeks; controls received vehicle or 6 mg/kg fulvestrant daily. Tamoxifen effects to increase uterine weight, decrease serum IGF-I, increase pituitary prolactin, and increase bone mineral density could be fully blocked by fulvestrant, indicating mediation by ERα/ERβ. Tamoxifen effects to decrease pituitary GH, tibia length, and body weight were only partially blocked by fulvestrant, indicating involvement of mechanisms unrelated to ERα/ERβ. Fulvestrant did not inhibit tamoxifen actions to reduce total pituitary protein, again indicating effects not mediated by ERα/ERβ. Tamoxifen actions to reduce serum GH were mimicked rather than inhibited by fulvestrant, pharmacological features consistent with GPER involvement. However, fulvestrant alone increased IGF-I and also blocked tamoxifen-evoked IGF-I decreases; thus fulvestrant effects on serum GH might reflect increased IGF-I feedback inhibition. Fulvestrant alone had no effect on the other parameters. The findings indicate that mechanisms unrelated to ERα/ERβ contribute to tamoxifen effects on body weight, bone growth, and pituitary function.

  16. Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor.

    PubMed

    Sensoy, Ozge; Moreira, Irina S; Morra, Giulia

    2016-09-21

    Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective interaction with GPCRs, and to understand the basis for these differences, we used unbiased molecular dynamics simulations to compare the structural and dynamic properties of wild type Arr1 (Arr1-WT), Arr3 (Arr3-WT), and a constitutively active Arr1 mutant, Arr1-R175E, characterized by a perturbation of the phosphate recognition region called "polar core". We find that in our simulations the mutant evolves toward a conformation that resembles the known preactivated structures of an Arr1 splice-variant, and the structurally similar phosphopeptide-bound Arr2-WT, while this does not happen for Arr1-WT. Hence, we propose an activation allosteric mechanism connecting the perturbation of the polar core to a global conformational change, including the relative reorientation of N- and C-domains, and the emergence of electrostatic properties of putative binding surfaces. The underlying local structural changes are interpreted as markers of the evolution of an arrestin structure toward an active-like conformation. Similar activation related changes occur in Arr3-WT in the absence of any perturbation of the polar core, suggesting that this system could spontaneously visit preactivated states in solution. This hypothesis is proposed to explain the lower selectivity of Arr3 toward nonphosphorylated receptors. Moreover, by elucidating the allosteric mechanism underlying activation, we identify functionally critical regions on arrestin structure that can be targeted with drugs or chemical tools for functional modulation.

  17. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  18. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  19. Functional kainate-selective glutamate receptors in cultured hippocampal neurons.

    PubMed Central

    Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B

    1993-01-01

    Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors. PMID:7505445

  20. G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    PubMed Central

    Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.

    2012-01-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861

  1. G protein-coupled estrogen receptor (GPER) expression in normal and abnormal endometrium.

    PubMed

    Plante, Beth J; Lessey, Bruce A; Taylor, Robert N; Wang, Wei; Bagchi, Milan K; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A; Young, Steven L

    2012-07-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen's importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis.

  2. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Signaling through G protein coupled receptors.

    PubMed

    Tuteja, Narendra

    2009-10-01

    Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.

  4. Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work

    PubMed Central

    Kleinau, Gunnar; Worth, Catherine L.; Kreuchwig, Annika; Biebermann, Heike; Marcinkowski, Patrick; Scheerer, Patrick; Krause, Gerd

    2017-01-01

    The thyroid-stimulating hormone receptor (TSHR) is a member of the glycoprotein hormone receptors, a sub-group of class A G-protein-coupled receptors (GPCRs). TSHR and its endogenous ligand thyrotropin (TSH) are of essential importance for growth and function of the thyroid gland and proper function of the TSH/TSHR system is pivotal for production and release of thyroid hormones. This receptor is also important with respect to pathophysiology, such as autoimmune (including ophthalmopathy) or non-autoimmune thyroid dysfunctions and cancer development. Pharmacological interventions directly targeting the TSHR should provide benefits to disease treatment compared to currently available therapies of dysfunctions associated with the TSHR or the thyroid gland. Upon TSHR activation, the molecular events conveying conformational changes from the extra- to the intracellular side of the cell across the membrane comprise reception, conversion, and amplification of the signal. These steps are highly dependent on structural features of this receptor and its intermolecular interaction partners, e.g., TSH, antibodies, small molecules, G-proteins, or arrestin. For better understanding of signal transduction, pathogenic mechanisms such as autoantibody action and mutational modifications or for developing new pharmacological strategies, it is essential to combine available structural data with functional information to generate homology models of the entire receptor. Although so far these insights are fragmental, in the past few decades essential contributions have been made to investigate in-depth the involved determinants, such as by structure determination via X-ray crystallography. This review summarizes available knowledge (as of December 2016) concerning the TSHR protein structure, associated functional aspects, and based on these insights we suggest several receptor complex models. Moreover, distinct TSHR properties will be highlighted in comparison to other class A GPCRs to

  5. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  6. Large-scale production and study of a synthetic G protein-coupled receptor: Human olfactory receptor 17-4

    PubMed Central

    Cook, Brian L.; Steuerwald, Dirk; Kaiser, Liselotte; Graveland-Bikker, Johanna; Vanberghem, Melanie; Berke, Allison P.; Herlihy, Kara; Pick, Horst; Vogel, Horst; Zhang, Shuguang

    2009-01-01

    Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be ≈50% α-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices. PMID:19581598

  7. Large-scale production and study of a synthetic G protein-coupled receptor: human olfactory receptor 17-4.

    PubMed

    Cook, Brian L; Steuerwald, Dirk; Kaiser, Liselotte; Graveland-Bikker, Johanna; Vanberghem, Melanie; Berke, Allison P; Herlihy, Kara; Pick, Horst; Vogel, Horst; Zhang, Shuguang

    2009-07-21

    Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be approximately 50% alpha-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices.

  8. Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors

    PubMed Central

    Partridge, John G.

    2015-01-01

    The family of GCaMPs are engineered proteins that contain Ca2+ binding motifs within a circularly permutated variant of the Aequorea Victoria green fluorescent protein (cp-GFP). The rapidly advancing field of utilizing GCaMP reporter constructs represents a major step forward in our ability to monitor intracellular Ca2+ dynamics. With the use of these genetically encoded Ca2+ sensors, investigators have studied activation of endogenous Gq types of G protein-coupled receptors (GPCRs) and subsequent rises in intracellular calcium. Escalations in intracellular Ca2+ from GPCR activation can be faithfully monitored in space and time as an increase in fluorescent emission from these proteins. Further, transgenic mice are now commercially available that express GCaMPs in a Cre recombinase dependent fashion. These GCaMP reporter mice can be bred to distinct Cre recombinase driver mice to direct expression of this sensor in unique populations of cells. Concerning the central nervous system (CNS), sources of calcium influx, including those arising from Gq activation can be observed in targeted cell types like neurons or astrocytes. This powerful genetic method allows simultaneous monitoring of the activity of dozens of cells upon activation of endogenous Gq-coupled GPCRs. Therefore, in combination with pharmacological tools, this strategy of monitoring GPCR activation is amenable to analysis of orthosteric and allosteric ligands of Gq-coupled receptors in their endogenous environments. PMID:25805995

  9. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish.

    PubMed

    Cabas, Isabel; Rodenas, M Carmen; Abellán, Emilia; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa

    2013-11-01

    Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.

  10. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioszak, Augen A.; Xu, H. Eric

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineeredmore » as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.« less

  11. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  12. Constitutive Gαi coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein.

    PubMed

    Hu, Qiao-Xia; Dong, Jun-Hong; Du, Hai-Bo; Zhang, Dao-Lai; Ren, Hong-Ze; Ma, Ming-Liang; Cai, Yuan; Zhao, Tong-Chao; Yin, Xiao-Lei; Yu, Xiao; Xue, Tian; Xu, Zhi-Gang; Sun, Jin-Peng

    2014-08-29

    The very large G protein-coupled receptor 1 (VLGR1) is a core component in inner ear hair cell development. Mutations in the vlgr1 gene cause Usher syndrome, the symptoms of which include congenital hearing loss and progressive retinitis pigmentosa. However, the mechanism of VLGR1-regulated intracellular signaling and its role in Usher syndrome remain elusive. Here, we show that VLGR1 is processed into two fragments after autocleavage at the G protein-coupled receptor proteolytic site. The cleaved VLGR1 β-subunit constitutively inhibited adenylate cyclase (AC) activity through Gαi coupling. Co-expression of the Gαiq chimera with the VLGR1 β-subunit changed its activity to the phospholipase C/nuclear factor of activated T cells signaling pathway, which demonstrates the Gαi protein coupling specificity of this subunit. An R6002A mutation in intracellular loop 2 of VLGR1 abolished Gαi coupling, but the pathogenic VLGR1 Y6236fsx1 mutant showed increased AC inhibition. Furthermore, overexpression of another Usher syndrome protein, PDZD7, decreased the AC inhibition of the VLGR1 β-subunit but showed no effect on the VLGR1 Y6236fsx1 mutant. Taken together, we identified an independent Gαi signaling pathway of the VLGR1 β-subunit and its regulatory mechanisms that may have a role in the development of Usher syndrome. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics

    PubMed Central

    Conn, P. Michael

    2014-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases. PMID:24661201

  14. Variable Dependence of Signaling Output on Agonist Occupancy of Ste2p, a G Protein-coupled Receptor in Yeast.

    PubMed

    Sridharan, Rajashri; Connelly, Sara M; Naider, Fred; Dumont, Mark E

    2016-11-11

    We report here on the relationship between ligand binding and signaling responses in the yeast pheromone response pathway, a well characterized G protein-coupled receptor system. Responses to agonist (α-factor) by cells expressing widely varying numbers of receptors depend primarily on fractional occupancy, not the absolute number of agonist-bound receptors. Furthermore, the concentration of competitive antagonist required to inhibit α-factor-dependent signaling is more than 10-fold higher than predicted based on the known ligand affinities. Thus, responses to a particular number of agonist-bound receptors can vary greatly, depending on whether there are unoccupied or antagonist-bound receptors present on the same cell surface. This behavior does not appear to be due to pre-coupling of receptors to G protein or to the Sst2p regulator of G protein signaling. The results are consistent with a signaling response that is determined by the integration of positive signals from agonist-occupied receptors and inhibitory signals from unoccupied receptors, where the inhibitory signals can be diminished by antagonist binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. G protein-coupled receptor internalization assays in the high-content screening format.

    PubMed

    Haasen, Dorothea; Schnapp, Andreas; Valler, Martin J; Heilker, Ralf

    2006-01-01

    High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.

  16. Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.

    PubMed

    Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred

    2007-10-01

    Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.

  17. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. © 2015 American Society for Bone and Mineral Research.

  18. Structure-activity relationships of seco-prezizaane and picrotoxane/picrodendrane terpenoids by Quasar receptor-surface modeling.

    PubMed

    Schmidt, Thomas J; Gurrath, Marion; Ozoe, Yoshihisa

    2004-08-01

    The seco-prezizaane-type sesquiterpenes pseudoanisatin and parviflorolide from Illicium are noncompetitive antagonists at housefly (Musca domestica) gamma-aminobutyric acid (GABA) receptors. They show selectivity toward the insect receptor and thus represent new leads toward selective insecticides. Based on the binding data for 13 seco-prezizaane terpenoids and 17 picrotoxane and picrodendrane-type terpenoids to housefly and rat GABA receptors, a QSAR study was conducted by quasi-atomistic receptor-surface modeling (Quasar). The resulting models provide insight into the structural basis of selectivity and properties of the binding sites at GABA receptor-coupled chloride channels of insects and mammals.

  19. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    PubMed Central

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  20. Selective coupling of methotrexate to peptide hormone carriers through a gamma-carboxamide linkage of its glutamic acid moiety: benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate activation in salt coupling.

    PubMed Central

    Nagy, A; Szoke, B; Schally, A V

    1993-01-01

    A convenient synthetic method is described for the preparation of peptide-methotrexate (MTX) conjugates in which MTX is coupled selectively through the gamma-carboxyl group of its glutamic acid moiety to a free amino group in peptide analogs. The syntheses of a somatostatin analog-MTX conjugate (MTX-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) (AN-51) and two conjugates of analogs of luteinizing hormone-releasing hormone (LH-RH) with MTX [Glp-His-Trp-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-Gly-NH2] (AJ-04) and [Ac-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-NH-Et] AJ-51 are presented as examples. Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) was used in the synthesis for activation of 4-amino-4-deoxy-N10-methylpteroic acid, which reacted with the potassium salt of glutamic acid alpha-tert-butyl ester in dimethyl sulfoxide to form the suitably protected MTX derivative. This synthesis provides an example of the high suitability of BOP reagent for the salt-coupling method. The selectively protected MTX derivative was then coupled to the different peptide carriers and deprotected under relatively mild conditions by trifluoroacetic acid. The conjugates of MTX with hormonal analogs are suitable for targeting to various tumors that possess receptors for the peptide moieties. PMID:8101004

  1. Progress toward heterologous expression of active G-protein-coupled receptors in Saccharomyces cerevisiae: Linking cellular stress response with translocation and trafficking

    PubMed Central

    O'Malley, Michelle A; Mancini, J Dominic; Young, Carissa L; McCusker, Emily C; Raden, David; Robinson, Anne S

    2009-01-01

    High-level expression of mammalian G-protein-coupled receptors (GPCRs) is a necessary step toward biophysical characterization and high-resolution structure determination. Even though many heterologous expression systems have been used to express mammalian GPCRs at high levels, many receptors are improperly trafficked or are inactive in these systems. En route to engineering a robust microbial host for GPCR expression, we have investigated the expression of 12 GPCRs in the yeast Saccharomyces cerevisiae, where all receptors are expressed at the mg/L scale. However, only the human adenosine A2a (hA2aR) receptor is active for ligand-binding and located primarily at the plasma membrane, whereas other tested GPCRs are mainly retained within the cell. Selective receptors associate with BiP, an ER-resident chaperone, and activated the unfolded protein response (UPR) pathway, which suggests that a pool of receptors may be folded incorrectly. Leader sequence cleavage of the expressed receptors was complete for the hA2aR, as expected, and partially cleaved for hA2bR, hCCR5R, and hD2LR. Ligand-binding assays conducted on the adenosine family (hA1R, hA2aR, hA2bR, and hA3R) of receptors show that hA2aR and hA2bR, the only adenosine receptors that demonstrate leader sequence processing, display activity. Taken together, these studies point to translocation as a critical limiting step in the production of active mammalian GPCRs in S. cerevisiae. PMID:19760666

  2. Enhanced Uterine Contractility and Stillbirth in Mice Lacking G Protein-Coupled Receptor Kinase 6 (GRK6): Implications for Oxytocin Receptor Desensitization

    PubMed Central

    Mao, Lan; Pierce, Stephanie L.; Swamy, Geeta K.; Heine, R. Phillips; Murtha, Amy P.

    2016-01-01

    Oxytocin is a potent uterotonic agent and is used clinically for induction and augmentation of labor, as well as for prevention and treatment of postpartum hemorrhage. Oxytocin increases uterine contractility by activating the oxytocin receptor (OXTR), a member of the G protein-coupled receptor family, which is prone to molecular desensitization. After oxytocin binding, the OXTR is phosphorylated by a member of the G protein-coupled receptor kinase (GRK) family, which allows for recruitment of β-arrestin, receptor internalization, and desensitization. According to previous in vitro analyses, desensitization of calcium signaling by the OXTR is mediated by GRK6. The objective of this study was to determine the role of GRK6 in mediating uterine contractility. Here, we demonstrate that uterine GRK6 levels increase in pregnancy and using a telemetry device to measure changes in uterine contractility in live mice during labor, show that mice lacking GRK6 produce a phenotype of enhanced uterine contractility during both spontaneous and oxytocin-induced labor compared with wild-type or GRK5 knockout mice. In addition, the observed enhanced contractility was associated with high rates of term stillbirth. Lastly, using a heterologous in vitro model, we show that β-arrestin recruitment to the OXTR, which is necessary for homologous OXTR desensitization, is dependent on GRK6. Our findings suggest that GRK6-mediated OXTR desensitization in labor is necessary for normal uterine contractile patterns and optimal fetal outcome. PMID:26886170

  3. Divergent β-Arrestin-dependent Signaling Events Are Dependent upon Sequences within G-protein-coupled Receptor C Termini*

    PubMed Central

    Pal, Kasturi; Mathur, Maneesh; Kumar, Puneet; DeFea, Kathryn

    2013-01-01

    β-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of β-arrestin signaling depends upon the activating receptor. For example, activation of two Gαq-coupled receptors, protease-activated receptor-2 (PAR2) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR2 promotes β-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/β-arrestin interactions in real time, we observe that PAR2 has a higher apparent affinity for both β-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of β-arrestins to PAR2 does not require prior Gαq signaling events, whereas inhibition of Gαq signaling intermediates inhibits recruitment of β-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR2 is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR2, we demonstrate that interactions between β-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of β-arrestin recruitment as well as the ultimate signaling outcome. PMID:23235155

  4. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    PubMed

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  5. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists

    PubMed Central

    Cheng, Han; Lear-Rooney, Calli M.; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W.; Olinger, Gene G.

    2015-01-01

    ABSTRACT Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. IMPORTANCE Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of

  6. The past, present, and future of selective progesterone receptor modulators in the management of uterine fibroids.

    PubMed

    Singh, Sukhbir S; Belland, Liane; Leyland, Nicholas; von Riedemann, Sarah; Murji, Ally

    2017-12-21

    Uterine fibroids are common in women of reproductive age and can have a significant impact on quality of life and fertility. Although a number of international obstetrics/gynecology societies have issued evidence-based clinical practice guidelines for the management of symptomatic uterine fibroids, many of these guidelines do not yet reflect the most recent clinical evidence and approved indication for one of the key medical management options: the selective progesterone receptor modulator class. This article aims to share the clinical experience gained with selective progesterone receptor modulators in Europe and Canada by reviewing the historical development of selective progesterone receptor modulators, current best practices for selective progesterone receptor modulator use based on available data, and potential future uses for selective progesterone receptor modulators in uterine fibroids and other gynecologic conditions. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  8. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs)

    PubMed Central

    Gao, Wenqing; Dalton, James T.

    2007-01-01

    Selective androgen receptor modulators (SARMs) are a novel class of androgen receptor (AR) ligands that might change the future of androgen therapy dramatically. With improved pharmacokinetic characteristics and tissue-selective pharmacological activities, SARMs are expected to greatly extend the clinical applications of androgens to osteoporosis, muscle wasting, male contraception and diseases of the prostate. Mechanistic studies with currently available SARMs will help to define the contributions of differential tissue distribution, tissue-specific expression of 5α-reductase, ligand-specific regulation of gene expression and AR interactions with tissue-specific coactivators to their observed tissue selectivity, and lead to even greater expansion of selective anabolic therapies. PMID:17331889

  9. Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2013-01-01

    The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling. PMID:24003153

  10. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Dulal, Kalpana; Cheng, Tong; Hjortø, Gertrud M.; Larsen, Olav; Burg, John S.; Jarvis, Michael A.; Christopher Garcia, K.; Zhu, Hua; Kledal, Thomas N.; Rosenkilde, Mette M.

    2015-01-01

    The use of receptor–ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1. Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant with the cytotoxic domain of Pseudomonas Exotoxin A. This novel strategy of a rationally designed FTP provided unparalleled anti-HCMV efficacy and potency in vitro and in vivo. PMID:26080445

  11. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  12. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery.

    PubMed

    Hamel, David; Sanchez, Melanie; Duhamel, François; Roy, Olivier; Honoré, Jean-Claude; Noueihed, Baraa; Zhou, Tianwei; Nadeau-Vallée, Mathieu; Hou, Xin; Lavoie, Jean-Claude; Mitchell, Grant; Mamer, Orval A; Chemtob, Sylvain

    2014-02-01

    Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury. The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization. We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.

  13. A model of autophagy size selectivity by receptor clustering on peroxisomes

    NASA Astrophysics Data System (ADS)

    Brown, Aidan I.; Rutenberg, Andrew D.

    2017-05-01

    Selective autophagy must not only select the correct type of organelle, but also must discriminate between individual organelles of the same kind so that some but not all of the organelles are removed. We propose that physical clustering of autophagy receptor proteins on the organelle surface can provide an appropriate all-or-none signal for organelle degradation. We explore this proposal using a computational model restricted to peroxisomes and the relatively well characterized pexophagy receptor proteins NBR1 and p62. We find that larger peroxisomes nucleate NBR1 clusters first and lose them last through competitive coarsening. This results in significant size-selectivity that favors large peroxisomes, and can explain the increased catalase signal that results from siRNA inhibition of p62. Excess ubiquitin, resulting from damaged organelles, suppresses size-selectivity but not cluster formation. Our proposed selectivity mechanism thus allows all damaged organelles to be degraded, while otherwise selecting only a portion of organelles for degradation.

  14. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2008-01-01

    The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin–receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These “custom-designed” arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling. PMID:16460808

  15. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    PubMed

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  16. Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor

    PubMed Central

    Ghanouni, Pejman; Steenhuis, Jacqueline J.; Farrens, David L.; Kobilka, Brian K.

    2001-01-01

    The majority of extracellular physiologic signaling molecules act by stimulating GTP-binding protein (G-protein)-coupled receptors (GPCRs). To monitor directly the formation of the active state of a prototypical GPCR, we devised a method to site specifically attach fluorescein to an endogenous cysteine (Cys-265) at the cytoplasmic end of transmembrane 6 (TM6) of the β2 adrenergic receptor (β2AR), adjacent to the G-protein-coupling domain. We demonstrate that this tag reports agonist-induced conformational changes in the receptor, with agonists causing a decline in the fluorescence intensity of fluorescein-β2AR that is proportional to the biological efficacy of the agonist. We also find that agonists alter the interaction between the fluorescein at Cys-265 and fluorescence-quenching reagents localized to different molecular environments of the receptor. These observations are consistent with a rotation and/or tilting of TM6 on agonist activation. Our studies, when compared with studies of activation in rhodopsin, indicate a general mechanism for GPCR activation; however, a notable difference is the relatively slow kinetics of the conformational changes in the β2AR, which may reflect the different energetics of activation by diffusible ligands. PMID:11353823

  17. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity

    PubMed Central

    Ho, Vincent K.; Angelotti, Timothy

    2013-01-01

    Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins

  18. Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A number of synthetic steroids are capable of modulating progesterone receptors with a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. The best known of these are mifepristone (RU 486), asoprisnil (J 867), onapristone (ZK 98299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Outside reproduction selective modulators of progesterone receptors have been under investigation for a large variety of indications, for example in oncology as adjuvants in breast, cervical, endometrial, ovarian and prostate cancer, as well as inoperable meningioma and leiomyosarcoma. In addition, they have been used as antiglucocorticoids. It is therefore useful to review the results obtained in these conditions. A careful evaluation of existing major review papers and of recently published articles was carried out for the indications under review, focusing not only on mifepristone but also on those other selective modulators of progesterone receptors for which data are available. In preliminary studies selective modulators of progesterone receptors had some activity on a number of neoplasias. Their antiglucocorticoid activity has been tested with some success in Cushing's syndrome, several psychiatric conditions (e.g., mood disorders and Alzheimer's disease) and acute renal failure. Finally they are being used in a gene regulator system.

  19. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    PubMed

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  20. Conformational Fluctuations in G-Protein-Coupled Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  1. Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000.

    PubMed

    Deganutti, Giuseppe; Cuzzolin, Alberto; Ciancetta, Antonella; Moro, Stefano

    2015-07-15

    The search for G protein-coupled receptors (GPCRs) allosteric modulators represents an active research field in medicinal chemistry. Allosteric modulators usually exert their activity only in the presence of the orthosteric ligand by binding to protein sites topographically different from the orthosteric cleft. They therefore offer potentially therapeutic advantages by selectively influencing tissue responses only when the endogenous agonist is present. The prediction of putative allosteric site location, however, is a challenging task. In facts, they are usually located in regions showing more structural variation among the family members. In the present work, we applied the recently developed Supervised Molecular Dynamics (SuMD) methodology to interpret at the molecular level the positive allosteric modulation mediated by LUF6000 toward the human adenosine A3 receptor (hA3 AR). Our data suggest at least two possible mechanisms to explain the experimental data available. This study represent, to the best of our knowledge, the first case reported of an allosteric recognition mechanism depicted by means of molecular dynamics simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Regulation of ERRα Gene Expression by Estrogen Receptor Agonists and Antagonists in SKBR3 Breast Cancer Cells: Differential Molecular Mechanisms Mediated by G Protein-Coupled Receptor GPR30/GPER-1

    PubMed Central

    Li, Yin; Birnbaumer, Lutz; Teng, Christina T.

    2010-01-01

    In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM. PMID:20211987

  3. RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells.

    PubMed

    Kamato, Danielle; Bhaskarala, Venkata Vijayanand; Mantri, Nitin; Oh, Tae Gyu; Ling, Dora; Janke, Reearna; Zheng, Wenhua; Little, Peter J; Osman, Narin

    2017-01-01

    G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.

  4. Functional characterisation of the Anopheles leucokinins and their cognate G-protein coupled receptor.

    PubMed

    Radford, Jonathan C; Terhzaz, Selim; Cabrero, Pablo; Davies, Shireen-A; Dow, Julian A T

    2004-12-01

    Identification of the Anopheles gambiae leucokinin gene from the completed A. gambiae genome revealed that this insect species contains three leucokinin peptides, named Anopheles leucokinin I-III. These peptides are similar to those identified in two other mosquito species, Aedes aegypti and Culex salinarius. Additionally, Anopheles leucokinin I displays sequence similarity to Drosophila melanogaster leucokinin. Using a combination of computational and molecular approaches, a full-length cDNA for a candidate leucokinin-like receptor was isolated from A. stephensi, a close relative of A. gambiae. Alignment of the known leucokinin receptors--all G protein-coupled receptors (GPCRs)--with this receptor, identified some key conserved regions within the receptors, notably transmembrane (TM) domains I, II, III, VI and VII. The Anopheles leucokinins and receptor were shown to be a functional receptor-ligand pair. All three Anopheles leucokinins caused a dose-dependent rise in intracellular calcium ([Ca2+]i) when applied to S2 cells co-expressing the receptor and an aequorin transgene, with a potency order of I>II>III. Drosophila leucokinin was also found to activate the Anopheles receptor with a similar EC50 value to Anopheles leucokinin I. However, when the Anopheles peptides were applied to the Drosophila receptor, only Anopheles leucokinin I and II elicited a rise in [Ca2+]i. This suggests that the Anopheles receptor has a broader specificity for leucokinin ligands than the Drosophila receptor. Antisera raised against the Anopheles receptor identified a doublet of approx. 65 and 72 kDa on western blots, consistent with the presence of four N-glycosylation sites within the receptor sequence, and the known glycosylation of the receptor in Drosophila. In Anopheles tubules, as in Drosophila, the receptor was localised to the stellate cells. Thus we provide the first identification of Anopheles mosquito leucokinins (Anopheles leucokinins) and a cognate leucokinin receptor

  5. Identification of a novel aminergic-like G protein-coupled receptor in the cnidarian Renilla koellikeri.

    PubMed

    Bouchard, Christelle; Ribeiro, Paula; Dubé, François; Demers, Christian; Anctil, Michel

    2004-10-27

    Biogenic amines exert various physiological effects in cnidarians, but the receptors involved in these responses are not known. We have cloned a novel G protein-coupled receptor cDNA from an anthozoan, the sea pansy Renilla koellikeri, that shows homology to mammalian catecholamine receptors and, to a lesser extent, to peptidergic receptors. This putative receptor, named Ren2, has a DRC pattern that replaces the well-conserved DRY motif on the cytoplasmic side of the transmembrane III and lacks the cysteine residues usually found in the second extracellular loop and C-terminus tail. Both the second extracellular loop and the N-terminal tail were seen to be short (six and three amino acids, respectively). Northern blot analysis suggests that the receptor gene codes for two transcripts. Localization of these transcripts by in situ hybridization demonstrated abundant expression in the epithelium of the pharyngeal wall, the oral disk and tentacles as well as in the endodermal epithelium lining the gastrovascular cavities.

  6. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    PubMed

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  7. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors.

    PubMed

    Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G

    2012-07-12

    The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By use of four nonpeptidic compounds and the peptide mimetics RF9 and BIBP3226, agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated. The binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF(1) but not in the NPFF(2) receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system.

  8. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors

    PubMed Central

    Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G.

    2012-01-01

    The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By using four non-peptidic compounds and the peptide mimetics RF9 and BIBP3226 agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated, the binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII, and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF1 but not in the NPFF2 receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system. PMID:22708927

  9. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    PubMed

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  10. Structure of the full-length glucagon class B G protein-coupled receptor

    PubMed Central

    Zhang, Haonan; Qiao, Anna; Yang, Dehua; Yang, Linlin; Dai, Antao; de Graaf, Chris; Reedtz-Runge, Steffen; Dharmarajan, Venkatasubramanian; Zhang, Hui; Han, Gye Won; Grant, Thomas D.; Sierra, Raymond G.; Weierstall, Uwe; Nelson, Garrett; Liu, Wei; Wu, Yanhong; Ma, Limin; Cai, Xiaoqing; Lin, Guangyao; Wu, Xiaoai; Geng, Zhi; Dong, Yuhui; Song, Gaojie; Griffin, Patrick R.; Lau, Jesper; Cherezov, Vadim; Yang, Huaiyu; Hanson, Michael A.; Stevens, Raymond C.; Zhao, Qiang; Jiang, Hualiang; Wang, Ming-Wei; Wu, Beili

    2017-01-01

    The human glucagon receptor (GCGR) belongs to the class B G protein-coupled receptor (GPCR) family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both extracellular domain (ECD) and transmembrane domain (TMD) in an inactive conformation. The two domains are connected by a 12-residue segment termed the ‘stalk’, which adopts a β-strand conformation, instead of forming an α-helix as observed in the previously solved structure of GCGR-TMD. The first extracellular loop (ECL1) exhibits a β-hairpin conformation and interacts with the stalk to form a compact β-sheet structure. Hydrogen/deuterium exchange, disulfide cross-linking and molecular dynamics studies suggest that the stalk and ECL1 play critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding about the signaling mechanisms of class B GPCRs. PMID:28514451

  11. Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation

    PubMed Central

    Brailoiu, G Cristina; Benamar, Khalid; Arterburn, Jeffrey B; Gao, Erhe; Rabinowitz, Joseph E; Koch, Walter J; Brailoiu, Eugen

    2013-01-01

    In addition to acting on mineralocorticoid receptors, aldosterone has been recently shown to activate the G protein-coupled oestrogen receptor (GPER) in vascular cells. In light of the newly identified role for GPER in vagal cardiac control, we examined whether or not aldosterone activates GPER in rat nucleus ambiguus. Aldosterone produced a dose-dependent increase in cytosolic Ca2+ concentration in retrogradely labelled cardiac vagal neurons of nucleus ambiguus; the response was abolished by pretreatment with the GPER antagonist G-36, but was not affected by the mineralocorticoid receptor antagonists, spironolactone and eplerenone. In Ca2+-free saline, the response to aldosterone was insensitive to blockade of the Ca2+ release from lysosomes, while it was reduced by blocking the Ca2+ release via ryanodine receptors and abolished by blocking the IP3 receptors. Aldosterone induced Ca2+ influx via P/Q-type Ca2+ channels, but not via L-type and N-type Ca2+ channels. Aldosterone induced depolarization of cardiac vagal neurons of nucleus ambiguus that was sensitive to antagonism of GPER but not of mineralocorticoid receptor. in vivo studies, using telemetric measurement of heart rate, indicate that microinjection of aldosterone into the nucleus ambiguus produced a dose-dependent bradycardia in conscious, freely moving rats. Aldosterone-induced bradycardia was blocked by the GPER antagonist, but not by the mineralocorticoid receptor antagonists. In summary, we report for the first time that aldosterone decreases heart rate by activating GPER in cardiac vagal neurons of nucleus ambiguus. PMID:23878371

  12. Targeting G protein-coupled receptor kinases (GRKs) in Heart Failure

    PubMed Central

    Brinks, Henriette; Koch, Walter J

    2010-01-01

    In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF. PMID:21218155

  13. Constitutive phospholipid scramblase activity of a G protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Goren, Michael A.; Morizumi, Takefumi; Menon, Indu; Joseph, Jeremiah S.; Dittman, Jeremy S.; Cherezov, Vadim; Stevens, Raymond C.; Ernst, Oliver P.; Menon, Anant K.

    2014-10-01

    Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.

  14. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    PubMed

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Cellular and molecular biology of orphan G protein-coupled receptors.

    PubMed

    Oh, Da Young; Kim, Kyungjin; Kwon, Hyuk Bang; Seong, Jae Young

    2006-01-01

    The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.

  16. Substitution of lysine-181 to aspartic acid in the third transmembrane region of the endothelin (ET) type B receptor selectively reduces its high-affinity binding with ET-3 peptide.

    PubMed

    Mauzy, C; Wu, L H; Egloff, A M; Mirzadegan, T; Chung, F Z

    1992-01-01

    In the G protein-coupled receptor family, a highly conserved aspartic acid located within the third transmembrane domain has been shown to be involved in ligand binding. Within the endothelin (ET) peptide receptor family, this aspartic acid has been replaced by a lysine. To assess the importance of this residue in ET binding, the lysine (position 181) of rat ET type B receptor was replaced by an aspartic acid. The effects on ligand binding and phosphoinositide turnover of both the wild-type and K181D mutant receptors were examined using transient receptor expression in COS-7 cells. Using [125I]ET-1 as the radioactive peptide ligand in displacement binding studies, the wild-type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three ET peptides (ET-1, ET-2, and ET-3). The mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM). The K181D mutant receptor still elicited full inositol phosphate (IP) accumulation responses in the presence of saturating concentrations of ETs (10 nM of ET-1, 100 nM of ET-2, or 1 microM of ET-3), indicating that the mutation did not affect G protein coupling.

  17. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Kennedy, L; Shi, Y

    2010-01-01

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less

  18. Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation.

    PubMed

    Chakrabarti, Subhadeep; Davidge, Sandra T

    2016-01-01

    The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting.

  19. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation.

    PubMed

    Tan, Jian K; McKenzie, Craig; Mariño, Eliana; Macia, Laurence; Mackay, Charles R

    2017-04-26

    Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.

  20. Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid.

    PubMed

    Liu, Xuehong; Qian, Zu-Yuan; Xie, Fuchun; Fan, Wei; Nelson, Jonathan W; Xiao, Xiangshu; Kaul, Sanjiv; Barnes, Anthony P; Alkayed, Nabil J

    2017-09-01

    Epoxyeicosatrienoic acids (EETs) are potent vasodilators that play important roles in cardiovascular physiology and disease, yet the molecular mechanisms underlying the biological actions of EETs are not fully understood. Multiple lines of evidence suggest that the actions of EETs are in part mediated via G protein-coupled receptor (GPCR) signaling, but the identity of such a receptor has remained elusive. We sought to identify 14,15-EET-responsive GPCRs. A set of 105 clones were expressed in Xenopus oocyte and screened for their ability to activate cAMP-dependent chloride current. Several receptors responded to micromolar concentrations of 14,15-EET, with the top five being prostaglandin receptor subtypes (PTGER 2 , PTGER 4 , PTGFR, PTGDR, PTGER 3 IV). Overall, our results indicate that multiple low-affinity 14,15-EET GPCRs are capable of increasing cAMP levels following 14,15-EET stimulation, highlighting the potential for cross-talk between prostanoid and other ecosanoid GPCRs. Our data also indicate that none of the 105 GPCRs screened met our criteria for a high-affinity receptor for 14,15-EET. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

    PubMed Central

    de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-01-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  2. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer.

    PubMed

    Filardo, Edward J

    2002-02-01

    The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible transcription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer biology are discussed further in this review.

  4. Roles of Mas-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases.

    PubMed

    Subramanian, Hariharan; Gupta, Kshitij; Ali, Hydar

    2016-09-01

    Mast cells (MCs), which are granulated tissue-resident cells of hematopoietic lineage, contribute to vascular homeostasis, innate/adaptive immunity, and wound healing. However, MCs are best known for their roles in allergic and inflammatory diseases, such as anaphylaxis, food allergy, rhinitis, itch, urticaria, atopic dermatitis, and asthma. In addition to the high-affinity IgE receptor (FcεRI), MCs express numerous G protein-coupled receptors (GPCRs), which are the largest group of membrane receptor proteins and the most common targets of drug therapy. Antimicrobial host defense peptides, neuropeptides, major basic protein, eosinophil peroxidase, and many US Food and Drug Administration-approved peptidergic drugs activate human MCs through a novel GPCR known as Mas-related G protein-coupled receptor X2 (MRGPRX2; formerly known as MrgX2). Unique features of MRGPRX2 that distinguish it from other GPCRs include their presence both on the plasma membrane and intracellular sites and their selective expression in MCs. In this article we review the possible roles of MRGPRX2 on host defense, drug-induced anaphylactoid reactions, neurogenic inflammation, pain, itch, and chronic inflammatory diseases, such as urticaria and asthma. We propose that host defense peptides that kill microbes directly and activate MCs through MRGPRX2 could serve as novel GPCR targets to modulate host defense against microbial infection. Furthermore, mAbs or small-molecule inhibitors of MRGPRX2 could be developed for the treatment of MC-dependent allergic and inflammatory disorders. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.

    PubMed

    Barnes, Brian J; Howard, Patricia A

    2005-01-01

    To evaluate the pharmacology, pharmacokinetics, safety, and clinical use of eplerenone in heart failure (HF). English-language MEDLINE searches were performed from 1966 to May 2004. Key words included eplerenone, aldosterone receptor antagonist, heart failure, myocardial infarction, left-ventricular dysfunction, and cost-effectiveness. Additional references were identified from bibliographies of selected articles. Human trials evaluating the efficacy, safety, and cost-effectiveness of aldosterone receptor antagonists in HF were evaluated. Eplerenone is the first selective aldosterone receptor antagonist. The drug is indicated to improve the survival of stable patients with left-ventricular systolic dysfunction (ejection fraction <40%) and clinical evidence of HF following acute myocardial infarction. Efficacy and safety in this population have been demonstrated in a large, randomized clinical trial. Eplerenone is associated with severe and sometimes life-threatening hyperkalemia. Patients with reduced renal function and diabetes, as well as those on other drugs that increase potassium levels, are at highest risk. Eplerenone is metabolized by the cytochrome P450 system and may interact with drugs that interfere with this system. A major advantage of eplerenone over the nonselective aldosterone receptor antagonist spironolactone is lack of binding to progesterone and androgen receptors, which is associated with drug-induced gynecomastia, breast pain, and impotence. The addition of eplerenone to traditional HF therapy has been shown to reduce morbidity and mortality in patients who develop left-ventricular dysfunction after acute myocardial infarction. Eplerenone's selectivity reduces sex hormone-related adverse effects. Despite these benefits, the overall cost-effectiveness has yet to be determined.

  6. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway.

    PubMed

    Zhou, Xin; Wang, Zhen; Huang, Wei; Lei, Qun-Ying

    2015-01-01

    The Hippo pathway is crucial in organ size control, whereas its dysregulation contributes to organ degeneration or tumorigenesis. The kinase cascade of MST1/2 and LATS1/2 and the coupling transcription co-activators YAP/TAZ represent the core components of the Hippo pathway. Extensive studies have identified a number of upstream regulators of the Hippo pathway, including contact inhibition, mechanic stress, extracellular matrix stiffness, cytoskeletal rearrangement, and some molecules of cell polarity and cell junction. However, how the diffuse extracellular signals regulate the Hippo pathway puzzles the researchers for a long time. Unexpectedly, recent elegant studies demonstrated that stimulation of some G protein-coupled receptors (GPCRs), such as lysophosphatidic acid receptor, sphingosine-1-phosphate receptor, and the protease activated receptor PAR1, causes potent YAP/TAZ dephosphorylation and activation by promoting actin cytoskeleton assemble. In this review, we briefly describe the components of the Hippo pathway and focus on the recent progress with respect to the regulation of the Hippo pathway by GPCRs and G proteins in cancer cells. In addition, we also discuss the potential therapeutic roles targeting the Hippo pathway in human cancers. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  7. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  8. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain.

    PubMed

    Morland, Cecilie; Lauritzen, Knut Husø; Puchades, Maja; Holm-Hansen, Signe; Andersson, Krister; Gjedde, Albert; Attramadal, Håvard; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-07-01

    We have proposed that lactate is a "volume transmitter" in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the cerebral neocortex and the hippocampus, where it can be stimulated by physiological concentrations of lactate and by the HCAR1 agonist 3,5-dihydroxybenzoate to reduce cAMP levels. Cerebral HCAR1 is concentrated on the postsynaptic membranes of excitatory synapses and also is enriched at the blood-brain barrier. In synaptic spines and in adipocytes, HCAR1 immunoreactivity is also located on subplasmalemmal vesicular organelles, suggesting trafficking to and from the plasma membrane. Through activation of HCAR1, lactate can act as a volume transmitter that links neuronal activity, cerebral blood flow, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress, and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells. © 2015 Wiley Periodicals, Inc.

  9. Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation.

    PubMed

    Schöneberg, Torsten; Liebscher, Ines; Luo, Rong; Monk, Kelly R; Piao, Xianhua

    2015-06-01

    The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.

  10. Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments.

    PubMed

    Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A; Hanyaloglu, Aylin C

    2014-02-14

    Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.

  11. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.

    PubMed

    Busato, Mirko; Giorgetti, Alejandro

    2016-08-01

    Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    2015-01-01

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%). PMID:26819671

  13. The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner

    PubMed Central

    Wang, Cheng; Lv, Xiangmin; Jiang, Chao; Davis, John S

    2012-01-01

    G-protein coupled estrogen receptor 1 (GPER) plays an important role in mediating estrogen action in many different tissues under both physiological and pathological conditions. G-1 (1-[4-(6-bromobenzo[1,3]dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta [c]quinolin-8-yl]-ethanone) has been developed as a selective GPER agonist to distinguish estrogen actions mediated by GPER from those mediated by classic estrogen receptors. In the present study, we surprisingly found that G-1 suppressed proliferation and induced apoptosis of KGN cells (a human ovarian granulosa cell tumor cell line), actions that were not blocked by a selective GPER antagonist G15 or siRNA knockdown of GPER. G-1 also suppressed proliferation and induced cell apoptosis in GPER-negative HEK-293 cells and MDA-MB 231 breast cancer cells. Our results demonstrate that G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. G-1 may be a candidate for the development of drugs against ovarian and breast cancer. PMID:23145207

  14. Structural basis for molecular recognition at serotonin receptors.

    PubMed

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-03

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.

  15. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1

    PubMed Central

    Schwertassek, Ulla; Balmer, Yves; Gutscher, Marcus; Weingarten, Lars; Preuss, Marc; Engelhard, Johanna; Winkler, Monique; Dick, Tobias P

    2007-01-01

    The thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) is known to be secreted by leukocytes and to exhibit cytokine-like properties. Extracellular effects of Trx1 require a functional active site, suggesting a redox-based mechanism of action. However, specific cell surface proteins and pathways coupling extracellular Trx1 redox activity to cellular responses have not been identified so far. Using a mechanism-based kinetic trapping technique to identify disulfide exchange interactions on the intact surface of living lymphocytes, we found that Trx1 catalytically interacts with a single principal target protein. This target protein was identified as the tumor necrosis factor receptor superfamily member 8 (TNFRSF8/CD30). We demonstrate that the redox interaction is highly specific for both Trx1 and CD30 and that the redox state of CD30 determines its ability to engage the cognate ligand and transduce signals. Furthermore, we confirm that Trx1 affects CD30-dependent changes in lymphocyte effector function. Thus, we conclude that receptor–ligand signaling interactions can be selectively regulated by an extracellular redox catalyst. PMID:17557078

  16. Designing of a fluoride selective receptor through molecular orbital engineering

    NASA Astrophysics Data System (ADS)

    Mishra, Rakesh K.; Kumar, Virendra; Diwan, Uzra; Upadhyay, K. K.; Roy Chowdhury, P. K.

    2012-11-01

    The stepwise substitution of appropriate groups over the 3-[(2,4-dinitro-phenyl)-hydrazono]-butyric acid ethyl ester (R3) lead receptor R1 which showed selectivity towards fluoride in DMSO. The UV-vis and 1H NMR titration studies revealed the details of the binding between receptor R1 and fluoride. The receptor R1 also recognized fluoride in a toothpaste solution to as low as 50 ppm. The theoretical simulations of recognition event at Density Functional Theory (DFT) level using B3LYP/6-31G** basis set and polarizable continuum model (PCM) approach lead a semi-quantitative match with the experimental results.

  17. Activation of G-protein-coupled receptor 30 increases T-type calcium currents in trigeminal ganglion neurons via the cholera toxin-sensitive protein kinase A pathway.

    PubMed

    Yue, Jingxia; Zhang, Yi; Li, Xuemin; Gong, Shan; Tao, Jin; Jiang, Xinghong

    2014-11-01

    G protein-coupled receptor 30 (GPR30) is a seven transmembrane domain G protein coupled receptor. In our study, GPR30 expression was found in trigeminal ganglia (TG) in mice, detected by RT-PCR and western blotting. We examined the effects of GPR30 activation on T-type calcium channels using GPR30-specific compound 1 (G-1), a GPR30-selective agonist, in TG neurons and demonstrated that G-1 induced an increase in T-type calcium channel currents (T-currents) in TGs. Intracellular infusion of GDP-β-S and pre-treatment of the neurons with cholera toxin (CTX) blocked the effects of G-1, suggesting that the G(s)-protein was involved. Intracellular application of the protein kinase A (PKA) inhibitor PKI 6-22 or pretreatment of the neurons with H89 abolished G-1 -induced enhancement of T-currents in TG neurons. However, incubation with PKC inhibitor elicited no such effects. In conclusion, our study shows that activation of GPR30 by G-1 increases T-currents via the CTX-sensitive and PKA-dependent pathway.

  18. The roles played by highly truncated splice variants of G protein-coupled receptors

    PubMed Central

    2012-01-01

    Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism. PMID:22938630

  19. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    PubMed

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  1. Discovery of spiropiperidine-based potent and selective Orexin-2 receptor antagonists.

    PubMed

    Fujimoto, Tatsuhiko; Tomata, Yoshihide; Kunitomo, Jun; Hirozane, Mariko; Marui, Shogo

    2011-11-01

    To generate novel human Orexin-2 Receptor (OX2R) antagonists, a spiropiperidine based scaffold was designed and a SAR study was carried out. Compound 4f possessed the highest OX2R antagonistic activity with an IC(50) value of 3nM with 450-fold selectivity against Orexin-1 Receptor (OX1R). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences.

    PubMed Central

    Belvisi, M. G.; Patacchini, R.; Barnes, P. J.; Maggi, C. A.

    1994-01-01

    1. Exogenous tachykinins modulate cholinergic neurotransmission in rabbit and guinea-pig airways. We have investigated the effect of selective tachykinin receptor agonists and antagonists on cholinergic neurotransmission evoked by electrical field stimulation (EFS) of bronchial rings in rabbit, guinea-pig and human airways in vitro to assess which type of tachykinin receptor is mediating this facilitatory effect. 2. Bronchial rings were set up for isometric tension recording. Contractile responses to EFS (60 V, 0.4 ms, 2 Hz for 10 s every min) and exogenous acetylcholine (ACh) were obtained and the effects of selective tachykinin agonists and antagonists were investigated. 3. In rabbit bronchi the endogenous tachykinins, substance P (SP) and neurokinin A (NKA) (10 nM) potentiated cholinergic responses to EFS (by 287.6 +/- 121%, P < 0.01 and 181.4 +/- 56.5%, P < 0.001 respectively). 4. The NK1 receptor selective agonist, [Sar9]SP sulphone (10 nM) evoked a maximal facilitatory action on cholinergic responses of 334.9 +/- 63% (P < 0.01) (pD2 = 8.5 +/- 0.06) an effect which was blocked by the selective NK1-receptor antagonist, CP 96,345 (100 nM) (P < 0.05) but not by the NK2 receptor antagonist, MEN 10,376 (100 nM). The NK2 receptor selective agonist, [beta Ala8]NKA(4-10) (10 nM), produced a maximum enhancement of 278 +/- 83.5% (P < 0.01) (pD2 = 8.7 +/- 0.1) an effect which was blocked by MEN 10,376 (100 nM) (P < 0.05) and not by CP 96,345. [MePhe7]NKB, an NK3 receptor selective agonist was without effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7516799

  3. Possible role of IGF2 receptors in regulating selection of 2 dominant follicles in cattle selected for twin ovulations and births

    USDA-ARS?s Scientific Manuscript database

    Abundance of IGF-2 receptor (IGF2R), FSH receptor (FSHR), and LH receptor (LHCGR) mRNA in granulosa cells (GCs) or theca cells (TCs) or both cells as well as estradiol (E2), progesterone (P4), and androstenedione concentrations in follicular fluid were compared in cows genetically selected (Twinner)...

  4. Chemical Composition and Labeling of Substances Marketed as Selective Androgen Receptor Modulators and Sold via the Internet.

    PubMed

    Van Wagoner, Ryan M; Eichner, Amy; Bhasin, Shalender; Deuster, Patricia A; Eichner, Daniel

    2017-11-28

    Recent reports have described the increasing use of nonsteroidal selective androgen receptor modulators, which have not been approved by the US Food and Drug Administration (FDA), to enhance appearance and performance. The composition and purity of such products is not known. To determine the chemical identity and the amounts of ingredients in dietary supplements and products marketed and sold through the internet as selective androgen receptor modulators and compare the analyzed contents with product labels. Web-based searches were performed from February 18, 2016, to March 25, 2016, using the Google search engine on the Chrome and Internet Explorer web browsers to identify suppliers selling selective androgen receptor modulators. The products were purchased and the identities of the compounds and their amounts were determined from April to August 2016 using chain-of-custody and World Anti-Doping Association-approved analytical procedures. Analytical findings were compared against the label information. Products marketed and sold as selective androgen receptor modulators. Chemical identities and the amount of ingredients in each product marketed and sold as selective androgen receptor modulators. Among 44 products marketed and sold as selective androgen receptor modulators, only 23 (52%) contained 1 or more selective androgen receptor modulators (Ostarine, LGD-4033, or Andarine). An additional 17 products (39%) contained another unapproved drug, including the growth hormone secretagogue ibutamoren, the peroxisome proliferator-activated receptor-δ agonist GW501516, and the Rev-ErbA agonist SR9009. Of the 44 tested products, no active compound was detected in 4 (9%) and substances not listed on the label were contained in 11 (25%). In only 18 of the 44 products (41%), the amount of active compound in the product matched that listed on the label. The amount of the compounds listed on the label differed substantially from that found by analysis in 26 of 44 products

  5. Potent and selective oxytocin receptor agonists without disulfide bridges.

    PubMed

    Adachi, Yusuke; Sakimura, Katsuya; Shimizu, Yuji; Nakayama, Masaharu; Terao, Yasuko; Yano, Takahiko; Asami, Taiji

    2017-06-01

    Oxytocin (OT) is a neuropeptide involved in a wide variety of physiological actions, both peripherally and centrally. Many human studies have revealed the potential of OT to treat autism spectrum disorders and schizophrenia. OT interacts with the OT receptor (OTR) as well as vasopressin 1a and 1b receptors (V 1a R, V 1b R) as an agonist, and agonistic activity for V 1a R and V 1b R may have a negative impact on the therapeutic effects of OTR agonism in the CNS. An OTR-selective agonistic peptide, FE 202767, in which the structural differences from OT are a sulfide bond instead of a disulfide bond, and N-alkylglycine replacement for Pro at position 7, was reported. However, the effects of amino acid substitutions in OT have not been comprehensively investigated to compare OTR, V 1a R, and V 1b R activities. This led us to obtain a new OTR-selective analog by comprehensive amino acid substitutions of OT and replacement of the disulfide bond. A systematic amino acid scanning (Ala, Leu, Phe, Ser, Glu, or Arg) of desamino OT (dOT) at positions 2, 3, 4, 5, 7, and 8 revealed the tolerability for the substitution at positions 7 and 8. Further detailed study showed that trans-4-hydroxyproline (trans-Hyp) at position 7 and γ-methylleucine [Leu(Me)] at position 8 were markedly effective for improving receptor selectivity without decreasing the potency at the OTR. Subsequently, a combination of these amino acid substitutions with the replacement of the disulfide bond of dOT analogs with a sulfide bond (carba analog) or an amide bond (lactam analog) yielded several promising analogs, including carba-1-[trans-Hyp 7 ,Leu(Me) 8 ]dOT (14) with a higher potency (7.2pM) at OTR than that of OT and marked selectivity (>10,000-fold) over V 1a R and V 1b R. Hence, we investigated comprehensive modification of OT and obtained new OT analogs that exhibited high potency at OTR with marked selectivity. These OTR-selective agonists could be useful to investigate OTR-mediated effects on

  6. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    PubMed

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  7. Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors.

    PubMed

    Kim, Hee Ryung; Duc, Nguyen Minh; Chung, Ka Young

    2018-03-01

    G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as β-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.

  8. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation.

    PubMed

    Reis, Carlos R; Chen, Ping-Hung; Bendris, Nawal; Schmid, Sandra L

    2017-01-17

    Clathrin-mediated endocytosis (CME) constitutes the major pathway for uptake of signaling receptors into eukaryotic cells. As such, CME regulates signaling from cell-surface receptors, but whether and how specific signaling receptors reciprocally regulate the CME machinery remains an open question. Although best studied for its role in membrane fission, the GTPase dynamin also regulates early stages of CME. We recently reported that dynamin-1 (Dyn1), previously assumed to be neuron-specific, can be selectively activated in cancer cells to alter endocytic trafficking. Here we report that dynamin isoforms differentially regulate the endocytosis and apoptotic signaling downstream of TNF-related apoptosis-inducing ligand-death receptor (TRAIL-DR) complexes in several cancer cells. Whereas the CME of constitutively internalized transferrin receptors is mainly dependent on the ubiquitously expressed Dyn2, TRAIL-induced DR endocytosis is selectively regulated by activation of Dyn1. We show that TRAIL stimulation activates ryanodine receptor-mediated calcium release from endoplasmic reticulum stores, leading to calcineurin-mediated dephosphorylation and activation of Dyn1, TRAIL-DR endocytosis, and increased resistance to TRAIL-induced apoptosis. TRAIL-DR-mediated ryanodine receptor activation and endocytosis is dependent on early caspase-8 activation. These findings delineate specific mechanisms for the reciprocal crosstalk between signaling and the regulation of CME, leading to autoregulation of endocytosis and signaling downstream of surface receptors.

  9. TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation

    PubMed Central

    Reis, Carlos R.; Chen, Ping-Hung; Bendris, Nawal; Schmid, Sandra L.

    2017-01-01

    Clathrin-mediated endocytosis (CME) constitutes the major pathway for uptake of signaling receptors into eukaryotic cells. As such, CME regulates signaling from cell-surface receptors, but whether and how specific signaling receptors reciprocally regulate the CME machinery remains an open question. Although best studied for its role in membrane fission, the GTPase dynamin also regulates early stages of CME. We recently reported that dynamin-1 (Dyn1), previously assumed to be neuron-specific, can be selectively activated in cancer cells to alter endocytic trafficking. Here we report that dynamin isoforms differentially regulate the endocytosis and apoptotic signaling downstream of TNF-related apoptosis-inducing ligand–death receptor (TRAIL–DR) complexes in several cancer cells. Whereas the CME of constitutively internalized transferrin receptors is mainly dependent on the ubiquitously expressed Dyn2, TRAIL-induced DR endocytosis is selectively regulated by activation of Dyn1. We show that TRAIL stimulation activates ryanodine receptor-mediated calcium release from endoplasmic reticulum stores, leading to calcineurin-mediated dephosphorylation and activation of Dyn1, TRAIL–DR endocytosis, and increased resistance to TRAIL-induced apoptosis. TRAIL–DR-mediated ryanodine receptor activation and endocytosis is dependent on early caspase-8 activation. These findings delineate specific mechanisms for the reciprocal crosstalk between signaling and the regulation of CME, leading to autoregulation of endocytosis and signaling downstream of surface receptors. PMID:28049841

  10. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew

    2015-11-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.

  11. Quantification of Ligand Binding to G-Protein Coupled Receptors on Cell Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Widdowson, Robert; Smith, David P.; Abell, Ben M.

    2012-01-01

    G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins. PMID:23049983

  12. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    NASA Astrophysics Data System (ADS)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  13. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  14. Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage

    PubMed Central

    Giuliani, D; Mioni, C; Bazzani, C; Zaffe, D; Botticelli, A R; Capolongo, S; Sabba, A; Galantucci, M; Iannone, A; Grieco, P; Novellino, E; Colombo, G; Tomasi, A; Catania, A; Guarini, S

    2007-01-01

    Background and purpose: In circulatory shock, melanocortins have life-saving effects likely to be mediated by MC4 receptors. To gain direct insight into the role of melanocortin MC4 receptors in haemorrhagic shock, we investigated the effects of two novel selective MC4 receptor agonists. Experimental approach: Severe haemorrhagic shock was produced in rats under general anaesthesia. Rats were then treated with either the non-selective agonist [Nle4, D-Phe7]α-melanocyte-stimulating hormone (NDP-α-MSH) or with the selective MC4 agonists RO27-3225 and PG-931. Cardiovascular and respiratory functions were continuously monitored for 2 h; survival rate was recorded up to 24 h. Free radicals in blood were measured using electron spin resonance spectrometry; tissue damage was evaluated histologically 25 min or 24 h after treatment. Key results: All shocked rats treated with saline died within 30-35 min. Treatment with NDP-α-MSH, RO27-3225 and PG-931 produced a dose-dependent (13-108 nmol kg-1 i.v.) restoration of cardiovascular and respiratory functions, and improved survival. The three melanocortin agonists also markedly reduced circulating free radicals relative to saline-treated shocked rats. All these effects were prevented by i.p. pretreatment with the selective MC4 receptor antagonist HS024. Moreover, treatment with RO27-3225 prevented morphological and immunocytochemical changes in heart, lung, liver, and kidney, at both early (25 min) and late (24 h) intervals. Conclusions and Implications: Stimulation of MC4 receptors reversed haemorrhagic shock, reduced multiple organ damage and improved survival. Our findings suggest that selective MC4 receptor agonists could have a protective role against multiple organ failure following circulatory shock. PMID:17245369

  15. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors

    PubMed Central

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-01-01

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. PMID:27049309

  16. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors.

    PubMed

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-05-13

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Selectivity and evolutionary divergence of metabotropic glutamate receptors for endogenous ligands and G proteins coupled to phospholipase C or TRP channels.

    PubMed

    Kang, Hye Jin; Menlove, Kit; Ma, Jianpeng; Wilkins, Angela; Lichtarge, Olivier; Wensel, Theodore G

    2014-10-24

    To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of G(i/o) proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is L-serine-O-phosphate (L-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas L-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of L-glutamate and L-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both L-glutamate and L-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of L-SOP. Experiments with pertussis toxin and dominant-negative Gα(i/o) proteins revealed that mGluR1 couples strongly to TRPC4β through Gα(i/o), in addition to coupling to PLC through Gα(q/11). © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. GPCR-SSFE 2.0-a fragment-based molecular modeling web tool for Class A G-protein coupled receptors.

    PubMed

    Worth, Catherine L; Kreuchwig, Franziska; Tiemann, Johanna K S; Kreuchwig, Annika; Ritschel, Michele; Kleinau, Gunnar; Hildebrand, Peter W; Krause, Gerd

    2017-07-03

    G-protein coupled receptors (GPCRs) are key players in signal transduction and therefore a large proportion of pharmaceutical drugs target these receptors. Structural data of GPCRs are sparse yet important for elucidating the molecular basis of GPCR-related diseases and for performing structure-based drug design. To ameliorate this problem, GPCR-SSFE 2.0 (http://www.ssfa-7tmr.de/ssfe2/), an intuitive web server dedicated to providing three-dimensional Class A GPCR homology models has been developed. The updated web server includes 27 inactive template structures and incorporates various new functionalities. Uniquely, it uses a fingerprint correlation scoring strategy for identifying the optimal templates, which we demonstrate captures structural features that sequence similarity alone is unable to do. Template selection is carried out separately for each helix, allowing both single-template models and fragment-based models to be built. Additionally, GPCR-SSFE 2.0 stores a comprehensive set of pre-calculated and downloadable homology models and also incorporates interactive loop modeling using the tool SL2, allowing knowledge-based input by the user to guide the selection process. For visual analysis, the NGL viewer is embedded into the result pages. Finally, blind-testing using two recently published structures shows that GPCR-SSFE 2.0 performs comparably or better than other state-of-the art GPCR modeling web servers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. G-Protein-Coupled Estrogen Receptor Antagonist G15 Decreases Estrogen-Induced Development of Non-Small Cell Lung Cancer.

    PubMed

    Liu, Changyu; Liao, Yongde; Fan, Sheng; Fu, Xiangning; Xiong, Jing; Zhou, Sheng; Zou, Man; Wang, Jianmiao

    2017-08-25

    G-protein-coupled estrogen receptor (GPER) was found to promote Non-small cell lung cancer (NSCLC) by estrogen, indicating the potential necessity of inhibiting GPER by selective antagonist. This study was performed to elucidate the function of GPER selective inhibitor G15 in NSCLC development. Cytoplasmic GPER (cGPER) and nuclear GPER (nGPER) were detected by immunohistochemical analysis in NSCLC samples. The relation of GPER and estrogen receptor β (ERβ) expression and correlation between GPER, ERβ and clinical factors were analyzed. The effects of activating GPER and function of G15 were analyzed in proliferation of A549, H1793 cell lines and development of urethane-induced adenocarcinoma. Overexpression of cGPER and nGPER was detected in 80.49% (120/150) and 52.00% (78/150) of the NSCLC samples. High expression of GPER related with higher stages, poorer differentiation and high expression of ERβ. Protein level of GPER in A549 and H1793 cell lines increased by treatment of E2, G1 (GPER agonist) or Ful (fulvestrant, ERβ antagonist), and decreased by G15. Administration with G15 reversed the E2- or G1-induced cell growth by inhibiting GPER. In urethane-induced adenocarcinoma mice, number of tumor nodules and tumor index increased in E2 or G1 group and decreased by treatment of G15. These findings deomonstrate that using of G15 to block GPER signaling may be considered as a new therapeutic target in NSCLC.

  20. Tamoxifen and ICI 182, 780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats

    PubMed Central

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-01-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30 minutes compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. PMID:28063803

  1. Tamoxifen and ICI 182,780 activate hypothalamic G protein-coupled estrogen receptor 1 to rapidly facilitate lordosis in female rats.

    PubMed

    Long, Nathan; Long, Bertha; Mana, Asma; Le, Dream; Nguyen, Lam; Chokr, Sima; Sinchak, Kevin

    2017-03-01

    In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior. Published by Elsevier Inc.

  2. Differential agonist and inverse agonist profile of antipsychotics at D2L receptors coupled to GIRK potassium channels.

    PubMed

    Heusler, Peter; Newman-Tancredi, Adrian; Castro-Fernandez, Annabelle; Cussac, Didier

    2007-03-01

    The D(2) dopaminergic receptor represents a major target of antipsychotic drugs. Using the coupling of the human D(2long) (hD(2L)) receptor to G protein-coupled inward rectifier potassium (GIRK) channels in Xenopus laevis oocytes, we examined the activity of antipsychotic agents of different classes - typical, atypical, and a "new generation" of compounds, exhibiting a preferential D(2) and 5-HT(1A) receptor profile. When the hD(2L) receptor was coexpressed with GIRK channels, a series of reference compounds exhibited full agonist (dopamine, and quinpirole), partial agonist (apomorphine, (-)3-PPP, and (+)-UH232) or inverse agonist (raclopride, and L741626) properties. Sarizotan exhibited only very weak partial agonist action. At higher levels of receptor cRNA injected per oocyte, both partial agonist activity and inverse agonist properties were generally more pronounced. The inverse agonist action of L741626 was reversed by interaction with sarizotan, thus confirming the constitutive activity of wild-type hD(2L) receptors in the oocyte expression system. When antipsychotic agents were tested for their actions at the hD(2L) receptor, typical (haloperidol) as well as atypical (nemonapride, ziprasidone, and clozapine) compounds acted as inverse agonists. In contrast, among D(2)/5-HT(1A) antipsychotics, only SLV313 and F15063 behaved as inverse agonists, whilst the other members of this group (bifeprunox, SSR181507 and the recently marketed antipsychotic, aripiprazole) exhibited partial agonist properties. Thus, the X. laevis oocyte expression system highlights markedly different activity of antipsychotics at the hD(2L) receptor. These differential properties may translate to distinct therapeutic potential of these compounds.

  3. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*

    PubMed Central

    Smith, Jeffrey S.; Rajagopal, Sudarshan

    2016-01-01

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408

  4. Phosphorylation and regulation of a Gq/11-coupled receptor by casein kinase 1alpha.

    PubMed

    Budd, D C; McDonald, J E; Tobin, A B

    2000-06-30

    Agonist-mediated receptor phosphorylation by one or more of the members of the G-protein receptor kinase (GRK) family is an established model for G-protein-coupled receptor (GPCR) phosphorylation resulting in receptor desensitization. Our recent studies have, however, suggested that an alternative route to GPCR phosphorylation may be an operation involving casein kinase 1alpha (CK1alpha). In the current study we investigate the involvement of CK1alpha in the phosphorylation of the human m3-muscarinic receptor in intact cells. We show that expression of a catalytically inactive mutant of CK1alpha, designed to act in a dominant negative manner, inhibits agonist-mediated receptor phosphorylation by approximately 40% in COS-7 and HEK-293 cells. Furthermore, we present evidence that a peptide corresponding to the third intracellular loop of the m3-muscarinic receptor (Ser(345)-Leu(463)) is an inhibitor of CK1alpha due to its ability to both act as a pseudo-substrate for CK1alpha and form a high affinity complex with CK1alpha. Expression of this peptide was able to reduce both basal and agonist-mediated m3-muscarinic receptor phosphorylation in intact cells. These results support the notion that CK1alpha is able to mediate GPCR phosphorylation in an agonist-dependent manner and that this may provide a novel mechanism for GPCR phosphorylation. The functional role of phosphorylation was investigated using a mutant of the m3-muscarinic receptor that showed an approximately 80% reduction in agonist-mediated phosphorylation. Surprisingly, this mutant underwent agonist-mediated desensitization suggesting that, unlike many GPCRs, desensitization of the m3-muscarinic receptor is not mediated by receptor phosphorylation. The inositol (1,4, 5)-trisphosphate response did, however, appear to be dramatically potentiated in the phosphorylation-deficient mutant indicating that phosphorylation may instead control the magnitude of the initial inositol phosphate response.

  5. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    PubMed Central

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  6. Improving virtual screening of G protein-coupled receptors via ligand-directed modeling

    PubMed Central

    Simms, John; Christopoulos, Arthur; Wootten, Denise

    2017-01-01

    G protein-coupled receptors (GPCRs) play crucial roles in cell physiology and pathophysiology. There is increasing interest in using structural information for virtual screening (VS) of libraries and for structure-based drug design to identify novel agonist or antagonist leads. However, the sparse availability of experimentally determined GPCR/ligand complex structures with diverse ligands impedes the application of structure-based drug design (SBDD) programs directed to identifying new molecules with a select pharmacology. In this study, we apply ligand-directed modeling (LDM) to available GPCR X-ray structures to improve VS performance and selectivity towards molecules of specific pharmacological profile. The described method refines a GPCR binding pocket conformation using a single known ligand for that GPCR. The LDM method is a computationally efficient, iterative workflow consisting of protein sampling and ligand docking. We developed an extensive benchmark comparing LDM-refined binding pockets to GPCR X-ray crystal structures across seven different GPCRs bound to a range of ligands of different chemotypes and pharmacological profiles. LDM-refined models showed improvement in VS performance over origin X-ray crystal structures in 21 out of 24 cases. In all cases, the LDM-refined models had superior performance in enriching for the chemotype of the refinement ligand. This likely contributes to the LDM success in all cases of inhibitor-bound to agonist-bound binding pocket refinement, a key task for GPCR SBDD programs. Indeed, agonist ligands are required for a plethora of GPCRs for therapeutic intervention, however GPCR X-ray structures are mostly restricted to their inactive inhibitor-bound state. PMID:29131821

  7. Intestinal receptor for heat-stable enterotoxin of Escherichia coli is tightly coupled to a novel form of particulate guanylate cyclase.

    PubMed Central

    Waldman, S A; Kuno, T; Kamisaki, Y; Chang, L Y; Gariepy, J; O'Hanley, P; Schoolnik, G; Murad, F

    1986-01-01

    A novel form of particulate guanylate cyclase tightly coupled by cytoskeletal components to receptors for heat-stable enterotoxin (ST) produced by Escherichia coli can be found in membranes from rat intestinal mucosa. Intestinal particulate guanylate cyclase was resistant to solubilization with detergent alone, with only 30% of the total enzyme activity being extracted with Lubrol-PX. Under similar conditions, 70% of this enzyme was solubilized from rat lung membranes. The addition of high concentrations of sodium chloride to the extraction buffer resulted in greater solubilization of particulate guanylate cyclase from intestinal membranes. Although extraction of intestinal membranes with detergent and salt resulted in greater solubilization of guanylate cyclase, a small fraction of the enzyme activity remained associated with the particulate fraction. This activity was completely resistant to solubilization with a variety of detergents and chaotropes. Particulate guanylate cyclase and the ST receptor solubilized by detergent retained their abilities to produce cyclic GMP and bind ST, respectively. However, ST failed to activate particulate guanylate cyclase in detergent extracts. In contrast, guanylate cyclase resistant to solubilization remained functional and coupled to the ST receptor since enzyme activation by ST was unaffected by various extraction procedures. The possibility that the ST receptor and particulate guanylate cyclase were the same molecule was explored. ST binding and cyclic GMP production were separated by affinity chromatography on GTP-agarose. Similarly, guanylate cyclase migrated as a 300,000-dalton protein, while the ST receptor migrated as a 240,000-dalton protein on gel filtration chromatography. Also, thiol-reactive agents such as cystamine and N-ethylmaleimide inhibited guanylate cyclase activation by ST, with no effect on receptor binding of ST. These data suggest that guanylate cyclase and the ST receptor are independent proteins

  8. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein.

    PubMed

    Boado, Ruben J; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Zhou, Qing-Hui; Pardridge, William M

    2010-03-01

    Decoy receptors, such as the human tumor necrosis factor receptor (TNFR), are potential new therapies for brain disorders. However, decoy receptors are large molecule drugs that are not transported across the blood-brain barrier (BBB). To enable BBB transport of a TNFR decoy receptor, the human TNFR-II extracellular domain was re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb acts as a molecular Trojan horse to ferry the TNFR therapeutic decoy receptor across the BBB. The HIRMAb-TNFR fusion protein was expressed in stably transfected CHO cells, and was analyzed with electrophoresis, Western blotting, size exclusion chromatography, and binding assays for the HIR and TNFalpha. The HIRMAb-TNFR fusion protein was radio-labeled by trititation, in parallel with the radio-iodination of recombinant TNFR:Fc fusion protein, and the proteins were co-injected in the adult Rhesus monkey. The TNFR:Fc fusion protein did not cross the primate BBB in vivo, but the uptake of the HIRMAb-TNFR fusion protein was high and 3% of the injected dose was taken up by the primate brain. The TNFR was selectively targeted to brain, relative to peripheral organs, following fusion to the HIRMAb. This study demonstrates that decoy receptors may be re-engineered as IgG fusion proteins with a BBB molecular Trojan horse that selectively targets the brain, and enables penetration of the BBB in vivo. IgG-decoy receptor fusion proteins represent a new class of human neurotherapeutics. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context.

    PubMed

    Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Zhang, Alice; Shinjo, Yuji; Okde, Rakan; Aoki, Junken; Inoue, Asuka; Hébert, Terence E

    2017-03-31

    Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gα q , Gα 11 , Gα 12 , and Gα 13 or β-arrestins, we showed that Gα q and Gα 11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor*

    PubMed Central

    Hurst, Dow P.; Grossfield, Alan; Lynch, Diane L.; Feller, Scott; Romo, Tod D.; Gawrisch, Klaus; Pitman, Michael C.; Reggio, Patricia H.

    2010-01-01

    Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (−)-7′-isothiocyanato-11-hydroxy-1′,1′dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207–1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane α-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. PMID:20220143

  11. Design and Synthesis of Selective Estrogen Receptor beta Agonists and Their Pharmacology

    NASA Astrophysics Data System (ADS)

    Perera, K. L. Iresha Sampathi

    Estrogens (17beta-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERalpha) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERbeta) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERbeta selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERbeta selective agonists have been developed, however, none of these have made it to clinical use due to their lower selectivity or considerable side effects. The research in this dissertation involved the design of non-steroidal ERbeta selective agonists for hippocampal memory consolidation. The step-wise process to achieve the ultimate goal of this research includes: (1) design and synthesis of (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives, (2) in vitro biological evaluation of synthesized compounds to identify highly potent and selective candidates, and (3) in vivo biological evaluation of selected candidates for hippocampal memory consolidation. Several (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives were synthesized having structural alterations on both aromatic and cyclohexyl/heptyl ring scaffolds. ERbeta agonist potency was initially evaluated in TR-FRET ERbeta ligand binding assay and compounds having high potency were re-evaluated in functional cell based assays for potency and ERbeta vs. ERalpha selectivity. Two compounds from each series, ISP 163-PK4 and ISP 358-2 were identified as most selective ERbeta agonists. Both compounds revealed high metabolic stability, solubility and no cross reactivity

  12. Nonsteroidal Selective Androgen Receptor Modulators and Selective Estrogen Receptor β Agonists Moderate Cognitive Deficits and Amyloid-β Levels in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    2013-01-01

    Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer’s disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer’s disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer’s disease warrants further investigation. PMID:24020966

  13. Selective dopamine receptor 4 activation mediates the hippocampal neuronal calcium response via IP3 and ryanodine receptors.

    PubMed

    Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao

    2017-09-01

    Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.

  14. Peptide drugs to target G protein-coupled receptors.

    PubMed

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  16. Upregulation of Mas-related G Protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1.

    PubMed

    Manorak, Wichayapha; Idahosa, Chizobam; Gupta, Kshitij; Roy, Saptarshi; Panettieri, Reynold; Ali, Hydar

    2018-01-03

    Hemokinin-1 (HK-1) is a novel neuropeptide produced by human bronchial cells and macrophages and causes contraction of human bronchi ex vivo. It is also generated by antigen/IgE-activated murine mast cells (MCs) and contributes to experimental chronic allergic airway inflammation via the activation of the neurokinin receptor-1 (NK-1R) expressed on murine MCs. We found elevated MC numbers in the lungs of individuals who died from asthma (asthma) when compared to lungs of individuals who died from other causes (non-asthma). Mas-related G Protein coupled receptor X2 (MRGPRX2) is a novel G-protein coupled receptor (GPCR) that is expressed predominantly on human MCs. We detected low level of MRGPRX2 in non-asthma lung MCs but its expression was significantly upregulated in asthma lung MCs. HK-1 caused degranulation in a human MC line (LAD2) and RBL-2H3 cells stably expressing MRGPRX2 and this response was resistant to inhibition by an NK-1R antagonist. However, knockdown of MRGPRX2 in LAD2 cells resulted in substantial inhibition of HK-1-induced degranulation. These findings suggest that while HK-1 contributes to the development of experimental asthma in mice via NK-1R on murine MCs the effect of this neuropeptide on human bronchoconstriction likely reflects the activation of MRGPRX2 on lung MCs. Thus, development of selective MRGPRX2 antagonists could serve as novel target for the modulation of asthma.

  17. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli.

    PubMed

    Link, A James; Skretas, Georgios; Strauch, Eva-Maria; Chari, Nandini S; Georgiou, George

    2008-10-01

    G protein-coupled receptors (GPCRs) are notoriously difficult to express, particularly in microbial systems. Using GPCR fusions with the green fluorescent protein (GFP), we conducted studies to identify bacterial host effector genes that result in a general and significant enhancement in the amount of membrane-integrated human GPCRs that can be produced in Escherichia coli. We show that coexpression of the membrane-bound AAA+ protease FtsH greatly enhances the expression yield of four different class I GPCRs, irrespective of the presence of GFP. Using this new expression system, we produced 0.5 and 2 mg/L of detergent-solubilized and purified full-length central cannabinoid receptor (CB1) and bradykinin receptor 2 (BR2) in shake flask cultures, respectively, two proteins that had previously eluded expression in microbial systems.

  19. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies.

    PubMed

    Cuthbert, Peter C; Stanford, Lianne E; Coba, Marcelo P; Ainge, James A; Fink, Ann E; Opazo, Patricio; Delgado, Jary Y; Komiyama, Noboru H; O'Dell, Thomas J; Grant, Seth G N

    2007-03-07

    Understanding the mechanisms whereby information encoded within patterns of action potentials is deciphered by neurons is central to cognitive psychology. The multiprotein complexes formed by NMDA receptors linked to synaptic membrane-associated guanylate kinase (MAGUK) proteins including synapse-associated protein 102 (SAP102) and other associated proteins are instrumental in these processes. Although humans with mutations in SAP102 show mental retardation, the physiological and biochemical mechanisms involved are unknown. Using SAP102 knock-out mice, we found specific impairments in synaptic plasticity induced by selective frequencies of stimulation that also required extracellular signal-regulated kinase signaling. This was paralleled by inflexibility and impairment in spatial learning. Improvement in spatial learning performance occurred with extra training despite continued use of a suboptimal search strategy, and, in a separate nonspatial task, the mutants again deployed a different strategy. Double-mutant analysis of postsynaptic density-95 and SAP102 mutants indicate overlapping and specific functions of the two MAGUKs. These in vivo data support the model that specific MAGUK proteins couple the NMDA receptor to distinct downstream signaling pathways. This provides a mechanism for discriminating patterns of synaptic activity that lead to long-lasting changes in synaptic strength as well as distinct aspects of cognition in the mammalian nervous system.

  20. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  1. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    NASA Astrophysics Data System (ADS)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  2. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone.

    PubMed

    Heino, Terhi J; Chagin, Andrei S; Sävendahl, Lars

    2008-05-01

    Estrogens have significant impact on bone mineral metabolism. Besides the classical estrogen receptors (ERalpha and ERbeta), a trans-membrane G-protein-coupled receptor (GPR30) has been demonstrated to mediate estrogenic effects. We aimed to study whether GPR30 is expressed in bone cells and if so, whether the level of expression is developmentally regulated. Metaphyseal bone biopsies were collected from the tibia in 14 boys and 6 girls, all at different stages of puberty. GPR30 protein expression was studied by immunohistochemistry in paraffin-embedded sections. GPR30-positive osteocytes and osteoblasts were quantified and linear regression analysis was applied. Cytoplasmic GPR30 expression was detected in osteoblasts, osteocytes, and osteoclasts. Osteocytes were more frequently positive for GPR30 than osteoblasts (58+/-4% vs 46+/-3% positive cells respectively, P<0.05). Detailed analysis demonstrated that GPR30 positivity declined during pubertal development in osteocytes (R=-0.56, P<0.01) but not in osteoblasts (R=-0.31, P>0.05). No sex difference was observed in the numbers of GPR30-positive osteoblasts or osteocytes. Furthermore, GPR30 expression did not correlate with chronological or bone age. In conclusion, the novel ER GPR30 is expressed in osteoblasts, osteocytes, and osteoclasts suggesting that non-genomic estrogen signaling via GPR30 may exist in bone. However, the functional role of GPR30 in bone tissue remains to be elucidated.

  3. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.

    PubMed

    Brunner, Kurt; Omann, Markus; Pucher, Marion E; Delic, Marizela; Lehner, Sylvia M; Domnanich, Patrick; Kratochwill, Klaus; Druzhinina, Irina; Denk, Dagmar; Zeilinger, Susanne

    2008-12-01

    Galpha subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affiliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus.

  4. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: INSIGHTS INTO PEPTIDE-BINDING MODES AND ALLOSTERIC MODULATION OF THE CALCITONIN RECEPTOR BY RECEPTOR ACTIVITY-MODIFYING PROTEINS.

    PubMed

    Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A

    2016-04-15

    Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Identification of potent, selective, CNS-targeted inverse agonists of the ghrelin receptor.

    PubMed

    McClure, Kim F; Jackson, Margaret; Cameron, Kimberly O; Kung, Daniel W; Perry, David A; Orr, Suvi T M; Zhang, Yingxin; Kohrt, Jeffrey; Tu, Meihua; Gao, Hua; Fernando, Dilinie; Jones, Ryan; Erasga, Noe; Wang, Guoqiang; Polivkova, Jana; Jiao, Wenhua; Swartz, Roger; Ueno, Hirokazu; Bhattacharya, Samit K; Stock, Ingrid A; Varma, Sam; Bagdasarian, Victoria; Perez, Sylvie; Kelly-Sullivan, Dawn; Wang, Ruduan; Kong, Jimmy; Cornelius, Peter; Michael, Laura; Lee, Eunsun; Janssen, Ann; Steyn, Stefanus J; Lapham, Kimberly; Goosen, Theunis

    2013-10-01

    The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni.

    PubMed

    MacDonald, Kevin; Kimber, Michael J; Day, Tim A; Ribeiro, Paula

    2015-07-01

    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation.

    PubMed

    Daigle, Tanya L; Caron, Marc G

    2012-08-15

    Although G-protein-coupled receptor kinase 2 (GRK2) is the most widely studied member of a family of kinases that has been shown to exert powerful influences on a variety of G-protein-coupled receptors, its role in the brain remains largely unknown. Here we report the localization of GRK2 in the mouse brain and generate novel conditional knock-out (KO) mice to assess the physiological importance of this kinase in cholinergic neurons. Mice with the selective deletion of GRK2 in this cell population (ChAT(IRES-cre)Grk2(f/f) KO mice) exhibit reduced behavioral responsiveness to challenge with oxotremorine-M (Oxo-M), a nonselective muscarinic acetylcholine receptor agonist. Specifically, Oxo-M-induced hypothermia, hypolocomotion, and salivation were markedly reduced in these animals, while analgesic responses were unaltered. In contrast, we found that GRK2 deficiency in cholinergic neurons does not alter cocaine-induced psychomotor activation, behavioral sensitization, or conditioned place preference. These results demonstrate that the elimination of GRK2 in cholinergic neurons reduces sensitivity to select muscarinic-mediated behaviors, while dopaminergic effects remain intact and further suggests that GRK2 may selectively impair muscarinic acetylcholine receptor-mediated function in vivo.

  8. Stabilizing selection on microsatellite allele length at arginine vasopressin 1a receptor and oxytocin receptor loci

    PubMed Central

    Kallio, Eva R.; Koskela, Esa; Lonn, Eija

    2017-01-01

    The loci arginine vasopressin receptor 1a (avpr1a) and oxytocin receptor (oxtr) have evolutionarily conserved roles in vertebrate social and sexual behaviour. Allelic variation at a microsatellite locus in the 5′ regulatory region of these genes is associated with fitness in the bank vole Myodes glareolus. Given the low frequency of long and short alleles at these microsatellite loci in wild bank voles, we used breeding trials to determine whether selection acts against long and short alleles. Female bank voles with intermediate length avpr1a alleles had the highest probability of breeding, while male voles whose avpr1a alleles were very different in length had reduced probability of breeding. Moreover, there was a significant interaction between male and female oxtr genotypes, where potential breeding pairs with dissimilar length alleles had reduced probability of breeding. These data show how genetic variation at microsatellite loci associated with avpr1a and oxtr is associated with fitness, and highlight complex patterns of selection at these loci. More widely, these data show how stabilizing selection might act on allele length frequency distributions at gene-associated microsatellite loci. PMID:29237850

  9. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.

    PubMed

    Marino, Kristen A; Filizola, Marta

    2018-01-01

    An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important-albeit static-pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches.

  10. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations

    PubMed Central

    Marino, Kristen A.; Filizola, Marta

    2017-01-01

    An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important—albeit static—pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches. PMID:29188572

  11. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    PubMed

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  12. Allosteric Modulation of Metabotropic Glutamate Receptors

    PubMed Central

    Sheffler, Douglas J.; Gregory, Karen J.; Rook, Jerri M.; Conn, P. Jeffrey

    2013-01-01

    The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson’s disease, and Fragile X syndrome. PMID:21907906

  13. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological

  14. Evaluation of the Role of G Protein-Coupled Receptor Kinase 3 in Desensitization of Mouse Odorant Receptors in a Mammalian Cell Line and in Olfactory Sensory Neurons

    PubMed Central

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi

    2014-01-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated. PMID:25313015

  15. Regulation of mGlu4 metabotropic glutamate receptor signaling by type-2 G-protein coupled receptor kinase (GRK2).

    PubMed

    Iacovelli, L; Capobianco, L; Iula, M; Di Giorgi Gerevini, V; Picascia, A; Blahos, J; Melchiorri, D; Nicoletti, F; De Blasi, A

    2004-05-01

    We examined the role of G-protein coupled receptor kinase-2 (GRK2) in the homologous desensitization of mGlu4 metabotropic glutamate receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Receptor activation with the agonist l-2-amino-4-phosphonobutanoate (l-AP4) stimulated at least two distinct signaling pathways: inhibition of cAMP formation and activation of the mitogen-activated protein kinase (MAPK) pathway [assessed by Western blot analysis of phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2]. Activation of both pathways was attenuated by pertussis toxin. Overexpression of GRK2 (but not GRK4) largely attenuated the stimulation of the MAPK pathway by l-AP4, whereas it slightly potentiated the inhibition of FSK-stimulated cAMP formation. Transfection with a kinase-dead mutant of GRK2 (GRK2-K220R) or with the C-terminal fragment of GRK2 also reduced the mGlu4-mediated stimulation of MAPK, suggesting that GRK2 binds to the Gbetagamma subunits to inhibit signal propagation toward the MAPK pathway. This was confirmed by the evidence that GRK2 coimmunoprecipitated with Gbetagamma subunits in an agonist-dependent manner. Finally, neither GRK2 nor its kinase-dead mutant had any effect on agonist-induced mGlu4 receptor internalization in HEK293 cells transiently transfected with GFP-tagged receptors. Agonist-dependent internalization was instead abolished by a negative-dominant mutant of dynamin, which also reduced the stimulation of MAPK pathway by l-AP4. We speculate that GRK2 acts as a "switch molecule" by inhibiting the mGlu4 receptor-mediated stimulation of MAPK and therefore directing the signal propagation toward the inhibition of adenylyl cyclase.

  16. The two-state dimer receptor model: a general model for receptor dimers.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  17. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.

  18. G protein βγ11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the α subunit type

    PubMed Central

    Azpiazu, Inaki; Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.

    2008-01-01

    G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling β2 adrenergic receptors causes rapid reversible translocation of the G protein γ11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the β1 subunit suggests that γ11 translocates as a βγ complex. Pertussis toxin ADP ribosylation of the αi subunit type or substitution of the C terminal domain of αo with the corresponding region of αs inhibits γ11 translocation demonstrating that α subunit interaction with a receptor and its activation are requirements for the translocation. The rate of γ11 translocation is sensitive to the rate of activation of the G protein α subunit. α subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of γ11 translocation compared to α subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of γ11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of γ11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and α subunit types in a live cell. PMID:16242307

  19. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics.

    PubMed

    Miao, Yinglong; Nichols, Sara E; McCammon, J Andrew

    2014-04-14

    G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).

  20. Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling.

    PubMed

    Largent-Milnes, Tally M; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H; Vanderah, Todd W

    2008-08-01

    Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting

  1. Structure of a Double Transmembrane Fragment of a G-Protein-Coupled Receptor in Micelles

    PubMed Central

    Neumoin, Alexey; Cohen, Leah S.; Arshava, Boris; Tantry, Subramanyam; Becker, Jeffrey M.; Zerbe, Oliver; Naider, Fred

    2009-01-01

    Abstract The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for α-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [15N], [15N, 13C], [15N, 13C, 2H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three α-helices encompassing residues 39–47, 49–72, and 80–103, with higher flexibility around the internal Arg58 site of TM1. RMSD values of individually superimposed helical segments 39–47, 49–72, and 80–103 were 0.25 ± 0.10 Å, 0.40 ± 0.13 Å, and 0.57 ± 0.19 Å, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G56VRSG60 region. 15N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor. PMID:19383463

  2. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan

    2016-04-22

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.

    PubMed

    Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H

    2002-12-05

    A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.

  4. Characterization of [3H]LS-3-134, a Novel Arylamide Phenylpiperazine D3 Dopamine Receptor Selective Radioligand

    PubMed Central

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.

    2014-01-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389

  5. P2Y nucleotide receptors: promise of therapeutic applications.

    PubMed

    Jacobson, Kenneth A; Boeynaems, Jean-Marie

    2010-07-01

    Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G-protein-coupled receptors, termed P2Y. The receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease and thrombosis. On the horizon are novel treatments for cardiovascular diseases, inflammatory diseases and neurodegeneration. Published by Elsevier Ltd.

  6. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Post-synaptic Density-95 (PSD-95) Binding Capacity of G-protein-coupled Receptor 30 (GPR30), an Estrogen Receptor That Can Be Identified in Hippocampal Dendritic Spines*

    PubMed Central

    Akama, Keith T.; Thompson, Louisa I.; Milner, Teresa A.; McEwen, Bruce S.

    2013-01-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity. PMID:23300088

  8. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines.

    PubMed

    Akama, Keith T; Thompson, Louisa I; Milner, Teresa A; McEwen, Bruce S

    2013-03-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.

  9. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  10. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits.

    PubMed

    Suga, Hinako; Haga, Tatsuya

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.

  11. A novel estrogen receptor GPER mediates proliferation induced by 17β-estradiol and selective GPER agonist G-1 in estrogen receptor α (ERα)-negative ovarian cancer cells.

    PubMed

    Liu, Huidi; Yan, Yan; Wen, Haixia; Jiang, Xueli; Cao, Xuefeng; Zhang, Guangmei; Liu, Guoyi

    2014-05-01

    G protein-coupled estrogen receptor (GPER) is recently identified as a membrane-associated estrogen receptor that mediates non-genomic effects of estrogen. Our previous immunohistochemistry study found an association between GPER and the proliferation of epithelial ovarian cancer. However, the contributions and mechanisms of GPER in the proliferation of ovarian cancers are not clear. We have examined the role of GPER in estrogen receptor α (ERα)-negative/GPER positive OVCAR5 ovarian cancer cell line. MTT assay was used to detect cell proliferation. BrdU incorporation assay was used to measure the cells in S-phase. Protein expression of marker genes of proliferation, cell cycle and apoptosis were examined by Western blot. The results showed that 17β-estradiol and selective GPER agonist G-1 stimulated the proliferation of OVCAR5 cells and increased the cells in S-phase. Both ligands upregulated the protein levels of c-fos and cyclin D1. Small interfering RNA targeting GPER or G protein inhibitor pertussin toxin (PTX) inhibited basal cell proliferation and attenuated 17β-estradiol- or G-1-induced cell proliferation. GPER mediated cell growth was also associated with the apoptosis of OVCAR5 cells. These findings suggest that GPER has an important function in the proliferation of ovarian cancer cells lacking ERα. GPER might be a promising therapeutic target in ovarian cancer. © 2014 International Federation for Cell Biology.

  12. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    PubMed

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  13. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  14. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

    PubMed Central

    Yang, Fan; Yu, Xiao; Liu, Chuan; Qu, Chang-Xiu; Gong, Zheng; Liu, Hong-Da; Li, Fa-Hui; Wang, Hong-Mei; He, Dong-Fang; Yi, Fan; Song, Chen; Tian, Chang-Lin; Xiao, Kun-Hong; Wang, Jiang-Yun; Sun, Jin-Peng

    2015-01-01

    Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. PMID:26347956

  16. Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection.

    PubMed

    Hagan, M M; Rushing, P A; Benoit, S C; Woods, S C; Seeley, R J

    2001-03-01

    Agouti-related peptide (AgRP) is a receptor antagonist of central nervous system (CNS) melanocortin receptors and appears to have an important role in the control of food intake since exogenous CNS administration in rats and overexpression in mice result in profound hyperphagia and weight gain. Given that AgRP is heavily colocalized with neuropeptide Y (NPY) and that orexigenic effects of NPY depend on activity at opioid receptors, we hypothesized that AgRP's food-intake effects are also mediated by opioid receptors. Subthreshold doses of the opioid receptor antagonist naloxone blocked AgRP-induced intake when given simultaneously but not 24 h after AgRP injection. Opioids not only influence food intake but food selection as well. Hence, we tested AgRP's effect to alter food choice between matched diets with differing dietary fat content. AgRP selectively enhanced intake of the high-fat but not the low-fat diet. Additionally, AgRP selectively increased chow intake in rats given ad libitum access to a 20% sucrose solution and standard rat chow. The current results indicate that AgRP influences not only caloric intake but food selection as well and that the early effects of AgRP depend critically on an interaction with opioid receptors.

  17. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  18. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide-gated channels.

    PubMed

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of

  19. Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence.

    PubMed

    El-Mezayen, Nesrine S; El-Hadidy, Wessam F; El-Refaie, Wessam M; Shalaby, Thanaa I; Khattab, Mahmoud M; El-Khatib, Aiman S

    2018-05-22

    So far, liver fibrosis still has no clinically-approved treatment. The loss of stored vitamin-A (V A ) in hepatic stellate cells (HSCs), the main regulators to hepatic fibrosis, can be applied as a mechanism for their targeting. Valsartan is a good candidate for this approach; it is a marketed oral-therapy with inverse- and partial-agonistic activity to the over-expressed angiotensin-II type1 receptor (AT1R) and depleted nuclear peroxisome proliferator-activated receptor-gamma (PPAR-γ), respectively, in activated HSCs. However, efficacy on AT1R and PPAR-γ necessitates high drug permeability which is lacking in valsartan. In the current study, liposomes were used as nanocarriers for valsartan to improve its permeability and hence efficacy. They were coupled to V A and characterized for HSCs-targeting. Tracing of orally-administered fluorescently-labeled V A -coupled liposomes in normal rats and their fluorescence intensity quantification in different organs convincingly demonstrated their intestinal entrapment. On the other hands, their administration to rats with induced fibrosis revealed preferential hepatic, and less intestinal, accumulation which lasted up to six days. This indicated their uptake by intestinal stellate cells that acted as a depot for their release over time. Confocal microscopical examination of immunofluorescently-stained HSCs in liver sections, with considerable formula accumulation, confirmed HSCs-targeting and nuclear uptake. Consequently, V A -coupled valsartan-loaded liposomes (VLC)-therapy resulted in profound re-expression of hepatic Mas-receptor and PPAR-γ, potent reduction of fibrogenic mediators' level and nearly normal liver function tests. Therefore, VLC epitomizes a promising antifibrotic therapy with exceptional extended action and additional PPAR-γ agonistic activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Disruption of Chemoreceptor Signaling Arrays by High Levels of CheW, the Receptor-Kinase Coupling Protein

    PubMed Central

    Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2017-01-01

    Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303

  1. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.

    PubMed

    Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B

    2012-06-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.

  2. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  3. Regulation of neuronal communication by G protein-coupled receptors.

    PubMed

    Huang, Yunhong; Thathiah, Amantha

    2015-06-22

    Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. The role of selective estrogen receptor modulators in the treatment of schizophrenia.

    PubMed

    Bratek, Agnieszka; Krysta, Krzysztof; Drzyzga, Karolina; Barańska, Justyna; Kucia, Krzysztof

    2016-09-01

    Gender differences in schizophrenia have been recognized for a long time and it has been widely accepted that sex steroid hormones, especially estradiol, are strongly attributed to this fact. Two hypotheses regarding estradiol action in psychoses gained special research attention - the estrogen protection hypothesis and hypoestrogenism hypothesis. A growing number of studies have shown benefits in augmenting antipsychotic treatment with estrogens or selective estrogen receptor modulators (SERM). This review is focused on the role of selective estrogen receptor modulators in the treatment of schizophrenic patients. In order to achieve this result PubMed was searched using the following terms: schizophrenia, raloxifene, humans. We reviewed only randomized, placebo-controlled studies. Raloxifene, a selective estrogen receptor modulator was identified as useful to improve negative, positive, and general psychopathological symptoms, and also cognitive functions. All reviewed studies indicated improvement in at least one studied domain. Augmentation with raloxifene was found to be a beneficial treatment strategy for chronic schizophrenia both in female and male patients, however potential side effects (a small increase in the risk of venous thromboembolism and endometrial cancer) should be carefully considered. SERMs could be an effective augmentation strategy in the treatment of both men women with schizophrenia, although further research efforts are needed to study potential long-term side effects.

  5. Do Plants Contain G Protein-Coupled Receptors?1[C][W][OPEN

    PubMed Central

    Taddese, Bruck; Upton, Graham J.G.; Bailey, Gregory R.; Jordan, Siân R.D.; Abdulla, Nuradin Y.; Reeves, Philip J.; Reynolds, Christopher A.

    2014-01-01

    Whether G protein-coupled receptors (GPCRs) exist in plants is a fundamental biological question. Interest in deorphanizing new GPCRs arises because of their importance in signaling. Within plants, this is controversial, as genome analysis has identified 56 putative GPCRs, including G protein-coupled receptor1 (GCR1), which is reportedly a remote homolog to class A, B, and E GPCRs. Of these, GCR2 is not a GPCR; more recently, it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix-alignment method, which has been benchmarked against the class A-class B-class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologs to class A, class B, and class F GPCRs and shown that GCR1 is closer to class A and/or class B GPCRs than class A, class B, or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the six GPCR classes. Variability comparisons provide additional evidence that GCR1 homologs have the GPCR fold. From the alignments and a GCR1 comparative model, we have identified motifs that are common to GCR1, class A, B, and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fold. PMID:24246381

  6. Expression pattern of G protein‑coupled estrogen receptor 1 (GPER) in human cumulus granulosa cells (CGCs) of patients with PCOS.

    PubMed

    Zang, Lili; Zhang, Quan; Zhou, Yi; Zhao, Yan; Lu, Linlin; Jiang, Zhou; Peng, Zhen; Zou, Shuhua

    2016-06-01

    Estradiol mediates its actions by binding to classical nuclear receptors, estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and the non-classical G protein-coupled estrogen receptor 1(GPER). Several gene knockdown models have shown the importance of the receptors for growth of the oocyte and for ovulation. The aim of our study was to identify the pattern of GPER expression in human cumulus granulosa cells (CGCs) from ovarian follicles at different stages of oocyte maturation, and the differences of GPER expression between polycystic ovary syndrome (PCOS) patients and non-PCOS women. Thirty-eight cases of PCOS patients and a control group of thirty-two infertile women without PCOS were used in this study. GPER's location in CGCs was investigated by immunohistochemistry. Quantitative RT-PCR and western blot were used to identify the quantify GPER expression. Here we demonstrated that GPER was expressed in CGCs of both PCOS patients and non-PCOS women, and the expression of GPER was decreased significantly during oocyte maturation. But the expression levels of GPER in CGCs of PCOS patients and non-PCOS women were not significantly different. The data indicate that GPER may play a role during human oocyte maturation through its action in cumulus granulosa cells. AMHRIIs: anti-Mullerian hormone type II receptors; BMI: body mass index; CGCs: cumulus granulosa cells; COH: controlled ovarian hyperstimulation; E2: estradiol; EGFR: epidermal growth factor receptor; ER-α: estrogen receptor; ER-β: estrogen receptor β; FF: follicular fluid; FSH: follicle-stimulating hormone; GCs: granulosa cells; GPER: G protein-coupled estrogen receptor 1; GV: germinal vesicle; GVBD: germinal vesicle breakdown; HCG: human chorionic gonadotropin; IRS: immunoreactive score; IVF-ET: in vitro fertilization and embryo transfer; MI: metaphase I; MII: metaphase II; MAPK: mitogen-activated protein kinase; OCCCs: oocyte corona cumulus complexes; PCOS: polycystic ovarian syndrome; q

  7. Selective regulation of nuclear orphan receptors 4A by adenosine receptor subtypes in human mast cells

    PubMed Central

    Zhang, Li; Paine, Catherine

    2010-01-01

    Nuclear orphan receptors 4A (NR4A) are early responsive genes that belong to the superfamily of hormone receptors and comprise NR4A1, NR4A2 and NR4A3. They have been associated to transcriptional activation of multiple genes involved in inflammation, apoptosis and cell cycle control. Here, we establish a link between NR4As and adenosine, a paradoxical inflammatory molecule that can contribute to persistence of inflammation or mediate inflammatory shutdown. Transcriptomics screening of the human mast cell-line HMC-1 revealed a sharp induction of transcriptionally active NR4A2 and NR4A3 by the adenosine analogue NECA. The concomitant treatment of NECA and the adenosine receptor A2A (A2AAR) selective antagonist SCH-58261 exaggerated this effect, suggesting that upregulation of these factors in mast cells is mediated by other AR subtypes (A2B and A3) and that A2AAR activation counteracts NR4A2 and NR4A3 induction. In agreement with this, A2AAR-silencing amplified NR4A induction by NECA. Interestingly, a similar A2AAR modulatory effect was observed on ERK1/2 phosphorylation because A2AAR blockage exacerbated NECA-mediated phosphorylation of ERK1/2. In addition, PKC or MEK1/2 inhibition prevented ERK1/2 phosphorylation and antagonized AR-mediated induction of NR4A2 and NR4A3, suggesting the involvement of these kinases in AR to NR4A signaling. Finally, we observed that selective A2AAR activation with CGS-21680 blocked PMA-induced ERK1/2 phosphorylation and modulated the overexpression of functional nuclear orphan receptors 4A. Taken together, these results establish a novel PKC/ERK/nuclear orphan receptors 4A axis for adenosinergic signaling in mast cells, which can be modulated by A2AAR activation, not only in the context of adenosine but of other mast cell activating stimuli as well. PMID:21234122

  8. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  9. Novel, potent, and radio-iodinatable somatostatin receptor 1 (sst1) selective analogues.

    PubMed

    Erchegyi, Judit; Cescato, Renzo; Grace, Christy Rani R; Waser, Beatrice; Piccand, Véronique; Hoyer, Daniel; Riek, Roland; Rivier, Jean E; Reubi, Jean Claude

    2009-05-14

    The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.

  10. G-protein-coupled receptors participate in cytokinesis

    PubMed Central

    Zhang, Xin; Bedigian, Anne V.; Wang, Wenchao; Eggert, Ulrike S.

    2014-01-01

    Cytokinesis, the last step during cell division, is a highly coordinated process that involves the relay of signals from both the outside and inside of the cell. We have a basic understanding of how cells regulate internal events, but how cells respond to extracellular cues is less explored. In a systematic RNAi screen of G-protein-coupled receptors (GPCRs) and their effectors, we found that some GPCRs are involved in cytokinesis. RNAi knockdown of these GPCRs caused increased binucleated cell formation, and live cell imaging showed that most formed midbodies but failed at the abscission stage. OR2A4 localized to cytokinetic structures in cells and its knockdown caused cytokinesis failure at an earlier stage, likely due to effects on the actin cytoskeleton. Identifying the downstream components that transmit GPCR signals during cytokinesis will be the next step and we show that GIPC1, an adaptor protein for GPCRs, may play a part. RNAi knockdown of GIPC1 significantly increased binucleated cell formation. Understanding the molecular details of GPCRs and their interaction proteins in cytokinesis regulation will give us important clues about GPCRs signaling as well as how cells communicate with their environment during division. PMID:22888021

  11. Selective androgen receptor modulators in preclinical and clinical development.

    PubMed

    Narayanan, Ramesh; Mohler, Michael L; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.

  12. Recruitment of β-arrestin2 to the dopamine D2 receptor: Insights into anti-psychotic and anti-parkinsonian drug receptor signaling

    PubMed Central

    Klewe, Ib V.; Nielsen, Søren M.; Tarpø, Louise; Urizar, Eneko; Dipace, Concetta; Javitch, Jonathan A.; Gether, Ulrik; Egebjerg, Jan; Christensen, Kenneth V.

    2013-01-01

    Drugs acting at dopamine D2-like receptors play a pivotal role in the treatment of both schizophrenia and Parkinson’s disease. Recent studies have demonstrated a role for G-protein independent D2 receptor signaling pathways acting through β-arrestin. In this study we describe the establishment of a Bioluminescence Resonance Energy Transfer (BRET) assay for measuring dopamine induced recruitment of human β-arrestin2 to the human dopamine D2 receptor. Dopamine, as well as the dopamine receptor agonists pramipexole and quinpirole, acted as full agonists in the assay as reflected by their ability to elicit marked concentration dependent increases in the BRET signal signifying β-arrestin2 recruitment to the D2 receptor. As expected from their effect on G-protein coupling and cAMP levels mediated through the D2 receptor RNPA, pergolide, apomorphine, ropinirole, bromocriptine, 3PPP, terguride, aripiprazole, SNPA all acted as partial agonists with decreasing efficacy in the BRET assay. In contrast, a wide selection of typical and atypical anti-psychotics was incapable of stimulating β-arrestin2 recruitment to the D2 receptor. Moreover, we observed that haloperidol, sertindole, olanzapine, clozapine and ziprasidone all fully inhibited the dopamine induced β-arrestin2 recruitment to D2 receptor (short variant) in a concentration dependent manner. We conclude that most anti-psychotics are incapable of stimulating β-arrestin2 recruitment to the dopamine D2 receptor, in accordance with their antagonistic properties at the level of G-protein coupling. PMID:18455202

  13. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    PubMed

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  14. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

    PubMed Central

    Heidbreder, Christian A.; Newman, Amy H.

    2011-01-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845

  15. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders.

    PubMed

    Heidbreder, Christian A; Newman, Amy H

    2010-02-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  16. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    PubMed

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  17. Selective androgen receptor modulators as function promoting therapies.

    PubMed

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  18. The pharmacology of Ro 64-6198, a systemically active, nonpeptide NOP receptor (opiate receptor-like 1, ORL-1) agonist with diverse preclinical therapeutic activity.

    PubMed

    Shoblock, James R

    2007-01-01

    The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64-6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64-6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64-6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64-6198.

  19. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  20. Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response

    NASA Astrophysics Data System (ADS)

    Shimada, Ana Lúcia B.; Cruz, Wesley S.; Loiola, Rodrigo A.; Drewes, Carine C.; Dörr, Fabiane; Figueiredo, Natália G.; Pinto, Ernani; Farsky, Sandra H. P.

    2015-10-01

    PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.