Science.gov

Sample records for receptor selectively coupled

  1. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    PubMed

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  2. Selective modulation of wild type receptor functions by mutants of G-protein-coupled receptors.

    PubMed

    Le Gouill, C; Parent, J L; Caron, C A; Gaudreau, R; Volkov, L; Rola-Pleszczynski, M; Stanková, J

    1999-04-30

    Members of the G-protein-coupled receptor (GPCR) family are involved in most aspects of higher eukaryote biology, and mutations in their coding sequence have been linked to several diseases. In the present study, we report that mutant GPCR can affect the functional properties of the co-expressed wild type (WT) receptor. Mutants of the human platelet-activating factor receptor that fail to show any detectable ligand binding (N285I and K298stop) or coupling to a G-protein (D63N, D289A, and Y293A) were co-expressed with the WT receptor in Chinese hamster ovary and COS-7 cells. In this context, N285I and K298stop mutant receptors inhibited 3H-WEB2086 binding and surface expression. Co-transfection with D63N resulted in a constitutively active receptor phenotype. Platelet-activating factor-induced inositol phosphate production in cells transfected with a 1:1 ratio of WT:D63N was higher than with the WT cDNA alone but was abolished with a 1:3 ratio. We confirmed that these findings could be extended to other GPCRs by showing that co-expression of the WT C-C chemokine receptor 2b with a carboxyl-terminal deletion mutant (K311stop), resulted in a decreased affinity and responsiveness to MCP-1. A better understanding of this phenomenon could lead to important tools for the prevention or treatment of certain diseases. PMID:10212233

  3. β-Arrestin-Selective G Protein-Coupled Receptor Agonists Engender Unique Biological Efficacy in Vivo

    PubMed Central

    Gesty-Palmer, Diane; Yuan, Ling; Martin, Bronwen; Wood, William H.; Lee, Mi-Hye; Janech, Michael G.; Tsoi, Lam C.; Zheng, W. Jim; Maudsley, Stuart

    2013-01-01

    Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, d-Trp12,Tyr34-bPTH(7–34) [bPTH(7–34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7–34) and the conventional agonist hPTH(1–34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7–34) or hPTH(1–34). Treatment of wild-type mice with bPTH(7–34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1–34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1–34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7–34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7–34) and hPTH(1–34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy. PMID:23315939

  4. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor.

    PubMed

    Booe, Jason M; Walker, Christopher S; Barwell, James; Kuteyi, Gabriel; Simms, John; Jamaluddin, Muhammad A; Warner, Margaret L; Bill, Roslyn M; Harris, Paul W; Brimble, Margaret A; Poyner, David R; Hay, Debbie L; Pioszak, Augen A

    2015-06-18

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes. PMID:25982113

  5. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor

    PubMed Central

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; Kuteyi, Gabriel; Simms, John; Jamaluddin, Muhammad A.; Warner, Margaret L.; Bill, Roslyn M.; Harris, Paul W.; Brimble, Margaret A.; Poyner, David R.; Hay, Debbie L.; Pioszak, Augen A.

    2015-01-01

    Summary Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes. PMID:25982113

  6. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.

    PubMed

    Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  7. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    PubMed Central

    Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  8. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    SciTech Connect

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  9. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors.

    PubMed

    Homan, Kristoff T; Larimore, Kelly M; Elkins, Jonathan M; Szklarz, Marta; Knapp, Stefan; Tesmer, John J G

    2015-01-16

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson's disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors. PMID:25238254

  10. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  11. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity

    PubMed Central

    Sarkar, Casim A.; Dodevski, Igor; Kenig, Manca; Dudli, Stefan; Mohr, Anja; Hermans, Emmanuel; Plückthun, Andreas

    2008-01-01

    We outline a powerful method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli. For a mammalian G protein-coupled receptor, we arrived at a sequence with an order-of-magnitude increase in functional expression that still retains the biochemical properties of wild type. This mutant also shows enhanced heterologous expression in eukaryotes (12-fold in Pichia pastoris and 3-fold in HEK293T cells) and greater stability when solubilized and purified, indicating that the biophysical properties of the protein had been under the pressure of selection. These improvements arise from multiple small contributions, which would be difficult to assemble by rational design. In a second screen, we rapidly pinpointed a single amino acid substitution in wild type that abolishes antagonist binding while retaining agonist-binding affinity. These approaches may alleviate existing bottlenecks in structural studies of these targets by providing sufficient quantities of stable variants in defined conformational states. PMID:18812512

  12. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30.

    PubMed

    Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R; Edwards, Bruce S; Sklar, Larry A

    2009-01-01

    Recent technological advances in flow cytometry provide a versatile platform for high throughput screening of compound libraries coupled with high-content biological testing and drug discovery. The G protein-coupled receptors (GPCRs) constitute the largest class of signaling molecules in the human genome with frequent roles in disease pathogenesis, yet many examples of orphan receptors with unknown ligands remain. The complex biology and potential for drug discovery within this class provide strong incentives for chemical biology approaches seeking to develop small molecule probes to facilitate elucidation of mechanistic pathways and enable specific manipulation of the activity of individual receptors. We have initiated small molecule probe development projects targeting two distinct families of GPCRs: the formylpeptide receptors (FPR/FPRL1) and G protein-coupled estrogen receptor (GPR30). In each case the assay for compound screening involved the development of an appropriate small molecule fluorescent probe, and the flow cytometry platform provided inherently biological rich assays that enhanced the process of identification and optimization of novel antagonists. The contributions of cheminformatics analysis tools, virtual screening, and synthetic chemistry in synergy with the biomolecular screening program have yielded valuable new chemical probes with high binding affinity, selectivity for the targeted receptor, and potent antagonist activity. This review describes the discovery of novel small molecule antagonists of FPR and FPRL1, and GPR30, and the associated characterization process involving secondary assays, cell based and in vivo studies to define the selectivity and activity of the resulting chemical probes. PMID:19807662

  13. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    PubMed

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds. PMID:23278450

  14. A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution.

    PubMed

    Klenk, Christoph; Ehrenmann, Janosch; Schütz, Marco; Plückthun, Andreas

    2016-01-01

    Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis. PMID:26887595

  15. A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution

    PubMed Central

    Klenk, Christoph; Ehrenmann, Janosch; Schütz, Marco; Plückthun, Andreas

    2016-01-01

    Structural and biophysical studies as well as drug screening approaches on G protein-coupled receptors (GPCRs) have been largely hampered by the poor biophysical properties and low expression yields of this largest class of integral membrane proteins. Thermostabilisation of GPCRs by introduction of stabilising mutations has been a key factor to overcome these limitations. However, labelled ligands with sufficient affinity, which are required for selective binding to the correctly folded receptor, are often not available. Here we describe a novel procedure to improve receptor expression and stability in a generic way, independent of specific ligands, by means of directed evolution in E. coli. We have engineered a homogenous fluorescent reporter assay that only detects receptors which are correctly integrated into the inner cell membrane and, thus, discriminates functional from non-functional receptor species. When we combined this method with a directed evolution procedure we obtained highly expressing mutants of the neurotensin receptor 1 with greatly improved thermostability. By this procedure receptors with poor expression and/or low stability, for which no ligands or only ones with poor binding properties are available, can now be generated in quantities allowing detailed structural and biophysical analysis. PMID:26887595

  16. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  17. Molecular Mechanism for Inhibition of G Protein-Coupled Receptor Kinase 2 by a Selective RNA Aptamer

    SciTech Connect

    Tesmer, Valerie M.; Lennarz, Sabine; Mayer, Günter; Tesmer, John J.G.

    2012-08-31

    Cardiovascular homeostasis is maintained in part by the rapid desensitization of activated heptahelical receptors that have been phosphorylated by G protein-coupled receptor kinase 2 (GRK2). However, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. We have determined crystallographic structures of GRK2 bound to an RNA aptamer that potently and selectively inhibits kinase activity. Key to the mechanism of inhibition is the positioning of an adenine nucleotide into the ATP-binding pocket and interactions with the basic {alpha}F-{alpha}G loop region of the GRK2 kinase domain. Constraints imposed on the RNA by the terminal stem of the aptamer also play a role. These results highlight how a high-affinity aptamer can be used to selectively trap a novel conformational state of a protein kinase.

  18. Molecular mechanism for inhibition of G protein-coupled receptor kinase 2 by a selective RNA aptamer

    PubMed Central

    Tesmer, Valerie M.; Lennarz, Sabine; Mayer, Günter; Tesmer, John J. G.

    2012-01-01

    SUMMARY Cardiovascular homeostasis is maintained in part by the rapid desensitization of activated heptahelical receptors that have been phosphorylated by G protein-coupled receptor kinase 2 (GRK2). However, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. We have determined crystallographic structures of GRK2 bound to an RNA aptamer that potently and selectively inhibits kinase activity. Key to the mechanism of inhibition is the positioning of an adenine nucleotide into the ATP-binding pocket and interactions with the basic αF-αG loop region of the GRK2 kinase domain. Constraints imposed on the RNA by the terminal stem of the aptamer also play a role. These results highlight how a high affinity aptamer can be used to selectively trap a novel conformational state of a protein kinase. PMID:22727813

  19. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  20. Select Neuropeptides and their G-Protein Coupled Receptors in Caenorhabditis Elegans and Drosophila Melanogaster

    PubMed Central

    Bendena, William G.; Campbell, Jason; Zara, Lian; Tobe, Stephen S.; Chin-Sang, Ian D.

    2012-01-01

    The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery. Drosophila melanogaster and Caenorhabditis elegans are genetic model organisms that have proved useful in characterizing neuropeptide GPCRs. The strength of a genetic approach leads to an appreciation of the behavioral plasticity that can result from subtle alterations in GPCRs or regulatory proteins in the pathways that GPCRs control. Many of these invertebrate neuropeptides, GPCRs, and signaling pathway components serve as models for mammalian counterparts as they have conserved sequences and function. This review provides an overview of the methods to match neuropeptides to their cognate receptor and a state of the art account of neuropeptide GPCRs that have been characterized in D. melanogaster and C. elegans and the behaviors that have been uncovered through genetic manipulation. PMID:22908006

  1. Selective orexin receptor antagonists.

    PubMed

    Lebold, Terry P; Bonaventure, Pascal; Shireman, Brock T

    2013-09-01

    The orexin, or hypocretin, neuropeptides (orexin-A and orexin-B) are produced on neurons in the hypothalamus which project to key areas of the brain that control sleep-wake states, modulation of food intake, panic, anxiety, emotion, reward and addictive behaviors. These neuropeptides exert their effects on a pair of G-protein coupled receptors termed the orexin-1 (OX1) and orexin-2 (OX2) receptors. Emerging biology suggests the involvement of these receptors in psychiatric disorders as they are thought to play a key role in the regulation of multiple systems. This review is intended to highlight key selective OX1 or OX2 small-molecule antagonists. PMID:23891187

  2. Analysis of Drug Design for a Selection of G Protein-Coupled Neuro- Receptors Using Neural Network Techniques.

    PubMed

    Agerskov, Claus; Mortensen, Rasmus M; Bohr, Henrik G

    2015-01-01

    A study is presented on how well possible drug-molecules can be predicted with respect to their function and binding to a selection of neuro-receptors by the use of artificial neural networks. The ligands investigated in this study are chosen to be corresponding to the G protein-coupled receptors µ-opioid, serotonin 2B (5-HT2B) and metabotropic glutamate D5. They are selected due to the availability of pharmacological drug-molecule binding data for these receptors. Feedback and deep belief artificial neural network architectures (NNs) were chosen to perform the task of aiding drugdesign. This is done by training on structural features, selected using a "minimum redundancy, maximum relevance"-test, and testing for successful prediction of categorized binding strength. An extensive comparison of the neural network performances was made in order to select the optimal architecture. Deep belief networks, trained with greedy learning algorithms, showed superior performance in prediction over the simple feedback NNs. The best networks obtained scores of more than 90 % accuracy in predicting the degree of binding drug molecules to the mentioned receptors and with a maximal Matthew`s coefficient of 0.925. The performance of 8 category networks (8 output classes for binding strength) obtained a prediction accuracy of above 60 %. After training the networks, tests were done on how well the systems could be used as an aid in designing candidate drug molecules. Specifically, it was shown how a selection of chemical characteristics could give the lowest observed IC50 values, meaning largest bio-effect pr. nM substance, around 0.03-0.06 nM. These ligand characteristics could be total number of atoms, their types etc. In conclusion, deep belief networks trained on drug-molecule structures were demonstrated as powerful computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques. PMID:26463104

  3. Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility

    PubMed Central

    Adebiyi, Adebowale; Zhao, Guiling; Narayanan, Damodaran; Thomas, Candice M.; Bannister, John P.; Jaggar, Jonathan H.

    2010-01-01

    Rationale Inositol 1,4,5-trisphosphate (IP3)-induced vasoconstriction can occur independently of intracellular Ca2+ release and via IP3 receptor (IP3R) and canonical transient receptor potential (TRPC) channel activation, but functional signaling mechanisms mediating this effect are unclear. Objectives Study mechanisms by which IP3Rs stimulate TRPC channels in myocytes of resistance-size cerebral arteries. Methods and Results Immunofluorescence resonance energy transfer (immuno-FRET) microscopy using isoform-selective antibodies indicated that endogenous type 1 IP3Rs (IP3R1) are in close spatial proximity to TRPC3, but distant from TRPC6 or TRPM4 channels in arterial myocytes. Endothelin-1 (ET-1), a phospholipase C-coupled receptor agonist, elevated immuno-FRET between IP3R1 and TRPC3, but not between IP3R1 and TRPC6 or TRPM4. TRPC3, but not TRPC6, co-immunoprecipitated with IP3R1. TRPC3 and TRPC6 antibodies selectively inhibited recombinant channels, but only the TRPC3 antibody blocked IP3-induced non-selective cation current (ICat) in myocytes. TRPC3 knockdown attenuated immuno-FRET between IP3R1 and TRPC3, IP3-induced ICat activation, and ET-1 and IP3-induced vasoconstriction, whereas TRPC6 channel knockdown had no effect. ET-1 did not alter total or plasma membrane-localized TRPC3, as determined using surface biotinylation. RT-PCR demonstrated that C-terminal calmodulin and IP3R binding (CIRB) domains are present in myocyte TRPC3 and TRPC6 channels. A peptide corresponding to the IP3R N-terminal region that can interact with TRPC channels activated ICat. A TRPC3 CIRB domain peptide attenuated IP3- and ET-1-induced ICat activation and vasoconstriction. Conclusions IP3 stimulates direct coupling between IP3R1 and membrane-resident TRPC3 channels in arterial myocytes, leading to ICat activation and vasoconstriction. Close spatial proximity between IP3R1 and TRPC3 establishes this isoform-selective functional interaction. PMID:20378853

  4. Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold.

    PubMed

    Johansson, Henrik; Boesgaard, Michael Worch; Nørskov-Lauritsen, Lenea; Larsen, Inna; Kuhne, Sebastiaan; Gloriam, David E; Bräuner-Osborne, Hans; Sejer Pedersen, Daniel

    2015-11-25

    G protein-coupled receptors (GPCRs) represent a biological target class of fundamental importance in drug therapy. The GPRC6A receptor is a newly deorphanized class C GPCR that we recently reported for the first allosteric antagonists based on the 2-arylindole privileged structure scaffold (e.g., 1-3). Herein, we present the first structure-activity relationship study for the 2-arylindole antagonist 3, comprising the design, synthesis, and pharmacological evaluation of a focused library of 3-substituted 2-arylindoles. In a FRET-based inositol monophosphate (IP1) assay we identified compounds 7, 13e, and 34b as antagonists at the GPRC6A receptor in the low micromolar range and show that 7 and 34b display >9-fold selectivity for the GPRC6A receptor over related GPCRs, making 7 and 34b the most potent and selective antagonists for the GPRC6A receptor reported to date. PMID:26516782

  5. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    SciTech Connect

    Buck, M.A.; Fraser, C.M. )

    1990-12-14

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of (3H)-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of (3H)-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. (3H)-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties.

  6. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    PubMed Central

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing; daCOSTA, Corrie J. B.; Chen, Lin

    2014-01-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr184 depends on local residues, we generated mutations in an α7/5HT3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurements show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr184 and local residues contributes to high-affinity subtype-selective α-btx binding. PMID:23802200

  7. Characteristics of muscarinic receptors that selectively couple to inhibition of adenylate cyclase or stimulation of phospholipase C on NG108-15 and 1321N1 cells

    SciTech Connect

    Liang, M.

    1988-01-01

    The purpose of this dissertation was to establish whether different muscarinic receptor proteins selectively couple to different second messenger response system. Although both second messenger response systems are fully functional in both cell lines, activation of muscarinic cholinergic receptors only results in inhibition of adenylate cyclase in NG108-15 neuroblastoma {times} glioma cells and stimulation of phosphoinositide hydrolysis in 1321N1 human astrocytoma cells. Muscarinic receptors on both cell types were covalently labeled with ({sup 3}H)Propylbenzilylcholine mustard (({sup 3}H)PBCM) and the mobilities of the ({sup 3}H)PBCM-labelled species of both cells were compared by SDS-PAGE. 1321N1 and NG108-15 cells each primarily expressed a single ({sup 3}H)PBCM-labelled species with an apparent size of approximately 92,000 and 66,000 Da, respectively. ({sup 3}H)PBCM labelling was completely inhibited by 1 {mu}M atropine or by down-regulation of muscarinic receptors by an overnight incubation with carbachol. The apparent size of the ({sup 3}H)PBCM-labelled species of both cell lines was not altered by treatment with a series of protease inhibitors or by treatment with dithiothreitol and iodoacetamide. Another approach for determining differences in the muscarinic receptors of 2 cells lines was to study agonist-induced alteration of muscarinic receptor number. Exposure of both cell types to agonists resulted in rapid loss of muscarinic receptors from cell surface without change of total cellular muscarinic receptors followed by subsequently loss of receptors from cells. Muscarinic receptors on both cell lines were regulated by agonist with similar properties.

  8. G Protein-Coupled Receptor Kinase 2 (GRK2) and 5 (GRK5) Exhibit Selective Phosphorylation of the Neurotensin Receptor in Vitro

    PubMed Central

    2015-01-01

    G protein-coupled receptor kinases (GRKs) play an important role in the desensitization of G protein-mediated signaling of G protein-coupled receptors (GPCRs). The level of interest in mapping their phosphorylation sites has increased because recent studies suggest that the differential pattern of receptor phosphorylation has distinct biological consequences. In vitro phosphorylation experiments using well-controlled systems are useful for deciphering the complexity of these physiological reactions and understanding the targeted event. Here, we report on the phosphorylation of the class A GPCR neurotensin receptor 1 (NTSR1) by GRKs under defined experimental conditions afforded by nanodisc technology. Phosphorylation of NTSR1 by GRK2 was agonist-dependent, whereas phosphorylation by GRK5 occurred in an activation-independent manner. In addition, the negatively charged lipids in the immediate vicinity of NTSR1 directly affect phosphorylation by GRKs. Identification of phosphorylation sites in agonist-activated NTSR1 revealed that GRK2 and GRK5 target different residues located on the intracellular receptor elements. GRK2 phosphorylates only the C-terminal Ser residues, whereas GRK5 phosphorylates Ser and Thr residues located in intracellular loop 3 and the C-terminus. Interestingly, phosphorylation assays using a series of NTSR1 mutants show that GRK2 does not require acidic residues upstream of the phospho-acceptors for site-specific phosphorylation, in contrast to the β2-adrenergic and μ-opioid receptors. Differential phosphorylation of GPCRs by GRKs is thought to encode a particular signaling outcome, and our in vitro study revealed NTSR1 differential phosphorylation by GRK2 and GRK5. PMID:26120872

  9. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

    PubMed

    Grassi, Daniela; Ghorbanpoor, Samar; Acaz-Fonseca, Estefania; Ruiz-Palmero, Isabel; Garcia-Segura, Luis M

    2015-10-01

    The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.). PMID:26200092

  10. [Opioid receptors and their selective ligands].

    PubMed

    Piestrzeniewicz, Mariola Katarzyna; Fichna, Jakub; Michna, Jakub; Janecka, Anna

    2006-01-01

    Opioid receptors (micro, delta, and kappa) belong to a large family of G protein-coupled receptors and play an important physiological role. Stimulation of these receptors triggers analgesic effects and affects the function of gastrointestinal tract. The discovery of opioid peptides, which are endogenous ligands of opioid receptors, including delta-selective enkephalins, kappa-selective dynorphins, and micro-selective endomorphins, initiated their structure-activity relationship studies. For the last 30 years, hundreds of analogs of opioid peptides have been synthesized in an effort to obtain the compounds more active, selective, and resistant to biodegradation than the endogenous ligands. Different unnatural amino acids, as well as cyclisation procedures, leading to conformationaly restricted analogs, were employed. All these modifications resulted in obtaining very selective agonists and antagonists with high affinity at micro-, dlta-, and kappa-opioid receptors, which are extremely useful tools in further studies on the pharmacology of opioid receptors in a mammalian organism. PMID:17201067

  11. Coupling of HIV-1 Antigen to the Selective Autophagy Receptor SQSTM1/p62 Promotes T-Cell-Mediated Immunity

    PubMed Central

    Andersen, Aram Nikolai; Landsverk, Ole Jørgen; Simonsen, Anne; Bogen, Bjarne; Corthay, Alexandre; Øynebråten, Inger

    2016-01-01

    Vaccines aiming to promote T-cell-mediated immune responses have so far showed limited efficacy, and there is a need for novel strategies. Studies indicate that autophagy plays an inherent role in antigen processing and presentation for CD4+ and CD8+ T cells. Here, we report a novel vaccine strategy based on fusion of antigen to the selective autophagy receptor sequestosome 1 (SQSTM1)/p62. We hypothesized that redirection of vaccine antigen from proteasomal degradation into the autophagy pathway would increase the generation of antigen-specific T cells. A hybrid vaccine construct was designed in which the antigen is fused to the C-terminus of p62, a signaling hub, and a receptor that naturally delivers ubiquitinated cargo for autophagic degradation. Fusion of the human immunodeficiency virus-1 antigen Gagp24 to p62 resulted in efficient antigen delivery into the autophagy pathway. Intradermal immunization of mice revealed that, in comparison to Gagp24 delivered alone, fusion to p62 enhanced the number of Gagp24-specific interferon-γ-producing T cells, including CD8+ T cells. The strategy may also have the potential to modulate the antigenic peptide repertoire. Because p62 and autophagy are highly conserved between species, we anticipate this strategy to be a candidate for the development of T-cell-based vaccines in humans. PMID:27242780

  12. Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors.

    PubMed

    Waldschmidt, Helen V; Homan, Kristoff T; Cruz-Rodríguez, Osvaldo; Cato, Marilyn C; Waninger-Saroni, Jessica; Larimore, Kelly M; Cannavo, Alessandro; Song, Jianliang; Cheung, Joseph Y; Kirchhoff, Paul D; Koch, Walter J; Tesmer, John J G; Larsen, Scott D

    2016-04-28

    G protein-coupled receptors (GPCRs) are central to many physiological processes. Regulation of this superfamily of receptors is controlled by GPCR kinases (GRKs), some of which have been implicated in heart failure. GSK180736A, developed as a Rho-associated coiled-coil kinase 1 (ROCK1) inhibitor, was identified as an inhibitor of GRK2 and co-crystallized in the active site. Guided by its binding pose overlaid with the binding pose of a known potent GRK2 inhibitor, Takeda103A, a library of hybrid inhibitors was developed. This campaign produced several compounds possessing high potency and selectivity for GRK2 over other GRK subfamilies, PKA, and ROCK1. The most selective compound, 12n (CCG-224406), had an IC50 for GRK2 of 130 nM, >700-fold selectivity over other GRK subfamilies, and no detectable inhibition of ROCK1. Four of the new inhibitors were crystallized with GRK2 to give molecular insights into the binding and kinase selectivity of this class of inhibitors. PMID:27050625

  13. Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling.

    PubMed

    Semack, Ansley; Sandhu, Manbir; Malik, Rabia U; Vaidehi, Nagarajan; Sivaramakrishnan, Sivaraj

    2016-08-19

    Although the importance of the C terminus of the α subunit of the heterotrimeric G protein in G protein-coupled receptor (GPCR)-G protein pairing is well established, the structural basis of selective interactions remains unknown. Here, we combine live cell FRET-based measurements and molecular dynamics simulations of the interaction between the GPCR and a peptide derived from the C terminus of the Gα subunit (Gα peptide) to dissect the molecular mechanisms of G protein selectivity. We observe a direct link between Gα peptide binding and stabilization of the GPCR conformational ensemble. We find that cognate and non-cognate Gα peptides show deep and shallow binding, respectively, and in distinct orientations within the GPCR. Binding of the cognate Gα peptide stabilizes the agonist-bound GPCR conformational ensemble resulting in favorable binding energy and lower flexibility of the agonist-GPCR pair. We identify three hot spot residues (Gαs/Gαq-Gln-384/Leu-349, Gln-390/Glu-355, and Glu-392/Asn-357) that contribute to selective interactions between the β2-adrenergic receptor (β2-AR)-Gαs and V1A receptor (V1AR)-Gαq The Gαs and Gαq peptides adopt different orientations in β2-AR and V1AR, respectively. The β2-AR/Gαs peptide interface is dominated by electrostatic interactions, whereas the V1AR/Gαq peptide interactions are predominantly hydrophobic. Interestingly, our study reveals a role for both favorable and unfavorable interactions in G protein selection. Residue Glu-355 in Gαq prevents this peptide from interacting strongly with β2-AR. Mutagenesis to the Gαs counterpart (E355Q) imparts a cognate-like interaction. Overall, our study highlights the synergy in molecular dynamics and FRET-based approaches to dissect the structural basis of selective G protein interactions. PMID:27330078

  14. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  15. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  16. A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors.

    PubMed

    Chan, John D; McCorvy, John D; Acharya, Sreemoyee; Johns, Malcolm E; Day, Timothy A; Roth, Bryan L; Marchant, Jonathan S

    2016-05-01

    Schistosomiasis is a tropical parasitic disease afflicting ~200 million people worldwide and current therapy depends on a single drug (praziquantel) which exhibits several non-optimal features. These shortcomings underpin the need for next generation anthelmintics, but the process of validating physiologically relevant targets ('target selection') and pharmacologically profiling them is challenging. Remarkably, even though over a quarter of current human therapeutics target rhodopsin-like G protein coupled receptors (GPCRs), no library screen of a flatworm GPCR has yet been reported. Here, we have pharmacologically profiled a schistosome serotonergic GPCR (Sm.5HTR) implicated as a downstream modulator of PZQ efficacy, in a miniaturized screening assay compatible with high content screening. This approach employs a split luciferase based biosensor sensitive to cellular cAMP levels that resolves the proximal kinetics of GPCR modulation in intact cells. Data evidence a divergent pharmacological signature between the parasitic serotonergic receptor and the closest human GPCR homolog (Hs.5HTR7), supporting the feasibility of optimizing parasitic selective pharmacophores. New ligands, and chemical series, with potency and selectivity for Sm.5HTR over Hs.5HTR7 are identified in vitro and validated for in vivo efficacy against schistosomules and adult worms. Sm.5HTR also displayed a property resembling irreversible inactivation, a phenomenon discovered at Hs.5HTR7, which enhances the appeal of this abundantly expressed parasite GPCR as a target for anthelmintic ligand design. Overall, these data underscore the feasibility of profiling flatworm GPCRs in a high throughput screening format competent to resolve different classes of GPCR modulators. Further, these data underscore the promise of Sm.5HTR as a chemotherapeutically vulnerable node for development of next generation anthelmintics. PMID:27187180

  17. A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors

    PubMed Central

    Chan, John D.; McCorvy, John D.; Acharya, Sreemoyee; Day, Timothy A.; Roth, Bryan L.; Marchant, Jonathan S.

    2016-01-01

    Schistosomiasis is a tropical parasitic disease afflicting ~200 million people worldwide and current therapy depends on a single drug (praziquantel) which exhibits several non-optimal features. These shortcomings underpin the need for next generation anthelmintics, but the process of validating physiologically relevant targets (‘target selection’) and pharmacologically profiling them is challenging. Remarkably, even though over a quarter of current human therapeutics target rhodopsin-like G protein coupled receptors (GPCRs), no library screen of a flatworm GPCR has yet been reported. Here, we have pharmacologically profiled a schistosome serotonergic GPCR (Sm.5HTR) implicated as a downstream modulator of PZQ efficacy, in a miniaturized screening assay compatible with high content screening. This approach employs a split luciferase based biosensor sensitive to cellular cAMP levels that resolves the proximal kinetics of GPCR modulation in intact cells. Data evidence a divergent pharmacological signature between the parasitic serotonergic receptor and the closest human GPCR homolog (Hs.5HTR7), supporting the feasibility of optimizing parasitic selective pharmacophores. New ligands, and chemical series, with potency and selectivity for Sm.5HTR over Hs.5HTR7 are identified in vitro and validated for in vivo efficacy against schistosomules and adult worms. Sm.5HTR also displayed a property resembling irreversible inactivation, a phenomenon discovered at Hs.5HTR7, which enhances the appeal of this abundantly expressed parasite GPCR as a target for anthelmintic ligand design. Overall, these data underscore the feasibility of profiling flatworm GPCRs in a high throughput screening format competent to resolve different classes of GPCR modulators. Further, these data underscore the promise of Sm.5HTR as a chemotherapeutically vulnerable node for development of next generation anthelmintics. PMID:27187180

  18. Autophagy selectivity through receptor clustering

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Brown, Aidan

    Substrate selectivity in autophagy requires an all-or-none cellular response. We focus on peroxisomes, for which autophagy receptor proteins NBR1 and p62 are well characterized. Using computational models, we explore the hypothesis that physical clustering of autophagy receptor proteins on the peroxisome surface provides an appropriate all-or-none response. We find that larger peroxisomes nucleate NBR1 clusters first, and lose them due to competitive coarsening last, resulting in significant size-selectivity. We then consider a secondary hypothesis that p62 inhibits NBR1 cluster formation. We find that p62 inhibition enhances size-selectivity enough that, even if there is no change of the pexophagy rate, the volume of remaining peroxisomes can significantly decrease. We find that enhanced ubiquitin levels suppress size-selectivity, and that this effect is more pronounced for individual peroxisomes. Sufficient ubiquitin allows receptor clusters to form on even the smallest peroxisomes. We conclude that NBR1 cluster formation provides a viable physical mechanism for all-or-none substrate selectivity in pexophagy. We predict that cluster formation is associated with significant size-selectivity. Now at Simon Fraser University.

  19. FTY720 Phosphate Activates Sphingosine-1-Phosphate Receptor 2 and Selectively Couples to Gα12/13/Rho/ROCK to Induce Myofibroblast Contraction.

    PubMed

    Sobel, Katrin; Monnier, Lucile; Menyhart, Katalin; Bolinger, Matthias; Studer, Rolf; Nayler, Oliver; Gatfield, John

    2015-06-01

    FTY720 phosphate (FTY720-P; 2-amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol, monodihydrogen phosphate ester) is a nonselective sphingosine-1-phosphate (S1P) receptor agonist thought to be devoid of activity at the S1P2 receptor subtype. However, we have recently shown that FTY720-P displays significant S1P2 receptor agonist activity in recombinant cells and fibroblasts expressing endogenous S1P2 receptors. To elucidate the S1P2-dependent signaling pathways that were activated by FTY720-P, we employed second messenger assays and impedance-based assays in combination with pharmacological and small interfering RNA-based pathway inhibition in recombinant Chinese hamster ovary (CHO)-S1P2 cells as well as human lung myofibroblasts generated in vitro. In CHO-S1P2 cells, FTY720-P did not modulate cAMP or calcium levels. However, reporter-gene assays, impedance-based assays with a selective Rho-associated kinase (ROCK) inhibitor, Gα12/13 knockdown and activated Rho-pull-down assays demonstrated that FTY720-P potently activated Gα12/13/Rho/ROCK signaling. S1P similarly activated Gα12/13/Rho/ROCK signaling via S1P2 receptors, whereas the two selective S1P1 receptor agonists (Z,Z)-5-(3-chloro-4-[(2R)-2,3-dihydroxy-propoxy]-benzylidene)-2-propylimino-3-o-tolyl-thiazolidin-4-one (ponesimond) and 5-[4-phenyl-5-(trifluoromethyl)thiophen-2-yl]-3-[3-(trifluoromethyl)phenyl]1,2,4-oxadiazole (SEW2871) were inactive. In lung myofibroblasts, which mainly expressed the S1P2 receptor subtype, we showed that FTY720-P selectively activated the Gα12/13/Rho/ROCK pathway via the S1P2 receptor. Moreover, the activation of the Gα12/13/Rho/ROCK pathway in myofibroblasts by FTY720-P caused potent myofibroblast contraction similar to that induced by the natural ligand S1P. Thus, complementing second messenger assays with unbiased label-free assays or phenotypic assays in native expression systems can uncover activation of additional pathways, such as Gα12/13/Rho/ROCK signaling. PMID

  20. Gq-Coupled Receptors in Autoimmunity

    PubMed Central

    Zhang, Lu; Shi, Guixiu

    2016-01-01

    Heterotrimeric G proteins can be divided into Gi, Gs, Gq/11, and G12/13 subfamilies according to their α subunits. The main function of G proteins is transducing signals from G protein coupled receptors (GPCRs), a family of seven transmembrane receptors. In recent years, studies have demonstrated that GPCRs interact with Gq, a member of the Gq/11 subfamily of G proteins. This interaction facilitates the vital role of this family of proteins in immune regulation and autoimmunity, particularly for Gαq, which is considered the functional α subunit of Gq protein. Therefore, understanding the mechanisms through which Gq-coupled receptors control autoreactive lymphocytes is critical and may provide insights into the treatment of autoimmune disorders. In this review, we summarize recent advances in studies of the role of Gq-coupled receptors in autoimmunity, with a focus on their pathologic role and downstream signaling. PMID:26885533

  1. G Protein-Coupled Receptors in Cancer

    PubMed Central

    Bar-Shavit, Rachel; Maoz, Myriam; Kancharla, Arun; Nag, Jeetendra Kumar; Agranovich, Daniel; Grisaru-Granovsky, Sorina; Uziely, Beatrice

    2016-01-01

    Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics. PMID:27529230

  2. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  3. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  4. Steroid receptor coupling becomes nuclear.

    PubMed

    Galigniana, Mario D

    2012-06-22

    In this issue of Chemistry & Biology, Grossman et al. report a study on aldosterone-dependent nuclear translocation of the mineralocorticoid receptor (MR). They analyze the dependency of MR retrotransport, DNA-binding, and transcriptional activity on Hsp90 and demonstrate that MR dimerization is a nuclear event. PMID:22726677

  5. G-protein-coupled receptor heteromer dynamics

    PubMed Central

    Vilardaga, Jean-Pierre; Agnati, Luigi F.; Fuxe, Kjell; Ciruela, Francisco

    2010-01-01

    G-protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors, and have evolved to detect and transmit a large palette of extracellular chemical and sensory signals into cells. Activated receptors catalyze the activation of heterotrimeric G proteins, which modulate the propagation of second messenger molecules and the activity of ion channels. Classically thought to signal as monomers, different GPCRs often pair up with each other as homo- and heterodimers, which have been shown to modulate signaling to G proteins. Here, we discuss recent advances in GPCR heteromer systems involving the kinetics of the early steps in GPCR signal transduction, the dynamic property of receptor–receptor interactions, and how the formation of receptor heteromers modulate the kinetics of G-protein signaling. PMID:21123619

  6. G protein-coupled receptors as promising cancer targets.

    PubMed

    Liu, Ying; An, Su; Ward, Richard; Yang, Yang; Guo, Xiao-Xi; Li, Wei; Xu, Tian-Rui

    2016-07-01

    G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy. PMID:27000991

  7. Oligomeric forms of G protein-coupled receptors (GPCRs)

    PubMed Central

    Palczewski, Krzysztof

    2010-01-01

    Oligomerization is a general characteristic of cell membrane receptors that is shared by G protein-coupled receptors (GPCRs) together with their G protein partners. Recent studies of these complexes, both in vivo and in purified reconstituted forms, unequivocally support this contention for GPCRs, perhaps with only rare exceptions. As evidence has evolved from experimental cell lines to more relevant in vivo studies and from indirect biophysical approaches to well defined isolated complexes of dimeric receptors alone and complexed with G proteins, there is an expectation that the structural basis of oligomerization and the functional consequences for membrane signaling will be elucidated. Oligomerization of cell membrane receptors is fully supported by both thermodynamic calculations and the selectivity and duration of signaling required to reach targets located in various cellular compartments. PMID:20538466

  8. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    PubMed

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  9. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    PubMed Central

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  10. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1).

    PubMed

    Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano

    2014-09-25

    Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1. PMID:25162837

  11. Inhibition of receptor/G protein coupling by suramin analogues.

    PubMed

    Beindl, W; Mitterauer, T; Hohenegger, M; Ijzerman, A P; Nanoff, C; Freissmuth, M

    1996-08-01

    Suramin analogues act as direct antagonists of heterotrimeric G proteins because they block the rate-limiting step of G protein activation (i.e., the dissociation of GDP prebound to the G protein alpha subunit). We have used the human brain A1 adenosine receptor and the rat striatal D2 dopamine receptor, two prototypical Gi/G(o)-coupled receptors, as a model system to test whether the following analogues suppress the receptor-dependent activation of G proteins: 8-(3-nitrobenzamido)-1,3,5-naphthalenetrisulfonic acid (NF007), 8-(3-(3-nitrobenzamido)-benzamido)-1,3,5-naphthalenetrisulfonic acid (NF018); 8,8'-(carbonylbis(imino-3,1-phenylene))bis-(1,3,5-naphthalenetr isulfonic acid) (NF023); 8,8'-(carbonylbis(imino-3,1-phenylene)carbonylimino-(3,1- phenylene)) bis(1,3,5-naphthalenetrisulfonic acid) (NF037); and suramin. Suramin and its analogues inhibit the formation of the agonist-specific ternary complex (agonist/receptor/G protein). This inhibition is (i) quasicompetitive with respect to agonist binding in that it can be overcome by increasing receptor occupancy but (ii) does not result from an interaction of the analogues with the ligand binding pocket of the receptors because the binding of antagonists or of agonists in the absence of functional receptor/G protein interaction is not affected. In addition to suppressing the spontaneous release of GDP from defined G protein alpha subunits, suramin and its analogues reduce receptor-catalyzed guanine nucleotide exchange. The site, to which suramin analogues bind, overlaps with the docking site for the receptor on the G protein alpha subunit. The structure-activity relationships for inhibition of agonist binding to the A1 adenosine receptor (suramin > NF037 > NF023) and of agonist binding to the inhibition D2 dopamine receptor (suramin = NF037 > NF023 > NF018) differ. Thus, NF037 discriminates between the ternary complexes formed by the agonist-liganded D2 dopamine receptors and those formed by the A1 adenosine

  12. Structure biology of selective autophagy receptors

    PubMed Central

    Kim, Byeong-Won; Kwon, Do Hoon; Song, Hyun Kyu

    2016-01-01

    Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy. [BMB Reports 2016; 49(2): 73-80] PMID:26698872

  13. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  14. Model Organisms in G Protein-Coupled Receptor Research.

    PubMed

    Langenhan, Tobias; Barr, Maureen M; Bruchas, Michael R; Ewer, John; Griffith, Leslie C; Maiellaro, Isabella; Taghert, Paul H; White, Benjamin H; Monk, Kelly R

    2015-09-01

    The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism. PMID:25979002

  15. Panoramic dental radiography using a charge-coupled device receptor.

    PubMed

    Farman, A G; Farman, T T

    1998-08-01

    Panoramic radiography using a slit beam and film/screen receptor is standard for the emergency room evaluation of mandibular fractures and also in dentistry. This study compared the spatial resolution, area distortion factors, and the dosage considerations for a panoramic system where standard film/screen and a charge-coupled device were alternatively employed as the image receptor. Resolution and image contours were determined using a lead resolution grid positioned at selected beam projection angulations. Exposure measurements were carried out using a RANDO average man phantom and a 3 cc beryllium-windowed ionization chamber. The maximum spatial resolution with film approached 5 lp mm-1 whereas with the CCD the maximum resolution was just above 4 lp mm-1. Consequently, the image layer was reduced slightly in width when using the CCD receptor. The use of the CCD resulted in skin exposure reduction exceeding 70%. PMID:9735460

  16. Regulation of G Protein-Coupled Receptors by Allosteric Ligands

    PubMed Central

    2013-01-01

    Topographically distinct, druggable, allosteric sites may be present on all G protein-coupled receptors (GPCRs). As such, targeting these sites with synthetic small molecules offers an attractive approach to develop receptor-subtype selective chemical leads for the development of novel therapies. A crucial part of drug development is to understand the acute and chronic effects of such allosteric modulators at their corresponding GPCR target. Key regulatory processes including cell-surface delivery, endocytosis, recycling, and down-regulation tightly control the number of receptors at the surface of the cell. As many GPCR therapeutics will be administered chronically, understanding how such ligands modulate these regulatory pathways forms an essential part of the characterization of novel GPCR ligands. This is true for both orthosteric and allosteric ligands. In this Review, we summarize our current understanding of GPCR regulatory processes with a particular focus on the effects and implications of allosteric targeting of GPCRs. PMID:23398684

  17. Malaria selectively targets pregnancy receptors.

    PubMed

    Chishti, Athar H

    2015-01-01

    In this issue of Blood, Rieger et al show that malaria parasite infiltration in the human placenta requires a specific geometry and affinity of host receptors to facilitate strong adhesion. PMID:25573970

  18. Crystallization of G Protein-Coupled Receptors

    PubMed Central

    Salom, David; Padayatti, Pius S.; Palczewski, Krzysztof

    2015-01-01

    Oligomerization is one of several mechanisms that can regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallography and NMR are the only methods able to reveal the details of receptor–receptor interactions at an atomic level, and several GPCR homodimers already have been described from crystal structures. Two clusters of symmetric interfaces have been identified from these structures that concur with biochemical data, one involving helices I, II, and VIII and the other formed mainly by helices V and VI. In this chapter, we describe the protocols used in our laboratory for the crystallization of rhodopsin and the β2-adrenergic receptor (β2-AR). For bovine rhodopsin, we developed a new purification strategy including a (NH4)2SO4-induced phase separation that proved essential to obtain crystals of photoactivated rhodopsin containing parallel dimers. Crystallization of native bovine rhodopsin was achieved by the classic vapor-diffusion technique. For β2-AR, we developed a purification strategy based on previously published protocols employing a lipidic cubic phase to obtain diffracting crystals of a β2-AR/T4-lysozyme chimera bound to the antagonist carazolol. PMID:24143992

  19. Structural features for functional selectivity at serotonin receptors.

    PubMed

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L; Stevens, Raymond C

    2013-05-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities. PMID:23519215

  20. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  1. Model Organisms in G Protein–Coupled Receptor Research

    PubMed Central

    Barr, Maureen M.; Bruchas, Michael R.; Ewer, John; Griffith, Leslie C.; Maiellaro, Isabella; Taghert, Paul H.; White, Benjamin H.

    2015-01-01

    The study of G protein–coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor’s native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches: as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism. PMID:25979002

  2. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  3. Adenosine A1( )receptors are selectively coupled to Gα(i-3) in postmortem human brain cortex: Guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding/immunoprecipitation study.

    PubMed

    Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; García-Sevilla, Jesús A

    2015-10-01

    By means of guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding assay combined with immunoprecipitation using anti-Gα subunit antibody, we recently reported 5-HT2A receptor- and M1 muscarinic acetylcholine receptor-mediated Gαq activation in rat cerebral cortical membranes (Odagaki et al., 2014). In the present study, this method has been applied to postmortem human brains, with focusing on adenosine receptor-mediated G-protein activation. In the exploratory experiments using a series of agonists and the antibodies specific to each Gα subtypes in the presence of low (10 nM) or high (50 μM) concentration of GDP, the most prominent increases in specific [(35)S]GTPγS binding in the membranes prepared from human prefrontal cortex were obtained for the combinations of adenosine (1mM)/anti-Gαi-3 in the presence of 50 μM GDP as well as 5-HT (100 μM)/anti-Gαq and carbachol (1mM)/anti-Gαq in the presence of 10nM GDP. Adenosine-induced activation of Gαi-3 emerged only when GDP concentrations were increased higher than 10 μM, and the following experiments were performed in the presence of 300 μM GDP. Adenosine increased specific [(35)S]GTPγS binding to Gαi-3 in a concentration-dependent manner to 251.4% of the basal unstimulated binding, with an EC50 of 1.77 μM. The involvement of adenosine A1 receptor was verified by the experiments using selective agonists and antagonists at adenosine A1 or A3 receptor. Among the α subunits of Gi/o class (Gαi-1, Gαi-2, Gαi-3, and Gαo.), only Gαi-3 was activated by 1mM adenosine, indicating that human brain adenosine A1 receptor is coupled preferentially, if not exclusively, to Gαi-3. PMID:26213104

  4. Structure and function of serotonin G protein-coupled receptors.

    PubMed

    McCorvy, John D; Roth, Bryan L

    2015-06-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  5. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  6. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice.

    PubMed Central

    Rockman, H A; Choi, D J; Rahman, N U; Akhter, S A; Lefkowitz, R J; Koch, W J

    1996-01-01

    Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype. Images Fig. 1 PMID:8790438

  7. Molecular basis for amino acid sensing by family C G-protein-coupled receptors

    PubMed Central

    Wellendorph, P; Bräuner-Osborne, H

    2009-01-01

    Family C of human G-protein-coupled receptors (GPCRs) is constituted by eight metabotropic glutamate receptors, two γ-aminobutyric acid type B (GABAB1–2) subunits forming the heterodimeric GABAB receptor, the calcium-sensing receptor, three taste1 receptors (T1R1–3), a promiscuous L-α-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABAB1–2 and T1R2–3 receptor, all receptors are either activated or positively modulated by amino acids. In this review, we outline mutational, biophysical and structural studies which have elucidated the interaction of the amino acids with the Venus flytrap domains, molecular mechanisms of receptor selectivity and the initial steps in receptor activation. PMID:19298394

  8. Novel potent selective phenylglycine antagonists of metabotropic glutamate receptors.

    PubMed

    Bedingfield, J S; Jane, D E; Kemp, M C; Toms, N J; Roberts, P J

    1996-08-01

    The metabotropic glutamate (mGlu) receptor antagonist properties of novel phenylglycine analogues were investigated in adult rat cortical slices (mGlu receptors negatively coupled to adenylyl cyclase), neonatal rat cortical slices and in cultured rat cerebellar granule cells (mGlu receptors coupled to phosphoinositide hydrolysis). (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-methyl-3-carboxymethyl-4-hydroxyphenylglycine (M3CM4HPG) and (RS)-alpha-methyl-4-hydroxy-3-phosphonomethylphenylglycine (M4H3PMPG) were demonstrated to have potent and selective effects against 10 microM L-2-amino-4-phosphonobutyrate (L-AP4)- and 0.3 microM (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine (L-CCG-1)-mediated inhibition of forskolin-stimulated cAMP accumulation in the adult rat cortex. In contrast, these compounds demonstrated either weak or no antagonism at mGlu receptors coupled to phosphoinositide hydrolysis in either neonatal rat cortex or in cultured cerebellar granule cells. These compounds thus appear to be useful discriminatory pharmacological tools for mGlu receptors and form the basis for the further development of novel antagonists. PMID:8864696

  9. Signaling through G protein coupled receptors

    PubMed Central

    2009-01-01

    Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role. PMID:19826234

  10. Monitoring endosomal trafficking of the G protein-coupled receptor somatostatin receptor 3

    PubMed Central

    Tower-Gilchrist, Cristy; Styers, Melanie L.; Yoder, Bradley K.; Berbari, Nicolas F.; Sztul, Elizabeth

    2016-01-01

    Endocytic trafficking of G protein-coupled receptors (GPCRs) regulates the number of cell surface receptors available for activation by agonists and serves as one mechanism that controls the intensity and duration of signaling. Deregulation of GPCR-mediated signaling pathways results in a multitude of diseases, and thus extensive efforts have been directed toward understand the pathways and molecular events that regulate endocytic trafficking of these receptors. The general paradigms associated with internalization and recycling, as well as many of the key regulators involved in endosomal trafficking of GPCRs have been identified. This knowledge provides goalposts to facilitate the analysis of endosomal pathways traversed by previously uncharacterized GPCRs. Some of the most informative markers associated with GPCR transit are the Rab members of the Ras-related family of small GTPases. Individual Rabs show high selectivity for distinct endosomal compartments, and thus co-localization of a GPCR with a particular Rab informs on the internalization pathway traversed by the receptor. Progress in our knowledge of endosomal trafficking of GPCRs has been achieved through advances in our ability to tag GPCRs and Rabs with fluorescent proteins and perform live cell imaging of multiple fluorophores, allowing real-time observation of receptor trafficking between subcellular compartments in a cell culture model. PMID:24359959

  11. Transmission coupling mechanisms: cultural group selection

    PubMed Central

    Boyd, Robert; Richerson, Peter J.

    2010-01-01

    The application of phylogenetic methods to cultural variation raises questions about how cultural adaption works and how it is coupled to cultural transmission. Cultural group selection is of particular interest in this context because it depends on the same kinds of mechanisms that lead to tree-like patterns of cultural variation. Here, we review ideas about cultural group selection relevant to cultural phylogenetics. We discuss why group selection among multiple equilibria is not subject to the usual criticisms directed at group selection, why multiple equilibria are a common phenomena, and why selection among multiple equilibria is not likely to be an important force in genetic evolution. We also discuss three forms of group competition and the processes that cause populations to shift from one equilibrium to another and create a mutation-like process at the group level. PMID:21041204

  12. Activation of family C G-protein-coupled receptors by the tripeptide glutathione.

    PubMed

    Wang, Minghua; Yao, Yi; Kuang, Donghui; Hampson, David R

    2006-03-31

    The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions. PMID:16455645

  13. The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids

    PubMed Central

    Alioto, Tyler S; Ngai, John

    2006-01-01

    Background Vertebrate odorant receptors comprise at least three types of G protein-coupled receptors (GPCRs): the OR, V1R, and V2R/V2R-like receptors, the latter group belonging to the C family of GPCRs. These receptor families are thought to receive chemosensory information from a wide spectrum of odorant and pheromonal cues that influence critical animal behaviors such as feeding, reproduction and other social interactions. Results Using genome database mining and other informatics approaches, we identified and characterized the repertoire of 54 intact "V2R-like" olfactory C family GPCRs in the zebrafish. Phylogenetic analysis – which also included a set of 34 C family GPCRs from fugu – places the fish olfactory receptors in three major groups, which are related to but clearly distinct from other C family GPCRs, including the calcium sensing receptor, metabotropic glutamate receptors, GABA-B receptor, T1R taste receptors, and the major group of V2R vomeronasal receptor families. Interestingly, an analysis of sequence conservation and selective pressure in the zebrafish receptors revealed the retention of a conserved sequence motif previously shown to be required for ligand binding in other amino acid receptors. Conclusion Based on our findings, we propose that the repertoire of zebrafish olfactory C family GPCRs has evolved to allow the detection and discrimination of a spectrum of amino acid and/or amino acid-based compounds, which are potent olfactory cues in fish. Furthermore, as the major groups of fish receptors and mammalian V2R receptors appear to have diverged significantly from a common ancestral gene(s), these receptors likely mediate chemosensation of different classes of chemical structures by their respective organisms. PMID:17156446

  14. Promiscuity and selectivity of bitter molecules and their receptors.

    PubMed

    Di Pizio, Antonella; Niv, Masha Y

    2015-07-15

    Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. PMID:25934224

  15. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells★

    PubMed Central

    Engelstoft, Maja S.; Park, Won-mee; Sakata, Ichiro; Kristensen, Line V.; Husted, Anna Sofie; Osborne-Lawrence, Sherri; Piper, Paul K.; Walker, Angela K.; Pedersen, Maria H.; Nøhr, Mark K.; Pan, Jie; Sinz, Christopher J.; Carrington, Paul E.; Akiyama, Taro E.; Jones, Robert M.; Tang, Cong; Ahmed, Kashan; Offermanns, Stefan; Egerod, Kristoffer L.; Zigman, Jeffrey M.; Schwartz, Thue W.

    2013-01-01

    The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell. PMID:24327954

  16. Selectivity of odorant receptors in insects

    PubMed Central

    Bohbot, Jonathan D.; Dickens, Joseph C.

    2012-01-01

    Insect olfactory receptors (ORs) detect chemicals, shape neuronal physiology, and regulate behavior. Although ORs have been categorized as “generalists” and “specialists” based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs specifically recognize non-pheromonal compounds, and that our understanding of odorant-selectivity mirrors our knowledge of insect chemical ecology. As we are progressively becoming aware that ORs are activated through a variety of mechanisms, the molecular basis of odorant-selectivity and the corollary notion of broad-tuning need to be re-examined from a pharmacological and evolutionary perspective. PMID:22811659

  17. Recent developments in receptor-selective retinoids.

    PubMed

    Nagpal, S; Chandraratna, R A

    2000-06-01

    Natural (all trans-retinoic acid, RA) and synthetic retinoids exhibit potent anti-proliferative, normalization of differentiation and anti-inflammatory activities which appear to account for their therapeutic effects in acne, psoriasis, photoaging, precancerous lesions and established cancers. Although RA has shown considerable promise in dermatologic indications, certain side effects have restricted its use as a choice of agent for chronic administration. Systematic synthesis of receptor-selective retinoids has resulted in two topical drugs, Tazorac/Zorac (tazarotene) and Differin (adapalene). Tazorac is indicated for psoriasis and acne and Differin gel for the treatment of acne. These drugs bind to the retinoic acid receptor (RAR) family members. Various RAR subtype-specific and function-selective retinoids have been synthesized. These retinoids, which are in various stages of pre-clinical development for the treatment of cancers, psoriasis and as an antidote to Accutane-mediated mucocutaneous toxicity, will also be discussed in this review. Discovery of another retinoid receptor, retinoid X receptor (RXR), revealed that RXR-specific retinoids already existed in retinoid chemical libraries. Structure activity relationship studies based upon binding and transactivation assays led to the synthesis of RXR-specific ligands with high affinities for RXR subtypes. These compounds were found to be effective in the treatment of hyperglycemia in animal models of type II diabetes. The discovery of novel retinoids along with an increased understanding of the biological functions and mechanisms of action of retinoid receptors are likely to result in improved treatments for existing responsive indications and identification of new retinoid therapeutic targets. PMID:10828316

  18. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction

    PubMed Central

    y Schnitzler, Michael Mederos; Storch, Ursula; Meibers, Simone; Nurwakagari, Pascal; Breit, Andreas; Essin, Kirill; Gollasch, Maik; Gudermann, Thomas

    2008-01-01

    Despite the central physiological function of the myogenic response, the underlying signalling pathways and the identity of mechanosensors in vascular smooth muscle (VSM) are still elusive. In contrast to present thinking, we show that membrane stretch does not primarily gate mechanosensitive transient receptor potential (TRP) ion channels, but leads to agonist-independent activation of Gq/11-coupled receptors, which subsequently signal to TRPC channels in a G protein- and phospholipase C-dependent manner. Mechanically activated receptors adopt an active conformation, allowing for productive G protein coupling and recruitment of β-arrestin. Agonist-independent receptor activation by mechanical stimuli is blocked by specific antagonists and inverse agonists. Increasing the AT1 angiotensin II receptor density in mechanically unresponsive rat aortic A7r5 cells resulted in mechanosensitivity. Myogenic tone of cerebral and renal arteries is profoundly diminished by the inverse angiotensin II AT1 receptor agonist losartan independently of angiotensin II (AII) secretion. This inhibitory effect is enhanced in blood vessels of mice deficient in the regulator of G-protein signalling-2. These findings suggest that Gq/11-coupled receptors function as sensors of membrane stretch in VSM cells. PMID:18987636

  19. Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology.

    PubMed

    DeWire, Scott M; Violin, Jonathan D

    2011-07-01

    Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the β-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics. PMID:21737816

  20. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  1. Corticotropin-releasing factor receptors induce calcium mobilization through cross-talk with Gq-coupled receptors.

    PubMed

    Gutknecht, Eric; Vauquelin, Georges; Dautzenberg, Frank M

    2010-09-10

    The cross-talk between corticotropin-releasing factor (CRF) and muscarinic receptors was investigated by measuring evoked transient increases in cytosolic calcium concentration. HEK293 cells stably expressing human CRF type 1 (hCRF(1)) and type 2(a) (hCRF(2(a))) receptors were stimulated with the muscarinic receptor agonist carbachol and shortly after by a CRF agonist. Unexpectedly, this second response was enhanced when compared to stimulating naive cells either with carbachol or CRF agonist only. Priming with 100 microM carbachol increased the maximal CRF agonist response and shifted its concentration-response curve to the left to attain almost the same potency as for stimulating the production of the natural second messenger cyclic AMP. Yet, priming did not affect CRF agonist-stimulated cyclic AMP production itself. Carbachol priming was not restricted to recombinant CRF receptors only since endogenously expressed beta(2)-adrenoceptors also started to produce a robust calcium signal. Without priming no such signal was observed. Similar findings were made in the human retinoblastoma cell line Y79 for endogenously expressed CRF(1) receptors and the type 1 pituitary adenylate cyclase-activating polypeptide receptors but not for the CRF(2(a)) receptors. This differentiation between CRF(1) and CRF(2) receptors was further supported by use of selective agonists and antagonists. The results suggest that stimulating a Gq-coupled receptor shortly before stimulating a Gs-coupled receptor may result in a parallel signaling event on top of the classical cyclic AMP pathway. PMID:20594969

  2. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  3. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  4. G Protein-Coupled Receptors in Anopheles gambiae

    NASA Astrophysics Data System (ADS)

    Hill, Catherine A.; Fox, A. Nicole; Pitts, R. Jason; Kent, Lauren B.; Tan, Perciliz L.; Chrystal, Mathew A.; Cravchik, Anibal; Collins, Frank H.; Robertson, Hugh M.; Zwiebel, Laurence J.

    2002-10-01

    We used bioinformatic approaches to identify a total of 276 G protein-coupled receptors (GPCRs) from the Anopheles gambiae genome. These include GPCRs that are likely to play roles in pathways affecting almost every aspect of the mosquito's life cycle. Seventy-nine candidate odorant receptors were characterized for tissue expression and, along with 76 putative gustatory receptors, for their molecular evolution relative to Drosophila melanogaster. Examples of lineage-specific gene expansions were observed as well as a single instance of unusually high sequence conservation.

  5. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    PubMed

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636

  6. Biased ligands at G-protein-coupled receptors: promise and progress.

    PubMed

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development. PMID:24878326

  7. Coupled gating between cardiac calcium release channels (ryanodine receptors).

    PubMed

    Marx, S O; Gaburjakova, J; Gaburjakova, M; Henrikson, C; Ondrias, K; Marks, A R

    2001-06-01

    Excitation-contraction coupling in heart muscle requires the activation of Ca(2+)-release channels/type 2 ryanodine receptors (RyR2s) by Ca(2+) influx. RyR2s are arranged on the sarcoplasmic reticular membrane in closely packed arrays such that their large cytoplasmic domains contact one another. We now show that multiple RyR2s can be isolated under conditions such that they remain physically coupled to one another. When these coupled channels are examined in planar lipid bilayers, multiple channels exhibit simultaneous gating, termed "coupled gating." Removal of the regulatory subunit, the FK506 binding protein (FKBP12.6), functionally but not physically uncouples multiple RyR2 channels. Coupled gating between RyR2 channels may be an important regulatory mechanism in excitation-contraction coupling as well as in other signaling pathways involving intracellular Ca(2+) release. PMID:11397781

  8. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  9. Molecular Evolution of the Transmembrane Domains of G Protein-Coupled Receptors

    PubMed Central

    Fatakia, Sarosh N.; Costanzi, Stefano; Chow, Carson C.

    2011-01-01

    G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection. PMID:22132149

  10. A Novel Method for Analyzing Extremely Biased Agonism at G Protein–Coupled Receptors

    PubMed Central

    Zhou, Lei; Ehlert, Frederick J.; Bohn, Laura M.

    2015-01-01

    Seven transmembrane receptors were originally named and characterized based on their ability to couple to heterotrimeric G proteins. The assortment of coupling partners for G protein–coupled receptors has subsequently expanded to include other effectors (most notably the βarrestins). This diversity of partners available to the receptor has prompted the pursuit of ligands that selectively activate only a subset of the available partners. A biased or functionally selective ligand may be able to distinguish between different active states of the receptor, and this would result in the preferential activation of one signaling cascade more than another. Although application of the “standard” operational model for analyzing ligand bias is useful and suitable in most cases, there are limitations that arise when the biased agonist fails to induce a significant response in one of the assays being compared. In this article, we describe a quantitative method for measuring ligand bias that is particularly useful for such cases of extreme bias. Using simulations and experimental evidence from several κ opioid receptor agonists, we illustrate a “competitive” model for quantitating the degree and direction of bias. By comparing the results obtained from the competitive model with the standard model, we demonstrate that the competitive model expands the potential for evaluating the bias of very partial agonists. We conclude the competitive model provides a useful mechanism for analyzing the bias of partial agonists that exhibit extreme bias. PMID:25680753

  11. Crystal Structure of a Lipid G Protein-Coupled Receptor

    SciTech Connect

    Hanson, Michael A; Roth, Christopher B; Jo, Euijung; Griffith, Mark T; Scott, Fiona L; Reinhart, Greg; Desale, Hans; Clemons, Bryan; Cahalan, Stuart M; Schuerer, Stephan C; Sanna, M Germana; Han, Gye Won; Kuhn, Peter; Rosen, Hugh; Stevens, Raymond C

    2012-03-01

    The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P1-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P1, resulting in the modulation of immune and stromal cell responses.

  12. Forskolin-free cAMP assay for Gi-coupled receptors.

    PubMed

    Gilissen, Julie; Geubelle, Pierre; Dupuis, Nadine; Laschet, Céline; Pirotte, Bernard; Hanson, Julien

    2015-12-01

    G protein-coupled receptors (GPCRs) represent the most successful receptor family for treating human diseases. Many are poorly characterized with few ligands reported or remain completely orphans. Therefore, there is a growing need for screening-compatible and sensitive assays. Measurement of intracellular cyclic AMP (cAMP) levels is a validated strategy for measuring GPCRs activation. However, agonist ligands for Gi-coupled receptors are difficult to track because inducers such as forskolin (FSK) must be used and are sources of variations and errors. We developed a method based on the GloSensor system, a kinetic assay that consists in a luciferase fused with cAMP binding domain. As a proof of concept, we selected the succinate receptor 1 (SUCNR1 or GPR91) which could be an attractive drug target. It has never been validated as such because very few ligands have been described. Following analyses of SUCNR1 signaling pathways, we show that the GloSensor system allows real time, FSK-free detection of an agonist effect. This FSK-free agonist signal was confirmed on other Gi-coupled receptors such as CXCR4. In a test screening on SUCNR1, we compared the results obtained with a FSK vs FSK-free protocol and were able to identify agonists with both methods but with fewer false positives when measuring the basal levels. In this report, we validate a cAMP-inducer free method for the detection of Gi-coupled receptors agonists compatible with high-throughput screening. This method will facilitate the study and screening of Gi-coupled receptors for active ligands. PMID:26386312

  13. Desensitization of G protein-coupled receptors and neuronal functions.

    PubMed

    Gainetdinov, Raul R; Premont, Richard T; Bohn, Laura M; Lefkowitz, Robert J; Caron, Marc G

    2004-01-01

    G protein-coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology. Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions. GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein-coupled receptor kinases (GRKs). Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways. Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and beta arrestins in major brain functions. In particular, screening of genetically modified mice lacking individual GRKs or beta arrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and mu-opioid receptor regulation of locomotion and analgesia. An important and specific role of GRKs and beta arrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia. Furthermore, the utility of a pharmacological strategy aimed at targeting this GPCR desensitization machinery to regulate brain functions can be envisaged. PMID:15217328

  14. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  15. G-protein coupled receptor kinases in inflammation and disease

    PubMed Central

    Packiriswamy, Nandakumar; Parameswaran, Narayanan

    2015-01-01

    G-protein coupled receptor kinases (GRKs) are serine/threonine protein kinases originally discovered for their role in G-protein coupled receptor (GPCR) phosphorylation. Recent studies have demonstrated a much broader function for this kinase family including phosphorylation of cytosolic substrates involved in cell signaling pathways stimulated by GPCRs as well as non-GPCRs. In addition, GRKs modulate signaling via phosphorylation-independent functions. Because of these various biochemical functions, GRKs have been shown to affect critical physiological and pathophysiological processes and thus are considered as drug targets in diseases such as heart failure. Role of GRKs in inflammation and inflammatory diseases is an evolving area of research and several studies including work from our lab in the recent years have demonstrated critical role of GRKs in the immune system. In this review we discuss the classical and the newly emerging functions of GRKs in the immune system and their role in inflammation and disease processes. PMID:26226012

  16. Applications of molecular replacement to G protein-coupled receptors

    SciTech Connect

    Kruse, Andrew C.; Manglik, Aashish; Kobilka, Brian K.; Weis, William I.

    2013-11-01

    The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.

  17. Discovery of three novel orphan G-protein-coupled receptors.

    PubMed

    Marchese, A; Sawzdargo, M; Nguyen, T; Cheng, R; Heng, H H; Nowak, T; Im, D S; Lynch, K R; George, S R; O'dowd, B F

    1999-02-15

    We have discovered three novel human genes, GPR34, GPR44, and GPR45, encoding family A G-protein-coupled receptors (GPCRs). The receptor encoded by GPR34 is most similar to the P2Y receptor subfamily, while the receptor encoded by GPR44 is most similar to chemoattractant receptors. The receptor encoded by GPR45 is the mammalian orthologue of a putative lysophosphatidic acid receptor from Xenopus laevis. Partial sequence of GPR34 was discovered during a search of the GenBank database of expressed sequence tags (ESTs). This sequence information was used both to isolate the full-length translational open reading frame from a human genomic library and to assemble a contig from additional GPR34 EST cDNAs. Northern blot and in situ hybridization analyses revealed GPR34 mRNA transcripts in several human and rat brain regions. Also, we used polymerase chain reaction (PCR) to amplify human genomic DNA using degenerate oligonucleotides designed from sequences encoding transmembrane domains 3 and 7 of opioid and somatostatin receptors. Two PCR products partially encoding novel GPCRs, named GPR44 and GPR45, were discovered and used to isolate the full-length translational open reading frames from a human genomic library. Both GPR44 and GPR45 are expressed in the central nervous system and periphery. For chromosomal localization, fluorescence in situ hybridization analysis was performed to assign GPR34 to chromosomes 4p12 and Xp11. 3, GPR44 to chromosome 11q12-q13.3, and GPR45 to chromosome 2q11. 1-q12. PMID:10036181

  18. Interaction of G protein coupled receptors and cholesterol.

    PubMed

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs. PMID:27108066

  19. Selectivity of oxomemazine for the M1 muscarinic receptors.

    PubMed

    Lee, S W; Woo, C W; Kim, J G

    1994-12-01

    The binding characteristics of pirenzepine and oxomemazine to muscarinic receptor were studied to evaluate the selectivity of oxomemazine for the muscarinic receptor subtypes in rat cerebral microsomes. Equilibrium dissociation constant (KD) of (-)-[3H]quinuclidinyl benzilate([3H]QNB) determined from saturation isotherms was 64 pM. Analysis of the pirenzepine inhibition curve of [3H]QNB binding to cerebral microsome indicated the presence of two receptor subtypes with high (Ki = 16 nM, M1 receptor) and low (Ki = 400 nM, M3 receptor) affinity for pirenzepine. Oxomemazine also identified two receptor subtypes with about 20-fold difference in the affinity for high (Ki = 84 nM, OH receptor) and low (Ki = 1.65 microM, OL receptor) affinity sites. The percentage populations of M1 and M3 receptors to the total receptors were 61:39, and those of OH and OL receptors 39:61, respectively. Both pirenzepine and oxomemazine increased the KD value for [3H]QNB without affecting the binding site concentrations and Hill coefficient for the [3H]QNB binding. Oxomemazine had a 10-fold higher affinity at M1 receptors than at M3 receptors, and pirenzepine a 8-fold higher affinity at OH receptors than at OL receptors. Analysis of the shallow competition binding curves of oxomemazine for M1 receptors and pirenzepine for OL receptors yielded that 69% of M1 receptors were of OH receptors and the remaining 31% of OL receptors, and that 29% of OL receptors were of M1 receptors and 71% of M3 receptors. However, M3 for oxomemazine and OH for pirenzepine were composed of a uniform population. These results suggest that oxomemazine could be classified as a selective drug for M1 receptors and also demonstrate that rat cerebral microsomes contain three different subtypes of M1, M3 and the other site which is different from M1, M2 and M3 receptors. PMID:10319156

  20. Serial Femtosecond Crystallography of G Protein-Coupled Receptors

    PubMed Central

    Liu, Wei; Wacker, Daniel; Gati, Cornelius; Han, Gye Won; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Katritch, Vsevolod; Barty, Anton; Zatsepin, Nadia A.; Li, Dianfan; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Seibert, M. Marvin; Wang, Chong; Shah, Syed T.A.; Basu, Shibom; Fromme, Raimund; Kupitz, Christopher; Rendek, Kimberley N.; Grotjohann, Ingo; Fromme, Petra; Kirian, Richard A.; Beyerlein, Kenneth R.; White, Thomas A.; Chapman, Henry N.; Caffrey, Martin; Spence, John C.H.; Stevens, Raymond C.; Cherezov, Vadim

    2014-01-01

    X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. Here we used an x-ray free-electron laser (XFEL) with individual 50-fs duration x-ray pulses to minimize radiation damage and obtained a high-resolution room temperature structure of a human serotonin receptor using sub-10 µm microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared to the structure solved by traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment. PMID:24357322

  1. GPCRdb: an information system for G protein-coupled receptors

    PubMed Central

    Isberg, Vignir; Mordalski, Stefan; Munk, Christian; Rataj, Krzysztof; Harpsøe, Kasper; Hauser, Alexander S.; Vroling, Bas; Bojarski, Andrzej J.; Vriend, Gert; Gloriam, David E.

    2016-01-01

    Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis. PMID:26582914

  2. Regulation of G protein-coupled receptor export trafficking

    PubMed Central

    Dong, Chunmin; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling. PMID:17074298

  3. Conformational Fluctuations in G-Protein-Coupled Receptors

    NASA Astrophysics Data System (ADS)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  4. Portraying G Protein-Coupled Receptors with Fluorescent Ligands

    PubMed Central

    2015-01-01

    The thermodynamics of ligand–receptor interactions at the surface of living cells represents a fundamental aspect of G protein-coupled receptor (GPCR) biology; thus, its detailed elucidation constitutes a challenge for modern pharmacology. Interestingly, fluorescent ligands have been developed for a variety of GPCRs in order to monitor ligand–receptor binding in living cells. Accordingly, new methodological strategies derived from noninvasive fluorescence-based approaches, especially fluorescence resonance energy transfer (FRET), have been successfully developed to characterize ligand–receptor interactions. Importantly, these technologies are supplanting more hazardous and expensive radioactive binding assays. In addition, FRET-based tools have also become extremely powerful approaches for visualizing receptor–receptor interactions (i.e., GPCR oligomerization) in living cells. Thus, by means of the synthesis of compatible fluorescent ligands these novel techniques can be implemented to demonstrate the existence of GPCR oligomerization not only in heterologous systems but also in native tissues. Finally, there is no doubt that these methodologies would also be relevant in drug discovery in order to develop new high-throughput screening approaches or to identify new therapeutic targets. Overall, herein, we provide a thorough assessment of all technical and biological aspects, including strengths and weaknesses, of these fluorescence-based methodologies when applied to the study of GPCR biology at the plasma membrane of living cells. PMID:25010291

  5. G protein coupled receptors as targets for next generation pesticides.

    PubMed

    Audsley, Neil; Down, Rachel E

    2015-12-01

    There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion

  6. Identification of a new selective dopamine D4 receptor ligand.

    PubMed

    Sampson, Dinithia; Zhu, Xue Y; Eyunni, Suresh V K; Etukala, Jagan R; Ofori, Edward; Bricker, Barbara; Lamango, Nazarius S; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y

    2014-06-15

    The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4=0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4=3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted. PMID:24800940

  7. Selectivity of odorant receptors in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  8. GPCRDB: an information system for G protein-coupled receptors.

    PubMed

    Isberg, Vignir; Vroling, Bas; van der Kant, Rob; Li, Kang; Vriend, Gert; Gloriam, David

    2014-01-01

    For the past 20 years, the GPCRDB (G protein-coupled receptors database; http://www.gpcr.org/7tm/) has been a 'one-stop shop' for G protein-coupled receptor (GPCR)-related data. The GPCRDB contains experimental data on sequences, ligand-binding constants, mutations and oligomers, as well as many different types of computationally derived data, such as multiple sequence alignments and homology models. The GPCRDB also provides visualization and analysis tools, plus a number of query systems. In the latest GPCRDB release, all multiple sequence alignments, and >65,000 homology models, have been significantly improved, thanks to a recent flurry of GPCR X-ray structure data. Tools were introduced to browse X-ray structures, compare binding sites, profile similar receptors and generate amino acid conservation statistics. Snake plots and helix box diagrams can now be custom coloured (e.g. by chemical properties or mutation data) and saved as figures. A series of sequence alignment visualization tools has been added, and sequence alignments can now be created for subsets of sequences and sequence positions, and alignment statistics can be produced for any of these subsets. PMID:24304901

  9. Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors.

    PubMed

    Maqueira, Braudel; Chatwin, Heather; Evans, Peter D

    2005-07-01

    Insect octopamine receptors carry out many functional roles traditionally associated with vertebrate adrenergic receptors. These include control of carbohydrate metabolism, modulation of muscular tension, modulation of sensory inputs and modulation of memory and learning. The activation of octopamine receptors mediating many of these actions leads to increases in the levels of cyclic AMP. However, to date none of the insect octopamine receptors that have been cloned have been convincingly shown to be capable of directly mediating selective and significant increases in cyclic AMP levels. Here we report on the identification and characterization of a novel, neuronally expressed family of three Drosophila G-protein coupled receptors that are selectively coupled to increases in intracellular cyclic AMP levels by octopamine. This group of receptors, DmOct beta1R (CG6919), DmOct beta2R (CG6989) and DmOct beta3R (CG7078) shows homology to vertebrate beta-adrenergic receptors. When expressed in Chinese hamster ovary cells all three receptors show a strong preference for octopamine over tyramine for the accumulation of cyclic AMP but show unique pharmacological profiles when tested with a range of synthetic agonists and antagonists. Thus, the pharmacological profile of individual insect tissue responses to octopamine might vary with the combination and the degree of expression of the individual octopamine receptors present. PMID:15998303

  10. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    NASA Astrophysics Data System (ADS)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  11. Minireview: Nutrient Sensing by G Protein-Coupled Receptors

    PubMed Central

    Wauson, Eric M.; Lorente-Rodríguez, Andrés

    2013-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them. PMID:23820899

  12. G Protein–Coupled Receptor Sorting to Endosomes and Lysosomes

    PubMed Central

    Marchese, Adriano; Paing, May M.; Temple, Brenda R.S.; Trejo, JoAnn

    2010-01-01

    The heptahelical G protein–coupled receptors (GPCRs) belong to the largest family of cell surface signaling receptors encoded in the human genome. GPCRs signal to diverse extracellular stimuli and control a vast number of physiological responses, making this receptor class the target of nearly half the drugs currently in use. In addition to rapid desensitization, receptor trafficking is crucial for the temporal and spatial control of GPCR signaling. Sorting signals present in the intracytosolic domains of GPCRs regulate trafficking through the endosomal-lysosomal system. GPCR internalization is mediated by serine and threonine phosphorylation and arrestin binding. Short, linear peptide sequences including tyrosine- and dileucine-based motifs, and PDZ ligands that are recognized by distinct endocytic adaptor proteins also mediate internalization and endosomal sorting of GPCRs. We present new data from bioinformatic searches that reveal the presence of these types of sorting signals in the cytoplasmic tails of many known GPCRs. Several recent studies also indicate that the covalent modification of GPCRs with ubiquitin serves as a signal for internalization and lysosomal sorting, expanding the diversity of mechanisms that control trafficking of mammalian GPCRs. PMID:17995450

  13. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  14. Axon Targeting of Olfactory Receptor Neurons is Patterned by Coupled Hedgehog Signaling at Two Distinct Steps

    PubMed Central

    Chou, Ya-Hui; Zheng, Xiaoyan; Beachy, Philip A.; Luo, Liqun

    2010-01-01

    SUMMARY We present evidence for a novel, coupled two-step action of Hedgehog signaling in patterning axon targeting of Drosophila olfactory receptor neurons (ORNs). In the first step, differential Hedgehog pathway activity in peripheral sensory organ precursors creates ORN populations with different levels of the Patched receptor. Different Patched levels in ORNs then determine axonal responsiveness to target-derived Hedgehog in the brain: only ORN axons that do not express high levels of Patched are responsive to and require a second-step of Hedgehog signaling for target selection. Hedgehog signaling in the imaginal sensory organ precursors thus confers differential ORN responsiveness to Hedgehog-mediated axon targeting in the brain. This mechanism contributes to the spatial coordination of ORN cell bodies in the periphery and their glomerular targets in the brain. Such coupled two-step signaling may be more generally used to coordinate other spatially and temporally segregated developmental events. PMID:20850015

  15. A Usual G-Protein-Coupled Receptor in Unusual Membranes.

    PubMed

    Chawla, Udeep; Jiang, Yunjiang; Zheng, Wan; Kuang, Liangju; Perera, Suchithranga M D C; Pitman, Michael C; Brown, Michael F; Liang, Hongjun

    2016-01-11

    G-protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and constitute about 50% of all known drug targets. They offer great potential for membrane protein nanotechnologies. We report here a charge-interaction-directed reconstitution mechanism that induces spontaneous insertion of bovine rhodopsin, the eukaryotic GPCR, into both lipid- and polymer-based artificial membranes. We reveal a new allosteric mode of rhodopsin activation incurred by the non-biological membranes: the cationic membrane drives a transition from the inactive MI to the activated MII state in the absence of high [H(+)] or negative spontaneous curvature. We attribute this activation to the attractive charge interaction between the membrane surface and the deprotonated Glu134 residue of the rhodopsin-conserved ERY sequence motif that helps break the cytoplasmic "ionic lock". This study unveils a novel design concept of non-biological membranes to reconstitute and harness GPCR functions in synthetic systems. PMID:26633591

  16. Therapeutic antibodies directed at G protein-coupled receptors

    PubMed Central

    Hutchings, Catherine J; Koglin, Markus

    2010-01-01

    G protein-coupled receptors (GPCRs) are one of the most important classes of targets for small molecule drug discovery, but many current GPCRs of interest are proving intractable to small molecule discovery and may be better approached with bio-therapeutics. GPCRs are implicated in a wide variety of diseases where antibody therapeutics are currently used. These include inflammatory diseases such as rheumatoid arthritis and Crohn disease, as well as metabolic disease and cancer. Raising antibodies to GPCRs has been difficult due to problems in obtaining suitable antigen because GPCRs are often expressed at low levels in cells and are very unstable when purified. A number of new developments in overexpressing receptors, as well as formulating stable pure protein, are contributing to the growing interest in targeting GPCRs with antibodies. This review discusses the opportunities for targeting GPCRs with antibodies using these approaches and describes the therapeutic antibodies that are currently in clinical development. PMID:20864805

  17. Human G protein-coupled receptor studies in Saccharomyces cerevisiae.

    PubMed

    Liu, Rongfang; Wong, Winsy; IJzerman, Adriaan P

    2016-08-15

    G protein-coupled receptors (GPCRs) are one of the largest families of membrane proteins, with approximately 800 different GPCRs in the human genome. Signaling via GPCRs regulates many biological processes, such as cell proliferation, differentiation, and development. In addition, many receptors have a pivotal role in immunophysiology. Many hormones and neurotransmitters are ligands for these receptors, and hence it is not surprising that many drugs, either mimicking or blocking the action of the bodily substances, have been developed. It is estimated that 30-40% of current drugs on the market target GPCRs. Further identifying and elucidating the functions of GPCRs will provide opportunities for novel drug discovery, including for immunotherapy. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is a very important and useful platform in this respect. There are many advantages of using a yeast assay system, as it is cheap, safe and stable; it is also convenient for rapid feasibility and optimization studies. Moreover, it offers a "null" background when studying human GPCRs. New developments regarding human GPCRs expressed in a yeast platform are providing insight into GPCR activation and signaling, and facilitate agonist and antagonist identification. In this review we summarize the latest findings regarding human G-protein-coupled receptors in studies using S. cerevisiae, ever since the year 2005 when we last published a review on this topic. We describe 11 families of GPCRs in detail, while including the principles and developments of each yeast system applied to these different GPCRs and highlight and generalize the experimental findings of GPCR function in these systems. PMID:26920251

  18. Neuroprotective effects of high affinity sigma 1 receptor selective compounds

    PubMed Central

    Luedtke, Robert R.; Perez, Evelyn; Yang, Shao-Hua; Liu, Ran; Vangveravong, Suwanna; Tu, Zhude; Mach, Robert H.; Simpkins, James W.

    2014-01-01

    We previously reported that the antipsychotic drug haloperidol, a multifunctional D2-like dopamine and sigma receptor subtype antagonist, has neuroprotective properties. In this study we further examined the association between neuroprotection and receptor antagonism by evaluating a panel of novel compounds with varying affinity at sigma and D2-like dopamine receptors. These compounds were evaluated using an in vitro cytotoxicity assay that utilizes a hippocampal-derived cell line, HT-22, in the presence or absence of varying concentrations (5 to 20 mM) of glutamate. While haloperidol was found to be a potent neuroprotective agent in this in vitro cell assay, the prototypic sigma 1 receptor agonist (+)-pentazocine was found not to be neuroprotective. Subsequently, the potency for the neuroprotection of HT-22 cells was evaluated for a) three SV series indoles which have nMolar affinity at D2-like receptors but varying affinity at sigma 1 receptor and b) two benzyl phenylacetamides sigma 1 receptor selective compounds which bind with low affinity at D2-like receptors but have nMolar affinity for the sigma 1 receptor. We observed that cytoprotection correlated with the affinity of the compounds for sigma 1 receptors. Based upon results from the HT-22 cell-based in vitro assay, two phenylacetamides, LS-127 and LS-137, were further evaluated in vivo using a transient middle cerebral artery occlusion (t-MCAO) model of stroke. At a dose of 100 µg/kg, both LS-127 and LS-137 attenuated infarct volume by approximately 50%. These studies provide further evidence that sigma 1 receptor selective compounds can provide neuroprotection in cytotoxic situations. These results also demonstrate that sigma 1 receptor selective benzyl phenylacetamides are candidate pharmacotherapeutic agents that could be used to minimize neuronal death after a stroke or head trauma. PMID:22285434

  19. Using constitutive activity to define appropriate high-throughput screening assays for orphan g protein-coupled receptors.

    PubMed

    Ngo, Tony; Coleman, James L J; Smith, Nicola J

    2015-01-01

    Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system. PMID:25563179

  20. G protein-coupled receptors in drug discovery.

    PubMed

    Nambi, Ponnal; Aiyar, Nambi

    2003-04-01

    G protein-coupled receptors (GPCRs) represent one of the most important drug discovery targets such that compounds targeted against GPCRs represent the single largest drug class currently on the market. With the revolutionary advances in human genome sciences and the identification of numerous orphan GPCRs, it is even more important to identify ligands for these orphan GPCRs so that their physiological and pathological roles can be delineated. To this end, major pharmaceutical industries are investing enormous amounts of time and money to achieve this object. This review is a bird's eye view on the various aspects of GPCRs in drug discovery. PMID:15090195

  1. G Protein-Coupled Receptors in Major Psychiatric Disorders

    PubMed Central

    Catapano, Lisa A.; Manji, Husseini K.

    2007-01-01

    Although the molecular mechanisms underlying psychiatric illnesses such as depression, bipolar disorder and schizophrenia remain incompletely understood, there is increasing clinical, pharmacologic, and genetic evidence that G protein-coupled receptors (GPCRs) play critical roles in these disorders and their treatments. This perspectives paper reviews and synthesizes the available data. Dysfunction of multiple neurotransmitter and neuropeptide GPCRs in frontal cortex and limbic-related regions, such as the hippocampus, hypothalamus and brainstem, likely underlies the complex clinical picture that includes cognitive, perceptual, affective and motoric symptoms. The future development of novel agents targeting GPCR signaling cascades remains an exciting prospect for patients refractory to existing therapeutics. PMID:17078926

  2. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support.

    PubMed

    Di Bartolo, Natalie; Compton, Emma L R; Warne, Tony; Edwards, Patricia C; Tate, Christopher G; Schertler, Gebhard F X; Booth, Paula J

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40-70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  3. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support

    PubMed Central

    Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  4. Endogenous Gs-Coupled Receptors in Smooth Muscle Exhibit Differential Susceptibility to GRK2/3-Mediated Desensitization†

    PubMed Central

    Kong, Kok Choi; Gandhi, Uma; Martin, T. J.; Anz, Candace B.; Yan, Huandong; Misior, Anna M.; Pascual, Rodolfo M.; Deshpande, Deepak A.; Penn, Raymond B.

    2010-01-01

    Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed Gs-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gβγ sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via β-agonist stimulation of the beta-2-adrenergic receptor (β2AR). Conversely, neither 5′-(N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the β-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to Gs-coupled receptors in ASM, GRK2/3 selectively attenuates β2AR signaling, yet relief of GRK2/3-dependent β2AR desensitization does not influence at least one important physiological function of the receptor. PMID:18690720

  5. Chimeric D1/D2 dopamine receptors. Distinct determinants of selective efficacy, potency, and signal transduction.

    PubMed

    Kozell, L B; Machida, C A; Neve, R L; Neve, K A

    1994-12-01

    D1/D2 chimeras were constructed that had D1 dopamine receptor sequence at the amino-terminal end and D2 dopamine receptor sequence at the carboxyl-terminal end. The chimeras with the first four, five and six transmembrane domains of the D1 receptor (CH2, CH3, CH4, respectively) bound the D1 receptor antagonist [3H]SCH 23390 with high affinity. Reciprocal chimeras constructed with D2 receptor sequence at the amino-terminal end displayed no detectable specific binding of [3H]SCH 23390, [125I]epidepride, or [3H]spiperone. CH2, CH3, and CH4 had lower affinity than either D1 or D2 dopamine receptors for the nonselective antagonists and agonists and D2-selective antagonists tested. The chimeric receptors had affinities for three D1-selective ligands and the D2-selective agonist, quinpirole, that were intermediate between D1 and D2 receptor affinities for the drugs. The substantial loss or gain of affinity for three ligands upon replacement of D1 transmembrane VII with D2 sequence (CH4) suggests an important role for this region in the selectivity of these drugs. Stimulation of adenylyl cyclase activity by D1 agonists occurred in cells expressing CH3 and CH4, both of which included the D1 third cytoplasmic loop, but not in cells expressing CH1 or CH2, both with the D2 third cytoplasmic loop. However, only CH3 was able to mediate stimulation of adenylyl cyclase by quinpirole, implying that D2 receptor transmembrane domain VI was an important determinant of the selective efficacy of quinpirole. On the other hand, transmembrane domain VII was particularly important for the selective potency of quinpirole. Inhibition of beta-adrenergic receptor-stimulated adenylyl cyclase activity by dopamine was seen in cells expressing D2 receptors and CH1, but not CH2, CH3, or CH4. Thus, the third cytoplasmic loop of D1 dopamine receptors was crucial for the coupling of the receptors to Gs, but inhibition of adenylyl cyclase via Gi required structural features, such as the second

  6. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1).

    PubMed

    Bruno, Agostino; Aiello, Francesca; Costantino, Gabriele; Radi, Marco

    2016-09-01

    Estrogens exert their action mainly by binding three receptors, namely estrogen receptors α and β (ERα and ERβ) and GPER-1 (G-protein coupled estrogen receptor 1). While the patho-physiological role of both ERα and ERβ has been deeply investigated, the role of GPER-1 in estrogens' signaling has not been clearly defined yet. Unfortunately, only few GPER-1 selective ligands were discovered so far, and the real efficiency of such compounds is still matter of debate. To better understand the physiological relevance of GPER-1, new selective chemical probes are higly needed. In this scenario, we report herein the generation and validation of a three-dimensional (3-D) GPER-1 homology model by means of docking studies and molecular dynamics simulations. The model thus generated was employed to (i) decipher the structural basis underlying the ability of estrogens and some Selective Estrogen Receptor Modulators (SERMs) to bind GPER-1 and classical ERα and ERβ, and (ii) generate a reliable G1/GPER-1 complex useful in rationalizing the pharmacological profile of G1 reported in the literature. The G1/GPER-1 complex herein reported could be further exploited in drug design approaches aimed at improving the pharmacological profile of G1 or at identifying new chemical entities (NCEs) as potential modulators of GPER-1. PMID:27546037

  7. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  8. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures.

    PubMed

    Smith, L Cody; Ralston-Hooper, Kimberly J; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-06-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  9. Quantitative Measure of Receptor Agonist and Modulator Equi-Response and Equi-Occupancy Selectivity

    PubMed Central

    Zhang, Rumin; Kavana, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are an important class of drug targets. Quantitative analysis by global curve fitting of properly designed dose-dependent GPCR agonism and allosterism data permits the determination of all affinity and efficacy parameters based on a general operational model. We report here a quantitative and panoramic measure of receptor agonist and modulator equi-response and equi-occupancy selectivity calculated from these parameters. The selectivity values help to differentiate not only one agonist or modulator from another, but on-target from off-target receptor or functional pathway as well. Furthermore, in conjunction with target site free drug concentrations and endogenous agonist tones, the allosterism parameters and selectivity values may be used to predict in vivo efficacy and safety margins. PMID:27116909

  10. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain

    SciTech Connect

    Sumners, C.; Wei Tang; Zelezna, B.; Raizada, M.K. )

    1991-09-01

    Both neurons and astrocytes contain specific receptors for angiotensin II (AII). The authors used selective ligands for the AT{sub 1} and AT{sub 2} types of AII receptors to investigate the expression of functional receptor subtypes in astrocyte cultures and neuron cultures from 1-day-old (neonatal) rat brain. In astrocyte cultures, competition of {sup 125}I-labeled AII ({sup 125}I-AII) specific binding with AT{sub 1} (DuP753) or AT{sub 2} {l brace}PD123177, CGP42112A, (Phe(p-NH{sub 2}){sup 6})AII{r brace} selective receptor ligands revealed a potency series of AII > DuP753 > > > CGP42112A > (Phe(p-NH{sub 2}){sup 6})AII > PD123177. These results suggest a predominance of the AT{sub 1} receptor subtype in neonatal astrocytes. {sup 125}I-AII specific binding to neonate neuronal cultures was reduced 73-84% by 1 {mu} MPD123177, and the residual {sup 125}I-AII specific binding was eliminated by DuP753. The results suggest that astrocyte cultures from neonatal rat brains contain predominantly AT{sub 1} receptors that are coupled to a stimulation of inositophospholipid hydrolysis. In contrast, neuron cultures from neonatal rat brain contain mostly AT{sub 2} receptors that are coupled to a reduction in basal cGMP levels, but a smaller population of AT{sub 1} receptors is also present in these neurons.

  11. Oxidative Dehydrogenative Couplings of Pyrazol-5-amines Selectively Forming Azopyrroles

    PubMed Central

    2015-01-01

    New oxidative dehydrogenative couplings of pyrazol-5-amines for the selective synthesis of azopyrrole derivatives have been described. The former reaction simultaneously installs C–I and N–N bonds through iodination and oxidation, whereas the latter involved a copper-catalyzed oxidative coupling process. The resulting iodo-substituted azopyrroles were employed by treatment with various terminal alkynes through Sonogashira cross-coupling leading to new azo compounds. PMID:24731223

  12. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design

    PubMed Central

    Koehbach, Johannes; O’Brien, Margaret; Muttenthaler, Markus; Miazzo, Marion; Akcan, Muharrem; Elliott, Alysha G.; Daly, Norelle L.; Harvey, Peta J.; Arrowsmith, Sarah; Gunasekera, Sunithi; Smith, Terry J.; Wray, Susan; Göransson, Ulf; Dawson, Philip E.; Craik, David J.; Freissmuth, Michael; Gruber, Christian W.

    2013-01-01

    Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as “kalata-kalata,” the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V1a receptors, members of the G protein-coupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands. PMID:24248349

  13. Towards predictive docking at aminergic G-protein coupled receptors.

    PubMed

    Jakubík, Jan; El-Fakahany, Esam E; Doležal, Vladimír

    2015-11-01

    G protein-coupled receptors (GPCRs) are hard to crystallize. However, attempts to predict their structure have boomed as a result of advancements in crystallographic techniques. This trend has allowed computer-aided molecular modeling of GPCRs. We analyzed the performance of four molecular modeling programs in pose evaluation of re-docked antagonists / inverse agonists to 11 original crystal structures of aminergic GPCRs using an induced fit-docking procedure. AutoDock and Glide were used for docking. AutoDock binding energy function, GlideXP, Prime MM-GB/SA, and YASARA binding function were used for pose scoring. Root mean square deviation (RMSD) of the best pose ranged from 0.09 to 1.58 Å, and median RMSD of the top 60 poses ranged from 1.47 to 3.83 Å. However, RMSD of the top pose ranged from 0.13 to 7.33 Å and ranking of the best pose ranged from the 1st to 60th out of 60 poses. Moreover, analysis of ligand-receptor interactions of top poses revealed substantial differences from interactions found in crystallographic structures. Bad ranking of top poses and discrepancies between top docked poses and crystal structures render current simple docking methods unsuitable for predictive modeling of receptor-ligand interactions. Prime MM-GB/SA optimized for 3NY9 by multiple linear regression did not work well at 3NY8 and 3NYA, structures of the same receptor with different ligands. However, 9 of 11 trajectories of molecular dynamics simulations by Desmond of top poses converged with trajectories of crystal structures. Key interactions were properly detected for all structures. This procedure also worked well for cross-docking of tested β2-adrenergic antagonists. Thus, this procedure represents a possible way to predict interactions of antagonists with aminergic GPCRs. PMID:26453085

  14. G-protein Coupled Estrogen Receptor, Estrogen Receptor α, and Progesterone Receptor Immunohistochemistry in the Hypothalamus of Aging Female Rhesus Macaques Given Long-Term Estradiol Treatment

    PubMed Central

    NAUGLE, MICHELLE M.; NGUYEN, LONG T.; MERCERON, TYLER K.; FILARDO, EDWARD; JANSSEN, WILLIAM G.M.; MORRISON, JOHN H.; RAPP, PETER R.; GORE, ANDREA C.

    2014-01-01

    Steroid hormone receptors are widely and heterogeneously expressed in the brain, and are regulated by age and gonadal hormones. Our goal was to quantify effects of aging, long-term estradiol (E2) treatment, and their interactions, on expression of G protein-coupled estrogen receptor (GPER), estrogen receptor α (ERα) and progesterone receptor (PR) immunoreactivity in two hypothalamic regions, the arcuate (ARC) and the periventricular area (PERI) of rhesus monkeys as a model of menopause and hormone replacement. Ovariectomized (OVX) rhesus macaques were young (~11 years) or aged (~25 years), given oil (vehicle) or E2 every 3 weeks for 2 years. Immunohistochemistry and stereologic analysis of ERα, PR, and GPER was performed. More effects were detected for GPER than the other two receptors. Specifically, GPER cell density in the ARC and PERI, and the percent of GPER-immunoreactive cells in the PERI, were greater in aged than in young monkeys. In addition, we mapped the qualitative distribution of GPER in the monkey hypothalamus and nearby regions. For ERα, E2 treated monkeys tended to have higher cell density than vehicle monkeys in the ARC. The percent of PR density in the PERI tended to be higher in E2 than vehicle monkeys of both ages. This study shows that the aged hypothalamus maintains expression of hormone receptors with age, and that long-term cyclic E2 treatment has few effects on their expression, although GPER was affected more than ERα or PR. This result is surprising in light of evidence for E2 regulation of the receptors studied here, and differences may be due to the selected regions, long-term nature of E2 treatment, among other possibilities. PMID:24862737

  15. Structural conservation among the rhodopsin-like and other G protein-coupled receptors

    PubMed Central

    Kinoshita, Mikitaka; Okada, Tetsuji

    2015-01-01

    Intramolecular remote coupling within the polypeptide backbones of membrane proteins is difficult to analyze owing to the limited structural information available at the atomic level. Nonetheless, recent progress in the crystallographic study of G protein-coupled receptors (GPCRs) has provided an unprecedented opportunity for understanding the sophisticated architecture of heptahelical transmembrane (7TM) bundles. These 7TM bundles can respond to a wide range of extracellular stimuli while retaining the common function of binding trimeric G proteins. Here we have systematically analyzed select sets of inactive-like 7TM bundles to highlight the structural conservation of the receptors, in terms of intramolecular Cα-Cα distances. Distances with the highest scores were found to be dominated by the intrahelical distances of helix III, regardless of the choice of bundles in the set, indicating that the intracellular half of this helix is highly conserved. Unexpectedly, the distances between the cytoplasmic side of helix I and the extracellular region of helix VI provided the largest contribution to the high score populations among the interhelical pairs in most of the selected sets, including class B, C and frizzled receptors. These findings are expected to be valuable in further studies of GPCRs with unknown structure and of other protein families. PMID:25775952

  16. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs.

    PubMed

    Pediani, John D; Ward, Richard J; Godin, Antoine G; Marsango, Sara; Milligan, Graeme

    2016-06-17

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm(-2) human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  17. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs*

    PubMed Central

    Pediani, John D.; Ward, Richard J.; Godin, Antoine G.; Marsango, Sara

    2016-01-01

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  18. Mathematical modeling and application of genetic algorithm to parameter estimation in signal transduction: trafficking and promiscuous coupling of G-protein coupled receptors.

    PubMed

    Modchang, Charin; Triampo, Wannapong; Lenbury, Yongwimon

    2008-05-01

    G-protein-coupled receptors (GPCRs) constitute a large and diverse family of proteins whose primary function is to transduce extracellular stimuli into intracellular signals. These receptors play a critical role in signal transduction, and are among the most important pharmacological drug targets. Upon binding of extracellular ligands, these receptor molecules couple to one or several subtypes of G-protein which reside at the intracellular side of the plasma membrane to trigger intracellular signaling events. The question of how GPCRs select and activate a single or multiple G-protein subtype(s) has been the topic of intense investigations. Evidence is also accumulating; however, that certain GPCRs can be internalized via lipid rafts and caveolae. In many cases, the mechanisms responsible for this still remain to be elucidated. In this work, we extend the mathematical model proposed by Chen et al. [Modelling of signalling via G-protein coupled receptors: pathway-dependent agonist potency and efficacy, Bull. Math. Biol. 65 (5) (2003) 933-958] to take into account internalization, recycling, degradation and synthesis of the receptors. In constructing the model, we assume that the receptors can exist in multiple conformational states allowing for a multiple effecter pathways. As data on kinetic reaction rates in the signalling processes measured in reliable in vivo and in vitro experiments is currently limited to a small number of known values. In this paper, we also apply a genetic algorithm (GA) to estimate the parameter values in our model. PMID:18367158

  19. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. PMID:26921679

  20. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions.

    PubMed

    Di Roberto, Raphaël B; Chang, Belinda; Trusina, Ala; Peisajovich, Sergio G

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease. PMID:27487915

  1. Activation Biosensor for G Protein-Coupled Receptors: A FRET-Based m1 Muscarinic Activation Sensor That Regulates Gq

    PubMed Central

    Chang, Seungwoo; Ross, Elliott M.

    2012-01-01

    We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I Gq-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15–20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gαq, and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by Gq. We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gαq, in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets. PMID:23029161

  2. Post-coupling strategy enables true receptor-targeted nanoparticles

    PubMed Central

    Chen, Jianmeizi; Jorgensen, Michael R; Thanou, Maya; Miller, Andrew D

    2011-01-01

    A key goal of our research is the targeted delivery of functional biopharmaceutical agents of interest, such as small interfering RNA (siRNA), to selected cells by means of receptor-mediated nanoparticle technologies. Recently, we described how pH-triggered, PEGylated siRNA-nanoparticles (pH triggered siRNA-ABC nanoparticles) were able to mediate the passive targeting of siRNA to liver cells in vivo. In addition, PEGylated siRNA nanoparticles enabled for long-term circulation (LTC siRNA-ABC nanoparticles, LEsiRNA nanoparticles) were shown to do the same to tumour cells in vivo. Further gains in the efficiency of siRNA delivery are expected to require active targeting with nanoparticles targeted for delivery and cellular uptake by means of attached biological ligands. Here we report on the development of a new synthetic chemistry and a bioconjugation methodology that allows for the controlled formulation of PEGylated nanoparticles which surface-present integrin-targeting peptides unambiguously and so enable integrin receptor-mediated cellular uptake. Furthermore, we present delivery data that provide a clear preliminary demonstration of physical principles that we propose should underpin successful, bonefide receptor-mediated targeted delivery of therapeutic and/or imaging agents to cells. PMID:22091319

  3. G Protein-Coupled Receptor Rhodopsin: A Prospectus

    PubMed Central

    Filipek, Sławomir; Stenkamp, Ronald E.; Teller, David C.; Palczewski, Krzysztof

    2006-01-01

    Rhodopsin is a retinal photoreceptor protein of bipartite structure consisting of the transmembrane protein opsin and a light-sensitive chromophore 11-cis-retinal, linked to opsin via a protonated Schiff base. Studies on rhodopsin have unveiled many structural and functional features that are common to a large and pharmacologically important group of proteins from the G protein-coupled receptor (GPCR) superfamily, of which rhodopsin is the best-studied member. In this work, we focus on structural features of rhodopsin as revealed by many biochemical and structural investigations. In particular, the high-resolution structure of bovine rhodopsin provides a template for understanding how GPCRs work. We describe the sensitivity and complexity of rhodopsin that lead to its important role in vision. PMID:12471166

  4. Nanobody stabilization of G protein coupled receptor conformational states

    PubMed Central

    Steyaert, Jan; K Kobilka, Brian

    2011-01-01

    Remarkable progress has been made in the field of G protein coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis. PMID:21782416

  5. Engineering therapeutic antibodies targeting G-protein–coupled receptors

    PubMed Central

    Jo, Migyeong; Jung, Sang Taek

    2016-01-01

    G-protein–coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution. PMID:26846450

  6. Lysophospholipids and their G protein-coupled receptors in atherosclerosis.

    PubMed

    Li, Ya-Feng; Li, Rong-Shan; Samuel, Sonia B; Cueto, Ramon; Li, Xin-Yuan; Wang, Hong; Yang, Xiao-Feng

    2016-01-01

    Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc. PMID:26709762

  7. GPCRDB: an information system for G protein-coupled receptors.

    PubMed Central

    Horn, F; Weare, J; Beukers, M W; Hörsch, S; Bairoch, A; Chen, W; Edvardsen, O; Campagne, F; Vriend, G

    1998-01-01

    The GPCRDB is a G protein-coupled receptor (GPCR) database system aimed at the collection and dissemination of GPCR related data. It holds sequences, mutant data and ligand binding constants as primary (experimental) data. Computationally derived data such as multiple sequence alignments, three dimensional models, phylogenetic trees and two dimensional visualization tools are added to enhance the database's usefulness. The GPCRDB is an EU sponsored project aimed at building a generic molecular class specific database capable of dealing with highly heterogeneous data. GPCRs were chosen as test molecules because of their enormous importance for medical sciences and due to the availability of so much highly heterogeneous data. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm PMID:9399852

  8. G protein-coupled receptors and the regulation of autophagy

    PubMed Central

    Wauson, Eric M.; Dbouk, Hashem A.; Ghosh, Anwesha B.; Cobb, Melanie H.

    2014-01-01

    Autophagy is an important catabolic cellular process that eliminates damaged and unnecessary cytoplasmic proteins and organelles. Basal autophagy occurs during normal physiological conditions, but the activity of this process can be significantly altered in human diseases. Thus, defining the regulatory inputs and signals that control autophagy is essential. Nutrients are key modulators of autophagy. While autophagy is generally accepted to be regulated in a cell autonomous fashion, recent studies suggest nutrients can modulate autophagy in a systemic manner by inducing the secretion of hormones and neurotransmitters that regulate G protein-coupled receptors (GPCRs). Emerging studies show that GPCRs also regulate autophagy by directly detecting extracellular nutrients. We review the role of GPCRs in autophagy regulation, highlighting their potential as therapeutic drug targets. PMID:24751357

  9. A Sphingosine 1-phosphate receptor 2 selective allosteric agonist

    PubMed Central

    Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.

    2013-01-01

    Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205

  10. Highly selective agonists for substance P receptor subtypes.

    PubMed Central

    Wormser, U; Laufer, R; Hart, Y; Chorev, M; Gilon, C; Selinger, Z

    1986-01-01

    The existence of a third tachykinin receptor (SP-N) in the mammalian nervous system was demonstrated by development of highly selective agonists. Systematic N-methylation of individual peptide bonds in the C-terminal hexapeptide of substance P gave rise to agonists which specifically act on different receptor subtypes. The most selective analog of this series, succinyl-[Asp6,Me-Phe8]SP6-11, elicits half-maximal contraction of the guinea pig ileum through the neuronal SP-N receptor at a concentration of 0.5 nM. At least 60,000-fold higher concentrations of this peptide are required to stimulate the other two tachykinin receptors (SP-P and SP-E). The action of selective SP-N agonists in the guinea pig ileum is antagonized by opioid peptides, suggesting a functional counteraction between opiate and SP-N receptors. These results indicate that the tachykinin receptors are distinct entities which may mediate different physiological functions. PMID:2431898

  11. Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry†

    PubMed Central

    Wang, Lei; Cherian, Christina; Desmoulin, Sita Kugel; Polin, Lisa; Deng, Yijun; Wu, Jianmei; Hou, Zhanjun; White, Kathryn; Kushner, Juiwanna; Matherly, Larry H.; Gangjee, Aleem

    2010-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC. PMID:20085328

  12. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  13. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  14. Do plants contain g protein-coupled receptors?

    PubMed

    Taddese, Bruck; Upton, Graham J G; Bailey, Gregory R; Jordan, Siân R D; Abdulla, Nuradin Y; Reeves, Philip J; Reynolds, Christopher A

    2014-01-01

    Whether G protein-coupled receptors (GPCRs) exist in plants is a fundamental biological question. Interest in deorphanizing new GPCRs arises because of their importance in signaling. Within plants, this is controversial, as genome analysis has identified 56 putative GPCRs, including G protein-coupled receptor1 (GCR1), which is reportedly a remote homolog to class A, B, and E GPCRs. Of these, GCR2 is not a GPCR; more recently, it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix-alignment method, which has been benchmarked against the class A-class B-class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologs to class A, class B, and class F GPCRs and shown that GCR1 is closer to class A and/or class B GPCRs than class A, class B, or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the six GPCR classes. Variability comparisons provide additional evidence that GCR1 homologs have the GPCR fold. From the alignments and a GCR1 comparative model, we have identified motifs that are common to GCR1, class A, B, and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fold. PMID:24246381

  15. Solubilization of G protein-coupled receptors: a convenient strategy to explore lipid-receptor interaction.

    PubMed

    Chattopadhyay, Amitabha; Rao, Bhagyashree D; Jafurulla, Md

    2015-01-01

    G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and are major drug targets. Since GPCRs are integral membrane proteins, their structure and function are modulated by membrane lipids. In particular, membrane cholesterol is an important lipid in the context of GPCR function. Solubilization of integral membrane proteins is a process in which the proteins and lipids in native membranes are dissociated in the presence of a suitable amphiphilic detergent. Interestingly, solubilization offers a convenient approach to monitor lipid-receptor interaction as it results in differential extents of lipid solubilization, thereby allowing to assess the role of specific lipids on receptor function. In this review, we highlight how this solubilization strategy is utilized to decipher novel information about the structural stringency of cholesterol necessary for supporting the function of the serotonin(1A) receptor. We envision that insight in GPCR-lipid interaction would result in better understanding of GPCR function in health and disease. PMID:25950962

  16. Snapin interacts with G-protein coupled receptor PKR2.

    PubMed

    Song, Jian; Li, Jie; Liu, Hua-die; Liu, Wei; Feng, Yong; Zhou, Xiao-Tao; Li, Jia-Da

    2016-01-15

    Mutations in Prokineticin receptor 2 (PKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, characterized by delayed puberty and infertility. In this study, we performed yeast two-hybrid screening by using PKR2 C-terminus (amino acids 333-384) as a bait, and identified Snapin as a novel interaction partner for PKR2. The interaction of Snapin and PKR2 was confirmed in GST pull-down and co-immunoprecipitation studies. We further demonstrated that two α-helix domains in Snapin are required for the interaction. And the interactive motifs of PKR2 were mapped to YFK (343-345) and HWR (351-353), which shared a similar sequence of two aromatic amino acids followed by a basic amino acid. Disruption of Snapin-PKR2 interaction did not affect PKR2 signaling, but increased the ligand-induced degradation, implying a role of Snapin in the trafficking of PKR2. PMID:26687946

  17. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  18. Cell-Free Expression of G Protein-Coupled Receptors.

    PubMed

    Segers, Kenneth; Masure, Stefan

    2015-01-01

    The large-scale production of recombinant G protein-coupled receptors (GPCRs) is one of the major bottlenecks that hamper functional and structural studies of this important class of integral membrane proteins. Heterologous overexpression of GPCRs often results in low yields of active protein, usually due to a combination of several factors, such as low expression levels, protein insolubility, host cell toxicity, and the need to use harsh and often denaturing detergents (e.g., SDS, LDAO, OG, and DDM, among others) to extract the recombinant receptor from the host cell membrane. Many of these problematic issues are inherently linked to cell-based expression systems and can therefore be circumvented by the use of cell-free systems. In this unit, we provide a range of protocols for the production of GPCRs in a cell-free expression system. Using this system, we typically obtain GPCR expression levels of ∼1 mg per ml of reaction mixture in the continuous-exchange configuration. Although the protocols in this unit have been optimized for the cell-free expression of GPCRs, they should provide a good starting point for the production of other classes of membrane proteins, such as ion channels, aquaporins, carrier proteins, membrane-bound enzymes, and even large molecular complexes. PMID:26237676

  19. Surface plasmon resonance applied to G protein-coupled receptors

    PubMed Central

    Locatelli-Hoops, Silvia; Yeliseev, Alexei A.; Gawrisch, Klaus; Gorshkova, Inna

    2013-01-01

    G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies. PMID:24466506

  20. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  1. Synthetic FXR agonist GW4064 is a modulator of multiple G protein-coupled receptors.

    PubMed

    Singh, Nidhi; Yadav, Manisha; Singh, Abhishek Kumar; Kumar, Harish; Dwivedi, Shailendra Kumar Dhar; Mishra, Jay Sharan; Gurjar, Anagha; Manhas, Amit; Chandra, Sharat; Yadav, Prem Narayan; Jagavelu, Kumaravelu; Siddiqi, Mohammad Imran; Trivedi, Arun Kumar; Chattopadhyay, Naibedya; Sanyal, Sabyasachi

    2014-05-01

    The synthetic nuclear bile acid receptor (farnesoid X receptor [FXR]) agonist GW4064 is extensively used as a specific pharmacological tool to illustrate FXR functions. We noticed that GW4064 activated empty luciferase reporters in FXR-deficient HEK-293T cells. We postulated that this activity of GW4064 might be routed through as yet unknown cellular targets and undertook an unbiased exploratory approach to identify these targets. Investigations revealed that GW4064 activated cAMP and nuclear factor for activated T-cell response elements (CRE and NFAT-RE, respectively) present on these empty reporters. Whereas GW4064-induced NFAT-RE activation involved rapid intracellular Ca(2+) accumulation and NFAT nuclear translocation, CRE activation involved soluble adenylyl cyclase-dependent cAMP accumulation and Ca(2+)-calcineurin-dependent nuclear translocation of transducers of regulated CRE-binding protein 2. Use of dominant negative heterotrimeric G-protein minigenes revealed that GW4064 caused activation of Gαi/o and Gq/11 G proteins. Sequential pharmacological inhibitor-based screening and radioligand-binding studies revealed that GW4064 interacted with multiple G protein-coupled receptors. Functional studies demonstrated that GW4064 robustly activated H1 and H4 and inhibited H2 histamine receptor signaling events. We also found that MCF-7 breast cancer cells, reported to undergo GW4064-induced apoptosis in an FXR-dependent manner, did not express FXR, and the GW4064-mediated apoptosis, also apparent in HEK-293T cells, could be blocked by selective histamine receptor regulators. Taken together, our results demonstrate identification of histamine receptors as alternate targets for GW4064, which not only necessitates cautious interpretation of the biological functions attributed to FXR using GW4064 as a pharmacological tool but also provides a basis for the rational designing of new pharmacophores for histamine receptor modulation. PMID:24597548

  2. Bitropic D3 Dopamine Receptor Selective Compounds s Potential Antipsychotics.

    PubMed

    Luedtke, Robert R; Rangel-Barajas, Claudia; Malik, Mahinder; Reichert, David E; Mach, R H

    2015-01-01

    Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction. Although antipsychotic medications are available, suboptimal therapeutic responses are observed for approximately one-third of patients. Therefore, there is still a need to explore new pharmacotherapeutic strategies for the treatment of neuropsychiatric disorders. Many of the medications that are used clinically to treat neuropsychiatric disorders have a pharmacological profile that includes being an antagonist at D2-like (D2, D3 and D4) dopamine receptor subtypes. However, dopamine receptor subtypes are involved in a variety of neuronal circuits that include movement coordination, cognition, emotion, affect, memory and the regulation of prolactin. Consequently, antagonism at D2-like receptors can also contribute to some of the adverse side effects associated with the long-term use of antipsychotics including the a) adverse extrapyramidal symptoms associated with the use of typical antipsychotics and b) metabolic side effects (weight gain, hyperglycemia, increased risk of diabetes mellitus, dyslipidemia and gynecomastia) associated with atypical antipsychotic use. Preclinical studies suggest that D3 versus D2 dopamine receptor selective compounds might represent an alternative strategy for the treatment of the symptoms of schizophrenia. In this review we discuss a) how bitropic Nphenylpiperazine D3 dopamine receptor selective compounds have been developed by modification of the primary (orthosteric) and secondary (allosteric or modulatory) pharmacophores to optimize D3 receptor affinity and D2/D3 binding selectivity ratios and b) the functional selectivity of these compounds. Examples of how these compounds might be

  3. Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor

    SciTech Connect

    Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric; Pioszak, Augen A.

    2012-05-09

    The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides. The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.

  4. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  5. Worldsheet instantons and coupling selection rules in heterotic orbifolds

    NASA Astrophysics Data System (ADS)

    Parameswaran, Susha L.; Zavala, Ivonne

    2014-12-01

    We review recent results [1-3] on string coupling selection rules for heterotic orbifolds, derived using conformal field theory. Such rules are the first step towards understanding the viability of the recently obtained compactifications with potentially realistic particle spectra. They arise from the properties of the worldsheet instantons that mediate the couplings, and include stringy effects that would seem "miraculous" to an effective field theory observer.

  6. Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the δ-opioid receptor.

    PubMed

    Burford, Neil T; Livingston, Kathryn E; Canals, Meritxell; Ryan, Molly R; Budenholzer, Lauren M L; Han, Ying; Shang, Yi; Herbst, John J; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Filizola, Marta; Bassoni, Daniel L; Wehrman, Tom S; Christopoulos, Arthur; Traynor, John R; Gerritz, Samuel W; Alt, Andrew

    2015-05-28

    Allosteric modulators of G protein-coupled receptors (GPCRs) have a number of potential advantages compared to agonists or antagonists that bind to the orthosteric site of the receptor. These include the potential for receptor selectivity, maintenance of the temporal and spatial fidelity of signaling in vivo, the ceiling effect of the allosteric cooperativity which may prevent overdose issues, and engendering bias by differentially modulating distinct signaling pathways. Here we describe the discovery, synthesis, and molecular pharmacology of δ-opioid receptor-selective positive allosteric modulators (δ PAMs). These δ PAMs increase the affinity and/or efficacy of the orthosteric agonists leu-enkephalin, SNC80 and TAN67, as measured by receptor binding, G protein activation, β-arrestin recruitment, adenylyl cyclase inhibition, and extracellular signal-regulated kinases (ERK) activation. As such, these compounds are useful pharmacological tools to probe the molecular pharmacology of the δ receptor and to explore the therapeutic potential of δ PAMs in diseases such as chronic pain and depression. PMID:25901762

  7. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective.

    PubMed

    Bruno, V; Ksiazek, I; Battaglia, G; Lukic, S; Leonhardt, T; Sauer, D; Gasparini, F; Kuhn, R; Nicoletti, F; Flor, P J

    2000-09-01

    We have used potent and selective non-competitive antagonists of metabotropic glutamate receptor subtype 5 (mGlu5) -- 2-methyl-6-phenylethynylpyridine (MPEP), [6-methyl-2-(phenylazo)-3-pyridinol] (SIB-1757) and [(E)-2-methyl-6-(2-phenylethenyl)pyridine] (SIB-1893) - to examine whether endogenous activation of this particular metabotropic glutamate receptor subtype contributes to neuronal degeneration. In cortical cultures challenged with N-methyl-D-aspartate (NMDA), all three mGlu5 receptor antagonists were neuroprotective. The effect of MPEP was highly specific because the close analogue, 3-methyl-6-phenylethynylpyridine (iso-MPEP), which did not antagonize heterologously expressed mGlu5 receptors, was devoid of activity on NMDA toxicity. Neuroprotection by mGlu5 receptor antagonists was also observed in cortical cultures challenged with a toxic concentration of beta-amyloid peptide. We have also examined the effect of mGlu5 receptor antagonists in in vivo models of excitotoxic degeneration. MPEP and SIB-1893 were neuroprotective against neuronal damage induced by intrastriatal injection of NMDA or quinolinic acid. These results indicate that mGlu5 receptors represent a suitable target for novel neuroprotective agents of potential application in neurodegenerative disorders. PMID:10974306

  8. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  9. A Molecular Pharmacologist's Guide to G Protein-Coupled Receptor Crystallography.

    PubMed

    Piscitelli, Chayne L; Kean, James; de Graaf, Chris; Deupi, Xavier

    2015-09-01

    G protein-coupled receptor (GPCR) structural biology has progressed dramatically in the last decade. There are now over 120 GPCR crystal structures deposited in the Protein Data Bank of 32 different receptors from families scattered across the phylogenetic tree, including class B, C, and Frizzled GPCRs. These structures have been obtained in combination with a wide variety of ligands and captured in a range of conformational states. This surge in structural knowledge has enlightened research into the molecular recognition of biologically active molecules, the mechanisms of receptor activation, the dynamics of functional selectivity, and fueled structure-based drug design efforts for GPCRs. Here we summarize the innovations in both protein engineering/molecular biology and crystallography techniques that have led to these advances in GPCR structural biology and discuss how they may influence the resulting structural models. We also provide a brief molecular pharmacologist's guide to GPCR X-ray crystallography, outlining some key aspects in the process of structure determination, with the goal to encourage noncrystallographers to interrogate structures at the molecular level. Finally, we show how chemogenomics approaches can be used to marry the wealth of existing receptor pharmacology data with the expanding repertoire of structures, providing a deeper understanding of the mechanistic details of GPCR function. PMID:26152196

  10. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    SciTech Connect

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  11. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  12. Selection for genes encoding secreted proteins and receptors.

    PubMed Central

    Klein, R D; Gu, Q; Goddard, A; Rosenthal, A

    1996-01-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states. Images Fig. 1 PMID:8692953

  13. Drug Discovery Opportunities and Challenges at G Protein Coupled Receptors for Long Chain Free Fatty Acids

    PubMed Central

    Holliday, Nicholas D.; Watson, Sarah-Jane; Brown, Alastair J. H.

    2011-01-01

    Discovery of G protein coupled receptors for long chain free fatty acids (FFAs), FFA1 (GPR40) and GPR120, has expanded our understanding of these nutrients as signaling molecules. These receptors have emerged as important sensors for FFA levels in the circulation or the gut lumen, based on evidence from in vitro and rodent models, and an increasing number of human studies. Here we consider their promise as therapeutic targets for metabolic disease, including type 2 diabetes and obesity. FFA1 directly mediates acute FFA-induced glucose-stimulated insulin secretion in pancreatic beta-cells, while GPR120 and FFA1 trigger release of incretins from intestinal endocrine cells, and so indirectly enhance insulin secretion and promote satiety. GPR120 signaling in adipocytes and macrophages also results in insulin sensitizing and beneficial anti-inflammatory effects. Drug discovery has focused on agonists to replicate acute benefits of FFA receptor signaling, with promising early results for FFA1 agonists in man. Controversy surrounding chronic effects of FFA1 on beta-cells illustrates that long term benefits of antagonists also need exploring. It has proved challenging to generate highly selective potent ligands for FFA1 or GPR120 subtypes, given that both receptors have hydrophobic orthosteric binding sites, which are not completely defined and have modest ligand affinity. Structure activity relationships are also reliant on functional read outs, in the absence of robust binding assays to provide direct affinity estimates. Nevertheless synthetic ligands have already helped dissect specific contributions of FFA1 and GPR120 signaling from the many possible cellular effects of FFAs. Approaches including use of fluorescent ligand binding assays, and targeting allosteric receptor sites, may improve further pre-clinical ligand development at these receptors, to exploit their unique potential to target multiple facets of diabetes. PMID:22649399

  14. G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives

    PubMed Central

    Casadó, Vicent; Devi, Lakshmi A.; Filizola, Marta; Jockers, Ralf; Lohse, Martin J.; Milligan, Graeme; Pin, Jean-Philippe; Guitart, Xavier

    2014-01-01

    Most evidence indicates that, as for family C G protein–coupled receptors (GPCRs), family A GPCRs form homo- and heteromers. Homodimers seem to be a predominant species, with potential dynamic formation of higher-order oligomers, particularly tetramers. Although monomeric GPCRs can activate G proteins, the pentameric structure constituted by one GPCR homodimer and one heterotrimeric G protein may provide a main functional unit, and oligomeric entities can be viewed as multiples of dimers. It still needs to be resolved if GPCR heteromers are preferentially heterodimers or if they are mostly constituted by heteromers of homodimers. Allosteric mechanisms determine a multiplicity of possible unique pharmacological properties of GPCR homomers and heteromers. Some general mechanisms seem to apply, particularly at the level of ligand-binding properties. In the frame of the dimer-cooperativity model, the two-state dimer model provides the most practical method to analyze ligand–GPCR interactions when considering receptor homomers. In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to different intrinsic efficacy of ligands for different signaling pathways (functional selectivity). This gives a rationale for the use of GPCR oligomers, and particularly heteromers, as novel targets for drug development. Herein, we review the functional and pharmacological properties of GPCR oligomers and provide some guidelines for the application of discrete direct screening and high-throughput screening approaches to the discovery of receptor-heteromer selective compounds. PMID:24515647

  15. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease

    PubMed Central

    Divorty, Nina; Mackenzie, Amanda E.; Nicklin, Stuart A.; Milligan, Graeme

    2015-01-01

    G protein-coupled receptor 35 (GPR35) is an orphan receptor, discovered in 1998, that has garnered interest as a potential therapeutic target through its association with a range of diseases. However, a lack of pharmacological tools and the absence of convincingly defined endogenous ligands have hampered the understanding of function necessary to exploit it therapeutically. Although several endogenous molecules can activate GPR35 none has yet been confirmed as the key endogenous ligand due to reasons that include lack of biological specificity, non-physiologically relevant potency and species ortholog selectivity. Recent advances have identified several highly potent synthetic agonists and antagonists, as well as agonists with equivalent potency at rodent and human orthologs, which will be useful as tool compounds. Homology modeling and mutagenesis studies have provided insight into the mode of ligand binding and possible reasons for the species selectivity of some ligands. Advances have also been made in determining the role of the receptor in disease. In the past, genome-wide association studies have associated GPR35 with diseases such as inflammatory bowel disease, type 2 diabetes, and coronary artery disease. More recent functional studies have implicated it in processes as diverse as heart failure and hypoxia, inflammation, pain transduction and synaptic transmission. In this review, we summarize the progress made in understanding the molecular pharmacology, downstream signaling and physiological function of GPR35, and discuss its emerging potential applications as a therapeutic target. PMID:25805994

  16. The opioid receptor selectivity for trimebutine in isolated tissues experiments and receptor binding studies.

    PubMed

    Kaneto, H; Takahashi, M; Watanabe, J

    1990-07-01

    Differences of affinity to and selectivity for trimebutine between peripheral and central opioid receptors have been investigated. Trimebutine inhibited electrically induced contraction of guinea-pig ileum (GPI) and mouse vas deferens (MVD) but not of rabbit vas deferens, and the inhibition was antagonized by naloxone and, to lesser extent, by nor-binaltorphimine (nor-BNI). The pA2 values for morphine and trimebutine with naloxone were higher than the values for these compounds with nor-BNI in both GPI and MVD preparations. GPI preparations incubated with a high concentration of morphine or trimebutine developed tolerance; however, there was no cross-tolerance between them, suggesting difference in the underlying mechanisms. In mouse and guinea-pig brain homogenate trimebutine was about 1/13 as potent as morphine to displace the [3H]naloxone binding, while it has no appreciable affinity for kappa-opioid receptors in [3H]U-69593, a selective kappa-receptor agonist. These results suggest that trimebutine, showing its low affinity to opioid receptors, possesses mu-receptor selective properties rather than those of kappa-opioid receptor in the peripheral tissues and in the central brain homogenate. PMID:1963196

  17. Induction of RAGE Shedding by Activation of G Protein-Coupled Receptors

    PubMed Central

    Metz, Verena V.; Kojro, Elzbieta; Rat, Dorothea; Postina, Rolf

    2012-01-01

    The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimes disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cβ, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cβ, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca2+ signaling, PKCα/PKCβI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of

  18. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    PubMed

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  19. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor

    PubMed Central

    Ukhanov, K.; Bobkov, Y.; Corey, E.A.; Ache, B.W.

    2014-01-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca2+ release and/or Ca2+ influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5 mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  20. Functional associations among G protein-coupled neurotransmitter receptors in the human brain

    PubMed Central

    2014-01-01

    Background The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level. Results A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated. Conclusions The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders. PMID:24438157

  1. Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics.

    PubMed

    Schulte, Gunnar

    2015-09-15

    The lipoglycoproteins of the mammalian WNT family induce β-catenin-dependent signaling through interaction with members of the Class Frizzled receptors and LDL receptor-related protein 5/6 (LRP5/6) albeit with unknown selectivity. The 10 mammalian Frizzleds (FZDs) are seven transmembrane (7TM) spanning receptors and have recently been classified as G protein-coupled receptors (GPCRs). This review summarizes the current knowledge about WNT/FZD selectivity and functional selectivity, the role of co-receptors for signal specification, the formation of receptor complexes as well as the kinetics and mechanisms of signal initiation with focus on WNT/β-catenin signaling. In order to exploit the true therapeutic potential of WNT/FZD signaling to treat human disease, it is clear that substantial progress in the understanding of receptor complex formation and signal specification has to precede a mechanism-based drug design targeting WNT receptors. PMID:26003275

  2. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    PubMed Central

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D.; Lahvic, Jamie L.; Ranheim, Erik A.; Zon, Leonard I.; Bresnick, Emery H.

    2016-01-01

    Summary Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  3. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis.

    PubMed

    Gao, Xin; Wu, Tongyu; Johnson, Kirby D; Lahvic, Jamie L; Ranheim, Erik A; Zon, Leonard I; Bresnick, Emery H

    2016-03-01

    Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5(-/-) AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203

  4. Alpha-Bulges in G Protein-Coupled Receptors

    PubMed Central

    van der Kant, Rob; Vriend, Gert

    2014-01-01

    Agonist binding is related to a series of motions in G protein-coupled receptors (GPCRs) that result in the separation of transmembrane helices III and VI at their cytosolic ends and subsequent G protein binding. A large number of smaller motions also seem to be associated with activation. Most helices in GPCRs are highly irregular and often contain kinks, with extensive literature already available about the role of prolines in kink formation and the precise function of these kinks. GPCR transmembrane helices also contain many α-bulges. In this article we aim to draw attention to the role of these α-bulges in ligand and G-protein binding, as well as their role in several aspects of the mobility associated with GPCR activation. This mobility includes regularization and translation of helix III in the extracellular direction, a rotation of the entire helix VI, an inward movement of the helices near the extracellular side, and a concerted motion of the cytosolic ends of the helices that makes their orientation appear more circular and that opens up space for the G protein to bind. In several cases, α-bulges either appear or disappear as part of the activation process. PMID:24806342

  5. Receptor-coupled effector systems and their interactions

    SciTech Connect

    Wiener, E.C.

    1988-01-01

    We investigated the modulation of intracellular signal generation by receptor-coupled effector systems in B lymphocytes, and whether these alterations are consistent with the effects of prostaglandins. TPA (12-O-tetradecanoyl phorbol-13-acetate) and sn-1,2,-dioctanoylglycerol (diC{sub 8}) substitute for lipid derived signals which activate protein kinase C. Pretreating splenocytes from athymic nude mice with 100nM TPA or 5 {mu}M diC{sub 8} potentiated the forskolin-induced increased in cAMP (measured by radioimmunoassay) 2.5 and 3.0 times (respectively), but they decreased the PGE{sub 1}-induced cAMP rise 48% and 35% (respectively). Goat anti-mouse IgM, which activates diacylglycerol production, potentiated the forskolin-induced cAMP increase by 76%, but reduced that of PGE{sub 1} by 30%. Rabbit anti-mouse IgG, its F(ab{prime}){sub 2} fragment, or goat anti-mouse IGM induced increases in the cytosolic free (Ca{sup 2+}), (Ca{sup 2+}){sub i}, which TPA inhibited. In contrast, TPA potential antibody-induced {sup 3}H-thymidine (85x) and {sup 3}H-uridine (30x) uptake in B lymphocytes.

  6. A Molecular and Chemical Perspective in Defining Melatonin Receptor Subtype Selectivity

    PubMed Central

    Chan, King Hang; Wong, Yung Hou

    2013-01-01

    Melatonin is primarily synthesized and secreted by the pineal gland during darkness in a normal diurnal cycle. In addition to its intrinsic antioxidant property, the neurohormone has renowned regulatory roles in the control of circadian rhythm and exerts its physiological actions primarily by interacting with the G protein-coupled MT1 and MT2 transmembrane receptors. The two melatonin receptor subtypes display identical ligand binding characteristics and mediate a myriad of signaling pathways, including adenylyl cyclase inhibition, phospholipase C stimulation and the regulation of other effector molecules. Both MT1 and MT2 receptors are widely expressed in the central nervous system as well as many peripheral tissues, but each receptor subtype can be linked to specific functional responses at the target tissue. Given the broad therapeutic implications of melatonin receptors in chronobiology, immunomodulation, endocrine regulation, reproductive functions and cancer development, drug discovery and development programs have been directed at identifying chemical molecules that bind to the two melatonin receptor subtypes. However, all of the melatoninergics in the market act on both subtypes of melatonin receptors without significant selectivity. To facilitate the design and development of novel therapeutic agents, it is necessary to understand the intrinsic differences between MT1 and MT2 that determine ligand binding, functional efficacy, and signaling specificity. This review summarizes our current knowledge in differentiating MT1 and MT2 receptors and their signaling capacities. The use of homology modeling in the mapping of the ligand-binding pocket will be described. Identification of conserved and distinct residues will be tremendously useful in the design of highly selective ligands. PMID:24018885

  7. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs).

    PubMed

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip

    2016-01-14

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%). PMID:26819671

  8. Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?

    PubMed Central

    Filizola, Marta

    2009-01-01

    For years conventional drug design at G-protein coupled receptors (GPCRs) has mainly focused on the inhibition of a single receptor at a usually well-defined ligand-binding site. The recent discovery of more and more physiologically relevant GPCR dimers/oligomers suggests that selectively targeting these complexes or designing small molecules that inhibit receptor-receptor interactions might provide new opportunities for novel drug discovery. To uncover the fundamental mechanisms and dynamics governing GPCR dimerization/oligomerization, it is crucial to understand the dynamic process of receptor-receptor association, and to identify regions that are suitable for selective drug binding. This minireview highlights current progress in the development of increasingly accurate dynamic molecular models of GPCR oligomers based on structural, biochemical, and biophysical information that has recently appeared in the literature. In view of this new information, there has never been a more exciting time for computational research into GPCRs than at present. Information-driven modern molecular models of GPCR complexes are expected to efficiently guide the rational design of GPCR oligomer-specific drugs, possibly allowing researchers to reach for the high-hanging fruits in GPCR drug discovery, i.e. more potent and selective drugs for efficient therapeutic interventions. PMID:19465029

  9. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    PubMed

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  10. Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors

    PubMed Central

    2015-01-01

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents. PMID:25692383

  11. Pharmacological characterization of a selective agonist for Bombesin Receptor Subtype - 3

    PubMed Central

    Zhang, Li; Nothacker, Hans-Peter; Wang, Zhiwei; Bohn, Laura M; Civelli, Olivier

    2009-01-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G protein-coupled receptor in the bombesin receptor family that still awaits identification of its natural ligand. BRS-3 deficient mice develop a mild late-onset obesity with metabolic defects, implicating BRS-3 plays a role in feeding and metabolism. We describe here the pharmacological characterization of a synthetic compound, 16a, which serves as a potent agonist for BRS-3. This compound is selective for BRS-3 as it does not activate neuromedin B or gastrin-releasing peptide receptors, two most closely related bombesin receptors, as well as a series of other GPCRs. We assessed the receptor trafficking of BRS-3 and found that compound 16a promoted β-arrestin translocation to the cell membrane. Neither central nor peripheral administration of compound 16a affects locomotor activity in mice. Therefore compound 16a is a potential tool to study the function of the BRS-3 system in vitro and possibly in vivo. PMID:19580790

  12. [Prospects for use of peptides and their derivatives, structurally corresponding to the G protein-coupled receptors, in medicine].

    PubMed

    Shpakov, A O; Shpakova, E A

    2015-01-01

    The regulation of signaling pathways involved in the control of many physiological functions is carried out via the heterotrimeric G protein-coupled receptors (GPCR). The search of effective and selective regulators of GPCR and intracellular signaling cascades coupled with them is one of the important problems of modern fundamental and clinical medicine. Recently data suggest that synthetic peptides and their derivatives, structurally corresponding to the intracellular and transmembrane regions of GPCR, can interact with high efficiency and selectivity with homologous receptors and influence, thus, the functional activity of intracellular signaling cascades and fundamental cellular processes controlled by them. GPCR-peptides are active in both in vitro and in vivo. They regulate hematopoiesis, angiogenesis and cell proliferation, inhibit tumor growth and metastasis, and prevent the inflammatory diseases and septic shock. These data show greatest prospects in the development of the new generations of drugs based on GPCR-derived peptides, capable of regulating the important functions of the organism. PMID:25762596

  13. Mining flexible-receptor docking experiments to select promising protein receptor snapshots

    PubMed Central

    2010-01-01

    Background Molecular docking simulation is the Rational Drug Design (RDD) step that investigates the affinity between protein receptors and ligands. Typically, molecular docking algorithms consider receptors as rigid bodies. Receptors are, however, intrinsically flexible in the cellular environment. The use of a time series of receptor conformations is an approach to explore its flexibility in molecular docking computer simulations, but it is extensively time-consuming. Hence, selection of the most promising conformations can accelerate docking experiments and, consequently, the RDD efforts. Results We previously docked four ligands (NADH, TCL, PIF and ETH) to 3,100 conformations of the InhA receptor from M. tuberculosis. Based on the receptor residues-ligand distances we preprocessed all docking results to generate appropriate input to mine data. Data preprocessing was done by calculating the shortest interatomic distances between the ligand and the receptor’s residues for each docking result. They were the predictive attributes. The target attribute was the estimated free-energy of binding (FEB) value calculated by the AutodDock3.0.5 software. The mining inputs were submitted to the M5P model tree algorithm. It resulted in short and understandable trees. On the basis of the correlation values, for NADH, TCL and PIF we obtained more than 95% correlation while for ETH, only about 60%. Post processing the generated model trees for each of its linear models (LMs), we calculated the average FEB for their associated instances. From these values we considered a LM as representative if its average FEB was smaller than or equal the average FEB of the test set. The instances in the selected LMs were considered the most promising snapshots. It totalized 1,521, 1,780, 2,085 and 902 snapshots, for NADH, TCL, PIF and ETH respectively. Conclusions By post processing the generated model trees we were able to propose a criterion of selection of linear models which, in turn, is

  14. Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor.

    PubMed

    Nakamura, Taichi; Ramos-Álvarez, Irene; Iordanskaia, Tatiana; Moreno, Paola; Mantey, Samuel A; Jensen, R T

    2016-09-01

    Bombesin-receptor-subtype-3 (BB3 receptor) is a G-protein-coupled-orphan-receptor classified in the mammalian Bombesin-family because of high homology to gastrin-releasing peptide (BB2 receptor)/neuromedin-B receptors (BB1 receptor). There is increased interest in BB3 receptor because studies primarily from knockout-mice suggest it plays roles in energy/glucose metabolism, insulin-secretion, as well as motility and tumor-growth. Investigations into its roles in physiological/pathophysiological processes are limited because of lack of selective ligands. Recently, a selective, peptide-antagonist, Bantag-1, was described. However, because BB3 receptor has low-affinity for all natural, Bn-related peptides, little is known of the molecular basis of its high-affinity/selectivity. This was systematically investigated in this study for Bantag-1 using a chimeric-approach making both Bantag-1 loss-/gain-of-affinity-chimeras, by exchanging extracellular (EC) domains of BB3/BB2 receptor, and using site-directed-mutagenesis. Receptors were transiently expressed and affinities determined by binding studies. Bantag-1 had >5000-fold selectivity for BB3 receptor over BB2/BB1 receptors and substitution of the first EC-domain (EC1) in loss-/gain-of affinity-chimeras greatly affected affinity. Mutagenesis of each amino acid difference in EC1 between BB3 receptor/BB2 receptor showed replacement of His(107) in BB3 receptor by Lys(107) (H107K-BB3 receptor-mutant) from BB2 receptor, decreased affinity 60-fold, and three replacements [H107K, E11D, G112R] decreased affinity 500-fold. Mutagenesis in EC1's surrounding transmembrane-regions (TMs) demonstrated TM2 differences were not important, but R127Q in TM3 alone decreased affinity 400-fold. Additional mutants in EC1/TM3 explored the molecular basis for these changes demonstrated in EC1, particularly important is the presence of aromatic-interactions by His(107), rather than hydrogen-bonding or charge-charge interactions, for determining

  15. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  16. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    NASA Astrophysics Data System (ADS)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  17. Inexpensive Method for Selecting Receptor Structures for Virtual Screening.

    PubMed

    Huang, Zunnan; Wong, Chung F

    2016-01-25

    This article introduces a screening performance index (SPI) to help select from a number of experimental structures one or a few that are more likely to identify more actives among its top hits from virtual screening of a compound library. It achieved this by docking only known actives to the experimental structures without considering a large number of decoys to reduce computational costs. The SPI is calculated by using the docking energies of the actives to all the receptor structures. We evaluated the performance of the SPI by applying it to study eight protein systems: fatty acid binding protein adipocyte FABP4, serine/threonine-protein kinase BRAF, beta-1 adrenergic receptor ADRB1, TGF-beta receptor type I TGFR1, adenosylhomocysteinase SAHH, thyroid hormone receptor beta-1 THB, phospholipase A2 group IIA PA2GA, and cytochrome P450 3a4 CP3A4. We found that the SPI agreed with the results from other popular performance metrics such as Boltzmann-Enhanced Discrimination Receiver Operator Characteristics (BEDROC), Robust Initial Enhancement (RIE), Area Under Accumulation Curve (AUAC), and Enrichment Factor (EF) but is less expensive to calculate. SPI also performed better than the best docking energy, the molecular volume of the bound ligand, and the resolution of crystal structure in selecting good receptor structures for virtual screening. The implications of these findings were further discussed in the context of ensemble docking, in situations when no experimental structure for the targeted protein was available, or under circumstances when quick choices of receptor structures need to be made before quantitative indexes such as the SPI and BEDROC can be calculated. PMID:26651874

  18. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling

    PubMed Central

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  19. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling.

    PubMed

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  20. Conformational Constraint of the Glycerol Moiety of Lysophosphatidylserine Affords Compounds with Receptor Subtype Selectivity.

    PubMed

    Jung, Sejin; Inoue, Asuka; Nakamura, Sho; Kishi, Takayuki; Uwamizu, Akiharu; Sayama, Misa; Ikubo, Masaya; Otani, Yuko; Kano, Kuniyuki; Makide, Kumiko; Aoki, Junken; Ohwada, Tomohiko

    2016-04-28

    Lysophosphatidylserine (LysoPS) is an endogenous lipid mediator that specifically activates membrane proteins of the P2Y and its related families of G protein-coupled receptors (GPCR), GPR34 (LPS1), P2Y10 (LPS2), and GPR174 (LPS3). Here, in order to increase potency and receptor selectivity, we designed and synthesized LysoPS analogues containing the conformational constraints of the glycerol moiety. These reduced structural flexibility by fixation of the glycerol framework of LysoPS using a 2-hydroxymethyl-3-hydroxytetrahydropyran skeleton, and related structures identified compounds which exhibited high potency and selectivity for activation of GPR34 or P2Y10. Morphing of the structural shape of the 2-hydroxymethyl-3-hydroxytetrahydropyran skeleton into a planar benzene ring enhanced the P2Y10 activation potentcy rather than the GPR34 activation. PMID:27077565

  1. Allosteric and Biased G Protein-Coupled Receptor Signaling Regulation: Potentials for New Therapeutics

    PubMed Central

    Khoury, Etienne; Clément, Stéphanie; Laporte, Stéphane A.

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that participate in many aspects of the endocrine function and are important targets for drug development. They transduce signals mainly, but not exclusively, via hetero-trimeric G proteins, leading to a diversity of intracellular signaling cascades. Ligands binding at the hormone orthosteric sites of receptors have been classified as agonists, antagonists, and/or inverse agonists based on their ability to mainly modulate G protein signaling. Accumulating evidence also indicates that such ligands, alone or in combination with other ones such as those acting outside the orthosteric hormone binding sites (e.g., allosteric modulators), have the ability to selectively engage subsets of signaling responses as compared to the natural endogenous ligands. Such modes of functioning have been variously referred to as “functional selectivity” or “ligand-biased signaling.” In this review, we provide an overview of the current knowledge regarding GPCR-biased signaling and their functional regulation with a focus on the evolving concept that receptor domains can also be targeted to allosterically bias signaling, and discuss the usefulness of such modes of regulation for the design of more efficient therapeutics. PMID:24847311

  2. The structural evolution of a P2Y-like G-protein-coupled receptor.

    PubMed

    Schulz, Angela; Schöneberg, Torsten

    2003-09-12

    Based on the now available crystallographic data of the G-protein-coupled receptor (GPCR) prototype rhodopsin, many studies have been undertaken to build or verify models of other GPCRs. Here, we mined evolution as an additional source of structural information that may guide GPCR model generation as well as mutagenesis studies. The sequence information of 61 cloned orthologs of a P2Y-like receptor (GPR34) enabled us to identify motifs and residues that are important for maintaining the receptor function. The sequence data were compared with available sequences of 77 rhodopsin orthologs. Under a negative selection mode, only 17% of amino acid residues were preserved during 450 million years of GPR34 evolution. On the contrary, in rhodopsin evolution approximately 43% residues were absolutely conserved between fish and mammals. Despite major differences in their structural conservation, a comparison of structural data suggests that the global arrangement of the transmembrane core of GPR34 orthologs is similar to rhodopsin. The evolutionary approach was further applied to functionally analyze the relevance of common scaffold residues and motifs found in most of the rhodopsin-like GPCRs. Our analysis indicates that, in contrast to other GPCRs, maintaining the unique function of rhodopsin requires a more stringent network of relevant intramolecular constrains. PMID:12835326

  3. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  4. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. PMID:25924828

  5. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    PubMed Central

    Di Roberto, Raphaël B.; Chang, Belinda; Trusina, Ala; Peisajovich, Sergio G.

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While some mutants show enhanced binding affinity to the foreign pheromone, others only display weakened interactions with the network's negative regulators. Importantly, the latter changes have a limited impact on overall pathway regulation, despite their considerable effect on sensitivity. Our results demonstrate that a new receptor–ligand pair can evolve through network-altering mutations independently of receptor–ligand binding, and suggest a potential role for such mutations in disease. PMID:27487915

  6. Allostery at G Protein-Coupled Receptor Homo- and Heteromers: Uncharted Pharmacological Landscapes

    PubMed Central

    Smith, Nicola J.

    2010-01-01

    For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes. PMID:21079041

  7. Scotopic vision in the monkey is modulated by the G protein-coupled receptor 55.

    PubMed

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Casanova, Christian; Hirabayashi, Yoshio; Matsuo, Ichiro; Ohyama, Jyunpei; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The endogenous cannabinoid system plays important roles in the retina of mice and monkeys via their classic CB1 and CB2 receptors. We have previously reported that the G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, is exclusively expressed in rod photoreceptors in the monkey retina, suggesting its possible role in scotopic vision. To test this hypothesis, we recorded full-field electroretinograms (ERGs) after the intravitreal injection of the GPR55 agonist lysophosphatidylglucoside (LPG) or the selective GPR55 antagonist CID16020046 (CID), under light- and dark-adapted conditions. Thirteen vervet monkeys (Chlorocebus sabaeus) were used in this study: four controls (injected with the vehicle dimethyl sulfoxide, DMSO), four injected with LPG and five with CID. We analyzed amplitudes and latencies of the a-wave (photoreceptor responses) and the b-wave (rod and cone system responses) of the ERG. Our results showed that after injection of LPG, the amplitude of the scotopic b-wave was significantly higher, whereas after the injection of CID, it was significantly decreased, compared to the vehicle (DMSO). On the other hand, the a-wave amplitude, and the a-wave and b-wave latencies, of the scotopic ERG responses were not significantly affected by the injection of either compound. Furthermore, the photopic ERG waveforms were not affected by either drug. These results support the hypothesis that GPR55 plays an instrumental role in mediating scotopic vision. PMID:27485069

  8. Identification of novel arthropod vector G protein-coupled receptors

    PubMed Central

    2013-01-01

    Background The control of vector-borne diseases, such as malaria, dengue fever, and typhus fever is often achieved with the use of insecticides. Unfortunately, insecticide resistance is becoming common among different vector species. There are currently no chemical alternatives to these insecticides because new human-safe classes of molecules have yet to be brought to the vector-control market. The identification of novel targets offer opportunities for rational design of new chemistries to control vector populations. One target family, G protein-coupled receptors (GPCRs), has remained relatively under explored in terms of insecticide development. Methods A novel classifier, Ensemble*, for vector GPCRs was developed. Ensemble* was validated and compared to existing classifiers using a set of all known GPCRs from Aedes aegypti, Anopheles gambiae, Apis Mellifera, Drosophila melanogaster, Homo sapiens, and Pediculus humanus. Predictions for unidentified sequences from Ae. aegypti, An. gambiae, and Pe. humanus were validated. Quantitative RT-PCR expression analysis was performed on previously-known and newly discovered Ae. aegypti GPCR genes. Results We present a new analysis of GPCRs in the genomes of Ae, aegypti, a vector of dengue fever, An. gambiae, a primary vector of Plasmodium falciparum that causes malaria, and Pe. humanus, a vector of epidemic typhus fever, using a novel GPCR classifier, Ensemble*, designed for insect vector species. We identified 30 additional putative GPCRs, 19 of which we validated. Expression of the newly discovered Ae. aegypti GPCR genes was confirmed via quantitative RT-PCR. Conclusion A novel GPCR classifier for insect vectors, Ensemble*, was developed and GPCR predictions were validated. Ensemble* and the validation pipeline were applied to the genomes of three insect vectors (Ae. aegypti, An. gambiae, and Pe. humanus), resulting in the identification of 52 GPCRs not previously identified, of which 11 are predicted GPCRs, and 19 are

  9. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification. PMID:26478533

  10. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  11. Equilibrium and kinetic selectivity profiling on the human adenosine receptors.

    PubMed

    Guo, Dong; Dijksteel, Gabrielle S; van Duijl, Tirsa; Heezen, Maxime; Heitman, Laura H; IJzerman, Adriaan P

    2016-04-01

    Classical evaluation of target selectivity is usually undertaken by measuring the binding affinity of lead compounds against a number of potential targets under equilibrium conditions, without considering the kinetics of the ligand-receptor interaction. In the present study we propose a combined strategy including both equilibrium- and kinetics-based selectivity profiling. The adenosine receptor (AR) was chosen as a prototypical drug target. Six in-house AR antagonists were evaluated in a radioligand displacement assay for their affinity and in a competition association assay for their binding kinetics on three AR subtypes. One of the compounds with a promising kinetic selectivity profile was also examined in a [(35)S]-GTPγS binding assay for functional activity. We found that XAC and LUF5964 were kinetically more selective for the A1R and A3R, respectively, although they are non-selective in terms of their affinity. In comparison, LUF5967 displayed a strong equilibrium-based selectivity for the A1R over the A2AR, yet its kinetic selectivity thereon was less pronounced. In a GTPγS assay, LUF5964 exhibited insurmountable antagonism on the A3R while having a surmountable effect on the A1R, consistent with its kinetic selectivity profile. This study provides evidence that equilibrium and kinetic selectivity profiling can both be important in the early phases of the drug discovery process. Our proposed combinational strategy could be considered for future medicinal chemistry efforts and aid the design and discovery of different or even better leads for clinical applications. PMID:26930564

  12. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors.

    PubMed Central

    Hermans, E; Challiss, R A

    2001-01-01

    In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders. PMID:11672421

  13. Reengineering the Collision Coupling and Diffusion Mode of the A2A-adenosine Receptor

    PubMed Central

    Keuerleber, Simon; Thurner, Patrick; Gruber, Christian W.; Zezula, Jürgen; Freissmuth, Michael

    2012-01-01

    The A2A-adenosine receptor undergoes restricted collision coupling with its cognate G protein Gs and lacks a palmitoylation site at the end of helix 8 in its intracellular C terminus. We explored the hypothesis that there was a causal link between the absence of a palmitoyl moiety and restricted collision coupling by introducing a palmitoylation site. The resulting mutant A2A-R309C receptor underwent palmitoylation as verified by both mass spectrometry and metabolic labeling. In contrast to the wild type A2A receptor, the concentration-response curve for agonist-induced cAMP accumulation was shifted to the left with increasing expression levels of A2A-R309C receptor, an observation consistent with collision coupling. Single particle tracking of quantum dot-labeled receptors confirmed that wild type and mutant A2A receptor differed in diffusivity and diffusion mode; agonist activation resulted in a decline in mean square displacement of both receptors, but the drop was substantially more pronounced for the wild type receptor. In addition, in the agonist-bound state, the wild type receptor was frequently subject to confinement events (estimated radius 110 nm). These were rarely seen with the palmitoylated A2A-R309C receptor, the preferred diffusion mode of which was a random walk in both the basal and the agonist-activated state. Taken together, the observations link restricted collision coupling to diffusion limits imposed by the absence of a palmitoyl moiety in the C terminus of the A2A receptor. The experiments allowed for visualizing local confinement of an agonist-activated G protein-coupled receptor in an area consistent with the dimensions of a lipid raft. PMID:23071116

  14. Cross-Electrophile Coupling: Principles of Reactivity and Selectivity

    PubMed Central

    2015-01-01

    A critical overview of the catalytic joining of two different electrophiles, cross-electrophile coupling (XEC), is presented with an emphasis on the central challenge of cross-selectivity. Recent synthetic advances and mechanistic studies have shed light on four possible methods for overcoming this challenge: (1) employing an excess of one reagent; (2) electronic differentiation of starting materials; (3) catalyst–substrate steric matching; and (4) radical chain processes. Each method is described using examples from the recent literature. PMID:24820397

  15. Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling

    PubMed Central

    Scearce-Levie, Kimberly; Lieberman, Michael D; Elliott, Heather H; Conklin, Bruce R

    2005-01-01

    Background The physiological regulation of G protein-coupled receptors, through desensitization and internalization, modulates the length of the receptor signal and may influence the development of tolerance and dependence in response to chronic drug treatment. To explore the importance of receptor regulation, we engineered a series of Gi-coupled receptors that differ in signal length, degree of agonist-induced internalization, and ability to induce adenylyl cyclase superactivation. All of these receptors, based on the kappa opioid receptor, were modified to be receptors activated solely by synthetic ligands (RASSLs). This modification allows us to compare receptors that have the same ligands and effectors, but differ only in desensitization and internalization. Results Removal of phosphorylation sites in the C-terminus of the RASSL resulted in a mutant that was resistant to internalization and less prone to desensitization. Replacement of the C-terminus of the RASSL with the corresponding portion of the mu opioid receptor eliminated the induction of AC superactivation, without disrupting agonist-induced desensitization or internalization. Surprisingly, removal of phosphorylation sites from this chimera resulted in a receptor that is constitutively internalized, even in the absence of agonist. However, the receptor still signals and desensitizes in response to agonist, indicating normal G-protein coupling and partial membrane expression. Conclusions These studies reveal that internalization, desensitization and adenylyl cyclase superactivation, all processes that decrease chronic Gi-receptor signals, are independently regulated. Furthermore, specific mutations can radically alter superactivation or internalization without affecting the efficacy of acute Gi signaling. These mutant RASSLs will be useful for further elucidating the temporal dynamics of the signaling of G protein-coupled receptors in vitro and in vivo. PMID:15707483

  16. Receptor- and age-selective effects of dopamine oxidation on receptor-G protein interactions in the striatum.

    PubMed

    Joseph, J A; Erat, S; Denisova, N; Villalobos-Molina, R

    1998-03-15

    The striatum contains a high concentration of oxidizable dopamine (DA), and the aged organism shows a decreased ability to respond to oxidative stress (OS), making this area extremely vulnerable to free radical insult. To determine the receptor specificity of this putative increase in OS sensitivity, striatal slices from 6- and 24-month-old animals were incubated (30 min, 37 degrees C) in a modified Krebs medium containing 0 to 500 microM DA with or without a preincubation (15 min) in a nitrone trapping agent, 1 or 5 mM alpha-phenyl-n-tert-butyl nitrone (PBN), and changes in low Km GTPase activity (an index of receptor-G protein coupling/uncoupling) assessed in muscarinic, 5-HT1A D1, and D2 receptors stimulated with carbachol, 8 OH-DPAT-HBr, SKF 38393, or quinelorane, respectively. DA exposure induced selective decreases in the stimulated activity in all of these receptor systems, and an overall increase in conjugated dienes (56%) of the young. In the case of carbachol and 8 OH-DPAT-HBr, the DA-induced deficits in GTPase stimulation were seen primarily in the young (61 and 32%, respectively), while DA-induced deficits in quinelorane (D2) stimulation were seen in both age groups. In the case of SKF 38393-stimulation (D1) the DA-induced deficits were higher in the striatal tissue from the old. The DA-induced decreases in carbachol stimulated GTPase activity in the tissue from the young could be prevented by pretreatment with PBN or the DA uptake inhibitor, nomifensin. No effect of nomifensin was seen in the old, because their DA uptake mechanisms were already compromised. These results suggest that although age-related declines in DA uptake may provide some protection against the OS effects in muscarinic or 5-HT1A receptors, other factors may increase the vulnerability of DA neurons to OS, even with reductions in DA uptake. PMID:9586813

  17. Synthesis and Characterization of Iodinated Tetrahydroquinolines Targeting the G Protein-coupled Estrogen Receptor GPR30

    PubMed Central

    Ramesh, Chinnasamy; Nayak, Tapan K.; Burai, Ritwik; Dennis, Megan K.; Hathaway, Helen J.; Sklar, Larry A.; Prossnitz, Eric R.; Arterburn, Jeffrey B.

    2010-01-01

    A series of iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines was synthesized as potential targeted imaging agents for the G protein-coupled estrogen receptor GPR30. The affinity and specificity of binding to GPR30 versus the classical estrogen receptors ERα/β and functional responses associated with ligand-binding were determined. Selected iodo-substituted tetrahydro-3H-cyclopenta[c]quinolines exhibited IC50 values lower than 20 nM in competitive binding studies with GPR30-expressing human endometrial cancer cells. These compounds functioned as antagonists of GPR30 and blocked estrogen-induced PI3K activation and calcium mobilization. The tributylstannyl precursors of selected compounds were radiolabeled with 125I using the iodogen method. In vivo biodistribution studies in female ovariectomized athymic (NCr) nu/nu mice bearing GPR30-expressing human endometrial tumors revealed GPR30-mediated uptake of the radiotracer ligands in tumor, adrenal and reproductive organs. Biodistribution and quantitative SPECT/CT studies revealed structurally-related differences in the pharmacokinetic profiles, target tissue uptake and metabolism of the radiolabeled compounds as well as differences in susceptibility to deiodination. The high lipophilicity of the compounds adversely affects the in vivo biodistribution and clearance of these radioligands, and suggests that further optimization of this parameter may lead to improved targeting characteristics. PMID:20041667

  18. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection. PMID:26303816

  19. Spatial and Temporal Aspects of Signaling by G-Protein-Coupled Receptors.

    PubMed

    Lohse, Martin J; Hofmann, Klaus Peter

    2015-09-01

    Signaling by G-protein-coupled receptors is often considered a uniform process, whereby a homogeneously activated proportion of randomly distributed receptors are activated under equilibrium conditions and produce homogeneous, steady-state intracellular signals. While this may be the case in some biologic systems, the example of rhodopsin with its strictly local single-quantum mode of function shows that homogeneity in space and time cannot be a general property of G-protein-coupled systems. Recent work has now revealed many other systems where such simplicity does not prevail. Instead, a plethora of mechanisms allows much more complex patterns of receptor activation and signaling: different mechanisms of protein-protein interaction; temporal changes under nonequilibrium conditions; localized receptor activation; and localized second messenger generation and degradation-all of which shape receptor-generated signals and permit the creation of multiple signal types. Here, we review the evidence for such pleiotropic receptor signaling in space and time. PMID:26184590

  20. Toward multivalent signaling across G protein-coupled receptors from poly(amidoamine) dendrimers.

    PubMed

    Kim, Yoonkyung; Hechler, Béatrice; Klutz, Athena M; Gachet, Christian; Jacobson, Kenneth A

    2008-02-01

    Activation of the A2A receptor, a G protein-coupled receptor (GPCR), by extracellular adenosine, is antiaggregatory in platelets and anti-inflammatory. Multiple copies of an A2A agonist, the nucleoside CGS21680, were coupled covalently to PAMAM dendrimers and characterized spectroscopically. A fluorescent PAMAM-CGS21680 conjugate 5 inhibited aggregation of washed human platelets and was internalized. We envision that our multivalent dendrimer conjugates may improve overall pharmacological profiles compared to the monovalent GPCR ligands. PMID:18176997

  1. Influence of the beta-adrenergic receptor concentration on functional coupling to the adenylate cyclase system.

    PubMed Central

    Severne, Y; Coppens, D; Bottari, S; Riviere, M; Kram, R; Vauquelin, G

    1984-01-01

    Only part of the beta-adrenergic receptors can undergo functional coupling to the adenylate cyclase regulatory unit. This receptor subpopulation shows an increased affinity for agonists in the presence of Mg2+ and undergoes rapid "inactivation" (locking-in of the agonist) by the alkylating reagent N-ethylmaleimide in the presence of agonists. Several experimental conditions, known to modify the total receptor concentration without alteration of the other components of the adenylate cyclase system, do not affect the percentage of receptors that can undergo functional coupling: (i) homologous regulation of beta 1 receptors in rat brain by noradrenaline (through antidepressive drug or reserpine injections); (ii) up- and down-regulation of the beta 2 receptors in Friend erythroleukemia cells by, respectively, sodium butyrate and cinnarizine treatment; and (iii) dithiothreitol-mediated inactivation of receptors in turkey erythrocytes, Friend erythroleukemia cells, and rat brain. Our findings argue against a stoichiometric limitation in the number of regulatory components, genetically different receptor subpopulations, bound guanine nucleotides, or reduced accessibility of part of the receptors to the agonists as the cause for functional receptor heterogeneity. Differences in either the receptor conformation or its membrane microenvironment are more plausible explanations. PMID:6087337

  2. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1

    PubMed Central

    Liu, Raymond; Chan, David C.

    2015-01-01

    Dynamin-related protein 1 (Drp1) is the GTP-hydrolyzing mechanoenzyme that catalyzes mitochondrial fission in the cell. Residing in the cytosol as dimers and tetramers, Drp1 is recruited by receptors on the mitochondrial outer membrane, where it further assembles into a helical ring that drives division via GTP-dependent constriction. The Drp1 receptor Mff is a major regulator of mitochondrial fission, and its overexpression results in increased fission. In contrast, the alternative Drp1 receptors MiD51 and MiD49 appear to recruit inactive forms of Drp1, because their overexpression inhibits fission. Using genetic and biochemical assays, we studied the interaction of Drp1 with Mff. We show that the insert B region of Drp1 inhibits Mff–Drp1 interactions, such that recombinant Drp1 mutants lacking insert B form a stable complex with Mff. Mff cannot bind to assembly-deficient mutants of Drp1, suggesting that Mff selectively interacts with higher-order complexes of Drp1. In contrast, the alternative Drp1 receptors MiD51 and MiD49 can recruit Drp1 dimers. Therefore Drp1 recruitment by Mff versus MiD51 and MiD49 may result in different outcomes because they recruit different subpopulations of Drp1 from the cytosol. PMID:26446846

  3. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  4. Biophysical characterization of G-protein coupled receptor-peptide ligand binding

    PubMed Central

    Langelaan, David N.; Ngweniform, Pascaline; Rainey, Jan K.

    2011-01-01

    G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular response to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GRCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques which have been successfully employed for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy; solid-state NMR; X-ray diffraction; fluorescence spectroscopy and single molecule fluorescence methods; flow cytometry; surface plasmon resonance; isothermal titration calorimetry; and, atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction. PMID:21455262

  5. Effects of selective and non-selective endothelin receptor blockade on ET-1-induced pressor response in the hamster.

    PubMed

    Honoré, Jean-Claude; Fecteau, Marie-Hélène; Wessale, Jerry L; D'Orléans-Juste, Pedro

    2004-11-01

    In order to assess the physiological balance existing between vasoconstrictor and vasodilator endothelin-B receptor actions associated with their dual locations (i.e. on vascular smooth muscle and endothelial cells), we investigated the effects of selective and non-selective endothelin receptor antagonists on endothelin-1-induced increase in blood pressure. Atrasentan (a selective endothelin-A receptor antagonist; 6 mg/kg) and A-192621 (a selective endothelin-B receptor antagonist; 0.03, 0.3, or 30 mg/kg) were administered intravenously to anaesthetized Syrian Golden hamsters, alone or in combination, to induce respectively selective or non-selective receptor antagonism. Atrasentan partially blocked the blood pressure response induced by endothelin-1 (0.5 nmol/kg), whereas a selective endothelin-B receptor antagonism potentiated this response, independently of the dose of A-192621. Interestingly, combination of the very low dose of A-192621 (which selectively blocked putatively endothelium-located endothelin-B receptors) with atrasentan, suppressed the protective effect previously observed with atrasentan alone. Nevertheless, combination of atrasentan with the two highest doses of A-192621 tested, dose-dependently reduced the response triggered by endothelin-1. Our results suggest that endothelial endothelin-B receptors are important to control the vascular reactivity to endothelin-1. Furthermore, our data suggest that the efficacy of a non-selective endothelin-A/ endothelin-B receptor antagonist relies upon its potency to block endothelin-B receptors in the hamster. PMID:15838362

  6. Enhanced evaluation of selective androgen receptor modulators in vivo.

    PubMed

    Otto-Duessel, M; He, M; Adamson, T W; Jones, J O

    2013-01-01

    Selective androgen receptor modulators (SARMs) are a class of drugs that control the activity of the androgen receptor (AR), which mediates the response to androgens, in a tissue-selective fashion. They are specifically designed to reduce the possible complications that result from the systemic inhibition or activation of AR in patients with diseases that involve androgen signalling. However, there are no ideal in vivo models for evaluating candidate SARMs. Therefore, we created a panel of androgen-responsive genes in clinically relevant AR expressing tissues including prostate, skin, bone, fat, muscle, brain and kidney. We used select genes from this panel to compare transcriptional changes in response to the full agonist dihydrotestosterone (DHT) and the SARM bolandiol at 16 h and 6 weeks. We identified several genes in each tissue whose expression at each of these time points correlates with the known tissue-specific effects of these compounds. For example, in the prostate we found four genes whose expression was much lower in animals treated with bolandiol compared with animals treated with DHT for 6 weeks, which correlated well with differences in prostate weight. We demonstrate that adding molecular measurements (androgen-regulated gene expression) to the traditional physiological measurements (tissue weights, etc.) makes the evaluation of potential SARMs more accurate, thorough and perhaps more rapid by allowing measurement of selectivity after only 16 h of drug treatment. PMID:23258627

  7. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response*

    PubMed Central

    Alvaro, Christopher G.; Thorner, Jeremy

    2016-01-01

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeast Saccharomyces cerevisiae were isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview. PMID:26907689

  8. Use of Designer G Protein-Coupled Receptors to Dissect Metabolic Pathways.

    PubMed

    Wess, Jürgen

    2016-09-01

    G protein-coupled receptors (GPCRs) regulate virtually all metabolic processes, including glucose and energy homeostasis. Recently, the use of designer GPCRs referred to as designer receptors exclusively activated by designer drug (DREADDs) has made it possible to dissect metabolically relevant GPCR signaling pathways in a temporally and spatially controlled fashion in vivo. PMID:27381463

  9. G-Protein–Coupled Receptors Signaling Pathways in New Antiplatelet Drug Development

    PubMed Central

    Gurbel, Paul A.; Kuliopulos, Athan; Tantry, Udaya S.

    2016-01-01

    Platelet G-protein–coupled receptors influence platelet function by mediating the response to various agonists, including ADP, thromboxane A2, and thrombin. Blockade of the ADP receptor, P2Y12, in combination with cyclooxygenase-1 inhibition by aspirin has been among the most widely used pharmacological strategies to reduce cardiovascular event occurrence in high-risk patients. The latter dual pathway blockade strategy is one of the greatest advances in the field of cardiovascular medicine. In addition to P2Y12, the platelet thrombin receptor, protease activated receptor-1, has also been recently targeted for inhibition. Blockade of protease activated receptor-1 has been associated with reduced thrombotic event occurrence when added to a strategy using P2Y12 and cyclooxygenase-1 inhibition. At this time, the relative contributions of these G-protein–coupled receptor signaling pathways to in vivo thrombosis remain incompletely defined. The observation of treatment failure in ≈10% of high-risk patients treated with aspirin and potent P2Y12 inhibitors provides the rationale for targeting novel pathways mediating platelet function. Targeting intracellular signaling downstream from G-protein–coupled receptor receptors with phosphotidylionisitol 3-kinase and Gq inhibitors are among the novel strategies under investigation to prevent arterial ischemic event occurrence. Greater understanding of the mechanisms of G-protein–coupled receptor–mediated signaling may allow the tailoring of antiplatelet therapy. PMID:25633316

  10. New insights into structural determinants for prostanoid thromboxane A2 receptor- and prostacyclin receptor-G protein coupling.

    PubMed

    Chakraborty, Raja; Pydi, Sai Prasad; Gleim, Scott; Bhullar, Rajinder Pal; Hwa, John; Dakshinamurti, Shyamala; Chelikani, Prashen

    2013-01-01

    G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA(2)) receptor (TP) and prostacyclin (PGI(2)) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease. PMID:23109431

  11. New Insights into Structural Determinants for Prostanoid Thromboxane A2 Receptor- and Prostacyclin Receptor-G Protein Coupling

    PubMed Central

    Chakraborty, Raja; Pydi, Sai Prasad; Gleim, Scott; Bhullar, Rajinder Pal; Hwa, John; Dakshinamurti, Shyamala

    2013-01-01

    G protein-coupled receptors (GPCRs) interact with heterotrimeric G proteins and initiate a wide variety of signaling pathways. The molecular nature of GPCR-G protein interactions in the clinically important thromboxane A2 (TxA2) receptor (TP) and prostacyclin (PGI2) receptor (IP) is poorly understood. The TP activates its cognate G protein (Gαq) in response to the binding of thromboxane, while the IP signals through Gαs in response to the binding of prostacyclin. Here, we utilized a combination of approaches consisting of chimeric receptors, molecular modeling, and site-directed mutagenesis to precisely study the specificity of G protein coupling. Multiple chimeric receptors were constructed by replacing the TP intracellular loops (ICLs) with the ICL regions of the IP. Our results demonstrate that both the sequences and lengths of ICL2 and ICL3 influenced G protein specificity. Importantly, we identified a precise ICL region on the prostanoid receptors TP and IP that can switch G protein specificities. The validities of the chimeric technique and the derived molecular model were confirmed by introducing clinically relevant naturally occurring mutations (R60L in the TP and R212C in the IP). Our findings provide new molecular insights into prostanoid receptor-G protein interactions, which are of general significance for understanding the structural basis of G protein activation by GPCRs in basic health and cardiovascular disease. PMID:23109431

  12. Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex

    PubMed Central

    Shi, Yanrong; Liu, Xiaoguang; Gebremedhin, Debebe; Falck, John R; Harder, David R; Koehler, Raymond C

    2008-01-01

    Adenosine, astrocyte metabotropic glutamate receptors (mGluRs), and epoxyeicosatrienoic acids (EETs) have been implicated in neurovascular coupling. Although A2A and A2B receptors mediate cerebral vasodilation to adenosine, the role of each receptor in the cerebral blood flow (CBF) response to neural activation remains to be fully elucidated. In addition, adenosine can amplify astrocyte calcium, which may increase arachidonic acid metabolites such as EETs. The interaction of these pathways was investigated by determining if combined treatment with antagonists exerted an additive inhibitory effect on the CBF response. During whisker stimulation of anesthetized rats, the increase in cortical CBF was reduced by approximately half after individual administration of A2B, mGluR and EET antagonists and EET synthesis inhibitors. Combining treatment of either a mGluR antagonist, an EET antagonist, or an EET synthesis inhibitor with an A2B receptor antagonist did not produce an additional decrement in the CBF response. Likewise, the CBF response also remained reduced by ~50% when an EET antagonist was combined with an mGluR antagonist or an mGluR antagonist plus an A2B receptor antagonist. In contrast, A2A and A3 receptor antagonists had no effect on the CBF response to whisker stimulation. We conclude that (1) adenosine A2B receptors, rather than A2A or A3 receptors, play a significant role in coupling cortical CBF to neuronal activity, and (2) the adenosine A2B receptor, mGluR, and EETs signaling pathways are not functionally additive, consistent with the possibility of astrocytic mGluR and adenosine A2B receptor linkage to the synthesis and release of vasodilatory EETs. PMID:17519974

  13. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2

    PubMed Central

    Aragay, A. M.; Mellado, M.; Frade, J. M. R.; Martin, A. M.; Jimenez-Sainz, M. C.; Martinez-A, C.; Mayor, F.

    1998-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine cytokine family, whose physiological function is mediated by binding to the CCR2 and CCR4 receptors, which are members of the G protein-coupled receptor family. MCP-1 plays a critical role in both activation and migration of leukocytes. Rapid chemokine receptor desensitization is very likely essential for accurate chemotaxis. In this report, we show that MCP-1 binding to the CCR2 receptor in Mono Mac 1 cells promotes the rapid desensitization of MCP-1-induced calcium flux responses. This desensitization correlates with the Ser/Thr phosphorylation of the receptor and with the transient translocation of the G protein-coupled receptor kinase 2 (GRK2, also called β-adrenergic kinase 1 or βARK1) to the membrane. We also demonstrate that GRK2 and the uncoupling protein β-arrestin associate with the receptor, forming a macromolecular complex shortly after MCP-1 binding. Calcium flux responses to MCP-1 in HEK293 cells expressing the CCR2B receptor were also markedly reduced upon cotransfection with GRK2 or the homologous kinase GRK3. Nevertheless, expression of the GRK2 dominant-negative mutant βARK-K220R did not affect the initial calcium response, but favored receptor response to a subsequent challenge by agonists. The modulation of the CCR2B receptor by GRK2 suggests an important role for this kinase in the regulation of monocyte and lymphocyte response to chemokines. PMID:9501202

  14. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids.

    PubMed

    Wang, Chen; Liu, Yi; Cao, Ji-Min

    2014-01-01

    Steroids hormones possess two distinct actions, a delayed genomic effect and a rapid non-genomic effect. Rapid steroid-triggered signaling is mediated by specific receptors localized most often to the plasma membrane. The nature of these receptors is of great interest and accumulated data suggest that G protein-coupled receptors (GPCRs) are appealing candidates. Increasing evidence regarding the interaction between steroids and specific membrane proteins, as well as the involvement of G protein and corresponding downstream signaling, have led to identification of physiologically relevant GPCRs as steroid extranuclear receptors. Examples include G protein-coupled receptor 30 (GPR30) for estrogen, membrane progestin receptor for progesterone, G protein-coupled receptor family C group 6 member A (GPRC6A) and zinc transporter member 9 (ZIP9) for androgen, and trace amine associated receptor 1 (TAAR1) for thyroid hormone. These receptor-mediated biological effects have been extended to reproductive development, cardiovascular function, neuroendocrinology and cancer pathophysiology. However, although great progress have been achieved, there are still important questions that need to be answered, including the identities of GPCRs responsible for the remaining steroids (e.g., glucocorticoid), the structural basis of steroids and GPCRs' interaction and the integration of extranuclear and nuclear signaling to the final physiological function. Here, we reviewed the several significant developments in this field and highlighted a hypothesis that attempts to explain the general interaction between steroids and GPCRs. PMID:25257522

  15. PEGylated Dendritic Unimolecular Micelles as Versatile Carriers for Ligands of G Protein-Coupled Receptors

    PubMed Central

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A.

    2009-01-01

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG550/PEG750/PEG2000, and nucleoside moieties derived from the A2A adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by 1H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A2A AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A2A AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG750 chains (out of theo. 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A2A AR–mediated stimulation of cyclic AMP formation than 10d with four PEG2000 chains and 21 nucleosides, although the binding affinities of these two compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A2A AR binding selectivity over the monomeric nucleosides. Longer PEG chains reduced affinity at the A2A AR. The current study demonstrates the feasiblity of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  16. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors.

    PubMed

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A

    2009-10-21

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG(550)/PEG(750)/PEG(2000), and nucleoside moieties derived from the A(2A) adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by (1)H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A(2A) AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A(2A) AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG(750) chains (out of theoretical 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A(2A) AR-mediated stimulation of cyclic AMP formation than 10d with 4 PEG(2000) chains and 21 nucleosides, although the binding affinities of these 2 compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A(2A) AR binding selectivity over the monomeric nucleosides. The current study demonstrates the feasibility of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  17. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias; Prossnitz, Eric R

    2015-10-01

    Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common causes of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase (COX)-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A(2) were determined in human endothelial cells stimulated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α). Moreover, Gper-deficient (Gper(-/-)) and WT mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, contractions to acetylcholine-stimulated endothelial vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by twofold. Ovariectomy also augmented prostanoid-dependent contractions by twofold in WT mice but had no additional effect in Gper(-/-) mice. These contractions were blocked by the COX inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor l-N(G)-nitroarginine methyl ester. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to

  18. Selective estrogen receptor modulators: tissue specificity and clinical utility

    PubMed Central

    Martinkovich, Stephen; Shah, Darshan; Planey, Sonia Lobo; Arnott, John A

    2014-01-01

    Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. However, SERMs have also been found to promote adverse effects, including thromboembolic events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the therapeutic application of well-known and emergent SERMs. PMID:25210448

  19. Selective androgen receptor modulators in preclinical and clinical development

    PubMed Central

    Narayanan, Ramesh; Mohler, Michael L.; Bohl, Casey E.; Miller, Duane D.; Dalton, James T.

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs. PMID:19079612

  20. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  1. Improving the classification of nuclear receptors with feature selection.

    PubMed

    Gao, Qing-Bin; Jin, Zhi-Chao; Ye, Xiao-Fei; Wu, Cheng; Lu, Jian; He, Jia

    2009-01-01

    Nuclear receptors are involved in multiple cellular signaling pathways that affect and regulate processes. Because of their physiology and pathophysiology significance, classification of nuclear receptors is essential for the proper understanding of their functions. Bhasin and Raghava have shown that the subfamilies of nuclear receptors are closely correlated with their amino acid composition and dipeptide composition [29]. They characterized each protein by a 400 dimensional feature vector. However, using high dimensional feature vectors for characterization of protein sequences will increase the computational cost as well as the risk of overfitting. Therefore, using only those features that are most relevant to the present task might improve the prediction system, and might also provide us with some biologically useful knowledge. In this paper a feature selection approach was proposed to identify relevant features and a prediction engine of support vector machines was developed to estimate the prediction accuracy of classification using the selected features. A reduced subset containing 30 features was accepted to characterize the protein sequences in view of its good discriminative power towards the classes, in which 18 are of amino acid composition and 12 are of dipeptide composition. This reduced feature subset resulted in an overall accuracy of 98.9% in a 5-fold cross-validation test, higher than 88.7% of amino acid composition based method and almost as high as 99.3% of dipeptide composition based method. Moreover, an overall accuracy of 93.7% was reached when it was evaluated on a blind data set of 63 nuclear receptors. On the other hand, an overall accuracy of 96.1% and 95.2% based on the reduced 12 dipeptide compositions was observed simultaneously in the 5-fold cross-validation test and the blind data set test, respectively. These results demonstrate the effectiveness of the present method. PMID:19601913

  2. Metformin Disrupts Crosstalk Between G protein-Coupled Receptor and Insulin Receptor Signaling Systems and Inhibits Pancreatic Cancer Growth

    PubMed Central

    Kisfalvi, Krisztina; Eibl, Guido; Sinnett-Smith, James; Rozengurt, Enrique

    2009-01-01

    Recently we identified a novel crosstalk between insulin and G-protein-coupled receptor (GPCR) signaling pathways in human pancreatic cancer cells. Insulin enhanced GPCR signaling through a rapamycin-sensitive mTOR-dependent pathway. Metformin, the most widely used drug in the treatment of type-2 diabetes, activates AMP kinase (AMPK), which negatively regulates mTOR. Here, we determined whether metformin disrupts crosstalk between insulin receptor and GPCR signaling in pancreatic cancer cells. Treatment of human pancreatic cancer cells (PANC-1, MIAPaCa-2, BxPC-3) with insulin (10ng/ml) for 5 min markedly enhanced the increase in intracellular [Ca2+] induced by GPCR agonists (e.g. neurotensin, bradykinin, angiotensin II). Metformin pretreatment completely abrogated insulin-induced potentiation of Ca2+ signaling but did not interfere with the effect of GPCR agonists alone. Insulin also enhanced GPCR agonist-induced growth, measured by DNA synthesis, and numbers of cells cultured in adherent or non-adherent conditions. Low doses of metformin (0.1-0.5 mM) blocked stimulation of DNA synthesis, anchorage-dependent and independent growth induced by insulin and GPCR agonists. Treatment with metformin induced striking and sustained increase in the phosphorylation of AMPK at Thr172 and a selective AMPK inhibitor (compound C, at 5μM) reversed the effects of metformin on [Ca2+]i, and DNA synthesis, indicating that metformin acts through AMPK activation. In view of these results we tested whether metformin inhibits pancreatic cancer growth. Administration of metformin significantly decreased the growth of MIAPaCa-2 and PANC-1 cells xenografted on the flank of nude mice. The results raise the possibility that metformin could be a potential candidate in novel treatment strategies for human pancreatic cancer. PMID:19679549

  3. How much do we know about the coupling of G-proteins to serotonin receptors?

    PubMed Central

    2014-01-01

    Serotonin receptors are G-protein-coupled receptors (GPCRs) involved in a variety of psychiatric disorders. G-proteins, heterotrimeric complexes that couple to multiple receptors, are activated when their receptor is bound by the appropriate ligand. Activation triggers a cascade of further signalling events that ultimately result in cell function changes. Each of the several known G-protein types can activate multiple pathways. Interestingly, since several G-proteins can couple to the same serotonin receptor type, receptor activation can result in induction of different pathways. To reach a better understanding of the role, interactions and expression of G-proteins a literature search was performed in order to list all the known heterotrimeric combinations and serotonin receptor complexes. Public databases were analysed to collect transcript and protein expression data relating to G-proteins in neural tissues. Only a very small number of heterotrimeric combinations and G-protein-receptor complexes out of the possible thousands suggested by expression data analysis have been examined experimentally. In addition this has mostly been obtained using insect, hamster, rat and, to a lesser extent, human cell lines. Besides highlighting which interactions have not been explored, our findings suggest additional possible interactions that should be examined based on our expression data analysis. PMID:25011628

  4. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity.

    PubMed

    Lazareno, S; Dolezal, V; Popham, A; Birdsall, N J M

    2004-01-01

    Thiochrome (2,7-dimethyl-5H-thiachromine-8-ethanol), an oxidation product and metabolite of thiamine, has little effect on the equilibrium binding of l-[3H]N-methyl scopolamine ([3H]NMS) to the five human muscarinic receptor subtypes (M1-M5) at concentrations up to 0.3 mM. In contrast, it inhibits [3H]NMS dissociation from M1 to M4 receptors at submillimolar concentrations and from M5 receptors at 1 mM. These results suggest that thiochrome binds allosterically to muscarinic receptors and has approximately neutral cooperativity with [3H]NMS at M1 to M4 and possibly M5 receptors. Thiochrome increases the affinity of acetylcholine (ACh) 3- to 5-fold for inhibiting [3H]NMS binding to M4 receptors but has no effect on ACh affinity at M1 to M3 or M5 receptors. Thiochrome (0.1 mM) also increases the direct binding of [3H]ACh to M4 receptors but decreases it slightly at M2 receptors. In agreement with the binding data, thiochrome does not affect the potency of ACh for stimulating the binding of guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) to membranes containing M1 to M3 receptors, but it increases ACh potency 3.5-fold at M4 receptors. It also selectively reduces the release of [3H]ACh from potassium-stimulated slices of rat striatum, which contain autoinhibitory presynaptic M4 receptors, but not from hippocampal slices, which contain presynaptic M2 receptors. We conclude that thiochrome is a selective M4 muscarinic receptor enhancer of ACh affinity and has neutral cooperativity with ACh at M1 to M3 receptors; it therefore demonstrates a powerful new form of selectivity, "absolute subtype selectivity", which is derived from cooperativity rather than from affinity. PMID:14722259

  5. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium. PMID:10490972

  6. Allosteric Modulators of Class B G-Protein-Coupled Receptors

    PubMed Central

    Hoare, Sam R.J

    2007-01-01

    Class B GPCR’s are activated by peptide ligands, typically 30-40 amino acid residues, that are involved in major physiological functions such as glucose homeostasis (glucagon and glucagon-like peptide 1), calcium homeostasis and bone turnover (parathyroid hormone and calcitonin), and control of the stress axis (corticotropin-releasing factor). Peptide therapeutics have been developed targeting these receptors but development of nonpeptide ligands, enabling oral administration, has proved challenging. Allosteric modulation of these receptors provides a potential route to developing nonpeptide ligands that inhibit, activate, or potentiate activation of these receptors. Here the known mechanisms of allosteric modulators targeting Class B GPCR’s are reviewed, particularly nonpeptide antagonists of the corticotropin-releasing factor 1 receptor and allosteric enhancers of the glucagon-like peptide-1 receptor. Also discussed is the potential for antagonist ligands to operate by competitive inhibition of one of the peptide binding sites, analogous to the Charniere mechanism. These mechanisms are then used to discuss potential strategies and management of pharmacological complexity in the future development of allosteric modulators for Class B GPCR’s. PMID:19305799

  7. Differential negative coupling of type 3 metabotropic glutamate receptor to cyclic GMP levels in neurons and astrocytes.

    PubMed

    Wroblewska, Barbara; Wegorzewska, Iga N; Bzdega, Tomasz; Olszewski, Rafal T; Neale, Joseph H

    2006-02-01

    Metabotropic receptors may couple to different G proteins in different cells or perhaps even in different regions of the same cell. To date, direct studies of group II and group III metabotropic glutamate receptors' (mGluRs) relationships to second messenger cascades have reported negative coupling of these receptors to cyclic AMP (cAMP) levels in neurons, astrocytes and transfected cells. In the present study, we found that the peptide neurotransmitter N-acetylaspartylglutamate (NAAG), an mGluR3-selective agonist, decreased sodium nitroprusside (SNP)-stimulated cyclic GMP (cGMP) levels in cerebellar granule cells and cerebellar astrocytes. The mGluR3 and group II agonists FN6 and LY354740 had similar effects on cGMP levels. The mGluR3 and group II antagonists beta-NAAG and LY341495 blocked these actions. Treatment with pertussis toxin inhibited the effects of NAAG on SNP-stimulated cGMP levels in rat cerebellar astrocytes but not in cerebellar neurons. These data support the conclusion that mGluR3 is also coupled to cGMP levels and that this mGluR3-induced reduction of cGMP levels is mediated by different G proteins in cerebellar astrocytes and neurons. We previously reported that this receptor is coupled to a cAMP cascade via a pertussis toxin-sensitive G protein in cerebellar neurons, astrocytes and transfected cells. Taken together with the present data, we propose that mGluR3 is coupled to two different G proteins in granule cell neurons. These data greatly expand knowledge of the range of second messenger cascades induced by mGluR3, and have implications for clinical conditions affected by NAAG and other group II mGluR agonists. PMID:16417588

  8. The ligand specificity of the G-protein-coupled receptor GPR34.

    PubMed

    Ritscher, Lars; Engemaier, Eva; Stäubert, Claudia; Liebscher, Ines; Schmidt, Philipp; Hermsdorf, Thomas; Römpler, Holger; Schulz, Angela; Schöneberg, Torsten

    2012-05-01

    Lyso-PS (lyso-phosphatidylserine) has been shown to activate the G(i/o)-protein-coupled receptor GPR34. Since in vitro and in vivo studies provided controversial results in assigning lyso-PS as the endogenous agonist for GPR34, we investigated the evolutionary conservation of agonist specificity in more detail. Except for some fish GPR34 subtypes, lyso-PS has no or very weak agonistic activity at most vertebrate GPR34 orthologues investigated. Using chimaeras we identified single positions in the second extracellular loop and the transmembrane helix 5 of carp subtype 2a that, if transferred to the human orthologue, enabled lyso-PS to activate the human GPR34. Significant improvement of agonist efficacy by changing only a few positions strongly argues against the hypothesis that nature optimized GPR34 as the receptor for lyso-PS. Phylogenetic analysis revealed several positions in some fish GPR34 orthologues which are under positive selection. These structural changes may indicate functional specification of these orthologues which can explain the species- and subtype-specific pharmacology of lyso-PS. Furthermore, we identified aminoethyl-carbamoyl ATP as an antagonist of carp GPR34, indicating ligand promiscuity with non-lipid compounds. The results of the present study suggest that lyso-PS has only a random agonistic activity at some GPR34 orthologues and the search for the endogenous agonist should consider additional chemical entities. PMID:22348703

  9. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    PubMed Central

    Culhane, Kelly J.; Liu, Yuting; Cai, Yingying; Yan, Elsa C. Y.

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs. PMID:26594176

  10. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors.

    PubMed

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-09-15

    G protein-coupled receptors are divided into three classes (A, B and C) based on homology of their seven transmembrane domains. Class C is the smallest class with 22 human receptor subtypes including eight metabotropic glutamate (mGlu1-8) receptors, two GABAB receptors (GABAB1 and GABAB2), three taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we review the existence of post-translational modifications in class C G protein-coupled receptors and their regulatory roles, with particular focus on glycosylation, phosphorylation, ubiquitination, SUMOylation, disulphide bonding and lipidation. PMID:25981296

  11. Functionalized Congener Approach to the Design of Ligands for G Protein–Coupled Receptors (GPCRs)

    PubMed Central

    Jacobson, Kenneth A.

    2009-01-01

    Functionalized congeners, in which a chemically functionalized chain is incorporated at an insensitive site on a pharmacophore, have been designed from the agonist and antagonist ligands of various G protein–coupled receptors (GPCRs). These chain extensions enable a conjugation strategy for detecting and characterizing GPCR structure and function and pharmacological modulation. The focus in many studies of functionalized congeners has been on two families of GPCRs: those responding to extracellular purines and pyrimidines—i.e., adenosine receptors (ARs) and P2Y nucleotide receptors. Functionalized congeners of small-molecule as ligands for other GPCRs and non-G protein coupled receptors have also been designed. For example, among biogenic amine neurotransmitter receptors, muscarinic acetylcholine receptor antagonists and adrenergic receptor ligands have been studied with a functionalized congener approach. Adenosine A1, A2A, and A3 receptor functionalized congeners have yielded macromolecular conjugates, irreversibly binding AR ligands for receptor inactivation and crosslinking, radioactive probes that use prosthetic groups, immobilized ligands for affinity chromatography, and dual-acting ligands that function as binary drugs. Poly(amidoamine) dendrimers have served as nanocarriers for covalently conjugated AR functionalized congeners. Rational methods of ligand design derived from molecular modeling and templates have been included in these studies. Thus, the design of novel ligands, both small molecules and macromolecular conjugates, for studying the chemical and biological properties of GPCRs have been developed with this approach, has provided researchers with a strategy that is more versatile than the classical medicinal chemical approaches. PMID:19405524

  12. Antinociceptive properties of selective MT(2) melatonin receptor partial agonists.

    PubMed

    López-Canul, Martha; Comai, Stefano; Domínguez-López, Sergio; Granados-Soto, Vinicio; Gobbi, Gabriella

    2015-10-01

    Melatonin is a neurohormone involved in the regulation of both acute and chronic pain whose mechanism is still not completely understood. We have recently demonstrated that selective MT2 melatonin receptor partial agonists have antiallodynic properties in animal models of chronic neuropathic pain by modulating ON/OFF cells of the descending antinociceptive system. Here, we examined the antinociceptive properties of the selective MT2 melatonin receptor partial agonists N-{2-[(3-methoxyphenyl)phenylamino]ethyl}acetamide (UCM765) and N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino]ethyl}acetamide (UCM924) in two animal models of acute and inflammatory pain: the hot-plate and formalin tests. UCM765 and UCM924 (5-40 mg/kg, s.c.) dose-dependently increased the temperature of the first hind paw lick in the hot-plate test, and decreased the total time spent licking the injected hind paw in the formalin test. Antinociceptive effects of UCM765 and UCM924 were maximal at the dose of 20mg/kg. At this dose, the effects of UCM765 and UCM924 were similar to those produced by 200 mg/kg acetaminophen in the hot-plate test, and by 3 mg/kg ketorolac or 150 mg/kg MLT in the formalin test. Notably, antinociceptive effects of the two MT2 partial agonists were blocked by the pre-treatment with the MT2 antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT, 10 mg/kg) in both paradigms. These results demonstrate the antinociceptive properties of UCM765 and UCM924 in acute and inflammatory pain models and corroborate the concept that MT2 melatonin receptor may be a novel target for analgesic drug development. PMID:26162699

  13. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation

    PubMed Central

    2004-01-01

    P2X1 receptors for ATP are ligand-gated cation channels, which mediate smooth muscle contraction, contribute to blood clotting and are co-expressed with a range of GPCRs (G-protein-coupled receptors). Stimulation of Gαq-coupled mGluR1α (metabotropic glutamate receptor 1α), P2Y1 or P2Y2 receptors co-expressed with P2X1 receptors in Xenopus oocytes evoked calcium-activated chloride currents (IClCa) and potentiated subsequent P2X1-receptor-mediated currents by up to 250%. The mGluR1α-receptor-mediated effects were blocked by the phospholipase C inhibitor U-73122. Potentiation was mimicked by treatment with the phor-bol ester PMA. P2X receptors have a conserved intracellular PKC (protein kinase C) site; however, GPCR- and PMA-mediated potentiation was still observed with point mutants in which this site was disrupted. Similarly, the potentiation by GPCRs or PMA was unaffected by chelating the intracellular calcium rise with BAPTA/AM [bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis-(acetoxymethyl ester)] or the PKC inhibitors Ro-32-0432 and bisindolylmaleimide I, suggesting that the regulation does not involve a calcium-sensitive form of PKC. However, both GPCR and PMA potentiation were blocked by the kinase inhibitor staurosporine. Potentiation by phorbol esters was recorded in HEK-293 cells expressing P2X1 receptors, and radiolabelling of phosphorylated proteins in these cells demonstrated that P2X1 receptors are basally phosphorylated and that this level of phosphorylation is unaffected by phorbol ester treatment. This demonstrates that P2X1 regulation does not result directly from phosphorylation of the channel, but more likely by a staurosporine-sensitive phosphorylation of an accessory protein in the P2X1 receptor complex and suggests that in vivo fine-tuning of P2X1 receptors by GPCRs may contribute to cardiovascular control and haemostasis. PMID:15144237

  14. Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells.

    PubMed

    Egerod, Kristoffer L; Engelstoft, Maja S; Lund, Mari L; Grunddal, Kaare V; Zhao, Mirabella; Barir-Jensen, Dominique; Nygaard, Eva B; Petersen, Natalia; Holst, Jens J; Schwartz, Thue W

    2015-11-01

    In the stomach, somatostatin (SST) acts as a general paracrine negative regulator of exocrine secretion of gastric acid and pepsinogen and endocrine secretion of gastrin, ghrelin, and histamine. Using reporter mice expressing red fluorescent protein (RFP) under control of the SST promotor, we have characterized the G protein-coupled receptors expressed in gastric Sst-RFP-positive cells and probed their effects on SST secretion in primary cell cultures. Surprisingly, besides SST, amylin and PYY were also highly enriched in the SST cells. Several receptors found to regulate SST secretion were highly expressed and/or enriched. 1) The metabolite receptors calcium-sensing receptor and free fatty acid receptor 4 (GPR120) functioned as positive and negative regulators, respectively. 2) Among the neurotransmitter receptors, adrenergic receptors α1a, α2a, α2b, and β1 were all highly expressed, with norepinephrine and isoproterenol acting as positive regulators. The muscarinic receptor M3 acted as a positive regulator, whereas M4 was conceivably a negative regulator. 3) Of the hormone receptors, the GLP-1 and GIP receptors, CCKb (stimulated by both CCK and gastrin) and surprisingly the melanocortin MC1 receptor were all positive regulators. 4) The neuropeptide receptors for calcitonin gene-related peptide, adrenomedullin, and vasoactive intestinal peptide acted as positive regulators, no effect was observed using galanin and nociceptin although transcripts for the corresponding receptors appeared highly expressed. 5) The SST receptors 1 and 2 functioned in an autocrine negative feedback loop. Thus, the article provides a comprehensive map of receptors through which SST secretion is regulated by hormones, neurotransmitters, neuropeptides and metabolites that act directly on the SST cells in the gastric mucosa. PMID:26181106

  15. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  16. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. PMID:25917236

  17. Role of the Extracellular Loops of G Protein-Coupled Receptors in Ligand Recognition: A Molecular Modeling Study of the Human P2Y1 Receptor

    PubMed Central

    Moro, Stefano; Hoffmann, Carsten; Jacobson, Kenneth A.

    2016-01-01

    The P2Y1 receptor is a G protein-coupled receptor (GPCR) and is stimulated by extracellular ADP and ATP. Site-directed mutagenesis of the three extracellular loops (ELs) of the human P2Y1 receptor indicates the existence of two essential disulfide bridges (Cys124 in EL1 and Cys202 in EL2; Cys42 in the N-terminal segment and Cys296 in EL3) and several specific ionic and H-bonding interactions (involving Glu209 and Arg287). Through molecular modeling and molecular dynamics simulations, an energetically sound conformational hypothesis for the receptor has been calculated that includes transmembrane (TM) domains (using the electron density map of rhodopsin as a template), extracellular loops, and a truncated N-terminal region. ATP may be docked in the receptor, both within the previously defined TM cleft and within two other regions of the receptor, termed meta-binding sites, defined by the extracellular loops. The first meta-binding site is located outside of the TM bundle, between EL2 and EL3, and the second higher energy site is positioned immediately underneath EL2. Binding at both the principal TM binding site and the lower energy meta-binding sites potentially affects the observed ligand potency. In meta-binding site I, the side chain of Glu209 (EL2) is within hydrogen-bonding distance (2.8 Å) of the ribose O3′, and Arg287 (EL3) coordinates both α- and β-phosphates of the triphosphate chain, consistent with the insensitivity in potency of the 5′-monophosphate agonist, HT-AMP, to mutation of Arg287 to Lys. Moreover, the selective reduction in potency of 3′NH2-ATP in activating the E209R mutant receptor is consistent with the hypothesis of direct contact between EL2 and nucleotide ligands. Our findings support ATP binding to at least two distinct domains of the P2Y1 receptor, both outside and within the TM core. The two disulfide bridges present in the human P2Y1 receptor play a major role in the structure and stability of the receptor, to constrain the

  18. Computational methods for studying G protein-coupled receptors (GPCRs).

    PubMed

    Kaczor, Agnieszka A; Rutkowska, Ewelina; Bartuzi, Damian; Targowska-Duda, Katarzyna M; Matosiuk, Dariusz; Selent, Jana

    2016-01-01

    The functioning of GPCRs is classically described by the ternary complex model as the interplay of three basic components: a receptor, an agonist, and a G protein. According to this model, receptor activation results from an interaction with an agonist, which translates into the activation of a particular G protein in the intracellular compartment that, in turn, is able to initiate particular signaling cascades. Extensive studies on GPCRs have led to new findings which open unexplored and exciting possibilities for drug design and safer and more effective treatments with GPCR targeting drugs. These include discovery of novel signaling mechanisms such as ligand promiscuity resulting in multitarget ligands and signaling cross-talks, allosteric modulation, biased agonism, and formation of receptor homo- and heterodimers and oligomers which can be efficiently studied with computational methods. Computer-aided drug design techniques can reduce the cost of drug development by up to 50%. In particular structure- and ligand-based virtual screening techniques are a valuable tool for identifying new leads and have been shown to be especially efficient for GPCRs in comparison to water-soluble proteins. Modern computer-aided approaches can be helpful for the discovery of compounds with designed affinity profiles. Furthermore, homology modeling facilitated by a growing number of available templates as well as molecular docking supported by sophisticated techniques of molecular dynamics and quantitative structure-activity relationship models are an excellent source of information about drug-receptor interactions at the molecular level. PMID:26928552

  19. G Protein-Coupled Receptors Directly Bind Filamin A with High Affinity and Promote Filamin Phosphorylation

    PubMed Central

    2015-01-01

    Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure–function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR–cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm. PMID:26460884

  20. Latest development in drug discovery on G protein-coupled receptors.

    PubMed

    Lundstrom, Kenneth

    2006-10-01

    G protein-coupled receptors (GPCRs) represent the family of proteins with the highest impact from social, therapeutic and economic point of view. Today, more than 50% of drug targets are based on GPCRs and the annual worldwide sales exceeds 50 billion dollars. GPCRs are involved in all major disease areas such as cardiovascular, metabolic, neurodegenerative, psychiatric, cancer and infectious diseases. The classical drug discovery process has relied on screening compounds, which interact favorably with the GPCR of interest followed by further chemical engineering as a mean of improving efficacy and selectivity. In this review, methods for sophisticated chemical library screening procedures will be presented. Furthermore, development of cell-based assays for functional coupling of GPCRs to G proteins will be discussed. Finally, the possibility of applying structure-based drug design will be summarized. This includes the application of bioinformatics knowledge and molecular modeling approaches in drug development programs. The major efforts established through large networks of structural genomics on GPCRs, where recombinantly expressed GPCRs are subjected to purification and crystallization attempts with the intention of obtaining high-resolution structures, are presented as a promising future approach for tailor-made drug development. PMID:17073697

  1. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer's disease.

    PubMed

    Kubota, Takashi; Matsumoto, Hiroshi; Kirino, Yutaka

    2016-07-01

    Membrane-associated estrogen receptor "G protein-coupled receptor 30" (GPR30) has been implicated in spatial recognition memory and protection against neuronal death. The present study investigated the role of GPR30 in object recognition memory in an Alzheimer's disease (AD) mouse model (5XFAD) by using novel object recognition (NOR) test. Impairment of long-term (24 h) recognition memory was observed in both male and female 5XFAD mice. Selective GPR30 agonist, G-1, ameliorated this impairment in female 5XFAD mice, but not in male mice. Our study demonstrated the ameliorative role of GPR30 in NOR memory impaired by AD pathology in female mice. PMID:27423484

  2. Enhanced Evaluation of Selective Androgen Receptor Modulators In Vivo

    PubMed Central

    Otto-Duessel, Maya; He, Miaoling; Adamson, Trinka W.; Jones, Jeremy O.

    2014-01-01

    Selective AR modulators (SARMs) are a class of drugs that control the activity of the androgen receptor (AR), which mediates the response to androgens, in a tissue-selective fashion. They are specifically designed to reduce the possible complications that result from the systemic inhibition or activation of AR in patients with diseases that involve androgen signaling. However, there are no ideal in vivo models for evaluating candidate SARMs. Therefore, we created a panel of androgen responsive genes in clinically-relevant AR expressing tissues including prostate, skin, bone, fat, muscle, brain, and kidney. We used select genes from this panel to compare transcriptional changes in response to the full agonist dihydrotestosterone (DHT) and the SARM bolandiol at 16h and 6wks. We identified several genes in each tissue whose expression at each of these time points correlates with the known tissue-specific effects of these compounds. For example, in the prostate we found four genes whose expression was much lower in animals treated with bolandiol compared to animals treated with DHT for 6wks, which correlated well with differences in prostate weight. We demonstrate that adding molecular measurements (androgen regulated gene expression) to the traditional physiological measurements (tissue weights, etc) makes the evaluation of potential SARMs more accurate, thorough, and perhaps more rapid by allowing measurement of selectivity after only 16 hours of drug treatment. PMID:23258627

  3. Nonsteroidal Selective Androgen Receptor Modulators Enhance Female Sexual Motivation

    PubMed Central

    Jones, Amanda; Hwang, Dong Jin; Duke, Charles B.; He, Yali; Siddam, Anjaiah; Miller, Duane D.

    2010-01-01

    Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder. PMID:20444881

  4. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity?

    PubMed Central

    Mailman, Richard B.; Murthy, Vishakantha

    2010-01-01

    Functional selectivity is the term that describes drugs that cause markedly different signaling through a single receptor (e.g., full agonist at one pathway and antagonist at a second). It has been widely recognized recently that this phenomenon impacts the understanding of mechanism of action of some drugs, and has relevance to drug discovery. One of the clinical areas where this mechanism has particular importance is in the treatment of schizophrenia. Antipsychotic drugs have been grouped according to both pattern of clinical action and mechanism of action. The original antipsychotic drugs such as chlorpromazine and haloperidol have been called typical or first generation. They cause both antipsychotic actions and many side effects (extrapyramidal and endocrine) that are ascribed to their high affinity dopamine D2 receptor antagonism. Drugs such as clozapine, olanzapine, risperidone and others were then developed that avoided the neurological side effects (atypical or second generation antipsychotics). These compounds are divided mechanistically into those that are high affinity D2 and 5-HT2A antagonists, and those that also bind with modest affinity to D2, 5-HT2A, and many other neuroreceptors. There is one approved third generation drug, aripiprazole, whose actions have been ascribed alternately to either D2 partial agonism or D2 functional selectivity. Although partial agonism has been the more widely accepted mechanism, the available data are inconsistent with this mechanism. Conversely, the D2 functional selectivity hypothesis can accommodate all current data for aripiprazole, and also impacts on discovery compounds that are not pure D2 antagonists. PMID:19909227

  5. Lipid G Protein-coupled Receptor Ligand Identification Using β-Arrestin PathHunter™ Assay

    PubMed Central

    Yin, Hong; Chu, Alan; Li, Wei; Wang, Bin; Shelton, Fabiola; Otero, Francella; Nguyen, Deborah G.; Caldwell, Jeremy S.; Chen, Yu Alice

    2009-01-01

    A growing number of orphan G-protein-coupled receptors (GPCRs) have been reported to be activated by lipid ligands, such as lysophosphatidic acid, sphingosine 1-phosphate (S1P), and cannabinoids, for which there are already well established receptors. These new ligand claims are controversial due to either lack of independent confirmations or conflicting reports. We used the β-arrestin PathHunter™ assay system, a newly developed, generic GPCR assay format that measures β-arrestin binding to GPCRs, to evaluate lipid receptor and ligand pairing. This assay eliminates interference from endogenous receptors on the parental cells because it measures a signal that is specifically generated by the tagged receptor and is immediately downstream of receptor activation. We screened a large number of newly “deorphaned” receptors (GPR23, GPR92, GPR55, G2A, GPR18, GPR3, GPR6, GPR12, and GPR63) and control receptors against a collection of ∼400 lipid molecules to try to identify the receptor ligand in an unbiased fashion. GPR92 was confirmed to be a lysophosphatidic acid receptor with weaker responses to farnesyl pyrophosphate and geranylgeranyl diphosphate. The putative cannabinoid receptor GPR55 responded strongly to AM251, rimonabant, and lysophosphatidylinositol but only very weakly to endocannabinoids. G2A receptor was confirmed to be an oxidized free fatty acid receptor. In addition, we discovered that 3,3′-diindolylmethane, a dietary molecule from cruciferous vegetables, which has known anti-cancer properties, to be a CB2 receptor partial agonist, with binding affinity around 1 μm. The anti-inflammatory effect of 3,3′-diindolylmethane in RAW264.7 cells was shown to be partially mediated by CB2. PMID:19286662

  6. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling

    PubMed Central

    Gookin, Timothy E; Kim, Junhyong; Assmann, Sarah M

    2008-01-01

    Background The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular Gα subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs. Results Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole Gα in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans. Conclusion Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant

  7. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  8. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases

    PubMed Central

    Singh, Anukriti; Nunes, Jessica J.; Ateeq, Bushra

    2015-01-01

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  9. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases.

    PubMed

    Singh, Anukriti; Nunes, Jessica J; Ateeq, Bushra

    2015-09-15

    G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases. PMID:25981295

  10. Bioinformatics approaches for the classification of G-protein-coupled receptors.

    PubMed

    Gaulton, Anna; Attwood, Teresa K

    2003-04-01

    G-protein-coupled receptors are found abundantly in the human genome, and are the targets of numerous prescribed drugs. However, many receptors remain orphaned (i.e. with unknown ligand specificity), and others remain poorly characterised, with little structural information available. Consequently, there is often a gulf between sequence data and structural and functional knowledge of a receptor. Bioinformatics approaches may offer one approach to bridging this gap. In particular, protein family databases, which distil information from multiple sequence alignments into characteristic signatures, could be used to identify the families to which orphan receptors belong, and might facilitate discovery of novel motifs associated with ligand binding and G-protein-coupling. PMID:12681231

  11. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. PMID:24418607

  12. GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking.

    PubMed

    Weiss, Dahlia R; Bortolato, Andrea; Tehan, Benjamin; Mason, Jonathan S

    2016-04-25

    Virtual screening is routinely used to discover new ligands and in particular new ligand chemotypes for G protein-coupled receptors (GPCRs). To prepare for a virtual screen, we often tailor a docking protocol that will enable us to select the best candidates for further screening. To aid this, we created GPCR-Bench, a publically available docking benchmarking set in the spirit of the DUD and DUD-E reference data sets for validation studies, containing 25 nonredundant high-resolution GPCR costructures with an accompanying set of diverse ligands and computational decoy molecules for each target. Benchmarking sets are often used to compare docking protocols; however, it is important to evaluate docking methods not by "retrospective" hit rates but by the actual likelihood that they will produce novel prospective hits. Therefore, docking protocols must not only rank active molecules highly but also produce good poses that a chemist will select for purchase and screening. Currently, no simple objective machine-scriptable function exists that can do this; instead, docking hit lists must be subjectively examined in a consistent way to compare between docking methods. We present here a case study highlighting considerations we feel are of importance when evaluating a method, intended to be useful as a practitioners' guide. PMID:26958710

  13. The selectivity of noise and coupling for coherence biresonance and array-enhanced coherence biresonance in coupled neural systems.

    PubMed

    Shi, JianCheng; Luo, Min; Dong, Tao

    2009-11-01

    The selectivity of noise and coupling for coherence biresonance (CBR) and array-enhanced coherence biresonance (AECBR) in coupled neural systems has been investigated. It is shown that, depending on the coupling strength and noise intensity, various coherence behaviors and phenomena are exhibited, including CBR, coherence resonance without tuning, AECBR and undamped signal transmission. There exist optimal coupling and noise regions for the occurrence of CBR and AECBR in the transmission of noise-induced oscillations (NIOs). PMID:19615426

  14. Glycosyl dithiocarbamates: β-selective couplings without auxiliary groups.

    PubMed

    Padungros, Panuwat; Alberch, Laura; Wei, Alexander

    2014-03-21

    In this article, we evaluate glycosyl dithiocarbamates (DTCs) with unprotected C2 hydroxyls as donors in β-linked oligosaccharide synthesis. We report a mild, one-pot conversion of glycals into β-glycosyl DTCs via DMDO oxidation with subsequent ring opening by DTC salts, which can be generated in situ from secondary amines and CS2. Glycosyl DTCs are readily activated with Cu(I) or Cu(II) triflate at low temperatures and are amenable to reiterative synthesis strategies, as demonstrated by the efficient construction of a tri-β-1,6-linked tetrasaccharide. Glycosyl DTC couplings are highly β-selective despite the absence of a preexisting C2 auxiliary group. We provide evidence that the directing effect is mediated by the C2 hydroxyl itself via the putative formation of a cis-fused bicyclic intermediate. PMID:24548247

  15. Glycosyl Dithiocarbamates: β-Selective Couplings without Auxiliary Groups

    PubMed Central

    2015-01-01

    In this article, we evaluate glycosyl dithiocarbamates (DTCs) with unprotected C2 hydroxyls as donors in β-linked oligosaccharide synthesis. We report a mild, one-pot conversion of glycals into β-glycosyl DTCs via DMDO oxidation with subsequent ring opening by DTC salts, which can be generated in situ from secondary amines and CS2. Glycosyl DTCs are readily activated with Cu(I) or Cu(II) triflate at low temperatures and are amenable to reiterative synthesis strategies, as demonstrated by the efficient construction of a tri-β-1,6-linked tetrasaccharide. Glycosyl DTC couplings are highly β-selective despite the absence of a preexisting C2 auxiliary group. We provide evidence that the directing effect is mediated by the C2 hydroxyl itself via the putative formation of a cis-fused bicyclic intermediate. PMID:24548247

  16. Characterization of a Prawn OA/TA Receptor in Xenopus Oocytes Suggests Functional Selectivity between Octopamine and Tyramine

    PubMed Central

    Jezzini, Sami H.; Reyes-Colón, Dalynés; Sosa, María A.

    2014-01-01

    Here we report the characterization of an octopamine/tyramine (OA/TA or TyrR1) receptor (OA/TAMac) cloned from the freshwater prawn, Macrobrachium rosenbergii, an animal used in the study of agonistic social behavior. The invertebrate OA/TA receptors are seven trans-membrane domain G-protein coupled receptors that are related to vertebrate adrenergic receptors. Behavioral studies in arthropods indicate that octopaminergic signaling systems modulate fight or flight behaviors with octopamine and/or tyramine functioning in a similar way to the adrenalins in vertebrate systems. Despite the importance of octopamine signaling in behavioral studies of decapod crustaceans there are no functional data available for any of their octopamine or tyramine receptors. We expressed OA/TAMac in Xenopus oocytes where agonist-evoked trans-membrane currents were used as readouts of receptor activity. The currents were most effectively evoked by tyramine but were also evoked by octopamine and dopamine. They were effectively blocked by yohimbine. The electrophysiological approach we used enabled the continuous observation of complex dynamics over time. Using voltage steps, we were able to simultaneously resolve two types of endogenous currents that are affected over different time scales. At higher concentrations we observe that octopamine and tyramine can produce different and opposing effects on both of these currents, presumably through the activity of the single expressed receptor type. The pharmacological profile and apparent functional-selectivity are consistent with properties first observed in the OA/TA receptor from the insect Drosophila melanogaster. As the first functional data reported for any crustacean OA/TA receptor, these results suggest that functional-selectivity between tyramine and octopamine is a feature of this receptor type that may be conserved among arthropods. PMID:25350749

  17. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    SciTech Connect

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C.

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  18. Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor.

    PubMed

    Kurko, Dalma; Kapui, Zoltán; Nagy, József; Lendvai, Balázs; Kolok, Sándor

    2014-08-01

    Although G protein-coupled receptors (GPCRs) are traditionally categorized as Gs-, Gq-, or Gi/o-coupled, their signaling is regulated by multiple mechanisms. GPCRs can couple to several effector pathways, having the capacity to interact not only with more than one G protein subtype but also with alternative signaling or effector proteins such as arrestins. Moreover, GPCR ligands can have different efficacies for activating these signaling pathways, a characteristic referred to as biased agonism or functional selectivity. In this work our aim was to detect differences in the ability of various agonists acting at the α2C type of adrenergic receptors (α2C-ARs) to modulate cAMP accumulation, cytoplasmic Ca(2+) release, β-arrestin recruitment and receptor internalization. A detailed comparative pharmacological characterization of G protein-dependent and -independent signaling pathways was carried out using adrenergic agonists (norepinephrine, phenylephrine, brimonidine, BHT-920, oxymetazoline, clonidine, moxonidine, guanabenz) and antagonists (MK912, yohimbine). As initial analysis of agonist Emax and EC50 values suggested possible functional selectivity, ligand bias was quantified by applying the relative activity scale and was compared to that of the endogenous agonist norepinephrine. Values significantly different from 0 between pathways indicated an agonist that promoted different level of activation of diverse effector pathways most likely due to the stabilization of a subtly different receptor conformation from that induced by norepinephrine. Our results showed that a series of agonists acting at the α2C-AR displayed different degree of functional selectivity (bias factors ranging from 1.6 to 36.7) through four signaling pathways. As signaling via these pathways seems to have distinct functional and physiological outcomes, studying all these stages of receptor activation could have further implications for the development of more selective therapeutics with

  19. Apparent dopamine D1 and D2 receptors in the weaver mutant mouse: receptor binding and coupling to adenylyl cyclase.

    PubMed

    Dewar, K M; Paquet, M; Sequeira, A

    1999-01-01

    Weaver mutant mice have a selective degeneration of the nigrostriatal dopamine pathway arising between 7-21 days after birth. The goal of this study was to investigate the effects of this mutation on different parameters of the nigrostriatal and mesolimbic dopamine system: apparent D1 and D2 receptor binding sites as well as their signal transduction pathway. Using quantitative autoradiography of ligands for dopamine D1, D2 receptors and the dopamine uptake site, we found a significant loss in apparent D1 receptor binding sites throughout the neostriatum, significant increase of apparent D2 receptor binding in the dorsal aspect of the neostriatum, and almost complete loss of DA uptake sites in these regions of the weaver mouse. In contrast to the neostriatum, the density of dopamine receptors and uptake sites in the nucleus accumbens of the weaver mouse did not differ from controls. Despite alterations in the binding of apparent D1 and D2 receptors, there was no significant difference in either basal, DA stimulated or GTPgammaS stimulated cAMP production. These findings suggest the down-regulation of apparent D1 receptor binding sites reported in this model, probably does not reflect an important physiological mechanism through which these animals compensate for loss of dopamine innervation. PMID:10443552

  20. Selective binding of estrogen receptor α to ubiquitin chains.

    PubMed

    Pesiri, Valeria; Di Muzio, Elena; Polticelli, Fabio; Acconcia, Filippo

    2016-07-01

    Ubiquitin (Ub)-binding domains (UBDs) noncovalently contact the Ub modification on binding partners. Ub possesses seven lysine (K) residues (i.e., K6, K11, K27, K29, K33, K48, and K63) that can be used to form different chains based on different Ub linkage types (e.g., monoubiquitination/polyubiquitination). Thus, different Ub-based signals exist and are decoded by UBDs. Recently, we have reported the existence of two Ub binding surfaces located within the estrogen receptor α (ERα) protein. We have shown that the leucine (L) 429 and alanine (A) 430 ERα residues direct noncovalent receptor binding to K63-based Ub chains in vitro. However, mutation of L429 and A430 residues did not completely abolish the ability of ERα to associate with Ub in cell lines. Thus, we evaluated the possibility that one or both ERα Ub binding surfaces could non-covalently interact with other Ub chains. Here, we report that ERα selectively binds to specific Ub chains based on different Ub linkages and that ERα monoubiquitination requires non-covalent ERα:Ub binding. Considering the importance of the UBD:Ub interaction in the initiation and progression of many diseases (e.g., cancer), our data provide novel insights into ERα functions that could be relevant to ERα-related diseases. © 2016 IUBMB Life, 68(7):569-577, 2016. PMID:27193211

  1. Discovery and Characterization of a Novel Small-Molecule Agonist for Medium-Chain Free Fatty Acid Receptor G Protein-Coupled Receptor 84.

    PubMed

    Zhang, Qing; Yang, Hui; Li, Jing; Xie, Xin

    2016-05-01

    G protein-coupled receptor 84 (GPR84) is a free fatty acid receptor activated by medium-chain free fatty acids with 9-14 carbons. It is expressed mainly in the immune-related tissues, such as spleen, bone marrow, and peripheral blood leukocytes. GPR84 plays significant roles in inflammatory processes and may represent a novel drug target for the treatment of immune-mediated diseases. However, the lack of potent and specific ligands for GPR84 hindered the study of its functions and the development of potential clinical applications. Here, we report the screen of 160,000 small-molecule compounds with a calcium mobilization assay using a human embryonic kidney 293 cell line stably expressing GPR84 and Gα16, and the identification of 2-(hexylthio)pyrimidine-4,6-diol (ZQ-16) as a potent and selective agonist of GPR84 with a novel structure. ZQ-16 activates several GPR84-mediated signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, phosphorylation of extracellular signal-regulated protein kinase 1/2, receptor desensitization and internalization, and receptor-β-arrestin interaction. This compound may be a useful tool to study the functions of GPR84 and a potential candidate for further structural optimization. PMID:26962172

  2. Novel Probes Establish Mas-Related G Protein-Coupled Receptor X1 Variants as Receptors with Loss or Gain of Function.

    PubMed

    Heller, Daniel; Doyle, Jamie R; Raman, Venkata S; Beinborn, Martin; Kumar, Krishna; Kopin, Alan S

    2016-02-01

    The Mas-related G protein-coupled receptor X1 (MrgprX1) is a human seven transmembrane-domain protein with a putative role in nociception and pruritus. This receptor is expressed in dorsal root ganglion neurons and is activated by a variety of endogenous peptides, including bovine adrenal medulla peptide (BAM) and γ2-melanocyte-stimulating hormone (γ2-MSH). In the present work, we study how naturally occurring missense mutations alter the activity of MrgprX1. To characterize selected receptor variants, we initially used the endogenous peptide ligand BAM8-22. In addition, we generated and characterized a panel of novel recombinant and synthetic peptide ligands. Our studies identified a mutation in the second intracellular loop of MrgprX1, R131S, that causes a decrease in both ligand-mediated and constitutive signaling. Another mutation in this region, H133R, results in a gain of function phenotype reflected by an increase in ligand-mediated signaling. Using epitope-tagged variants, we determined that the alterations in basal and ligand-mediated signaling were not explained by changes in receptor expression levels. Our results demonstrate that naturally occurring mutations can alter the pharmacology of MrgprX1. This study provides a theoretical basis for exploring whether MrgprX1 variability underlies differences in somatosensation within human populations. PMID:26582731

  3. Substituted tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor.

    PubMed

    Perrey, David A; German, Nadezhda A; Gilmour, Brian P; Li, Jun-Xu; Harris, Danni L; Thomas, Brian F; Zhang, Yanan

    2013-09-12

    Increasing evidence implicates the orexin 1 (OX1) receptor in reward processes, suggesting OX1 antagonism could be therapeutic in drug addiction. In a program to develop an OX1 selective antagonist, we designed and synthesized a series of substituted tetrahydroisoquinolines and determined their potency in OX1 and OX2 calcium mobilization assays. Structure-activity relationship (SAR) studies revealed limited steric tolerance and a preference for electron deficiency at the 7-position. Pyridylmethyl groups were shown to be optimal for activity at the acetamide position. Computational studies resulted in a pharmacophore model and confirmed the SAR results. Compound 72 significantly attenuated the development of place preference for cocaine in rats. PMID:23941044

  4. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  5. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  6. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors.

    PubMed

    Baker, Michael E; Funder, John W; Kattoula, Stephanie R

    2013-09-01

    Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from an ancestral corticoid receptor (CR). To date, the earliest CR have been found in lamprey and hagfish, two jawless fish (cyclostomes) that evolved at the base of the vertebrate line. Lamprey CR has both MR and GR activity. Distinct orthologs of the GR and MR first appear in skates and sharks, which are cartilaginous fishes (Chondrichthyes). Aldosterone, the physiological mineralocorticoid in terrestrial vertebrates, first appears in lobe-finned fish, such as lungfish and coelacanth, forerunners of terrestrial vertebrates, but not in sharks, skates or ray-finned fish. Skate MR are transcriptionally activated by glucocorticoids, such as corticosterone and cortisol, as well as by mineralocorticoids such as deoxycorticosterone and (experimentally) aldosterone; skate GR have low affinity for all human corticosteroids and 1α-OH-corticosterone, which has been proposed to be biologically active glucocorticoid. In fish, cortisol is both physiological mineralocorticoid and glucocorticoid; in terrestrial vertebrates, cortisol or corticosterone are the physiological glucocorticoids acting through GR, and aldosterone via MR as the physiologic mineralocorticoid. MR have equally high affinity for cortisol, corticosterone and progesterone. We review this evolutionary process through an analysis of changes in sequence and structure of vertebrate GR and MR, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR. hMR and hGR have lost a key contact between helix 3 and helix 5 that was present in their common ancestor. A serine that is diagnostic for vertebrate MR, and absent in terrestrial and fish GR, is present in lamprey CR, skate MR and GR, but not in coelacanth GR, marking the transition of the GR from MR ancestor. Based on the response of the CR and skate MR and GR to

  7. Selection of cell lines resistant to anti-transferrin receptor antibody: evidence for a mutation in transferrin receptor.

    PubMed Central

    Lesley, J F; Schulte, R J

    1984-01-01

    Some anti-murine transferrin receptor monoclonal antibodies block iron uptake in mouse cell lines and inhibit cell growth. We report here the selection and characterization of mutant murine lymphoma cell lines which escape this growth inhibition by anti-transferrin receptor antibody. Growth assays and immunoprecipitation of transferrin receptor in hybrids between independently derived mutants or between mutants and antibody-susceptible parental cell lines indicate that all of the selected lines have a similar genetic alteration that is codominantly expressed in hybrids. Anti-transferrin receptor antibodies and transferrin itself still bind to the mutant lines with saturating levels and Kd values very similar to those of the parental lines. However, reciprocal clearing experiments by immunoprecipitation and reciprocal blocking of binding to the cell surface with two anti-transferrin receptor antibodies indicate that the mutant lines have altered a fraction of their transferrin receptors such that the growth-inhibiting antibody no longer binds, whereas another portion of their transferrin receptors is similar to those of the parental lines and binds both antibodies. These results argue that the antibody-selected mutant cell lines are heterozygous in transferrin receptor expression, probably with a mutation in one of the transferrin receptor structural genes. Images PMID:6092931

  8. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization

    PubMed Central

    Franco, Rafael; Martínez-Pinilla, Eva; Lanciego, José L.; Navarro, Gemma

    2016-01-01

    Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor–receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery. PMID:27065866

  9. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  10. Flux, coupling, and selectivity in ionic channels of one conformation.

    PubMed Central

    Chen, D P; Eisenberg, R S

    1993-01-01

    Ions crossing biological membranes are described as a concentration of charge flowing through a selective open channel of one conformation and analyzed by a combination of Poisson and Nernst-Planck equations and boundary conditions, called the PNP theory for short. The ion fluxes in this theory interact much as ion fluxes interact in biological channels and mediated transporters, provided the theoretical channel contains permanent charge and has selectivity created by (electro-chemical) resistance at its ends. Interaction occurs because the flux of different ionic species depends on the same electric field. That electric field is a variable, changing with experimental conditions because the screening (i.e., shielding) of the permanent charge within the channel changes with experimental conditions. For example, the screening of charge and the shape of the electric field depend on the concentration of all ionic species on both sides of the channel. As experimental interventions vary the screening, the electric field varies, and thus the flux of each ionic species varies conjointly, and is, in that sense, coupled. Interdependence and interaction are the rule, independence is the exception, in this channel. PMID:7693003

  11. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    PubMed Central

    2010-01-01

    Background CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML) were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR) gene family. The results of neutral vs. adaptive evolution (positive selection) hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω) >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive selection code for amino acid

  12. Hippocampus NMDA receptors selectively mediate latent extinction of place learning.

    PubMed

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2016-09-01

    Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were

  13. GPCRdb: the G protein-coupled receptor database - an introduction.

    PubMed

    Munk, C; Isberg, V; Mordalski, S; Harpsøe, K; Rataj, K; Hauser, A S; Kolb, P; Bojarski, A J; Vriend, G; Gloriam, D E

    2016-07-01

    GPCRs make up the largest family of human membrane proteins and of drug targets. Recent advances in GPCR pharmacology and crystallography have shed new light on signal transduction, allosteric modulation and biased signalling, translating into new mechanisms and principles for drug design. The GPCR database, GPCRdb, has served the community for over 20 years and has recently been extended to include a more multidisciplinary audience. This review is intended to introduce new users to the services in GPCRdb, which meets three overall purposes: firstly, to provide reference data in an integrated, annotated and structured fashion, with a focus on sequences, structures, single-point mutations and ligand interactions. Secondly, to equip the community with a suite of web tools for swift analysis of structures, sequence similarities, receptor relationships, and ligand target profiles. Thirdly, to facilitate dissemination through interactive diagrams of, for example, receptor residue topologies, phylogenetic relationships and crystal structure statistics. Herein, these services are described for the first time; visitors and guides are provided with good practices for their utilization. Finally, we describe complementary databases cross-referenced by GPCRdb and web servers with corresponding functionality. PMID:27155948

  14. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies.

    PubMed

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-06-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD. PMID:26585287

  15. Monitoring ligand-mediated internalization of G protein-coupled receptor as a novel pharmacological approach.

    PubMed

    Fukunaga, Shin'ichi; Setoguchi, Shingo; Hirasawa, Akira; Tsujimoto, Gozoh

    2006-12-01

    Agonist activation of a G protein-coupled receptor (GPCR) results in the redistribution of the receptor protein away from the cell surface into internal cellular compartments through a process of endocytosis known as internalization. Visualization of receptor internalization has become experimentally practicable by using fluorescent reagents such as green fluorescent protein (GFP). In this study, we examined whether the ligand-mediated internalization of a GPCR can be exploited for pharmacological evaluations. We acquired fluorescent images of cells expressing GFP-labeled GPCRs and evaluated the ligand-mediated internalization quantitatively by image processing. Using beta2-adrenoceptor and vasopressin V1a receptor as model GPCRs that couple to Gs and Gq, respectively, we first examined whether these GFP-tagged GPCRs exhibited appropriate pharmacology. The rank order of receptor internalization potency for a variety of agonists and antagonists specific to each receptor corresponded well with that previously observed in ligand binding studies. In addition to chemical ligand-induced internalization, this cell-based fluorescence imaging system successfully monitored the internalization of the proton-sensing GPCR TDAG8, and that of the free fatty acid-sensitive GPCR GPR120. The results show that monitoring receptor internalization can be a useful approach for pharmacological characterization of GPCRs and in fishing for ligands of orphan GPCRs. PMID:16978657

  16. Orphan G-protein-coupled receptors: the next generation of drug targets?

    PubMed Central

    Wilson, Shelagh; Bergsma, Derk J; Chambers, Jon K; Muir, Alison I; Fantom, Kenneth G M; Ellis, Catherine; Murdock, Paul R; Herrity, Nicole C; Stadel, Jeffrey M

    1998-01-01

    The pharmaceutical industry has readily embraced genomics to provide it with new targets for drug discovery. Large scale DNA sequencing has allowed the identification of a plethora of DNA sequences distantly related to known G protein-coupled receptors (GPCRs), a superfamily of receptors that have a proven history of being excellent therapeutic targets. In most cases the extent of sequence homology is insufficient to assign these `orphan' receptors to a particular receptor subfamily. Consequently, reverse molecular pharmacological and functional genomic strategies are being employed to identify the activating ligands of the cloned receptors. Briefly, the reverse molecular pharmacological methodology includes cloning and expression of orphan GPCRs in mammalian cells and screening these cells for a functional response to cognate or surrogate agonists present in biological extract preparations, peptide libraries, and complex compound collections. The functional genomics approach involves the use of `humanized yeast cells, where the yeast GPCR transduction system is engineered to permit functional expression and coupling of human GPCRs to the endogenous signalling machinery. Both systems provide an excellent platform for identifying novel receptor ligands. Once activating ligands are identified they can be used as pharmacological tools to explore receptor function and relationship to disease. PMID:9884064

  17. Increased G Protein-Coupled Receptor Kinase (GRK) Expression in the Anterior Cingulate Cortex in Schizophrenia

    PubMed Central

    Funk, Adam J.; Haroutunian, Vahram; Meador-Woodruff, James H.; McCullumsmith, Robert E.

    2014-01-01

    Background Current pharmacological treatments for schizophrenia target G protein-coupled receptors (GPCRs), including dopamine receptors. Ligand bound GPCRs are regulated by a family of G protein-coupled receptor kinases (GRKs), members of which uncouple the receptor from heterotrimeric G proteins, desensitize the receptor, and induce receptor internalization via the arrestin family of scaffolding and signaling molecules. GRKs initiate the activation of downstream signaling pathways, can regulate receptors and signaling molecules independent of GPCR phosphorylation, and modulate epigenetic regulators like histone deacetylases (HDACs). We hypothesize that expression of GRK proteins are altered in schizophrenia, consistent with previous findings of alterations up and downstream from this family of molecules that facilitate intracellular signaling processes. Methods In this study we measured protein expression via Western blot analysis for GRKs 2, 3, 5, and 6 in the anterior cingulate cortex of patients with schizophrenia (N = 36) and a comparison group (N = 33). To control for antipsychotic treatment we measured these same targets in haloperidol treated vs. untreated rats (N = 10 for both). Results We found increased levels of GRK5 in schizophrenia. No changes were detected in GRK protein expression in rats treated with haloperidol decanoate for 9 months. Conclusion These data suggest that increased GRK5 expression may contribute the the pathophysiology of schizophrenia via abnormal regulation of the cytoskeleton, endocytosis, signaling, GPCRs, and histone modification. PMID:25153362

  18. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    NASA Astrophysics Data System (ADS)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  19. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  20. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  1. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  2. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  3. 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes.

    PubMed

    Derangeon, Mickaël; Bozon, Véronique; Defamie, Norah; Peineau, Nicolas; Bourmeyster, Nicolas; Sarrouilhe, Denis; Argibay, Jorge A; Hervé, Jean-Claude

    2010-01-01

    5-hydroxytryptamine-4 (5-HT(4)) receptors have been proposed to contribute to the generation of atrial fibrillation in human atrial myocytes, but it is unclear if these receptors are present in the hearts of small laboratory animals (e.g. rat). In this study, we examined presence and functionality of 5-HT(4) receptors in auricular myocytes of newborn rats and their possible involvement in regulation of gap junctional intercellular communication (GJIC, responsible for the cell-to-cell propagation of the cardiac excitation). Western-blotting assays showed that 5-HT(4) receptors were present and real-time RT-PCR analysis revealed that 5-HT(4b) was the predominant isoform. Serotonin (1 microM) significantly reduced cAMP concentration unless a selective 5-HT(4) inhibitor (GR113808 or ML10375, both 1 microM) was present. Serotonin also reduced the amplitude of L-type calcium currents and influenced the strength of GJIC without modifying the phosphorylation profiles of the different channel-forming proteins or connexins (Cxs), namely Cx40, Cx43 and Cx45. GJIC was markedly increased when serotonin exposure occurred in presence of a 5-HT(4) inhibitor but strongly reduced when 5-HT(2A) and 5-HT(2B) receptors were inhibited, showing that activation of these receptors antagonistically regulated GJIC. The serotoninergic response was completely abolished when 5-HT(4), 5-HT(2A) and 5-HT(2B) were simultaneously inhibited. A 24 h serotonin exposure strongly reduced Cx40 expression whereas Cx45 was less affected and Cx43 still less. In conclusion, this study revealed that 5-HT(4) (mainly 5-HT(4b)), 5-HT(2A) and 5-HT(2B) receptors coexisted in auricular myocytes of newborn rat, that 5-HT(4) activation reduced cAMP concentration, I(Ca)(L) and intercellular coupling whereas 5-HT(2A) or 5-HT(2B) activation conversely enhanced GJIC. PMID:19615378

  4. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.

    PubMed

    Ozel, Tuncay; Hernandez-Martinez, Pedro Ludwig; Mutlugun, Evren; Akin, Onur; Nizamoglu, Sedat; Ozel, Ilkem Ozge; Zhang, Qing; Xiong, Qihua; Demir, Hilmi Volkan

    2013-07-10

    We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Förster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complementary case of acceptor-selective plexciton we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new

  5. The effects of (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG), a potent and selective metabotropic glutamate receptor antagonist.

    PubMed Central

    Toms, N. J.; Jane, D. E.; Kemp, M. C.; Bedingfield, J. S.; Roberts, P. J.

    1996-01-01

    1. In this study we describe the potent antagonist activity of a novel metabotropic glutamate (mGlu) receptor antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG) which exhibits selectivity for mGlu receptors (group II and III) negatively coupled to adenylyl cyclase in the adult rat cortex. 2. Both the L-2-amino-4-phosphonobutyrate (L-AP4) and (2S, 1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-1) inhibition of forskolin-stimulated cyclic AMP accumulation were potently reversed by (RS)-CPPG (IC50 values: 2.2 +/- 0.6 nM and 46.2 +/- 18.2 nM, respectively). 3. In contrast, (RS)-CPPG acted as a weak antagonist against group I mGlu receptors. In neonatal rat cortical slices, (RS)-CPPG antagonized (KB = 0.65 +/- 0.07 mM) (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD)-stimulated phosphoinositide hydrolysis. (RS)-CPPG (100 microM) failed to influence L-quisqualate-stimulated phosphoinositide hydrolysis in cultured cerebellar granule cells. 4. In the rat cerebral cortex, (RS)-CPPG is the most potent antagonist of group II/III mGlu receptors yet described (with 20 fold selectivity for group III mGlu receptors), having negligible activity at group I mGlu receptors. PMID:8922731

  6. Detection of Endogenous Selective Estrogen Receptor Modulators such as 27-Hydroxycholesterol.

    PubMed

    Nelson, Erik R

    2016-01-01

    The estrogen receptors (ERs) belong to the nuclear receptor superfamily, and as such act as ligand inducible transcription factors, mediating the effects of estrogens. However, their pharmacology is complex, having the ability to be differentially activated by ligands. Such ligands possess the ability to behave as either ER-agonists or ER-antagonists, depending on the cellular and tissue context, and have been termed Selective Estrogen Receptor Modulators (SERMs). Several SERMs have been identified with clinical relevance such as tamoxifen and raloxifene. Recently, 27-hydroxycholesterol has been characterized as the first identified endogenous SERM leading to the notion that other endogenous SERMs may exist, each having potential pathophysiological functions. This, coupled with the historic pharmaceutical interest as well as growing concern over chemicals in the environment with the ability to behave like SERMs, has increased the demand for assays to detect SERM-like activity. Here, we describe a common, straightforward in vitro assay investigating the induction of classic ER-target genes in MCF7 breast cancer cells, allowing one to identify ligands with SERM-like activity. PMID:26585155

  7. Visualizing G protein-coupled receptors in action through confocal microscopy techniques.

    PubMed

    Castillo-Badillo, Jean A; Cabrera-Wrooman, Alejandro; García-Sáinz, J Adolfo

    2014-05-01

    G protein-coupled receptors constitute one of the most abundant entities in cellular communication. Elucidation of their structure and function as well as of their regulation began 30-40 years ago and the advance has markedly increased during the last 15 years. They participate in a plethora of cell functions such as regulation of metabolic fluxes, contraction, secretion, differentiation, or proliferation, and in essentially all activities of our organism; these receptors are targets of a large proportion of prescribed and illegal drugs. Fluorescence techniques have been used to study receptors for many years. The experimental result was usually a two-dimensional (2D) micrograph. Today, the result can be a spatiotemporal (four-dimensional, 4D) movie. Advances in microscopy, fluorescent protein design, and computer-assisted analysis have been of great importance to increase our knowledge on receptor regulation and function and create opportunities for future research. In this review we briefly depict the state of the art of the G protein-coupled receptor field and the methodologies used to study G protein-coupled receptor location, trafficking, dimerization, and other types of receptor-protein interaction. Fluorescence techniques now permit the capture of receptor images with high resolution and, together with a variety of fluorescent dyes that color organelles (such as the plasma membrane or the nucleus) or the cytoskeleton, allow researchers to obtain a much clearer idea of what is taking place at the cellular level. These developments are changing the way we explore cell communication and signal transduction, permitting deeper understanding of the physiological and pathophysiological processes. PMID:24751328

  8. Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*

    PubMed Central

    Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.

    2014-01-01

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280

  9. IMAGING ASSESSMENT OF G-PROTEIN-COUPLED ESTROGEN RECEPTOR ACTIVATION

    EPA Science Inventory

    We expect to provide a targeted imaging assay that links chemical mechanism of toxicity to target organ effects and heart physiology within individual 96-hpf zebrafish. Importantly, with the utilization of selective, non-toxic agonists or antagonists for additional xenobiot...

  10. Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations.

    PubMed

    Sbai, Oualid; Monnier, Carine; Dodé, Catherine; Pin, Jean-Philippe; Hardelin, Jean-Pierre; Rondard, Philippe

    2014-08-01

    Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit β-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit β-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit β-arrestins. Finally, the R268C receptor could recruit β-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects. PMID:24830383

  11. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  12. Current and future G protein-coupled receptor signaling targets for heart failure therapy

    PubMed Central

    Siryk-Bathgate, Ashley; Dabul, Samalia; Lymperopoulos, Anastasios

    2013-01-01

    Although there have been significant advances in the therapy of heart failure in recent decades, such as the introduction of β-blockers and antagonists of the renin–angiotensin–aldosterone system, this devastating disease still carries tremendous morbidity and mortality in the western world. G protein-coupled receptors, such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, ie, myocytes, fibroblasts, and endothelial cells, play crucial roles in regulation of cardiac function in health and disease. Their importance is reflected by the fact that, collectively, they represent the direct targets of over one-third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart failure therapy. Here, we review these possible targets for heart failure therapy that have emerged from studies of cardiac G protein-coupled receptor signaling in health and disease, with a particular focus on the main cardiac G protein-coupled receptor types, ie, the β-adrenergic and the angiotensin II type 1 receptors. We also highlight key issues that need to be addressed to improve the chances of success of novel therapies directed against these targets. PMID:24143078

  13. Discovery of Novel Potent and Selective Agonists at the Melanocortin-3 Receptor.

    PubMed

    Carotenuto, Alfonso; Merlino, Francesco; Cai, Minying; Brancaccio, Diego; Yousif, Ali Munaim; Novellino, Ettore; Hruby, Victor J; Grieco, Paolo

    2015-12-24

    The melanocortin receptors 3 and 4 control energy homeostasis, food-intake behavior, and correlated pathophysiological conditions. The melanocortin-4 receptor (MC4R) has been broadly investigated. In contrast, the knowledge related to physiological roles of the melanocortin-3 receptor (MC3R) is lacking because of the limited number of known MC3R selective ligands. Here, we report the design, synthesis, biological activity, conformational analysis, and docking with receptors of two potent and selective agonists at the human MC3 receptor. PMID:26599352

  14. Selective potentiation of alpha 1 glycine receptors by ginkgolic acid

    PubMed Central

    Maleeva, Galyna; Buldakova, Svetlana; Bregestovski, Piotr

    2015-01-01

    Glycine receptors (GlyRs) belong to the superfamily of pentameric cys-loop receptor-operated channels and are involved in numerous physiological functions, including movement, vision, and pain. In search for compounds performing subunit-specific modulation of GlyRs we studied action of ginkgolic acid, an abundant Ginkgo biloba product. Using patch-clamp recordings, we analyzed the effects of ginkgolic acid in concentrations from 30 nM to 25 μM on α1–α3 and α1/β, α2/β configurations of GlyR and on GABAARs expressed in cultured CHO-K1 cells and mouse neuroblastoma (N2a) cells. Ginkgolic acid caused an increase in the amplitude of currents mediated by homomeric α1 and heteromeric α1/β GlyRs and provoked a left-shift of the concentration-dependent curves for glycine. Even at high concentrations (10–25 μM) ginkgolic acid was not able to augment ionic currents mediated by α2, α2/β, and α3 GlyRs, or by GABAAR consisting of α1/β2/γ2 subunits. Mutation of three residues (T59A/A261G/A303S) in the α2 GlyR subunit to the corresponding ones from the α1 converted the action of ginkgolic acid to potentiation with a distinct decrease in EC50 for glycine, suggesting an important role for these residues in modulation by ginkgolic acid. Our results suggest that ginkgolic acid is a novel selective enhancer of α1 GlyRs. PMID:26578878

  15. Deoxybenzoins are novel potent selective estrogen receptor modulators.

    PubMed

    Papoutsi, Zoi; Kassi, Eva; Fokialakis, Nikolas; Mitakou, Sofia; Lambrinidis, George; Mikros, Emmanuel; Moutsatsou, Paraskevi

    2007-09-01

    Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy. PMID:17659312

  16. Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension

    PubMed Central

    Rys, Joanna P; DuFort, Christopher C; Monteiro, David A; Baird, Michelle A; Oses-Prieto, Juan A; Chand, Shreya; Burlingame, Alma L; Davidson, Michael W; Alliston, Tamara N

    2015-01-01

    Cell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFβ signaling. We find that TGFβ receptors are discretely organized to segregated spatial domains at the cell surface. Integrin-rich focal adhesions organize TβRII around TβRI, limiting the integration of TβRII while sequestering TβRI at these sites. Disruption of cellular tension leads to a collapse of this spatial organization and drives formation of heteromeric TβRI/TβRII complexes and Smad activation. This work details a novel mechanism by which cellular tension regulates TGFβ receptor organization, multimerization, and function, providing new insight into the mechanisms that integrate biochemical and physical cues. DOI: http://dx.doi.org/10.7554/eLife.09300.001 PMID:26652004

  17. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  18. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI

    PubMed Central

    Sander, Christin Y.; Hooker, Jacob M.; Catana, Ciprian; Normandin, Marc D.; Alpert, Nathaniel M.; Knudsen, Gitte M.; Vanduffel, Wim; Rosen, Bruce R.; Mandeville, Joseph B.

    2013-01-01

    This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3 dopamine receptor antagonist [11C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular responses and receptor occupancies. The distinct CBV magnitudes between putamen and caudate at matched occupancies approximately matched literature differences in basal dopamine levels, suggesting that the relative fMRI measurements reflect basal D2/D3 dopamine receptor occupancy. These results can provide a basis for models that relate dopaminergic occupancies to hemodynamic changes in the basal ganglia. Overall, these data demonstrate the utility of simultaneous PET/fMRI for investigations of neurovascular coupling that correlate neurochemistry with hemodynamic changes in vivo for any receptor system with an available PET tracer. PMID:23723346

  19. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling

    PubMed Central

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)–AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K–AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  20. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling.

    PubMed

    Riaz, Anjum; Huang, Ying; Johansson, Staffan

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted. PMID:26861299

  1. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  2. Pattern Selection in Network of Coupled Multi-Scroll Attractors

    PubMed Central

    Li, Fan

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  3. Pattern Selection in Network of Coupled Multi-Scroll Attractors.

    PubMed

    Li, Fan; Ma, Jun

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  4. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    PubMed

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-01-01

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention. PMID:24367336

  5. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors

    PubMed Central

    Justus, Calvin R.; Dong, Lixue; Yang, Li V.

    2013-01-01

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention. PMID:24367336

  6. Developmental expression of orphan G protein-coupled receptor 50 in the mouse brain.

    PubMed

    Grünewald, Ellen; Tew, Kenneth D; Porteous, David J; Thomson, Pippa A

    2012-06-20

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  7. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels.

    PubMed

    Li, Simin; Bhave, Devayani; Chow, Jennifer M; Riera, Thomas V; Schlee, Sandra; Rauch, Simone; Atanasova, Mariya; Cate, Richard L; Whitty, Adrian

    2015-04-17

    A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome. PMID:25635057

  8. Effects of weightlessness on neurotransmitter receptors in selected brain areas

    NASA Technical Reports Server (NTRS)

    Miller, J. D.; Murakami, D. M.; Mcmillen, B. A.; Mcconnaughey, M. M.; Williams, H. L.

    1985-01-01

    The central nervous system receptor dynamics of rats exposed to 7 days of microgravity are studied. The receptor affinity and receptor number at the hippocampus, lateral frontal cortex, prefrontal cortex, corpus striatum, cerebellum and pons-medulla, and the Na(+)/K(+)ATPase activity are examined. The data reveal that there is no significant change in the receptor affinity and receptor number for the lateral frontal cortex, prefrontal cortex, cerebellum and pons-medulla; however, there is an increase from 81 + or - 11 to 120 + or 5 fmole/mg protein in the receptor number for hippocampal binding, and a decrease in receptor number for the striatum from 172 + or - 14 to 143 + or - 10 fmoles/mg protein. A 9 percent decrease in Mg-dependent Na(+)/K(+)ATPase activity is observed. It is detected that the terminal mechanism may be affected by exposure to microgravity.

  9. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  10. Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Lin, Fei; Ching, T. W.

    2015-05-01

    This paper proposes a new idea for magnetic sensors charging on Mars, which aims to effectively transmit energy from Mars Rover to distributed magnetic sensors. The key is to utilize wireless power transfer (WPT) to enable multiple receptors extracting energy from the source via magnetic resonant coupling. Namely, the energy transmitter is located on the Mars Rover, whereas the energy receptor is installed in the magnetic sensor. In order to effectively transfer the power, a resonator is installed between the transmitter and the receptors. Based on the proposed idea, the system topology, operation principle, and simulation results are developed. By performing finite element magnetic field analysis, the output power and efficiency of the proposed WPT system are evaluated. It confirms that the Mars Rover carrying with the energy transmitter is capable of loitering around the resonator, while the magnetic sensors on the receptors can be simultaneously charged according to energy-on-demand.

  11. Measles virus modulates human T-cell somatostatin receptors and their coupling to adenylyl cyclase.

    PubMed Central

    Krantic, S; Enjalbert, A; Rabourdin-Combe, C

    1997-01-01

    The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM

  12. G protein-coupled receptors: walking hand-in-hand, talking hand-in-hand?

    PubMed Central

    Vischer, Henry F; Watts, Anne O; Nijmeijer, Saskia; Leurs, Rob

    2011-01-01

    Most cells express a panel of different G protein-coupled receptors (GPCRs) allowing them to respond to at least a corresponding variety of extracellular ligands. In order to come to an integrative well-balanced functional response these ligand–receptor pairs can often cross-regulate each other. Although most GPCRs are fully capable to induce intracellular signalling upon agonist binding on their own, many GPCRs, if not all, appear to exist and function in homomeric and/or heteromeric assemblies for at least some time. Such heteromeric organization offers unique allosteric control of receptor pharmacology and function between the protomers and might even unmask ‘new’ features. However, it is important to realize that some functional consequences that are proposed to originate from heteromeric receptor interactions may also be observed due to intracellular crosstalk between signalling pathways of non-associated GPCRs. PMID:21244374

  13. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  14. Epidermal Growth Factor Receptor-Targeted Photosensitizer Selectively Inhibits EGFR Signaling and Induces Targeted Phototoxicity In Ovarian Cancer Cells

    PubMed Central

    Abu-Yousif, Adnan O.; Moor, Anne C. E.; Zheng, Xiang; Savellano, Mark D.; Yu, Weiping; Selbo, Pål K.; Hasan, Tayyaba

    2012-01-01

    Targeted photosensitizer delivery to EGFR expressing cells was achieved in the present study using a high purity, targeted photoimmunoconjugate (PIC). When the PDT agent, benzoporphyin monoacid ring A (BPD) was coupled to an EGFR-targeting antibody (cetuximab), we observed altered cellular localization and selective phototoxicity of EGFR-positive cells, but no phototoxicity of EGFR-negative cells. Cetuximab in the PIC formulation blocked EGF-induced activation of the EGFR and downstream signaling pathways. Our results suggest that photoimmunotargeting is a useful dual strategy for the selective destruction of cancer cells and also exerts the receptor-blocking biological function of the antibody. PMID:22266098

  15. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  16. Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors*

    PubMed Central

    Zhou, Lei; Lovell, Kimberly M.; Frankowski, Kevin J.; Slauson, Stephen R.; Phillips, Angela M.; Streicher, John M.; Stahl, Edward; Schmid, Cullen L.; Hodder, Peter; Madoux, Franck; Cameron, Michael D.; Prisinzano, Thomas E.; Aubé, Jeffrey; Bohn, Laura M.

    2013-01-01

    The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and βarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through βarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from βarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit βarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo. PMID:24187130

  17. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  18. Receptor-selective retinoids for psoriasis: focus on tazarotene.

    PubMed

    Weindl, Günther; Roeder, Alexander; Schäfer-Korting, Monika; Schaller, Martin; Korting, Hans Christian

    2006-01-01

    Topical and oral retinoids have been successfully used in antipsoriatic therapy over the last 50 years. Development of more selective agents has led to an improved efficacy and safety profile. The first topical receptor-selective retinoid to be approved for the treatment of plaque psoriasis is tazarotene. Topical tazarotene displays an onset of action and efficacy similar to those of other established antipsoriatic agents. Common adverse events of this agent such as pruritus, burning, local skin irritation, and erythema are limited to the skin and generally mild or moderate in severity. Although effective as monotherapy, evidence is accumulating that combining topical tazarotene with other established antipsoriatic therapies results in enhanced efficacy and reduced adverse events. In particular, concomitant use of topical tazarotene with a mid-potency or high-potency corticosteroid in the treatment of psoriatic plaques enhances efficacy and reduces the risk of corticosteroid-induced skin atrophy. Combination of phototherapy with tazarotene accelerates the clinical response and diminishes the cumulative UVB or psoralen plus UVA (PUVA) exposure load. Recently, an oral form of tazarotene has been developed. The results of completed phase III clinical trials of this agent indicate a beneficial effect in moderate to severe plaque psoriasis. Adverse events are generally of mild severity, and most of those observed, such as cheilitis and dry skin, are typical of hypervitaminosis A. Of note, oral tazarotene appears not to be associated with other adverse events that are typical of oral retinoids, including hypertriglyceridemia and hypercholesterolemia. However, since head-to-head trials with acitretin (the only retinoid currently approved for systemic therapy) have not been conducted, it is unclear whether tazarotene is any safer or more effective than acitretin. Moreover, the major drawback of oral tazarotene is teratogenicity, which may limit its use in female patients

  19. Adenosine A1 receptors heterodimerize with β1- and β2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling.

    PubMed

    Chandrasekera, P Charukeshi; Wan, Tina C; Gizewski, Elizabeth T; Auchampach, John A; Lasley, Robert D

    2013-04-01

    G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences. Co-immunoprecipitation and co-localization studies with differentially epitope-tagged A1, β1, and β2 receptors transiently co-expressed in HEK-293 cells indicate that A1AR forms constitutive heterodimers with both β1R and β2R. This heterodimerization significantly influenced orthosteric ligand binding affinity of both β1R and β2R without altering ligand binding properties of A1AR. Receptor-mediated ERK1/2 phosphorylation significantly increased in cells expressing A1AR/β1R and A1AR/β2R heteromers. β-Receptor-mediated cAMP production was not altered in A1AR/β1R expressing cells, but was significantly reduced in the A1AR/β2R cells. The inhibitory effect of the A1AR on cAMP production was abrogated in both A1AR/β1R and A1AR/β2R expressing cells in response to the A1AR agonist CCPA. Co-immunoprecipitation studies conducted with human heart tissue lysates indicate that endogenous A1AR, β1R, and β2R also form heterodimers. Taken together, our data suggest that heterodimerization between A1 and β receptors leads to altered receptor pharmacology, functional coupling, and intracellular signaling pathways. Unique and differential receptor cross-talk between these two important receptor families may offer the opportunity to fine-tune crucial signaling responses and development of more specific therapeutic interventions. PMID:23291003

  20. Selective Agonists and Antagonists of Formylpeptide Receptors: Duplex Flow Cytometry and Mixture-Based Positional Scanning Libraries

    PubMed Central

    Pinilla, Clemencia; Edwards, Bruce S.; Appel, Jon R.; Yates-Gibbins, Tina; Giulianotti, Marc A.; Medina-Franco, Jose L.; Young, Susan M.; Santos, Radleigh G.

    2013-01-01

    The formylpeptide receptor (FPR1) and formylpeptide-like 1 receptor (FPR2) are G protein–coupled receptors that are linked to acute inflammatory responses, malignant glioma stem cell metastasis, and chronic inflammation. Although several N-formyl peptides are known to bind to these receptors, more selective small-molecule, high-affinity ligands are needed for a better understanding of the physiologic roles played by these receptors. High-throughput assays using mixture-based combinatorial libraries represent a unique, highly efficient approach for rapid data acquisition and ligand identification. We report the superiority of this approach in the context of the simultaneous screening of a diverse set of mixture-based small-molecule libraries. We used a single cross-reactive peptide ligand for a duplex flow cytometric screen of FPR1 and FPR2 in color-coded cell lines. Screening 37 different mixture-based combinatorial libraries totaling more than five million small molecules (contained in 5,261 mixture samples) resulted in seven libraries that significantly inhibited activity at the receptors. Using positional scanning deconvolution, selective high-affinity (low nM Ki) individual compounds were identified from two separate libraries, namely, pyrrolidine bis-diketopiperazine and polyphenyl urea. The most active individual compounds were characterized for their functional activities as agonists or antagonists with the most potent FPR1 agonist and FPR2 antagonist identified to date with an EC50 of 131 nM (4 nM Ki) and an IC50 of 81 nM (1 nM Ki), respectively, in intracellular Ca2+ response determinations. Comparative analyses of other previous screening approaches clearly illustrate the efficiency of identifying receptor selective, individual compounds from mixture-based combinatorial libraries. PMID:23788657

  1. The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery

    PubMed Central

    Salon, John A.; Lodowski, David T.

    2011-01-01

    Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination. PMID:21969326

  2. Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation

    PubMed Central

    Isom, Daniel G.; Dohlman, Henrik G.

    2015-01-01

    Seven-transmembrane receptors (7TMRs) have evolved in prokaryotes and eukaryotes over hundreds of millions of years. Comparative structural analysis suggests that these receptors may share a remote evolutionary origin, despite their lack of sequence similarity. Here we used structure-based computations to compare 221 7TMRs from all domains of life. Unexpectedly, we discovered that these receptors contain spatially conserved networks of buried ionizable groups. In microbial 7TMRs these networks are used to pump ions across the cell membrane in response to light. In animal 7TMRs, which include light- and ligand-activated G protein-coupled receptors (GPCRs), homologous networks were found to be characteristic of activated receptor conformations. These networks are likely relevant to receptor function because they connect the ligand-binding pocket of the receptor to the nucleotide-binding pocket of the G protein. We propose that agonist and G protein binding facilitate the formation of these electrostatic networks and promote important structural rearrangements such as the displacement of transmembrane helix-6. We anticipate that robust classification of activated GPCR structures will aid the identification of ligands that target activated GPCR structural states. PMID:25902551

  3. G protein-coupled receptors as oncogenic signals in glioma: emerging therapeutic avenues

    PubMed Central

    Cherry, Allison E; Stella, Nephi

    2014-01-01

    Gliomas are the most common malignant intracranial tumors. Newly developed targeted therapies for these cancers aim to inhibit oncogenic signals, many of which emanate from receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR). Unfortunately, the first generation treatments targeting these oncogenic signals provide little survival benefit in both mouse xenograft models and human patients. The search for new treatment options has uncovered several G protein-coupled receptor (GPCR) candidates and generated a growing interest in this class of proteins as alternative therapeutic targets for the treatment of various cancers, including GBM. GPCRs constitute a large family of membrane receptors that influence oncogenic pathways through canonical and non-canonical signaling. Accordingly, evidence indicates that GPCRs display a unique ability to crosstalk with receptor tyrosine kinases, making them important molecular components controlling tumorigenesis. This review summarizes the current research on GPCR functionality in gliomas and explores the potential of modulating these receptors to treat this devastating disease. PMID:25158675

  4. Allosteric regulation of G protein-coupled receptor activity by phospholipids.

    PubMed

    Dawaliby, Rosie; Trubbia, Cataldo; Delporte, Cédric; Masureel, Matthieu; Van Antwerpen, Pierre; Kobilka, Brian K; Govaerts, Cédric

    2016-01-01

    Lipids are emerging as key regulators of membrane protein structure and activity. These effects can be attributed either to the modification of bilayer properties (thickness, curvature and surface tension) or to the binding of specific lipids to the protein surface. For G protein-coupled receptors (GPCRs), the effects of phospholipids on receptor structure and activity remain poorly understood. Here we reconstituted purified β2-adrenergic receptor (β2R) in high-density lipoparticles to systematically characterize the effect of biologically relevant phospholipids on receptor activity. We observed that the lipid headgroup type affected ligand binding (agonist and antagonist) and receptor activation. Specifically, phosphatidylgycerol markedly favored agonist binding and facilitated receptor activation, whereas phosphatidylethanolamine favored antagonist binding and stabilized the inactive state of the receptor. We then showed that these effects could be recapitulated with detergent-solubilized lipids, demonstrating that the functional modulation occurred in the absence of a bilayer. Our data suggest that phospholipids act as direct allosteric modulators of GPCR activity. PMID:26571351

  5. Antidiabetic Actions of an Estrogen Receptor β Selective Agonist

    PubMed Central

    Alonso-Magdalena, Paloma; Ropero, Ana B.; García-Arévalo, Marta; Soriano, Sergi; Quesada, Iván; Muhammed, Sarheed J.; Salehi, Albert; Gustafsson, Jan-Ake; Nadal, Ángel

    2013-01-01

    The estrogen receptor β (ERβ) is emerging as an important player in the physiology of the endocrine pancreas. We evaluated the role and antidiabetic actions of the ERβ selective agonist WAY200070 as an insulinotropic molecule. We demonstrate that WAY200070 enhances glucose-stimulated insulin secretion both in mouse and human islets. In vivo experiments showed that a single administration of WAY200070 leads to an increase in plasma insulin levels with a concomitant improved response to a glucose load. Two-week treatment administration increased glucose-induced insulin release and pancreatic β-cell mass and improved glucose and insulin sensitivity. In addition, streptozotocin-nicotinamide–induced diabetic mice treated with WAY200070 exhibited a significant improvement in plasma insulin levels and glucose tolerance as well as a regeneration of pancreatic β-cell mass. Studies performed in db/db mice demonstrated that this compound restored first-phase insulin secretion and enhanced pancreatic β-cell mass. We conclude that ERβ agonists should be considered as new targets for the treatment of diabetes. PMID:23349481

  6. The place of selective progesterone receptor modulators in myoma therapy.

    PubMed

    Donnez, Jacques; Donnez, Olivier; Courtoy, Guillaume E; Dolmans, Marie M

    2016-06-01

    Uterine fibroids are the most commonly encountered benign uterine tumors in women of reproductive age. As progesterone is known to play a key role in promoting myoma growth, the goal of the study was to analyze the efficacy of selective progesterone receptor modulators (SPRMs). From four studies, it was concluded that UPA (ulipristal acetate) treatment was able to control myoma-associated uterine bleeding in over 90% of cases and significantly reduce myoma volume in more than 80% of women. The results of long-term intermittent therapy (PEARL III and PEARL IV studies) (4 courses of 3 months) demonstrated that more than one course of UPA is able to maximize its potential benefits in terms of control of bleeding and fibroid volume reduction. The treatment was considered safe, even at the level of endometrial changes. With the advent of SPRMs, new algorithms should be discussed, as there is no doubt that there is a place for medical therapy with SPRMs in the current armamentarium of fibroid management. PMID:26930390

  7. Characterization of rabbit ileal receptors for Clostridium difficile toxin A. Evidence for a receptor-coupled G protein

    SciTech Connect

    Pothoulakis, C.; LaMont, J.T.; Eglow, R.; Gao, N.; Rubins, J.B.; Theoharides, T.C.; Dickey, B.F. )

    1991-07-01

    The purpose of this study was to characterize the surface receptor for toxin A, the enterotoxin from Clostridium difficile, on rabbit intestinal brush borders (BB) and on rat basophilic leukemia (RBL) cells. Purified toxin A was radiolabeled using a modified Bolton-Hunter method to sp act 2 microCi/micrograms, with retention of full biologic activity. 3H-Toxin A bound specifically to a single class of receptors on rabbit BB and on RBL cells with dissociation constants of 5.4 x 10(-8) and 3.5 x 10(-8) M, respectively. RBL cells were highly sensitive to toxin A (cell rounding) and had 180,000 specific binding sites per cell, whereas IMR-90 fibroblasts were far less sensitive to toxin A and lacked detectable specific binding sites. Exposure of BB to trypsin or chymotrypsin significantly reduced 3H-toxin A specific binding. Preincubation of BB with Bandeirea simplicifolia (BS-1) lectin also reduced specific binding, and CHAPS-solubilized receptors could be immobilized with WGA-agarose. The addition of 100 nM toxin A accelerated the association of 35S-GTP gamma S with rabbit ileal BB, and preincubation of BB with the GTP analogues GTP gamma S or Gpp(NH)p, significantly reduced 3H-toxin A specific binding. Our data indicate that the membrane receptor for toxin A is a galactose and N-acetyl-glucosamine-containing glycoprotein which appears to be coupled to a G protein.

  8. Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593.

    PubMed

    Acri, J B; Thompson, A C; Shippenberg, T

    2001-03-15

    The repeated administration of selective kappa-opioid receptor agonists prevents the locomotor activation produced by acute cocaine administration and the development of cocaine-induced behavioral sensitization. Previous studies have shown that dopamine (DA) D2 autoreceptors modulate the synthesis and release of DA in the striatum. Evidence that kappa agonist treatment downregulates DA D2 receptors in this same brain region has recently been obtained. Accordingly, the present studies were undertaken to examine the influence of repeated kappa-opioid receptor agonist administration on pre- and postsynaptic DA D2 receptor function in the dorsal striatum using pre- and postsynaptic receptor-selective doses of quinpirole. Rats were injected once daily with the selective kappa-opioid receptor agonist U69593 (0.16-0.32 mg/kg s.c.) or vehicle for 3 days. Microdialysis studies assessing basal and quinpirole-evoked (0.05 mg/kg s.c.) DA levels were conducted 2 days later. Basal and quinpirole-stimulated locomotor activity were assessed in a parallel group of animals. The no-net flux method of quantitative microdialysis revealed no effect of U69593 on basal DA dynamics, in that extracellular DA concentration and extraction fraction did not differ in control and U69593-treated animals. Acute administration of quinpirole significantly decreased striatal DA levels in control animals, but in animals treated with U69593, the inhibitory effects of quinpirole were significantly reduced. Quinpirole produced a dose-related increase in locomotor activity in control animals, and this effect was significantly attenuated in U69593-treated animals. These data reveal that prior repeated administration of a selective kappa-opioid receptor agonist attenuates quinpirole-induced alterations in DA neurotransmission and locomotor activity. These results suggest that both pre- and postsynaptic striatal DA D2 receptors may be downregulated following repeated kappa-opioid receptor agonist

  9. Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators.

    PubMed

    Gregory, Karen J; Velagaleti, Ranganadh; Thal, David M; Brady, Ryan M; Christopoulos, Arthur; Conn, P Jeffrey; Lapinsky, David J

    2016-07-15

    G protein-coupled receptors (GPCRs) represent the largest class of current drug targets. In particular, small-molecule allosteric modulators offer substantial potential for selectively "tuning" GPCR activity. However, there remains a critical need for experimental strategies that unambiguously determine direct allosteric ligand-GPCR interactions, to facilitate both chemical biology studies and rational structure-based drug design. We now report the development and use of first-in-class clickable allosteric photoprobes for a GPCR based on metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulator (NAM) chemotypes. Select acetylenic mGlu5 NAM lead compounds were rationally modified to contain either a benzophenone or an aryl azide as a photoreactive functional group, enabling irreversible covalent attachment to mGlu5 via photoactivation. Additionally, a terminal alkyne or an aliphatic azide was incorporated as a click chemistry handle, allowing chemoselective attachment of fluorescent moieties to the irreversibly mGlu5-bound probe via tandem photoaffinity labeling-bioorthogonal conjugation. These clickable photoprobes retained submicromolar affinity for mGlu5 and negative cooperativity with glutamate, interacted with the "common allosteric-binding site," displayed slow binding kinetics, and could irreversibly label mGlu5 following UV exposure. We depleted the number of functional mGlu5 receptors using an irreversibly bound NAM to elucidate and delineate orthosteric agonist affinity and efficacy. Finally, successful conjugation of fluorescent dyes via click chemistry was demonstrated for each photoprobe. In the future, these clickable photoprobes are expected to aid our understanding of the structural basis of mGlu5 allosteric modulation. Furthermore, tandem photoaffinity labeling-bioorthogonal conjugation is expected to be a broadly applicable experimental strategy across the entire GPCR superfamily. PMID:27115427

  10. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  11. DHA, G-protein coupled receptors and melanoma: Is GPR40 a potential therapeutic target?

    PubMed Central

    Nehra, Deepika; Pan, Amy H.; Le, Hau D.; Fallon, Erica M.; Carlson, Sarah J.; Kalish, Brian T.; Puder, Mark

    2014-01-01

    Purpose To determine the effect of docosahexaenoic acid (DHA) on the growth of human melanoma in vitro and in vivo and to better understand the potential role of the G-protein coupled receptors in mediating this effect. Materials and Methods For in vitro studies, human melanoma and control fibroblast cells were treated with DHA and TAK-875 (selective GPR40 agonist) and a cell viability assay was performed to determine cell counts. A murine subcutaneous xenograft model of human melanoma was used to test the effect of dietary treatment with an omega-3 fatty acid (FA) rich diet compared to an omega-6 FA rich diet on the growth of human melanoma in vivo. A similar animal model was used to test the effect of oral TAK-875 on the growth of established melanoma tumors in vivo. Results DHA has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals on the omega-3 FA rich diet were 69% smaller in weight (P=0.005) and 76% smaller in volume compared to tumors from animals on the omega-6 FA rich diet. TAK-875 has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals treated with TAK-875 were 46% smaller in weight (P=0.07), 62% smaller in volume (P=0.03) and grew 77% slower (P=0.04) compared to the placebo group. Conclusion DHA and TAK-875 have a profound and selective inhibitory effect on the growth of human melanoma both in vitro and in vivo. PMID:24576779

  12. Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function.

    PubMed

    Morrison, Keith; Ernst, Roland; Hess, Patrick; Studer, Rolf; Clozel, Martine

    2010-10-01

    Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is an orally available prostacyclin (PGI(2)) receptor (IP receptor) agonist that is chemically distinct from PGI(2) and is in clinical development for the treatment of pulmonary arterial hypertension. Selexipag is highly selective for the human IP receptor in vitro, whereas analogs of PGI(2) can activate prostanoid receptors other than the IP receptor. The goal of this study was to determine the impact of selectivity for the IP receptor on gastric function by measuring 1) contraction of rat gastric fundus ex vivo and 2) the rates of gastric emptying and intestinal transport in response to selexipag in comparison with other PGI(2) analogs. The rat gastric fundus expresses mRNA encoding multiple prostanoid receptors to different levels: prostaglandin E receptor 1 (EP(1)) > prostaglandin E receptor 3 (EP(3)), IP receptor > prostaglandin D(2) receptor 1, thromboxane receptor. Selexipag and metabolite {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) did not contract gastric fundus at concentrations up to 10(-3) M. In contrast, the PGI(2) analogs iloprost and beraprost evoked concentration-dependent contraction of gastric fundus. Contraction to treprostinil was observed at high concentration (10(-4) M). Contraction to all PGI(2) analogs was mediated via activation of EP(3) receptors, although EP(1) receptors also contributed to the contraction of gastric fundus to iloprost and beraprost. Antagonism of IP receptors did not affect responses. Oral selexipag did not significantly alter gastric function in vivo, as measured by rates of stomach emptying and intestinal transport, whereas beraprost slowed gastrointestinal transport. The high functional selectivity of selexipag and ACT-333679 for the IP receptor precludes a stimulatory action on gastric smooth muscle and may help minimize gastric side effects such as nausea and vomiting. PMID:20660124

  13. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells.

    PubMed

    Chang, Gin-Wen; Hsiao, Cheng-Chih; Peng, Yen-Ming; Vieira Braga, Felipe A; Kragten, Natasja A M; Remmerswaal, Ester B M; van de Garde, Martijn D B; Straussberg, Rachel; König, Gabriele M; Kostenis, Evi; Knäuper, Vera; Meyaard, Linde; van Lier, René A W; van Gisbergen, Klaas P J M; Lin, Hsi-Hsien; Hamann, Jörg

    2016-05-24

    Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells) and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells. PMID:27184850

  14. Comparison of the β-Adrenergic Receptor Antagonists Landiolol and Esmolol: Receptor Selectivity, Partial Agonism, and Pharmacochaperoning Actions.

    PubMed

    Nasrollahi-Shirazi, Shahrooz; Sucic, Sonja; Yang, Qiong; Freissmuth, Michael; Nanoff, Christian

    2016-10-01

    Blockage of β1-adrenergic receptors is one of the most effective treatments in cardiovascular medicine. Esmolol was introduced some three decades ago as a short-acting β1-selective antagonist. Landiolol is a more recent addition. Here we compared the two compounds for their selectivity for β1-adrenergic receptors over β2-adrenergic receptors, partial agonistic activity, signaling bias, and pharmacochaperoning action by using human embryonic kidney (HEK)293 cell lines, which heterologously express each human receptor subtype. The affinity of landiolol for β1-adrenergic receptors and β2-adrenergic receptors was higher and lower than that of esmolol, respectively, resulting in an improved selectivity (216-fold versus 30-fold). The principal metabolite of landiolol (M1) was also β1-selective, but its affinity was very low. Both landiolol and esmolol caused a very modest rise in cAMP levels but a robust increase in the phosphorylation of extracellular signal regulated kinases 1 and 2, indicating that the two drugs exerted partial agonist activity with a signaling bias. If cells were incubated for ≥24 hours in the presence of ≥1 μM esmolol, the levels of β1-adrenergic-but not of β2-adrenergic-receptors increased. This effect was contingent on export of the β1-receptor from endoplasmic reticulum and was not seen in the presence of landiolol. On the basis of these observations, we conclude that landiolol offers the advantage of: 1) improved selectivity and 2) the absence of pharmacochaperoning activity, which sensitizes cells to rebound effects upon drug discontinuation. PMID:27451411

  15. Structural Model of Ligand-G Protein-coupled Receptor (GPCR) Complex Based on Experimental Double Mutant Cycle Data

    PubMed Central

    Marquer, Catherine; Fruchart-Gaillard, Carole; Letellier, Guillaume; Marcon, Elodie; Mourier, Gilles; Zinn-Justin, Sophie; Ménez, André; Servent, Denis; Gilquin, Bernard

    2011-01-01

    The snake toxin MT7 is a potent and specific allosteric modulator of the human M1 muscarinic receptor (hM1). We previously characterized by mutagenesis experiments the functional determinants of the MT7-hM1 receptor interaction (Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N. J., and Servent, D. (2008) Mol. Pharmacol. 74, 1554–1563) and more recently collected evidence indicating that MT7 may bind to a dimeric form of hM1 (Marquer, C., Fruchart-Gaillard, C., Mourier, G., Grandjean, O., Girard, E., le Maire, M., Brown, S., and Servent, D. (2010) Biol. Cell 102, 409–420). To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25 Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target. PMID:21685390

  16. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    SciTech Connect

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  17. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  18. Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles.

    PubMed

    Sanmartí-Espinal, Marta; Galve, Roger; Iavicoli, Patrizia; Persuy, Marie-Annick; Pajot-Augy, Edith; Marco, M-Pilar; Samitier, Josep

    2016-03-01

    Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes. PMID:26724468

  19. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma

    PubMed Central

    Prickett, Todd D; Wei, Xiaomu; Cardenas-Navia, Isabel; Teer, Jamie K; Lin, Jimmy C; Walia, Vijay; Gartner, Jared; Jiang, Jiji; Cherukuri, Praveen F; Molinolo, Alfredo; Davies, Michael A; Gershenwald, Jeffrey E; Stemke-Hale, Katherine; Rosenberg, Steven A; Margulies, Elliott H; Samuels, Yardena

    2012-01-01

    G protein-coupled receptors (GPCRs), the largest human gene family, are important regulators of signaling pathways. However, knowledge of their genetic alterations is limited. In this study, we used exon capture and massively parallel sequencing methods to analyze the mutational status of 734 GPCRs in melanoma. This investigation revealed that one family member, GRM3, was frequently mutated and that one of its mutations clustered within one position. Biochemical analysis of GRM3 alterations revealed that mutant GRM3 selectively regulated the phosphorylation of MEK, leading to increased anchorage-independent growth and migration. Melanoma cells expressing mutant GRM3 had reduced cell growth and cellular migration after short hairpin RNA–mediated knockdown of GRM3 or treatment with a selective MEK inhibitor, AZD-6244, which is currently being used in phase 2 clinical trials. Our study yields the most comprehensive map of genetic alterations in the GPCR gene family. PMID:21946352

  20. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition. PMID:17077558

  1. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening

    PubMed Central

    Harini, K.; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors. PMID:26221959

  2. Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors

    PubMed Central

    Steiner, Pauline; Wanner, Daniel; Rey, Markus; Hess, Patrick; Clozel, Martine

    2015-01-01

    Introduction: The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). Methods: The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. Results: In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. Conclusions: Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade. PMID:25992919

  3. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors.

    PubMed

    Zhao, Li-Hua; Yin, Yanting; Yang, Dehua; Liu, Bo; Hou, Li; Wang, Xiaoxi; Pal, Kuntal; Jiang, Yi; Feng, Yang; Cai, Xiaoqing; Dai, Antao; Liu, Mingyao; Wang, Ming-Wei; Melcher, Karsten; Xu, H Eric

    2016-07-15

    G protein-coupled receptors (GPCRs) from the secretin-like (class B) family are key players in hormonal homeostasis and are important drug targets for the treatment of metabolic disorders and neuronal diseases. They consist of a large N-terminal extracellular domain (ECD) and a transmembrane domain (TMD) with the GPCR signature of seven transmembrane helices. Class B GPCRs are activated by peptide hormones with their C termini bound to the receptor ECD and their N termini bound to the TMD. It is thought that the ECD functions as an affinity trap to bind and localize the hormone to the receptor. This in turn would allow the hormone N terminus to insert into the TMD and induce conformational changes of the TMD to activate downstream signaling. In contrast to this prevailing model, we demonstrate that human class B GPCRs vary widely in their requirement of the ECD for activation. In one group, represented by corticotrophin-releasing factor receptor 1 (CRF1R), parathyroid hormone receptor (PTH1R), and pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R), the ECD requirement for high affinity hormone binding can be bypassed by induced proximity and mass action effects, whereas in the other group, represented by glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), the ECD is required for signaling even when the hormone is covalently linked to the TMD. Furthermore, the activation of GLP-1R by small molecules that interact with the intracellular side of the receptor is dependent on the presence of its ECD, suggesting a direct role of the ECD in GLP-1R activation. PMID:27226600

  4. A novel subgroup of class I G-protein-coupled receptors.

    PubMed

    Schöneberg, T; Schulz, A; Grosse, R; Schade, R; Henklein, P; Schultz, G; Gudermann, T

    1999-07-01

    Based on structural similarities of an expressed sequence tag with the platelet-activating factor (PAF) receptor a cDNA clone encoding a novel G-protein-coupled receptor (GPCR), named GPR34, was isolated from a human fetal brain cDNA library. Genomic DNA analyses revealed the receptor to be encoded by an intronless single-copy gene at Xp11. 3-11.4. The predicted 381-amino-acid protein disclosed all structural features characteristic of a member of the class I GPCR family. Except an obvious sequence homology in transmembrane domain 6, no further similarities to the PAF receptor or any other known GPCR were found. The corresponding mouse receptor DNA was isolated from a genomic P1 library displaying a 90% amino acid identity compared to the human receptor. Phylogenetic studies showed that GPR34 is preserved among vertebrates, and the existence of GPR34 subtypes was demonstrated. The receptor mRNA is abundantly expressed in human and mouse tissues. In addition to the major 2-kb transcript, a 4-kb transcript was found only in mouse liver and testis. Expression of the human GPR34 in COS-7 cells followed by Western blot studies revealed specific bands of a highly glycosylated protein between 75 and 90 kDa. A number of potential ligands including phospholipids, leukotrienes, hydroxy-eicosatetraenoic acids, nucleotides and peptides were tested in functional assays. Since none of the applied substances led to significant changes in second messenger levels (cAMP and inositol phosphates), the natural ligand and coupling profile of this novel GPCR subgroup remains unknown. PMID:10395919

  5. Arginine (CGC) codon targeting in the human prostacyclin receptor gene (PTGIR) and G-protein coupled receptors (GPCR)

    PubMed Central

    Stitham, Jeremiah; Arehart, Eric J.; Gleim, Scott; Douville, Karen L.; MacKenzie, Todd; Hwa, John

    2007-01-01

    The human prostacyclin receptor (hIP) has recently been recognized as an important seven transmembrane G-protein coupled receptor that plays critical roles in a theroprevention and cardioprotection. To date, four non-synonymous genetic variants have been identified, two of which occur at the same Arg amino acid position (R212H, R212C). This observation instigated further genetic screening for prostacyclin receptor variants on 1,455 human genomic samples. A total of 31 distinct genetic variants were detected, with 6 (19%) involving Arg residues. Distinct differences in location and frequencies of genetic variants were noted between Caucasian, Asian, Hispanic and African Americans, with the most changes noted in the Asian cohort._From the sequencing results, three Arg-targeted changes at the same 212 position within the third cytoplasmic loop of the human prostacyclin (hIP) receptor were detected: 1) R212C (CGC→TGC), 2) R212H (CGC→CAC), and 3) R212R (CGC→CGT). Three additional Arg codon variants (all exhibiting the same CGC to TGC change) were also detected, R77C, R215C, and R279C. Analysis (GPCR and SNP databases) of 200 other GPCRs, with recorded non-synonymous mutations, confirmed a high frequency of Arg-targeted missense mutations, particularly within the important cytoplasmic domain. Preferential nucleotide changes (at Arg codons), were observed involving cytosine (C) to thymine (T) (pyrimidine to pyrimidine), as well as guanine (G) to adenine (A) (purine to purine) (p<0.001, Pearson’s goodness-of-fit test). Such targeting of Arg residues, leading to significant changes in coding amino acid size and/or charge, may have potentially-important structural and evolutionary implications on the hIP and GPCRs in general. In the case of the human prostacyclin receptor, such alterations may reduce the cardio-, vasculo-, and cytoprotective effects of prostacyclin. PMID:17481829

  6. Arginine (CGC) codon targeting in the human prostacyclin receptor gene (PTGIR) and G-protein coupled receptors (GPCR).

    PubMed

    Stitham, Jeremiah; Arehart, Eric J; Gleim, Scott; Douville, Karen; MacKenzie, Todd; Hwa, John

    2007-07-01

    The human prostacyclin receptor (hIP) has recently been recognized as an important seven transmembrane G-protein coupled receptor that plays critical roles in atheroprevention and cardioprotection. To date, four non-synonymous genetic variants have been identified, two of which occur at the same Arg amino acid position (R212H, R212C). This observation instigated further genetic screening for prostacyclin receptor variants on 1455 human genomic samples. A total of 31 distinct genetic variants were detected, with 6 (19%) involving Arg residues. Distinct differences in location and frequencies of genetic variants were noted between Caucasian, Asian, Hispanic and African Americans, with the most changes noted in the Asian cohort. From the sequencing results, three Arg-targeted changes at the same 212 position within the third cytoplasmic loop of the human prostacyclin (hIP) receptor were detected: 1) R212C (CGC-->TGC), 2) R212H (CGC-->CAC), and 3) R212R (CGC-->CGT). Three additional Arg codon variants (all exhibiting the same CGC to TGC change) were also detected, R77C, R215C, and R279C. Analysis (GPCR and SNP databases) of 200 other GPCRs, with recorded non-synonymous mutations, confirmed a high frequency of Arg-targeted missense mutations, particularly within the important cytoplasmic domain. Preferential nucleotide changes (at Arg codons), were observed involving cytosine (C) to thymine (T) (pyrimidine to pyrimidine), as well as guanine (G) to adenine (A) (purine to purine) (p<0.001, Pearson's goodness-of-fit test). Such targeting of Arg residues, leading to significant changes in coding amino acid size and/or charge, may have potentially-important structural and evolutionary implications on the hIP and GPCRs in general. In the case of the human prostacyclin receptor, such alterations may reduce the cardio-, vasculo-, and cytoprotective effects of prostacyclin. PMID:17481829

  7. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  8. Interaction of Glucagon G-Protein Coupled Receptor with Known Natural Antidiabetic Compounds: Multiscoring In Silico Approach

    PubMed Central

    Baig, M. H.; Ahmad, K.; Hasan, Q.; Khan, M. K. A.; Rao, N. S.; Kamal, M. A.; Choi, I.

    2015-01-01

    Glucagon receptor (GCGR) is a secretin-like (class B) family of G-protein coupled receptors (GPCRs) in humans that plays an important role in elevating the glucose concentration in blood and has thus become one of the promising therapeutic targets for treatment of type 2 diabetes mellitus. GCGR based inhibitors for the treatment of type 2 diabetes are either glucagon neutralizers or small molecular antagonists. Management of diabetes without any side effects is still a challenge to the medical system, and the search for a new and effective natural GCGR antagonist is an important area for the treatment of type 2 diabetes. In the present study, a number of natural compounds containing antidiabetic properties were selected from the literature and their binding potential against GCGR was determined using molecular docking and other in silico approaches. Among all selected natural compounds, curcumin was found to be the most effective compound against GCGR followed by amorfrutin 1 and 4-hydroxyderricin. These compounds were rescored to confirm the accuracy of binding using another scoring function (x-score). The final conclusions were drawn based on the results obtained from the GOLD and x-score. Further experiments were conducted to identify the atomic level interactions of selected compounds with GCGR. PMID:26236379

  9. Structural and Functional Analysis of G Protein–Coupled Receptor Kinase Inhibition by Paroxetine and a Rationally Designed Analog

    PubMed Central

    Homan, Kristoff T.; Wu, Emily; Wilson, Michael W.; Singh, Puja; Larsen, Scott D.

    2014-01-01

    Recently we identified the serotonin reuptake inhibitor paroxetine as an inhibitor of G protein–coupled receptor kinase 2 (GRK2) that improves cardiac performance in live animals. Paroxetine exhibits up to 50-fold selectivity for GRK2 versus other GRKs. A better understanding of the molecular basis of this selectivity is important for the development of even more selective and potent small molecule therapeutics and chemical genetic probes. We first sought to understand the molecular mechanisms underlying paroxetine selectivity among GRKs. We directly measured the KD for paroxetine and assessed its mechanism of inhibition for each of the GRK subfamilies and then determined the atomic structure of its complex with GRK1, the most weakly inhibited GRK tested. Our results suggest that the selectivity of paroxetine for GRK2 largely reflects its lower affinity for adenine nucleotides. Thus, stabilization of off-pathway conformational states unique to GRK2 will likely be key for the development of even more selective inhibitors. Next, we designed a benzolactam derivative of paroxetine that has optimized interactions with the hinge of the GRK2 kinase domain. The crystal structure of this compound in complex with GRK2 confirmed the predicted interactions. Although the benzolactam derivative did not significantly alter potency of inhibition among GRKs, it exhibited 20-fold lower inhibition of serotonin reuptake. However, there was an associated increase in the potency for inhibition of other AGC kinases, suggesting that the unconventional hydrogen bond formed by the benzodioxole ring of paroxetine is better accommodated by GRKs. PMID:24220010

  10. Stilbenes as κ-Selective, Non-nitrogenous Opioid Receptor Antagonists

    PubMed Central

    2015-01-01

    The natural stilbene pawhuskin A has been shown to function as an opioid receptor antagonist, with preferential binding to the κ receptor. This finding encouraged assembly of a set of analogues to probe the importance of key structural features. Assays on these compounds determined that one (compound 29) shows potent opioid receptor binding activity and significantly improved selectivity for the κ receptor. These studies begin to illuminate the structural features of these non-nitrogenous opioid receptor antagonists that are required for activity. PMID:24456556

  11. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export.

    PubMed

    Zhang, Maoxiang; Davis, Jason E; Li, Chunman; Gao, Jie; Huang, Wei; Lambert, Nevin A; Terry, Alvin V; Wu, Guangyu

    2016-01-01

    Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor. PMID:26811329

  12. G-coupled protein receptors and breast cancer progression: potential drug targets.

    PubMed

    Taborga, Marcelo; Corcoran, Kelly E; Fernandes, Neil; Ramkissoon, Shakti H; Rameshwar, Pranela

    2007-03-01

    Breast cancer remains a leading cause of death despite early screening and advances in medicine. Bone marrow metastasis often complicates the clinical picture by requiring more aggressive treatment and worsening long-term prognoses. Recent therapeutic targeting of hormonal receptors such as human epidermal growth factor receptor 2 and estrogen receptor has shown limited success in treating localized disease for those patients whose cancer cells are responsive. Although traditional approaches such as chemotherapy have demonstrated many successes, these agents fail to target quiescent cancer stem cells, which might have entered the bone marrow where they might be responsible for the quiescence population. Following years of clinical remission, these dormant cells could lead to secondary cancer resurgence. To date, little progress has been made in the development of targeted treatments for receptor negative and metastatic disease. In this review, we discuss the role of G-protein coupled receptors, including neurokinin-1, neurokinin-2 and chemokine receptor 4, as novel targets in the treatment of breast cancer. PMID:17346217

  13. Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles.

    PubMed

    Logez, Christel; Damian, Marjorie; Legros, Céline; Dupré, Clémence; Guéry, Mélody; Mary, Sophie; Wagner, Renaud; M'Kadmi, Céline; Nosjean, Olivier; Fould, Benjamin; Marie, Jacky; Fehrentz, Jean-Alain; Martinez, Jean; Ferry, Gilles; Boutin, Jean A; Banères, Jean-Louis

    2016-01-12

    G protein-coupled receptors (GPCRs) are integral membrane proteins that play a pivotal role in signal transduction. Understanding their dynamics is absolutely required to get a clear picture of how signaling proceeds. Molecular characterization of GPCRs isolated in detergents nevertheless stumbles over the deleterious effect of these compounds on receptor function and stability. We explored here the potential of a styrene-maleic acid polymer to solubilize receptors directly from their lipid environment. To this end, we used two GPCRs, the melatonin and ghrelin receptors, embedded in two membrane systems of increasing complexity, liposomes and membranes from Pichia pastoris. The styrene-maleic acid polymer was able, in both cases, to extract membrane patches of a well-defined size. GPCRs in SMA-stabilized lipid discs not only recognized their ligand but also transmitted a signal, as evidenced by their ability to activate their cognate G proteins and recruit arrestins in an agonist-dependent manner. Besides, the purified receptor in lipid discs undergoes all specific changes in conformation associated with ligand-mediated activation, as demonstrated in the case of the ghrelin receptor with fluorescent conformational reporters and compounds from distinct pharmacological classes. Altogether, these data highlight the potential of styrene-maleic stabilized lipid discs for analyzing the molecular bases of GPCR-mediated signaling in a well-controlled membrane-like environment. PMID:26701065

  14. The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors

    PubMed Central

    2008-01-01

    Background G protein-coupled receptors (GPCRs) are one of the largest families of genes in mammals. Branchiostoma floridae (amphioxus) is one of the species most closely related species to vertebrates. Results Mining and phylogenetic analysis of the amphioxus genome showed the presence of at least 664 distinct GPCRs distributed among all the main families of GPCRs; Glutamate (18), Rhodopsin (570), Adhesion (37), Frizzled (6) and Secretin (16). Surprisingly, the Adhesion GPCR repertoire in amphioxus includes receptors with many new domains not previously observed in this family. We found many Rhodopsin GPCRs from all main groups including many amine and peptide binding receptors and several previously uncharacterized expansions were also identified. This genome has however no genes coding for bitter taste receptors (TAS2), the sweet and umami (TAS1), pheromone (VR1 or VR2) or mammalian olfactory receptors. Conclusion The amphioxus genome is remarkably rich in various GPCR subtypes while the main GPCR groups known to sense exogenous substances (such as Taste 2, mammalian olfactory, nematode chemosensory, gustatory, vomeronasal and odorant receptors) in other bilateral species are absent. PMID:18199322

  15. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  16. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  17. Quantitative Signaling and Structure-Activity Analyses Demonstrate Functional Selectivity at the Nociceptin/Orphanin FQ Opioid Receptor.

    PubMed

    Chang, Steven D; Mascarella, S Wayne; Spangler, Skylar M; Gurevich, Vsevolod V; Navarro, Hernan A; Carroll, F Ivy; Bruchas, Michael R

    2015-09-01

    Comprehensive studies that consolidate selective ligands, quantitative comparisons of G protein versus arrestin-2/3 coupling, together with structure-activity relationship models for G protein-coupled receptor (GPCR) systems are less commonly employed. Here we examine biased signaling at the nociceptin/orphanin FQ opioid receptor (NOPR), the most recently identified member of the opioid receptor family. Using real-time, live-cell assays, we identified the signaling profiles of several NOPR-selective ligands in upstream GPCR signaling (G protein and arrestin pathways) to determine their relative transduction coefficients and signaling bias. Complementing this analysis, we designed novel ligands on the basis of NOPR antagonist J-113,397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one] to explore structure-activity relationships. Our study shows that NOPR is capable of biased signaling, and further, the NOPR selective ligands MCOPPB [1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-(3R)-3-piperidinyl-1H-benzimidazole trihydrochloride] and NNC 63-0532 [8-(1-naphthalenylmethyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decane-3-acetic acid, methyl ester] are G protein-biased agonists. Additionally, minor structural modification of J-113,397 can dramatically shift signaling from antagonist to partial agonist activity. We explore these findings with in silico modeling of binding poses. This work is the first to demonstrate functional selectivity and identification of biased ligands at the nociceptin opioid receptor. PMID:26134494

  18. Transient Receptor Potential Canonical 7 (TRPC7): A Diacylglycerol-Activated Non-Selective Cation Channel

    PubMed Central

    Zhang, Xuexin

    2016-01-01

    Transient receptor potential canonical 7 (TRPC7) channel is the seventh member of the mammalian TRPC channel family. TRPC7 mRNA, protein and channel activity have been detected in many tissues and organs from mouse, rat and human. TRPC7 has high sequence homology with TRPC3 and TRPC6 and all three channels are activated by membrane receptors that couple to isoforms of phospholipase C (PLC) and mediate non-selective cation currents. TRPC7, along with TRPC3 and TRPC6 can be activated by direct exogenous application of diacylglycerol (DAG) analogs and by pharmacological maneuvers that increase endogenous DAG in cells. TRPC7 shows distinct properties of activation, such as constitutive activity, susceptibility to negative regulation by extracellular Ca2+ and by protein kinase C. TRPC7 can form heteromultimers with TRPC3 and TRPC6. Although TRPC7 remains one of the least studied TRPC channel, its role in various cell types and physiological and pathophysiological conditions is begining to emerge. PMID:24756707

  19. Achieving diverse and monoallelic olfactory receptor selection through dual-objective optimization design.

    PubMed

    Tian, Xiao-Jun; Zhang, Hang; Sannerud, Jens; Xing, Jianhua

    2016-05-24

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at the organism level, the types of expressed ORs need to be maximized. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and constructed a comprehensive model that has all its components based on physical interactions. Analyzing the model reveals an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic barrier crossing coupled to a negative feedback loop that mechanistically differs from previous theoretical proposals, and a previously unidentified enhancer competition step. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression, and has multiple predictions validated by existing experimental results. Through making an analogy to a physical system with thermally activated barrier crossing and comparative reverse engineering analyses, the study reveals that the olfactory receptor selection system is optimally designed, and particularly underscores cooperativity and synergy as a general design principle for multiobjective optimization in biology. PMID:27162367

  20. Couples Therapy: Treating Selected Personality-disordered Couples Within a Dynamic Therapy Framework

    PubMed Central

    Foley, Gretchen N.

    2014-01-01

    Personality disordered couples present unique challenges for couples therapy. Novice therapists may feel daunted when taking on such a case, especially given the limited literature available to guide them in this specific area of therapy. Much of what is written on couples therapy is embedded in the larger body of literature on family therapy. While family therapy techniques may apply to couples therapy, this jump requires a level of understanding the novice therapist may not yet have. Additionally, the treatment focus within the body of literature on couples therapy tends to be situation-based (how to treat couples dealing with divorce, an affair, illness), neglecting how to treat couples whose dysfunction is not the product of a crisis, but rather a longstanding pattern escalated to the level of crisis. This is exactly the issue in therapy with personality disordered couples, and it is an important topic, as couples with personality pathology often do present for treatment. This article strives to present practical techniques, modeled in case vignettes, that can be applied directly to couples therapy— specifically therapy with personality disordered couples. PMID:24800131

  1. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    SciTech Connect

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi . E-mail: mizukami@yamaguchi-u.ac.jp

    2006-08-04

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17{beta}-estradiol or E2) causes an elevation in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.

  2. G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons

    PubMed Central

    Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier; Wang, Jue; Santarelli, Lindsey C.; Savigner, Agnes; Qiao, Xin; Wang, Zhenshan; Storm, Daniel R.; Ma, Minghong

    2015-01-01

    Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR–G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction. PMID:25550517

  3. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  4. Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride

    PubMed Central

    2010-01-01

    Gα subunits act to regulate vegetative growth, conidiation, and the mycoparasitic response in Trichoderma atroviride. To extend our knowledge on G protein signalling, we analysed G protein-coupled receptors (GPCRs). As the genome sequence of T. atroviride is not publicly available yet, we carried out an in silico exploration of the genome database of the close relative T. reesei. Twenty genes encoding putative GPCRs distributed over eight classes and additional 35 proteins similar to the Magnaporthe grisea PTH11 receptor were identified. Subsequently, four T. atroviride GPCR-encoding genes were isolated and affliated to the cAMP receptor-like family by phylogenetic and topological analyses. All four genes showed lowest expression on glycerol and highest mRNA levels upon carbon starvation. Transcription of gpr3 and gpr4 responded to exogenously added cAMP and the shift from liquid to solid media. gpr3 mRNA levels also responded to the presence of fungal hyphae or cellulose membranes. Further characterisation of mutants bearing a gpr1-silencing construct revealed that Gpr1 is essential for vegetative growth, conidiation and conidial germination. Four genes encoding the first GPCRs described in Trichoderma were isolated and their expression characterized. At least one of these GPCRs is important for several cellular processes, supporting the fundamental role of G protein signalling in this fungus. PMID:18836726

  5. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction

    PubMed Central

    Bradley, Sophie J.; Iglesias, Max Maza; Kong, Kok Choi; Butcher, Adrian J.; Plouffe, Bianca; Goupil, Eugénie; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; LeGouill, Christian; Russell, Kirsty; Laporte, Stéphane A.; König, Gabriele M.; Kostenis, Evi; Bouvier, Michel; Chung, Kian Fan; Amrani, Yassine; Tobin, Andrew B.

    2016-01-01

    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR–biased ligands with important implications for drug discovery. PMID:27071102

  6. Consequences of splice variation on Secretin family G protein-coupled receptor function

    PubMed Central

    Furness, Sebastian GB; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick M

    2012-01-01

    The Secretin family of GPCRs are endocrine peptide hormone receptors that share a common genomic organization and are the subject of a wide variety of alternative splicing. All GPCRs contain a central seven transmembrane domain responsible for transducing signals from the outside of the cell as well as extracellular amino and intracellular carboxyl termini. Members of the Secretin receptor family have a relatively large N-terminus and a variety of lines of evidence support a common mode of ligand binding and a common ligand binding fold. These receptors are best characterized as coupling to intracellular signalling pathways via Gαs and Gαq but are also reported to couple to a multitude of other signalling pathways. The intracellular loops are implicated in regulating the interaction between the receptor and heterotrimeric G protein complexes. Alternative splicing of exons encoding both the extracellular N-terminal domain as well as the extracellular loops of some family members has been reported and as expected these splice variants display altered ligand affinity as well as differential activation by endogenous ligands. Various forms of alternative splicing have also been reported to alter intracellular loops 1 and 3 as well as the C-terminus and as one might expect these display differences in signalling bias towards downstream effectors. These diverse pharmacologies require that the physiological role of these splice variants be addressed but should provide unique opportunities for drug design and development. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21718310

  7. From Atomic Structures to Neuronal Functions of G Protein–Coupled Receptors

    PubMed Central

    Palczewski, Krzysztof; Orban, Tivadar

    2015-01-01

    G protein–coupled receptors (GPCRs) are essential mediators of signal transduction, neurotransmission, ion channel regulation, and other cellular events. GPCRs are activated by diverse stimuli, including light, enzymatic processing of their N-termini, and binding of proteins, peptides, or small molecules such as neurotransmitters. GPCR dysfunction caused by receptor mutations and environmental challenges contributes to many neurological diseases. Moreover, modern genetic technology has helped identify a rich array of mono- and multigenic defects in humans and animal models that connect such receptor dysfunction with disease affecting neuronal function. The visual system is especially suited to investigate GPCR structure and function because advanced imaging techniques permit structural studies of photoreceptor neurons at both macro and molecular levels that, together with biochemical and physiological assessment in animal models, provide a more complete understanding of GPCR signaling. PMID:23682660

  8. Allosteric Modulation of G Protein Coupled Receptors by Cytoplasmic, Transmembrane and Extracellular Ligands

    PubMed Central

    Yanamala, Naveena; Klein-Seetharaman, Judith

    2010-01-01

    G protein coupled receptors (GPCRs) bind diverse classes of ligands, and depending on the receptor, these may bind in their transmembrane or the extracellular domains, demonstrating the principal ability of GPCRs to bind ligand in either domains. Most recently, it was also observed that small molecule ligands can bind in the cytoplasmic domain, and modulate binding and response to extracellular or transmembrane ligands. Thus, all three domains in GPCRs are potential sites for allosteric ligands, and whether a ligand is allosteric or orthosteric depends on the receptor. Here, we will review the evidence supporting the presence of putative binding pockets in all three domains of GPCRs and discuss possible pathways of communication between these pockets. PMID:24009470

  9. Guidelines for the Synthesis of Small-Molecule Irreversible Probes Targeting G Protein-Coupled Receptors.

    PubMed

    Jörg, Manuela; Scammells, Peter J

    2016-07-19

    Irreversible probes have been proven to be useful pharmacological tools in the study of structural and functional features in drug receptor pharmacology. They have been demonstrated to be particularly valuable for the isolation and purification of receptors. Furthermore, irreversible probes are helpful tools for the identification and characterization of binding sites, thereby supporting the advancement of rational drug design. In this Minireview, we provide insight into universal strategies and guidelines to successfully synthesize irreversible probes that target G protein-coupled receptors (GPCRs). We provide an overview of commonly used chemoreactive and photoreactive groups, and make a comparison of their properties and potential applications. Furthermore, there is a particular focus on synthetic approaches to introduce these reactive groups based on commercially available reagents. PMID:27347648

  10. ROLE OF ANTIBODIES IN DEVELOPING DRUGS THAT TARGET G PROTEIN-COUPLED RECEPTOR DIMERS

    PubMed Central

    Hipser, Chris; Bushlin, Ittai; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A.

    2010-01-01

    G protein-coupled receptors (GPCRs) are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that GPCRs form dimers and various studies have shown that dimerization is necessary for receptor maturation, signaling and trafficking. However, the physiological implications of dimerization in vivo have not been well explored since detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific GPCR dimers. Such antibodies could be used as tools for characterization of heteromer-specific function, as reagents for their purification, tissue localization and regulation in vivo and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for GPCR heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of GPCR dimer pharmacology. PMID:20687183

  11. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. PMID:27235398

  12. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology.

    PubMed

    Kimber, Michael J; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J; Day, Tim A; Ribeiro, Paula

    2009-09-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  13. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology★

    PubMed Central

    Kimber, Michael J.; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J.; Day, Tim A.; Ribeiro, Paula

    2009-01-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, isalternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventralbody wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to thosepresent in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  14. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors

    PubMed Central

    Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  15. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    PubMed

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  16. Activating Parabrachial Cannabinoid CB1 Receptors Selectively Stimulates Feeding of Palatable Foods in Rats

    PubMed Central

    DiPatrizio, Nicholas V.; Simansky, Kenny J.

    2009-01-01

    The endocannabinoid system is emerging as an integral component in central and peripheral regulation of feeding and energy balance. Our investigation analyzed behavioral roles for cannabinoid mechanisms of the pontine parabrachial nucleus (PBN) in modulating intake of presumably palatable foods containing fat and/or sugar. The PBN serves to gate neurotransmission associated with, but not limited to, the gustatory properties of food. Immunofluorescence and in vitro [35S]GTPγS autoradiography of rat tissue sections containing the PBN revealed the presence of cannabinoid receptors and their functional capability to couple to their G-proteins following incubation with the endocannabinoid, 2-arachidonoyl glycerol (2-AG). The selective cannabinoid 1 receptor (CB1R) antagonist, AM251, prevented the response, demonstrating CB1R mediation of 2-AG induced coupling. Microinfusions of 2-AG into the PBN in behaving rats robustly stimulated feeding of pellets high in content of fat and sucrose (HFS), pure sucrose and pure fat (Crisco®), during the first 30min following infusion. In contrast, 2-AG failed to increase consumption of standard chow, even when the feeding regimen was manipulated to match baseline intakes of HFS. Orexigenic responses to 2-AG were attenuated by AM251, again indicating CB1R mediation of 2-AG actions. Furthermore, responses were regionally specific, as 2-AG failed to alter intake when infused into sites ~500µm caudal to infusions that successfully stimulated feeding. Our data suggest that hedonically-positive sensory properties of food enable endocannabinoids at PBN CB1Rs to initiate increases in eating and more generally, these pathways may serve a larger role in brain functions controlling behavioral responses for natural reward. PMID:18815256

  17. G Protein Coupled Receptors in Embryonic Stem Cells: A Role for Gs-Alpha Signaling

    PubMed Central

    Layden, Brian T.; Newman, Marsha; Chen, Fei; Fisher, Amanda; Lowe, William L.

    2010-01-01

    Background Identification of receptor mediated signaling pathways in embryonic stem (ES) cells is needed to facilitate strategies for cell replacement using ES cells. One large receptor family, largely uninvestigated in ES cells, is G protein coupled receptors (GPCRs). An important role for these receptors in embryonic development has been described, but little is known about GPCR expression in ES cells. Methodology/Principal Findings We have examined the expression profile of 343 different GPCRs in mouse ES cells demonstrating for the first time that a large number of GPCRs are expressed in undifferentiated and differentiating ES cells, and in many cases at high levels. To begin to define a role for GPCR signaling in ES cells, the impact of activating Gs-alpha, one of the major alpha subunits that couples to GPCRs, was investigated. Gs-alpha activation resulted in larger embryoid bodies (EBs), due, in part, to increased cell proliferation and prevented the time-related decline in expression of transcription factors important for maintaining ES cell pluripotency. Significance/Conclusions These studies suggest that Gs-alpha signaling contributes to ES cell proliferation and pluripotency and provide a framework for further investigation of GPCRs in ES cells. PMID:20161705

  18. G protein-coupled receptor heteromers as new targets for drug development.

    PubMed

    Ferré, Sergi; Navarro, Gemma; Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Franco, Rafael

    2010-01-01

    We now have a significant amount of experimental evidence that indicates that G protein-coupled receptor (GPCR) oligomerization, including homo- and heteromerization, is a general phenomenon. Receptor heteromers possess unique biochemical characteristics that are demonstrably different from those of its individual units. These properties include allosteric modulation(s) between units, changes in ligand recognition, G protein-coupling and trafficking. The discovery of GPCR oligomers have been related to the parallel discovery and application of a variety of resonance energy transfer (RET) techniques, such as bioluminescence, fluorescence and sequential RET (BRET, FRET and SRET, respectively), time-resolved FRET (T-FRET) and fluorescence recovery after photobleaching (FRAP) microscopy. However, RET techniques are difficult to implement in native tissues. For receptor heteromers, indirect approaches, such as the determination of a unique biochemical characteristic ("biochemical fingerprint"), permit their identification in native tissues and their use as targets for drug development. Dopamine and opioid receptor heteromers are the focus of intense research which is related to the possible multiple applications of their putative ligands in pathological conditions, which include basal ganglia disorders, schizophrenia and drug addiction. PMID:20691958

  19. Cannabinoid agonists stimulate [3H]GABA release in the globus pallidus of the rat when G(i) protein-receptor coupling is restricted: role of dopamine D2 receptors.

    PubMed

    Gonzalez, Brenda; Paz, Francisco; Florán, Leonor; Aceves, Jorge; Erlij, David; Florán, Benjamín

    2009-03-01

    The motor effects of cannabinoids in the globus pallidus appear to be caused by increases in interstitial GABA. To elucidate the mechanism of this response, we investigated the effect of the selective cannabinoid type 1 receptor (CB1) cannabinoid agonist arachidonyl-2-chloroethylamide (ACEA) on [(3)H]GABA release in slices of the rat globus pallidus. ACEA had two effects: concentrations between 10(-8) and 10(-6) M stimulated release, whereas higher concentrations (IC(50) approximately 10(-6) M) inhibited it. Another cannabinoid agonist, WIN-55,212-2, also had bimodal effects on release. Studies of cAMP production indicate that under conditions of low G(i/o), availability the coupling of CB1 receptors with G(i/o) proteins can be changed into CB1:G(s/olf) coupling; therefore, we determined the effects of conditions that limit G(i/o) availability on [(3)H]GABA release. Blockers of G(i/o) protein interactions, pertussis toxin and N-ethylmaleimide, transformed the inhibitory effects of ACEA on GABA release into stimulation. It also has been suggested that stimulation of D2 receptors can reduce G(i/o) availability. Blocking D2 receptors with sulpiride [(S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxybenzamidersqb] or depleting dopamine with reserpine inhibited the ACEA-induced stimulation of release. Thus, the D2 dependence of stimulation is consistent with the proposal that D2 receptors reduce G(i/o) proteins available for binding to the CB1 receptor. In summary, CB1 receptor activation has dual effects on GABA release in the globus pallidus. Low concentrations stimulate release through a process that depends on activation of dopamine D2 receptors that may limit G(i/o) protein availability. Higher concentrations of cannabinoid inhibit GABA release through mechanisms that are independent of D2 receptor activation. PMID:19106171

  20. Phosphatidic acid phospholipase A1 mediates ER-Golgi transit of a family of G protein-coupled receptors.

    PubMed

    Kunduri, Govind; Yuan, Changqing; Parthibane, Velayoudame; Nyswaner, Katherine M; Kanwar, Ritu; Nagashima, Kunio; Britt, Steven G; Mehta, Nickita; Kotu, Varshika; Porterfield, Mindy; Tiemeyer, Michael; Dolph, Patrick J; Acharya, Usha; Acharya, Jairaj K

    2014-07-01

    The coat protein II (COPII)-coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein-coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking. PMID:25002678

  1. Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function.

    PubMed

    Ragnarsson, Lotten; Andersson, Åsa; Thomas, Walter G; Lewis, Richard J

    2015-01-01

    Ligand binding and conformational changes that accompany signaling from G protein-coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, and binding, as well as potentially contributing to receptor activation and signaling. This study applied alanine-scanning mutagenesis to investigate the role of the complete ECS of the α1B-adrenoreceptor on norepinephrine (NE) potency, affinity, and efficacy. Half (24 of 48) of the ECS mutations significantly decreased NE potency in an inositol 1-phosphate assay. Most mutations reduced NE affinity (17) determined from [(3)H]prazosin displacement studies, whereas four mutations at the entrance to the NE binding pocket enhanced NE affinity. Removing the influence of NE affinity and receptor expression levels on NE potency gave a measure of NE efficacy, which was significantly decreased for 11 of 48 ECS mutants. These different effects tended to cluster to different regions of the ECS, which is consistent with different regions of the ECS playing discrete functional roles. Exposed ECS residues at the entrance to the NE binding pocket mostly affected NE affinity, whereas buried or structurally significant residues mostly affected NE efficacy. The broad potential for ECS mutations to affect GPCR function has relevance for the increasing number of nonsynonymous single nucleotide polymorphisms now being identified in GPCRs. PMID:25352041

  2. FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral Quiescence and Posture in Caenorhabditis elegans

    PubMed Central

    York, Neil; Lee, Kun He; Schoofs, Liliane; Raizen, David M.

    2015-01-01

    Neuropeptides signal through G-protein coupled receptors (GPCRs) to regulate a broad array of animal behaviors and physiological processes. The Caenorhabditis elegans genome encodes approximately 100 predicted neuropeptide receptor GPCRs, but in vivo roles for only a few have been identified. We describe here a role for the GPCR FRPR-4 in the regulation of behavioral quiescence and locomotive posture. FRPR-4 is activated in cell culture by several neuropeptides with an amidated isoleucine-arginine-phenylalanine (IRF) motif or an amidated valine-arginine-phenylalanine (VRF) motif at their carboxy termini, including those encoded by the gene flp-13. Loss of frpr-4 function results in a minor feeding quiescence defect after heat-induced cellular stress. Overexpression of frpr-4 induces quiescence of locomotion and feeding as well as an exaggerated body bend posture. The exaggerated body bend posture requires the gene flp-13. While frpr-4 is expressed broadly, selective overexpression of frpr-4 in the proprioceptive DVA neurons results in exaggerated body bends that require flp-13 in the ALA neuron. Our results suggest that FLP-13 and other neuropeptides signal through FRPR-4 and other receptors to regulate locomotion posture and behavioral quiescence. PMID:26571132

  3. The Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily

    PubMed Central

    Yee, Daniel C.; Shlykov, Maksim A.; Västermark, Åke; Reddy, Vamsee S.; Arora, Sumit; Sun, Eric I.; Saier, Milton H.

    2013-01-01

    Visual Rhodopsins (VR) are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins, are not known. In an earlier publication (Shlykov et al., 2012), we characterized the 4-Toulene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins, showing that these 7 or 8 TMS proteins arose by intragenic duplication of a 4 TMS-encoding gene, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and Microbial Rhodopsin (MR) families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the Transporter-Opsin-G protein-coupled receptor (TOG) Superfamily. Despite their 8 TMS origins, members of most constituent families exhibit 7 TMS topologies that are well conserved, and these arose by loss of either the N-terminal (more frequent) or the C-terminal (less frequent) TMS, depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The statistical analyses leading to the conclusion of homology were confirmed using HMMs, Pfam, and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during the evolution of this superfamily. PMID:23981446

  4. Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism

    PubMed Central

    Maudsley, Stuart; Bohn, Laura M.

    2015-01-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein–coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non–G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  5. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium.

    PubMed

    Tica, Andrei A; Dun, Erica C; Tica, Oana S; Gao, Xin; Arterburn, Jeffrey B; Brailoiu, G Cristina; Oprea, Tudor I; Brailoiu, Eugen

    2011-11-01

    G protein-coupled estrogen receptor 1 (GPER), also named GPR30, has been previously identified in the female reproductive system. In this study, GPER expression was found in the female rat myometrium by reverse transcriptase-polymerase chain reaction and immunocytochemistry. Using GPER-selective ligands, we assessed the effects of the GPER activation on resting membrane potential and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in rat myometrial cells, as well as on contractility of rat uterine strips. G-1, a specific GPER agonist, induced a concentration-dependent depolarization and increase in [Ca(2+)](i) in myometrial cells. The depolarization was abolished in Na(+)-free saline. G-1-induced [Ca(2+)](i) increase was markedly decreased by nifedipine, a L-type Ca(2+) channel blocker, by Ca(2+)-free or Na(+)-free saline. Intracellular administration of G-1 produced a faster and transitory increase in [Ca(2+)](i), with a higher amplitude than that induced by extracellular application, supporting an intracellular localization of the functional GPER in myometrial cells. Depletion of internal Ca(2+) stores with thapsigargin produced a robust store-activated Ca(2+) entry; the Ca(2+) response to G-1 was similar to the constitutive Ca(2+) entry and did not seem to involve store-operated Ca(2+) entry. In rat uterine strips, administration of G-1 increased the frequency and amplitude of contractions and the area under the contractility curve. The effects of G-1 on membrane potential, [Ca(2+)](i), and uterine contractility were prevented by pretreatment with G-15, a GPER antagonist, further supporting the involvement of GPER in these responses. Taken together, our results indicate that GPER is expressed and functional in rat myometrium. GPER activation produces depolarization, elevates [Ca(2+)](i) and increases contractility in myometrial cells. PMID:21865584

  6. Bradycardic effects mediated by activation of G protein-coupled estrogen receptor in rat nucleus ambiguus.

    PubMed

    Brailoiu, G Cristina; Arterburn, Jeffrey B; Oprea, Tudor I; Chitravanshi, Vineet C; Brailoiu, Eugen

    2013-03-01

    The G protein-coupled estrogen receptor (GPER) has been identified in several brain regions, including cholinergic neurons of the nucleus ambiguus, which are critical for parasympathetic cardiac regulation. Using calcium imaging and electrophysiological techniques, microinjection into the nucleus ambiguus and blood pressure measurement, we examined the in vitro and in vivo effects of GPER activation in nucleus ambiguus neurons. A GPER selective agonist, G-1, produced a sustained increase in cytosolic Ca(2+) concentration in a concentration-dependent manner in retrogradely labelled cardiac vagal neurons of nucleus ambiguus. The increase in cytosolic Ca(2+) produced by G-1 was abolished by pretreatment with G36, a GPER antagonist. G-1 depolarized cultured cardiac vagal neurons of the nucleus ambiguus. The excitatory effect of G-1 was also identified by whole-cell visual patch-clamp recordings in nucleus ambiguus neurons, in medullary slices. To validate the physiological relevance of our in vitro studies, we carried out in vivo experiments. Microinjection of G-1 into the nucleus ambiguus elicited a decrease in heart rate; the effect was blocked by prior microinjection of G36. Systemic injection of G-1, in addition to a previously reported decrease in blood pressure, also reduced the heart rate. The G-1-induced bradycardia was prevented by systemic injection of atropine, a muscarinic antagonist, or by bilateral microinjection of G36 into the nucleus ambiguus. Our results indicate that GPER-mediated bradycardia occurs via activation of cardiac parasympathetic neurons of the nucleus ambiguus and support the involvement of the GPER in the modulation of cardiac vagal tone. PMID:23104934

  7. Fulfilling the Promise of "Biased" G Protein-Coupled Receptor Agonism.

    PubMed

    Luttrell, Louis M; Maudsley, Stuart; Bohn, Laura M

    2015-09-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein-coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non-G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  8. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  9. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation

    PubMed Central

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-01-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  10. Crosstalk between G protein-coupled receptors (GPCRs) and tyrosine kinase receptor (TXR) in the heart after morphine withdrawal

    PubMed Central

    Almela, Pilar; García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2013-01-01

    G protein-coupled receptors (GPCRs) comprise a large family of membrane receptors involved in signal transduction. These receptors are linked to a variety of physiological and biological processes such as regulation of neurotransmission, growth, and cell differentiation among others. Some of the effects of GPCRs are known to be mediated by the activation of mitogen-activated extracellular kinase (MAPK) pathways. Cross-talk among various signal pathways plays an important role in activation of intracellular and intranuclear signal transduction cascades. Naloxone-induced morphine withdrawal leads to an up-regulation of adenyl cyclase-mediated signaling, resulting in high expression of protein kinase (PK) A. In addition, there is also an increased expression of extracellular signal regulated kinase (ERK), one member of MAPK. For this reason, the crosstalk between these GPCRs and receptors with tyrosine kinase activity (TKR) can be considered a possible mechanism for adaptive changes that occurs after morphine withdrawal. Morphine withdrawal activates ERK1/2 and phosphorylated tyrosine hydroxylase (TH) at Ser31 in the right and left ventricle. When N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), a PKA inhibitor was infused, the ability of morphine withdrawal to activate ERK, which phosphorylates TH at Ser31, was reduced. The present finding demonstrated that the enhancement of ERK1/2 expression and the phosphorylation state of TH at Ser31 during morphine withdrawal are dependent on PKA and suggest cross-talk between PKA and ERK1/2 transduction pathway mediating morphine withdrawal-induced activation of TH. Increasing understanding of the mechanisms that interconnect the two pathway regulated by GPCRs and TKRs may facilitate the design of new therapeutic strategies. PMID:24409147

  11. Design, Syntheses, and Biological Evaluation of 14-Heteroaromatic Substituted Naltrexone Derivatives: Pharmacological Profile Switch from Mu Opioid Receptor Selectivity to Mu/Kappa Opioid Receptor Dual Selectivity

    PubMed Central

    Yuan, Yunyun; Zaidi, Saheem A.; Elbegdorj, Orgil; Aschenbach, Lindsey C. K.; Li, Guo; Stevens, David L.; Scoggins, Krista L.; Dewey, William L.; Selley, Dana E.; Zhang, Yan

    2015-01-01

    Based on a mu opioid receptor (MOR) homology model and the “isosterism” concept, three generations of 14-heteroaromatically substituted naltrexone derivatives were designed, synthesized, and evaluated as potential MOR selective ligands. The first generation ligands appeared to be MOR selective, whereas the second and the third generation ones showed MOR/kappa opioid receptor (KOR) dual selectivity. Docking of ligands 2 (MOR selective) and 10 (MOR/KOR dual selective) to the three opioid receptor crystal structures revealed a non-conserved residue facilitated “hydrogen bonding network” that could be responsible for their distinctive selectivity profiles. The MOR/KOR dual selective ligand 10 showed no agonism and acted as a potent antagonist in the tail flick assay. It also produced less severe opioid withdrawal symptoms than naloxone in morphine dependent mice. In conclusion, ligand 10 may serve as a novel lead compound to develop MOR/KOR dual selective ligands, which might possess unique therapeutic value for opioid addiction treatment. PMID:24144240

  12. Selective coherence transfers in homonuclear dipolar coupled spin systems

    SciTech Connect

    Ramanathan, Chandrasekhar; Sinha, Suddhasattwa; Havel, Timothy F.; Cory, David G.; Baugh, Jonathan

    2005-02-01

    Controlling the dynamics of a dipolar coupled spin system is critical to the development of solid-state spin-based quantum information processors. Such control remains challenging, as every spin is coupled to a large number of surrounding spins. Here we demonstrate that in an ensemble of spin pairs it is possible to decouple the weaker interactions (weak coupling {omega}{sub D}{sup w}) between different pairs and extend the coherence lifetimes within the two-spin system from 19 {mu}s to 11.1 ms, a factor of 580. This is achieved without decoupling the stronger interaction (strong coupling {omega}{sub D}{sup S}) between the two spins within a pair. An amplitude modulated rf field is applied on resonance with the Larmor frequency of the spins, with amplitude {omega}{sub 1}, and frequency of the modulation matched to the strong coupling. The spin pairs appear isolated from each other in the regime where the rf power satisfies {omega}{sub D}{sup w}<<{omega}{sub 1}<<{omega}{sub D}{sup S}.

  13. The influence of selective vitamin D receptor activator paricalcitol on cardiovascular system and cardiorenal protection

    PubMed Central

    Duplancic, Darko; Cesarik, Marijan; Poljak, Nikola Kolja; Radman, Maja; Kovacic, Vedran; Radic, Josipa; Rogosic, Veljko

    2013-01-01

    The ubiquitous distribution of vitamin D receptors in the human body is responsible for the pleiotropic effects of vitamin D-receptor activation. We discuss the possible beneficial effects of a selective activator of vitamin D receptor, paricalcitol, on the cardiovascular system in chronic heart failure patients and chronic kidney patients, in light of new trials. Paricalcitol should provide additional clinical benefits over the standard treatment for chronic kidney and heart failure, especially in cases of cardiorenal syndrome. PMID:23430986

  14. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A.

    PubMed

    Tetzner, Anja; Gebolys, Kinga; Meinert, Christian; Klein, Sabine; Uhlich, Anja; Trebicka, Jonel; Villacañas, Óscar; Walther, Thomas

    2016-07-01

    Angiotensin (Ang)-(1-7) has cardiovascular protective effects and is the opponent of the often detrimental Ang II within the renin-angiotensin system. Although it is well accepted that the G-protein-coupled receptor Mas is a receptor for the heptapeptide, the lack in knowing initial signaling molecules stimulated by Ang-(1-7) prevented definitive characterization of ligand/receptor pharmacology as well as identification of further hypothesized receptors for the heptapeptide. The study aimed to identify a second messenger stimulated by Ang-(1-7) allowing confirmation as well as discovery of the heptapeptide's receptors. Ang-(1-7) elevates cAMP concentration in primary cells, such as endothelial or mesangial cells. Using cAMP as readout in receptor-transfected human embryonic kidney (HEK293) cells, we provided pharmacological proof that Mas is a functional receptor for Ang-(1-7). Moreover, we identified the G-protein-coupled receptor MrgD as a second receptor for Ang-(1-7). Consequently, the heptapeptide failed to increase cAMP concentration in primary mesangial cells with genetic deficiency in both Mas and MrgD Mice deficient in MrgD showed an impaired hemodynamic response after Ang-(1-7) administration. Furthermore, we excluded the Ang II type 2 receptor as a receptor for the heptapeptide but discovered that the Ang II type 2 blocker PD123319 can also block Mas and MrgD receptors. Our results lead to an expansion and partial revision of the renin-angiotensin system, by identifying a second receptor for Ang-(1-7), by excluding Ang II type 2 as a receptor for the heptapeptide, and by enforcing the revisit of such publications which concluded Ang II type 2 function by only using PD123319. PMID:27217404

  15. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex.

    PubMed

    Toth, Peter; Tarantini, Stefano; Davila, Antonio; Valcarcel-Ares, M Noa; Tucsek, Zsuzsanna; Varamini, Behzad; Ballabh, Praveen; Sonntag, William E; Baur, Joseph A; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia. PMID:26453330

  16. Competing G protein-coupled receptor kinases balance G protein and β-arrestin signaling

    PubMed Central

    Heitzler, Domitille; Durand, Guillaume; Gallay, Nathalie; Rizk, Aurélien; Ahn, Seungkirl; Kim, Jihee; Violin, Jonathan D; Dupuy, Laurence; Gauthier, Christophe; Piketty, Vincent; Crépieux, Pascale; Poupon, Anne; Clément, Frédérique; Fages, François; Lefkowitz, Robert J; Reiter, Eric

    2012-01-01

    Seven-transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β-arrestins, whose recruitment to the activated receptor is regulated by G protein-coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal-regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)-based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well-established function in the desensitization of G-protein activation, GRK2 exerts a strong negative effect on β-arrestin-dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2-dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs. PMID:22735336

  17. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    SciTech Connect

    Pioszak, Augen A.; Xu, H. Eric

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  18. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    PubMed Central

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  19. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling

    PubMed Central

    Bock, Andreas; Merten, Nicole; Schrage, Ramona; Dallanoce, Clelia; Bätz, Julia; Klöckner, Jessica; Schmitz, Jens; Matera, Carlo; Simon, Katharina; Kebig, Anna; Peters, Lucas; Müller, Anke; Schrobang-Ley, Jasmin; Tränkle, Christian; Hoffmann, Carsten; De Amici, Marco; Holzgrabe, Ulrike; Kostenis, Evi; Mohr, Klaus

    2012-01-01

    Seven transmembrane helical receptors (7TMRs) modulate cell function via different types of G proteins, often in a ligand-specific manner. Class A 7TMRs harbour allosteric vestibules in the entrance of their ligand-binding cavities, which are in the focus of current drug discovery. However, their biological function remains enigmatic. Here we present a new strategy for probing and manipulating conformational transitions in the allosteric vestibule of label-free 7TMRs using the M2 acetylcholine receptor as a paradigm. We designed dualsteric agonists as 'tailor-made' chemical probes to trigger graded receptor activation from the acetylcholine-binding site while simultaneously restricting spatial flexibility of the receptor's allosteric vestibule. Our findings reveal for the first time that a 7TMR's allosteric vestibule controls the extent of receptor movement to govern a hierarchical order of G-protein coupling. This is a new concept assigning a biological role to the allosteric vestibule for controlling fidelity of 7TMR signalling. PMID:22948826

  20. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2008-01-01

    The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin–receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These “custom-designed” arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling. PMID:16460808

  1. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors.

    PubMed

    Takahashi, Akiyoshi; Davis, Perry; Reinick, Christina; Mizusawa, Kanta; Sakamoto, Tatsuya; Dores, Robert M

    2016-06-01

    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in "Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish" (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR. PMID:27408924

  2. cAMP biosensors applied in molecular pharmacological studies of G protein-coupled receptors.

    PubMed

    Mathiesen, Jesper Mosolff; Vedel, Line; Bräuner-Osborne, Hans

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) is a common second messenger that mediates numerous biological responses. Intracellular cAMP levels are increased by activation of G(s)-coupled G protein-coupled receptors (GPCRs) and decreased by activation of G(i)-coupled GPCRs via the adenylyl cyclase. Many end-point assays for quantifying GPCR-mediated changes in intracellular cAMP levels exist. More recently, fluorescence resonance energy transfer (FRET)-based cAMP biosensors that can quantify intracellular cAMP levels in real time have been developed. These FRET-based cAMP biosensors have been used primarily in single cell FRET microscopy to monitor and visualize changes in cAMP upon GPCR activation. Here, a similar cAMP biosensor with a more efficient mCerulean/mCitrine FRET pair is described for use in the 384-well plate format. After cloning and expression in HEK293 cells, the biosensor is characterized in the 384-well plate format and used for measuring the signaling of the G(s)-coupled β(2)-adrenergic receptor. The procedures described may be applied for other FRET-based biosensors in terms of characterization and conversion to the 384-well plate format. PMID:23374187

  3. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. PMID:27012396

  4. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs

    PubMed Central

    Accardo, Antonella; Aloj, Luigi; Aurilio, Michela; Morelli, Giancarlo; Tesauro, Diego

    2014-01-01

    Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors. PMID:24741304

  5. Selective CGRP and adrenomedullin peptide binding by tethered RAMP-calcitonin receptor-like receptor extracellular domain fusion proteins

    PubMed Central

    Moad, Heather E; Pioszak, Augen A

    2013-01-01

    Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor-like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP-CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1-CLR ECD fusion purified as a monomer, whereas the RAMP2-CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27-37) and AM(37-52) fragments were identified as the minimal ECD complex binding regions. The CGRP C-terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C-terminal amide group was essential for ECD binding. Alanine-scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries. PMID:24115156

  6. Kynurenic acid amides as novel NR2B selective NMDA receptor antagonists.

    PubMed

    Borza, István; Kolok, Sándor; Galgóczy, Kornél; Gere, Anikó; Horváth, Csilla; Farkas, Sándor; Greiner, István; Domány, György

    2007-01-15

    A novel series of kynurenic acid amides, ring-enlarged derivatives of indole-2-carboxamides, was prepared and identified as in vivo active NR2B subtype selective NMDA receptor antagonists. The synthesis and SAR studies are discussed. PMID:17074483

  7. Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana.

    PubMed

    Josefsson, L G; Rask, L

    1997-10-15

    We have cloned and characterized a cDNA from Arabidopsis thaliana that most likely encodes a novel member of the vast superfamily of G-protein-coupled receptor proteins (GPCRs). By taking advantage of amino acid sequence similarities between plant expressed sequence tags (ESTs) and established G-protein-coupled receptor sequences, a probe was obtained which was used for the screening of an Arabidopsis cDNA library. The cDNA which was found is very infrequently represented in the cDNA library, suggesting a low and/or spatially restricted expression. A region of the translated sequence of the cDNA shows the highest similarity to cAMP receptors from the slime mold Dictyostelium discoideum. The same region is also similar to that in members of the animal calcitonin family of receptors. Another region of the putative receptor, however, is similar to sequences of serotonin receptors and other receptors of the so-called rhodopsin family of GPCRs. The rhodopsin family has numerous members in higher vertebrate species. Alignments and phylogenetic analyses of the regions of similarity yielded results in accordance with other evolutionary considerations. Our cDNA thus occurred on a distinct major branch in relation to the rest of the rhodopsin family. In relation to the calcitonin family, our cDNA and cAMP receptors occurred together on a distinct major branch but appear to have diverged from each other shortly after their divergence from the rest of the calcitonin family. Other features further argue for a tentative identification of it as a GPCR. It displays seven discrete and strongly predicted transmembrane domains when analyzed in hydropathy plots. The preferred orientation is with the amino terminus towards the outside. It has one Cys residue in extracellular loop 1 and another in extracellular loop 2. Cys residues in these loops are known to form disulfide bridges in many other GPCRs. Finally, it has several fully conserved amino acids that belong to the most conserved

  8. Coupling Specificity of NOP Opioid Receptors to Pertussis-Toxin-Sensitive Gα Proteins in Adult Rat Stellate Ganglion Neurons Using Small Interference RNA

    PubMed Central

    Margas, Wojciech; Sedeek, Khaled; Ruiz-Velasco, Victor

    2008-01-01

    The opioid receptor-like 1 (NOP or ORL1) receptor is a G-protein-coupled receptor the endogenous ligand of which is the heptadecapeptide, nociceptin (Noc). NOP receptors are known to modulate pain processing at spinal, supraspinal, and peripheral levels. Previous work has demonstrated that NOP receptors inhibit N-type Ca2+ channel currents in rat sympathetic stellate ganglion (SG) neurons via pertussis toxin (PTX)-sensitive Gαi/o subunits. However, the identification of the specific Gα subunit that mediates the Ca2+ current modulation is unknown. The purpose of the present study was to examine coupling specificity of Noc-activated NOP receptors to N-type Ca2+ channels in SG neurons. Small interference RNA (siRNA) transfection was employed to block the expression of PTX-sensitive Gα subunits. RT-PCR results showed that siRNA specifically decreased the expression of the intended Gα subunit. Evaluation of cell surface protein expression and Ca2+ channel modulation were assessed by immunofluorescence staining and electrophysiological recordings, respectively. Furthermore, the presence of mRNA of the intended siRNA target Gα protein was examined by RT-PCR experiments. Fluorescence imaging showed that Gαi1, Gαi3, and Gαo were expressed in SG neurons. The transfection of Gαi1-specific siRNA resulted in a significant decrease in Noc-mediated Ca2+ current inhibition, while silencing of either Gαi3 or Gαo was without effect. Taken together, these results suggest that in SG neurons Gαi1 subunits selectively couple NOP receptors to N-type Ca2+ channels. PMID:18562551

  9. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  10. Three amino acids in the D2 dopamine receptor regulate selective ligand function and affinity

    PubMed Central

    Cummings, David F.; Ericksen, Spencer S.; Schetz, John A.

    2016-01-01

    The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype-selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120-fold) for the D4 subtype of dopamine receptor were tested on wild-type and mutant D2 receptors. Five of the selective ligands were observed to have 21-fold to 293-fold increases in D2 receptor affinity when three non-conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3-{[4-(4-iodophenyl) piperazin-1-yl]methyl}-1H-pyrrolo[2,3-b]pyridine (L-750,667) and 1-[4-iodobenzyl]-4-[N-(3-isopropoxy-2-pyridinyl)-N-methyl]-aminopiperidine (RBI-257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild-type receptor, concentrations of L-750,667 or RBI-257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild-type D2 receptor. In contrast to RBI-257 which is an antagonist at all receptors, L-750,667 is a partial agonist at the wild-type D2 but an antagonist at both the mutant D2 and wild-type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non-conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermolecular steric contacts between the ligands and receptors. Consistent with the experimental data, this model illustrates the interactions between a variety of subtype-selective

  11. Laser wavelength selection and output coupling by a grating.

    PubMed

    Hard, T M

    1970-08-01

    The principles of use of gratings as laser wavelength-selective end reflectors are reviewed. A useful output beam can be derived from a grating's zeroth-order reflection. This beam moves when the grating is rotated to select various laser wavelengths, but can be made stationary by the addition of auxiliary mirrors. The grating-mirror combination has been applied to a CO(2) laser in the in and to a dye laser in the visible. PMID:20094146

  12. Inhibition of endothelin receptors in the treatment of pulmonary arterial hypertension: does selectivity matter?

    PubMed

    Opitz, Christian F; Ewert, Ralf; Kirch, Wilhelm; Pittrow, David

    2008-08-01

    Treatment options for pulmonary arterial hypertension (PAH) have considerably improved in the past few years. Endothelin (ET)-receptor antagonism has been established as a first-line option for the majority of PAH patients. Endothelin-receptor antagonists (ETRAs) comprise sulfonamide and non-sulfonamide agents with different affinities for ET-receptor subtypes (ET(A) and ET(B)), and the focus of development has shifted from drugs with less selectivity to those with high selectivity. There is ongoing debate as to whether selective or non-selective ET-receptor antagonism is more beneficial in the treatment of PAH. This paper reviews the current evidence from experimental and clinical studies obtained from a thorough literature search focusing on the three marketed drugs bosentan, sitaxentan, and ambrisentan. A clinically meaningful difference among the three approved ETRAs with respect to their ET-receptor selectivity could not be demonstrated to date. Therefore, in clinical practice, other features are likely to be of greater relevance when considering treatment, such as the potential for serious drug-drug interactions, convenience of dosing schedule, or rates of limiting side effects. These characteristics bear more relation to the chemical or pharmacological properties of the drugs than to receptor selectivity itself. PMID:18562303

  13. Research Resource: Gene Profiling of G Protein–Coupled Receptors in the Arcuate Nucleus of the Female

    PubMed Central

    Fang, Yuan; Zhang, Chunguang; Nestor, Casey C.; Mao, Peizhong; Kelly, Martin J.

    2014-01-01

    The hypothalamic arcuate nucleus controls many critical homeostatic functions including energy homeostasis, reproduction, and motivated behavior. Although G protein–coupled receptors (GPCRs) are involved in the regulation of these functions, relatively few of the GPCRs have been identified specifically within the arcuate nucleus. Here, using TaqMan low-density arrays we quantified the mRNA expression of nonolfactory GPCRs in mouse arcuate nucleus. An unprecedented number of GPCRs (total of 292) were found to be expressed, of which 183 were known and 109 were orphan GPCRs. The known GPCR genes expressed were classified into several functional clusters including hormone/neurotransmitter, growth factor, angiogenesis and vasoactivity, inflammation and immune system, and lipid messenger receptors. The plethora of orphan genes expressed in the arcuate nucleus were classified into 5 structure-related classes including class A (rhodopsin-like), class B (adhesion), class C (other GPCRs), nonsignaling 7-transmembrane chemokine-binding proteins, and other 7-transmembrane proteins. Therefore, for the first time, we provide a quantitative estimate of the numerous GPCRs expressed in the hypothalamic arcuate nucleus. Finally, as proof of principle, we documented the expression and function of one of these receptor genes, the glucagon-like peptide 1 receptor (Glp1r), which was highly expressed in the arcuate nucleus. Single-cell RT-PCR revealed that Glp1r mRNA was localized in proopiomelanocortin neurons, and using whole-cell recording we found that the glucagon-like peptide 1-selective agonist exendin-4 robustly excited proopiomelanocortin neurons. Thus, the quantitative GPCR data emphasize the complexity of the hypothalamic arcuate nucleus and furthermore provide a valuable resource for future neuroendocrine/endocrine-related experiments. PMID:24933249

  14. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease.

    PubMed

    Haas, Laura T; Salazar, Santiago V; Kostylev, Mikhail A; Um, Ji Won; Kaufman, Adam C; Strittmatter, Stephen M

    2016-02-01

    Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  15. Rapid Remodeling of Invadosomes by Gi-coupled Receptors: DISSECTING THE ROLE OF Rho GTPases.

    PubMed

    Kedziora, Katarzyna M; Leyton-Puig, Daniela; Argenzio, Elisabetta; Boumeester, Anja J; van Butselaar, Bram; Yin, Taofei; Wu, Yi I; van Leeuwen, Frank N; Innocenti, Metello; Jalink, Kees; Moolenaar, Wouter H

    2016-02-26

    Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance. PMID:26740622

  16. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  17. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    NASA Technical Reports Server (NTRS)

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to

  18. Receptor-Drug Interaction: Europium Employment for Studying the Biochemical Pathway of G-Protein-Coupled Receptor Activation

    PubMed Central

    Antonio, Colabufo Nicola; Grazia, Perrone Maria; Marialessandra, Contino; Francesco, Berardi; Roberto, Perrone

    2007-01-01

    In medicinal chemistry field, the biochemical pathways, involved in 7-transmembrane domains G-protein coupled receptors (GPCRs) activation, are commonly studied to establish the activity of ligands towards GPCRs. The most studied steps are the measurement of activated GTP-α subunit and stimulated intracellular cAMP. At the present, many researchers defined agonist or antagonist activity of potential GPCRs drugs employing [35S]GTPγS or [3H]cAMP as probes. Recently, the corresponding lanthanide labels Eu-GTP and Eu-cAMP as alternative to radiochemicals have been developed because they are highly sensitive, easy to automate, easily synthesized, they display a much longer shelf-life and they can be used in multilabel experiments. In the present review, the receptor-drug interaction by europium employment for studying the biochemical pathway of GPCR activation has been focused. Moreover, comparative studies between lanthanide label probes and the corresponding radiolabeled compounds have been carried out. PMID:18350113

  19. Selectivity of Ligand-Receptor Interactions between Nanoparticle and Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Shihu; Dormidontova, Elena E.

    2012-12-01

    Selectivity of interactions between nanoparticles functionalized by tethered ligands and cell surfaces with different densities of receptors plays an essential role in biorecognition and its implementation in nanobiomedicine. We show that the onset of nanoparticle adsorption has a universal character for a range of nanoparticles: the onset receptor density decreases exponentially with the energy of ligand-receptor binding and inversely with the ligand density. We demonstrate that a bimodal tether distribution, which permits shielding ligands by longer nonfunctional tethers, leads to extra loss of entropy at the adsorption onset, enhancing the selectivity.

  20. Selective P2X7 receptor antagonists for chronic inflammation and pain

    PubMed Central

    Donnelly-Roberts, Diana; Jarvis, Michael F.

    2008-01-01

    ATP, acting on P2X7 receptors, stimulates changes in intracellular calcium concentrations, maturation, and release of interleukin-1β (IL-1β), and following prolonged agonist exposure, cell death. The functional effects of P2X7 receptor activation facilitate several proinflammatory processes associated with arthritis. Within the nervous system, these proinflammatory processes may also contribute to the development and maintenance of chronic pain. Emerging data from genetic knockout studies have indicated specific roles for P2X7 receptors in inflammatory and neuropathic pain states. The discovery of multiple distinct chemical series of potent and highly selective P2X7 receptor antagonists have enhanced our understanding of P2X7 receptor pharmacology and the diverse array of P2X7 receptor signaling mechanisms. These antagonists have provided mechanistic insight into the role(s) P2X7 receptors play under pathophysiological conditions. In this review, we integrate the recent discoveries of novel P2X7 receptor-selective antagonists with a brief update on P2X7 receptor pharmacology and its therapeutic potential. PMID:18568426

  1. Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors

    PubMed Central

    Frimurer, Thomas M.; Meiler, Jens

    2013-01-01

    The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and side-chain conformational space with Rosetta can be leveraged to meet this challenge. This study performs unbiased comparative modeling and docking methodologies using 14 distinct high-resolution GPCRs and proposes knowledge-based filtering methods for improvement of sampling performance and identification of correct ligand-receptor interactions. On average, top ranked receptor models built on template structures over 50% sequence identity are within 2.9 Å of the experimental structure, with an average root mean square deviation (RMSD) of 2.2 Å for the transmembrane region and 5 Å for the second extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top ranked comparative models. In contrast to the comparative models themselves, however, it remains difficult to unambiguously identify correct binding modes by score alone. On average, sampling performance was improved by 103 fold over random using knowledge-based and energy-based filters. In assessing the applicability of experimental constraints, we found that sampling performance is increased by one order of magnitude for every 10 residues known to contact the ligand. Additionally, in the case of DOR, knowledge of a single specific ligand

  2. Patient selection for personalized peptide receptor radionuclide therapy using Ga-68 somatostatin receptor PET/CT.

    PubMed

    Kulkarni, Harshad R; Baum, Richard P

    2014-01-01

    Neuroendocrine tumors are malignant solid tumors originating from neuroendocrine cells dispersed throughout the body. Differentiated neuroendocrine tumors overexpress somatostatin receptors (SSTRs), which enable the diagnosis using radiolabeled somatostatin analogues. Internalization and retention within the tumor cell are important for peptide receptor radionuclide therapy using the same peptide. The use of the same DOTA-peptide for SSTR PET/CT using (68)Ga and for peptide receptor radionuclide therapy using therapeutic radionuclides like (177)Lu and (90)Y offers a unique theranostic advantage. PMID:25029937

  3. Visualization of arrestin recruitment by a G Protein-Coupled Receptor

    PubMed Central

    Reis, Rosana I.; Huang, Li-Yin; Tripathi-Shukla, Prachi; Qian, Jiang; Li, Sheng; Blanc, Adi; Oleskie, Austin N.; Dosey, Anne M.; Su, Min; Liang, Cui-Rong; Gu, Ling-Ling; Shan, Jin-Ming; Chen, Xin; Hanna, Rachel; Choi, Minjung; Yao, Xiao Jie; Klink, Bjoern U.; Kahsai, Alem W.; Sidhu, Sachdev S.; Koide, Shohei; Penczek, Pawel A.; Kossiakoff, Anthony A.; Jr, Virgil L. Woods; Kobilka, Brian K.; Skiniotis, Georgios; Lefkowitz, Robert J.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins. PMID:25043026

  4. Breast-related effects of selective estrogen receptor modulators and tissue-selective estrogen complexes

    PubMed Central

    2014-01-01

    A number of available treatments provide relief of menopausal symptoms and prevention of postmenopausal osteoporosis. However, as breast safety is a major concern, new options are needed, particularly agents with an improved mammary safety profile. Results from several large randomized and observational studies have shown an association between hormone therapy, particularly combined estrogen-progestin therapy, and a small increased risk of breast cancer and breast pain or tenderness. In addition, progestin-containing hormone therapy has been shown to increase mammographic breast density, which is an important risk factor for breast cancer. Selective estrogen receptor modulators (SERMs) provide bone protection, are generally well tolerated, and have demonstrated reductions in breast cancer risk, but do not relieve menopausal symptoms (that is, vasomotor symptoms). Tissue-selective estrogen complexes (TSECs) pair a SERM with one or more estrogens and aim to blend the positive effects of the components to provide relief of menopausal symptoms and prevention of postmenopausal osteoporosis without stimulating the breast or endometrium. One TSEC combination pairing conjugated estrogens (CEs) with the SERM bazedoxifene (BZA) has completed clinical development and is now available as an alternative option for menopausal therapy. Preclinical evidence suggests that CE/BZA induces inhibitory effects on breast tissue, and phase 3 clinical studies suggest breast neutrality, with no increases seen in breast tenderness, breast density, or cancer. In non-hysterectomized postmenopausal women, CE/BZA was associated with increased bone mineral density and relief of menopausal symptoms, along with endometrial safety. Taken together, these results support the potential of CE/BZA for the relief of menopausal symptoms and prevention of postmenopausal osteoporosis combined with breast and endometrial safety. PMID:25928299

  5. Transdermal flux predictions for selected selective oestrogen receptor modulators (SERMs): comparison with experimental results.

    PubMed

    Güngör, Sevgi; Delgado-Charro, M Begoña; Masini-Etévé, Valérie; Potts, Russell O; Guy, Richard H

    2013-12-28

    The aim of this work was to evaluate the feasibility of delivering transdermally a series of highly lipophilic compounds (log P ~4-7), comprising several selective oestrogen receptor modulators and a modified testosterone (danazol). The maximum fluxes of the drugs were predicted theoretically using the modified Potts & Guy algorithm (to determine the permeability coefficient (kp) from water) and the calculated aqueous solubilities. The correction provided by Cleek & Bunge took into account the contribution of the viable epidermal barrier to the skin permeation of highly lipophilic compounds. Experimental measurements of drug fluxes from saturated hydroalcoholic solutions were determined in vitro through excised pig skin. Overall, the predicted fluxes were in good general agreement (within a factor of 10) with the experimental results. Most of the experimental fluxes were greater than those predicted theoretically suggesting that the 70:30 v/v ethanol-water vehicle employed may have had a modest skin penetration enhancement effect. This investigation shows that the transdermal fluxes of highly lipophilic compounds can be reasonably predicted from first principles provided that the viable epidermis, underlying the stratum corneum, is included as a potentially important contributor to the skin's overall barrier function. Furthermore, the absolute values of the measured fluxes, when considered in parallel with previous clinical studies, indicate that it might be feasible to topically deliver a therapeutically useful amount of some of the compounds considered to treat cancerous breast tissue. PMID:24076520

  6. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors.

    PubMed

    Wilke, Bettina U; Lindner, Moritz; Greifenberg, Lea; Albus, Alexandra; Kronimus, Yannick; Bünemann, Moritz; Leitner, Michael G; Oliver, Dominik

    2014-01-01

    The two-pore domain potassium (K2P) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) are important determinants of background K(+) conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gαq/11 subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P2 nor release of the downstream messengers IP3 and Ca(2+). Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG-but not in downstream lipid metabolites-mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability. PMID:25420509

  7. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells.

    PubMed Central

    Shirvan, M H; Pollard, H B; Heldman, E

    1991-01-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, we found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca2+ dependent, and both agonists induced 45Ca2+ uptake. Equilibrium binding studies showed that [3H]Oxo-M bound to chromaffin cell membranes with a Kd value of 3.08 x 10(-8) M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. We propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features. Images PMID:2052567

  8. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors

    PubMed Central

    Ceredig, Rhian A.; Massotte, Dominique

    2015-01-01

    G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions. PMID:25610398