Science.gov

Sample records for receptors nociceptive stimulus

  1. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities.

    PubMed

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  2. Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities

    PubMed Central

    Tu, Yiheng; Tan, Ao; Bai, Yanru; Hung, Yeung Sam; Zhang, Zhiguo

    2016-01-01

    Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that complements self-report. However, existing neuroimaging-based nociceptive pain assessments only rely on the information in pain-evoked brain activities, but neglect the fact that the perceived intensity of pain is also encoded by ongoing brain activities prior to painful stimulation. Here, we proposed to use machine learning algorithms to decode pain intensity from both pre-stimulus ongoing and post-stimulus evoked brain activities. Neural features that were correlated with intensity of laser-evoked nociceptive pain were extracted from high-dimensional pre- and post-stimulus EEG and fMRI activities using partial least-squares regression (PLSR). Further, we used support vector machine (SVM) to predict the intensity of pain from pain-related time-frequency EEG patterns and BOLD-fMRI patterns. Results showed that combining predictive information in pre- and post-stimulus brain activities can achieve significantly better performance in classifying high-pain and low-pain and in predicting the rating of perceived pain than only using post-stimulus brain activities. Therefore, the proposed pain prediction method holds great potential in basic research and clinical applications. PMID:27148029

  3. Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    PubMed

    Moayedi, M; Di Stefano, G; Stubbs, M T; Djeugam, B; Liang, M; Iannetti, G D

    2016-01-01

    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site. PMID:27419217

  4. Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates

    PubMed Central

    Di Stefano, G.; Stubbs, M. T.; Djeugam, B.; Liang, M.

    2016-01-01

    Abstract Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site. PMID:27419217

  5. Is electrical stimulation of the rat incisor an appropriate experimental nociceptive stimulus?

    PubMed

    Rajaona, J; Dallel, R; Woda, A

    1986-08-01

    The purpose of this study was to determine whether or not tooth pulp stimulation in the rat can selectively activate the pulp nerve fibers without excitation of the periodontium and to decide if the nerve fibers situated in the pulp of the rat's incisor are involved in the nociceptive reactions caused by an intrapulpal stimulation. The experiments were carried out on 20 awake and freely moving Sprague-Dawley rats. Bipolar stimulating electrodes were inserted into the pulp of the left lower incisor and in the right incisor after removal of the pulp. Special cares were taken to avoid, on the right side, direct stimulation of the stump of the apical nerve. The jaw opening reflexes were recorded from the digastric muscles ipsilaterally to the stimulated teeth and the thresholds were compared. Using the same animals, four typical and reproducible nociceptive behavioral reactions caused by a long tooth pulp stimulation were also observed (shock of 0.5 ms at 50 Hz during 1 s). The stimulus intensity was progressively increased, and the threshold of each reaction was recorded. For each of the 20 rats tested, the jaw opening reflex and the nociceptive reactions did not disappear after removal of the pulp, but the threshold of the responses to the stimulation of the nonvital tooth were significantly above the threshold of the responses to the stimulation of the vital incisor. The conclusion was tooth pulp stimulation activates the periodontal nerve fibers in the rat, and stimulation of the incisor pulp is significant in pain study in the rat because the thresholds of the jaw opening reflex and the nociceptive reactions were increased after the tooth pulp tissue was removed. PMID:3732470

  6. Sex-related differences in mechanical nociception and antinociception produced by mu- and kappa-opioid receptor agonists in rats.

    PubMed

    Barrett, Andrew C; Smith, Eric S; Picker, Mitchell J

    2002-10-01

    Previous studies indicate that in antinociceptive procedures employing thermal, chemical and electrical stimuli, opioids are generally more potent in male than female rodents. The purpose of the present study was to examine nociception and opioid antinociception in male and female rats using a mechanical nociceptive stimulus. Results indicated that males had a higher threshold for nociception, and in tests in which a constant pressure was applied to the hindpaw, the paw withdrawal latencies were consistently longer in males. Opioids with activity at the mu receptor, including levorphanol, morphine, dezocine, buprenorphine, butorphanol and nalbuphine, were generally more potent and/or effective in males. In contrast, sex differences were not consistently observed with the kappa-opioid receptor agonists spiradoline, (5,7,8b)-N-methyl-N[2-1(1-pyrrolidinyl),1-oxaspiro[4,5]dec-8-yl benzeneacetamide (U69593), trans-(+/-)-3,4-dichloro-N-methyl-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U50488), enadoline, ethylketocyclazocine, and nalorphine. These findings suggest that males and females differ in their responsiveness to mechanical nociception and that sex differences in sensitivity to kappa-, but not mu-, opioid receptor agonists are specific to certain nociceptive stimulus modalities. PMID:12354566

  7. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice.

    PubMed

    Popp, Laura; Häussler, Annett; Olliges, Anke; Nüsing, Rolf; Narumiya, Shuh; Geisslinger, Gerd; Tegeder, Irmgard

    2009-08-01

    Antagonist at specific prostaglandin receptors might provide analgesia with a more favourable toxicity profile compared with cyclooxygenase inhibitors. We analyzed nociceptive responses in prostaglandin D, E, F, prostacyclin and thromboxane receptor knockout mice and mice deficient of cyclooxygenase 1 or 2 to evaluate the contribution of individual prostaglandin receptors for heat, mechanical and formalin-evoked pain. None of the knockouts was uniformly protected from all of these pain stimuli but COX-1 and EP4 receptor knockouts presented with reduced heat pain and EP3 receptor and COX-2 knockout mice had reduced licking responses in the 2nd phase of the formalin assay. This was accompanied with reduced c-Fos immunoreactivity in the spinal cord dorsal horn in EP3 knockouts. Oppositely, heat pain sensitivity was increased in FP, EP1 and EP1+3 double mutant mice possibly due to a loss of FP or EP1 receptor mediated central control of thermal pain sensitivity. Deficiency of either EP2 or DP1 was associated with increased formalin-evoked flinching responses and c-Fos IR in dorsal horn neurons suggesting facilitated spinal cord pain reflex circuity. Thromboxane and prostacyclin receptor knockout mice showed normal pain behavior in all tests. The results suggest a differential, pain-stimulus and site-specific contribution of specific PG-receptors for the processing of the nociceptive stimuli, a differential modulation of nociceptive responses by COX-1 and COX-2 derived prostaglandins and compensatory and/or developmental adaptations in mice lacking specific PG receptors. PMID:18938093

  8. Are presynaptic GABA-Cρ2 receptors involved in anti-nociception?

    PubMed

    Tadavarty, R; Hwang, J; Rajput, P S; Soja, P J; Kumar, U; Sastry, B R

    2015-10-01

    We investigated the anti-nociceptive effects of GABA-C receptors in the central nervous system. Intracisternal injection of CACA, a GABA-C receptor agonist or isoguvacine, a GABA-A receptor agonist, significantly increased the tail-withdrawal latency. TPMPA, a GABA-C receptor antagonist blocked the effects of CACA but not isoguvacine indicating that GABA-C receptors are involved in regulating pain. Further, double-labelled immunofluorescence studies revealed that GABA-Cρ2 receptors are expressed presynaptically in the spinal dorsal horn, especially, substantia gelatinosa, a region that has been previously implicated in analgesia by regulating nociceptive inflow. These data provide a provenance for future work looking at presynaptic spinal GABA-C receptors in the control of nociception. PMID:26327143

  9. Ligand-directed trafficking of receptor stimulus.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. PMID:25443729

  10. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Modulate Nociception Only in the Presence of Systemic Leptin

    PubMed Central

    Watson, Sarah L.; Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n = 14) mice and leptin-deficient, obese B6.Cg-Lepob/J (obese, n = 10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p = 0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p = 0.0003) concentration-dependent increase in %MPE. SPA also significantly (p < 0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of the mouse super-active leptin antagonist (SMLA) into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors

  11. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence.

    PubMed

    Bao, Yanju; Gao, Yebo; Yang, Liping; Kong, Xiangying; Yu, Jing; Hou, Wei; Hua, Baojin

    2015-01-01

    Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence. PMID:26176938

  12. The role of protease-activated receptor type 2 in nociceptive signaling and pain.

    PubMed

    Mrozkova, P; Palecek, J; Spicarova, D

    2016-07-18

    Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments. PMID:27070742

  13. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  14. Role of spinal GABAA receptors in pudendal inhibition of nociceptive and nonnociceptive bladder reflexes in cats.

    PubMed

    Xiao, Zhiying; Reese, Jeremy; Schwen, Zeyad; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-04-01

    Picrotoxin, an antagonist for γ-aminobutyric acid receptor subtype A (GABAA), was used to investigate the role of GABAA receptors in nociceptive and nonnociceptive reflex bladder activities and pudendal inhibition of these activities in cats under α-chloralose anesthesia. Acetic acid (AA; 0.25%) was used to irritate the bladder and induce nociceptive bladder overactivity, while saline was used to distend the bladder and induce nonnociceptive bladder activity. To modulate the bladder reflex, pudendal nerve stimulation (PNS) was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. AA irritation significantly (P < 0.01) reduced bladder capacity to 34.3 ± 7.1% of the saline control capacity, while PNS at 2T and 4T significantly (P < 0.01) increased AA bladder capacity to 84.0 ± 7.8 and 93.2 ± 15.0%, respectively, of the saline control. Picrotoxin (0.4 mg it) did not change AA bladder capacity but completely removed PNS inhibition of AA-induced bladder overactivity. Picrotoxin (iv) only increased AA bladder capacity at a high dose (0.3 mg/kg) but significantly (P < 0.05) reduced 2T PNS inhibition at low doses (0.01-0.1 mg/kg). During saline cystometry, PNS significantly (P < 0.01) increased bladder capacity to 147.0 ± 7.6% at 2T and 172.7 ± 8.9% at 4T of control capacity, and picrotoxin (0.4 mg it or 0.03-0.3 mg/kg iv) also significantly (P < 0.05) increased bladder capacity. However, picrotoxin treatment did not alter PNS inhibition during saline infusion. These results indicate that spinal GABAA receptors have different roles in controlling nociceptive and nonnociceptive reflex bladder activities and in PNS inhibition of these activities. PMID:24523385

  15. Histamine H(3) receptor modulates nociception in a rat model of cholestasis.

    PubMed

    Hasanein, Parisa

    2010-09-01

    Cholestasis is associated with changes including analgesia. The histaminergic system regulates pain perception. The involvement of histamine H(3) receptors in modulation of nociception in a model of elevated endogenous opioid tone, cholestasis, was investigated in this study using immepip and thioperamide as selective H(3) receptor agonist and antagonist respectively. Cholestasis was induced by ligation of main bile duct using two ligatures and transsection the duct between them. Cholestatic rats had increased tail-flick latencies (TFLs) compared to non-cholestatics. Administration of immepip (5 and 30mg/kg) and thioperamide (10 and 20mg/kg) to the cholestatic groups significantly increased and decreased TFLs compared to the saline treated cholestatic group. Immepip antinociception in cholestatic animals was attenuated by co-administration of naloxone. Immepip and thioperamide injections into non-cholestatic animals did not alter TFLs. At the doses used here, none of the drugs impaired motor coordination, as revealed by the rotarod test. The present data show that the histamine H(3) receptor system may be involved in the regulation of nociception during cholestasis in rats. PMID:20576511

  16. Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1

    PubMed Central

    Pareek, Tej K.; Keller, Jason; Kesavapany, Sashi; Agarwal, Nitin; Kuner, Rohini; Pant, Harish C.; Iadarola, Michael J.; Brady, Roscoe O.; Kulkarni, Ashok B.

    2007-01-01

    Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel highly expressed in small-diameter sensory neurons, is activated by heat, protons, and capsaicin. The phosphorylation of TRPV1 provides a versatile regulation of intracellular calcium levels and is critical for TRPV1 function in responding to a pain stimulus. We have previously reported that cyclin-dependent kinase 5 (Cdk5) activity regulates nociceptive signaling. In this article we report that the Cdk5-mediated phosphorylation of TRPV1 at threonine-407 can modulate agonist-induced calcium influx. Inhibition of Cdk5 activity in cultured dorsal root ganglia neurons resulted in a significant reduction of TRPV1-mediated calcium influx, and this effect could be reversed by restoring Cdk5 activity. Primary nociceptor-specific Cdk5 conditional-knockout mice showed reduced TRPV1 phosphorylation, resulting in significant hypoalgesia. Thus, the present study indicates that Cdk5-mediated TRPV1 phosphorylation is important in the regulation of pain signaling. PMID:17194758

  17. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris

    PubMed Central

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  18. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  19. Transient Receptor Potential Melastatin-3 (TRPM3) Mediates Nociceptive-Like Responses in Hydra vulgaris.

    PubMed

    Malafoglia, Valentina; Traversetti, Lorenzo; Del Grosso, Floriano; Scalici, Massimiliano; Lauro, Filomena; Russo, Valeria; Persichini, Tiziana; Salvemini, Daniela; Mollace, Vincenzo; Fini, Massimo; Raffaeli, William; Muscoli, Carolina; Colasanti, Marco

    2016-01-01

    The ability of mammals to feel noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors, which express specific membrane receptors, such as the Transient Receptor Potential (TRP) family. Here, we show that one of the most important nociceptive-like pathways is conserved in the freshwater coelenterate Hydra vulgaris, the most primitive organism possessing a nervous system. In particular, we found that H. vulgaris expresses TRPM3, a nociceptor calcium channel involved in the detection of noxious heat in mammals. Furthermore, we detected that both heat shock and TRPM3 specific agonist (i.e., pregnenolone sulfate) induce the modulation of the heat shock protein 70 (HSP70) and the nitric oxide synthase (NOS), two genes activated by TRP-mediated heat painful stimuli in mammals. As expected, these effects are inhibited by a TRPM3 antagonist (i.e., mefenamic acid). Interestingly, the TRPM3 agonist and heat shock also induce the expression of nuclear transcription erythroid 2-related factor (Nrf2) and superoxide dismutase (SOD), known markers of oxidative stress; noteworthy gene expression was also inhibited by the TRPM3 antagonist. As a whole, our results demonstrate the presence of conserved molecular oxidative/nociceptive-like pathways at the primordial level of the animal kingdom. PMID:26974325

  20. Molecular Basis Determining Inhibition/Activation of Nociceptive Receptor TRPA1 Protein

    PubMed Central

    Banzawa, Nagako; Saito, Shigeru; Imagawa, Toshiaki; Kashio, Makiko; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2014-01-01

    The transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable, nonselective cation channel mainly expressed in a subset of nociceptive neurons. TRPA1 functions as a cellular sensor detecting mechanical, chemical, and thermal stimuli. Because TRPA1 is considered to be a key player in nociception and inflammatory pain, TRPA1 antagonists have been developed as analgesic agents. Recently, by utilizing species differences, we identified the molecular basis of the antagonistic action of A967079, one of the most potent mammalian TRPA1 antagonists. Here, we show a unique effect of A967079 on TRPA1 from diverse vertebrate species, i.e. it acts as an agonist but not as an antagonist for chicken and frog TRPA1s. By characterizing chimeric channels of human and chicken TRPA1s, as well as point mutants, we found that a single specific amino acid residue located within the putative fifth transmembrane domain was involved in not only the stimulatory but also the inhibitory actions of A967079. AP18, structurally related to A967079, exerted similar pharmacological properties to A967079. Our findings and previous reports on species differences in the sensitivity to TRPA1 antagonists supply useful information in the search for novel analgesic medicines targeting TRPA1. PMID:25271161

  1. Anti-nociceptive properties of the xanthine oxidase inhibitor allopurinol in mice: role of A1 adenosine receptors

    PubMed Central

    Schmidt, AP; Böhmer, AE; Antunes, C; Schallenberger, C; Porciúncula, LO; Elisabetsky, E; Lara, DR; Souza, DO

    2009-01-01

    Background and purpose Allopurinol is a potent inhibitor of the enzyme xanthine oxidase, used primarily in the treatment of hyperuricemia and gout. It is well known that purines exert multiple effects on pain transmission. We hypothesized that the inhibition of xanthine oxidase by allopurinol, thereby reducing purine degradation, could be a valid strategy to enhance purinergic activity. The aim of this study was to investigate the anti-nociceptive profile of allopurinol on chemical and thermal pain models in mice. Experimental approach Mice received an intraperitoneal (i.p.) injection of vehicle (Tween 10%) or allopurinol (10–400 mg kg−1). Anti-nociceptive effects were measured with intraplantar capsaicin, intraplantar glutamate, tail-flick or hot-plate tests. Key results Allopurinol presented dose-dependent anti-nociceptive effects in all models. The opioid antagonist naloxone did not affect these anti-nociceptive effects. The non-selective adenosine-receptor antagonist caffeine and the selective A1 adenosine-receptor antagonist, DPCPX, but not the selective A2A adenosine-receptor antagonist, SCH58261, completely prevented allopurinol-induced anti-nociception. No obvious motor deficits were produced by allopurinol, at doses up to 200 mg kg−1. Allopurinol also caused an increase in cerebrospinal fluid levels of purines, including the nucleosides adenosine and guanosine, and decreased cerebrospinal fluid concentration of uric acid. Conclusions and implications Allopurinol-induced anti-nociception may be related to adenosine accumulation. Allopurinol is an old and extensively used compound and seems to be well tolerated with no obvious central nervous system toxic effects at high doses. This drug may be useful to treat pain syndromes in humans. PMID:19133997

  2. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity

    PubMed Central

    Drake, R.A.R.; Leith, J.L.; Almahasneh, F.; Martindale, J.; Wilson, A.W.; Lumb, B.

    2016-01-01

    Descending controls on spinal nociceptive processing play a pivotal role in shaping the pain experience after tissue injury. Secondary hypersensitivity develops within undamaged tissue adjacent and distant to damaged sites. Spinal neuronal pools innervating regions of secondary hypersensitivity are dominated by descending facilitation that amplifies spinal inputs from unsensitized peripheral nociceptors. Cyclooxygenase–prostaglandin (PG) E2 signaling within the ventrolateral periaqueductal gray (vlPAG) is pronociceptive in naive and acutely inflamed animals, but its contributions in more prolonged inflammation and, importantly, secondary hypersensitivity remain unknown. In naive rats, PG EP3 receptor (EP3R) antagonism in vlPAG modulated noxious withdrawal reflex (EMG) thresholds to preferential C-nociceptor, but not A-nociceptor, activation and raised thermal withdrawal thresholds in awake animals. In rats with inflammatory arthritis, secondary mechanical and thermal hypersensitivity of the hindpaw developed and was associated with spinal sensitization to A-nociceptor inputs alone. In arthritic rats, blockade of vlPAG EP3R raised EMG thresholds to C-nociceptor activation in the area of secondary hypersensitivity to a degree equivalent to that evoked by the same manipulation in naive rats. Importantly, vlPAG EP3R blockade also affected responses to A-nociceptor activation, but only in arthritic animals. We conclude that vlPAG EP3R activity exerts an equivalent facilitation on the spinal processing of C-nociceptor inputs in naive and arthritic animals, but gains in effects on spinal A-nociceptor processing from a region of secondary hypersensitivity. Therefore, the spinal sensitization to A-nociceptor inputs associated with secondary hypersensitivity is likely to be at least partly dependent on descending prostanergic facilitation from the vlPAG. SIGNIFICANCE STATEMENT After tissue damage, sensitivity to painful stimulation develops in undamaged areas (secondary

  3. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  4. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents

    PubMed Central

    Ayachi, Safia; Simonin, Frédéric

    2014-01-01

    Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg–Phe–NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates. PMID:25324831

  5. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents.

    PubMed

    Ayachi, Safia; Simonin, Frédéric

    2014-01-01

    Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates. PMID:25324831

  6. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats.

    PubMed

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-01-01

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain. PMID:26224622

  7. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats

    PubMed Central

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-01-01

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain. PMID:26224622

  8. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    PubMed

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26892026

  9. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    PubMed

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-01-01

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels. PMID:26501253

  10. Discriminative stimulus effects of the novel imidazoline I₂ receptor ligand CR4056 in rats.

    PubMed

    Qiu, Yanyan; He, Xiao-Hua; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    This study examined whether a novel imidazoline I₂ receptor ligand CR4056 could serve as a discriminative stimulus and whether it shares similar discriminative stimulus effects with other reported I₂ receptor ligands. Eight male Sprague-Dawley rats were trained to discriminate 10.0 mg/kg CR4056 (i.p.) from vehicle in a two-lever food-reinforced drug discrimination procedure. Once rats acquired the discrimination, substitution and combination studies were conducted to elucidate the underlying receptor mechanisms. All rats acquired CR4056 discrimination after an average of 26 training sessions. Several I₂ receptor ligands (phenyzoline, tracizoline, RS45041, and idazoxan, 3.2-75 mg/kg, i.p.) all occasioned > 80% CR4056-associated lever responding. Other drugs that occasioned partial or no CR4056-associated lever responding included methamphetamine, ketamine, the endogenous imidazoline ligand agmatine, the monoamine oxidase (MAO) inhibitor harmane, the α₂-adrenoceptor agonist clonidine, the μ-opioid receptor agonists morphine and methadone, and the selective I₂ receptor ligands BU224 and 2-BFI. The α₁ adrenoceptor antagonist WB4101, α₂ adrenoceptor antagonist yohimbine and μ-opioid receptor antagonist naltrexone failed to alter the stimulus effects of CR4056. Together, these results show that CR4056 can serve as a discriminative stimulus in rats, which demonstrates high pharmacological specificity and appears to be mediated by imidazoline I₂ receptors. PMID:25308382

  11. Discriminative stimulus effects of the novel imidazoline I2 receptor ligand CR4056 in rats

    PubMed Central

    Qiu, Yanyan; He, Xiao-Hua; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    This study examined whether a novel imidazoline I2 receptor ligand CR4056 could serve as a discriminative stimulus and whether it shares similar discriminative stimulus effects with other reported I2 receptor ligands. Eight male Sprague-Dawley rats were trained to discriminate 10.0 mg/kg CR4056 (i.p.) from vehicle in a two-lever food-reinforced drug discrimination procedure. Once rats acquired the discrimination, substitution and combination studies were conducted to elucidate the underlying receptor mechanisms. All rats acquired CR4056 discrimination after an average of 26 training sessions. Several I2 receptor ligands (phenyzoline, tracizoline, RS45041, and idazoxan, 3.2–75 mg/kg, i.p.) all occasioned > 80% CR4056-associated lever responding. Other drugs that occasioned partial or no CR4056-associated lever responding included methamphetamine, ketamine, the endogenous imidazoline ligand agmatine, the monoamine oxidase (MAO) inhibitor harmane, the α2-adrenoceptor agonist clonidine, the μ-opioid receptor agonists morphine and methadone, and the selective I2 receptor ligands BU224 and 2-BFI. The α1 adrenoceptor antagonist WB4101, α2 adrenoceptor antagonist yohimbine and μ-opioid receptor antagonist naltrexone failed to alter the stimulus effects of CR4056. Together, these results show that CR4056 can serve as a discriminative stimulus in rats, which demonstrates high pharmacological specificity and appears to be mediated by imidazoline I2 receptors. PMID:25308382

  12. Clonidine Reduces Nociceptive Responses in Mouse Orofacial Formalin Model: Potentiation by Sigma-1 Receptor Antagonist BD1047 without Impaired Motor Coordination.

    PubMed

    Yoon, Seo-Yeon; Kang, Suk-Yun; Kim, Hyun-Woo; Kim, Hyung-Chan; Roh, Dae-Hyun

    2015-01-01

    Although the administration of clonidine, an alpha-2 adrenoceptor agonist, significantly attenuates nociception and hyperalgesia in several pain models, clinical trials of clonidine are limited by its side effects such as drowsiness, hypotension and sedation. Recently, we determined that the sigma-1 receptor antagonist BD1047 dose-dependently reduced nociceptive responses in a mouse orofacial formalin model. Here we examined whether intraperitoneal injection of clonidine suppressed the nociceptive responses in the orofacial formalin test, and whether co-administration with BD1047 enhances lower-dose clonidine-induced anti-nociceptive effects without the disruption of motor coordination and blood pressure. Formalin (5%, 10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with the ipsilateral fore- or hind-paw were counted for 45 min. Clonidine (10, 30 or 100 µg/kg) was intraperitoneally administered 30 min before formalin injection. Clonidine alone dose-dependently reduced nociceptive responses in both the first and second phases. Co-localization for alpha-2A adrenoceptors and sigma-1 receptors was determined in trigeminal ganglion cells. Interestingly, the sub-effective dose of BD1047 (3 mg/kg) significantly potentiated the anti-nociceptive effect of lower-dose clonidine (10 or 30 µg/kg) in the second phase. In particular, the middle dose of clonidine (30 µg/kg) in combination with BD1047 produced an anti-nociceptive effect similar to that of the high-dose clonidine, but without a significant motor dysfunction or hypotension. In contrast, mice treated with the high dose of clonidine developed severe impairment in motor coordination and blood pressure. These data suggest that a combination of low-dose clonidine with BD1047 may be a novel and safe therapeutic strategy for orofacial pain management. PMID:26328487

  13. The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus

    NASA Astrophysics Data System (ADS)

    Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre

    2008-07-01

    We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.

  14. The non-peptide GLP-1 receptor agonist WB4-24 blocks inflammatory nociception by stimulating β-endorphin release from spinal microglia

    PubMed Central

    Fan, Hui; Gong, Nian; Li, Teng-Fei; Ma, Ai-Niu; Wu, Xiao-Yan; Wang, Ming-Wei; Wang, Yong-Xiang

    2015-01-01

    BACKGROUND AND PURPOSE Two peptide agonists of the glucagon-like peptide-1 (GLP-1) receptor, exenatide and GLP-1 itself, exert anti-hypersensitive effects in neuropathic, cancer and diabetic pain. In this study, we have assessed the anti-allodynic and anti-hyperalgesic effects of the non-peptide agonist WB4-24 in inflammatory nociception and the possible involvement of microglial β-endorphin and pro-inflammatory cytokines. EXPERIMENTAL APPROACH We used rat models of inflammatory nociception induced by formalin, carrageenan or complete Freund's adjuvant (CFA), to test mechanical allodynia and thermal hyperalgesia. Expression of β-endorphin and pro-inflammatory cytokines was measured using real-time quantitative PCR and fluorescent immunoassays. KEY RESULTS WB4-24 displaced the specific binding of exendin (9–39) in microglia. Single intrathecal injection of WB4-24 (0.3, 1, 3, 10, 30 and 100 μg) exerted dose-dependent, specific, anti-hypersensitive effects in acute and chronic inflammatory nociception induced by formalin, carrageenan and CFA, with a maximal inhibition of 60–80%. Spinal WB4-24 was not effective in altering nociceptive pain. Subcutaneous injection of WB4-24 was also antinociceptive in CFA-treated rats. WB4-24 evoked β-endorphin release but did not inhibit expression of pro-inflammatory cytokines in either the spinal cord of CFA-treated rats or cultured microglia stimulated by LPS. WB4-24 anti-allodynia was prevented by a microglial inhibitor, β-endorphin antiserum and a μ-opioid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Our results suggest that WB4-24 inhibits inflammatory nociception by releasing analgesic β-endorphin rather than inhibiting the expression of proalgesic pro-inflammatory cytokines in spinal microglia, and that the spinal GLP-1 receptor is a potential target molecule for the treatment of pain hypersensitivity including inflammatory nociception. PMID:25176008

  15. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    PubMed

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms. PMID:22392784

  16. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    PubMed

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (<50 cmH2O) and short duration (<20 s) at a smaller bladder capacity ∼80% of saline control capacity. PNS significantly (P < 0.01) increased bladder capacity from 85.5 ± 10.1 to 137.3 ± 14.1 or 148.2 ± 11.2% at 2T or 4T stimulation, respectively, where T is the threshold intensity for PNS to induce anal twitch. MTEP {3-[(2-methyl-4-thiazolyl)ethynyl]pyridine; 3 mg/kg iv, a selective mGluR5 antagonist} completely removed the PNS inhibition and significantly (P < 0.05) increased bladder capacity from 71.8 ± 9.9 to 94.0 ± 13.9% of saline control, but it did not change the bladder contraction amplitude. After propranolol (3 mg/kg iv, a β1/β2-adrenergic receptor antagonist) treatment, PNS inhibition remained but MTEP significantly (P < 0.05) reduced the bladder contraction amplitude from 18.6 ± 2.1 to 6.6 ± 1.2 cmH2O and eliminated PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P < 0.05) reduced the bladder contraction amplitude from 20.9 ± 3.2 to 8.1 ± 1.5 cmH2O on average demonstrating that spinal reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex. PMID:25673810

  17. H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats.

    PubMed

    Hsieh, Gin C; Chandran, Prasant; Salyers, Anita K; Pai, Madhavi; Zhu, Chang Z; Wensink, Erica J; Witte, David G; Miller, Thomas R; Mikusa, Joe P; Baker, Scott J; Wetter, Jill M; Marsh, Kennan C; Hancock, Arthur A; Cowart, Marlon D; Esbenshade, Timothy A; Brioni, Jorge D; Honore, Prisca

    2010-03-01

    The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.c., 95% CI=8.5-26) in a mast cell-dependent manner. JNJ7777120 potently reversed thermal hyperalgesia observed following intraplantar carrageenan injection of acute inflammatory pain (ED(50)=22 mg/kg i.p., 95% CI=10-35) in rats and significantly decreased the myeloperoxide activity in the carrageenan-injected paw. In contrast, no effects were produced by either H(1)R antagonist diphenhydramine, H(2)R antagonists ranitidine, or H(3)R antagonist ABT-239. JNJ7777120 also exhibited robust anti-nociceptive activity in persistent inflammatory (CFA) pain with an ED(50) of 29 mg/kg i.p. (95% CI=19-40) and effectively reversed monoiodoacetate (MIA)-induced osteoarthritic joint pain. This compound also produced dose-dependent anti-allodynic effects in the spinal nerve ligation (ED(50)=60 mg/kg) and sciatic nerve constriction injury (ED(50)=88 mg/kg) models of chronic neuropathic pain, as well as in a skin-incision model of acute post-operative pain (ED(50)=68 mg/kg). In addition, the analgesic effects of JNJ7777120 were maintained following repeated administration and were evident at the doses that did not cause neurologic deficits in rotarod test. Our results demonstrate that selective blockade of H(4) receptors in vivo produces significant anti-nociception in animal models of inflammatory and neuropathic pain. PMID:20004681

  18. Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine and κ-opioid receptors in rat spinal cord nociceptive reflexes.

    PubMed

    Ramos-Zepeda, Guillermo A; Herrero-Zorita, Carlos; Herrero, Juan F

    2014-12-01

    Antinociception induced by the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) is linked to opioid receptors. We studied the subtype of receptors to which CPA action is related, as well as a possible enhancement of antinociception when CPA is coadministered with opioid receptor agonists. Spinal cord neuronal nociceptive responses of male Wistar rats with inflammation were recorded using the single motor unit technique. CPA antinociception was challenged with naloxone or norbinaltorphimine. The antinociceptive activity of fentanyl and U-50488H was studied alone and combined with CPA. Reversal of CPA antinociception was observed with norbinaltorphimine (82.9±13% of control) but not with low doses of naloxone (27±8% of control), indicating an involvement of κ-opioid but not µ-opioid receptors. Low doses of CPA did not modify fentanyl antinociception. However, a significant enhancement of the duration of antinociception was seen when U-50488H was coadministered with CPA. We conclude that antinociception mediated by CPA in the spinal cord is associated with activation of κ-opioid but not µ-opioid receptors in inflammation. In addition, coadministration of CPA and κ-opioid receptor agonists is followed by significantly longer antinociception, opening new perspectives in the treatment of chronic inflammatory pain. PMID:25325292

  19. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats.

    PubMed

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-02-15

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6mg/kg BU224 or 32mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned>80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned>80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT)2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  20. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats

    PubMed Central

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-01-01

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6 mg/kg BU224 or 32 mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned > 80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned > 80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT) 2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  1. Termination of Nociceptive Bahaviour at the End of Phase 2 of Formalin Test is Attributable to Endogenous Inhibitory Mechanisms, but not by Opioid Receptors Activation

    PubMed Central

    Azhdari-Zarmehri, Hassan; Mohammad-Zadeh, Mohammad; Feridoni, Masoud; Nazeri, Masoud

    2014-01-01

    Introduction Formalin injection induces nociceptive bahaviour in phase I and II, with a quiescent phase between them. While active inhibitory mechanisms are proposed to be responsible for initiation of interphase, the exact mechanisms which lead to termination of nociceptive response in phase II are not clear yet. Phase II is a consequence of peripheral and central sensitization processes, which can lead to termination of the noxious stimuli responses; 45-60 minutes after formalin injection via possible recruitment of active inhibitory mechanisms which we have investigated in this study. Methods To test our hypothesis, in the first set of experiments, we evaluated nociceptive response after two consecutive injection of formalin (50µL, 2%), with intervals of 5 or 60 minutes. In the next set, formalin tests were carried out in companion with injection of Naloxone Hydrochloride, a non-selective antagonist of opioid receptors, pre-formalin injection and 30 and 45 minutes post formalin injection. Results While normal nociceptive behaviour was observed in the group receiving one injection of formalin, a diminished response was observed in phases I and II of those receiving consequent injection of formalin, 60 minute after first injection. While second injection of formalin, 5 minute after first injection, had no effect. Administration of naloxone (1mg/kg) decreased nociception in phase 2A; but had no effect on delayed termination of formalin test. Discussion The results of this study suggest the existence of an active inhibitory mechanism, other than the endogenous opioids, that is responsible for termination of nociceptive behaviour at the end of formalin test. PMID:25436084

  2. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    SciTech Connect

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, but not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.

  3. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    PubMed

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-01-01

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome. PMID:27230068

  4. Dopamine D3 Receptors Mediate the Discriminative Stimulus Effects of Quinpirole in Free-Feeding Rats

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  5. Mineralocorticoid receptors guide spatial and stimulus-response learning in mice.

    PubMed

    Arp, J Marit; ter Horst, Judith P; Kanatsou, Sofia; Fernández, Guillén; Joëls, Marian; Krugers, Harm J; Oitzl, Melly S

    2014-01-01

    Adrenal corticosteroid hormones act via mineralocorticoid (MR) and glucocorticoid receptors (GR) in the brain, influencing learning and memory. MRs have been implicated in the initial behavioral response in novel situations, which includes behavioral strategies in learning tasks. Different strategies can be used to solve navigational tasks, for example hippocampus-dependent spatial or striatum-dependent stimulus-response strategies. Previous studies suggested that MRs are involved in spatial learning and induce a shift between learning strategies when animals are allowed a choice between both strategies. In the present study, we further explored the role of MRs in spatial and stimulus-response learning in two separate circular holeboard tasks using female mice with forebrain-specific MR deficiency and MR overexpression and their wildtype control littermates. In addition, we studied sex-specific effects using male and female MR-deficient mice. First, we found that MR-deficient compared to control littermates and MR-overexpressing mice display altered exploratory and searching behavior indicative of impaired acquisition of novel information. Second, female (but not male) MR-deficient mice were impaired in the spatial task, while MR-overexpressing female mice showed improved performance in the spatial task. Third, MR-deficient mice were also impaired in the stimulus-response task compared to controls and (in the case of females) MR-overexpressing mice. We conclude that MRs are important for coordinating the processing of information relevant for spatial as well as stimulus-response learning. PMID:24465979

  6. Capsaicin, Nociception and Pain.

    PubMed

    Frias, Bárbara; Merighi, Adalberto

    2016-01-01

    Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations. PMID:27322240

  7. The role of P2X7 purinergic receptors in inflammatory and nociceptive changes accompanying cyclophosphamide-induced haemorrhagic cystitis in mice

    PubMed Central

    Martins, JP; Silva, RBM; Coutinho-Silva, R; Takiya, CM; Battastini, AMO; Morrone, FB; Campos, MM

    2012-01-01

    BACKGROUND AND PURPOSE ATP is released in response to cellular damage, and P2X7 receptors have an essential role in the onset and maintenance of pathological changes. Haemorrhagic cystitis (HC) is a well-known adverse effect of therapy with cyclophosphamide used for the treatment of many solid tumours and autoimmune conditions. Here we have evaluated the role of P2X7 receptors in a model of HC induced by cyclophosphamide. EXPERIMENTAL APPROACH Effects of pharmacological antagonism or genetic deletion of P2X7 receptor on cyclophosphamide-induced HC in mice was assessed by nociceptive and inflammatory measures. In addition, the presence of immunoreactive P2X7 receptors was assessed by immunohistochemistry. KEY RESULTS Pretreatment with the selective P2X7 receptor antagonist A-438079 or genetic ablation of P2X7 receptors reduced nociceptive behaviour scores in the HC model. The same strategies decreased both oedema and haemorrhage indices, on macroscopic or histological evaluation. Treatment with A-438079 decreased the staining for c-Fos in the lumbar spinal cord and brain cortical areas. Treatment with A-438079 also prevented the increase of urinary bladder myeloperoxidase activity and macrophage migration induced by cyclophosphamide and reduced the tissue levels of IL-1β and TNF-α. Finally, P2X7 receptors were markedly up-regulated in the bladders of mice with cyclophosphamide-induced HC. CONCLUSIONS AND IMPLICATIONS P2X7 receptors were significantly involved in a model of HC induced by cyclophosphamide. Pharmacological inhibition of these receptors might represent a new therapeutic option for this pathological condition. PMID:21675966

  8. Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons

    PubMed Central

    Chen, Yong; Zhang, Xiaofei; Wang, Congying; Li, GuangWen; Gu, Yanping; Huang, Li-Yen Mae

    2008-01-01

    Purinergic ionotropic P2X7 receptors (P2X7Rs) are closely associated with excitotoxicity and nociception. Inhibition of P2X7R activation has been considered as a potentially useful strategy to improve recovery from spinal cord injury and reduce inflammatory damage to trauma. The physiological functions of P2X7Rs, however, are poorly understood, even though such information is essential for making the P2X7R an effective therapeutic target. We show here that P2X7Rs in satellite cells of dorsal root ganglia tonically inhibit the expression of P2X3Rs in neurons. Reducing P2X7R expression using siRNA or blocking P2X7R activity by antagonists elicits P2X3R up-regulation, increases the activity of sensory neurons responding to painful stimuli, and evokes abnormal nociceptive behaviors in rats. Thus, contrary to the notion that P2X7R activation is cytotoxic, P2X7Rs in satellite cells play a crucial role in maintaining proper P2X3R expression in dorsal root ganglia. Studying the mechanism underlying the P2X7R–P2X3R control, we demonstrate that activation of P2X7Rs evokes ATP release from satellite cells. ATP in turn stimulates P2Y1 receptors in neurons. P2Y1 receptor activation appears to be necessary and sufficient for the inhibitory control of P2X3R expression. We further determine the roles of the P2X7R–P2Y1–P2X3R inhibitory control under injurious conditions. Activation of the inhibitory control effectively prevents the development of allodynia and increases the potency of systemically administered P2X7R agonists in inflamed rats. Thus, direct blocking P2X7Rs, as proposed before, may not be the best strategy for reducing pain or lessening neuronal degeneration because it also disrupts the protective function of P2X7Rs. PMID:18946042

  9. Discriminative Stimulus Effects of the GABAB Receptor-Positive Modulator rac-BHFF: Comparison with GABAB Receptor Agonists and Drugs of Abuse

    PubMed Central

    Cheng, Kejun; Rice, Kenner C.

    2013-01-01

    GABAB receptor-positive modulators are thought to have advantages as potential medications for anxiety, depression, and drug addiction. They may have fewer side effects than GABAB receptor agonists, because selective enhancement of activated receptors could have effects different from nonselective activation of all receptors. To examine this, pigeons were trained to discriminate the GABAB receptor-positive modulator (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) from its vehicle. The discriminative stimulus effects of rac-BHFF were not mimicked by the GABAB receptor agonists baclofen and γ-hydroxybutyrate (GHB), not by diazepam, and not by alcohol, cocaine, and nicotine, whose self-administration has been reported to be attenuated by GABAB receptor-positive modulators. The discriminative stimulus effects of rac-BHFF were not antagonized by the GABAB receptor antagonist 3-aminopropyl (diethoxymethyl)phosphinic acid (CGP35348) but were attenuated by the less efficacious GABAB receptor-positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)phenol (CGP7930), suggesting the possibility that rac-BHFF produces its discriminative stimulus effects by directly activating GABAB2 subunits of GABAB receptors. At a dose 10-fold lower than the training dose, rac-BHFF enhanced the discriminative stimulus effects of baclofen, but not of GHB. This study provides evidence that the effects of GABAB receptor-positive modulators are not identical to those of GABAB receptor agonists. In addition, the results suggest that positive modulation of GABAB receptors does not produce discriminative stimulus effects similar to those of benzodiazepines, alcohol, cocaine, and nicotine. Finally, the finding that rac-BHFF enhanced effects of baclofen but not of GHB is consistent with converging evidence that the populations of GABAB receptors mediating the effects of baclofen and GHB are not identical. PMID:23275067

  10. Effects of the nicotinic acetylcholine receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in male rhesus monkeys.

    PubMed

    Banks, Matthew L

    2014-06-01

    Preclinical drug discrimination procedures have been useful in understanding the pharmacological mechanisms of the subjective-like effects of abused drugs. Converging lines of evidence from neurochemical and behavioral studies implicate a potential role of nicotinic acetylcholine (nACh) receptors in the abuse-related effects of cocaine. The aim of the present study was to determine the effects of the nACh receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in nonhuman primates. The effects of mecamylamine on the cocaine-like discriminative stimulus effects of nicotine were also examined. Male rhesus monkeys (n = 5) were trained to discriminate 0.32 mg/kg, IM cocaine from saline in a 2-key, food-reinforced discrimination procedure. Initially, potency and time course of cocaine-like discriminative stimulus effects were determined for nicotine and mecamylamine alone. Test sessions were then conducted examining the effects of mecamylamine on cocaine or the cocaine-like discriminative stimulus effects of nicotine. Curiously, mecamylamine produced partial cocaine-like discriminative stimulus effects. Mecamylamine did not significantly alter the discriminative stimulus effects of cocaine up to doses that significantly decreased rates of operant responding. Mecamylamine and nicotine combinations were not different than saline. These results confirm previous nonhuman primate studies of partial substitution with nicotine and extend these findings with mecamylamine. Furthermore, these results extend previous results in rats suggesting cocaine may have nACh receptor antagonist properties. PMID:24548245

  11. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys

    PubMed Central

    Zelenock, Kathy A.; Lindsey, Angela M.; Sulima, Agnieszka; Rice, Kenner C.; Prinssen, Eric P.; Wichmann, Jürgen; Woods, James H.

    2016-01-01

    Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects. PMID:26801398

  12. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys.

    PubMed

    Saccone, Phillip A; Zelenock, Kathy A; Lindsey, Angela M; Sulima, Agnieszka; Rice, Kenner C; Prinssen, Eric P; Wichmann, Jürgen; Woods, James H

    2016-04-01

    Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects. PMID:26801398

  13. A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones

    PubMed Central

    Rouyar, Angela; Party, Virginie; Prešern, Janez; Blejec, Andrej; Renou, Michel

    2011-01-01

    In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal. PMID:22028879

  14. Spinal Toll-like receptor signaling and nociceptive processing: Regulatory balance between TIRAP and TRIF cascades mediated by TNF and IFNβ

    PubMed Central

    Stokes, Jennifer A.; Corr, Maripat; Yaksh, Tony L.

    2013-01-01

    Toll-like Receptors (TLRs) play a pivotal role in inflammatory processes and individual TLRs have been investigated in nociception. Here, we examine overlapping and diverging roles of spinal TLRs and their associated adaptor proteins in nociceptive processing. Intrathecal (IT) TLR2, TLR3, or TLR4 ligands (-L) evoked persistent (7 day) tactile allodynia (TA) that was abolished in respective TLR deficient mice. Using Tnf−/− mice, we found that IT TLR2 and TLR4 TA was TNF-dependent, while TLR3 was TNF-independent. In toll-interleukin 1 receptor (TIR) domain containing adaptor protein (Tirap−/−) mice (downstream to TLR2 and TLR4), allodynia after IT TLR2-L and TLR4-L was abolished. Unexpectedly, in TIR-domain-containing adapter-inducing interferon-β (Triflps2) mice (downstream of TLR3 and TLR4), TLR3-L allodynia was abrogated, but intrathecal TLR4-L produced a persistent increase (>21 days) in TA. Consistent with a role for interferon (IFN)β (downstream to TRIF) in regulating recovery after IT TLR4-L, prolonged allodynia was noted in Ifnar1−/− mice. Further, IT IFNβ given to Triflps2 mice reduced TLR4 allodynia. Hence, spinal TIRAP and TRIF cascades differentially lead to robust TA by TNF dependent and independent pathways, while activation of TRIF modulated processing through type I IFN receptors. Based on these results, we believe that processes leading to the activation of these spinal TLRs initiate TNF-dependent and -independent cascades, which contribute to the associated persistent pain state. In addition, TRIF pathways are able to modulate the TNF-dependent pain state through IFNβ. PMID:23489833

  15. N-methyl-D-aspartate receptor channel blocker-like discriminative stimulus effects of nitrous oxide gas.

    PubMed

    Richardson, Kellianne J; Shelton, Keith L

    2015-01-01

    Nitrous oxide (N2O) gas is a widely used anesthetic adjunct in dentistry and medicine that is also commonly abused. Studies have shown that N2O alters the function of the N-methyl-d-aspartate (NMDA), GABAA, opioid, and serotonin receptors among others. However, the receptors systems underlying the abuse-related central nervous system effects of N2O are unclear. The present study explores the receptor systems responsible for producing the discriminative stimulus effects of N2O. B6SJLF1/J male mice trained to discriminate 10 minutes of exposure to 60% N2O + 40% oxygen versus 100% oxygen served as subjects. Both the high-affinity NMDA receptor channel blocker (+)-MK-801 maleate [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] and the low-affinity blocker memantine partially mimicked the stimulus effects of N2O. Neither the competitive NMDA antagonist, CGS-19755 (cis-4-[phosphomethyl]-piperidine-2-carboxylic acid), nor the NMDA glycine-site antagonist, L701-324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], produced N2O-like stimulus effects. A range of GABAA agonists and positive modulators, including midazolam, pentobarbital, muscimol, and gaboxadol (4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol), all failed to produce N2O-like stimulus effects. The μ-, κ-, and δ-opioid agonists, as well as 5-hydroxytryptamine (serotonin) 1B/2C (5-HT1B/2C) and 5-HT1A agonists, also failed to produce N2O-like stimulus effects. Ethanol partially substituted for N2O. Both (+)-MK-801 and ethanol but not midazolam pretreatment also significantly enhanced the discriminative stimulus effects of N2O. Our results support the hypothesis that the discriminative stimulus effects of N2O are at least partially mediated by NMDA antagonist effects similar to those produced by channel blockers. However, as none of the drugs tested fully mimicked the stimulus effects of N2O, other mechanisms may also be involved. PMID:25368340

  16. Discriminative stimulus effects of the GABAB receptor-positive modulator rac-BHFF: comparison with GABAB receptor agonists and drugs of abuse.

    PubMed

    Koek, Wouter; Cheng, Kejun; Rice, Kenner C

    2013-03-01

    GABA(B) receptor-positive modulators are thought to have advantages as potential medications for anxiety, depression, and drug addiction. They may have fewer side effects than GABA(B) receptor agonists, because selective enhancement of activated receptors could have effects different from nonselective activation of all receptors. To examine this, pigeons were trained to discriminate the GABA(B) receptor-positive modulator (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) from its vehicle. The discriminative stimulus effects of rac-BHFF were not mimicked by the GABA(B) receptor agonists baclofen and γ-hydroxybutyrate (GHB), not by diazepam, and not by alcohol, cocaine, and nicotine, whose self-administration has been reported to be attenuated by GABA(B) receptor-positive modulators. The discriminative stimulus effects of rac-BHFF were not antagonized by the GABA(B) receptor antagonist 3-aminopropyl (diethoxymethyl)phosphinic acid (CGP35348) but were attenuated by the less efficacious GABA(B) receptor-positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)phenol (CGP7930), suggesting the possibility that rac-BHFF produces its discriminative stimulus effects by directly activating GABA(B2) subunits of GABA(B) receptors. At a dose 10-fold lower than the training dose, rac-BHFF enhanced the discriminative stimulus effects of baclofen, but not of GHB. This study provides evidence that the effects of GABA(B) receptor-positive modulators are not identical to those of GABA(B) receptor agonists. In addition, the results suggest that positive modulation of GABA(B) receptors does not produce discriminative stimulus effects similar to those of benzodiazepines, alcohol, cocaine, and nicotine. Finally, the finding that rac-BHFF enhanced effects of baclofen but not of GHB is consistent with converging evidence that the populations of GABA(B) receptors mediating the effects of baclofen and GHB are not identical. PMID:23275067

  17. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect

    PubMed Central

    Ang, Seok Ting; Lee, Andy Thiam Huat; Foo, Fang Chee; Ng, Lynn; Low, Chian-Ming; Khanna, Sanjay

    2015-01-01

    The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task. PMID:26487082

  18. Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents

    PubMed Central

    Queme, Luis F.; Ross, Jessica L.; Lu, Peilin; Hudgins, Renita C.

    2016-01-01

    Numerous musculoskeletal pain disorders are based in dysfunction of peripheral perfusion and are often comorbid with altered cardiovascular responses to muscle contraction/exercise. We have recently found in mice that 24 h peripheral ischemia induced by a surgical occlusion of the brachial artery (BAO) induces increased paw-guarding behaviors, mechanical hypersensitivity, and decreased grip strength. These behavioral changes corresponded to increased heat sensitivity as well as an increase in the numbers of chemosensitive group III/IV muscle afferents as assessed by an ex vivo forepaw muscles/median and ulnar nerves/dorsal root ganglion (DRG)/spinal cord (SC) recording preparation. Behaviors also corresponded to specific upregulation of the ADP-responsive P2Y1 receptor in the DRGs. Since group III/IV muscle afferents have separately been associated with regulating muscle nociception and exercise pressor reflexes (EPRs), and P2Y1 has been linked to heat responsiveness and phenotypic switching in cutaneous afferents, we sought to determine whether upregulation of P2Y1 was responsible for the observed alterations in muscle afferent function, leading to modulation of muscle pain-related behaviors and EPRs after BAO. Using an afferent-specific siRNA knockdown strategy, we found that inhibition of P2Y1 during BAO not only prevented the increased mean blood pressure after forced exercise, but also significantly reduced alterations in pain-related behaviors. Selective P2Y1 knockdown also prevented the increased firing to heat stimuli and the BAO-induced phenotypic switch in chemosensitive muscle afferents, potentially through regulating membrane expression of acid sensing ion channel 3. These results suggest that enhanced P2Y1 in muscle afferents during ischemic-like conditions may dually regulate muscle nociception and cardiovascular reflexes. SIGNIFICANCE STATEMENT Our current results suggest that P2Y1 modulates heat responsiveness and chemosensation in muscle afferents

  19. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus

    PubMed Central

    Stefanescu, Roxana A.; Shore, Susan E.

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry. PMID:26622224

  20. Ovarian hormones and the heterogeneous receptor mechanisms mediating the discriminative stimulus effects of ethanol in female rats.

    PubMed

    Helms, Christa M; McCracken, Aubrey D; Heichman, Sharon L; Moschak, Travis M

    2013-04-01

    Past studies have suggested that progesterone-derived ovarian hormones contribute to the discriminative stimulus effects of ethanol, particularly via progesterone metabolites that act at γ-aminobutyric acid type A (GABA(A)) receptors. It is unknown whether loss of ovarian hormones in women, for example, after menopause, may be associated with altered receptor mediation of the effects of ethanol. The current study measured the substitution of allopregnanolone, pregnanolone, pentobarbital, midazolam, dizocilpine, TFMPP, and RU 24969 in female sham and ovariectomized rats trained to discriminate 1.0 g/kg ethanol from water. The groups did not differ in the substitution of GABA(A)-positive modulators (barbiturates, benzodiazepines, neuroactive steroids) or the N-methyl-D-aspartate receptor antagonist dizocilpine. Similarly, blood-ethanol concentration did not differ between the groups, and plasma adrenocorticotropic hormone, progesterone, pregnenolone, and deoxycorticosterone were unchanged 30 min after administration of 1.0 g/kg ethanol or water. However, substitution of neuroactive steroids and RU 24969, a 5-hydroxytryptamine (5-HT)(1A/1B) receptor agonist, was lower than observed in previous studies of male rats, and TFMPP substitution was decreased in ovariectomized rats. Ovarian hormones appear to contribute to 5-HT receptor mediation of the discriminative stimulus effects of ethanol in rats. PMID:23399883

  1. The expression of functional IL-2 receptor on activated macrophages depends on the stimulus applied.

    PubMed Central

    Valitutti, S; Carbone, A; Castellino, F; Maggiano, N; Ricci, R; Larocca, L M; Musiani, P

    1989-01-01

    Human peripheral blood monocytes (Mo) synthesize prostaglandin E2 (PGE2) when activated with lipopolysaccharide (LPS). This production is strongly enhanced by the addition of supernatant from phytohaemagglutinin (PHA)-activated T cells. To evaluate the factor(s) responsible for this enhancement we studied the effect of several cytokines on the PGE2 metabolism. Recombinant interleukin-1 (IL-1) or recombinant IL-2 strongly enhanced PGE2 synthesis in LPS-stimulated Mo cultures, whereas recombinant interferon-gamma (IFN-gamma) partially inhibited its production. To see whether the effect of IL-2 on Mo was due to the presence of IL-2 receptor (IL-2R) on the cell surface, flow cytometric analysis and electron microscopy were used to investigate IL-2R expression in unstimulated and stimulated Mo. Stimulated, but not resting, Mo displayed the p55 IL-2R chain on their cellular surface and associated with the polyribosomes of the rough endoplasmic reticulum in the cytoplasm. This finding strongly suggested that the p55 chain of the IL-2R was synthesized by activated Mo. To confirm this result, 125I-labelled IL-2 was bound under high- and low-affinity conditions and cross-linked to Mo cultured in the presence of LPS, IFN-gamma or IL-1. The cross-linked 125I-IL-2/IL-2R complexes were analysed by SDS-PAGE. Mo cultured with LPS, IFN-gamma and IL-1 expressed the p55 protein detected by low-affinity cross-linking, whereas only LPS-stimulated Mo displayed a barely detectable band with an apparent MW of 70,000 under high-affinity binding conditions. In addition, stimulated Mo were found capable of producing the soluble form of IL-2R. Finally, LPS-activated Mo only responded to the addition of IL-2 by an increase in PGE2 production, suggesting that the function of IL-2R on activated Mo is linked to the stimulus applied. Images Figure 2 Figure 3 PMID:2661416

  2. Functional evidence for multiple receptor activation by kappa-ligands in the inhibition of spinal nociceptive reflexes in the rat.

    PubMed Central

    Herrero, J. F.; Headley, P. M.

    1993-01-01

    1. The evidence for kappa-receptor heterogeneity is equivocal. We have now investigated this question by comparing the effects of five putatively selective kappa-agonists. The parameters examined were: the relative potencies in depressing hindlimb flexor muscle reflexes to noxious pinch stimuli in both spinalized and sham-spinalized rats; the reversibility of these effects by naloxone; and the effects on blood pressure. 2. Two types of drug effect was discriminated. One drug group, represented by U-50,488, U-69,593 and PD-117,302, had a potency ratio between sham and spinalized rats approximately 10 fold lower than the other group, which comprised GR103545 and CI-977. 3. Under sham-spinalized conditions, CI-977 and GR103545 at high doses caused only sub-maximal reductions of spinal reflexes. U-50,488 was still active when superimposed on these high doses of GR103545. 4. Naloxone reversed all effects, but different doses were required between compounds, with GR103545 taking some 20 times higher doses of naloxone to cause reversal than did U-50,488. 5. The effects on mean arterial pressure were opposite between groups. 6. The results imply that more than one type of naloxone-sensitive non-mu opioid receptor must be involved in mediating these complex actions of ligands that have been claimed to be selective for kappa-receptors. PMID:8220893

  3. Discriminative stimulus effects of NMDA, AMPA and mGluR5 glutamate receptor ligands in methamphetamine-trained rats

    PubMed Central

    Wooters, Thomas E.; Dwoskin, Linda P.; Bardo, Michael T.

    2011-01-01

    Glutamate contributes to the reinforcing and stimulant effects of methamphetamine, yet its potential role in the interoceptive stimulus properties of methamphetamine is unknown. In the current study, adult male Sprague-Dawley rats were trained to discriminate methamphetamine (1.0 mg/kg, i.p.) from saline in a standard operant discrimination task. The effects of methamphetamine (0.1-1.0 mg/kg, i.p.), the N-methyl-D-aspartate (NMDA) receptor channel blockers MK-801 (0.03-0.3 mg/kg, i.p.) and ketamine (1.0-10.0 mg/kg, i.p.), the low-affinity NMDA antagonist memantine (1.0-10 mg/kg, i.p.), the polyamine site NMDA receptor antagonist ifenprodil (1-10 mg/kg), the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-10 mg/kg, i.p.), and the metabotropic 5 (mGluR5) receptor antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP; 1-10 mg/kg) given alone were determined in substitution tests. The effects of MK-801 (0.03 and 0.1 mg/kg), ketamine (1.0 and 3.0 mg/kg), ifenprodil (5.6 mg/kg), CNQX (5.6 mg/kg) and MPEP (5.6 mg/kg) were also tested in combination with methamphetamine to assess for alterations in the methamphetamine cue. In substitution tests, none of the test drugs generalized to the methamphetamine cue. However, ketamine and ifenprodil produced significant leftward shifts in the methamphetamine dose-response curve; pretreatment with 3 mg/kg of ketamine, for example, decreased the ED50 value for methamphetamine by half. These results suggest that blockade of the NMDA receptor augments the interoceptive stimulus properties of methamphetamine. PMID:21836462

  4. Inhibitory Plasticity Facilitates Recovery of Stimulus Velocity Tuning in the Superior Colliculus after Chronic NMDA Receptor Blockade

    PubMed Central

    Razak, Khaleel A.; Pallas, Sarah L.

    2016-01-01

    The developing nervous system is shaped in important ways by spontaneous and stimulus-driven neural activity. Perturbation of normal activity patterns can profoundly affect the development of some neural response properties, whereas others are preserved through mechanisms that either compensate for or are unaffected by the perturbation. Most studies have examined the role of excitation in activity-dependent plasticity of response properties. Here, we examine the role of inhibition within the context of response selectivity for moving stimuli. The spatial extent of retinal input to the developing hamster superior colliculus (SC) can be experimentally increased by chronic NMDA receptor (NMDAR) blockade. Remarkably, stimulus velocity tuning is intact despite the increase in excitatory inputs. The goal of this study was to investigate whether plasticity in surround inhibition might provide the mechanism underlying this preservation of velocity tuning. Surround inhibition shapes velocity tuning in the majority of superficial layer SC neurons in normal hamsters. We show that despite the NMDAR blockade-induced increase in feedforward excitatory convergence from the retina, stimulus velocity tuning in the SC is maintained via compensatory plasticity in surround inhibition. The inhibitory surround increased in strength and spatial extent, and surround inhibition made a larger contribution to velocity tuning in the SC after chronic NMDAR blockade. These results show that inhibitory plasticity can preserve the balance between excitation and inhibition that is necessary to preserve response properties after developmental manipulations of neural activity. Understanding these compensatory mechanisms may permit their use to facilitate recovery from trauma or sensory deprivation. PMID:17611280

  5. Responsiveness of electrical nociceptive detection thresholds to capsaicin (8 %)-induced changes in nociceptive processing.

    PubMed

    Doll, Robert J; van Amerongen, Guido; Hay, Justin L; Groeneveld, Geert J; Veltink, Peter H; Buitenweg, Jan R

    2016-09-01

    Pain disorders can be initiated and maintained by malfunctioning of one or several mechanisms underlying the nociceptive function. Psychophysical procedures allow the estimation of nociceptive detection thresholds using intra-epidermal electrical stimuli. By varying the temporal properties of electrical stimuli, various contributions of nociceptive processes to stimulus processing can be observed. To observe the responsiveness of nociceptive thresholds to changes in nociceptive function, a model of capsaicin-induced nerve defunctionalization was used. Its effect on nociceptive detections thresholds was investigated over a period of 84 days. A cutaneous capsaicin (8 %) patch was applied for 60 min to the upper leg of eight healthy human participants. Single- and double-pulse electrical stimuli were presented in a pseudo-random order using an intra-epidermal electrode. Stimuli and corresponding responses were recorded on both treated and untreated skin areas prior to capsaicin application and on days 2, 7, 28, and 84. Increases in electrical detection thresholds at the capsaicin area were observed on days 2 and 7 for single-pulse stimuli. Detection thresholds corresponding to double-pulse stimuli were increased on days 7 and 28, suggesting a delayed and longer lasting effect on double-pulse stimuli. In the present study, it was demonstrated that the responsiveness of detection thresholds to capsaicin application depends on the temporal properties of electrical stimuli. The observation of capsaicin-induced changes by estimation of detection thresholds revealed different time patterns of contributions of peripheral and central mechanisms to stimulus processing. PMID:27142052

  6. Differential effects of stimulus termination on excitation and desensitization of folic acid receptors and guanylate cyclase in Dictyostelium discoideum.

    PubMed

    de Wit, R J; Bulgakov, R; Bominaar, T A; Rinke de Wit, T F

    1987-08-19

    The response of guanylate cyclase to addition of extracellular stimuli is well documented. Here we report for the first time the response of guanylate cyclase to removal of stimuli. Three methods were employed to terminate rapidly a stimulus of folic acid. (1) Addition of a highly active folate deaminase preparation, or (2) 12-fold dilution of the stimulated cell suspension, or (3) addition of an excess concentration of a non-agonistic derivative of folic acid, i.e., 2-deaminofolic acid, which chases the folate agonist from its cell-surface receptors. Accumulation of cGMP terminated instantaneously upon addition of deaminase, but degradation of the synthesized cGMP was not observed until 10-12 s after stimulation. Also in a cGMP phosphodiesterase-lacking 'streamer' mutant an instantaneous termination of further cGMP accumulation was observed upon stimulus removal. This suggests that the termination of cGMP accumulation is due to inactivation of guanylate cyclase instead of a steady state of cGMP synthesis and degradation. Further accumulation of cGMP was approx. 75% reduced upon dilution of a cell suspension after stimulation with both agonists. Stimulation by 300 nM folic acid or by 30 nM N10-methylfolic acid (a more potent agonist) yielded identical results. However, upon addition of deaminofolic acid the accumulation of cGMP continued normally if the cells had been stimulated with N10-methylfolic acid, but only slightly in the case of a folic acid stimulus. The effect of stimulus duration on desensitization was monitored; it was observed that 50% desensitization was induced by stimulation for 1 s, while 4 s was sufficient for maximal desensitization. Short stimuli were observed to elicit high levels of desensitization without much excitation of guanylate cyclase. A desensitization-like process was observed at the level of the folate-binding chemotactic receptors as well. Relationships between the cGMP response data and folic acid receptor kinetics are discussed

  7. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii

    PubMed Central

    Pickering, Anthony E; Boscan, Pedro; Paton, Julian F R

    2003-01-01

    Somatic noxious stimulation can evoke profound cardiovascular responses by altering activity in the autonomic nervous system. This noxious stimulation attenuates the cardiac vagal baroreflex, a key cardiovascular homeostatic reflex. This attenuation is mediated via NK1 receptors expressed on GABAergic interneurones within the nucleus of the solitary tract (NTS). We have investigated the effect of noxious stimulation and exogenous substance P (SP) on the sympathetic component of the baroreflex. We recorded from the sympathetic chain in a decerebrate, artificially perfused rat preparation. Noxious hindlimb pinch was without effect on the sympathetic baroreflex although the cardiac vagal baroreflex gain was decreased (56%, P < 0.01). Bilateral NTS microinjection of SP (500 fmol) produced a similar selective attenuation of the cardiac vagal baroreflex gain (62%, P < 0.005) without effect on the sympathetic baroreflex. Recordings from the cardiac sympathetic and vagal nerves confirmed the selectivity of the SP inhibition. Control experiments using a GABAA receptor agonist, isoguvacine, indicated that both components of the baroreflex (parasympathetic and sympathetic) could be blocked from the NTS injection site. The NTS microinjection of a NK1 antagonist (CP-99,994) in vivo attenuated the tachycardic response to hindlimb pinch. Our data suggest that noxious pinch releases SP within the NTS to selectively attenuate the cardiac vagal, but not the sympathetic, component of the baroreflex. This selective withdrawal of the cardiac vagal baroreflex seems to underlie the pinch-evoked tachycardia seen in vivo. Further, these findings confirm that baroreflex sympathetic and parasympathetic pathways diverge, and can be independently controlled, within the NTS. PMID:12813142

  8. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii.

    PubMed

    Pickering, Anthony E; Boscan, Pedro; Paton, Julian F R

    2003-09-01

    Somatic noxious stimulation can evoke profound cardiovascular responses by altering activity in the autonomic nervous system. This noxious stimulation attenuates the cardiac vagal baroreflex, a key cardiovascular homeostatic reflex. This attenuation is mediated via NK1 receptors expressed on GABAergic interneurones within the nucleus of the solitary tract (NTS). We have investigated the effect of noxious stimulation and exogenous substance P (SP) on the sympathetic component of the baroreflex. We recorded from the sympathetic chain in a decerebrate, artificially perfused rat preparation. Noxious hindlimb pinch was without effect on the sympathetic baroreflex although the cardiac vagal baroreflex gain was decreased (56 %, P < 0.01). Bilateral NTS microinjection of SP (500 fmol) produced a similar selective attenuation of the cardiac vagal baroreflex gain (62 %, P < 0.005) without effect on the sympathetic baroreflex. Recordings from the cardiac sympathetic and vagal nerves confirmed the selectivity of the SP inhibition. Control experiments using a GABAA receptor agonist, isoguvacine, indicated that both components of the baroreflex (parasympathetic and sympathetic) could be blocked from the NTS injection site. The NTS microinjection of a NK1 antagonist (CP-99,994) in vivo attenuated the tachycardic response to hindlimb pinch. Our data suggest that noxious pinch releases SP within the NTS to selectively attenuate the cardiac vagal, but not the sympathetic, component of the baroreflex. This selective withdrawal of the cardiac vagal baroreflex seems to underlie the pinch-evoked tachycardia seen in vivo. Further, these findings confirm that baroreflex sympathetic and parasympathetic pathways diverge, and can be independently controlled, within the NTS. PMID:12813142

  9. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    PubMed

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  10. The Anoctamin Family Channel Subdued Mediates Thermal Nociception in Drosophila*

    PubMed Central

    Jang, Wijeong; Kim, Ji Young; Cui, Shanyu; Jo, Juyeon; Lee, Byoung-Cheol; Lee, Yeonwoo; Kwon, Ki-Sun; Park, Chul-Seung; Kim, Changsoo

    2015-01-01

    Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli. PMID:25505177

  11. Peripheral and central alterations affecting spinal nociceptive processing and pain at adulthood in rats exposed to neonatal maternal deprivation.

    PubMed

    Juif, Pierre-Eric; Salio, Chiara; Zell, Vivien; Melchior, Meggane; Lacaud, Adrien; Petit-Demouliere, Nathalie; Ferrini, Francesco; Darbon, Pascal; Hanesch, Ulrike; Anton, Fernand; Merighi, Adalberto; Lelièvre, Vincent; Poisbeau, Pierrick

    2016-08-01

    The nociceptive system of rodents is not fully developed and functional at birth. Specifically, C fibers transmitting peripheral nociceptive information establish synaptic connections in the spinal cord already during the embryonic period that only become fully functional after birth. Here, we studied the consequences of neonatal maternal deprivation (NMD, 3 h/day, P2-P12) on the functional establishment of C fiber-mediated neurotransmission in spinal cord and of pain-related behavior. In vivo recording revealed that C fiber-mediated excitation of spinal cord neurons could be observed at P14 only in control but not in NMD rats. NMD was associated with a strong alteration in the expression of growth factors controlling C nociceptor maturation as well as two-pore domain K+ channels known to set nociceptive thresholds. In good agreement, C-type sensory neurons from NMD animals appeared to be hypoexcitable but functionally connected to spinal neurons, especially those expressing TRPV1 receptors. In vivo and in vitro recordings of lamina II spinal neurons at P14 revealed that the NMD-related lack of C fiber-evoked responses resulted from an inhibitory barrage in the spinal cord dorsal horn. Eventually, C-type sensory-spinal processing could be recovered after a delay of about 10 days in NMD animals. However, animals remained hypersensitive to noxious stimulus up to P100 and this might be due to an excessive expression of Nav1.8 transcripts in DRG neurons. Together, our data provide evidence for a deleterious impact of perinatal stress exposure on the maturation of the sensory-spinal nociceptive system that may contribute to the nociceptive hypersensitivity in early adulthood. PMID:27285721

  12. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels.

    PubMed

    Li, Simin; Bhave, Devayani; Chow, Jennifer M; Riera, Thomas V; Schlee, Sandra; Rauch, Simone; Atanasova, Mariya; Cate, Richard L; Whitty, Adrian

    2015-04-17

    A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome. PMID:25635057

  13. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse.

    PubMed

    Cao, C Q; Hong, Y G; Dray, A; Perkins, M N

    2001-01-01

    Detailed electrophysiological characterisation of spinal opioid receptors in the mouse has been limited due to various technical difficulties. In this study, extracellular single unit recordings were made from dorsal horn neurones in a perfused spinal cord with attached trunk-hindquarter to investigate the role of delta-opioid receptor in mediating nociceptive and non-nociceptive transmission in mouse. Noxious electrical shock, pinch and heat stimuli evoked a mean response of 20.8+/-2.5 (n=10, P<0.005), 30.1+/-5.4 (n=58, P<0.005) and 40.9+/-6.3 (n=29, P<0.005) spikes per stimulus respectively. In 5 of 22 cells, repetitive noxious electrical stimuli applied to the hindpaw for 20 s produced a progressive increase in spike number, the phenomenon known as 'wind-up' and/or hyperactivity. When the selective delta-opioid receptor agonist (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80) was perfused for 8-10 min, these evoked nociceptive responses were reversibly depressed. SNC 80 (2 microM) depressed the nociceptive responses evoked by electrical shock, pinch and heat by 74.0+/-13.7% (n=8, P<0.01), 66.5+/-16.6% (n=10, P<0.01) and 74.1+/-17.0% (n=10, P<0.01) respectively. The maximum depression by 5 microM SNC 80 was 92.6+/-6.8% (n=3). SNC 80 at 5 microM also completely abolished the wind-up and/or hypersensitivity (n=5). The depressant effects of SNC 80 on the nociceptive responses were completely blocked by 10 microM naloxone (n=5) and 3 microM 17-(cyclopropylmethyl)-6,7-dehydro-4,5 alpha-epoxy-14 beta-ethoxy-5 beta-methylindolo [2',3':6',7'] morphinan-3-ol hydrochloride (HS 378, n=8), a novel highly selective delta-opioid receptor antagonist. Interestingly, HS 378 (3 microM) itself potentiated the background activity and evoked responses to pinch and heat by 151.8+/-38.4% (P<0.05, n=8), 34.2+/-6.1% (P<0.01, n=7) and 45.5+/-11.8% (P<0.05, n=5) respectively. In contrast, the responses of non-nociceptive

  14. What’s Coming Near? The Influence of Dynamical Visual Stimuli on Nociceptive Processing

    PubMed Central

    De Paepe, Annick L.; Crombez, Geert; Legrain, Valéry

    2016-01-01

    Objects approaching us may pose a threat, and signal the need to initiate defensive behavior. Detecting these objects early is crucial to either avoid the object or prepare for contact most efficiently. This requires the construction of a coherent representation of our body, and the space closely surrounding our body, i.e. the peripersonal space. This study, with 27 healthy volunteers, investigated how the processing of nociceptive stimuli applied to the hand is influenced by dynamical visual stimuli either approaching or receding from the hand. On each trial a visual stimulus was either approaching or receding the participant’s left or right hand. At different temporal delays from the onset of the visual stimulus, a nociceptive stimulus was applied either at the same or the opposite hand, so that it was presented when the visual stimulus was perceived at varying distances from the hand. Participants were asked to respond as fast as possible at which side they perceived a nociceptive stimulus. We found that reaction times were fastest when the visual stimulus appeared near the stimulated hand. Moreover, investigating the influence of the visual stimuli along the continuous spatial range (from near to far) showed that approaching lights had a stronger spatially dependent effect on nociceptive processing, compared to receding lights. These results suggest that the coding of nociceptive information in a peripersonal frame of reference may constitute a safety margin around the body that is designed to protect it from potential physical threat. PMID:27224421

  15. What's Coming Near? The Influence of Dynamical Visual Stimuli on Nociceptive Processing.

    PubMed

    De Paepe, Annick L; Crombez, Geert; Legrain, Valéry

    2016-01-01

    Objects approaching us may pose a threat, and signal the need to initiate defensive behavior. Detecting these objects early is crucial to either avoid the object or prepare for contact most efficiently. This requires the construction of a coherent representation of our body, and the space closely surrounding our body, i.e. the peripersonal space. This study, with 27 healthy volunteers, investigated how the processing of nociceptive stimuli applied to the hand is influenced by dynamical visual stimuli either approaching or receding from the hand. On each trial a visual stimulus was either approaching or receding the participant's left or right hand. At different temporal delays from the onset of the visual stimulus, a nociceptive stimulus was applied either at the same or the opposite hand, so that it was presented when the visual stimulus was perceived at varying distances from the hand. Participants were asked to respond as fast as possible at which side they perceived a nociceptive stimulus. We found that reaction times were fastest when the visual stimulus appeared near the stimulated hand. Moreover, investigating the influence of the visual stimuli along the continuous spatial range (from near to far) showed that approaching lights had a stronger spatially dependent effect on nociceptive processing, compared to receding lights. These results suggest that the coding of nociceptive information in a peripersonal frame of reference may constitute a safety margin around the body that is designed to protect it from potential physical threat. PMID:27224421

  16. The dopamine D3 receptor partial agonist CJB 090 inhibits the discriminative stimulus, but not the reinforcing or priming effects of cocaine in squirrel monkeys

    PubMed Central

    Achat-Mendes, Cindy; Platt, Donna M.; Newman, Amy H.; Spealman, Roger D.

    2009-01-01

    Rationale Dopamine D3 receptor mechanisms have been implicated in the abuse-related behavioral effects of cocaine. Objectives The purpose of this study was to investigate the effects of the D3 receptor partial agonist CJB 090 on the discriminative stimulus, reinforcing and priming effects of cocaine in squirrel monkeys. Studies were conducted to compare CJB 090’s effects on food-maintained behavior and species-typical unconditioned behaviors. Methods Monkeys were trained to: 1) discriminate cocaine from saline using a two-lever choice procedure, 2) self-administer cocaine on a second-order fixed-interval, fixed-ratio schedule of i.v. drug injection or 3) self-administer food on a comparable second-order schedule of food delivery. A final group of monkeys served in quantitative observational studies of unconditioned behaviors. Results In cocaine discrimination studies, pretreatment with CJB 090 significantly attenuated cocaine’s discriminative stimulus effects. CJB 090 also significantly attenuated the partial cocaine-like stimulus effects of the preferential D3 receptor agonist PD 128907, but not the preferential D2 receptor agonist sumanirole. CJB 090 did not attenuate either self-administration of cocaine or cocaine-induced reinstatement of extinguished drug-seeking at a dose that reduced responding maintained by food. CJB 090 did not induce scratching or biting (species-typical effects of D2/3 receptor agonists) or catalepsy (typical effect of D2/3 receptor antagonists). Conclusions The results provide no evidence that CJB 090 reduced either the reinforcing or priming effects of cocaine, but do suggest that CJB 090, acting via a D3 receptor mechanism, antagonized the discriminative stimulus effects of cocaine at a dose that did not induce adverse side effects. PMID:19513698

  17. Does the histaminergic system play a role in spinal nociception?

    PubMed

    Harasawa, K

    2000-07-01

    The author studied whether the histaminergic system is involved in spinal nociception or not. A nociception-related, slow ventral root potential of rats, which is an integrated output of motoneurons, was recorded as an index of the intensity of nociception when an electric stimulation was applied to the dorsal root. Histamine dissolved in an artificial cerebrospinal fluid caused small reduction in the potential; however, mepyramine (10 nM to 10 microM, as an H1 receptor antagonist), ranitidine (1 nM to 1 microM, as an H2 receptor antagonist), R(-)-alpha-methylhistamine (2 pM to 200 nM, as an H3 receptor agonist), and thioperamide (1 nM to 10 microM, as an H3 receptor antagonist) dose-dependently reduced the potential down to around a half of each control level. These results indicate that the histaminergic system may affect the spinal withdrawal reflex. PMID:10976407

  18. Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models

    PubMed Central

    Klein, AH; Trannyguen, Minh; Joe, Christopher L.; Iodi, Carstens M.; Carstens, E

    2015-01-01

    Introduction The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. Methods Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. Results Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. Conclusions The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed. PMID:26388966

  19. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors.

    PubMed

    Winter, J C; Filipink, R A; Timineri, D; Helsley, S E; Rabin, R A

    2000-01-01

    Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus

  20. Discriminative stimulus properties of 1.25mg/kg clozapine in rats: Mediation by serotonin 5-HT2 and dopamine D4 receptors.

    PubMed

    Prus, Adam J; Wise, Laura E; Pehrson, Alan L; Philibin, Scott D; Bang-Andersen, Benny; Arnt, Jørn; Porter, Joseph H

    2016-10-01

    The atypical antipsychotic drug clozapine remains one of most effective treatments for schizophrenia, given a lack of extrapyramidal side effects, improvements in negative symptoms, cognitive impairment, and in symptoms in treatment-resistant schizophrenia. The adverse effects of clozapine, including agranulocytosis, make finding a safe clozapine-like a drug a goal for drug developers. The drug discrimination paradigm is a model of interoceptive stimulus that has been used in an effort to screen experimental drugs for clozapine-like atypical antipsychotic effects. The present study was conducted to elucidate the receptor-mediated stimulus properties that form this clozapine discriminative cue by testing selective receptor ligands in rats trained to discriminate a 1.25mg/kg dose of clozapine from vehicle in a two choice drug discrimination task. Full substitution occurred with the 5-HT2A inverse agonist M100907 and the two preferential D4/5-HT2/α1 receptor antagonists Lu 37-114 ((S)-1-(3-(2-(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)indolin-1-yl)ethan-1-one) and Lu 37-254 (1-(3-(4-(1H-indol-5-yl)piperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one). Partial substitution occurred with the D4 receptor antagonist Lu 38-012 and the α1 adrenoceptor antagonist prazosin. Drugs selective for 5-HT2C, 5-HT6 muscarinic, histamine H1, and benzodiazepine receptors did not substitute for clozapine. The present findings suggest that 5-HT2A inverse agonism and D4 receptor antagonism mediate the discriminative stimulus properties of 1.25mg/kg clozapine in rats, and further confirm that clozapine produces a complex compound discriminative stimulus. PMID:27502027

  1. Roles of phosphotase 2A in nociceptive signal processing

    PubMed Central

    2013-01-01

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules. PMID:24010880

  2. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

    PubMed Central

    Im, Seol Hee; Takle, Kendra; Jo, Juyeon; Babcock, Daniel T; Ma, Zhiguo; Xiang, Yang; Galko, Michael J

    2015-01-01

    Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI: http://dx.doi.org/10.7554/eLife.10735.001 PMID:26575288

  3. Differential effects of GABA in modulating nociceptive vs. non-nociceptive synapses.

    PubMed

    Wang, Y; Summers, T; Peterson, W; Miiller, E; Burrell, B D

    2015-07-01

    GABA (γ-amino-butyric acid) -mediated signaling is normally associated with synaptic inhibition due to ionotropic GABA receptors that gate an inward Cl(-) current, hyperpolarizing the membrane potential. However, there are also situations where ionotropic GABA receptors trigger a Cl(-) efflux that results in depolarization. The well-characterized central nervous system of the medicinal leech was used to study the functional significance of opposing effects of GABA at the synaptic circuit level. Specifically, we focused on synapses made by the nociceptive N cell and the non-nociceptive P (pressure) cell that converge onto a common postsynaptic target. It is already known that GABA hyperpolarizes the P cell, but depolarizes the N cell and that inhibition of ionotropic GABA receptors by bicuculline (BIC) has opposing effects on the synapses made by these two inputs; enhancing P cell synaptic transmission, but depressing N cell synapses. The goal of the present study was to determine whether the opposing effects of GABA were due to differences in Cl(-) homeostasis between the two presynaptic neurons. VU 0240551 (VU), an inhibitor of the Cl(-) exporter K-Cl co-transporter isoform 2 (KCC2), attenuated GABA-mediated hyperpolarization of the non-nociceptive afferent while bumetanide (BUM), an inhibitor of the Cl(-) importer Na-K-Cl co-transporter isoform 1 (NKCC1), reduced GABA-mediated depolarization of the nociceptive neuron. VU treatment also enhanced P cell synaptic signaling, similar to the previously observed effects of BIC and consistent with the idea that GABA inhibits synaptic signaling at the presynaptic level. BUM treatment depressed N cell synapses, again similar to what is observed following BIC treatment and suggests that GABA has an excitatory effect on these synapses. The opposing effects of GABA could also be observed at the behavioral level with BIC and VU increasing responsiveness to non-nociceptive stimulation while BIC and BUM decreased responsiveness

  4. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants

    PubMed Central

    Hartley, Caroline; Goksan, Sezgi; Poorun, Ravi; Brotherhood, Kelly; Mellado, Gabriela Schmidt; Moultrie, Fiona; Rogers, Richard; Adams, Eleri; Slater, Rebeccah

    2015-01-01

    Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures. PMID:26228435

  5. The relationship between nociceptive brain activity, spinal reflex withdrawal and behaviour in newborn infants.

    PubMed

    Hartley, Caroline; Goksan, Sezgi; Poorun, Ravi; Brotherhood, Kelly; Mellado, Gabriela Schmidt; Moultrie, Fiona; Rogers, Richard; Adams, Eleri; Slater, Rebeccah

    2015-01-01

    Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures. PMID:26228435

  6. Nociceptive neurons protect Drosophila larvae from parasitoid wasps

    PubMed Central

    Xu, Yifan; Johnson, Trevor; Zhang, Feng; Deisseroth, Karl

    2008-01-01

    Summary Background Natural selection has resulted in a complex and fascinating repertoire of innate behaviors that are produced by insects. One puzzling example occurs in fruitfly larvae that have been subjected to a noxious mechanical or thermal sensory input. In response, the larvae “roll” using a motor pattern that is completely distinct from the style of locomotion that is used for foraging. Results We have precisely mapped the sensory neurons that are used by the Drosophila larvae to detect nociceptive stimuli. Using complementary optogenetic activation and targeted silencing of sensory neurons, we have demonstrated that a single class of neuron (Class IV multidendritic neuron) is sufficient and necessary for triggering the unusual rolling behavior. In addition, we find that larvae have an innately encoded directional preference in the directionality of rolling. Surprisingly, the initial direction of rolling locomotion is towards the side of the body that has been stimulated. We propose that directional rolling might provide a selective advantage in escape from parasitoid wasps that are ubiquitously present in the natural environment of Drosophila. Consistent with this hypothesis, we have documented that larvae can escape attack of Leptopilina boulardi parasitoid wasps by rolling, occasionally flipping the attacker onto its back. Conclusions The Class IV multidendritic neurons of Drosophila larvae are nociceptive. The nociception behavior of Drosophila melanagaster larvae includes an innately encoded directional preference. Nociception behavior is elicited by the ecologically relevant sensory stimulus of parasitoid wasp attack. PMID:18060782

  7. Altered nociception in mice with genetically induced hypoglutamatergic tone.

    PubMed

    Kayser, V; Viguier, F; Melfort, M; Bourgoin, S; Hamon, M; Masson, J

    2015-05-01

    Extensive pharmacological evidence supports the idea that glutamate plays a key role in both acute and chronic pain. In the present study, we investigated the implication of the excitatory amino acid in physiological nociception by using mutant mice deficient in phosphate-activated glutaminase type 1 (GLS1), the enzyme that synthesizes glutamate in central glutamatergic neurons. Because homozygous GLS1-/- mutants die shortly after birth, assays for assessing mechanical, thermal and chemical (formalin) nociception were performed on heterozygous GLS1+/- mutants, which present a clear-cut decrease in glutamate synthesis in central neurons. As compared to paired wild-type mice, adult male GLS1+/- mutants showed decreased responsiveness to mechanical (von Frey filament and tail-pressure, but not tail-clip, tests) and thermal (Hargreaves' plantar, tail-immersion and hot-plate tests) nociceptive stimuli. Genotype-related differences were also found in the formalin test for which GLS1+/- mice exhibited marked decreases in the nociceptive responses (hindlimb lift, lick and flinch) during both phase 1 (0-5 min) and phase 2 (16-45 min) after formalin injection. On the other hand, acute treatment with memantine (1mg/kg i.p.), an uncompetitive antagonist at NMDA glutamate receptors, reduced nociception responses in wild-type but not GLS1+/- mice. Conversely, antinociceptive response to acute administration of a low dose (1mg/kg s.c.) of morphine was significantly larger in GLS1+/- mutants versus wild-type mice. Our findings indicate that genetically driven hypoactivity of central glutamatergic neurotransmission renders mice hyposensitive to nociceptive stimulations, and promotes morphine antinociception, further emphasizing the critical role of glutamate in physiological nociception and its opioid-mediated control. PMID:25743253

  8. Neural coding of nociceptive stimuli-from rat spinal neurones to human perception.

    PubMed

    Sikandar, Shafaq; Ronga, Irene; Iannetti, Gian Domenico; Dickenson, Anthony H

    2013-08-01

    Translational studies are key to furthering our understanding of nociceptive signalling and bridging the gaps between molecules and pathways to the patients. This requires use of appropriate preclinical models that accurately depict outcome measures used in humans. Whereas behavioural animal studies classically involve reports related to nociceptive thresholds of, for example, withdrawal, electrophysiological recordings of spinal neurones that receive convergent input from primary afferents permits investigation of suprathreshold events and exploration of the full-range coding of different stimuli. We explored the central processing of nociceptive inputs in a novel parallel investigation between rats and humans. Using radiant laser pulses, we first compared the electrophysiological responses of deep wide dynamic range and superficial nociceptive-specific neurones in the rat dorsal horn with human psychophysics and cortical responses. Secondly, we explored the effects of spatial summation using laser pulses of identical energy and different size. We observed 3 main findings. Firstly, both rodent and human data confirmed that neodymium-yttrium aluminium perovskite laser stimulation is a nociceptive-selective stimulus that never activates Aβ afferents. Secondly, graded laser stimulation elicited similarly graded electrophysiological and behavioural responses in both species. Thirdly, there was a significant degree of spatial summation of laser nociceptive input. The remarkable similarity in rodent and human coding indicates that responses of rat dorsal horn neurones can translate to human nociceptive processing. These findings suggest that recordings of spinal neuronal activity elicited by laser stimuli could be a valuable predictive measure of human pain perception. PMID:23719576

  9. Stimulus Response

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2010-01-01

    Stimulus funds unquestionably have helped many schools keep going through tough times, but for many institutions, the tough times aren't going away anytime soon. That is why, a little more than a year after Congress passed the American Recovery and Reinvestment Act and began allocating billions of dollars in aid across the nation, the so-called…

  10. Involvement of spinal glutamate in nociceptive behavior induced by intrathecal administration of hemokinin-1 in mice.

    PubMed

    Watanabe, Chizuko; Mizoguchi, Hirokazu; Bagetta, Giacinto; Sakurada, Shinobu

    2016-03-23

    The most recently identified tachykinin, hemokinin-1, was cloned from mouse bone marrow. While several studies indicated that hemokinin-1 is involved in pain and inflammation, the physiological functions of hemokinin-1 are not fully understood. Our previous research demonstrated that the intrathecal (i.t.) administration of hemokinin-1 (0.00625-1.6 nmol) dose-dependently induced nociceptive behaviors, consisting of scratching, biting and licking in mice, which are very similar with the nociceptive behaviors induced by the i.t. administration of substance P. Low-dose (0.0125 nmol) hemokinin-1-induced nociceptive behavior was inhibited by a specific NK1 receptor antagonist; however, high-dose (0.1 nmol) hemokinin-1-induced nociceptive behavior was not affected. In the present study, we found that the nociceptive behaviors induced by hemokinin-1 (0.1 nmol) were inhibited by the i.t. co-administration of MK-801 or D-APV, which are NMDA receptor antagonists. Moreover, we measured glutamate in the extracellular fluid of the mouse spinal cord using microdialysis. The i.t. administration of hemokinin-1 produced a significant increase in glutamate in the spinal cord, which was significantly reduced by co-administration with NMDA receptor antagonists. These results suggest that hemokinin-1-induced nociceptive behaviors may be mediated by the NMDA receptor in the spinal cord. PMID:26899156

  11. Nociception at the diabetic foot, an uncharted territory

    PubMed Central

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  12. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    SciTech Connect

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-06-17

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with /sup 3/H-naloxone or /sup 3/H-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables.

  13. Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty

    PubMed Central

    Ronga, I.; Valentini, E.; Mouraux, A.

    2013-01-01

    Event-related potentials (ERPs) elicited by transient nociceptive stimuli in humans are largely sensitive to bottom-up novelty induced, for example, by changes in stimulus attributes (e.g., modality or spatial location) within a stream of repeated stimuli. Here we aimed 1) to test the contribution of a selective change of the intensity of a repeated stimulus in determining the magnitude of nociceptive ERPs, and 2) to dissect the effect of this change of intensity in terms of “novelty” and “saliency” (an increase of stimulus intensity is more salient than a decrease of stimulus intensity). Nociceptive ERPs were elicited by trains of three consecutive laser stimuli (S1-S2-S3) delivered to the hand dorsum at a constant 1-s interstimulus interval. Three, equally spaced intensities were used: low (L), medium (M), and high (H). While the intensities of S1 and S2 were always identical (L, M, or H), the intensity of S3 was either identical (e.g., HHH) or different (e.g., MMH) from the intensity of S1 and S2. Introducing a selective change in stimulus intensity elicited significantly larger N1 and N2 waves of the S3-ERP but only when the change consisted in an increase in stimulus intensity. This observation indicates that nociceptive ERPs do not simply reflect processes involved in the detection of novelty but, instead, are mainly determined by stimulus saliency. PMID:23136349

  14. DNA Methylation Modulates Nociceptive Sensitization after Incision

    PubMed Central

    Sun, Yuan; Sahbaie, Peyman; Liang, DeYong; Li, Wenwu; Shi, Xiaoyou; Kingery, Paige; Clark, J. David

    2015-01-01

    DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT) inhibitor 5-Aza-2′-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2′-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision. PMID:26535894

  15. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    PubMed

    Sun, Yuan; Sahbaie, Peyman; Liang, DeYong; Li, Wenwu; Shi, Xiaoyou; Kingery, Paige; Clark, J David

    2015-01-01

    DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT) inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision. PMID:26535894

  16. The role of dopamine receptor subtypes in the discriminative stimulus effects of amphetamine and cocaine in rats.

    PubMed

    Filip, M; Przegaliński, E

    1997-01-01

    The role of dopamine (DA) receptor subtypes in the discriminative stimuli of the psychostimulant drugs of abuse amphetamine and cocaine was evaluated by the ability of DA D1, D2 and D3 receptor subtype ligands to either substitute for or antagonize these effects. Separate groups of rats were trained to discriminate between amphetamine (0.5 mg/kg) and saline, and between cocaine (5 mg/kg) and saline. Both the training drugs evoked cross-substitution. In further substitution experiments, (+)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H -3-benzazepine (SKF 38393; 5-20 mg/kg), a selective D1 agonist, moderately substituted for cocaine, but not for amphetamine. The D2 agonist bromocriptine (2.5-20 mg/kg) mimicked both training drugs' cues. Pramipexole, a D3-preferring agonist, in a dose of 0.5 mg/kg induced over 80% substitution for cocaine, and a weaker one (ca. 62%) for amphetamine. Combination tests with DA antagonists showed that the D1 antagonist (+)-3-methyl-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H -3-benzazepine (SCH 23390; 0.01-2 mg/kg), and the D2 blocker raclopride (0.13-1 mg/kg) significantly (78-100%) attenuated the effects of psychostimulants, while the D3-preferring antagonist cis-(+)-5-methoxy-1-methyl-2-(di-n-propylamino)tetralin (UH 232; 5-20 mg/kg) did not affect them. The present results indicate a critical role of D2 receptor subtypes in the discriminative stimuli of amphetamine and cocaine in rats, as well as a less pronounced involvement of D1 and D3 subtypes in the effects under study. PMID:9431548

  17. Mechanisms Involved in the Nociception Triggered by the Venom of the Armed Spider Phoneutria nigriventer

    PubMed Central

    Gewehr, Camila; Oliveira, Sara Marchesan; Rossato, Mateus Fortes; Trevisan, Gabriela; Dalmolin, Gerusa Duarte; Rigo, Flávia Karine; de Castro Júnior, Célio José; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus V.

    2013-01-01

    Background The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). Methodology/Principal Findings Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na+ channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. Conclusion/Significance Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for

  18. Nociceptive vocalization response in guinea pigs modulated by opioidergic, GABAergic and serotonergic neurotransmission in the dorsal raphe nucleus.

    PubMed

    Ferreira, Mateus Dalbem; Menescal-de-Oliveira, Leda

    2014-07-01

    The dorsal raphe nucleus (DRN) is involved in the control of several physiological functions, including nociceptive modulation. This nucleus is one of the main sources of serotonin to the CNS and neuromodulators such as opioids and GABA may be are important for its release. This study evaluated the influence of serotonergic, GABAergic and opioidergic stimulation, as well as their interactions in the DRN, on vocalization nociceptive response during a peripheral noxious stimulus application in guinea pigs. Morphine (1.1 nmol), bicuculline (0.50 nmol) and alpha-methyl-5-HT (1.6 nmol) microinjection on the DRN produces antinociception. The antinociception produced by morphine (1.1 nmol) and alpha-methyl-5-HT (1.6 nmol) into the DRN was blocked by prior microinjection of naloxone (0.7 nmol). The alpha-methyl-5-HT effect blocked by naloxone may indicate the existence of 5-HT2A receptors on enkephalinergic interneurons within the dorsal raphe. Pretreatment with muscimol (0.26 nmol) also prevented the antinociceptive effect caused by morphine (1.1 nmol) when administered alone at the same site, indicating an interaction between GABAergic and opioidergic interneurons. The antinociception produced by bicuculline (0.5 nmol) in the DRN was blocked by prior administration of 8-OH-DPAT (0.5 nmol), a 5-HT1A agonist. This may indicate that the 5-HT autoreceptor activation by 8-OH-DPAT at DRN effector neurons can oppose the bicuculline disinhibition effect applied to the same effectors. Thus, we suggest that 5-HT2 receptor activation in the DRN promotes endorphin/enkephalin release that may disinhibit efferent serotonergic neurons of this present structure by inhibiting GABAergic interneurons, resulting in antinociception. PMID:24831566

  19. Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting TRPA1 channel

    PubMed Central

    Materazzi, Serena; Benemei, Silvia; Fusi, Camilla; Gualdani, Roberta; De Siena, Gaetano; Vastani, Nisha; Andersson, David A.; Trevisan, Gabriela; Moncelli, Maria Rosa; Wei, Xiaomei; Dussor, Gregory; Pollastro, Federica; Patacchini, Riccardo; Appendino, Giovanni; Geppetti, Pierangelo; Nassini, Romina

    2013-01-01

    While feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons, express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously, which are known to trigger migraine or cluster headache attacks, as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel, and renders peptidergic, TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide. PMID:23933184

  20. Neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.

    PubMed

    Jeffrey-Gauthier, Renaud; Guillemot, Jean-Paul; Piché, Mathieu

    2013-08-01

    Neuroimaging methods such as functional magnetic resonance imaging (fMRI) have been used extensively to investigate pain-related cerebral mechanisms. However, these methods rely on a tight coupling of neuronal activity to hemodynamic changes. Because pain may be associated with hemodynamic changes unrelated to local neuronal activity (eg, increased mean arterial pressure [MAP]), it is essential to determine whether the neurovascular coupling is maintained during nociceptive processing. In this study, local field potentials (LFP) and cortical blood flow (CBF) changes evoked by electrical stimulation of the left hind paw were recorded concomitantly in the right primary somatosensory cortex (SI) in 15 rats. LFP, CBF, and MAP changes were examined in response to stimulus intensities ranging from 3 to 30 mA. In addition, LFP, CBF, and MAP changes evoked by a 10-mA stimulation were examined during immersion of the tail in non-nociceptive or nociceptive hot water (counter-stimulation). SI neurovascular coupling was altered for stimuli of nociceptive intensities (P<0.001). This alteration was intensity-dependent and was strongly associated with MAP changes (r=0.98, P<0.001). However, when the stimulus intensity was kept constant, SI neurovascular coupling was not significantly affected by nociceptive counter-stimulation (P=0.4), which similarly affected the amplitude of shock-evoked LFP and CBF changes. It remains to be determined whether such neurovascular uncoupling occurs in humans, and whether it also affects other regions usually activated by painful stimuli. These results should be taken into account for accurate interpretation of fMRI studies that involve nociceptive stimuli associated with MAP changes. PMID:23707276

  1. Rapid Determination of the Thermal Nociceptive Threshold in Diabetic Rats

    PubMed Central

    Alshahrani, Saeed; Fernandez-Conti, Filipe; Araujo, Amanda; DiFulvio, Mauricio

    2012-01-01

    Painful diabetic neuropathy (PDN) is characterized by hyperalgesia i.e., increased sensitivity to noxious stimulus, and allodynia i.e., hypersensitivity to normally innocuous stimuli1. Hyperalgesia and allodynia have been studied in many different rodent models of diabetes mellitus2. However, as stated by Bölcskei et al, determination of "pain" in animal models is challenging due to its subjective nature3. Moreover, the traditional methods used to determine behavioral responses to noxious thermal stimuli usually lack reproducibility and pharmacological sensitivity3. For instance, by using the hot-plate method of Ankier4, flinch, withdrawal and/or licking of either hind- and/or fore-paws is quantified as reflex latencies at constant high thermal stimuli (52-55 °C). However, animals that are hyperalgesic to thermal stimulus do not reproducibly show differences in reflex latencies using those supra-threshold temperatures3,5. As the recently described method of Bölcskei et al.6, the procedures described here allows for the rapid, sensitive and reproducible determination of thermal nociceptive thresholds (TNTs) in mice and rats. The method uses slowly increasing thermal stimulus applied mostly to the skin of mouse/rat plantar surface. The method is particularly sensitive to study anti-nociception during hyperalgesic states such as PDN. The procedures described bellow are based on the ones published in detail by Almási et al5 and Bölcskei et al3. The procedures described here have been approved the Laboratory Animal Care and Use Committee (LACUC), Wright State University. PMID:22643870

  2. Alfaxalone Anaesthesia Facilitates Electrophysiological Recordings of Nociceptive Withdrawal Reflexes in Dogs (Canis familiaris).

    PubMed

    Hunt, James; Murrell, Jo; Knazovicky, David; Harris, John; Kelly, Sara; Knowles, Toby G; Lascelles, B Duncan X

    2016-01-01

    Naturally occurring canine osteoarthritis represents a welfare issue for affected dogs (Canis familiaris), but is also considered very similar to human osteoarthritis and has therefore been proposed as a model of disease in humans. Central sensitisation is recognized in human osteoarthritis sufferers but identification in dogs is challenging. Electromyographic measurement of responses to nociceptive stimulation represents a potential means of investigating alterations in central nociceptive processing, and has been evaluated in conscious experimental dogs, but is likely to be aversive. Development of a suitable anaesthetic protocol in experimental dogs, which facilitated electrophysiological nociceptive withdrawal reflex assessment, may increase the acceptability of using the technique in owned dogs with naturally occurring osteoarthritis. Seven purpose bred male hound dogs underwent electromyographic recording sessions in each of three states: acepromazine sedation, alfaxalone sedation, and alfaxalone anaesthesia. Electromyographic responses to escalating mechanical and electrical, and repeated electrical, stimuli were recorded. Subsequently the integral of both early and late rectified responses was calculated. Natural logarithms of the integral values were analysed within and between the three states using multi level modeling. Alfaxalone increased nociceptive thresholds and decreased the magnitude of recorded responses, but characteristics of increasing responses with increasing stimulus magnitude were preserved. Behavioural signs of anxiety were noted in two out of seven dogs during recordings in the acepromazine sedated state. There were few significant differences in response magnitude or nociceptive threshold between the two alfaxalone states. Following acepromazine premedication, induction of anaesthesia with 1-2 mg kg-1 alfaxalone, followed by a continuous rate infusion in the range 0.075-0.1 mg kg-1 min-1 produced suitable conditions to enable assessment

  3. Alfaxalone Anaesthesia Facilitates Electrophysiological Recordings of Nociceptive Withdrawal Reflexes in Dogs (Canis familiaris)

    PubMed Central

    Hunt, James; Murrell, Jo; Knazovicky, David; Harris, John; Kelly, Sara; Knowles, Toby G.; Lascelles, B. Duncan X.

    2016-01-01

    Naturally occurring canine osteoarthritis represents a welfare issue for affected dogs (Canis familiaris), but is also considered very similar to human osteoarthritis and has therefore been proposed as a model of disease in humans. Central sensitisation is recognized in human osteoarthritis sufferers but identification in dogs is challenging. Electromyographic measurement of responses to nociceptive stimulation represents a potential means of investigating alterations in central nociceptive processing, and has been evaluated in conscious experimental dogs, but is likely to be aversive. Development of a suitable anaesthetic protocol in experimental dogs, which facilitated electrophysiological nociceptive withdrawal reflex assessment, may increase the acceptability of using the technique in owned dogs with naturally occurring osteoarthritis. Seven purpose bred male hound dogs underwent electromyographic recording sessions in each of three states: acepromazine sedation, alfaxalone sedation, and alfaxalone anaesthesia. Electromyographic responses to escalating mechanical and electrical, and repeated electrical, stimuli were recorded. Subsequently the integral of both early and late rectified responses was calculated. Natural logarithms of the integral values were analysed within and between the three states using multi level modeling. Alfaxalone increased nociceptive thresholds and decreased the magnitude of recorded responses, but characteristics of increasing responses with increasing stimulus magnitude were preserved. Behavioural signs of anxiety were noted in two out of seven dogs during recordings in the acepromazine sedated state. There were few significant differences in response magnitude or nociceptive threshold between the two alfaxalone states. Following acepromazine premedication, induction of anaesthesia with 1–2 mg kg-1 alfaxalone, followed by a continuous rate infusion in the range 0.075–0.1 mg kg-1 min-1 produced suitable conditions to enable

  4. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity.

    PubMed

    Kadow, Brian T; Lyon, Timothy D; Zhang, Zhaocun; Lamm, Vladimir; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-07-01

    This study investigated the role of the hypogastric nerve and β-adrenergic mechanisms in the inhibition of nociceptive and non-nociceptive reflex bladder activity induced by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats, non-nociceptive reflex bladder activity was induced by slowly infusing saline into the bladder, whereas nociceptive reflex bladder activity was induced by replacing saline with 0.25% acetic acid (AA) to irritate the bladder. PNS was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. During saline infusion, PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 184.7 ± 12.6% and 214.5 ± 10.4% of the control capacity. Propranolol (3 mg/kg iv) had no effect on PNS inhibition, but 3-[(2-methyl-4-thiazolyl)ethynyl]pyridine (MTEP; 1-3 mg/kg iv) significantly (P < 0.05) reduced the inhibition. During AA irritation, the control bladder capacity was significantly (P < 0.05) reduced to ∼22% of the saline control capacity. PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 406.8 ± 47% and 415.8 ± 46% of the AA control capacity. Propranolol significantly (P < 0.05) reduced the bladder capacity to 276.3% ± 53.2% (at 2T PNS) and 266.5 ± 72.4% (at 4T PNS) of the AA control capacity, whereas MTEP (a metabotropic glutamate 5 receptor antagonist) removed the residual PNS inhibition. Bilateral transection of the hypogastric nerves produced an effect similar to that produced by propranolol. This study indicates that hypogastric nerves and a β-adrenergic mechanism in the detrusor play an important role in PNS inhibition of nociceptive but not non-nociceptive reflex bladder activity. In addition to this peripheral mechanism, a central nervous system mechanism involving metabotropic glutamate 5 receptors also has a role in PNS inhibition. PMID:27170683

  5. Operant Nociception in Nonhuman Primates

    PubMed Central

    Kangas, Brian D.; Bergman, Jack

    2014-01-01

    The effective management of pain is a longstanding public health concern. Morphine-like opioids have long been front-line analgesics, but produce undesirable side effects that can limit their application. Slow progress in the introduction of novel improved medications for pain management over the last 5 decades has prompted a call for innovative translational research, including new preclinical assays. Most current in vivo procedures (e.g., tail flick, hot plate, warm water tail withdrawal) assay the effects of nociceptive stimuli on simple spinal reflexes or unconditioned behavioral reactions. However, clinical treatment goals may include the restoration of previous behavioral activities, which can be limited by medication-related side-effects that are not measured in such procedures. The present studies describe an apparatus and procedure to study the disruptive effects of nociceptive stimuli on voluntary behavior in nonhuman primates, and the ability of drugs to restore such behavior through their analgesic actions. Squirrel monkeys were trained to pull a cylindrical thermode for access to a highly palatable food. Next, sessions were conducted in which the temperature of the thermode was increased stepwise until responding stopped, permitting the determination of stable nociceptive thresholds. Tests revealed that several opioid analgesics, but not d-amphetamine or Δ9-THC, produced dose-related increases in threshold that were antagonist-sensitive and efficacy-dependent, consistent with their effects using traditional measures of antinociception. Unlike traditional reflex-based measures, however, the results also permitted the concurrent evaluation of response disruption, providing an index with which to characterize the behavioral selectivity of antinociceptive drugs. PMID:24968803

  6. Peripheral and intra-dorsolateral striatum injections of the cannabinoid receptor agonist WIN 55,212-2 impair consolidation of stimulus-response memory.

    PubMed

    Goodman, J; Packard, M G

    2014-08-22

    The endocannabinoid system plays a major role in modulating memory. In the present study, we examined whether cannabinoid agonists influence the consolidation of stimulus-response/habit memory, a form of memory dependent upon the dorsolateral striatum (DLS). In Experiment 1, rats were trained in a cued platform water maze task in which animals were released from different start points and in order to escape had to find a cued platform which was moved to various spatial locations across trials. Immediately following training, rats received an i.p. injection of the cannabinoid receptor agonist WIN 55,212-2 (1 or 3mg/kg) or a vehicle solution. In Experiment 2, rats were trained in a forced-response version of the water plus-maze task in which a consistent body-turn response was reinforced across trials. Immediately following training, rats received an i.p. injection of WIN 55,212-2 (3 mg/kg) or vehicle. In Experiment 3, rats were trained in the cued platform task and after training received bilateral intra-DLS WIN 55,212-2 (100 ng/.5 μL or 200 ng/.5 μL) or vehicle. In Experiments 1-3, the higher doses of WIN 55,212-2 were associated with significant memory impairments, relative to vehicle-treated controls. The results indicate that peripheral or intra-DLS administration of a cannabinoid receptor agonist impairs consolidation of DLS-dependent memory. The findings are discussed within the context of previous research encompassing cannabinoids and DLS-dependent learning and memory processes, and the possibility that cannabinoids may be used to treat some habit-like human psychopathologies (e.g. posttraumatic stress disorder) is considered. PMID:24838065

  7. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception

    PubMed Central

    Dimitrov, Eugene L.; Petrus, Emily; Usdin, Ted B.

    2010-01-01

    Tuberoinfundibular peptide of 39 residues (TIP39) synthesizing neurons at the caudal border of the thalamus and in the lateral pons project to areas rich in its receptor, the parathyroid hormone 2 receptor (PTH2R). These areas include many involved in processing nociceptive information. Here we examined the potential role of TIP39 signaling in nociception using a PTH2R antagonist (HYWH) and mice with deletion of TIP39's coding sequence or PTH2R null mutation. Intracerebroventricular (icv) infusion of HYWH significantly inhibited nociceptive responses in tail-flick and hot-plate tests and attenuated the nociceptive response to hindpaw formalin injection. TIP39-KO and PTH2R-KO had increased response latency in the 55 °C hot-plate test and reduced responses in the hindpaw formalin test. The tail-flick test was not affected in either KO line. Thermal hypoalgesia in KO mice was dose-dependently reversed by systemic administration of the cannabinoid receptor 1 (CB1) antagonist rimonabant, which did not affect nociception in wild-type (WT). Systemic administration of the cannabinoid agonist CP 55,940 did not affect nociception in KO mice at a dose effective in WT. WT mice administered HYWH icv, and both KOs, had significantly increased stress-induced analgesia (SIA). Rimonabant blocked the increased SIA in TIP39-KO, PTH2R-KO or after HYWH infusion. CB1 and FAAH mRNA were decreased and increased, respectively, in the basolateral amygdala of TIP39-KO mice. These data suggest that TIP39 signaling modulates nociception, very likely by inhibiting endocannabinoid circuitry at a supraspinal level. We infer a new central mechanism for endocannabinoid regulation, via TIP39 acting on the PTH2R in discrete brain regions. PMID:20696160

  8. A system for inducing concurrent tactile and nociceptive sensations at the same site using electrocutaneous stimulation.

    PubMed

    Steenbergen, Peter; Buitenweg, Jan R; Trojan, Jörg; van der Heide, Esther M; van den Heuvel, Teun; Flor, Herta; Veltink, Peter H

    2012-12-01

    Studies of the interaction between mechanoception and nociception would benefit from a method for stimulation of both modalities at the same location. For this purpose, we developed an electrical stimulation device. Using two different electrode geometries, discs and needles, the device is capable of inducing two distinct stimulus qualities, dull and sharp, at the same site on hairy skin. The perceived strength of the stimuli can be varied by applying stimulus pulse trains of different lengths. We assessed the perceived stimulus qualities and intensities of the two electrode geometries at two levels of physical stimulus intensity. In a first series of experiments, ten subjects participated in two experimental sessions. The subjects reported the perceived quality and intensity of four different stimulus classes on visual analogue scales (VASs). In a second series, we added a procedure in which subjects assigned descriptive labels to the stimuli. We assessed the reproducibility of the VAS scores by calculating intraclass correlation coefficients. The results showed that subjects perceived stimuli delivered through the disc electrodes as dull and those delivered through the needles as sharp. Increasing the pulse train length increased the perceived stimulus intensities without decreasing the difference in quality between the electrode types. The intraclass correlation coefficients for the VAS scores ranged from .75 to .95. The labels that were assigned for the two electrode geometries corresponded to the descriptors for nociception and touch reported by other researchers. We concluded that our device is capable of reliably inducing tactile and nociceptive sensations of controllable intensity at the same skin site. PMID:22806702

  9. The zebrafish as a model for nociception studies.

    PubMed

    Malafoglia, Valentina; Bryant, Bruce; Raffaeli, William; Giordano, Antonio; Bellipanni, Gianfranco

    2013-10-01

    Nociception is the sensory mechanism used to detect cues that can harm an organism. The understanding of the neural networks and molecular controls of the reception of pain remains an ongoing challenge for biologists. While we have made significant progress in identifying a number of molecules and pathways that are involved in transduction of noxious stimuli, from the skin through the sensory receptor cell and from this to the spinal cord on into the central nervous system, we still lack a clear understanding of the perceptual processes, the responses to pain and the regulation of pain perception. Mice and rat animal models have been extensively used for nociception studies. However, the study of pain and noiception in these organisms can be rather laborious, costly and time consuming. Conversely, the use of Drosophila and Caenorhabditis elegans may be affected by the large evolutionary distance between these animals and humans. We outline here the reasons why zebrafish presents a new and attractive model for studying pain reception and responses and the most interesting findings in the study of nociception that have been obtained using the zebrafish model. PMID:23559073

  10. Quantification of Nociceptive Escape Response in C.elegans

    NASA Astrophysics Data System (ADS)

    Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya

    2013-03-01

    Animals cannot rank and communicate their pain consciously. Thus in pain studies on animal models, one must infer the pain level from high precision experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. Here we explore the feasibility of C.elegans as a model for pain transduction. The nematode has a robust neurally mediated noxious escape response, which we show to be partially decoupled from other sensory behaviors. We develop a nociceptive behavioral response assay that allows us to apply controlled levels of pain by locally heating worms with an IR laser. The worms' motions are captured by machine vision programming with high spatiotemporal resolution. The resulting behavioral quantification allows us to build a statistical model for inference of the experienced pain level from the behavioral response. Based on the measured nociceptive escape of over 400 worms, we conclude that none of the simple characteristics of the response are reliable indicators of the laser pulse strength. Nonetheless, a more reliable statistical inference of the pain stimulus level from the measured behavior is possible based on a complexity-controlled regression model that takes into account the entire worm behavioral output. This work was partially supported by NSF grant No. IOS/1208126 and HFSP grant No. RGY0084/2011.

  11. Increased Neuronal Expression of Neurokinin-1 Receptor and Stimulus-Evoked Internalization of the Receptor in the Rostral Ventromedial Medulla of the Rat after Peripheral Inflammatory Injury1

    PubMed Central

    Hamity, Marta V.; Walder, Roxanne Y.; Hammond, Donna L.

    2014-01-01

    This study examined possible mechanisms by which Substance P (Sub P) assumes a pronociceptive role in the rostral ventromedial medulla (RVM) under conditions of peripheral inflammatory injury, in this case produced by intraplantar (ipl) injection of complete Freund’s adjuvant (CFA). In saline- and CFA-treated rats, neurokinin-1 receptor (NK1R) immunoreactivity was localized to neurons in the RVM. Four days after ipl injection of CFA, the number of NK1R immunoreactive neurons in the RVM was increased by 30%, and there was a concomitant increase in NK1R immunoreactive processes in CFA-treated rats. Although NK1R immunoreactivity was increased, tachykinin-1 receptor (Tacr1) mRNA was not increased in the RVM of CFA-treated rats. To assess changes in Sub P release, the number of RVM neurons that exhibited NK1R internalization was examined in saline- and CFA-treated rats following noxious heat stimulation of the hind paws. Only CFA-treated rats that experienced noxious heat stimulation exhibited a significant increase in the number of neurons showing NK1R internalization. These data suggest that tonic Sub P release is not increased as a simple consequence of peripheral inflammation, but that phasic or evoked release of Sub P in the RVM is increased in response to noxious peripheral stimulation in a persistent inflammatory state. These data support the proposal that an upregulation of the NK1R in the RVM, as well as enhanced release of Sub P following noxious stimulation underlie the pronociceptive role of Sub P under conditions of persistent inflammatory injury. PMID:24639151

  12. Shielding cognition from nociception with working memory.

    PubMed

    Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André

    2013-01-01

    Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. PMID:23026759

  13. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording

    PubMed Central

    Zhao, Xiao-Yan; Liu, Ming-Gang; Yuan, Dong-Liang; Wang, Yan; He, Ying; Wang, Dan-Dan; Chen, Xue-Feng; Zhang, Fu-Kang; Li, Hua; He, Xiao-Sheng; Chen, Jun

    2009-01-01

    Background Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. Results On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 × 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of

  14. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    NASA Astrophysics Data System (ADS)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  15. Coeruleotrigeminal inhibition of nociceptive processing in the rat trigeminal subnucleus caudalis.

    PubMed

    Tsuruoka, Masayoshi; Matsutani, Kiyo; Maeda, Masako; Inoue, Tomio

    2003-12-12

    It has been accepted that the descending system from the nucleus locus coeruleus (LC)/nucleus subcoeruleus (SC) plays a significant role in spinal nociceptive processing. The present study was designed to examine modulation of nociceptive processing in the caudal part of the trigeminal sensory nuclear complex, the trigeminal subnucleus caudalis which is generally considered to be involved in the relay of oral-facial nociceptive information. Experiments were performed on anesthetized Sprague-Dawley rats. The site of LC/SC stimulation was confirmed by histology using potassium ferrocyanide to produce a Prussian blue reaction product marking the iron deposited from the stimulating electrode tip. Only data from rats which had electrode placements in the LC/SC were used. Electrical stimulation was delivered at a stimulus intensity below 100 microA in the present study. Stimulation at sites inside the LC/SC produced a reduction of both spontaneous activity and responses of subnucleus caudalis neurons to somatic input, especially nociceptive input. Increasing stimulation frequency in the LC/SC resulted in an increase in inhibitory effects on nociceptive responses of subnucleus caudalis neurons. At three of nine sites outside the LC/SC, electrical stimulation was effective on descending inhibition. A significant difference in the inhibitory effects was observed when the inhibitory effects were compared between sites of stimulation inside the LC/SC and three effective sites of stimulation outside the LC/SC. These findings suggest that nociceptive processing in the subnucleus caudalis is under the control of the descending modulation system from the LC/SC. To understand the effects of repetitive stimulation with high frequency on fine unmyelinated LC/SC fibers, the existence of recurrent collateral excitation in the LC/SC may be considered. PMID:14642840

  16. Effect of Histone Acetylation on N-Methyl-D-Aspartate 2B Receptor Subunits and Interleukin-1 Receptors in Association with Nociception-Related Somatosensory Cortex Dysfunction in a Mouse Model of Sepsis.

    PubMed

    Imamura, Yukio; Yoshikawa, Nao; Murkami, Yuki; Mitani, Satoko; Matsumoto, Naoya; Matsumoto, Hisatake; Yamada, Tomoki; Yamakawa, Kazuma; Nakagawa, Junichiro; Ogura, Hiroshi; Shimazu, Takeshi; Jin, Takashi

    2016-06-01

    Whole-body inflammation (i.e., sepsis) often results in brain-related sensory dysfunction. We previously reported that interleukin (IL)-1 resulted in synaptic dysfunction of septic encephalopathy, but the underlying molecular mechanisms remain unknown, as do effective treatments. Using mice, we examined immunohistochemistry, co-immunoprecipitation, enzyme-linked immunosorbent assay, and behavior analyses, and investigated the role of the N-methyl-D-aspartate 2B subunit (NR2B) of NMDA receptor, IL-1 receptor, and histone acetylation in the pathophysiology underlying sensory dysfunction induced by lipopolysaccharide (LPS). Mice groups of sham-operated, LPS, LPS with an NR2B antagonist, or LPS with resveratrol (a histone acetylation activator) were analyzed. We found that LPS increased NR2B and interleukin-1 receptor (IL-1R) immunoreactivity. The expression of Iba1, a marker for microglia and/or macrophages, increased more significantly in the brain than in the spinal cord, implicating NR2B and IL-1R in brain inflammation. Immunoprecipitation with NR2B and IL-1R revealed related antibodies. Blood levels of IL-1β (i.e., the IL-1R ligand) increased, though not significantly, suggesting that inflammation peaked at 20 h. Behavioral assessments of central (CNS) and peripheral sensory (PNS) function indicated that LPS delayed CNS but not PNS escape latency. Finally, NR2B antagonist or resveratrol in the lateral ventricle antagonized the effects of LPS in the brain and improved animal survival. In summary, histone acetylation may control expression of NR2B and IL-1R, alleviating inflammation-induced sensory neuronal dysfunction caused by LPS. PMID:26682951

  17. Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception.

    PubMed

    Jurik, Angela; Auffenberg, Eva; Klein, Sabine; Deussing, Jan M; Schmid, Roland M; Wotjak, Carsten T; Thoeringer, Christoph K

    2015-12-01

    Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs. PMID:26262826

  18. A pro-nociceptive role of neuromedin U in adult mice.

    PubMed

    Cao, Chang Qing; Yu, Xiao Hong; Dray, Andy; Filosa, Angelo; Perkins, Martin N

    2003-08-01

    Although the neuropeptide neuromedin U (NMU) was first isolated from the spinal cord, its actions in this site are unknown. The recent identification of the NMU receptor subtype 2 (NMU2R) in the spinal cord has increased the interest in investigating the role of NMU in this part of the central nervous system. Here, we report a novel function for NMU in spinal nociception in the mouse. Systemic perfusion of NMU (rat, NMU-23) dose-dependently (0.2, 0.5, 1, and 2.5 microM) potentiated both the background activity and noxious pinch-evoked response of nociceptive or wide dynamic range, but not non-nociceptive, dorsal horn neurons. At 2.5 microM, NMU-23 increased the total background activity from 154+/-34 to 1374+/-260 spikes/160 s (P<0.005, n=28) and increased the evoked nociceptive response by 185+/-50% (P<0.01, n=13). Intrathecal administration of NMU-23 (0.4, 1.1, and 3.8 nmol/10 microl) dose-dependently decreased thermal withdrawal latencies and produced a morphine-sensitive behavioral response. These electrophysiological and behavioral results suggest that NMU may be a novel physiological regulator in spinal nociceptive transmission and processing. PMID:12927633

  19. The amnesiac gene is involved in the regulation of thermal nociception in Drosophila melanogaster

    PubMed Central

    Aldrich, Benjamin T.; Kasuya, Junko; Faron, Matthew; Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2011-01-01

    Nociception is a mechanism fundamental to the ability of animals to avoid noxious stimuli capable of causing serious tissue damage. It has been established that in the fruit fly Drosophila melanogaster, the transient receptor potential (TRP) channel encoded by the painless gene (pain) is required for detecting thermal and mechanical noxious stimuli. Little is known, however, about other genetic components that control nociceptive behaviors in Drosophila. The amnesiac gene (amn), which encodes a putative neuropeptide precursor, is important for stabilizing olfactory memory, and is involved in various aspects of other associative and non-associative learning. Previous studies have indicated that amn also regulates ethanol sensitivity and sleep. Here we show that amn plays an additional critical role in nociception. Our data show that amn mutant larvae and adults are significantly less responsive to noxious heat stimuli (> ~ 40 °C) than their wild-type counterparts. The phenotype of amn mutants in thermal nociception, which closely resembles that of pain mutants, was phenocopied in flies expressing amn RNAi, and this phenotype was rescued by the expression of a wild-type amn transgene. Our results provide compelling evidence that amn is a novel genetic component of the mechanism that regulates thermal nociception in Drosophila. PMID:19995327

  20. Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception.

    PubMed

    Linley, John E; Rose, Kirstin; Patil, Mayur; Robertson, Brian; Akopian, Armen N; Gamper, Nikita

    2008-10-29

    Inflammatory pain is thought to be mediated in part through the action of inflammatory mediators on membrane receptors of peripheral nerve terminals, however, the downstream signaling events which lead to pain are poorly understood. In this study we investigated the nociceptive pathways induced by activation of protease-activated receptor 2 (PAR-2) in damage-sensing (nociceptive) neurons from rat dorsal root ganglion (DRG). We found that activation of PAR-2 in these cells strongly inhibited M-type potassium currents (conducted by Kv7 potassium channels). Such inhibition caused depolarization of the neuronal resting membrane potential leading, ultimately, to nociception. Consistent with this mechanism, injection of the specific M channel blocker XE991 into rat paw induced nociception in a concentration-dependent manner. Injection of a PAR-2 agonist peptide also induced nociception but coinjection of XE991 and the PAR-2 agonist did not result in summation of nociception, suggesting that the action of both agents may share a similar mechanism. We also studied the signaling pathway of M current inhibition by PAR-2 using patch-clamp and fluorescence imaging of DRG neurons. These experiments revealed that the PAR-2 effect was mediated by phospholipase C (PLC). Further experiments demonstrated that M current inhibition required concurrent rises in cytosolic Ca(2+) concentration and depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)). We propose that PLC- and Ca(2+)/PIP(2)-mediated inhibition of M current in sensory neurons may represent one of the general mechanisms underlying pain produced by inflammatory mediators, and may therefore open up a new therapeutic window for treatment of this major clinical problem. PMID:18971466

  1. Effects of μ-Opioid Receptor Agonists in Assays of Acute Pain-Stimulated and Pain-Depressed Behavior in Male Rats: Role of μ-Agonist Efficacy and Noxious Stimulus Intensity

    PubMed Central

    Rice, Kenner C.; Negus, S. Stevens

    2015-01-01

    Pain is associated with stimulation of some behaviors and depression of others, and μ-opioid receptor agonists are among the most widely used analgesics. This study used parallel assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats to compare antinociception profiles for six μ-agonists that varied in efficacy at μ-opioid receptors (from highest to lowest: methadone, fentanyl, morphine, hydrocodone, buprenorphine, and nalbuphine). Intraperitoneal injection of diluted lactic acid served as an acute noxious stimulus to either stimulate stretching or depress operant responding maintained by electrical stimulation in an intracranial self-stimulation (ICSS). All μ-agonists blocked both stimulation of stretching and depression of ICSS produced by 1.8% lactic acid. The high-efficacy agonists methadone and fentanyl were more potent at blocking acid-induced depression of ICSS than acid-stimulated stretching, whereas lower-efficacy agonists displayed similar potency across assays. All μ-agonists except morphine also facilitated ICSS in the absence of the noxious stimulus at doses similar to those that blocked acid-induced depression of ICSS. The potency of the low-efficacy μ-agonist nalbuphine, but not the high-efficacy μ-agonist methadone, to block acid-induced depression of ICSS was significantly reduced by increasing the intensity of the noxious stimulus to 5.6% acid. These results demonstrate sensitivity of acid-induced depression of ICSS to a range of clinically effective μ-opioid analgesics and reveal distinctions between opioids based on efficacy at the μ-receptor. These results also support the use of parallel assays of pain-stimulated and -depressed behaviors to evaluate analgesic efficacy of candidate drugs. PMID:25406170

  2. Touch inhibits subcortical and cortical nociceptive responses

    PubMed Central

    Mancini, Flavia; Beaumont, Anne-Lise; Hu, Li; Haggard, Patrick; Iannetti, Gian Domenico D.

    2015-01-01

    Abstract The neural mechanisms of the powerful analgesia induced by touching a painful body part are controversial. A long tradition of neurophysiologic studies in anaesthetized spinal animals indicate that touch can gate nociceptive input at spinal level. In contrast, recent studies in awake humans have suggested that supraspinal mechanisms can be sufficient to drive touch-induced analgesia. To investigate this issue, we evaluated the modulation exerted by touch on established electrophysiologic markers of nociceptive function at both subcortical and cortical levels in humans. Aδ and C skin nociceptors were selectively activated by high-power laser pulses. As markers of subcortical and cortical function, we recorded the laser blink reflex, which is generated by brainstem circuits before the arrival of nociceptive signals at the cortex, and laser-evoked potentials, which reflect neural activity of a wide array of cortical areas. If subcortical nociceptive responses are inhibited by concomitant touch, supraspinal mechanisms alone are unlikely to be sufficient to drive touch-induced analgesia. Touch induced a clear analgesic effect, suppressed the laser blink reflex, and inhibited both Aδ-fibre and C-fibre laser-evoked potentials. Thus, we conclude that touch-induced analgesia is likely to be mediated by a subcortical gating of the ascending nociceptive input, which in turn results in a modulation of cortical responses. Hence, supraspinal mechanisms alone are not sufficient to mediate touch-induced analgesia. PMID:26058037

  3. Touch inhibits subcortical and cortical nociceptive responses.

    PubMed

    Mancini, Flavia; Beaumont, Anne-Lise; Hu, Li; Haggard, Patrick; Iannetti, Giandomenico D; Iannetti, Gian Domenico D

    2015-10-01

    The neural mechanisms of the powerful analgesia induced by touching a painful body part are controversial. A long tradition of neurophysiologic studies in anaesthetized spinal animals indicate that touch can gate nociceptive input at spinal level. In contrast, recent studies in awake humans have suggested that supraspinal mechanisms can be sufficient to drive touch-induced analgesia. To investigate this issue, we evaluated the modulation exerted by touch on established electrophysiologic markers of nociceptive function at both subcortical and cortical levels in humans. Aδ and C skin nociceptors were selectively activated by high-power laser pulses. As markers of subcortical and cortical function, we recorded the laser blink reflex, which is generated by brainstem circuits before the arrival of nociceptive signals at the cortex, and laser-evoked potentials, which reflect neural activity of a wide array of cortical areas. If subcortical nociceptive responses are inhibited by concomitant touch, supraspinal mechanisms alone are unlikely to be sufficient to drive touch-induced analgesia. Touch induced a clear analgesic effect, suppressed the laser blink reflex, and inhibited both Aδ-fibre and C-fibre laser-evoked potentials. Thus, we conclude that touch-induced analgesia is likely to be mediated by a subcortical gating of the ascending nociceptive input, which in turn results in a modulation of cortical responses. Hence, supraspinal mechanisms alone are not sufficient to mediate touch-induced analgesia. PMID:26058037

  4. Discriminative stimulus properties of the dopamine D3 receptor agonists, PD128,907 and 7-OH-DPAT: a comparative characterization with novel ligands at D3 versus D2 receptors.

    PubMed

    Millan, M J; Girardon, S; Monneyron, S; Dekeyne, A

    2000-02-14

    Rats were trained to recognize a discriminative stimulus (DS) elicited by the preferential dopamine D3 receptor agonists, PD128,907 (0.16 mg/kg, i.p.) and 7-OH-DPAT (0.16 mg/kg, i.p.). PD128,907 and 7-OH-DPAT showed "full" (> or = 80%) and mutual generalization. Chemically-diverse, preferential D3 versus D2 agonists, quinelorane, CGS15855A, pramipexole, ropinirole and piribedil, generalized to PD128,907 (and 7-OH-DPAT) in this order of potency, which correlated more strongly with affinity/activity at cloned human (h)D3 (r=0.68/0.81, n=7) than hD2 (0.27/0.64, n=7) receptors. Further, generalization potency strongly correlated with potency for suppression of response rates (0.86), induction of hypothermia (0.92), reduction of striatal dopamine turnover (0.92) and diminution of immobility in a forced-swim procedure (0.97). Nafadotride, UH232 and AJ76, which show a mild preference for D3 versus D2 sites, blocked the PD128,907 DS, and the modestly-selective D3 antagonist, U99194A, was partially effective. Both nafadotride and U99194A blocked the 7-OH-DPAT DS. However, antagonist potency (n=4) versus PD128,907 correlated better with affinity at D2 (0.89) versus D3 (0.27) sites. Further, whereas the preferential D2 versus D3 antagonist, L741,626, antagonized the PD128,907 DS, the selective D3 antagonists, S11566, S14297 (its eutomer) and GR218,231 were ineffective against PD128907 and 7-OH-DPAT DS. S11566 and GR218,231 likewise did not generalize to PD128,907. In conclusion, under the present conditions, D2 receptors are principally implicated in the DS properties of PD128,907 and 7-OH-DPAT. PMID:10728880

  5. Endogenous inhibition of pain and spinal nociception in women with premenstrual dysphoric disorder

    PubMed Central

    Palit, Shreela; Bartley, Emily J; Kuhn, Bethany L; Kerr, Kara L; DelVentura, Jennifer L; Terry, Ellen L; Rhudy, Jamie L

    2016-01-01

    Purpose Premenstrual dysphoric disorder (PMDD) is characterized by severe affective and physical symptoms, such as increased pain, during the late-luteal phase of the menstrual cycle. The mechanisms underlying hyperalgesia in women with PMDD have yet to be identified, and supraspinal pain modulation has yet to be examined in this population. The present study assessed endogenous pain inhibitory processing by examining conditioned pain modulation (CPM, a painful conditioning stimulus inhibiting pain evoked by a test stimulus at a distal body site) of pain and the nociceptive flexion reflex (NFR, a spinally-mediated withdrawal reflex) during the mid-follicular, ovulatory, and late-luteal phases of the menstrual cycle. Methods Participants were regularly-cycling women (14 without PMDD; 14 with PMDD). CPM was assessed by delivering electrocutaneous test stimuli to the sural nerve before, during, and after a painful conditioning ischemia task. Participants rated their pain to electrocutaneous stimuli, and NFR magnitudes were measured. A linear mixed model analysis was used to assess the influence of group and menstrual phase on CPM. Results Compared with controls, women with PMDD experienced greater pain during the late-luteal phase and enhanced spinal nociception during the ovulation phase, both of which were independent of CPM. Both groups showed CPM inhibition of pain that did not differ by menstrual phase. Only women with PMDD evidenced CPM inhibition of NFR. Conclusion Endogenous modulation of pain and spinal nociception is not disrupted in women with PMDD. Additionally, greater NFR magnitudes during ovulation in PMDD may be due to tonically-engaged descending mechanisms that facilitate spinal nociception, leading to enhanced pain during the premenstrual phase. PMID:26929663

  6. Opioid receptor trafficking and interaction in nociceptors

    PubMed Central

    Zhang, X; Bao, L; Li, S

    2015-01-01

    Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24611685

  7. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans.

    PubMed

    Ezcurra, Marina; Walker, Denise S; Beets, Isabel; Swoboda, Peter; Schafer, William R

    2016-03-16

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  8. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans

    PubMed Central

    Ezcurra, Marina; Walker, Denise S.; Beets, Isabel; Swoboda, Peter

    2016-01-01

    Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways. PMID:26985027

  9. Nociceptive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception

    PubMed Central

    Liberati, Giulia; Klöcker, Anne; Safronova, Marta M.; Ferrão Santos, Susana; Ribeiro Vaz, Jose-Geraldo; Raftopoulos, Christian; Mouraux, André

    2016-01-01

    The insula, particularly its posterior portion, is often regarded as a primary cortex for pain. However, this interpretation is largely based on reverse inference, and a specific involvement of the insula in pain has never been demonstrated. Taking advantage of the high spatiotemporal resolution of direct intracerebral recordings, we investigated whether the human insula exhibits local field potentials (LFPs) specific for pain. Forty-seven insular sites were investigated. Participants received brief stimuli belonging to four different modalities (nociceptive, vibrotactile, auditory, and visual). Both nociceptive stimuli and non-nociceptive vibrotactile, auditory, and visual stimuli elicited consistent LFPs in the posterior and anterior insula, with matching spatial distributions. Furthermore, a blind source separation procedure showed that nociceptive LFPs are largely explained by multimodal neural activity also contributing to non-nociceptive LFPs. By revealing that LFPs elicited by nociceptive stimuli reflect activity unrelated to nociception and pain, our results confute the widespread assumption that these brain responses are a signature for pain perception and its modulation. PMID:26734726

  10. Nociception, pain, negative moods and behavior selection

    PubMed Central

    Baliki, Marwan N.; Apkarian, A. Vania

    2015-01-01

    Recent neuroimaging studies suggest that the brain adapts with pain, as well as imparts risk for developing chronic pain. Within this context we revisit the concepts for nociception, acute and chronic pain, and negative moods relative to behavior selection. We redefine nociception as the mechanism protecting the organism from injury; while acute pain as failure of avoidant behavior; and a mesolimbic threshold process that gates the transformation of nociceptive activity to conscious pain. Adaptations in this threshold process are envisioned to be critical for development of chronic pain. We deconstruct chronic pain into four distinct phases, each with specific mechanisms; and outline current state of knowledge regarding these mechanisms: The limbic brain imparting risk, while mesolimbic learning processes reorganizing the neocortex into a chronic pain state. Moreover, pain and negative moods are envisioned as a continuum of aversive behavioral learning, which enhance survival by protecting against threats. PMID:26247858

  11. Central effects of acetylsalicylic acid on trigeminal-nociceptive stimuli

    PubMed Central

    2014-01-01

    Background Acetylsalicylic acid is one of the most used analgesics to treat an acute migraine attack. Next to the inhibitory effects on peripheral prostaglandin synthesis, central mechanisms of action have also been discussed. Methods Using a standardized model for trigeminal-nociceptive stimulation during fMRI scanning, we investigated the effect of acetylsalicylic acid on acute pain compared to saline in 22 healthy volunteers in a double-blind within-subject design. Painful stimulation was applied using gaseous ammonia and presented in a pseudo-randomized order with several control stimuli. All participants were instructed to rate the intensity and unpleasantness of every stimulus on a VAS scale. Based on previous results, we hypothesized to find an effect of ASA on central pain processing structures like the ACC, SI and SII as well as the trigeminal nuclei and the hypothalamus. Results Even though we did not find any differences in pain ratings between saline and ASA, we observed decreased BOLD signal changes in response to trigemino-nociceptive stimulation in the ACC and SII after administration of ASA compared to saline. This finding is in line with earlier imaging results investigating the effect of ASA on acute pain. Contrary to earlier findings from animal studies, we could not find an effect of ASA on the trigeminal nuclei in the brainstem or within the hypothalamic area. Conclusion Taken together our study replicates earlier findings of an attenuating effect of ASA on pain processing structures, which adds further evidence to a possibly central mechanism of action of ASA. PMID:25201152

  12. Specific features of the planarian Dugesia tigrina regeneration and mollusk Helix albescens nociception under weak electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Temur'yants, N. A.; Demtsun, N. A.; Kostyuk, A. S.; Yarmolyuk, N. S.

    2012-12-01

    It has been demonstrated that weak electromagnetic shielding stimulates regeneration in the planarian Dugesia tigrina, the stimulating intensity being dependent on both the initial state of the animals, which is determined by season, and their functional asymmetry. As has been shown, the effect of a weak electromagnetic field induces phasic changes in the nociceptive sensitivity of the mollusk Helix albescens: an increase in the sensitivity to a thermal stimulus is replaced by the development of the hypalgesic effect.

  13. Changes in thalamic nociception resulting from morphine- and meperidine-dependence in rats.

    PubMed

    Emmers, R

    1984-01-01

    Rats were injected with progressively increasing doses of morphine or meperidine during a period of 3 to 40 days. From this colony of animals individual rats were used at 3- to 4-day intervals for electrophysiologic experiments to analyze the activity of nociceptive neurons in the somesthetic thalamus. After an i.p. injection of chloralose-urethane and the appropriate preparation for a stereotaxic microelectrode penetration of the thalamus, a nociceptive neuron was identified in the nucleus ventralis posterolateralis by its unique spacing of spike potentials emitted in response to pricking the foot with a pin. In addition to the short-latency response that formed a high activity peak on poststimulus time histograms, spikes following the stimulus up to 500 ms also formed activity peaks. Single-pulse stimulation of the sciatic nerve evoked the same response as pinpricks, but innocuous stimuli (pin shielded with a piece of cork) evoked a response without the late activity peaks. Only neurons that exhibited this differential response were regarded as nociceptive. Their response and spontaneous activity were accumulated separately on a digital computer. Following this, naloxone was infused i.v. and the computer accumulations were repeated. It was found that during naloxone-precipitated narcotic withdrawal, innocuous stimuli evoked responses indicative of pain; the nociceptive system was sensitized. Furthermore, a small dose or morphine or meperidine heightened the sensitization. This action of the narcotic agents was reversed by 5-hydroxytryptophan, which assisted the narcotics in suppressing pain in morphine- or meperidine-dependent rats but had no demonstrable effect in control animals. The spontaneous tonic activity of the nociceptive neurons of the somesthetic thalamus was high in rats exhibiting narcotic dependence. Naloxone decreased the count, but not to the value of the control animals. The sensitization of nociception can be explained by a decreased action of a

  14. Fish oil concentrate delays sensitivity to thermal nociception in mice.

    PubMed

    Veigas, Jyothi M; Williams, Paul J; Halade, Ganesh; Rahman, Mizanur M; Yoneda, Toshiyuki; Fernandes, Gabriel

    2011-05-01

    Fish oil has been used to alleviate pain associated with inflammatory conditions such as rheumatoid arthritis. The anti-inflammatory property of fish oil is attributed to the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid. Contrarily, vegetable oils such as safflower oil are rich in n-6 fatty acids which are considered to be mediators of inflammation. This study investigates the effect of n-3 and n-6 fatty acids rich oils as dietary supplements on the thermally induced pain sensitivity in healthy mice. C57Bl/6J mice were fed diet containing regular fish oil, concentrated fish oil formulation (CFO) and safflower oil (SO) for 6 months. Pain sensitivity was measured by Plantar test and was correlated to the expression of acid sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1) and c-fos in dorsal root ganglion cells. Significant delay in sensitivity to thermal nociception was observed in mice fed CFO compared to mice fed SO (p<0.05). A significant diminution in expression of ion channels such as ASIC1a (64%), ASIC13 (37%) and TRPV1 (56%) coupled with reduced expression of c-fos, a marker of neuronal activation, was observed in the dorsal root ganglion cells of mice fed CFO compared to that fed SO. In conclusion, we describe here the potential of fish oil supplement in reducing sensitivity to thermal nociception in normal mice. PMID:21345372

  15. Nociceptive sensitization by the secretory protein Bv8

    PubMed Central

    Negri, Lucia; Lattanzi, Roberta; Giannini, Elisa; Metere, Alessio; Colucci, Mariantonella; Barra, Donatella; Kreil, Günther; Melchiorri, Pietro

    2002-01-01

    The small protein Bv8, isolated from amphibian skin, belongs to a novel family of secretory proteins (Bv8-Prokineticin family, SWISS-PROT: Q9PW66) whose orthologues have been conserved throughout evolution, from invertebrates to humans. When injected intravenously or subcutaneously (from 0.06 to 500 pmol kg−1) or intrathecally (from 6 fmol to 250 pmol) in rats, Bv8 produced an intense systemic nociceptive sensitization to mechanical and thermal stimuli applied to the tail and paws. Topically delivered into one rat paw, 50 fmol of Bv8 decreased by 50% the nociceptive threshold to pressure in the injected paw without affecting the threshold in the contralateral paw. The two G-protein coupled prokineticin receptors, PK-R1 and PK-R2, were expressed in rat dorsal root ganglia (DRG) and in dorsal quadrants of spinal cord (DSC) and bound Bv8 and the mammalian orthologue, EG-VEGF, with high affinity. In DSC, PK-R1 was more abundant than PK-R2, whereas both receptors were equally expressed in DRG. IC50 of Bv8 and EG-VEGF to inhibit [125I]-Bv8 binding to rat DRG and DSC were 4.1±0.4 nM Bv8 and 76.4±7.6 nM EG-VEGF, in DRG; 7.3±0.9 nM Bv8 and 330±41 nM EG-VEGF, in DSC. In the small diameter neurons (<30 μm) of rat DRG cultures, Bv8 concentrations, ranging from 0.2 to 10 nM, raised [Ca2+]i in a dose-dependent manner. These data suggest that Bv8, through binding to PK receptors of DSC and primary sensitive neurons, results in intense sensitization of peripheral nociceptors to thermal and mechanical stimuli. PMID:12466223

  16. Effects of nicotine in combination with drugs described as positive allosteric nicotinic acetylcholine receptor modulators in vitro: discriminative stimulus and hypothermic effects in mice.

    PubMed

    Moerke, Megan J; de Moura, Fernando B; Koek, Wouter; McMahon, Lance R

    2016-09-01

    Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56mg/kg and 0.91mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms. PMID:27238974

  17. Investigation of Van Gogh-like 2 mRNA regulation and localisation in response to nociception in the brain of adult common carp (Cyprinus carpio).

    PubMed

    Reilly, Siobhan C; Kipar, Anja; Hughes, David J; Quinn, John P; Cossins, Andrew R; Sneddon, Lynne U

    2009-11-20

    The Van Gogh-like 2 (vangl2) gene is typically associated with planar cell polarity pathways, which is essential for correct orientation of epithelial cells during development. The encoded protein of this gene is a transmembrane protein and is highly conserved through evolution. Van Gogh-like 2 was selected for further study on the basis of consistent regulation after a nociceptive stimulus in adult common carp and rainbow trout in a microarray study. An in situ hybridisation was conducted in the brain of mature common carp (Cyprinus carpio), 1.5 and 3 h after a nociceptive stimulus comprising of an acetic acid injection to the lips of the fish and compared with a saline-injected control. The vangl2 gene was expressed in all brain regions, and particularly intensely in neurons of the telencephalon and in ependymal cells. In the cerebellum, a greater number (P=0.018) of Purkinje cells expressed vangl2 after nociception (n=7) compared with controls (n=5). This regulation opens the possibility that vangl2 is involved in nociceptive processing in the adult fish brain and may be a novel target for central nociception in vertebrates. PMID:19781599

  18. TRPV1 expression level in isolectin B₄-positive neurons contributes to mouse strain difference in cutaneous thermal nociceptive sensitivity.

    PubMed

    Ono, Kentaro; Ye, Yi; Viet, Chi T; Dang, Dongmin; Schmidt, Brian L

    2015-05-01

    Differential thermal nociception across inbred mouse strains has genetic determinants. Thermal nociception is largely attributed to the heat/capsaicin receptor transient receptor potential vanilloid 1 (TRPV1); however, the contribution of this channel to the genetics of thermal nociception has not been revealed. In this study we compared TRPV1 expression levels and electrophysiological properties in primary sensory neurons and thermal nociceptive behaviors between two (C57BL/6 and BALB/c) inbred mouse strains. Using immunofluorescence and patch-clamp physiology methods, we demonstrated that TRPV1 expression was significantly higher in isolectin B4 (IB4)-positive trigeminal sensory neurons of C57BL/6 relative to BALB/c; the expression in IB4-negative neurons was similar between the strains. Furthermore, using electrophysiological cell classification (current signature method), we showed differences between the two strains in capsaicin sensitivity in IB4-positive neuronal cell types 2 and 13, which were previously reported as skin nociceptors. Otherwise electrophysiological membrane properties of the classified cell types were similar in the two mouse strains. In publicly available nocifensive behavior data and our own behavior data from the using the two mouse strains, C57BL/6 exhibited higher sensitivity to heat stimulation than BALB/c, independent of sex and anatomical location of thermal testing (the tail, hind paw, and whisker pad). The TRPV1-selective antagonist JNJ-17203212 inhibited thermal nociception in both strains; however, removing IB4-positive trigeminal sensory neurons with IB4-conjugated saporin inhibited thermal nociception on the whisker pad in C57BL/6 but not in BALB/c. These results suggest that TRPV1 expression levels in IB4-positive type 2 and 13 neurons contributed to differential thermal nociception in skin of C57BL/6 compared with BALB/c. PMID:25787958

  19. Stimulus Reporting Advances

    ERIC Educational Resources Information Center

    McNeil, Michele

    2009-01-01

    Faced with their first reporting deadlines for economic-stimulus aid to education, school districts are toiling over how every stimulus penny has been spent so far and how many jobs have been saved--numbers that will be scrutinized not just by the public, but by government auditors as well. The American Recovery and Reinvestment Act, passed by…

  20. Nociceptor-Enriched Genes Required for Normal Thermal Nociception.

    PubMed

    Honjo, Ken; Mauthner, Stephanie E; Wang, Yu; Skene, J H Pate; Tracey, W Daniel

    2016-07-12

    Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear) or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil). Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals. PMID:27346357

  1. Experimental evidence for alleviating nociceptive hypersensitivity by single application of capsaicin.

    PubMed

    Ma, Xiao-Li; Zhang, Fang-Xiong; Dong, Fei; Bao, Lan; Zhang, Xu

    2015-01-01

    The single application of high-concentration of capsaicin has been used as an analgesic therapy of persistent pain. However, its effectiveness and underlying mechanisms remain to be further evaluated with experimental approaches. The present study provided evidence showing that the single application of capsaicin dose-dependently alleviated nociceptive hypersensitivity, and reduced the action potential firing in small-diameter neurons of the dorsal root ganglia (DRG) in rats and mice. Pre-treatment with capsaicin reduced formalin-induced acute nocifensive behavior after a brief hyperalgesia in rats and mice. The inhibitory effects of capsaicin were calcium-dependent, and mediated by the capsaicin receptor (transient receptor potential vanilloid type-1). We further found that capsaicin exerted inhibitory effects on the persistent nociceptive hypersensitivity induced by peripheral inflammation and nerve injury. Thus, these results support the long-lasting and inhibitory effects of topical capsaicin on persistent pain, and the clinic use of capsaicin as a pain therapy. PMID:25896608

  2. Stimulus control: part I.

    PubMed

    Dinsmoor, J A

    1995-01-01

    In his effort to distinguish operant from respondent conditioning, Skinner stressed the lack of an eliciting stimulus and rejected the prevailing stereotype of Pavlovian "stimulus-response" psychology. But control by antecedent stimuli, whether classified as conditional or discriminative, is ubiquitous in the natural setting. With both respondent and operant behavior, symmetrical gradients of generalization along unrelated dimensions may be obtained following differential reinforcement in the presence and the absence of the stimulus. The slopes of these gradients serve as measures of stimulus control, and they can be steepened without applying differential reinforcement to any two points along the test dimension. Increases and decreases in stimulus control occur under the same conditions as those leading to increases and decreases in observing responses, indicating that it is the increasing frequency and duration of observation (and perhaps also of attention) that produces the separation in performances during discrimination learning. PMID:22478204

  3. The effect of distraction strategies on pain perception and the nociceptive flexor reflex (RIII reflex).

    PubMed

    Ruscheweyh, Ruth; Kreusch, Annette; Albers, Christoph; Sommer, Jens; Marziniak, Martin

    2011-11-01

    Distraction from pain reduces pain perception, and imaging studies have suggested that this may at least partially be mediated by activation of descending pain inhibitory systems. Here, we used the nociceptive flexor reflex (RIII reflex) to directly quantify the effects of different distraction strategies on basal spinal nociception and its temporal summation. Twenty-seven healthy subjects participated in 3 distraction tasks (mental imagery, listening to preferred music, spatial discrimination of brush stimuli) and, in a fourth task, concentrated on the painful stimulus. Results show that all 3 distraction tasks reduced pain perception, but only the brush task also reduced the RIII reflex. The concentration-on-pain task increased both pain perception and the RIII reflex. The extent of temporal summation of pain perception and the extent of temporal summation of the RIII reflex were not affected by any of the tasks. These results suggest that some, but not all, forms of pain reduction by distraction rely on descending pain inhibition. In addition, pain reduction by distraction seems to preferentially affect mechanisms of basal nociceptive transmission, not of temporal summation. PMID:21925793

  4. Pruritic and Nociceptive Sensations and Dysesthesias From a Spicule of Cowhage

    PubMed Central

    LaMotte, R. H.; Shimada, S. G.; Green, B. G.; Zelterman, D.

    2009-01-01

    Although the trichomes (spicules) of a pod of cowhage (Mucuna pruriens) are known to evoke a histamine-independent itch that is mediated by a cysteine protease, little is known of the itch and accompanying nociceptive sensations evoked by a single spicule and the enhanced itch and pain that can occur in the surrounding skin. The tip of a single spicule applied to the forearm of 45 subjects typically evoked 1) itch accompanied by nociceptive sensations (NS) of pricking/stinging and, to a lesser extent, burning, and 2) one or more areas of cutaneous dysesthesia characterized by hyperknesis (enhanced itch to pricking) with or without alloknesis (itch to stroking) and/or hyperalgesia (enhanced pricking pain). Itch could occur in the absence of NS or one or more dysesthesias but very rarely the reverse. The peak magnitude of sensation was positively correlated for itch and NS and increased (exhibited spatial summation) as the number of spicules was increased within a spatial extent of 6 cm but not 1 cm. The areas of dysesthesia did not exhibit spatial summation. We conclude that itch evoked by a punctate chemical stimulus can co-exist with NS and cutaneous dysesthesias as may occur in clinical pruritus. However, cowhage itch was not always accompanied by NS or dysesthesia nor was a momentary change in itch necessarily accompanied by a similar change in NS or vice versa. Thus there may be separate neural coding mechanisms for itch, nociceptive sensations, and each type of dysesthesia. PMID:19144738

  5. Distinct interactions of cannabidiol and morphine in three nociceptive behavioral models in mice.

    PubMed

    Neelakantan, Harshini; Tallarida, Ronald J; Reichenbach, Zachary W; Tuma, Ronald F; Ward, Sara J; Walker, Ellen A

    2015-04-01

    Cannabinoid and opioid agonists can display overlapping behavioral effects and the combination of these agonists is known to produce enhanced antinociception in several rodent models of acute and chronic pain. The present study investigated the antinociceptive effects of the nonpsychoactive cannabinoid, cannabidiol (CBD) and the µ-opioid agonist morphine, both alone and in combination, using three behavioral models in mice, to test the hypothesis that combinations of morphine and CBD would produce synergistic effects. The effects of morphine, CBD, and morphine/CBD combinations were assessed in the following assays: (a) acetic acid-stimulated stretching; (b) acetic acid-decreased operant responding for palatable food; and (c) hot plate thermal nociception. Morphine alone produced antinociceptive effects in all three models of acute nociception, whereas CBD alone produced antinociception only in the acetic acid-stimulated stretching assay. The nature of the interactions between morphine and CBD combinations were assessed quantitatively based on the principle of dose equivalence. Combinations of CBD and morphine produced synergistic effects in reversing acetic acid-stimulated stretching behavior, but subadditive effects in the hot plate thermal nociceptive assay and the acetic acid-decreased operant responding for palatable food assay. These results suggest that distinct mechanisms of action underlie the interactions between CBD and morphine in the three different behavioral assays and that the choice of appropriate combination therapies for the treatment of acute pain conditions may depend on the underlying pain type and stimulus modality. PMID:25485642

  6. Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation.

    PubMed

    Yang, Huan; Meijer, Hil G E; Doll, Robert J; Buitenweg, Jan R; van Gils, Stephan A

    2015-10-01

    Sensitization is an example of malfunctioning of the nociceptive pathway in either the peripheral or central nervous system. Using quantitative sensory testing, one can only infer sensitization, but not determine the defective subsystem. The states of the subsystems may be characterized using computational modeling together with experimental data. Here, we develop a neurophysiologically plausible model replicating experimental observations from a psychophysical human subject study. We study the effects of single temporal stimulus parameters on detection thresholds corresponding to a 0.5 detection probability. To model peripheral activation and central processing, we adapt a stochastic drift-diffusion model and a probabilistic hazard model to our experimental setting without reaction times. We retain six lumped parameters in both models characterizing peripheral and central mechanisms. Both models have similar psychophysical functions, but the hazard model is computationally more efficient. The model-based effects of temporal stimulus parameters on detection thresholds are consistent with those from human subject data. PMID:26228799

  7. Is temporal summation of pain and spinal nociception altered during normal aging?

    PubMed Central

    Marouf, Rafik; Piché, Mathieu; Rainville, Pierre

    2015-01-01

    Abstract This study examines the effect of normal aging on temporal summation (TS) of pain and the nociceptive flexion reflex (RIII). Two groups of healthy volunteers, young and elderly, received transcutaneous electrical stimulation applied to the right sural nerve to assess pain and the nociceptive flexion reflex (RIII-reflex). Stimulus intensity was adjusted individually to 120% of RIII-reflex threshold, and shocks were delivered as a single stimulus or as a series of 5 stimuli to assess TS at 5 different frequencies (0.17, 0.33, 0.66, 1, and 2 Hz). This study shows that robust TS of pain and RIII-reflex is observable in individuals aged between 18 and 75 years and indicates that these effects are comparable between young and older individuals. These results contrast with some previous findings and imply that at least some pain regulatory processes, including TS, may not be affected by normal aging, although this may vary depending on the method. PMID:26058038

  8. Is temporal summation of pain and spinal nociception altered during normal aging?

    PubMed

    Marouf, Rafik; Piché, Mathieu; Rainville, Pierre

    2015-10-01

    This study examines the effect of normal aging on temporal summation (TS) of pain and the nociceptive flexion reflex (RIII). Two groups of healthy volunteers, young and elderly, received transcutaneous electrical stimulation applied to the right sural nerve to assess pain and the nociceptive flexion reflex (RIII-reflex). Stimulus intensity was adjusted individually to 120% of RIII-reflex threshold, and shocks were delivered as a single stimulus or as a series of 5 stimuli to assess TS at 5 different frequencies (0.17, 0.33, 0.66, 1, and 2 Hz). This study shows that robust TS of pain and RIII-reflex is observable in individuals aged between 18 and 75 years and indicates that these effects are comparable between young and older individuals. These results contrast with some previous findings and imply that at least some pain regulatory processes, including TS, may not be affected by normal aging, although this may vary depending on the method. PMID:26058038

  9. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase

    PubMed Central

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather

    2016-01-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  10. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase.

    PubMed

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather; Hohmann, Andrea G

    2016-02-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  11. Hypergravity modulates behavioral nociceptive responses in rats

    NASA Astrophysics Data System (ADS)

    Kumei, Y.; Shimokawa, R.; Toda, K.; Kawauchi, Y.; Makita, K.; Terasawa, M.; Ohya, K.; Shimokawa, H.

    Hypergravity (2G) exposure elevated the nociceptive threshold (pain suppression) concomitantly with evoked neuronal activity in the hypothalamus. Young Wistar male rats were exposed to 2G by centrifugal rotation for 10 min. Before and after 2G exposure, the nociceptive threshold was measured as the withdrawal reflex by using the von Frey type needle at a total of 8 sites of each rat (nose, four quarters, upper and lower back, tail), and then rats were sacrificed. Fos expression was examined immunohistochemically in the hypothalamic slices of the 2G-treated rats. When rats were exposed to 2G hypergravity, the nociceptive threshold was significantly elevated to approximately 150 to 250% of the 1G baseline control levels in all the examination sites. The 2G hypergravity remarkably induced Fos expression in the paraventricular and arcuate nuclei of the hypothalamus. The analgesic effects of 2G hypergravity were attenuated by naloxone pretreatment. Data indicate that hypergravity induces analgesic effects in rats, mediated through hypothalamic neuronal activity in the endogenous opioid system and hypothalamo-pituitary-adrenal axis.

  12. Reflections on stimulus control.

    PubMed

    Sidman, Murray

    2008-01-01

    The topic of stimulus control is too broad and complex to be traceable here. It would probably take a two-semester course to cover just the highlights of that field's evolution. The more restricted topic of equivalence relations has itself become so broad that even an introductory summary requires more time than we have available. An examination of relations between equivalence and the more general topic of stimulus control, however, may reveal characteristics of both the larger and the more limited field that have not been generally discussed. Consideration of these features may in turn foster future developments within each area. I speak, of course, about aspects of stimulus control that my own experiences have made salient to me; others would surely emphasize different characteristics of the field. It is my hope that cooperative interactions among researchers and theorists who approach stimulus control from different directions will become more common than is currently typical. PMID:22478506

  13. Stimulus control: Part I

    PubMed Central

    Dinsmoor, James A.

    1995-01-01

    In his effort to distinguish operant from respondent conditioning, Skinner stressed the lack of an eliciting stimulus and rejected the prevailing stereotype of Pavlovian “stimulus—response” psychology. But control by antecedent stimuli, whether classified as conditional or discriminative, is ubiquitous in the natural setting. With both respondent and operant behavior, symmetrical gradients of generalization along unrelated dimensions may be obtained following differential reinforcement in the presence and the absence of the stimulus. The slopes of these gradients serve as measures of stimulus control, and they can be steepened without applying differential reinforcement to any two points along the test dimension. Increases and decreases in stimulus control occur under the same conditions as those leading to increases and decreases in observing responses, indicating that it is the increasing frequency and duration of observation (and perhaps also of attention) that produces the separation in performances during discrimination learning. PMID:22478204

  14. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  15. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  16. The Stimulus test stand

    SciTech Connect

    Christofek, L.; Rapidis, P.; Reinhard, A.; /Fermilab

    2005-06-01

    The Stimulus Test Stand was originally constructed and assembled for testing the SVX2 ASIC readout and then upgraded for SVX3 ASIC prototyping and testing. We have modified this system for SVX4 ASIC [1] prototype testing. We described the individual components below. Additional details for other hardware for SVX4 testing can be found in reference [2]. We provide a description of the Stimulus Test Stand used for prototype testing of the SVX4 chip.

  17. 5-HT induces temporomandibular joint nociception in rats through the local release of inflammatory mediators and activation of local β adrenoceptors.

    PubMed

    Oliveira-Fusaro, Maria Cláudia G; Clemente-Napimoga, Juliana Trindade; Teixeira, Juliana Maia; Torres-Chávez, Karla Elena; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera

    2012-09-01

    The 5-hydroxytryptamine (serotonin, 5-HT) is an important inflammatory mediator found in high levels in the synovial fluid of the temporomandibular joint (TMJ) of patients with inflammatory pain. In this study, we used the nociceptive behavior responses, measured as flinching the head and rubbing the orofacial region, as a nociceptive assay. We demonstrated that the local blockade of the 5-HT₃ receptor and β₁ or β₂-adrenoceptors, the depletion of norepinephrine in the sympathetic terminals and the local inhibition of cyclooxygenase significantly reduced 5-HT-induced TMJ nociception. These results demonstrated that 5-HT induces nociception in the TMJ region by the activation of β₁ and β₂ adrenoceptors located in the TMJ region and local release of sympathetic amines and prostaglandins. Therefore, the high levels of 5-HT in the synovial fluid of patients with TMJ inflammatory pain may contribute to TMJ pain by similar mechanisms. PMID:22683622

  18. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse.

    PubMed

    Feltenstein, Matthew W; See, Ronald E

    2007-11-01

    Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 microl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse. PMID:17613253

  19. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse

    PubMed Central

    Feltenstein, Matthew W.; See, Ronald E.

    2007-01-01

    Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 μl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse. PMID:17613253

  20. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling

    PubMed Central

    Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard

    2015-01-01

    In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K+ currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. PMID:26224542

  1. Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling.

    PubMed

    Kollert, Sina; Dombert, Benjamin; Döring, Frank; Wischmeyer, Erhard

    2015-01-01

    In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K(+) currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. PMID:26224542

  2. Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

    PubMed Central

    Jha, Mithilesh Kumar; Jeon, Sangmin; Jin, Myungwon; Lee, Won-Ha

    2013-01-01

    Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain. PMID:24385948

  3. Midbrain control of spinal nociception discriminates between responses evoked by myelinated and unmyelinated heat nociceptors in the rat.

    PubMed

    McMullan, Simon; Lumb, Bridget M

    2006-09-01

    Descending control of spinal nociception is a major determinant of normal and chronic pain. Myelinated (A-fibre) and unmyelinated (C-fibre) nociceptors convey different qualities of the pain signal (first and second pain, respectively), and they play different roles in the development and maintenance of chronic pain states. It is of considerable importance, therefore, to determine whether descending control has differential effects on the central processing of A- vs. C-nociceptive input. In anaesthetised rats, biceps femoris EMG was recorded to monitor the thresholds and encoding properties of responses evoked by fast (7.5 degrees Cs(-1)) or slow (2.5 degrees Cs(-1)) rates of skin heating of the dorsal surface of a hindpaw to preferentially activate myelinated or unmyelinated heat nociceptors, respectively. Activation of neurones in the periaqueductal grey (PAG) by microinjection of dl-homocysteic acid (DLH) or bicuculline (BIC) significantly increased response thresholds to slow rates of heating (P<0.001), but not those to fast rates of heating (P>0.05). The ability of the EMG to encode the stimulus intensity of fast rates of skin heating remained intact and unaltered (r2=0.99, P<0.001) following BIC but not DLH injection. In contrast, encoding of the stimulus intensity of slow rates of skin heating was abolished following BIC and DLH injection. The functional significance of differential descending control of the central processing of C- and A-nociceptive inputs is discussed with respect to role of the PAG in mediating antinociception as part of active coping strategies in emergency situations and the role of C- and A-nociceptive inputs in animal models of chronic pain. PMID:16650581

  4. Factors affecting mechanical (nociceptive) thresholds in piglets

    PubMed Central

    Janczak, Andrew M; Ranheim, Birgit; Fosse, Torunn K; Hild, Sophie; Nordgreen, Janicke; Moe, Randi O; Zanella, Adroaldo J

    2012-01-01

    Objective To evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer. Study design Descriptive, prospective cohort. Animals Forty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age. Methods Mechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data. Results Variance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p < 0.04 for all). Correlations between repeated measures increased from the first to the second week. Conclusions and Clinical relevance Repeatability was acceptable only during the second week of testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and

  5. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices

    PubMed Central

    Berrout, Jonathan; Isokawa, Masako

    2009-01-01

    Activity-dependent increase in cytosolic calcium ([Ca2+]i) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca2+ from ryanodine sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca2+ release is not completely understood. In the present study, we optically recorded [Ca2+]i from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca2+ activities and depolarization-induced Ca2+ signals in order to determine the source(s) and properties of [Ca2+]i-dynamics that could lead to a release of Ca2+ from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously-occurring miniature Ca2+ events were detected from a group of hippocampal neurons. This miniature Ca2+ event persisted in the nominal Ca2+-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca2+ channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca2+ events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca2+]i in the dendrosomal region. This [Ca2+]i-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca2+]i-transient was caused primarily by the LTCC-mediated Ca2+-influx and a release of Ca2+ from RyR. We observed little contribution from N-or P/Q-type Ca2+ channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC

  6. Fine-grained nociceptive maps in primary somatosensory cortex

    PubMed Central

    Mancini, Flavia; Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R.; Sereno, Martin I.

    2012-01-01

    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain. PMID:23197708

  7. Interests and Stimulus Seeking

    ERIC Educational Resources Information Center

    Kish, George B.; Donnenwerth, Gregory V.

    1969-01-01

    Examines relationships between Sensation-Seeking Scale (SSS) and vocational interests measured by the Kuder and Strong Vocational Interest Blank, among alcoholics and undergraduates. Results support construct validity of the SSS and provide further evidence of modes of expression of stimulus-seeking needs in personality. (Author/CJ)

  8. Reflections on Stimulus Control

    ERIC Educational Resources Information Center

    Sidman, Murray

    2008-01-01

    The topic of stimulus control is too broad and complex to be traceable here. It would probably take a two-semester course to cover just the highlights of that field's evolution. The more restricted topic of equivalence relations has itself become so broad that even an introductory summary requires more time than we have available. An examination…

  9. Steady-state evoked potentials to tag specific components of nociceptive cortical processing.

    PubMed

    Colon, Elisabeth; Nozaradan, Sylvie; Legrain, Valery; Mouraux, André

    2012-03-01

    Studies have shown that the periodic repetition of a stimulus induces, at certain stimulation frequencies, a sustained electro-cortical response of corresponding frequency, referred to as steady-state evoked potential (SSEP). Using infrared laser stimulation, we recently showed that SSEPs can be used to explore nociceptive cortical processing. Here, we implemented a novel approach to elicit such responses, using a periodic intra-epidermal electrical stimulation of cutaneous Aδ-nociceptors (Aδ-SSEPs). Using a wide range of frequencies (3-43 Hz), we compared the scalp topographies and temporal dynamics of these Aδ-SSEPs to the Aβ-SSEPs elicited by non-nociceptive transcutaneous electrical stimulation, as well as to the transient ERPs elicited by the onsets of the 10-s stimulation trains, applied to the left and right hand. At 3 Hz, we found that the topographies of Aβ- and Aδ-SSEPs were both maximal at the scalp vertex, and resembled closely that of the late P2 wave of transient ERPs, suggesting activity originating from the same neuronal populations. The responses also showed marked habituation, suggesting that they were mainly related to unspecific, attention-related processes. In contrast, at frequencies >3 Hz, the topographies of Aβ- and Aδ-SSEPs were markedly different. Aβ-SSEPs were maximal over the contralateral parietal region, whereas Aδ-SSEPs were maximal over midline frontal regions, thus indicating an entrainment of distinct neuronal populations. Furthermore, the responses showed no habituation, suggesting more obligatory and specific stages of sensory processing. Taken together, our results indicate that Aβ- and Aδ-SSEPs offer a unique opportunity to study the cortical representation of nociception and touch. PMID:22197788

  10. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission.

    PubMed

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B; Zhang, Hailin; Gamper, Nikita

    2014-11-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na(+), and T-type Ca(2+) channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  11. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  12. The Nociception Coma Scale: a new tool to assess nociception in disorders of consciousness.

    PubMed

    Schnakers, Caroline; Chatelle, Camille; Vanhaudenhuyse, Audrey; Majerus, Steve; Ledoux, Didier; Boly, Melanie; Bruno, Marie-Aurélie; Boveroux, Pierre; Demertzi, Athena; Moonen, Gustave; Laureys, Steven

    2010-02-01

    Assessing behavioral responses to nociception is difficult in severely brain-injured patients recovering from coma. We here propose a new scale developed for assessing nociception in vegetative (VS) and minimally conscious (MCS) coma survivors, the Nociception Coma Scale (NCS), and explore its concurrent validity, inter-rater agreement and sensitivity. Concurrent validity was assessed by analyzing behavioral responses of 48 post-comatose patients to a noxious stimulation (pressure applied to the fingernail) (28 VS and 20 MCS; age range 20-82 years; 17 of traumatic etiology). Patients' were assessed using the NCS and four other scales employed in non-communicative patients: the 'Neonatal Infant Pain Scale' (NIPS) and the 'Faces, Legs, Activity, Cry, Consolability' (FLACC) used in newborns; and the 'Pain Assessment In Advanced Dementia Scale' (PAINAD) and the 'Checklist of Non-verbal Pain Indicators' (CNPI) used in dementia. For the establishment of inter-rater agreement, fifteen patients were concurrently assessed by two examiners. Concurrent validity, assessed by Spearman rank order correlations between the NCS and the four other validated scales, was good. Cohen's kappa analyses revealed a good to excellent inter-rater agreement for the NCS total and subscore measures, indicating that the scale yields reproducible findings across examiners. Finally, a significant difference between NCS total scores was observed as a function of diagnosis (i.e., VS or MCS). The NCS constitutes a sensitive clinical tool for assessing nociception in severely brain-injured patients. This scale constitutes the first step to a better management of patients recovering from coma. PMID:19854576

  13. Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain

    PubMed Central

    Woo, Choong-Wan; Roy, Mathieu; Buhle, Jason T.; Wager, Tor D.

    2015-01-01

    Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI) imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS), an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system. PMID:25562688

  14. Hargreaves does not evaluate nociception following a surgical laparotomy in Xenopus leavis frogs.

    PubMed

    Vachon, P

    2014-10-01

    The present study was performed to determine the effectiveness of the Hargreaves test for the evaluation of nociception in frogs, more precisely to determine if cutaneous thresholds to a radiant heat stimulus would increase with analgesics following an abdominal laparotomy performed under general anaesthesia. Non breeding female Xenopus leavis frogs (3 groups (non-anaesthetized, anaesthetized with tricaine methanesulfonate (MS222), with or without an abdominal laparotomy) were used to evaluate the effectiveness of the Hargreaves test. Cutaneous thresholds were evaluated at baseline and following anaesthetic recovery (over 8 h) at six different body locations. Increased reaction times were observed in the gular area only at 1 h post-recovery following a MS222 bath immersion in frogs with (p < 0.02) and without the abdominal laparotomy (p < 0.002). In conclusion, the Hargreaves test does not provide an adequate test to evaluate nociception induced by an abdominal laparotomy and consequently cannot be used to evaluate analgesics in X. leavis frogs. PMID:25016568

  15. Psychophysical measurements of itch and nociceptive sensations in an experimental model of allergic contact dermatitis

    PubMed Central

    Pall, Parul S.; Hurwitz, Olivia E.; King, Brett A.; LaMotte, Robert H.

    2015-01-01

    Allergic contact dermatitis (ACD) is a common condition that can significantly impact the quality of life. Contact with allergens results in delayed hypersensitivity reactions involving T-lymphocytes, with associated skin inflammation and spontaneous itch and nociceptive sensations. However, psychophysical studies of these sensations are lacking. In the present study, we sensitized eight healthy volunteers to squaric acid dibutyl ester (SADBE). Two weeks later, one volar forearm was challenged with SADBE, and the other with acetone vehicle control. Subsequently, subjects rated the maximal perceived intensity of spontaneous itch, pricking/stinging, and burning every 6–12 hours for one week, using the generalized labeled magnitude scale. In the laboratory, they judged stimulus-evoked sensations within and outside the chemically-treated area. The SADBE- but not the acetone-treated skin resulted in a) localized inflammation, with spontaneous itch and nociceptive sensations peaking at 24–48 hours post-challenge, b) alloknesis, hyperknesis, and hyperalgesia to mechanical stimuli that were reduced or eliminated by anesthetic cooling of the SADBE-treated area and restored upon re-warming, suggesting sensations and dysesthesias are dependent on ongoing peripheral neural activity, and c) enhanced itch to intradermal injection of histamine, BAM8-22, or β-alanine. This experimental model of T-cell-mediated inflammation may prove useful in evaluating potential treatments of itch from ACD. PMID:26002605

  16. Respiratory hypoalgesia? Breath-holding, but not respiratory phase modulates nociceptive flexion reflex and pain intensity.

    PubMed

    Jafari, Hassan; Van de Broek, Karlien; Plaghki, Léon; Vlaeyen, Johan W S; Van den Bergh, Omer; Van Diest, Ilse

    2016-03-01

    Several observations suggest that respiratory phase (inhalation vs. exhalation) and post-inspiratory breath-holds could modulate pain and the nociceptive reflex. This experiment aimed to investigate the role of both mechanisms. Thirty-two healthy participants received supra-threshold electrocutaneous stimulations to elicit both the Nociceptive Flexion Reflex (NFR) and pain, either during spontaneous inhalations or exhalations, or during three types of instructed breath-holds: following exhalation, at mid-inhalation and at full-capacity inhalation. Whether the electrocutaneous stimulus was applied during inhalation or exhalation did not affect the NFR or pain. Self-reported pain was reduced and the NFR was increased during breath-holding compared to spontaneous breathing. Whereas the type of breath-hold did not impact on self-reported pain, breath-holds at full-capacity inhalation and following exhalation were associated with a lower NFR amplitude compared to breath-holds at mid-inhalation. The present findings confirm that breath-holding can modulate pain (sensitivity) and suggest that both attentional distraction and changes in vagal activity may underlie the observed effects. PMID:26808697

  17. Mast Cell-Mediated Mechanisms of Nociception

    PubMed Central

    Aich, Anupam; Afrin, Lawrence B.; Gupta, Kalpna

    2015-01-01

    Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner. PMID:26690128

  18. Repetitive trigeminal nociceptive stimulation in rats increases their susceptibility to cortical spreading depression.

    PubMed

    Toriumi, Haruki; Shimizu, Toshihiko; Ebine, Taeko; Takizawa, Tsubasa; Kayama, Yohei; Koh, Anri; Shibata, Mamoru; Suzuki, Norihiro

    2016-05-01

    We examined the ability of trigeminal nerve activation to induce cortical spreading depression in rats. Capsaicin was injected into the bilateral plantar or whisker pad for either 4 or 6 days in rats. The number and duration of cortical spreading depressions induced by potassium were significantly increased in animals injected with capsaicin in the bilateral whisker pad compared with animals injected in the bilateral plantar or in controls, while administration of a GABAA receptor agonist decreased these effects. Repetitive nociceptive stimulation of the trigeminal nerve lowers the threshold for the induction of cortical spreading depression by altering GABAergic neuronal activity. PMID:26739227

  19. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion.

    PubMed

    Mitchell, Kendall; Lebovitz, Evan E; Keller, Jason M; Mannes, Andrew J; Nemenov, Michael I; Iadarola, Michael J

    2014-04-01

    TRPV1 is expressed in a subpopulation of myelinated Aδ and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses from an infrared diode laser are capable of predominantly activating cutaneous TRPV1+ Aδ-fibers. Here we show that stimulating either subtype of TRPV1+ fiber in the paw during carrageenan-induced inflammation or following hind-paw incision elicits pronounced hyperalgesic responses, including prolonged paw guarding. The ultrapotent TRPV1 agonist resiniferatoxin (RTX) dose-dependently deactivates TRPV1+ fibers and blocks thermal nociceptive responses in baseline or inflamed conditions. Injecting sufficient doses of RTX peripherally renders animals unresponsive to laser stimulation even at the point of acute thermal skin damage. In contrast, Trpv1-/- mice, which are generally unresponsive to noxious thermal stimuli at lower power settings, exhibit withdrawal responses and inflammation-induced sensitization using high-power, short duration Aδ stimuli. In rats, systemic morphine suppresses paw withdrawal, inflammatory guarding, and hyperalgesia in a dose-dependent fashion using the same Aδ stimuli. The qualitative intensity of Aδ responses, the leftward shift of the stimulus-response curve, the increased guarding behaviors during carrageenan inflammation or after incision, and the reduction of Aδ responses with morphine suggest multiple roles for TRPV1+ Aδ fibers in nociceptive processes and their modulation of pathological pain conditions. PMID:24434730

  20. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord.

    PubMed

    Tsuruoka, M; Wang, D; Tamaki, J; Inoue, T

    2010-02-17

    Visceral nociceptive signals are the subject of descending modulation from the locus coeruleus/subcoeruleus (LC/SC). We have recently found dorsal horn neurons whose visceral nociceptive responses are not inhibited by the descending LC/SC system (LC/SC-unaffected neurons) in the rat. The aim of the present study was to estimate a possible role of LC/SC-unaffected neurons for pain processing and pain-related responses. We focused on the fact that nociceptive signals from a visceral organ produce not only visceral pain but also visceromotor reflexes (muscular defense). Different effects of LC/SC stimulation can be expected between visceral pain and visceromotor reflexes. To accomplish our objective, the descending colon was electrically stimulated, and both the evoked discharge (ED) in the ventral posterolateral (VPL) nucleus of the thalamus and the electromyogram (EMG) of the abdominal muscle were simultaneously recorded under halothane anesthesia. The ED recorded from the VPL was completely inhibited with the increase of LC/SC stimulus intensity, while the EMG of the abdominal muscle still remained even after the ED disappeared. This result suggests that the minimum visceromotor reflex responses are maintained by the presence of LC/SC-unaffected neurons, which play the important role of protecting the visceral organs. Considering a role of muscular defense, the presence of the LC/SC-unaffected neurons may be advantageous for the individual under an abnormal pain state, such as inflammation. PMID:19958815

  1. Determinants of Laser-Evoked EEG Responses: Pain Perception or Stimulus Saliency?

    PubMed Central

    Iannetti, G. D.; Hughes, N. P.; Lee, M. C.; Mouraux, A.

    2008-01-01

    Although laser-evoked electroencephalographic (EEG) responses are increasingly used to investigate nociceptive pathways, their functional significance remains unclear. The reproducible observation of a robust correlation between the intensity of pain perception and the magnitude of the laser-evoked N1, N2, and P2 responses has led some investigators to consider these responses a direct correlate of the neural activity responsible for pain intensity coding in the human cortex. Here, we provide compelling evidence to the contrary. By delivering trains of three identical laser pulses at four different energies, we explored the modulation exerted by the temporal expectancy of the stimulus on the relationship between intensity of pain perception and magnitude of the following laser-evoked brain responses: the phase-locked N1, N2, and P2 waves, and the non-phase-locked laser-induced synchronization (ERS) and desynchronization (ERD). We showed that increasing the temporal expectancy of the stimulus through stimulus repetition at a constant interstimulus interval 1) significantly reduces the magnitudes of the laser-evoked N1, N2, P2, and ERS; and 2) disrupts the relationship between the intensity of pain perception and the magnitude of these responses. Taken together, our results indicate that laser-evoked EEG responses are not determined by the perception of pain per se, but are mainly determined by the saliency of the eliciting nociceptive stimulus (i.e., its ability to capture attention). Therefore laser-evoked EEG responses represent an indirect readout of the function of the nociceptive system. PMID:18525021

  2. Capsaicin-Induced Thermal Hyperalgesia and Sensitization in the Human Trigeminal Nociceptive Pathway: An fMRI Study

    PubMed Central

    Moulton, Eric; Pendse, Gautam; Morris, Susie; Strassman, Andrew; Aiello-Lammens, Matthew; Becerra, Lino; Borsook, David

    2007-01-01

    The aim of this study was to differentiate the processing of nociceptive information, matched for pain intensity, from capsaicin-induced hyperalgesic vs. control skin at multiple levels in the trigeminal nociceptive pathway. Using an event-related fMRI approach, 12 male subjects underwent three functional scans beginning 1 hour after topical application of capsaicin to a defined location on the maxillary skin, when pain from capsaicin application had completely subsided. Brush and two levels of painful heat (low - Thermal-1 and high - Thermal-2) were applied to the site of capsaicin application and to the mirror image region on the opposite side. Temperatures for each side were set to evoke perceptually-matched pain (mean temperatures [capsaicin/control]: Thermal-1=38.4/42.8°C; Thermal-2=44.9/47.8°C). We found differences in activation patterns following stimuli to treated and untreated sides in sensory circuits across all stimulus conditions. Across the trigeminal nociceptive pathway, Thermal-2 stimulation of hyperalgesic skin evoked greater activation in trigeminal ganglion and nucleus, thalamus, and somatosensory cortex than the control side. Thus, trigeminal nociceptive regions showed increased activation in the context of perceptually equal pain levels. Beyond these regions, contrast analyses of capsaicin vs. control skin stimulation indicated significant changes in bilateral dorsolateral prefrontal cortex and amygdala. The involvement of these emotion-related regions suggests that they may be highly sensitive to context, such as prior experience (application of capsaicin) and the specific pain mechanism (hyperalgesic vs. normal skin). PMID:17407825

  3. Learned control over spinal nociception reduces supraspinal nociception as quantified by late somatosensory evoked potentials.

    PubMed

    Ruscheweyh, Ruth; Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Sommer, Jens; Straube, Andreas

    2015-12-01

    We have recently shown that subjects can learn to use cognitive-emotional strategies to suppress their spinal nociceptive flexor reflex (RIII reflex) under visual RIII feedback and proposed that this reflects learned activation of descending pain inhibition. Here, we investigated whether learned RIII suppression also affects supraspinal nociception and whether previous relaxation training increases success. Subjects were trained over 3 sessions to reduce their RIII size by self-selected cognitive-emotional strategies. Two groups received true RIII feedback (with or without previous relaxation training) and a sham group received false feedback (15 subjects per group). RIII reflexes, late somatosensory evoked potentials (SEPs), and F-waves were recorded and pain intensity ratings collected. Both true feedback groups achieved significant (P < 0.01) but similar RIII suppression (to 79% ± 21% and 70% ± 17% of control). Somatosensory evoked potential amplitude (100-150 milliseconds after stimulation) was reduced in parallel with the RIII size (r = 0.57, P < 0.01). In the sham group, neither RIII size nor SEP amplitude was significantly reduced during feedback training. Pain intensity was significantly reduced in all 3 groups and also correlated with RIII reduction (r = 0.44, P < 0.01). F-wave parameters were not affected during RIII suppression. The present results show that learned RIII suppression also affects supraspinal nociception as quantified by SEPs, although effects on pain ratings were less clear. Lower motor neuron excitability as quantified by F-waves was not affected. Previous relaxation training did not significantly improve RIII feedback training success. PMID:26270584

  4. Cycloheximide: No Ordinary Bitter Stimulus

    PubMed Central

    Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.

    2007-01-01

    Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304

  5. Voltage-Gated Calcium Channels in Nociception

    NASA Astrophysics Data System (ADS)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  6. Effects of Anethole in Nociception Experimental Models

    PubMed Central

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators. PMID:25506382

  7. Gain control mechanisms in the nociceptive system.

    PubMed

    Treede, Rolf-Detlef

    2016-06-01

    The "gate control theory of pain" of 1965 became famous for integrating clinical observations and the understanding of spinal dorsal horn circuitry at that time into a testable model. Although it became rapidly clear that spinal circuitry is much more complex than that proposed by Melzack and Wall, their prediction of the clinical efficacy of transcutaneous electrical nerve stimulation and spinal cord stimulation has left an important clinical legacy also 50 years later. In the meantime, it has been recognized that the sensitivity of the nociceptive system can be decreased or increased and that this "gain control" can occur at peripheral, spinal, and supraspinal levels. The resulting changes in pain sensitivity can be rapidly reversible or persistent, highly localized or widespread. Profiling of spatio-temporal characteristics of altered pain sensitivity (evoked pain to mechanical and/or heat stimuli) allows implications on the mechanisms likely active in a given patient, including peripheral or central sensitization, intraspinal or descending inhibition. This hypothesis generation in the diagnostic process is an essential step towards a mechanism-based treatment of pain. The challenge now is to generate the rational basis of multimodal pain therapy algorithms by including profile-based stratification of patients into studies on efficacy of pharmacological and nonpharmacological treatment modalities. This review outlines the current evidence base for this approach. PMID:26817644

  8. Bright light activates a trigeminal nociceptive pathway

    PubMed Central

    Okamoto, Keiichiro; Tashiro, Akimasa; Chang, Zheng; Bereiter, David A.

    2010-01-01

    Bright light can cause ocular discomfort and/or pain; however, the mechanism linking luminance to trigeminal nerve activity is not known. In this study we identify a novel reflex circuit necessary for bright light to excite nociceptive neurons in superficial laminae of trigeminal subnucleus caudalis (Vc/C1). Vc/C1 neurons encoded light intensity and displayed a long delay (>10 s) for activation. Microinjection of lidocaine into the eye or trigeminal root ganglion (TRG) inhibited light responses completely, whereas topical application onto the ocular surface had no effect. These findings indicated that light-evoked Vc/C1 activity was mediated by an intraocular mechanism and transmission through the TRG. Disrupting local vasomotor activity by intraocular microinjection of the vasoconstrictive agents, norepinephrine or phenylephrine, blocked light-evoked neural activity, whereas ocular surface or intra-TRG microinjection of norepinephrine had no effect. Pupillary muscle activity did not contribute since light-evoked responses were not altered by atropine. Microinjection of lidocaine into the superior salivatory nucleus diminished light-evoked Vc/C1 activity and lacrimation suggesting that increased parasympathetic outflow was critical for light-evoked responses. The reflex circuit also required input through accessory visual pathways since both Vc/C1 activity and lacrimation were prevented by local blockade of the olivary pretectal nucleus. These findings support the hypothesis that bright light activates trigeminal nerve activity through an intraocular mechanism driven by a luminance-responsive circuit and increased parasympathetic outflow to the eye. PMID:20206444

  9. Effects of anethole in nociception experimental models.

    PubMed

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators. PMID:25506382

  10. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1)

    PubMed Central

    Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara

    2013-01-01

    Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with

  11. Teleantagonism: A pharmacodynamic property of the primary nociceptive neuron

    PubMed Central

    Funez, Mani I.; Ferrari, Luiz F.; Duarte, Djane B.; Sachs, Daniela; Cunha, Fernando Q.; Lorenzetti, Berenice B.; Parada, Carlos A.; Ferreira, Sérgio H.

    2008-01-01

    Previous work from our group showed that intrathecal (i.t.) administration of substances such as glutamate, NMDA, or PGE2 induced sensitization of the primary nociceptive neuron (PNN hypernociception) that was inhibited by a distal intraplantar (i.pl.) injection of either morphine or dipyrone. This pharmacodynamic phenomenon is referred to in the present work as “teleantagonism”. We previously observed that the antinociceptive effect of i.t. morphine could be blocked by injecting inhibitors of the NO signaling pathway in the paw (i.pl.), and this effect was used to explain the mechanism of opioid-induced peripheral analgesia by i.t. administration. The objective of the present investigation was to determine whether this teleantagonism phenomenon was specific to this biochemical pathway (NO) or was a general property of the PNNs. Teleantagonism was investigated by administering test substances to the two ends of the PNN (i.e., to distal and proximal terminals; i.pl. plus i.t. or i.t. plus i.pl. injections). We found teleantagonism when: (i) inhibitors of the NO signaling pathway were injected distally during the antinociception induced by opioid agonists; (ii) a nonselective COX inhibitor was tested against PNN sensitization by IL-1β; (iii) selective opioid-receptor antagonists tested against antinociception induced by corresponding selective agonists. Although the dorsal root ganglion seems to be an important site for drug interactions, the teleantagonism phenomenon suggests that, in PNNs, a local sensitization spreads to the entire cell and constitutes an intriguing and not yet completely understood pharmacodynamic property of this group of neurons. PMID:18799742

  12. An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.

    PubMed

    Otsuguro, Ken-ichi; Tomonari, Yuki; Otsuka, Saori; Yamaguchi, Soichiro; Kon, Yasuhiro; Ito, Shigeo

    2015-10-01

    Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors. PMID:26066576

  13. Correlations among stimuli affect stimulus matching and stimulus liking.

    PubMed

    Pimenta, Dióghenes; Tonneau, François

    2016-09-01

    Human subjects were exposed to AB, AC stimulus pairs and then to matching-to-sample tests of stimulus equivalence (B-A, C-A, B-C, C-B) or to a task in which stimulus compounds (BA, CA, BC, CB) were rated for attractiveness. Matching-to-sample tests revealed emergent B-A, C-A, B-C, and C-B choices, replicating previous results in the literature. The mean proportion of correct, emergent choices increased as a function of exposure to the AB, AC pairs. On the rating task, the liking scores of all stimulus compounds also increased as a function of exposure to the AB, AC pairs. After limited exposure to these pairs, however, the liking scores of the BC and CB compounds were negative. These findings are discussed in relation to perceptual and associative perspectives on the behavioral effects of stimulus correlations. PMID:27397574

  14. Psilocybin-induced stimulus control in the rat

    PubMed Central

    Winter, J.C.; Rice, K.C.; Amorosi, D.J.; Rabin, R.A.

    2007-01-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT2A receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT1A/7 receptor antagonist, WAY-100635, or the DA D2 antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT2A receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT1A receptors appears to play no role in psilocybin-induced stimulus control. PMID:17688928

  15. Psilocybin-induced stimulus control in the rat.

    PubMed

    Winter, J C; Rice, K C; Amorosi, D J; Rabin, R A

    2007-10-01

    Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT(2A) receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT(1A/7) receptor antagonist, WAY-100635, or the DA D(2) antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT(2A) receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT(1A) receptors appears to play no role in psilocybin-induced stimulus control. PMID:17688928

  16. Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons

    PubMed Central

    Robertson, Jessica L.; Tsubouchi, Asako; Tracey, W. Daniel

    2013-01-01

    Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist the attack of the wasps through somatosensory-triggered behavioral responses. Here we describe the full range of behaviors performed by the larval prey in immediate response to attacks by the wasps. Our results suggest that Drosophila larvae primarily sense the wasps using their mechanosensory systems. The range of behavioral responses included both “gentle touch” like responses as well as nociceptive responses. We found that the precise larval response depended on both the somatotopic location of the attack, and whether or not the larval cuticle was successfully penetrated during the course of the attack. Interestingly, nociceptive responses are more likely to be triggered by attacks in which the cuticle had been successfully penetrated by the wasp. Finally, we found that the class IV neurons, which are necessary for mechanical nociception, were also necessary for a nociceptive response to wasp attacks. Thus, the class IV neurons allow for a nociceptive behavioral response to a naturally occurring predator of Drosophila. PMID:24205297

  17. Nociceptive Reactions in Rats during Repeated Stress Exposure.

    PubMed

    Kozlov, A Yu; Abramova, A Yu; Chekhlov, V V; Grigorchuk, O S; Pertsov, S S

    2015-10-01

    Changes in nociceptive sensitivity of rats with various behavioral patterns in the open-field test were studied after repeated stress exposure on the model of daily 4-h immobilization for 8 days. The tail-flick latency in response to light-heat stimulation in passive and active specimens decreased most significantly on days 2 and 7, respectively. However, this parameter did not differ from the baseline on day 8 of observations. Vocalization threshold during electrocutaneous stimulation in behaviorally active animals did not change over the first 7 days of repeated stress exposure, but increased significantly on day 8 of the study. The emotional component of nociception in passive animals increased on day 3, but decreased on days 4 and 6 of the experiment. Therefore, repeated stress exposure in rats is mainly accompanied by an increase in the perceptual component of nociception. Variations in the emotional component of nociceptive sensitivity after stress loads are manifested in the initial increase and subsequent decrease in this parameter. The observed changes are more pronounced in behaviorally passive rats than in active animals. These data illustrate the specifics of stress-induced changes in nociception of specimens with various individual and typological characteristics. Our results hold much promise for the development of new individual approaches to modulation of pain sensitivity in humans under conditions of negative emotiogenic exposures. PMID:26519267

  18. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-04-01

    The purpose of the experiment was to evaluate the local anesthetic effect of rimantadine in spinal anesthesia. Rimantadine in a dose-dependent fashion was constructed after intrathecally injecting the rats with four different doses. The potency and duration of rimantadine were compared with that of the local anesthetic lidocaine at producing spinal motor, nociceptive, and proprioceptive blockades. We demonstrated that intrathecal rimantadine dose-dependently produced spinal motor, nociceptive, and proprioceptive blockades. On the 50% effective dose (ED50) basis, the ranks of potencies at inducing spinal motor, nociceptive, and proprioceptive blockades was lidocaine>rimantadine (P<0.01). Rimantadine exhibited more nociceptive block (ED50) than motor block (P<0.05). At equi-anesthetic doses (ED25, ED50, and ED75), the spinal block duration produced by rimantadine was longer than that produced by lidocaine (P<0.01). Furthermore, rimantadine (26.52μmol/kg) prolonged the nociceptive nerve block more than the motor block (P<0.001). Our preclinical data showed that rimantadine, with a more sensory-selective action over motor block, was less potent than lidocaine. Rimantadine produced longer duration in spinal anesthesia when compared with lidocaine. PMID:26949181

  19. Are tender point injections beneficial: the role of tonic nociception in fibromyalgia.

    PubMed

    Staud, Roland

    2006-01-01

    Characteristic symptoms of fibromyalgia syndrome (FM) include widespread pain, fatigue, sleep abnormalities, and distress. FM patients show psychophysical evidence for mechanical, thermal, and electrical hyperalgesia. To fulfill FM criteria, the mechanical hyperalgesia needs to be widespread and present in at least 11 out of 18 well-defined body areas (tender points). Peripheral and central abnormalities of nociception have been described in FM and these changes may be relevant for the increased pain experienced by these patients. Important nociceptor systems in the skin and muscle seem to undergo profound changes in FM patients by yet unknown mechanisms. These changes may result from the release of algesic substances after muscle or other soft tissue injury. These pain mediators can sensitize important nociceptor systems, including the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1), acid sensing ion channel (ASIC) receptors, and purino-receptors (P2X3). Subsequently, tissue mediators of inflammation and nerve growth factors can excite these receptors and cause substantial changes in pain sensitivity. FM pain is widespread and does not seem to be restricted to tender points (TP). It frequently comprises multiple areas of deep tissue pain (trigger points) with adjacent much larger areas of referred pain. Analgesia of areas of extensive nociceptive input has been found to provide often long lasting local as well as general pain relief. Thus interventions aimed at reducing local FM pain seem to be effective but need to focus less on tender points but more on trigger points (TrP) and other body areas of heightened pain and inflammation. PMID:16454721

  20. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine

    PubMed Central

    2011-01-01

    Background Prostatic acid phosphatase (PAP) and ecto-5'-nucleotidase (NT5E, CD73) produce extracellular adenosine from the nucleotide AMP in spinal nociceptive (pain-sensing) circuits; however, it is currently unknown if these are the main ectonucleotidases that generate adenosine or how rapidly they generate adenosine. Results We found that AMP hydrolysis, when measured histochemically, was nearly abolished in dorsal root ganglia (DRG) neurons and lamina II of spinal cord from Pap/Nt5e double knockout (dKO) mice. Likewise, the antinociceptive effects of AMP, when combined with nucleoside transport inhibitors (dipyridamole or 5-iodotubericidin), were reduced by 80-100% in dKO mice. In addition, we used fast scan cyclic voltammetry (FSCV) to measure adenosine production at subsecond resolution within lamina II. Adenosine was maximally produced within seconds from AMP in wild-type (WT) mice but production was reduced >50% in dKO mice, indicating PAP and NT5E rapidly generate adenosine in lamina II. Unexpectedly, we also detected spontaneous low frequency adenosine transients in lamina II with FSCV. Adenosine transients were of short duration (<2 s) and were reduced (>60%) in frequency in Pap-/-, Nt5e-/- and dKO mice, suggesting these ectonucleotidases rapidly hydrolyze endogenously released nucleotides to adenosine. Field potential recordings in lamina II and behavioral studies indicate that adenosine made by these enzymes acts through the adenosine A1 receptor to inhibit excitatory neurotransmission and nociception. Conclusions Collectively, our experiments indicate that PAP and NT5E are the main ectonucleotidases that generate adenosine in nociceptive circuits and indicate these enzymes transform pulsatile or sustained nucleotide release into an inhibitory adenosinergic signal. PMID:22011440

  1. Modulation of Visceral Nociception, Inflammation and Gastric Mucosal Injury by Cinnarizine

    PubMed Central

    Abdel-Salam, Omar M.E.

    2007-01-01

    The effect of cinnarizine, a drug used for the treatment of vertigo was assessed in animal models of visceral nociception, inflammation and gastric mucosal injury. Cinnarizine (1.25–20 mg/kg, s.c.) caused dose-dependent inhibition of the abdominal constrictions evoked by i.p. injection of acetic acid by 38.7–99.4%. This effect of cinnarizine (2.5 mg/kg) was unaffected by co-administration of the centrally acting dopamine D2 receptor antagonists, sulpiride, haloperidol or metoclopramide, the peripherally acting D2 receptor antagonist domperidone, but increased by the D2 receptor agonist bromocryptine and by the non-selective dopamine receptor antagonist chlorpromazine. The antinociception caused by cinnarizine was naloxone insenstive, but enhanced by propranolol, atropine and by yohimbine. The antinociceptive effect of cinnarizine was prevented by co-treatment with the adenosine receptor blocker theophylline or by the ATP-sensitive potassium channel (KATP) blocker glibenclamide. Cinnarizine at 2.5 mg/kg reversed the baclofen-induced antinociception. Cinnarizine at 2.5 mg/kg reduced immobility time in the Porsolt’s forced-swimming test by 24%. Cinnarizine inhibited the paw oedema response to carrageenan and reduced gastric mucosal lesions caused by indomethacin in rats. It is suggested that cinnarizine exerts anti-inflammatory, antinociceptive and gastric protective properties. The mechanism by which cinnarizine modulates pain transmission is likely to involve adenosine receptors and KATP channels. PMID:21901060

  2. Helix-constrained nociceptin peptides are potent agonists and antagonists of ORL-1 and nociception.

    PubMed

    Lohman, Rink-Jan; Harrison, Rosemary S; Ruiz-Gómez, Gloria; Hoang, Huy N; Shepherd, Nicholas E; Chow, Shiao; Hill, Timothy A; Madala, Praveen K; Fairlie, David P

    2015-01-01

    Nociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus. This likely anchors the receptor-activating N-terminus of nociception nearby for insertion in the membrane-spanning helices of ORL-1. In search of higher agonist potency, two lysine and two aspartate residues were strategically incorporated into the receptor-binding C-terminus of the nociceptin sequence and two Lys(i)→Asp(i+4) side chain-side chain condensations were used to generate lactam cross-links that constrained nociceptin into a highly stable α-helix in water. A cell-based assay was developed using natively expressed ORL-1 receptors on mouse neuroblastoma cells to measure phosphorylated ERK as a reporter of agonist-induced receptor activation and intracellular signaling. Agonist activity was increased up to 20-fold over native nociceptin using a combination of this helix-inducing strategy and other amino acid modifications. An NMR-derived three-dimensional solution structure is described for a potent ORL-1 agonist derived from nociceptin, along with structure-activity relationships leading to the most potent known α-helical ORL-1 agonist (EC₅₀ 40 pM, pERK, Neuro-2a cells) and antagonist (IC₅₀ 7 nM, pERK, Neuro-2a cells). These α-helix-constrained mimetics of nociceptin(1-17) had enhanced serum stability relative to unconstrained peptide analogues and nociceptin itself, were not cytotoxic, and displayed potent

  3. Dynamic mechanical allodynia in humans is not mediated by a central presynaptic interaction of A beta-mechanoreceptive and nociceptive C-afferents.

    PubMed

    Wasner, G; Baron, R; Jänig, W

    1999-02-01

    Recently, Cervero and Laird (NeuroReport, 7 (1996) 526-528; Pain, 68 (1996) 13-23) proposed a new pathophysiological mechanism of dynamic mechanical allodynia in skin. Using the capsaicin pain model in humans, they showed that light mechanical stimulation within an area of secondary mechanical allodynia induces vasodilatation measured by laser-Doppler flowmetry. They suggested that the low-threshold A beta-mechanoreceptive fibres depolarize the central terminals of nociceptive primary afferent neurons via interneurons. Consequently, the vasodilatation is produced by impulses conducted antidromically in nociceptive C-axons. The allodynia was proposed to result from depolarization of central terminals of primary afferent neurons with C-fibres with activation of nociceptive dorsal horn neurons. In order to extend these findings, we used the same experimental approach but additionally stimulated the A beta-fibres electrically to evoke secondary allodynia during simultaneous monitoring skin blood flow. Twenty microlitres of a 0.5% capsaicin solution was injected intradermally into the dorsal forearm. Skin sites that demonstrated dynamic mechanical allodynia but were not located within the area of primary hyperalgesia and flare were investigated. Ten mm away from a laser-Doppler probe, dynamic mechanical allodynia was induced for 1 min (1) by moving a cotton swab and (2) by electrically stimulating the afferent nerve endings transdermally. Increasing stimulus intensities were applied (0.3-4 mA, 40 Hz, pulse duration 0.2 ms). After intracutaneous injection of capsaicin, light mechanical stimulation elicited a burning painful sensation (numeric analogue scale (NAS) 1.5-3) and concomitant movement artefacts at the laser signal. Antidromic vasodilatation was never observed. In this area of dynamic allodynia, electrical stimulation at stimulus intensities that were not painful before capsaicin injection (A beta-stimulation) was now able to elicit a burning painful sensation

  4. Quantitative objective assessment of peripheral nociceptive C fibre function.

    PubMed Central

    Parkhouse, N; Le Quesne, P M

    1988-01-01

    A technique is described for the quantitative assessment of peripheral nociceptive C fibre function by measurement of the axon reflex flare. Acetylcholine, introduced by electrophoresis, is used to stimulate a ring of nociceptive C fibre endings at the centre of which the increase in blood flow is measured with a laser Doppler flowmeter. This flare (neurogenic vasodilatation) has been compared with mechanically or chemically stimulated non-neurogenic cutaneous vasodilation. The flare is abolished by local anaesthetic and is absent in denervated skin. The flare has been measured on the sole of the foot of 96 healthy subjects; its size decreases with age in males, but not in females. Images PMID:3351528

  5. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    PubMed

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor. PMID:27302204

  6. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice

    PubMed Central

    Mueller-Tribbensee, Sonja M.; Karna, Manoj; Khalil, Mohammad; Neurath, Markus F.; Reeh, Peter W.; Engel, Matthias A.

    2015-01-01

    Background Various transient receptor potential (TRP) channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin)8 was suggested to be involved in murine colonic mechano-nociception. Methods To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT) were used. Visceromotor responses (VMR) to colorectal distension (CRD) in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA. Results Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM) showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM) was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM) and stretch-activated channels (gadolinium, 50 μM). VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg) in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene. Conclusions TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon. PMID:26207981

  7. Evaluation of Anti-Inflammatory and Anti-Nociceptive Effects of Defatted Fruit Extract of Olea europaea

    PubMed Central

    Sahranavard, Shamim; Kamalinejad, Mohammad; Faizi, Mehrdad

    2014-01-01

    Fruits of Olea europaea L. have been used for centuries in folk medicine to treat many inflammatory diseases. In order to evaluate the anti-nociceptive activities of the methanolic and aqueous extracts of defatted fruits of O. europaea, formalin test was used and for evaluation of anti-inflammatory effects of the extract, the volume of paw edema was measured. The results revealed that both extracts did not exhibit significant analgesic activity in the first phase of formalin test, whereas methanolic extract at the 600 mg/Kg dose and aqueous extract at the 450 and 600 mg/Kg doses could inhibit induced pain in the second phase of formalin test. Furthermore, the results of paw edema volume measurement indicated that the aqueous extract has anti-inflammatory effects at dose of 600 mg/Kg. Induced anti-nociception by aqueous olive extract was not reversed by naloxone, which indicates that the opioid receptors are not involved in the analgesic effects of the extracts. The present data pointed out that the extracts of olive defatted fruit have anti-nociceptive and anti-inflammatory effects in rats but further studies are needed to elucidate the mechanism(s) of action and active components which are involved in analgesic and anti-inflammatory effects. PMID:24711837

  8. Intrathecal administration of clonidine or yohimbine decreases the nociceptive behavior caused by formalin injection in the marsh terrapin (Pelomedusa subrufa)

    PubMed Central

    Makau, Christopher M; Towett, Philemon K; Abelson, Klas S P; Kanui, Titus I

    2014-01-01

    Background The role of noradrenergic system in the control of nociception is documented in some vertebrate animals. However, there are no data showing the role of this system on nociception in the marsh terrapins. Methodology In this study, the antinociceptive action of intrathecal administration of the α2-adrenoreceptor agonist clonidine and α2-adrenoreceptor antagonist yohimbine was evaluated in the African marsh terrapin using the formalin test. The interaction of clonidine and yohimbine was also evaluated. Results Intrathecal administration of clonidine (37.5 or 65 μg/kg) caused a significant reduction in the mean time spent in pain-related behavior. Yohimbine, at a dose of 25 μg/kg, significantly blocked the effect of clonidine (65 μg/kg). However, administration of yohimbine (40 or 53 μg/kg) caused a significant reduction in the mean time spent in pain-related behavior. Intrathecal administration of yohimbine (53 μg/kg) followed immediately by intrathecal injection of the serotonergic methysergide maleate (20 μg/kg) resulted in a significant reversal of the antinociceptive effect of yohimbine. Conclusion The present study documented the intrathecal administration of drugs in the marsh terrapin, a technique that can be applied in future studies on these animals. The data also suggest the involvement of both α2-adrenoreceptors and 5HT receptors in the modulation of nociception in testudines. PMID:25365809

  9. Stimulus Fractionation by Interocular Suppression

    PubMed Central

    Zadbood, Asieh; Lee, Sang-Hun; Blake, Randolph

    2011-01-01

    Can human observers distinguish physical removal of a visible stimulus from phenomenal suppression of that stimulus during binocular rivalry? As so often happens, simple questions produce complex answers, and that is the case in the study reported here. Using continuous flash suppression to produce binocular rivalry, we were able to identify stimulus conditions where most – but not all – people utterly fail to distinguish physical from phenomenal stimulus removal, although we can be certain that those two equivalent perceptual states are accompanied by distinct neural events. More interestingly, we find subtle variants of the task where distinguishing the two states is trivially easy, even for people who utterly fail under the original conditions. We found that stimulus features are differentially vulnerable to suppression. Observers are able to be aware of existence/removal of some stimulus attributes (flicker) but not others (orientation), implying that interocular suppression breaks down the unitary awareness of integrated features belonging to a visual object. These findings raise questions about the unitary nature of awareness and, also, place qualifications on the utility of binocular rivalry as a tool for studying the neural concomitants of conscious visual awareness. PMID:22102839

  10. The N-methyl-D-aspartate receptor antagonist dextromethorphan selectively reduces temporal summation of second pain in man.

    PubMed

    Price, D D; Mao, J; Frenk, H; Mayer, D J

    1994-11-01

    Oral doses of dextromethorphan (DM), a common cough suppressant and N-methyl-D-aspartate (NMDA) receptor antagonist, and their vehicle control were given on a double-blind basis to normal volunteer human subjects who rated intensities of first and second pain in response to repeated painful electric shocks and repeated 52 degrees C heat pulses. Doses of 30 and 45 mg, but not 15 mg, were effective in attenuating temporal summation of second pain, a psychophysical correlate of temporal summation of C afferent-mediated responses of dorsal horn nociceptive neurons, termed 'wind-up'. By contrast, neither first nor second pain evoked by the first stimulus in a train of stimuli were affected by any of these doses of DM. These results further confirm temporal summation of second pain as a psychophysical correlate of wind-up by providing evidence that DM selectively reduces temporal summation of second pain, as has been shown for wind-up. PMID:7892014

  11. 17β-Estradiol Enhances ASIC Activity in Primary Sensory Neurons to Produce Sex Difference in Acidosis-Induced Nociception.

    PubMed

    Qu, Zu-Wei; Liu, Ting-Ting; Ren, Cuixia; Gan, Xiong; Qiu, Chun-Yu; Ren, Ping; Rao, Zhiguo; Hu, Wang-Ping

    2015-12-01

    Sex differences have been reported in a number of pain conditions. Women are more sensitive to most types of painful stimuli than men, and estrogen plays a key role in the sex differences in pain perception. However, it is unclear whether there is a sex difference in acidosis-evoked pain. We report here that both male and female rats exhibit nociceptive behaviors in response to acetic acid, with females being more sensitive than males. Local application of exogenous 17β-estradiol (E2) exacerbated acidosis-evoked nociceptive response in male rats. E2 and estrogen receptor (ER)-α agonist 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, but not ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile, replacement also reversed attenuation of the acetic acid-induced nociceptive response in ovariectomized females. Moreover, E2 can exert a rapid potentiating effect on the functional activity of acid-sensing ion channels (ASICs), which mediated the acidosis-induced events. E2 dose dependently increased the amplitude of ASIC currents with a 42.8 ± 1.6 nM of EC50. E2 shifted the concentration-response curve for proton upward with a 50.1% ± 6.2% increase of the maximal current response to proton. E2 potentiated ASIC currents via an ERα and ERK1/2 signaling pathway. E2 also altered acidosis-evoked membrane excitability of dorsal root ganglia neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acidic stimuli. E2 potentiation of the functional activity of ASICs revealed a peripheral mechanism underlying this sex difference in acetic acid-induced nociception. PMID:26441237

  12. Impact of Behavioral Control on the Processing of Nociceptive Stimulation

    PubMed Central

    Grau, James W.; Huie, J. Russell; Garraway, Sandra M.; Hook, Michelle A.; Crown, Eric D.; Baumbauer, Kyle M.; Lee, Kuan H.; Hoy, Kevin C.; Ferguson, Adam R.

    2012-01-01

    How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain. PMID:22934018

  13. Emotional modulation of pain and spinal nociception in fibromyalgia.

    PubMed

    Rhudy, Jamie L; DelVentura, Jennifer L; Terry, Ellen L; Bartley, Emily J; Olech, Ewa; Palit, Shreela; Kerr, Kara L

    2013-07-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (eg, depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in 4 blocks; 2 blocks assessed only physiological-emotional reactions (ie, pleasure/arousal ratings, corrugator electromyography, startle modulation, skin conductance) in the absence of pain, and 2 blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (eg, reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all 3 groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762

  14. Oxidation Sensitive Nociception Involved in Endometriosis Associated Pain

    PubMed Central

    Ray, Kristeena; Fahrmann, Johannes; Mitchell, Brenda; Paul, Dennis; King, Holly; Crain, Courtney; Cook, Carla; Golovko, Mikhail; Brose, Stephen; Golovko, Svetlana; Santanam, Nalini

    2015-01-01

    Endometriosis is a disease characterized by the growth of endometrial tissue outside the uterus and is associated with chronic pelvic pain. Peritoneal fluid (PF) of women with endometriosis is a dynamic milieu, rich in inflammatory markers and pain-inducing prostaglandins PGE2/PGF2α and lipid peroxides, and the endometriotic tissue is innervated with nociceptors. Our clinical study showed the abundance of oxidatively-modified lipoproteins in the PF of women with endometriosis and the ability of antioxidant supplementation to alleviate endometriosis-associated pain. We hypothesized that oxidatively-modified lipoproteins present in the PF are the major source of nociceptive molecules that play a key role in endometriosis-associated pain. In this study, PF obtained from women with endometriosis or control women were used for (i) the detection of lipoprotein derived oxidation-sensitive pain molecules, (ii) the ability of such molecules to induce nociception, and (iii) the ability of antioxidants to suppress this nociception. LC-MS/MS showed the generation of eicosanoids by oxidized-lipoproteins similar to that seen in the PF. The oxidatively-modified lipoproteins induced hypothermia (intra-cerebroventricular) in CD-1 mice and nociception in the Hargreaves paw-withdrawal latency assay in Sprague-Dawley rats. Antioxidants, vitamin-E and N-acetylcysteine and the NSAID, indomethacin suppressed the pain inducing ability of oxidatively-modified lipoproteins. Treatment of human endometrial cells with oxidatively-modified lipoproteins or PF from women with endometriosis showed up-regulation of similar genes belonging to the opioid and inflammatory pathways. Our finding that oxidatively-modified lipoproteins can induce nociception has a broader impact not only in the treatment of endometriosis-associated pain but also in other diseases associated with chronic pain. PMID:25599233

  15. Emotional modulation of pain and spinal nociception in fibromyalgia

    PubMed Central

    Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.

    2013-01-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762

  16. Reticular thalamic responses to nociceptive inputs in anesthetized rats.

    PubMed

    Yen, Chen-Tung; Shaw, Fu-Zen

    2003-04-11

    The present study compares nociceptive responses of neurons in the reticular thalamic nucleus (RT) to those of the ventroposterior lateral nucleus (VPL). Extracellular single-unit activities of cells in the RT and VPL were recorded in anesthetized rats. Only units with identified tactile receptive fields in the forepaw or hindpaw were studied. In the first series of experiments, RT and VPL responses to pinching with a small artery clamp were tested with the rats under pentobarbital, urethane, ketamine, or halothane anesthesia. Under all types of anesthesia, many RT units were inhibited. Second, the specificity of the nociceptive response was tested by pinching and noxious heating of the unit's tactile receptive field. Of the 39 VPL units tested, 20 were excited by both types of noxious stimuli. In sharp contrast, of the 30 RT units tested, none were excited and 17 were inhibited. In a third series of experiments, low-intensity and beam-diffused CO(2) laser irradiation was used to activate peripheral nociceptive afferents. Wide-dynamic-range VPL units responded with short- and long-latency excitations. In contrast, RT units had short-latency excitation followed by long-latency inhibition. Nociceptive input inhibited RT units in less than 500 ms. We conclude that a significant portion of RT neurons were polysynaptically inhibited by nociceptive inputs. Since all the cells tested were excited by light tactile inputs, the somatosensory RT may serve in the role of a modality gate, which modifies (i.e. inhibits) tactile inputs while letting noxious inputs pass. PMID:12663087

  17. Carving Executive Control at Its Joints: Working Memory Capacity Predicts Stimulus-Stimulus, but Not Stimulus-Response, Conflict

    ERIC Educational Resources Information Center

    Meier, Matt E.; Kane, Michael J.

    2015-01-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…

  18. Effect of plantar subcutaneous administration of bergamot essential oil and linalool on formalin-induced nociceptive behavior in mice.

    PubMed

    Katsuyama, Soh; Otowa, Akira; Kamio, Satomi; Sato, Kazuma; Yagi, Tomomi; Kishikawa, Yukinaga; Komatsu, Takaaki; Bagetta, Giacinto; Sakurada, Tsukasa; Nakamura, Hitoshi

    2015-01-01

    This study investigated the effect of bergamot essential oil (BEO) or linalool, a major volatile component of BEO, on the nociceptive response to formalin. Plantar subcutaneous injection of BEO or linalool into the ipsilateral hindpaw reduced both the first and late phases of the formalin-induced licking and biting responses in mice. Plantar subcutaneous injection of BEO or linalool into the contralateral hindpaw did not yield an antinociceptive effect, suggesting that the antinociceptive effect of BEO or linalool in the formalin test occurred peripherally. Intraperitoneal and plantar subcutaneous injection pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly attenuated both BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting opioid receptor antagonists, also significantly antagonized the antinociceptive effects of BEO and linalool. Our results provide evidence for the involvement of peripheral opioids in antinociception induced by BEO and linalool. These results suggest that activation of peripheral opioid receptors may play an important role in reducing formalin-induced nociception. PMID:25749150

  19. A small, silent, low friction, linear actuator for mechanical nociceptive testing in veterinary research.

    PubMed

    Dixon, M J; Taylor, P M; Slingsby, L; Hoffmann, M V; Kästner, S B R; Murrell, J

    2010-07-01

    Air pressure is commonly used to drive a mechanical stimulus for nociceptive threshold testing. This may be bulky, noisy, non-linear and suffer from friction, hence development of a better system is described. A novel, light (14 g) rolling diaphragm actuator was constructed, which supplied 20 N force via a constant actuation area irrespective of the pressure and position in the stroke. Three round-ended pins, 2.5 mm diameter, mounted in a triangle on the piston, provided the stimulus. Pressure was increased manually using a syringe with the rate of rise of force controlled at 0.8 N/s by warning lights. The pressure/force relationship was calibrated using a static force transducer and mercury column. Data were collected with the actuator attached to the antero-medial radius of 12 cats and four dogs. Mechanical threshold was recorded when the animal withdrew the limb and/or turned towards the actuator. Safety cut-off was 20 N. The pressure/force relationship was linear and independent of the start point in the actuator stroke. Baseline feline thresholds were 10.0 +/- 2.5 N (mean +/- SD), which increased significantly 30 min after butorphanol administration. Baseline canine thresholds were 5.5 +/- 1.4 N and increased significantly between 15 and 45 min after administration of fentanyl or butorphanol. The system overcame the problems of earlier devices and detected an opioid-induced increase in threshold. It has considerable advantages over previous systems for research in analgesia. PMID:20457825

  20. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    PubMed Central

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826

  1. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    NASA Astrophysics Data System (ADS)

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  2. Biological implications of coeruleospinal inhibition of nociceptive processing in the spinal cord

    PubMed Central

    Tsuruoka, Masayoshi; Tamaki, Junichiro; Maeda, Masako; Hayashi, Bunsho; Inoue, Tomio

    2012-01-01

    The coeruleospinal inhibitory pathway (CSIP), the descending pathway from the nucleus locus coeruleus (LC) and the nucleus subcoeruleus (SC), is one of the centrifugal pain control systems. This review answers two questions regarding the role coeruleospinal inhibition plays in the mammalian brain. First is related to an abnormal pain state, such as inflammation. Peripheral inflammation activated the CSIP, and activation of this pathway resulted in a decrease in the extent of the development of inflammatory hyperalgesia. During inflammation, the responses of the dorsal horn neurons to graded heat stimuli in the LC/SC-lesioned rats did not produce a further increase with the increase of stimulus intensity in the higher range temperatures. These results suggest that the function of CSIP is to maintain the accuracy of intensity coding in the dorsal horn because the plateauing of the heat-evoked response in the LC/SC-lesioned rats during inflammation is due to a response saturation that results from the lack of coeruleospinal inhibition. The second concerns attention and vigilance. During freezing behavior induced by air-puff stimulation, nociceptive signals were inhibited by the CSIP. The result implies that the CSIP suppresses pain system to extract other sensory information that is essential for circumstantial judgment. PMID:23060762

  3. Benzodiazepine-like discriminative stimulus effects of toluene vapor

    PubMed Central

    Shelton, Keith L.; Nicholson, Katherine L.

    2013-01-01

    In vitro studies show that the abused inhalant toluene affects a number of ligand-gated ion channels. The two most consistently implicated of these are γ-aminobutyric acid type A (GABAA) receptors which are positively modulated by toluene and N-methyl-D-aspartate (NMDA) receptors which are negatively modulated by toluene. Behavioral studies also suggest an interaction of toluene with GABAA and/or NMDA receptors but it is unclear if these receptors underlie the abuse-related intoxicating effects of toluene. Seventeen B6SJLF1/J mice were trained using a two-choice operant drug discrimination procedure to discriminate 10 min of exposure to 2000 ppm toluene vapor from 10 min of exposure to air. The discrimination was acquired in a mean of 65 training sessions. The stimulus effects of 2000 ppm toluene vapor were exposure concentration-dependent but rapidly diminished following the cessation of vapor exposure. The stimulus effects of toluene generalized to the chlorinated hydrocarbon vapor perchloroethylene but not 1,1,2-trichloroethane nor the volatile anesthetic isoflurane. The competitive NMDA antagonist CGS-17955, the uncompetitive antagonist dizocilpine and the glycine-site antagonist L701,324 all failed to substitute for toluene. The classical nonselective benzodiazepines midazolam and chlordiazepoxide produced toluene-like stimulus effects but the alpha 1 subunit preferring positive GABAA modulator zaleplon failed to substitute for toluene. The barbiturates pentobarbital and methohexital and the GABAA-positive modulator neurosteroid allopregnanolone did not substitute for toluene. These data suggest that the stimulus effects of toluene may be at least partially mediated by benzodiazepine-like positive allosteric modulation of GABAA receptors containing alpha 2, 3 or 5 subunits. PMID:24436974

  4. Attention effects on vicarious modulation of nociception and pain.

    PubMed

    Khatibi, Ali; Vachon-Presseau, Etienne; Schrooten, Martien; Vlaeyen, Johan; Rainville, Pierre

    2014-10-01

    The observation of others' facial expressions of pain has been shown to facilitate the observer's nociceptive responses and to increase pain perception. We investigated how this vicarious facilitation effect is modulated by directing the observer's attention toward the meaning of pain expression or the facial movements. In separate trials, participants were instructed to assess the "intensity of the pain expression"(meaning) or to "discriminate the facial movements" in the upper vs lower part of the face shown in 1-second dynamic clips displaying mild, moderate, or strong pain expressions or a neutral control. In 50% of the trials, participants received a painful electrical stimulation to the sural nerve immediately after the presentation of the expression. Low-level nociceptive reactivity was measured with the RIII-response, and pain perception was assessed using pain ratings. Pain induced by the electrical stimulation increased after viewing stronger pain expressions in both tasks, but the RIII-response showed this vicarious facilitation effect only in the movement discrimination task at the strongest expression intensity. These findings are consistent with the notion that vicarious processes facilitate self-pain and may prime automatic nociceptive responses. However, this priming effect is influenced by top-down attentional processes. These results provide another case of dissociation between reflexive and perceptual processes, consistent with the involvement of partly separate brain networks in the regulation of cortical and lower-level nociceptive responses. Combined with previous results, these findings suggest that vicarious pain facilitation is an automatic process that may be diminished by top-down attentional processes directed at the meaning of the expression. PMID:25016217

  5. Defining the Stimulus - A Memoir

    PubMed Central

    Terrace, Herbert

    2010-01-01

    The eminent psychophysicist, S. S. Stevens, once remarked that, “the basic problem of psychology was the definition of the stimulus” (Stevens, 1951, p. 46). By expanding the traditional definition of the stimulus, the study of animal learning has metamorphosed into animal cognition. The main impetus for that change was the recognition that it is often necessary to postulate a representation between the traditional S and R of learning theory. Representations allow a subject to re-present a stimulus it learned previously that is currently absent. Thus, in delayed-matching-to-sample, one has to assume that a subject responds to a representation of the sample during test if it responds correctly. Other examples, to name but a few, include concept formation, spatial memory, serial memory, learning a numerical rule, imitation and metacognition. Whereas a representation used to be regarded as a mentalistic phenomenon that was unworthy of scientific inquiry, it can now be operationally defined. To accommodate representations, the traditional discriminative stimulus has to be expanded to allow for the role of representations. The resulting composite can account for a significantly larger portion of the variance of performance measures than the exteroceptive stimulus could by itself. PMID:19969047

  6. Acquired Equivalence Changes Stimulus Representations

    ERIC Educational Resources Information Center

    Meeter, M.; Shohamy, D.; Myers, C. E.

    2009-01-01

    Acquired equivalence is a paradigm in which generalization is increased between two superficially dissimilar stimuli (or antecedents) that have previously been associated with similar outcomes (or consequents). Several possible mechanisms have been proposed, including changes in stimulus representations, either in the form of added associations or…

  7. Stimulus Effects on Local Preference: Stimulus-Response Contingencies, Stimulus-Food Pairing, and Stimulus-Food Correlation

    ERIC Educational Resources Information Center

    Davison, Michael; Baum, William M.

    2010-01-01

    Four pigeons were trained in a procedure in which concurrent-schedule food ratios changed unpredictably across seven unsignaled components after 10 food deliveries. Additional green-key stimulus presentations also occurred on the two alternatives, sometimes in the same ratio as the component food ratio, and sometimes in the inverse ratio. In eight…

  8. Nociceptive Alteration by High Sucrose Diet in Hypoestrogenic Wistar Rats.

    PubMed

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; Corona-Ramos, Janette Nallely; López-Muñoz, Francisco Javier

    2016-08-01

    Preclinical Research Obesity is a risk factor associated with alterations in pain perception. The aim of this study was to analyse a time-course of nociceptive responses (plantar test) in hypoestrogenic rats after the induction of obesity. Animals (hypoestrogenic and naïve) received either a hypercaloric or regular diet for 24 weeks. Thermal nociception and body weight were measured during this period. At the 4th and 17th weeks after treatment, oral glucose tolerance, blood insulin levels, abdominal fat weight, and uric acid levels were measured. The hypoestrogenic rats on a high sucrose diet had higher body weight and abdominal fat weight than control rats. A biphasic response was observed in the ovariectomized group fed with sucrose with thermal latency being decreased in the fourth week. During weeks 12-18, thermal latency increased compared to that of the hypoestrogenic control. There were no differences in basal blood glucose levels at the 4th and 17th weeks; however, oral glucose tolerance, insulin, and uric acid levels were altered. This indicated that increased body weight and fat as well as alteration sin glucose tolerance, hyperinsulinemia and hyperuricemia, may be associated with the biphasic nociceptive response. Drug Dev Res 77 : 258-266, 2016. © 2016 Wiley Periodicals, Inc. PMID:27449485

  9. Genomic loci and candidate genes underlying inflammatory nociception

    PubMed Central

    Nair, Harsha K.; Hain, Heather; Quock, Raymond M.; Philip, Vivek M.; Chesler, Elissa J.; Belknap, John K.; Lariviere, William R.

    2011-01-01

    Heritable genetic factors contribute significantly to inflammatory nociception. To determine candidate genes underlying inflammatory nociception, the current study used a mouse model of abdominal inflammatory pain. BXD recombinant inbred (RI) mouse strains were administered the intraperitoneal (IP) acetic acid test and genome-wide quantitative trait locus (QTL) mapping was performed on the mean number of abdominal contraction and extension movements in three distinct groups of BXD RI mouse strains in two separate experiments. Combined mapping results detected two QTLs on chromosomes (Chr) 3 and 10 across experiments and groups of mice; an additional sex-specific QTL was detected on Chr 16. The results replicate previous findings of a significant QTL, Nociq2, on distal Chr 10 for formalin-induced inflammatory nociception and will aid in identification of the underlying candidate genes. Comparisons of sensitivity to IP acetic acid in BXD RI mouse strains with microarray mRNA transcript expression profiles in specific brain areas detected covarying expression of candidate genes that are also found in the detected QTL confidence intervals. The results indicate that common and distinct genetic mechanisms underlie heritable sensitivity to diverse inflammatory insults, and provide a discrete set of high priority candidate genes to investigate further in rodents and human association studies. PMID:21195549

  10. Nociception and escape behavior in planarians

    NASA Astrophysics Data System (ADS)

    Schoetz Collins, Eva-Maria

    2015-03-01

    Planarians are famous and widely studied for their regenerative capabilities. When a moving planarian is cut through the middle, the resulting head and tail pieces instantaneously retract and exhibit a characteristic escape response that differs from normal locomotion. In asexual animals, a similar reaction is observed when the planarian undergoes fission, suggesting that reproduction through self-tearing is a rather traumatic event for the animal. Using a multiscale approach, we unravel the dynamics, mechanics, and functional aspects of the planarian escape response. This musculature-driven gait was found to be a dominating response that supersedes the urge to feed or reproduce and quantitatively differs from other modes of planarian locomotion (gliding, peristalsis). We show that this escape gait constitutes the animal's pain response mediated by TRP like receptors and the neurotransmitter histamine, and that it can be induced through adverse thermal, mechanical, electrical or chemical stimuli. Ultimately, we will examine the neuronal subpopulations involved in mediating escape reflexes in planarians and how they are functionally restored during regeneration, thereby gaining mechanistic insight into the neuronal circuits required for specific behaviors. Supported by BWF CASI and Sloan Foundation.

  11. NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis.

    PubMed

    Cicala, C; Ianaro, A; Fiorucci, S; Calignano, A; Bucci, M; Gerli, R; Santucci, L; Wallace, J L; Cirino, G

    2000-07-01

    1. Anti-inflammatory non steroidal drugs releasing NO (NO-NSAIDs) are a new class of anti-inflammatory drugs to which has been added an NO-releasing moiety. These compounds have been shown to retain the anti-inflammatory, analgesic and antipyretic activity of the parent compound but to be devoid of gastrointestinal (GI) toxicity. 2. Freund's adjuvant (FA) arthritis was induced in rats by a single intraplantar injection into the right hindpaw of 100 microl of mycobacterium butirricum (6 mg ml(-1)). The effect of equimolar doses of naproxen (1, 3 and 10 mg kg(-1)) and NO-naproxen (1.5, 4.5 and 16 mg kg(-1)) was evaluated using two dosage regimen protocols: (i) preventive, starting oral administration of the drugs at the time of induction of arthritis and for the following 21 days (day 1 - 21); (ii) therapeutic, starting oral administration of the drugs 7 days after adjuvant injection and for the following 14 days (day 7 - 21). 3. Hindpaw swelling (days 3, 7, 11, 14, 17, 21) and nociception (days 15 and 21) were measured. On day 22 rats were sacrificed, draining lymph nodes were removed and T cells isolated. In vitro proliferation of T cells following stimulation with concanavalin A (0.5 - 5 microg ml(-1)) was measured using a tritiated thymidine incorporation assay. IL-2 receptor expression on T cells was measured by FACS analysis. 4. Naproxen and NO-naproxen showed similar activity in reducing oedema formation in the non-injected (controlateral) hindpaw. Both drugs showed anti-nociceptive effect. NO-naproxen was anti-nociceptive at a dose of 4.5 mg kg(-1) while naproxen showed the same extent of inhibition only at a dose of 10 mg kg(-1). 5. T cells were isolated and characterized by FACS analysis. Stimulation of isolated T cells with concanavallin A in vitro caused a significant increase in thymidine uptake. NO-naproxen at a dose of 4.5 mg kg(-1) inhibited T cell proliferation to the same extent as 10 mg kg(-1) of naproxen. 6. Inhibition of T cell proliferation was

  12. NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis

    PubMed Central

    Cicala, Carla; Ianaro, Angela; Fiorucci, Stefano; Calignano, Antonio; Bucci, Mariarosaria; Gerli, Roberto; Santucci, Luca; Wallace, John L; Cirino, Giuseppe

    2000-01-01

    Anti-inflammatory non steroidal drugs releasing NO (NO-NSAIDs) are a new class of anti-inflammatory drugs to which has been added an NO-releasing moiety. These compounds have been shown to retain the anti-inflammatory, analgesic and antipyretic activity of the parent compound but to be devoid of gastrointestinal (GI) toxicity.Freund's adjuvant (FA) arthritis was induced in rats by a single intraplantar injection into the right hindpaw of 100 μl of mycobacterium butirricum (6 mg ml−1). The effect of equimolar doses of naproxen (1, 3 and 10 mg kg−1) and NO-naproxen (1.5, 4.5 and 16 mg kg−1) was evaluated using two dosage regimen protocols: (i) preventive, starting oral administration of the drugs at the time of induction of arthritis and for the following 21 days (day 1–21); (ii) therapeutic, starting oral administration of the drugs 7 days after adjuvant injection and for the following 14 days (day 7–21).Hindpaw swelling (days 3, 7, 11, 14, 17, 21) and nociception (days 15 and 21) were measured. On day 22 rats were sacrificed, draining lymph nodes were removed and T cells isolated. In vitro proliferation of T cells following stimulation with concanavalin A (0.5–5 μg ml−1) was measured using a tritiated thymidine incorporation assay. IL-2 receptor expression on T cells was measured by FACS analysis.Naproxen and NO-naproxen showed similar activity in reducing oedema formation in the non-injected (controlateral) hindpaw. Both drugs showed anti-nociceptive effect. NO-naproxen was anti-nociceptive at a dose of 4.5 mg kg−1 while naproxen showed the same extent of inhibition only at a dose of 10 mg kg−1.T cells were isolated and characterized by FACS analysis. Stimulation of isolated T cells with concanavallin A in vitro caused a significant increase in thymidine uptake. NO-naproxen at a dose of 4.5 mg kg−1 inhibited T cell proliferation to the same extent as 10 mg kg−1 of naproxen.Inhibition of T cell proliferation

  13. R-phenibut binds to the α2-δ subunit of voltage-dependent calcium channels and exerts gabapentin-like anti-nociceptive effects.

    PubMed

    Zvejniece, Liga; Vavers, Edijs; Svalbe, Baiba; Veinberg, Grigory; Rizhanova, Kristina; Liepins, Vilnis; Kalvinsh, Ivars; Dambrova, Maija

    2015-10-01

    Phenibut is clinically used anxiolytic, mood elevator and nootropic drug. R-phenibut is responsible for the pharmacological activity of racemic phenibut, and this activity correlates with its binding affinity for GABAB receptors. In contrast, S-phenibut does not bind to GABAB receptors. In this study, we assessed the binding affinities of R-phenibut, S-phenibut, baclofen and gabapentin (GBP) for the α2-δ subunit of the voltage-dependent calcium channel (VDCC) using a subunit-selective ligand, radiolabelled GBP. Binding experiments using rat brain membrane preparations revealed that the equilibrium dissociation constants (Kis) for R-phenibut, S-phenibut, baclofen and GBP were 23, 39, 156 and 0.05μM, respectively. In the pentylenetetrazole (PTZ)-induced seizure test, we found that at doses up to 100mg/kg, R-phenibut did not affect PTZ-induced seizures. The anti-nociceptive effects of R-phenibut were assessed using the formalin-induced paw-licking test and the chronic constriction injury (CCI) of the sciatic nerve model. Pre-treatment with R-phenibut dose-dependently decreased the nociceptive response during both phases of the test. The anti-nociceptive effects of R-phenibut in the formalin-induced paw-licking test were not blocked by the GABAB receptor-selective antagonist CGP35348. In addition, treatment with R- and S-phenibut alleviated the mechanical and thermal allodynia induced by CCI of the sciatic nerve. Our data suggest that the binding affinity of R-phenibut for the α2-δ subunit of the VDCC is 4 times higher than its affinity for the GABAB receptor. The anti-nociceptive effects of R-phenibut observed in the tests of formalin-induced paw licking and CCI of the sciatic nerve were associated with its effect on the α2-δ subunit of the VDCC rather than with its effects on GABAB receptors. In conclusion, our results provide experimental evidence for GBP-like, anti-nociceptive properties of R-phenibut, which might be used clinically to treat neuropathic pain

  14. Is blood glucose associated with descending modulation of spinal nociception as measured by the nociceptive flexion reflex?

    PubMed Central

    Terry, Ellen L; Güereca, Yvette M; Martin, Satin L; Rhudy, Jamie L

    2016-01-01

    Objectives Prior research has shown a relationship between blood glucose levels and some forms of self-regulation (eg, executive function), with low blood glucose levels associated with impaired self-regulation. Further, engagement in self-regulation tasks depletes blood glucose. Given these relationships, the present study examined whether blood glucose is associated with another form of self-regulation, ie, descending pain modulatory processes. Methods Forty-seven (32 female) pain-free participants were recruited and completed testing. Blood glucose was measured from finger sticks and a digital meter before and after experimental pain tests. Pain tests included the nociceptive flexion reflex (NFR) threshold to assess descending modulation of spinal nociception, but also electric pain threshold to assess perceptual pain detection. The Stroop color word naming test was also assessed before and after pain testing to examine changes in executive function. Results Results indicated that mean blood glucose levels decreased after pain testing, but Stroop performance did not significantly change. Importantly, changes in blood glucose were correlated with NFR threshold, such that decreases in blood glucose were associated with lower NFR thresholds (reduced descending inhibition). Changes in blood glucose were unrelated to pain threshold or executive function. Conclusion This study suggests that glucose depletion may impair performance of descending inhibitory processes, without impacting the perceptual detection of pain (pain threshold). Although findings need to be replicated, maintaining adequate glucose levels may be necessary to support inhibition of spinal nociception. PMID:27110138

  15. Observing Behavior and Atypically Restricted Stimulus Control

    ERIC Educational Resources Information Center

    Dube, William V.; Dickson, Chata A.; Balsamo, Lyn M.; O'Donnell, Kristin Lombard; Tomanari, Gerson Y.; Farren, Kevin M.; Wheeler, Emily E.; McIlvane, William J.

    2010-01-01

    Restricted stimulus control refers to discrimination learning with atypical limitations in the range of controlling stimuli or stimulus features. In the study reported here, 4 normally capable individuals and 10 individuals with intellectual disabilities (ID) performed two-sample delayed matching to sample. Sample-stimulus observing was recorded…

  16. The transition from naïve to primed nociceptive state: A novel wind-up protocol in mice.

    PubMed

    Ziv, Nadav Y; Tal, Michael; Shavit, Yehuda

    2016-01-01

    Wind-up (WU) is a progressive, frequency-dependent facilitation of spinal cord neurons in response to repetitive nociceptive stimulation of constant intensity. We identified a new WU-associated phenomenon in naïve mice (not exposed to noxious stimulation immediately prior to WU stimulation), which were subjected to a novel experimental protocol composed of three consecutive trains of WU stimulation. The 1st train produced a typical linear 'wind-up' curve as expected following a repeating series of stimuli; in addition, this 1st train sensitized ('primed') the nociceptive system so that the responses to two subsequent trains (inter-train interval of 10 min) were significantly amplified compared with the response to the 1st train. We named this augmented response potentiation-of-windup, or "PoW". The PoW phenomenon appears to be centrally mediated, as the augmented response was suppressed by administration of an NMDA receptor antagonist (MK-801) and by cutting the spinal cord. Furthermore, the PoW protocol is accompanied by enhanced pain behavior. The 'priming' effect of the 1st train could be mimicked by exposure to natural noxious stimuli prior to the PoW protocol. Presumably, the PoW phenomenon has not been previously reported due to a procedural reason: typically, WU protocols have been executed in 'primed' rather than naïve animals, i.e., animals exposed to nociceptive stimulation prior to the actual WU recording. Our findings indicate that the PoW paradigm can distinguish between 'naïve' and 'primed' states, suggesting its use as a tool for the assessment of central sensitization. PMID:26439312

  17. Inference of pain stimulus level from stereotypical behavioral response of C.elegans allows quantification of effects of anesthesia and mutation

    NASA Astrophysics Data System (ADS)

    Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya

    In animals, we must infer the pain level from experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. To establish C.elegans as a model for pain research, we propose for the first time a quantitative model that allows inference of a thermal nociceptive stimulus level from the behavior of an individual worm. We apply controlled levels of pain by locally heating worms with an infrared laser and capturing the subsequent behavior. We discover that the behavioral response is a product of stereotypical behavior and a nonlinear function of the strength of stimulus. The same stereotypical behavior is observed in normal, anesthetized and mutated worms. From this result we build a Bayesian model to infer the strength of laser stimulus from the behavior. This model allows us to measure the efficacy of anaesthetization and mutation by comparing the inferred strength of stimulus. Based on the measured nociceptive escape of over 200 worms, our model is able to significantly differentiate normal, anaesthetized and mutated worms with 40 worm samples. This work was partially supported by NSF Grant No. IOS/1208126 and HFSP Grant No. RGY0084/.

  18. Chronic inflammation and estradiol interact through MAPK activation to affect TMJ nociceptive processing by trigeminal caudalis neurons.

    PubMed

    Tashiro, A; Okamoto, K; Bereiter, D A

    2009-12-29

    The mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway plays a key role in mediating estrogen actions in the brain and neuronal sensitization during inflammation. Estrogen status is a risk factor in chronic temporomandibular muscle/joint (TMJ) disorders; however, the basis for this relationship is not known. The present study tested the hypothesis that estrogen status acts through the MAPK/ERK signaling pathway to alter TMJ nociceptive processing. Single TMJ-responsive neurons were recorded in laminae I-II at the spinomedullary (Vc/C(1-2)) junction in naïve ovariectomized (OvX) female rats treated for 2 days with high-dose (20 microg/day; HE2) or low-dose estradiol (2 microg/day; LE2) and after chronic inflammation of the TMJ region by complete Freund's adjuvant for 12-14 days. Intra-TMJ injection of ATP (1 mM) was used to activate Vc/C(1-2) neurons. The MAPK/ERK inhibitor (PD98059, 0.01-1 mM) was applied topically to the dorsal Vc/C(1-2) surface at the site of recording 10 min prior to each ATP stimulus. In naïve HE2 rats, low-dose PD98059 caused a maximal inhibition of ATP-evoked activity, whereas even high doses had only minor effects on units in LE2 rats. By contrast, after chronic TMJ inflammation, PD98059 produced a marked and similar dose-related inhibition of ATP-evoked activity in HE2 and LE2 rats. These results suggested that E2 status and chronic inflammation acted, at least in part, through a common MAPK/ERK-dependent signaling pathway to enhance TMJ nociceptive processing by laminae I-II neurons at the spinomedullary junction region. PMID:19786077

  19. [Comparison of membrane electrical properties of somatic nociceptive and non-nociceptive neurons of the anterior cingulate gyrus in cats].

    PubMed

    Zhang, Yong; Yao, Yang; Yang, Yu; Wu, Min-Fan

    2015-04-25

    Using intracellular potential recording technique in vivo, a series of hyperpolarizing and depolarizing currents at different intensities with a 50-ms duration were injected to somatic nociceptive neurons (SNNs) and somatic non-nociceptive neurons (SNNNs) in the anterior cingulate gyrus (ACG) of cats. The membrane electrical responses of the neurons were recorded, and the membrane electrical parameters of the neurons were calculated for comparative study on membrane electrical properties of SNNs and SNNNs of the ACG. A total of 188 ACG neurons from 57 cats were recorded. Among the 188 neurons, 172 (91.5%) and 16 (8.5%) were SNNs and SNNNs, respectively. The I-V curves of SNNs and SNNNs in the ACG were "S" shapes. When the absolute value of injected current intensity was less than or equal to 1 nA (≤ 1 nA), the I and V of I-V curves of both SNNs and SNNNs were linearly correlated (rSNNs = 0.99, rSNNNs = 0.99). When the absolute value of injected current intensity was more than 1 nA, both SNNs and SNNNs showed a certain inward or outward rectification behavior. Compared with SNNNs, SNNs had stronger rectification and lower adaptability (P < 0.01). With the increase of injected current intensity, the changes of frequency of discharges of SNNs were higher than those of SNNNs. In addition, the membrane resistance (Rm), the membrane capacity (Cm) and the time constant (τ) of SNNs were larger than those of SNNNs (P < 0.05 or P < 0.01). The differences in the membrane electrical properties between SNNs and SNNNs in the ACG suggested the disparity in neuronal cell size and cell membrane structure between them. The results of this study provided the experimental basis for deeply elucidating the mechanisms of somatic nociceptive sensation and characteristics on the membrane electrical aspects of ACG neurons. PMID:25896048

  20. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells

    PubMed Central

    Boisvert, Erin M.; Engle, Sandra J.; Hallowell, Shawn E.; Liu, Ping; Wang, Zhao-Wen; Li, Xue-Jun

    2015-01-01

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrations yielded a high population of neural crest progenitor cells (AP2α+, P75+), which further differentiated into nociceptive neurons (TRKA+, Nav1.7+, P2X3+). The overexpression of Neurogenin 1 (Neurog1) promoted the neurons to express genes related to sensory neurons (Peripherin, TrkA) and to further mature into TRPV1+ nociceptive neurons. Importantly, the overexpression of Neurog1 increased the response of these neurons to capsaicin stimulation, a hallmark of mature functional nociceptive neurons. Taken together, this study reveals the important role that Neurog1 plays in generating functional human nociceptive neurons. PMID:26581770

  1. Aromatase inhibitors augment nociceptive behaviors in rats and enhance the excitability of sensory neurons.

    PubMed

    Robarge, Jason D; Duarte, Djane B; Shariati, Behzad; Wang, Ruizhong; Flockhart, David A; Vasko, Michael R

    2016-07-01

    Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000nmol of adenosine 5'-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats. PMID:27072527

  2. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    PubMed Central

    Boccella, Serena; Vacca, Valentina; Errico, Francesco; Marinelli, Sara; Squillace, Marta; Di Maio, Anna; Vitucci, Daniela; Palazzo, Enza; De Novellis, Vito; Maione, Sabatino; Pavone, Flaminia; Usiello, Alessandro

    2015-01-01

    D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/−) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4–L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions. PMID:25629055

  3. Physiological Signal Processing for Individualized Anti-nociception Management During General Anesthesia: A Review

    PubMed Central

    Bonhomme, V.; Jeanne, M.; Boselli, E.; Gruenewald, M.; Logier, R.; Richebé, P.

    2015-01-01

    Summary Objective The aim of this paper is to review existing technologies for the nociception / anti-nociception balance evaluation during surgery under general anesthesia. Methods General anesthesia combines the use of analgesic, hypnotic and muscle-relaxant drugs in order to obtain a correct level of patient non-responsiveness during surgery. During the last decade, great efforts have been deployed in order to find adequate ways to measure how anesthetic drugs affect a patient’s response to surgical nociception. Nowadays, though some monitoring devices allow obtaining information about hypnosis and muscle relaxation, no gold standard exists for the nociception / anti-nociception balance evaluation. Articles from the PubMed literature search engine were reviewed. As this paper focused on surgery under general anesthesia, articles about nociception monitoring on conscious patients, in post-anesthesia care unit or in intensive care unit were not considered. Results In this article, we present a review of existing technologies for the nociception / anti-nociception balance evaluation, which is based in all cases on the analysis of the autonomous nervous system activity. Presented systems, based on sensors and physiological signals processing algorithms, allow studying the patients’ reaction regarding anesthesia and surgery. Conclusion Some technological solutions for nociception / antinociception balance monitoring were described. Though presented devices could constitute efficient solutions for individualized anti-nociception management during general anesthesia, this review of current literature emphasizes the fact that the choice to use one or the other mainly relies on the clinical context and the general purpose of the monitoring. PMID:26293855

  4. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception

    PubMed Central

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E.; Nordmann, Grégory C.; Schladt, Moritz; Milenkovic, Vladimir M.; Kulkarni, Ashok B.; Wetzel, Christian H.

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca2+-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  5. TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception.

    PubMed

    Jendryke, Thomas; Prochazkova, Michaela; Hall, Bradford E; Nordmann, Grégory C; Schladt, Moritz; Milenkovic, Vladimir M; Kulkarni, Ashok B; Wetzel, Christian H

    2016-01-01

    TRPV1 is a polymodally activated cation channel acting as key receptor in nociceptive neurons. Its function is strongly affected by kinase-mediated phosphorylation leading to hyperalgesia and allodynia. We present behavioral and molecular data indicating that TRPV1 is strongly modulated by Cdk5-mediated phosphorylation at position threonine-407(mouse)/T406(rat). Increasing or decreasing Cdk5 activity in genetically engineered mice has severe consequences on TRPV1-mediated pain perception leading to altered capsaicin consumption and sensitivity to heat. To understand the molecular and structural/functional consequences of TRPV1 phosphorylation, we generated various rTRPV1T406 receptor variants to mimic phosphorylated or dephosphorylated receptor protein. We performed detailed functional characterization by means of electrophysiological whole-cell and single-channel recordings as well as Ca(2+)-imaging and challenged recombinant rTRPV1 receptors with capsaicin, low pH, or heat. We found that position T406 is critical for the function of TRPV1 by modulating ligand-sensitivity, activation, and desensitization kinetics as well as voltage-dependence. Based on high resolution structures of TRPV1, we discuss T406 being involved in the molecular transition pathway, its phosphorylation leading to a conformational change and influencing the gating of the receptor. Cdk5-mediated phosphorylation of T406 can be regarded as an important molecular switch modulating TRPV1-related behavior and pain sensitivity. PMID:26902776

  6. Brief Isolation Changes Nociceptive Behaviors and Compromises Drug Tests in Mice.

    PubMed

    Han, Rafael Taeho; Lee, Hyunkyoung; Lee, JaeHee; Lee, Sat-Byol; Kim, Hee Jin; Back, Seung Keun; Na, Heung Sik

    2016-07-01

    Herding with a litter is known to comfort rodents, whereas isolation and grouping with noncagemates provoke stress. The effects of stress induced by isolation and grouping with noncagemates on pain responses, and their underlying mechanisms remain elusive. We assessed the effect of isolation, a common condition during behavioral tests, and of grouping on defecation and pain behaviors of mice. Fecal pellets were counted 2 hours after exposure to the test chamber. It is significantly more in the isolated mice than in the grouped mice. Hindpaw withdrawal threshold and withdrawal latency were adopted as the indicatives of mechanical and thermal pain sensitivities, respectively. Interestingly, isolated mice showed higher pain thresholds than mice grouping with cagemates, and even those with noncagemates, indicating analgesic effects. Such effects were reduced by intrathecal injection of 0.01 mg/kg of naloxone (opioid receptor antagonist), atosiban (oxytocin and vasopressin receptor antagonist), and ketanserin (5-HT receptor antagonist). Intraperitoneal delivery of 1 mg/kg of naloxone and atosiban, but not ketanserin, also alleviated the isolation-induced analgesic effects. In contrast, these drugs at the same dose had no significant effect on the mice grouping with cagemates. In addition, the effect of morphine on thermal pain was more robust in the mice grouping with cagemates than in the isolated mice. These data demonstrated that brief isolation caused analgesia, mediated by endogenous opioidergic, oxytocinergic, and serotonergic pathways. These results indicate that isolation during pain behavioral tests can affect pain responses and the efficacy of drugs; thus, nociception tests should be conducted in grouping. PMID:26212903

  7. The effects in rats of lisdexamfetamine in combination with olanzapine on mesocorticolimbic dopamine efflux, striatal dopamine D2 receptor occupancy and stimulus generalization to a D-amphetamine cue.

    PubMed

    Hutson, Peter H; Rowley, Helen L; Gosden, James; Kulkarni, Rajiv S; Slater, Nigel; Love, Patrick L; Wang, Yiyun; Heal, David

    2016-02-01

    The etiology of schizophrenia is poorly understood and two principle hypotheses have dominated the field. Firstly, that subcortical dopamine function is enhanced while cortical dopamine function is reduced and secondly, that cortical glutamate systems are dysfunctional. It is also widely accepted that currently used antipsychotics have essentially no impact on cognitive deficits and persistent negative symptoms in schizophrenia. Reduced dopamine transmission via dopamine D1 receptors in the prefrontal cortex has been hypothesized to be involved in the aetiology of these symptom domains and enhancing cortical dopamine transmission within an optimal window has been suggested to be potentially beneficial. In these pre-clinical studies we have determined that combined administration of the d-amphetamine pro-drug, lisdexamfetamine and the atypical antipsychotic olanzapine increased dopamine efflux in the rat prefrontal cortex and nucleus accumbens to an extent greater than either drug given separately without affecting olanzapine's ability to block striatal dopamine D2 receptors which is important for its antipsychotic activity. Furthermore, in an established rodent model used to compare the subjective effects of novel compounds the ability of lisdexamfetamine to generalize to a d-amphetamine cue was dose-dependently attenuated when co-administered with olanzapine suggesting that lisdexamfetamine may produce less marked subjective effects when administered adjunctively with olanzapine. PMID:26384654

  8. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    PubMed

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-01

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences. PMID:25988529

  9. Redox-Dependent Modulation of T-Type Ca2+ Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P

    PubMed Central

    Huang, Dongyang; Huang, Sha; Gao, Haixia; Liu, Yani; Qi, Jinlong; Chen, Pingping; Wang, Caixue; Scragg, Jason L.; Vakurov, Alexander; Peers, Chris; Du, Xiaona

    2016-01-01

    Abstract Aims: Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. Results: SP acutely inhibited T-type voltage-gated Ca2+ channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca2+ channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K+ channels described earlier. Innovation: Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca2+ current and concurrent enhancement of anti-algesic M-type K+ current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. Conclusion: SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233–251. PMID:27306612

  10. Poverty of the stimulus revisited.

    PubMed

    Berwick, Robert C; Pietroski, Paul; Yankama, Beracah; Chomsky, Noam

    2011-01-01

    A central goal of modern generative grammar has been to discover invariant properties of human languages that reflect "the innate schematism of mind that is applied to the data of experience" and that "might reasonably be attributed to the organism itself as its contribution to the task of the acquisition of knowledge" (Chomsky, 1971). Candidates for such invariances include the structure dependence of grammatical rules, and in particular, certain constraints on question formation. Various "poverty of stimulus" (POS) arguments suggest that these invariances reflect an innate human endowment, as opposed to common experience: Such experience warrants selection of the grammars acquired only if humans assume, a priori, that selectable grammars respect substantive constraints. Recently, several researchers have tried to rebut these POS arguments. In response, we illustrate why POS arguments remain an important source of support for appeal to a priori structure-dependent constraints on the grammars that humans naturally acquire. PMID:21824178

  11. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior

    PubMed Central

    Harte, Steven E.; Meyers, Jessica B.; Donahue, Renee R.; Taylor, Bradley K.; Morrow, Thomas J.

    2016-01-01

    A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents. PMID:26915030

  12. Effect of transcutaneous electrical stimulation on nociception and edema induced by peripheral serotonin.

    PubMed

    Santos, Cristiane M F; Francischi, Janetti N; Lima-Paiva, Patrícia; Sluka, Kathleen A; Resende, Marcos A

    2013-07-01

    Transcutaneous electrical nerve stimulation (TENS) is defined as the application of an electrical current to the skin through surface electrodes for pain relief. Various theories have been proposed in order to explain the analgesic mechanism of TENS. Recent studies have demonstrated that part of this analgesia is mediated through neurotransmitters acting at peripheral sites. The aim of this study was to investigate the effects of low frequency (LF: 10 HZ) TENS and high frequency (HF: 130 HZ) TENS on hyperalgesia and edema when applied before the serotonin (5-HT) administered into the rat paw. LF and HF TENS were applied to the right paw for 20 min, and 5-HT was administered immediately after TENS. The Hargreaves method was used to measure nociception, while the hydroplethysmometer (Ugo Basile®) was used to measure edema. Neither HF nor LF TENS inhibited 5-HT-induced edema. However, LF TENS, but not HF TENS, completely reduced 5-HT-induced hyperalgesia. Pre-treatment of the paw with naltrexone, prior to application of TENS, (Nx: 50 μg; I.pl.) showed a complete blockade of the analgesic effect induced by low frequency TENS. Thus, our results confirmed the lack of an anti-inflammatory effect through the use of TENS as well as the participation of peripheral endogenous opioid receptors in LF TENS analgesia in addition to its central action. PMID:23336713

  13. Mechanical Conflict System: A Novel Operant Method for the Assessment of Nociceptive Behavior.

    PubMed

    Harte, Steven E; Meyers, Jessica B; Donahue, Renee R; Taylor, Bradley K; Morrow, Thomas J

    2016-01-01

    A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents. PMID:26915030

  14. Comparative effects of Mitragyna speciosa extract, mitragynine, and opioid agonists on thermal nociception in rats.

    PubMed

    Carpenter, Jessica M; Criddle, Catherine A; Craig, Helaina K; Ali, Zulfiqar; Zhang, Zhihao; Khan, Ikhlas A; Sufka, Kenneth J

    2016-03-01

    This study sought to compare the effects of Mitragyna speciosa (Korth.) Havil. extract, alkaloids fraction, and mitragynine, a μ-opioid receptor agonist, to that of morphine and oxycodone in a test of thermal nociception. In Experiment 1, male Sprague-Dawley rats were administered test articles intraperitoneally (IP) 30 min prior to testing to compare the effects of M. speciosa articles to opioid reference compounds on the hotplate assay. Test articles were vehicle, 10 mg/kg morphine, 3 mg/kg oxycodone, 300 mg/kg M. speciosa extract, 75 mg/kg M. speciosa alkaloids fraction, or 30 mg/kg mitragynine. To mirror consumer usage, Experiment 2 sought to determine whether M. speciosa articles retained their biological activity when given orally (PO). Test articles were vehicle, 6 mg/kg oxycodone, 300 mg/kg M. speciosa extract, or 100mg/kg mitragynine with hotplate tests conducted 30 and 60 min after administration. Mitragynine produced antinociceptive effects similar to the reference opioid agonists when administered IP and PO routes. These data suggest that M. speciosa extracts containing significant quantities of mitragynine may warrant consideration for further studies in primate self-administration models to yield insight into the abuse liability of this commercially available product. PMID:26688378

  15. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception

    PubMed Central

    Kang, Kyeongjin; Pulver, Stefan R.; Panzano, Vincent C.; Chang, Elaine C.; Griffith, Leslie C.; Theobald, Douglas L.; Garrity, Paul A.

    2010-01-01

    Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, like allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke)1–3. Insects to humans find reactive electrophiles aversive1–3, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that dTRPA1, the Drosophila melanogaster ortholog of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologs are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose human pain perception relies on an ancient chemical sensor conserved across ~500 million years of animal evolution. PMID:20237474

  16. Changes in Activity of the Same Thalamic Neurons to Repeated Nociception in Behaving Mice

    PubMed Central

    Huh, Yeowool; Cho, Jeiwon

    2015-01-01

    The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals. PMID:26070157

  17. Postnatal development of the nociceptive withdrawal reflexes in the rat: a behavioural and electromyographic study.

    PubMed Central

    Holmberg, H; Schouenborg, J

    1996-01-01

    1. The postnatal development of nociceptive withdrawal reflexes was studied. In awake intact rats, forelimb, hindlimb and tail reflexes were recorded on videotape. In decerebrate spinal rats, electromyography (EMG) was used to record nociceptive withdrawal reflexes in musculi extensor digitorum longus (EDL), peronei, gastrocnemius-soleus (G-S) and biceps posterior-semitendinosus (BP-ST). Thermal (short-lasting CO2 laser pulses) and mechanical stimulation were used. 2. In adults, nociceptive withdrawal reflexes were typically well directed and reflex pathways to single hindlimb muscles had functionally adapted receptive fields. By contrast, at postnatal day (P) 1-7, the nociceptive withdrawal reflexes were often inappropriate, sometimes producing movements towards the stimulation, and EMG recordings revealed unadapted variable receptive fields. With increasing age, the nociceptive withdrawal reflexes progressively became well directed, thus producing localized withdrawal. Both withdrawal movements and spatial organization of the receptive fields were adult-like at P20-25. 3. Up to P25, reflex thresholds were more or less constant in both intact awake rats and spinal decerebrate rats, except in G-S in which no nociceptive withdrawal reflexes were evoked from P20 on. After P25, mechanical, but not thermal, thresholds increased dramatically. 4. EMG recordings revealed that during the first three postnatal weeks, the latency of the CO2 laser-evoked nociceptive withdrawal reflexes decreased significantly in peronei and BP-ST, but not in EDL, and thereafter increased significantly in peronei, BP-ST and EDL. The magnitude of the nociceptive withdrawal reflexes in these muscles increased markedly between P7 and P20 and showed little change thereafter. 5. Possible mechanisms underlying the postnatal tuning of the nociceptive withdrawal reflexes are discussed. PMID:8735709

  18. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks.

    PubMed

    Stankewitz, Anne; Aderjan, David; Eippert, Falk; May, Arne

    2011-02-01

    Several lines of evidence suggest a major role of the trigeminovascular system in the pathogenesis of migraine. Using functional magnetic resonance imaging (fMRI), we compared brain responses during trigeminal pain processing in migraine patients with those of healthy control subjects. The main finding is that the activity of the spinal trigeminal nuclei in response to nociceptive stimulation showed a cycling behavior over the migraine interval. Although interictal (i.e., outside of attack) migraine patients revealed lower activations in the spinal trigeminal nuclei compared with controls, preictal (i.e., shortly before attack) patients showed activity similar to controls, which demonstrates that the trigeminal activation level increases over the pain-free migraine interval. Remarkably, the distance to the next headache attack was predictable by the height of the signal intensities in the spinal nuclei. Migraine patients scanned during the acute spontaneous migraine attack showed significantly lower signal intensities in the trigeminal nuclei compared with controls, demonstrating activity levels similar to interictal patients. Additionally we found-for the first time using fMRI-that migraineurs showed a significant increase in activation of dorsal parts of the pons, previously coined "migraine generator." Unlike the dorsal pons activation usually linked to migraine attacks, the gradient-like activity following nociceptive stimulation in the spinal trigeminal neurons likely reflects a raise in susceptibility of the brain to generate the next attack, as these areas increase their activity long before headache starts. This oscillating behavior may be a key player in the generation of migraine headache, whereas attack-specific pons activations are most likely a secondary event. PMID:21307231

  19. A role for nociceptive, myelinated nerve fibers in itch sensation

    PubMed Central

    Ringkamp, M.; Schepers, R. J.; Shimada, S.G.; Johanek, L.M.; Hartke, T.V.; Borzan, J.; Shim, B.; LaMotte, R.H.; Meyer, R.A.

    2011-01-01

    Despite its clinical importance, the underlying neural mechanisms of itch sensation are poorly understood. In many diseases, pruritus is not effectively treated with antihistamines, indicating the involvement of non-histaminergic mechanisms. To investigate the role of small myelinated afferents in non-histaminergic itch, we tested, in psychophysical studies in humans, the effect of a differential nerve block on itch produced by intradermal insertion of spicules from the pods of a cowhage plant (Mucuna pruriens). Electrophysiological experiments in anesthetized monkey were used to investigate the responsiveness of cutaneous, nociceptive, myelinated afferents to different chemical stimuli (cowhage spicules, histamine, capsaicin). Our results provide several lines of evidence for an important role of myelinated fibers in cowhage-induced itch: 1) a selective conduction block in myelinated fibers substantially reduces itch in a sub-group of subjects with A-fiber dominated itch, 2) the time course of itch sensation differs between subjects with A-fiber versus C-fiber dominated itch, 3) cowhage activates a subpopulation of myelinated and unmyelinated afferents in monkey, 4) the time course of the response to cowhage is different in myelinated and unmyelinated fibers, 5) the time of peak itch sensation for subjects with A-fiber dominated itch matches the time for peak response in myelinated fibers, and 6) the time for peak itch sensation for subjects with C-fiber dominated itch matches the time for the peak response in unmyelinated fibers. These findings demonstrate that activity in nociceptive, myelinated afferents contributes to cowhage-induced sensations, and that non-histaminergic itch is mediated through activity in both unmyelinated and myelinated afferents. PMID:22016517

  20. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2015-01-01

    Nociceptors are sensory neurons that are tuned to tissue damage. In many species, nociceptors are often stimulated by noxious extreme temperatures and by chemical agonists that do not damage tissue (e.g., capsaicin and isothiocyanate). We test whether crustaceans have nociceptors by examining nociceptive behaviours and neurophysiological responses to extreme temperatures and potentially nocigenic chemicals. Crayfish (Procambarus clarkii) respond quickly and strongly to high temperatures, and neurons in the antenna show increased responses to transient high temperature stimuli. Crayfish showed no difference in behavioural response to low temperature stimuli. Crayfish also showed no significant changes in behaviour when stimulated with capsaicin or isothiocyanate compared to controls, and neurons in the antenna did not change their firing rate following application of capsaicin or isothiocyanate. Noxious high temperatures appear to be a potentially ecologically relevant noxious stimulus for crayfish that can be detected by sensory neurons, which may be specialized nociceptors. PMID:25819841

  1. Effects of intraplantar nocistatin and (±)-J 113397 injections on nociceptive behavior in a rat model of inflammation.

    PubMed

    Scoto, Giovanna M; Aricò, Giuseppina; Ronsisvalle, Simone; Parenti, Carmela

    2012-01-01

    Nocistatin (NST) and Nociceptin/Orphanin FQ (N/OFQ) are derived from the same precursor protein, pre-proN/OFQ, and exert opposite effects on the modulation of pain signals. However, the role of the peripheral N/OFQ and the NOP receptor, which is located at the endings of sensory nerves, in inflammatory pain was not ascertained. NST administered intrathecally (i.t.) prevented the nociceptive effects induced by i.t. N/OFQ and PGE₂. Moreover an up regulation of N/OFQ was shown in the rat in response to peripheral inflammation. Here, we investigated the effects of intraplantar (i.pl.) administration of functional N/OFQ and NOP receptor antagonists in a rat model of inflammatory pain. Our findings showed that i.pl. injection of (±)-J 113397, a selective antagonist of the NOP receptor, and NST, the functional N/OFQ antagonist, prior to carrageenan significantly reduced the paw allodynic and thermal hyperalgesic threshold induced by the inflammatory agent. The resulting antiallodynic and antihyperalgesic effects by co-administering NST and (±)-J 113397 prior to carrageenan were markedly enhanced, and the basal latencies were restored. Thus, it is likely that the peripheral N/OFQ/NOP receptor system contributes to the abnormal pain sensitivity in an inflammatory state. PMID:22120202

  2. Effects of COX-2 inhibition on spinal nociception: the role of endocannabinoids

    PubMed Central

    Staniaszek, LE; Norris, LM; Kendall, DA; Barrett, DA; Chapman, V

    2010-01-01

    Background and purpose: Recent studies suggest that the effects of cyclooxygenase-2 (COX-2) inhibition are mediated by cannabinoid receptor activation. However, some non-steroidal anti-inflammatory drugs inhibit the enzyme fatty acid amide hydrolase, which regulates levels of some endocannabinoids. Whether COX-2 directly regulates levels of endocannabinoids in vivo is unclear. Here, the effect of the COX-2 inhibitor nimesulide, which does not inhibit fatty acid amide hydrolase, on spinal nociceptive processing was determined. Effects of nimesulide on tissue levels of endocannabinoids and related compounds were measured and the role of cannabinoid 1 (CB1) receptors was determined. Experimental approach: Effects of spinal and peripheral administration of nimesulide (1–100 µg per 50 µL) on mechanically evoked responses of rat dorsal horn neurones were measured, and the contribution of the CB1 receptor was determined with the antagonist AM251 (N-(piperidin-1-yl)-5-(-4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide), in anaesthetized rats. Effects of nimesulide on spinal levels of endocannabinoids and related compounds were quantified using liquid chromatography-tandem mass spectrometry. Key results: Spinal, but not peripheral, injection of nimesulide (1–100 µg per 50 µL) significantly reduced mechanically evoked responses of dorsal horn neurones. Inhibitory effects of spinal nimesulide were blocked by the CB1 receptor antagonist AM251 (1 µg per 50 µL), but spinal levels of endocannabinoids were not elevated. Indeed, both anandamide and N-oleoylethanolamide (OEA) were significantly decreased by nimesulide. Conclusions and implications: Although the inhibitory effects of COX-2 blockade on spinal neuronal responses by nimesulide were dependent on CB1 receptors, we did not detect a concomitant elevation in anandamide or 2-AG. Further understanding of the complexities of endocannabinoid catabolism by multiple enzymes is essential to

  3. Effect of the synthetic polyamine N,N'-bis-(3-aminopropyl) cyclohexane-1,4-diamine (DCD) on rat spinal cord nociceptive transmission.

    PubMed

    Bilbeny, Norberto; Paeile, Carlos; Contreras, Selfa; Font, María; García, Hernán

    2004-10-01

    In rats submitted to a C-fiber reflex response paradigm, intravenous (i.v.) administration of 2.5, 5 and 10 mg/kg of the synthetic polyamine N,N'-bis-(3-aminopropyl) cyclohexane-1,4-diamine (DCD) dose-dependently reduced both the integrated C reflex responses and wind-up activity. Inhibitory effects of the polyamine on spinal cord nociceptive transmission are likely to be consequence of blockade by extracellular DCD of NMDA receptor channels localized in dorsal horn neurons, although modulatory actions at supraspinal level and at other ion channels could also be possible. PMID:15353239

  4. Investigation of Stimulus-Response Compatibility Using a Startling Acoustic Stimulus

    ERIC Educational Resources Information Center

    Maslovat, Dana; Carlsen, Anthony N.; Franks, Ian M.

    2012-01-01

    We investigated the processes underlying stimulus-response compatibility by using a lateralized auditory stimulus in a simple and choice reaction time (RT) paradigm. Participants were asked to make either a left or right key lift in response to either a control (80dB) or startling (124dB) stimulus presented to either the left ear, right ear, or…

  5. An Evaluation of the Number of Presentations of Target Sounds during Stimulus-Stimulus Pairing Trials

    ERIC Educational Resources Information Center

    Miliotis, Adriane; Sidener, Tina M.; Reeve, Kenneth F.; Carbone, Vincent; Sidener, David W.; Rader, Lisa; Delmolino, Lara

    2012-01-01

    Stimulus-stimulus pairing (SSP) of vocalizations pairs the speech of others with the delivery of highly preferred items. The goal of this procedure is to produce a temporary increase in vocalizations, thus creating a larger variety of sounds that can subsequently be brought under appropriate stimulus control (Esch, Carr, & Grow, 2009). In this…

  6. Stimulus Intensity and the Perception of Duration

    ERIC Educational Resources Information Center

    Matthews, William J.; Stewart, Neil; Wearden, John H.

    2011-01-01

    This article explores the widely reported finding that the subjective duration of a stimulus is positively related to its magnitude. In Experiments 1 and 2 we show that, for both auditory and visual stimuli, the effect of stimulus magnitude on the perception of duration depends upon the background: Against a high intensity background, weak stimuli…

  7. Stimulus Overselectivity: Empirical Basis and Diagnostic Methods

    ERIC Educational Resources Information Center

    Cipani, Ennio

    2012-01-01

    This paper presents the empirical basis for the phenomena known as stimulus overselectivity. Stimulus overselectivity involves responding on the basis of a restricted range of elements or features that are discriminative for reinforcement. The manner in which such a response pattern impedes the skill acquisition in children is identified. A…

  8. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  9. Why Additional Presentations Help Identify a Stimulus

    ERIC Educational Resources Information Center

    Guest, Duncan; Kent, Christopher; Adelman, James S.

    2010-01-01

    Nosofsky (1983) reported that additional stimulus presentations within a trial increase discriminability in absolute identification, suggesting that each presentation creates an independent stimulus representation, but it remains unclear whether exposure duration or the formation of independent representations improves discrimination in such…

  10. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  11. Stimulus control during conditional discrimination.

    PubMed

    Yarczower, M

    1971-07-01

    Pigeons were used to assess stimulus control during the development of a conditional discrimination. The training consisted of three stages. In Stage 1, key pecks were reinforced in the presence of a white line tilted 40 degrees to the right of vertical on a green background and non-reinforced when the same line appeared on a red background. In Stage 2, key pecks were reinforced when a white vertical line appeared on a red background and were non-reinforced in the presence of a 40 degrees slanted line on a red background. In Stage 3, key pecks were reinforced in the presence of the green background regardless of the line tilt, but were differentially reinforced in the presence of the red background (as in Stage 2). Generalization tests were conducted after each stage of training and consisted of five white lines on backgrounds that were green, red, or dark. The effects of the differential reinforcement contingencies on control by line orientation were restricted to the condition in which the red light appeared and resulted in behavioral control that could be characterized as: if red, pay closer attention to line tilt than if not red. PMID:5142389

  12. The stimulus integration area for horizontal vergence.

    PubMed

    Allison, Robert S; Howard, Ian P; Fang, Xueping

    2004-06-01

    Over what region of space are horizontal disparities integrated to form the stimulus for vergence? The vergence system might be expected to respond to disparities within a small area of interest to bring them into the range of precise stereoscopic processing. However, the literature suggests that disparities are integrated over a fairly large parafoveal area. We report the results of six experiments designed to explore the spatial characteristics of the stimulus for vergence. Binocular eye movements were recorded using magnetic search coils. Each dichoptic display consisted of a central target stimulus that the subject attempted to fuse, and a competing stimulus with conflicting disparity. In some conditions the target was stationary, providing a fixation stimulus. In other conditions, the disparity of the target changed to provide a vergence-tracking stimulus. The target and competing stimulus were combined in a variety of conditions including those in which (1) a transparent textured-disc target was superimposed on a competing textured background, (2) a textured-disc target filled the centre of a competing annular background, and (3) a small target was presented within the centre of a competing annular background of various inner diameters. In some conditions the target and competing stimulus were separated in stereoscopic depth. The results are consistent with a disparity integration area with a diameter of about 5 degrees. Stimuli beyond this integration area can drive vergence in their own right, but they do not appear to be summed or averaged with a central stimulus to form a combined disparity signal. A competing stimulus had less effect on vergence when separated from the target by a disparity pedestal. As a result, we propose that it may be more useful to think in terms of an integration volume for vergence rather than a two-dimensional retinal integration area. PMID:14985895

  13. Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain

    PubMed Central

    Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria

    2015-01-01

    Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870

  14. Heart rate variability analysis as an index of emotion regulation processes: interest of the Analgesia Nociception Index (ANI).

    PubMed

    De Jonckheere, J; Rommel, D; Nandrino, J L; Jeanne, M; Logier, R

    2012-01-01

    Autonomic Nervous System (ANS) variations are strongly influence by emotion regulation processes. Indeed, emotional stimuli are at the origin of an activation of the ANS and the way an individual pass from a state of alert in the case of emotional situation to a state of calm is closely coupled with the ANS flexibility. We have previously described and developed an Analgesia Nociception Index (ANI) for real time pain measurement during surgical procedure under general anesthesia. This index, based on heart rate variability analysis, constitutes a measure of parasympathetic tone and can be used in several other environments. In this paper, we hypothesized that such an index could be used as a tool to investigate the processes of emotional regulation of a human subject. To test this hypothesis, we analyzed ANI's response to a negative emotional stimulus. This analysis showed that the index decreases during the emotion induction phase and returns to its baseline after 2 minutes. This result confirms that ANI could be a good indicator of parasympathetic changes in emotional situation. PMID:23366664

  15. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation.

    PubMed

    Inutsuka, Ayumu; Yamashita, Akira; Chowdhury, Srikanta; Nakai, Junichi; Ohkura, Masamichi; Taguchi, Toru; Yamanaka, Akihiro

    2016-01-01

    The level of wakefulness is one of the major factors affecting nociception and pain. Stress-induced analgesia supports an animal's survival via prompt defensive responses against predators or competitors. Previous studies have shown the pharmacological effects of orexin peptides on analgesia. However, orexin neurons contain not only orexin but also other co-transmitters such as dynorphin, neurotensin and glutamate. Thus, the physiological importance of orexin neuronal activity in nociception is unknown. Here we show that adult-stage selective ablation of orexin neurons enhances pain-related behaviors, while pharmacogenetic activation of orexin neurons induces analgesia. Additionally, we found correlative activation of orexin neurons during nociception using fiber photometry recordings of orexin neurons in conscious animals. These findings suggest an integrative role for orexin neurons in nociceptive perception and pain regulation. PMID:27385517

  16. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation

    PubMed Central

    Inutsuka, Ayumu; Yamashita, Akira; Chowdhury, Srikanta; Nakai, Junichi; Ohkura, Masamichi; Taguchi, Toru; Yamanaka, Akihiro

    2016-01-01

    The level of wakefulness is one of the major factors affecting nociception and pain. Stress-induced analgesia supports an animal’s survival via prompt defensive responses against predators or competitors. Previous studies have shown the pharmacological effects of orexin peptides on analgesia. However, orexin neurons contain not only orexin but also other co-transmitters such as dynorphin, neurotensin and glutamate. Thus, the physiological importance of orexin neuronal activity in nociception is unknown. Here we show that adult-stage selective ablation of orexin neurons enhances pain-related behaviors, while pharmacogenetic activation of orexin neurons induces analgesia. Additionally, we found correlative activation of orexin neurons during nociception using fiber photometry recordings of orexin neurons in conscious animals. These findings suggest an integrative role for orexin neurons in nociceptive perception and pain regulation. PMID:27385517

  17. Rapid optical control of nociception with an ion-channel photoswitch.

    PubMed

    Mourot, Alexandre; Fehrentz, Timm; Le Feuvre, Yves; Smith, Caleb M; Herold, Christian; Dalkara, Deniz; Nagy, Frédéric; Trauner, Dirk; Kramer, Richard H

    2012-04-01

    Local anesthetics effectively suppress pain sensation, but most of these compounds act nonselectively, inhibiting activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We developed a photoisomerizable molecule, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans form but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Because intracellular QAQ accumulation is a consequence of nociceptive ion-channel activity, QAQ-mediated photosensitization is a platform for understanding signaling mechanisms in acute and chronic pain. PMID:22343342

  18. Stimulus-response coupling in platelets

    SciTech Connect

    Huang, E.M.

    1986-01-01

    To understand the mechanism of stimulus-response coupling in platelets, the potentiating effect of succinate and lithium on platelet activation was examined. The action of succinate was immediate; preincubation with succinate did not lead to desensitization. Succinate was comparable to ADP in lowering cAMP levels previously elevated by PGl/sub 2/. Since inhibition of cAMP is not a prerequisite for platelet activation, the mechanism of potentiation of succinate remains undefined. Lithium has also been shown to inhibit adenylate cyclase in PGl/sub 2/-pretreated platelets. Lithium, however, can also inhibit inositol phosphate (InsP) phosphatase and lead to an accumulation of InsP. In human platelets, lithium also enhanced the thrombin-induced accumulation of (/sup 3/H)inositol-labelled inositol trisphosphate (InsP/sub 3/), and inositol bisphosphate (InsP/sub 2/). One hour after thrombin addition, all 3 inositol phosphates returned to near basal levels. In the presence of lithium, while labelled InsP/sub 2/ and InsP/sub 3/ returned to their respective basal levels, the InsP level remained elevated, consistent with the known inhibitory effect of lithium on InsP phosphatase. In thrombin-stimulated platelets prelabeled with (/sup 32/P)phosphate, lithium led to a decrease in labelled phosphatidylinositol 4-phosphate (PtdIns4P) as well as an enhanced production of labelled lysophosphatidylinositol, suggesting multiple effects of lithium on platelet phosphoinositide metabolism. These observed effects, however, occurred too slowly to be the mechanism by which lithium potentiated agonist-induced platelet activation. To study the agonist-receptor interaction, the effect of the specific, high affinity thrombin inhibitor, hirudin, on thrombin-induced accumulation of (/sup 3/H)inositol-labelled inositol phosphates was studied.

  19. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level.

    PubMed

    Spicarova, Diana; Palecek, Jiri

    2009-07-01

    Transient receptor potential vanilloid (TRPV1) receptors are abundant in a subpopulation of primary sensory neurons that convey nociceptive information from the periphery to the spinal cord dorsal horn. The TRPV1 receptors are expressed on both the peripheral and central branches of these dorsal root ganglion (DRG) neurons and can be activated by capsaicin, heat, low pH, and also by recently described endogenous lipids. Using patch-clamp recordings from superficial dorsal horn (DH) neurons in acute spinal cord slices, the effect of application of the endogenous TRPV1 agonist N-oleoyldopamine (OLDA) on the frequency of miniature excitatory postsynaptic currents (mEPSCs) was evaluated. A high concentration OLDA (10 microM) solution was needed to increase the mEPSC frequency, whereas low concentration OLDA (0.2 microM) did not evoke any change under control conditions. The increase was blocked by the TRPV1 antagonists SB366791 or BCTC. Application of a low concentration of OLDA evoked an increase in mEPSC frequency after activation of protein kinase C by phorbol ester (PMA) and bradykinin or in slices from animals with peripheral inflammation. Increasing the bath temperature from 24 to 34 degrees C enhanced the basal mEPSC frequency, but the magnitude of changes in the mEPSC frequency induced by OLDA administration was similar at both temperatures. Our results suggest that presumed endogenous agonists of TRPV1 receptors, like OLDA, could have a considerable impact on synaptic transmission in the spinal cord, especially when TRPV1 receptors are sensitized. Spinal TRPV1 receptors could play a pivotal role in modulation of nociceptive signaling in inflammatory pain. PMID:19369364

  20. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of 'nociception-related memory acquisition'?

    PubMed

    Ortega-Legaspi, J Manuel; López-Avila, Alberto; Coffeen, Ulises; del Angel, Rosendo; Pellicer, Francisco

    2003-01-01

    The cingulate cortex plays a key role in the affective component related to pain perception. This structure receives cholinergic projections and also plays a role in memory processing. Therefore, we propose that the cholinergic system in the anterior cingulate cortex is involved in the nociceptive memory process. We used scopolamine (10 microg in 0.25 mircrol/saline) microinjected into the anterior cingulate cortex, either before thermonociception followed by a sciatic denervation, between thermonociception and denervation or after both procedures (n=10 each). The vehicle group (saline solution 0.9%, n=14) was microinjected before thermonociception. Chronic nociception was measured by the autotomy score, which onset and incidence were also determined. Group scopolamine-thermonociception-denervation (STD) presented the lowest autotomy score as compared to vehicle and group thermonociception-denervation-scopolamine (TDS) (vehicle vs. STD, p=0.002, STD vs. TDS, p=0.001). Group thermonociception-scopolamine-denervation (TSD) showed a diminished autotomy score when compared to TDS (p=0.053). STD group showed a delay in the onset of AB as compared to the rest of the groups. Group TSD presented a significative delay (p=0.048) in AB onset when compared to group TDS. There were no differences in the incidence between groups. The results show that nociception-related memory processed in the anterior cingulate cortex is susceptible of being modified by the cholinergic transmission blockade. When scopolamine is microinjected prior to the nociceptive stimuli, nociception-related memory acquisition is prevented. The evidence obtained in this study shows the role of the anterior cingulate cortex in the acquisition of nociception-related memory. PMID:12935794

  1. Thrombospondin-4 contributes to spinal cord injury induced changes in nociception

    PubMed Central

    Zeng, Jun; Kim, Donghyun; Li, Kang-Wu; Sharp, Kelli; Steward, Oswald; Zaucke, Frank; Luo, Z. David

    2013-01-01

    Background Our previous data have indicated that nerve injury-induced upregulation of thrombospondin-4 (TSP4) proteins in dorsal spinal cord plays a causal role in neuropathic pain state development in a spinal nerve ligation model. To investigate whether TSP4 proteins also contribute to the development of centrally mediated changes in nociception after spinal cord injury (SCI), we investigated whether SCI injury induced TSP4 dysregulation, and if so, whether this change correlated with changes in nociception in a T9 spinal cord contusion injury model. Methods Behavioral sensitivity to mechanical, thermal stimuli and locomotor function recovery were tested blindly in SCI or sham rats post injury. Intrathecal antisense or mismatch control oligodeoxynucleotides were used to treat SCI rats with nociceptive hyperreflexia and Western blots were used to measure TSP4 protein levels in dorsal spinal cord samples. Results SCI induced below-level hindpaw hypersensitivity to stimuli. TSP4 protein levels are upregulated in dorsal spinal cord of SCI rats with nociceptive hyperreflexia, but not in SCI rats without nociceptive hyperreflexia. There was no significant difference in motor function recovery post injury between SCI rats with or without nociceptive hyperreflexia. Intrathecal treatment with TSP4 antisense, but not mismatch control, oligodeoxynucleotides led to reversal of injury-induced TSP4 upregulation and nociceptive hyperreflexia in SCI rats. Conclusions SCI leads to TSP4 upregulation in lumbar spinal cord that may play a critical role in mediating centrally mediated behavioral hypersensitivity. Blocking this pathway may be helpful in management of SCI induced changes in nociception. PMID:23649982

  2. Immature spinal cord neurons are dynamic regulators of adult nociceptive sensitivity

    PubMed Central

    Rusanescu, Gabriel; Mao, Jianren

    2015-01-01

    Chronic pain is a debilitating condition with unknown mechanism. Nociceptive sensitivity may be regulated by genetic factors, some of which have been separately linked to neuronal progenitor cells and neuronal differentiation. This suggests that genetic factors that interfere with neuronal differentiation may contribute to a chronic increase in nociceptive sensitivity, by extending the immature, hyperexcitable stage of spinal cord neurons. Although adult rodent spinal cord neurogenesis was previously demonstrated, the fate of these progenitor cells is unknown. Here, we show that peripheral nerve injury in adult rats induces extensive spinal cord neurogenesis and a long-term increase in the number of spinal cord laminae I–II neurons ipsilateral to injury. The production and maturation of these new neurons correlates with the time course and modulation of nociceptive behaviour, and transiently mimics the cellular and behavioural conditions present in genetically modified animal models of chronic pain. This suggests that the number of immature neurons present at any time in the spinal cord dorsal horns contributes to the regulation of nociceptive sensitivity. The continuous turnover of these neurons, which can fluctuate between normal and injured states, is a dynamic regulator of nociceptive sensitivity. In support of this hypothesis, we find that promoters of neuronal differentiation inhibit, while promoters of neurogenesis increase long-term nociception. TrkB agonists, well-known promoters of nociception in the short-term, significantly inhibit long-term nociception by promoting the differentiation of newly produced immature neurons. These findings suggest that promoters of neuronal differentiation may be used to alleviate chronic pain. PMID:26223362

  3. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T.

    PubMed

    Schulte, Laura H; Sprenger, Christian; May, Arne

    2016-01-01

    The brainstem is a major site of processing and modulation of nociceptive input and plays a key role in the pathophysiology of various headache disorders. However, human imaging studies on brainstem function following trigeminal nociceptive stimulation are scarce as brainstem specific imaging approaches have to address multiple challenges such as magnetic field inhomogeneities and an enhanced level of physiological noise. In this study we used a viable protocol for brainstem fMRI of standardized trigeminal nociceptive stimulation to achieve detailed insight into physiological brainstem mechanisms of trigeminal nociception. We conducted a study of 21 healthy participants using a nociceptive ammonia stimulation of the left nasal mucosa with an optimized MR acquisition protocol for high resolution brainstem echoplanar imaging in combination with two different noise correction techniques. Significant BOLD responses to noxious ammonia stimulation were observed in areas typically involved in trigeminal nociceptive processing such as the spinal trigeminal nuclei (sTN), thalamus, secondary somatosensory cortex, insular cortex and cerebellum as well as in a pain modulating network including the periaqueductal gray area, hypothalamus (HT), locus coeruleus and cuneiform nucleus (CNF). Activations of the left CNF were positively correlated with pain intensity ratings. Employing psychophysiological interaction (PPI) analysis we found enhanced functional connectivity of the sTN with the contralateral sTN and HT following trigeminal nociception. We also observed enhanced functional connectivity of the CNF with the RVM during painful stimulation thus implying an important role of these two brainstem regions in central pain processing. The chosen approach to study trigeminal nociception with high-resolution fMRI offers new insight into human pain processing and might thus lead to a better understanding of headache pathophysiology. PMID:26388554

  4. Pain hypersensitivity and spinal nociceptive hypersensitivity in chronic pain: prevalence and associated factors.

    PubMed

    Curatolo, Michele; Müller, Monika; Ashraf, Aroosiah; Neziri, Alban Y; Streitberger, Konrad; Andersen, Ole K; Arendt-Nielsen, Lars

    2015-11-01

    Hypersensitivity of pain pathways is considered a relevant determinant of symptoms in chronic pain patients, but data on its prevalence are very limited. To our knowledge, no data on the prevalence of spinal nociceptive hypersensitivity are available. We studied the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity in 961 consecutive patients with various chronic pain conditions. Pain threshold and nociceptive withdrawal reflex threshold to electrical stimulation were used to assess pain hypersensitivity and spinal nociceptive hypersensitivity, respectively. Using 10th percentile cutoff of previously determined reference values, the prevalence of pain hypersensitivity and spinal nociceptive hypersensitivity (95% confidence interval) was 71.2 (68.3-74.0) and 80.0 (77.0-82.6), respectively. As a secondary aim, we analyzed demographic, psychosocial, and clinical characteristics as factors potentially associated with pain hypersensitivity and spinal nociceptive hypersensitivity using logistic regression models. Both hypersensitivity parameters were unaffected by most factors analyzed. Depression, catastrophizing, pain-related sleep interference, and average pain intensity were significantly associated with hypersensitivity. However, none of them was significant for both unadjusted and adjusted analyses. Furthermore, the odds ratios were very low, indicating modest quantitative impact. To our knowledge, this is the largest prevalence study on central hypersensitivity and the first one on the prevalence of spinal nociceptive hypersensitivity in chronic pain patients. The results revealed an impressively high prevalence, supporting a high clinical relevance of this phenomenon. Electrical pain thresholds and nociceptive withdrawal reflex explore aspects of pain processing that are mostly independent of sociodemographic, psychological, and clinical pain-related characteristics. PMID:26172555

  5. Anti-nociceptive and anti-inflammatory activities of 4-[(1-phenyl-1H-pyrazol-4-yl) methyl] 1-piperazine carboxylic acid ethyl ester: A new piperazine derivative.

    PubMed

    Silva, Daiany P B; Florentino, Iziara F; Oliveira, Lanussy P; Lino, Roberta C; Galdino, Pablinny M; Menegatti, Ricardo; Costa, Elson A

    2015-10-01

    Piperazine compounds possess anti-infective, anti-carcinogenic, anxiolytic, hypotensive, anti-hypertensive and vasorelaxant properties and are attractive candidates for the development of new analgesic and anti-inflammatory drugs. This study investigates the anti-nociceptive and anti-inflammatory effects of piperazine derivative 4-[(1-phenyl-1H-pyrazol-4-yl) methyl]1-piperazine carboxylic acid ethyl ester (LQFM-008) and the involvement of the serotonergic pathway. In the formalin test, treatments with LQFM-008 (15 and 30mg/kg p.o.) reduced the licking time in both neurogenic and inflammatory phases of this test. In the tail flick and hot plate tests, LQFM008 treatment (15 and 30mg/kg p.o.) increased latency to thermal stimulus, suggesting the involvement of central mechanisms in the anti-nociceptive effect of LQFM-008. In the carrageenan-induced paw edema test, LQFM-008 (p.o.) at the doses of 15 and 30mg/kg reduced the edema at all tested time points, while the dose of 7.5mg/kg reduced the edema only for the first hour. LQFM-008 (30mg/kg p.o.) reduced both cell migration and protein exudation in the carrageenan-induced pleurisy test. Furthermore, pre-treatment with NAN-190 (0.6mg/kgi.p.) and PCPA (100mg/kgi.p.) antagonized the anti-nociceptive effect of LQFM-008 in both phases of the formalin test. Our data suggest that LQFM-008 possesses anti-inflammatory and anti-nociceptive effects mediated through the serotonergic pathway. PMID:26276732

  6. Stimulus-dependent refractoriness in the Frankenhaeuser-Huxley model.

    PubMed

    Morse, R P; Allingham, D; Stocks, N G

    2015-10-01

    Phenomenological neural models, such as the leaky integrate-and-fire model, normally have a fixed refractory time-course that is independent of the stimulus. The recovery of threshold following an action potential is typically based on physiological experiments that use a two-pulse paradigm in which the first pulse is suprathreshold and causes excitation and the second pulse is used to determine the threshold at various intervals following the first. In such experiments, the nerve is completely unstimulated between the two pulses. This contrasts the receptor stimuli in normal physiological systems and the electrical stimuli used by cochlear implants and other neural prostheses. A numerical study of the Frankenhaeuser-Huxley conductance-based model of nerve fibre was therefore undertaken to investigate the effect of stimulation on refractoriness. We found that the application of a depolarizing stimulus during the later part of what is classically regarded as the absolute refractory period could effectively prolong the absolute refractory period, while leaving the refractory time-constants and other refractory parameters largely unaffected. Indeed, long depolarizing pulses, which would have been suprathreshold if presented to a resting nerve fibre, appeared to block excitation indefinitely. Stimulation during what is classically regarded as the absolute refractory period can therefore greatly affect the temporal response of a nerve. We conclude that the classical definition of absolute refractory period should be refined to include only the initial period following an action potential when an ongoing stimulus would not affect threshold; this period was found to be about half as long as the classical absolute refractory period. We further conclude that the stimulus-dependent nature of the relative refractory period must be considered when developing a phenomenological nerve model for complex stimuli. PMID:26187096

  7. Administration of somatostatin analog octreotide in the ventrolateral orbital cortex produces sex-related antinociceptive effects on acute and formalin-induced nociceptive behavior in rats.

    PubMed

    Qu, Chao-Ling; Dang, Yong-Hui; Tang, Jing-Shi

    2015-08-01

    The present study was designed to examine whether somatostatin analog octreotide (OCT) was involved in antinociception in the ventrolateral orbital cortex (VLO) and determine whether this effect had a sex difference between male and female rats. The radiant heat-evoked tail flick (TF) reflex was used as an index of acute nociceptive response in lightly anesthetized rats. The number of flinches evoked by formalin injection into the hindpaw was used to evaluate inflammatory persistent pain in conscious rats. Administration of OCT (2.0, 5.0 10.0 ng in 0.5 µl) into the VLO depressed the TF reflex in a dose-dependent manner only in female rats, but not male rats. Pretreatment with a nonselective somatostatin receptor antagonist cyclo-somatostatin (c-SOM) (25.0 µg in 0.5 µl) into the VLO antagonized 10.0 ng OCT-induced inhibition of the TF reflex in female rats. Similarly, application of high dose of OCT (10.0 ng in 0.5 µl) into the VLO depressed formalin-induced flinching response in the early and late phases only in female rats, and had no any effects in male rats. Pretreatment with c-SOM (25.0 µg in 0.5 µl) into the VLO totally antagonized the 10 ng OCT-induced inhibition of the flinches in both phases in female rats. Additionally, single administration of c-SOM into the VLO failed to alter tail reflex latencies and formalin-induced nociceptive behaviors in female rats. The results provide the first valuable evidence that somatostatin and its receptors are involved in antinociception in acute heat-evoked nociception and inflammatory persistent pain only in female rats, not male rats, in the VLO. PMID:26055971

  8. Age-Dependent Changes in the Inflammatory Nociceptive Behavior of Mice

    PubMed Central

    King-Himmelreich, Tanya S.; Möser, Christine V.; Wolters, Miriam C.; Olbrich, Katrin; Geisslinger, Gerd; Niederberger, Ellen

    2015-01-01

    The processing of pain undergoes several changes in aging that affect sensory nociceptive fibers and the endogenous neuronal inhibitory systems. So far, it is not completely clear whether age-induced modifications are associated with an increase or decrease in pain perception. In this study, we assessed the impact of age on inflammatory nociception in mice and the role of the hormonal inhibitory systems in this context. We investigated the nociceptive behavior of 12-month-old versus 6–8-week-old mice in two behavioral models of inflammatory nociception. Levels of TRP channels, and cortisol as well as cortisol targets, were measured by qPCR, ELISA, and Western blot in the differently aged mice. We observed an age-related reduction in nociceptive behavior during inflammation as well as a higher level of cortisol in the spinal cord of aged mice compared to young mice, while TRP channels were not reduced. Among potential cortisol targets, the NF-κB inhibitor protein alpha (IκBα) was increased, which might contribute to inhibition of NF-κB and a decreased expression and activity of the inducible nitric oxide synthase (iNOS). In conclusion, our results reveal a reduced nociceptive response in aged mice, which might be at least partially mediated by an augmented inflammation-induced increase in the hormonal inhibitory system involving cortisol. PMID:26593904

  9. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain

    PubMed Central

    Zambelli, Vanessa O.; Gross, Eric R.; Chen, Che-Hong; Gutierrez, Vanessa P.; Cury, Yara; Mochly-Rosen, Daria

    2014-01-01

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase 2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R2=0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than wild-type mice. Finally, Alda-1 treatment was also beneficial when given even after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians’ apparent lower pain tolerance. PMID:25163478

  10. Ethyl pyruvate attenuates formalin-induced inflammatory nociception by inhibiting neuronal ERK phosphorylation

    PubMed Central

    2012-01-01

    Background Ethyl pyruvate (EP) possesses anti-inflammatory activity. However, the potential anti-nociceptive value of EP for the treatment of the inflammatory nociception is largely unknown. We investigated whether EP could have any anti-nociceptive effect on inflammatory pain, after systemic administration of EP (10, 50, and 100 mg/kg, i.p.), 1 hour before formalin (5%, 50 μl) injection into the plantar surface of the hind paws of rats. Results EP significantly decreased formalin-induced nociceptive behavior during phase II, the magnitude of paw edema, and the activation of c-Fos in L4-L5 spinal dorsal horn. EP also attenuated the phosphorylation of extracellular signal-regulated kinase (ERK) in the neurons of L4-L5 spinal dorsal horn after formalin injection. Interestingly, the i.t. administration of PD98059, an ERK upstream kinase (MEK) inhibitor, completely blocked the formalin-induced inflammatory nociceptive responses. Conclusions These results demonstrate that EP may effectively inhibit formalin-induced inflammatory nociception via the inhibition of neuronal ERK phosphorylation in the spinal dorsal horn, indicating its therapeutic potential in suppressing acute inflammatory pain. PMID:22640699

  11. Antinociceptive Effects of Prim-O-Glucosylcimifugin in Inflammatory Nociception via Reducing Spinal COX-2.

    PubMed

    Wu, Liu-Qing; Li, Yu; Li, Yuan-Yan; Xu, Shi-Hao; Yang, Zong-Yong; Lin, Zheng; Li, Jun

    2016-07-01

    We measured anti-nociceptive activity of prim-o-glucosylcimifugin (POG), a molecule from Saposhnikovia divaricate (Turcz) Schischk. Anti-nociceptive or anti-inflammatory effects of POG on a formalin-induced tonic nociceptive response and a complete Freund's adjuvant (CFA) inoculation-induced rat arthritis pain model were studied. Single subcutaneous injections of POG produced potent anti-nociception in both models that was comparable to indomethacin analgesia. Anti-nociceptive activity of POG was dose-dependent, maximally reducing pain 56.6% with an ED50 of 1.6 mg. Rats given POG over time did not develop tolerance. POG also time-dependently reduced serum TNFα, IL-1β and IL-6 in arthritic rats and both POG and indomethacin reduced spinal prostaglandin E2 (PGE2). Like indomethacin which inhibits cyclooxygenase-2 (COX-2) activity, POG dose-dependently decreased spinal COX-2 content in arthritic rats. Additionally, POG, and its metabolite cimifugin, downregulated COX-2 expression in vitro. Thus, POG produced potent anti-nociception by downregulating spinal COX-2 expression. PMID:27257008

  12. Antinociceptive Effects of Prim-O-Glucosylcimifugin in Inflammatory Nociception via Reducing Spinal COX-2

    PubMed Central

    Wu, Liu-Qing; Li, Yu; Li, Yuan-Yan; Xu, Shi-hao; Yang, Zong-Yong; Lin, Zheng; Li, Jun

    2016-01-01

    We measured anti-nociceptive activity of prim-o-glucosylcimifugin (POG), a molecule from Saposhnikovia divaricate (Turcz) Schischk. Anti-nociceptive or anti-inflammatory effects of POG on a formalin-induced tonic nociceptive response and a complete Freund’s adjuvant (CFA) inoculation-induced rat arthritis pain model were studied. Single subcutaneous injections of POG produced potent anti-nociception in both models that was comparable to indomethacin analgesia. Anti-nociceptive activity of POG was dose-dependent, maximally reducing pain 56.6% with an ED50 of 1.6 mg. Rats given POG over time did not develop tolerance. POG also time-dependently reduced serum TNFα, IL-1β and IL-6 in arthritic rats and both POG and indomethacin reduced spinal prostaglandin E2 (PGE2). Like indomethacin which inhibits cyclooxygenase-2 (COX-2) activity, POG dose-dependently decreased spinal COX-2 content in arthritic rats. Additionally, POG, and its metabolite cimifugin, downregulated COX-2 expression in vitro. Thus, POG produced potent anti-nociception by downregulating spinal COX-2 expression. PMID:27257008

  13. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids

    PubMed Central

    Ringel, Amit; Majchrzak-Hong, Sharon F; Yang, Jun; Blanchard, Helene; Zamora, Daisy; Loewke, James D; Rapoport, Stanley I; Hibbeln, Joseph R; Davis, John M; Hammock, Bruce D; Taha, Ameer Y

    2016-01-01

    Background Chronic idiopathic pain syndromes are major causes of personal suffering, disability, and societal expense. Dietary n-6 linoleic acid has increased markedly in modern industrialized populations over the past century. These high amounts of linoleic acid could hypothetically predispose to physical pain by increasing the production of pro-nociceptive linoleic acid-derived lipid autacoids and by interfering with the production of anti-nociceptive lipid autacoids derived from n-3 fatty acids. Here, we used a rat model to determine the effect of increasing dietary linoleic acid as a controlled variable for 15 weeks on nociceptive lipid autacoids and their precursor n-6 and n-3 fatty acids in tissues associated with idiopathic pain syndromes. Results Increasing dietary linoleic acid markedly increased the abundance of linoleic acid and its pro-nociceptive derivatives and reduced the abundance of n-3 eicosapentaenoic acid and docosahexaenoic acid and their anti-nociceptive monoepoxide derivatives. Diet-induced changes occurred in a tissue-specific manner, with marked alterations of nociceptive lipid autacoids in both peripheral and central tissues, and the most pronounced changes in their fatty acid precursors in peripheral tissues. Conclusions The present findings provide biochemical support for the hypothesis that the high linoleic acid content of modern industrialized diets may create a biochemical susceptibility to develop chronic pain. Dietary linoleic acid lowering should be further investigated as part of an integrative strategy for the prevention and management of idiopathic pain syndromes. PMID:27030719

  14. The inhibitory effect of locally injected dexmedetomidine on carrageenan-induced nociception in rats.

    PubMed

    Honda, Yuka; Higuchi, Hitoshi; Matsuoka, Yoshikazu; Yabuki-Kawase, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Morimatsu, Hiroshi; Miyawaki, Takuya

    2015-10-01

    Recent studies showed that the administration of dexmedetomidine relieved hyperalgesia in the presence of neuropathic pain. These findings have led to the hypothesis that the local administration of dexmedetomidine is useful for relieving acute inflammatory nociception, such as postoperative pain. Thus, we evaluated the inhibitory effect of locally injected dexmedetomidine on acute inflammatory nociception. Acute inflammatory nociception was induced by an intraplantar injection of 1% carrageenan into the hindpaws of rats, and dexmedetomidine was also injected combined with carrageenan. The paw withdrawal threshold based on von Frey filament stimulation was measured until 12 h after injection. We compared the area under the time-curve (AUC) between carrageenan and carrageenan with dexmedetomidine. To clarify that the action of dexmedetomidine was via α2-adrenoceptors, we evaluated the effect of yohimbine, a selective antagonist of α2-adrenoceptors, on the anti-nociception of dexmedetomidine. As the results, the intraplantar injection of carrageenan with over 10 μM dexmedetomidine significantly increased AUC, compared to that with only carrageenan injection. This effect of dexmedetomidine was reversed by the addition of yohimbine to carrageenan and dexmedetomidine. These results demonstrated that the locally injected dexmedetomidine was effective against carrageenan-induced inflammatory nociception via α2-adrenoceptors. The findings suggest that the local injection of dexmedetomidine is useful for relieving local acute inflammatory nociception. PMID:26160316

  15. Development of a canine nociceptive thermal escape model.

    PubMed

    Wegner, Kirsten; Horais, Kjersti A; Tozier, Nicolle A; Rathbun, Michael L; Shtaerman, Yuri; Yaksh, Tony L

    2008-02-15

    Acute nociceptive models which have been validated for large animal species are limited, yet nociceptive assessment in non-rodent species is important in analgesic drug development where larger animals may be necessary because of the technical requirements of the study. Here we report development and validation of a canine hind paw thermal escape model and the effect of analgesics on withdrawal latencies. Individual focused projection bulbs were used as left and right voltage-adjusted thermal stimuli placed below a glass plate in a specifically designed canine holding apparatus. After acclimation, dogs were lightly restrained in a fabric sling while standing on the glass plate. The anterior center of the metatarsal pad of the left and right hind paw was positioned on the glass over each light, and duration of stimulation tolerance timed. For every trial, the escape latency from lamp actuation to paw withdrawal was recorded twice for each hind paw. The mean population baseline withdrawal latency of 9.3+/-1.7s (mean+/-S.D., n=12 dogs) was shown to be repeatable between paws, within and between individual animals, and between test days. This latency corresponded to a glass surface temperature of 49.5 degrees C. A cut-off time of 20s (corresponding to a glass surface temperature of 56.5 degrees C) was set to prevent tissue damage. Intravenous administration (mg/kg) of morphine (1.0), hydromorphone (0.2), butorphanol (0.4), fentanyl (0.01), and dexmedetomidine (0.01) significantly (p<0.05) increased withdrawal latency from baseline within 15-30 min of administration while buprenorphine (0.03) produced a delayed, modest but significant latency increase. Rank order of opioid analgesic duration was morphine=hydromorphone>butorphanol>bupenorphine>fentanyl=saline. A dose-effect curve for hydromorphone was generated and corresponded to previously described dose-effect relationships in other species. The non-analgesic tranquilizer acepromazine (0.1mg/kg) produced mild sedation

  16. Adaptive stimulus optimization for sensory systems neuroscience

    PubMed Central

    DiMattina, Christopher; Zhang, Kechen

    2013-01-01

    In this paper, we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical optimal stimulus paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the iso-response paradigm which finds sets of stimuli giving rise to constant responses, and the system identification paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of non-linear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify non-linear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and toward a new paradigm of real-time model estimation and comparison. PMID:23761737

  17. Continuous- and Discrete-Time Stimulus Sequences for High Stimulus Rate Paradigm in Evoked Potential Studies

    PubMed Central

    Wang, Tao; Huang, Jiang-hua; Lin, Lin

    2013-01-01

    To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm. PMID:23606900

  18. Peripheral nerve injury induces loss of nociceptive neuron-specific Gαi-interacting protein in neuropathic pain rat

    PubMed Central

    Liu, Zhen; Wang, Fei; Fischer, Gregory; Hogan, Quinn H.

    2016-01-01

    Background Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Results Immunolabeling with validated antibody revealed GINIP expression in ∼40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ∼80% of IB4-positive (nonpeptidergic) and ∼30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Conclusion Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain. PMID:27145804

  19. Keratinocytes can modulate and directly initiate nociceptive responses

    PubMed Central

    Baumbauer, Kyle M; DeBerry, Jennifer J; Adelman, Peter C; Miller, Richard H; Hachisuka, Junichi; Lee, Kuan Hsien; Ross, Sarah E; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2015-01-01

    How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. DOI: http://dx.doi.org/10.7554/eLife.09674.001 PMID:26329459

  20. Acute and chronic treatment with selective serotonin uptake inhibitors in mice: effects on nociceptive sensitivity and response to 5-methoxy-N,N-dimethyltryptamine.

    PubMed

    Eide, P K; Hole, K

    1988-03-01

    The tail-flick and increasing temperature hot-plate tests were employed to study the effects of acute or chronic treatment with zimelidine, alaproclate or chlorimipramine on nociception and response to 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) in mice. A single dose of the serotonin (5-HT) uptake inhibitors produced antinociception in the hot-plate test but not in the tail-flick test. After chronic administration, reduced tail-flick latencies were demonstrated 24, 48, 72 and 144 h after withdrawal of zimelidine treatment, 48 h after withdrawal of alaproclate and 48 and 96 h after withdrawal of chlorimipramine treatment. The hot-plate response temperatures were slightly lowered after chronic zimelidine treatment but not after treatment with alaproclate or chlorimipramine. The response to 5-MeODMT was not altered by a single dose of the 5-HT uptake inhibitors, however, after withdrawal of chronic treatment this response was increased in the tail-flick test but not in the hot-plate test. It was concluded that acute and chronic treatment with 5-HT uptake inhibitors modulate nociception differently, and that chronic treatment induces supersensitivity of spinal postsynaptic 5-HT receptors. Different modulation of different 5-HT receptor subpopulations by these compounds may possibly contribute to the test-dependent results. PMID:2966334

  1. Pharmacologic characterization of a nicotine-discriminative stimulus in rhesus monkeys.

    PubMed

    Cunningham, Colin S; Javors, Martin A; McMahon, Lance R

    2012-06-01

    This study examined mechanisms by which nicotine (1.78 mg/kg base s.c.) produces discriminative stimulus effects in rhesus monkeys. In addition to nicotine, various test compounds were studied including other nicotinic acetylcholine receptor agonists (varenicline and cytisine), antagonists [mecamylamine and the α4β2 receptor-selective antagonist dihydro-β-erythroidine (DHβE)], a nicotinic acetylcholine receptor antagonist/indirect-acting catecholamine agonist (bupropion), and non-nicotinics (cocaine and midazolam). Nicotine, varenicline, and cytisine dose-dependently increased drug-lever responding; the ED(50) values were 0.47, 0.53, and 39 mg/kg, respectively. Bupropion and cocaine produced 100% nicotine-lever responding in a subset of monkeys, whereas mecamylamine, DHβE, and midazolam produced predominantly vehicle-lever responding. The training dose of nicotine resulted in 1128 ng/ml cotinine in saliva. Mecamylamine antagonized the discriminative stimulus effects of nicotine and varenicline, whereas DHβE was much less effective. Nicotine and varenicline had synergistic discriminative stimulus effects. In monkeys responding predominantly on the vehicle lever after a test compound (bupropion, cocaine, and midazolam), that test compound blocked the nicotine-discriminative stimulus, perhaps reflecting a perceptual-masking phenomenon. These results show that nicotine, varenicline, and cytisine produce discriminative stimulus effects through mecamylamine-sensitive receptors (i.e., nicotinic acetylcholine) in primates, whereas the involvement of DHβE-sensitive receptors (i.e., α4β2) is unclear. The current nicotine-discrimination assay did not detect a difference in agonist efficacy between nicotine, varenicline, and cytisine, but did show evidence of involvement of dopamine. The control that nicotine has over choice behavior can be disrupted by non-nicotinic compounds, suggesting that non-nicotinics could be exploited to decrease the control that tobacco has

  2. Effects of within-stimulus and extra-stimulus prompting on discrimination learning in autistic children.

    PubMed Central

    Schreibman, L

    1975-01-01

    Two different prompting procedures to teach visual and auditory discriminations to autistic children were compared. The first involved presenting an added cue as an extra-stimulus prompt. This required the child to respond to both prompt and training stimulus. The second involved the use of a within-stimulus prompt. This consisted of an exaggeration of the relevant component of the training stimulus and thus did not require that the child respond to multiple cues. The results indicated that (1) children usually failed to learn the discriminations without a prompt, (2) children always failed to learn when the extra-stimulus prompt was employed but usually did learn with the within-stimulus prompt, and (3) these findings were independent of which modality (auditory or visual) was required for the discrimination. PMID:1141084

  3. Single stimulus learning in zebrafish larvae.

    PubMed

    O'Neale, Ashley; Ellis, Joseph; Creton, Robbert; Colwill, Ruth M

    2014-02-01

    Learning about a moving visual stimulus was examined in zebrafish larvae using an automated imaging system and a t1-t2 design. In three experiments, zebrafish larvae were exposed to one of two inputs at t1 (either a gray bouncing disk or an identical but stationary disk) followed by a common test at t2 (the gray bouncing disk). Using 7days post-fertilization (dpf) larvae and 12 stimulus exposures, Experiment 1 established that these different treatments produced differential responding to the moving disk during testing. Larvae familiar with the moving test stimulus were significantly less likely to be still in its presence than larvae that had been exposed to the identical but stationary stimulus. Experiment 2 confirmed this result in 7dpf larvae and extended the finding to 5 and 6dpf larvae. Experiment 3 found differential responding to the moving test stimulus with 4 or 8 stimulus exposures but not with just one exposure in 7dpf larvae. These results provide evidence for learning in very young zebrafish larvae. The merits and challenges of the t1-t2 framework to study learning are discussed. PMID:24012906

  4. Evaluation of mechanical and thermal nociception as objective tools to measure painful and nonpainful lameness phases in multiparous sows.

    PubMed

    Mohling, C M; Johnson, A K; Coetzee, J F; Karriker, L A; Stalder, K J; Abell, C E; Tyler, H D; Millman, S T

    2014-07-01

    The objective of this study was to quantify pain sensitivity differences using mechanical nociception threshold (MNT) and thermal nociception threshold (TNT) tests when sows were in painful and nonpainful transient lameness phases. A total of 24 mixed parity crossbred sows (220.15 ± 21.23 kg) were utilized for the MNT test, and a total of 12 sows (211.41 ± 20.21 kg) were utilized for the TNT test. On induction day (D0), all sows were anesthetized and injected with Amphotericin B (10mg/mL) in the distal interphalangeal joint space in both claws of one randomly selected hind limb to induce transient lameness. Three days were compared: (1) D-1 (sound phase, defined as 1 d before induction), (2) D+1 (most lame phase, defined as 1 d after induction), and (3) D+6 (resolution phase, defined as 6 d after induction). After completion of the first round, sows were given a 7-d rest period and then the procedures were repeated with lameness induced in the contralateral hind limb. During the MNT test, pressure was applied perpendicularly to 3 landmarks in a randomized sequence for each sow: 1) middle of cannon on the hind limb (cannon), 2) 1 cm above the coronary band on the medial hind claw (medial claw), and 3) 1 cm above the coronary band on the lateral hind claw (lateral claw). During the TNT test, a radiant heat stimulus was directed 1 cm above the coronary band. The data were analyzed using the MIXED procedure in SAS with sow as the experimental unit. Differences were analyzed between sound and lame limbs on each day. For the MNT test, pressure tolerated by the lame limb decreased for every landmark (P < 0.05) when comparing D-1 and D+1. The sound limb tolerated more pressure on D+1 and D+6 than on baseline D-1 (P < 0.05). Thermal stimulation tolerated by the sound limb did not change over the 3 d (P > 0.05). However, the sows tolerated less heat stimulation on their lame limb on D+1 compared to D-1 levels (P < 0.05). Both MNT and TNT tests indicated greater pain

  5. BAM8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release.

    PubMed

    Sikand, Parul; Dong, Xinzhong; LaMotte, Robert H

    2011-05-18

    Chronic itch accompanying many dermatological, neurological, and systemic diseases is unresponsive to antihistamines. Our knowledge of endogenous chemicals that evoke histamine-independent itch and their molecular targets is very limited. Recently it was demonstrated in behavioral and cellular experiments that bovine adrenal medulla 8-22 peptide (BAM8-22), a proteolytically cleaved product of proenkephalin A, is a potent activator of Mas-related G-protein-coupled receptors (Mrgprs), MrgprC11 and hMrgprX1, and induces scratching in mice in an Mrgpr-dependent manner. To study the sensory qualities that BAM8-22 evokes in humans, we tested the volar forearm of 15 healthy volunteers with heat-inactivated cowhage spicules previously soaked in the peptide. BAM8-22 produced itch in each subject, usually accompanied by sensations of pricking/stinging and burning. The sensations were occasionally accompanied by one or more mechanically evoked dysesthesias, namely alloknesis, hyperknesis, and/or hyperalgesia, but no wheal or neurogenic flare in the skin surrounding the application site. The inactive truncated peptide BAM8-18 produced weak or no sensations. Pretreatment of the tested skin with an antihistamine cream (doxepin) inhibited histamine-induced sensations, dysesthesias, and skin reactions but not the sensations and dysesthesias evoked by BAM8-22. We show that BAM8-22 produces itch and nociceptive sensations in humans in a histamine-independent manner. Thus, BAM8-22 may be an endogenous itch mediator that activates, in humans, MrgprX1, a novel target for potential anti-itch treatments. PMID:21593341

  6. BAM8–22 peptide produces itch and nociceptive sensations in humans independent of histamine release

    PubMed Central

    Sikand, Parul; Dong, Xinzhong; LaMotte, Robert H.

    2011-01-01

    Chronic itch accompanying many dermatological, neurological and systemic diseases is unresponsive to antihistamines. Our knowledge of endogenous chemicals that evoke histamine-independent itch and their molecular targets is very limited. Recently it was demonstrated in behavioral and cellular experiments that bovine adrenal medulla 8–22 peptide (BAM8–22), a proteolytically cleaved product of proenkephalin A, is a potent activator of Mas-related G protein-coupled receptors (Mrgprs), MrgprC11 and hMrgprX1, and induces scratching in mice in a Mrgpr-dependent manner. To study the sensory qualities that BAM8–22 evokes in humans we tested the volar forearm of 15 healthy volunteers with heat-inactivated cowhage spicules previously soaked in the peptide. BAM8–22 produced itch in each subject, usually accompanied by sensations of pricking/stinging and burning. The sensations were occasionally accompanied by one or more mechanically evoked dysesthesias, namely alloknesis, hyperknesis, and hyperalgesia, but no wheal or neurogenic flare in the skin surrounding the application site. The inactive truncated peptide BAM8–18 produced weak or no sensations. Pretreatment of the tested skin with an antihistamine cream (doxepin) inhibited the histamine-induced sensations, dysesthesias and skin reactions but not the sensations and dysesthesias evoked by BAM8–22. We show that BAM8–22 produces itch and nociceptive sensations in humans in a histamine-independent manner. Thus, BAM8–22 may be an endogenous itch mediator that activates, in humans, MrgprX1, a novel target for potential anti-itch treatments. PMID:21593341

  7. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword

    PubMed Central

    Chen, Jun; Lariviere, William R.

    2010-01-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. PMID:20558236

  8. In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa.

    PubMed

    Yonathan, Mariamawit; Asres, Kaleab; Assefa, Ashenafi; Bucar, Franz

    2006-12-01

    In Ethiopia inflammatory skin diseases are among the most common health problems treated with traditional remedies which mainly comprise medicinal plants. In the present work, the anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa (Forsk.) Kaulf (Adianthaceae), a fern used in many parts of Ethiopia to treat inflammatory skin disorders, were studied using in vivo models of inflammation and pain. The results of the study showed that the fronds Cheilanthes farinosa possess strong anti-inflammatory and anti-nociceptive properties. It was further demonstrated that the active ingredients of the fern reside mainly in the methanol fraction from which three compounds viz. the flavonol glycoside rutin, and the natural cinnamic acids, caffeic acid and its quinic acid derivative chlorogenic acid have been isolated. The methanol extract was also shown to potentiate the anti-inflammatory activity of acetyl salicylic acid. At the tested concentrations, the methanol extract displayed a better anti-nociceptive activity than that of ASA in both the early and late phases of formalin induced nociception in mice. However, the activity of the extract was more pronounced in the late phase, which is commonly associated with inflammatory pain. Evaluation of the pharmacological properties of the compounds isolated from the active fractions pointed out that chlorogenic acid possesses strong anti-inflammatory and anti-nociceptive activities while caffeic acid and rutin were inactive. Moreover, on molar basis chlorogenic acid was proved to be superior in its anti-inflammatory action to acetyl salicylic acid. It was therefore concluded that chlorogenic acid contributes, in full or in part, to the anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa. Both the methanolic extract and pure chlorogenic acid failed to display anti-nociceptive activity when tested by the tail-flick test indicating that the plant is not a centrally acting analgesic but

  9. Occlusion for stimulus deprivation amblyopia

    PubMed Central

    Antonio-Santos, Aileen; Vedula, Satyanarayana S; Hatt, Sarah R; Powell, Christine

    2014-01-01

    Background Stimulus deprivation amblyopia (SDA) develops due to an obstruction to the passage of light secondary to a condition such as cataract. The obstruction prevents formation of a clear image on the retina. SDA can be resistant to treatment, leading to poor visual prognosis. SDA probably constitutes less than 3% of all amblyopia cases, although precise estimates of prevalence are unknown. In developed countries, most patients present under the age of one year; in less developed parts of the world patients are likely to be older at the time of presentation. The mainstay of treatment is removal of the cataract and then occlusion of the better-seeing eye, but regimens vary, can be difficult to execute, and traditionally are believed to lead to disappointing results. Objectives Our objective was to evaluate the effectiveness of occlusion therapy for SDA in an attempt to establish realistic treatment outcomes. Where data were available, we also planned to examine evidence of any dose response effect and to assess the effect of the duration, severity, and causative factor on the size and direction of the treatment effect. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to October 2013), EMBASE (January 1980 to October 2013), the Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to October 2013), PubMed (January 1946 to October 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 28 October 2013. Selection criteria We planned

  10. NMDA Receptor Agonism and Antagonism within the Amygdaloid Central Nucleus Suppresses Pain Affect: Differential Contribution of the Ventrolateral Periaqueductal Gray

    PubMed Central

    Spuz, Catherine A.; Tomaszycki, Michelle L.; Borszcz, George S.

    2015-01-01

    The amygdala contributes to the generation of pain affect and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study compared the contribution of N-methyl-D-aspartate (NMDA) receptor agonism and antagonism in CeA to generation of the affective response of rats to an acute noxious stimulus. Vocalizations that occur following a brief tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed, in a dose dependent manner, by bilateral injection into CeA of NMDA (.1 µg, .25 µg, .5 µg, or 1 µg/side), or the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 µg, 2 µg, or 4 µg/side). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of NMDA or AP5 into CeA. Injection of NMDA, but not AP5, into CeA increased c-Fos immunoreactivity in the ventrolateral periaqueductal gray (vlPAG), and unilateral injection of the µ-opiate receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP, 0.25 µg) into vlPAG prevented the antinociception generated by injection of NMDA into CeA. These findings demonstrate that although NMDA receptor agonism and antagonism in CeA produce similar suppression of pain behaviors they do so via different neurobiological mechanisms. Perspective The amygdala contributes to production of the emotional dimension of pain. NMDA receptor agonism and antagonism within the central nucleus of the amygdala suppressed rats’ emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders. PMID:25261341

  11. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome

    PubMed Central

    Diedrichs, Carolina; Baron, Ralf; Gierthmühlen, Janne

    2016-01-01

    Background Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion. Objective Aims were to investigate how sensory, autonomic and motor function change in the course of the disease. Methods 19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later). Results CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain. Conclusions The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability. PMID:27149519

  12. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  13. Consequences of altered eicosanoid patterns for nociceptive processing in mPGES-1-deficient mice.

    PubMed

    Brenneis, Christian; Coste, Ovidiu; Schmidt, Ronald; Angioni, Carlo; Popp, Laura; Nusing, Rolf M; Becker, Wiebke; Scholich, Klaus; Geisslinger, Gerd

    2008-04-01

    Cyclooxygenase-2 (COX-2)-dependent prostaglandin (PG) E(2) synthesis in the spinal cord plays a major role in the development of inflammatory hyperalgesia and allodynia. Microsomal PGE(2) synthase-1 (mPGES-1) isomerizes COX-2-derived PGH(2) to PGE(2). Here, we evaluated the effect of mPGES-1-deficiency on the nociceptive behavior in various models of nociception that depend on PGE(2) synthesis. Surprisingly, in the COX-2-dependent zymosan-evoked hyperalgesia model, the nociceptive behavior was not reduced in mPGES-1-deficient mice despite a marked decrease of the spinal PGE(2) synthesis. Similarly, the nociceptive behavior was unaltered in mPGES-1-deficient mice in the formalin test. Importantly, spinal cords and primary spinal cord cells derived from mPGES-1-deficient mice showed a redirection of the PGE(2) synthesis to PGD(2), PGF(2alpha) and 6-keto-PGF(1alpha) (stable metabolite of PGI(2)). Since the latter prostaglandins serve also as mediators of nociception they may compensate the loss of PGE(2) synthesis in mPGES-1-deficient mice. PMID:18419601

  14. Thalamic Responses to Nociceptive-Specific Input in Humans: Functional Dichotomies and Thalamo-Cortical Connectivity.

    PubMed

    Bastuji, Hélène; Frot, Maud; Mazza, Stéphanie; Perchet, Caroline; Magnin, Michel; Garcia-Larrea, Luis

    2016-06-01

    While nociceptive cortical activation is now well characterized in humans, understanding of the nociceptive thalamus remains largely fragmentary. We used laser stimuli and intracerebral electrodes in 17 human subjects to record nociceptive-specific field responses in 4 human thalamic nuclei and a number of cortical areas. Three nuclei known to receive spinothalamic (STT) projections in primates (ventro-postero-lateral [VPL], anterior pulvinar [PuA], and central lateral [CL]) exhibited responses with similar latency, indicating their parallel activation by nociceptive afferents. Phase coherence analysis, however, revealed major differences in their functional connectivity: while VPL and PuA drove a limited set of cortical targets, CL activities were synchronized with a large network including temporal, parietal, and frontal areas. Our data suggest that STT afferents reach simultaneously a set of lateral and medial thalamic regions unconstrained by traditional nuclear borders. The broad pattern of associated cortical networks suggests that a single nociceptive volley is able to trigger the sensory, cognitive, and emotional activities that underlie the complex pain experience. The medial pulvinar, an associative nucleus devoid of STT input, exhibited delayed responses suggesting its dependence on descending cortico-thalamic projections. Its widespread cortical connectivity suggests a role in synchronizing parietal, temporal, and frontal activities, hence contributing to the access of noxious input to conscious awareness. PMID:25994963

  15. Simultaneous impairment of passive avoidance learning and nociception in rats following chronic swim stress

    PubMed Central

    Nazeri, Masoud; Shabani, Mohammad; Parsania, Shahrnaz; Golchin, Leila; Razavinasab, Moazamehosadat; Abareghi, Fatemeh; Kermani, Moein

    2016-01-01

    Background: Stress can alter response to nociception. Under certain circumstances stress enhances nociception, a phenomenon which is called stress-induced hyperalgesia (SIH). While nociception has been studied in this paradigm, possible alterations occurring in passive avoidance (PA) learning after exposing rats to this type of stress has not been studied before. Materials and Methods: In the current study, we evaluated the effect of chronic swim stress (FS) or sham swim (SS) on nociception in both spinal (tail-flick) and supraspinal (53.5°C hot-pate) levels. Furthermore, PA task was performed to see whether chronic swim stress changes PA learning or not. Mobility of rats and anxiety-like behavior were assessed using open-field test (OFT). Results: Supraspinal pain response was altered by swim stress (hot-plate test). PA learning was impaired by swim stress, rats in SS group did not show such impairments. Rats in the FS group showed increased mobility (rearing, velocity, total distant moved (TDM) and decreased anxiety-like behavior (time spent in center and grooming) compared to SS rats. Conclusions: This study demonstrated the simultaneous impairment of PA and nociception under chronic swim stress, whether this is simply a co-occurrence or not is of special interest. This finding may implicate a possible role for limbic structures, though this hypothesis should be studied by experimental lesions in different areas of rat brain to assess their possible role in the pathophysiology of SIH. PMID:27308265

  16. Oral manganese as an MRI contrast agent for the detection of nociceptive activity.

    PubMed

    Jacobs, Kathleen E; Behera, Deepak; Rosenberg, Jarrett; Gold, Garry; Moseley, Michael; Yeomans, David; Biswal, Sandip

    2012-04-01

    The ability of divalent manganese to enter neurons via calcium channels makes manganese an excellent MRI contrast agent for the imaging of nociception, the afferent neuronal encoding of pain perception. There is growing evidence that nociceptive neurons possess increased expression and activity of calcium channels, which would allow for the selective accumulation of manganese at these sites. In this study, we show that oral manganese chloride leads to increased enhancement of peripheral nerves involved in nociception on T(1)-weighted MRI. Oral rather than intravenous administration was chosen for its potentially better safety profile, making it a better candidate for clinical translation with important applications, such as pain diagnosis, therapy and research. The spared nerve injury (SNI) model of neuropathic pain was used for the purposes of this study. SNI rats were given, sequentially, increasing amounts of manganese chloride (lowest, 2.29 mg/100 g weight; highest, 20.6 mg/100 g weight) with alanine and vitamin D(3) by oral gavage. Compared with controls, SNI rats demonstrated increased signal-to-background ratios on T(1)-weighted fast spin echo MRI, which was confirmed by and correlated strongly with spectrometry measurements of nerve manganese concentration. We also found the difference between SNI and control rats to be greater at 48 h than at 24 h after dosing, indicating increased manganese retention in addition to increased manganese uptake in nociceptive nerves. This study demonstrates that oral manganese is a viable method for the imaging of nerves associated with increased nociceptive activity. PMID:22447731

  17. Role of thalamic nuclei in the modulation of Fos expression within the cerebral cortex during hypertonic saline-induced muscle nociception.

    PubMed

    Xiao, Y; Lei, J; Ye, G; Xu, H; You, H-J

    2015-09-24

    It has been proposed that thalamic mediodorsal (MD) and ventromedial (VM) nuclei form thalamic 'nociceptive discriminators' in discrimination of nociceptive afferents, and specifically govern endogenous descending facilitation and inhibition. The present study conducted in rats was to explore the role of thalamic MD and VM nuclei in modulation of cerebral neuronal activities by means of detection of spatiotemporal variations of Fos expression within the cerebral cortex. Following a unilateral intramuscular injection of 5.8% saline into the gastrocnemius muscle, Fos expression within the bilateral, different areas of the cerebral cortex except S2 was significantly increased (P<0.05). Particularly, the increases in Fos expression within the cingulate cortex and the insular cortex occurred at 0.5h, 4h and reached the peak level at 4h, 16h, respectively. Electrolytic lesion of the contralateral thalamic MD and VM nuclei significantly blocked the 5.8% saline intramuscularly induced increases in Fos expression within the bilateral cingulate and insular cortices, respectively. Additionally, the 5.8% saline-induced Fos expression in the cingulate cortex and the insular cortex were dose-dependently attenuated by microinjection of μ-opioid antagonist β-funaltrexamine hydrochloride into the thalamic MD and VM nuclei. It is suggested that (1) the neural circuits of 'thalamic MD nucleus - cingulate cortex' and 'thalamic VM nucleus - insular cortex' form two distinct pathways in the endogenous control of nociception, (2) mirror or contralateral pain is hypothesized to be related to cross-talk of neuronal activities within the bilateral cerebral cortices modulated by μ-opioid receptors within the thalamic MD and VM nuclei. PMID:26189794

  18. Antinociceptive Interactions between the Imidazoline I2 Receptor Agonist 2-BFI and Opioids in Rats: Role of Efficacy at the μ-Opioid Receptor.

    PubMed

    Siemian, Justin N; Obeng, Samuel; Zhang, Yan; Zhang, Yanan; Li, Jun-Xu

    2016-06-01

    Although μ-opioids have been reported to interact favorably with imidazoline I2 receptor (I2R) ligands in animal models of chronic pain, the dependence on the μ-opioid receptor ligand efficacy on these interactions had not been previously investigated. This study systematically examined the interactions between the selective I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) and three μ-opioid receptor ligands of varying efficacies: fentanyl (high efficacy), buprenorphine (medium-low efficacy), and 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl) acetamido] morphine (NAQ; very low efficacy). The von Frey test of mechanical nociception and Hargreaves test of thermal nociception were used to examine the antihyperalgesic effects of drug combinations in complete Freund's adjuvant-induced inflammatory pain in rats. Food-reinforced schedule-controlled responding was used to examine the rate-suppressing effects of each drug combination. Dose-addition and isobolographical analyses were used to characterize the nature of drug-drug interactions in each assay. 2-BFI and fentanyl fully reversed both mechanical and thermal nociception, whereas buprenorphine significantly reversed thermal but only slightly reversed mechanical nociception. NAQ was ineffective in both nociception assays. When studied in combination with fentanyl, NAQ acted as a competitive antagonist (apparent pA2 value: 6.19). 2-BFI/fentanyl mixtures produced additive to infra-additive analgesic interactions, 2-BFI/buprenorphine mixtures produced supra-additive to infra-additive interactions, and 2-BFI/NAQ mixtures produced supra-additive to additive interactions in the nociception assays. The effects of all combinations on schedule-controlled responding were generally additive. Results consistent with these were found in experiments using female rats. These findings indicate that lower-efficacy μ-opioid receptor agonists may interact more favorably with I2R

  19. A negative stimulus movement effect in pigeons.

    PubMed

    Daniel, Thomas A; Katz, Jeffrey S

    2016-09-01

    Rhesus monkeys and humans perform more accurately in matching-to-sample tasks when the sample stimulus moves through space (Washburn et al., 1989; Washburn, 1993). This Stimulus Movement Effect (SME) is believed to be due to movement increasing attention toward the sample stimulus, creating an easier discrimination between the sample and choice stimuli. To date, there is no evidence for this phenomenon in a non-mammalian species. In the current study, we investigate the possibility of an SME in an avian species. Across three experiments, pigeons were tested with moving and stationary sample stimuli in a non-matching- to-sample task. The area and velocity by which the sample stimulus traveled was manipulated but no advantage for moving over stationary sample trials was found within or across sessions. Even when a delay condition was implemented, there was no advantage for moving sample trials. Contrary to the results found in humans and monkeys, pigeons performed better when the sample was stationary, a negative SME, and no evidence was found that stimulus movement increases discrimination performance. PMID:27373975

  20. Sample Stimulus Control Shaping and Restricted Stimulus Control in Capuchin Monkeys: A Methodological Note

    ERIC Educational Resources Information Center

    Brino, Ana Leda F., Barros, Romariz S., Galvao, Ol; Garotti, M.; Da Cruz, Ilara R. N.; Santos, Jose R.; Dube, William V.; McIlvane, William J.

    2011-01-01

    This paper reports use of sample stimulus control shaping procedures to teach arbitrary matching-to-sample to 2 capuchin monkeys ("Cebus apella"). The procedures started with identity matching-to-sample. During shaping, stimulus features of the sample were altered gradually, rendering samples and comparisons increasingly physically dissimilar. The…

  1. Analyzing Stimulus-Stimulus Pairing Effects on Preferences for Speech Sounds

    ERIC Educational Resources Information Center

    Petursdottir, Anna Ingeborg; Carp, Charlotte L.; Matthies, Derek W.; Esch, Barbara E.

    2011-01-01

    Several studies have demonstrated effects of stimulus-stimulus pairing (SSP) on children's vocalizations, but numerous treatment failures have also been reported. The present study attempted to isolate procedural variables related to failures of SSP to condition speech sounds as reinforcers. Three boys diagnosed with autism-spectrum disorders…

  2. Emergent Stimulus Relations Depend on Stimulus Correlation and Not on Reinforcement Contingencies

    ERIC Educational Resources Information Center

    Minster, Sara Tepaeru; Elliffe, Douglas; Muthukumaraswamy, Suresh D.

    2011-01-01

    We aimed to investigate whether novel stimulus relations would emerge from stimulus correlations when those relations explicitly conflicted with reinforced relations. In a symbolic matching-to-sample task using kanji characters as stimuli, we arranged class-specific incorrect comparison stimuli in each of three classes. After presenting either Ax…

  3. Regulation of Nociceptive Plasticity Threshold and DARPP-32 Phosphorylation in Spinal Dorsal Horn Neurons by Convergent Dopamine and Glutamate Inputs.

    PubMed

    Buesa, Itsaso; Aira, Zigor; Azkue, Jon Jatsu

    2016-01-01

    Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation. PMID:27610622

  4. Stimulus design for model selection and validation in cell signaling.

    PubMed

    Apgar, Joshua F; Toettcher, Jared E; Endy, Drew; White, Forest M; Tidor, Bruce

    2008-02-01

    Mechanism-based chemical kinetic models are increasingly being used to describe biological signaling. Such models serve to encapsulate current understanding of pathways and to enable insight into complex biological processes. One challenge in model development is that, with limited experimental data, multiple models can be consistent with known mechanisms and existing data. Here, we address the problem of model ambiguity by providing a method for designing dynamic stimuli that, in stimulus-response experiments, distinguish among parameterized models with different topologies, i.e., reaction mechanisms, in which only some of the species can be measured. We develop the approach by presenting two formulations of a model-based controller that is used to design the dynamic stimulus. In both formulations, an input signal is designed for each candidate model and parameterization so as to drive the model outputs through a target trajectory. The quality of a model is then assessed by the ability of the corresponding controller, informed by that model, to drive the experimental system. We evaluated our method on models of antibody-ligand binding, mitogen-activated protein kinase (MAPK) phosphorylation and de-phosphorylation, and larger models of the epidermal growth factor receptor (EGFR) pathway. For each of these systems, the controller informed by the correct model is the most successful at designing a stimulus to produce the desired behavior. Using these stimuli we were able to distinguish between models with subtle mechanistic differences or where input and outputs were multiple reactions removed from the model differences. An advantage of this method of model discrimination is that it does not require novel reagents, or altered measurement techniques; the only change to the experiment is the time course of stimulation. Taken together, these results provide a strong basis for using designed input stimuli as a tool for the development of cell signaling models. PMID

  5. Stimulus-responsive metal-organic frameworks.

    PubMed

    Nagarkar, Sanjog S; Desai, Aamod V; Ghosh, Sujit K

    2014-09-01

    Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future "smart" technology materials. Metal-organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host-guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus-responsive MOFs or so-called smart MOFs. In particular, the various stimuli used and the utility of stimulus-responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus-responsive smart MOFs and their applications are proposed from a personal perspective. PMID:24844581

  6. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  7. Anti-nociceptive effect of synthesized di-hydroxy flavones: possible mechanism.

    PubMed

    Girija, K; Reddy, M Kannappa; Viswanathan, S

    2002-11-01

    Renewed interest on the research on the flavonoids is gaining more importance. Earlier literature on flavonoids indicated a significant anti-nociceptive action for flavones and mono-substituted flavones. However, they exhibited a ceiling effect. The present study was undertaken by new synthesizing six disubstituted flavones (DHFs) since poly substituted ones are expected to produce more potent effect. Their anti-nociceptive effect and the role of opioid involvement were studied using acetic acid induced abdominal constriction assay. All the six DHFs administered in elicited a dose related inhibition of abdominal constrictions indicating the presence of the anti-nociceptive response. However, these substances also showed a similar ceiling effect. Like other flavonoid substances, they also utilized opioid pathways. It is suggested that these newly synthesized DHFs can be included along with other flavonoids while attempting clinical trial for analgesic use. PMID:13677638

  8. Emotional modulation of pain and spinal nociception in persons with severe insomnia symptoms

    PubMed Central

    DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Rhudy, Jamie L.

    2013-01-01

    Background Impaired sleep enhances pain, perhaps by disrupting pain modulation. Purpose Given that emotion modulates pain, the present study examined whether emotional modulation of pain and nociception is impaired in persons with severe insomnia symptoms relative to controls. Methods Insomnia group (n=12) met ICD-10 symptoms for primary insomnia and controls (n=13) reported no sleep impairment. Participants were shown emotionally-evocative pictures (mutilation, neutral, erotica) during which suprathreshold pain stimuli were delivered to evoke pain and the nociceptive flexion reflex (NFR; physiological correlate of spinal nociception). Results Emotional responses to pictures were similar in both groups, except that subjective valence/pleasure ratings were blunted in insomnia. Emotional modulation of pain and NFR was observed in controls, but only emotional modulation of NFR was observed in insomnia. Conclusions Consistent with previous findings, pain modulation is disrupted in insomnia which might promote pain. This may stem from disrupted supraspinal circuits not disrupted brain-to-spinal cord circuits. PMID:24101292

  9. Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.

    2015-10-01

    The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.

  10. Contributions to drug abuse research of Steven R. Goldberg's behavioral analysis of stimulus-stimulus contingencies.

    PubMed

    Katz, Jonathan L

    2016-05-01

    By the mid-1960s, the concept that drugs can function as reinforcing stimuli through response-reinforcer contingencies had created a paradigm shift in drug abuse science. Steve Goldberg's first several publications focused instead on stimulus-stimulus contingencies (respondent conditioning) in examining Abraham Wikler's two-factor hypothesis of relapse involving conditioned withdrawal and reinforcing effects of drugs. Goldberg provided a compelling demonstration that histories of contingencies among stimuli could produce lasting withdrawal reactions in primates formerly dependent on opioids. Other studies conducted by Goldberg extended the analysis of effects of stimulus-stimulus contingencies on behavior maintained by opioid reinforcing effects and showed that withdrawal-inducing antagonist administration can produce conditioned increases in self-administration. Subsequent studies of the effects of stimuli associated with cocaine injection under second-order schedules showed that the maintenance of behavior with drug injections was in most important aspects similar to the maintenance of behavior with more conventional reinforcers when the behavior-disrupting pharmacological effects of the drugs were minimized. Studies on second-order schedules demonstrated a wide array of conditions under which behavior could be maintained by drug injection and further influenced by stimulus-stimulus contingencies. These schedules present opportunities to produce in the laboratory complex situations involving response- and stimulus-stimulus contingencies, which go beyond simplistic pairings of stimuli and more closely approximate those found with human drug abusers. A focus on the response- and stimulus-stimulus contingencies, and resulting quantifiable changes in objective and quantifiable behavioral endpoints exemplified by the studies by Steve Goldberg, remains the most promising way forward for studying problems of drug dependence. PMID:26564234

  11. Stimulus Coding and Synchrony in Stochastic Neuron Models

    NASA Astrophysics Data System (ADS)

    Cieniak, Jakub

    A stochastic leaky integrate-and-fire neuron model was implemented in this study to simulate the spiking activity of the electrosensory "P-unit" receptor neurons of the weakly electric fish Apteronotus leptorhynchus. In the context of sensory coding, these cells have been previously shown to respond in experiment to natural random narrowband signals with either a linear or nonlinear coding scheme, depending on the intrinsic firing rate of the cell in the absence of external stimulation. It was hypothesised in this study that this duality is due to the relation of the stimulus to the neuron's excitation threshold. This hypothesis was validated with the model by lowering the threshold of the neuron or increasing its intrinsic noise, or randomness, either of which made the relation between firing rate and input strength more linear. Furthermore, synchronous P-unit firing to a common input also plays a role in decoding the stimulus at deeper levels of the neural pathways. Synchronisation and desynchronisation between multiple model responses for different types of natural communication signals were shown to agree with experimental observations. A novel result of resonance-induced synchrony enhancement of P-units to certain communication frequencies was also found.

  12. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats

    PubMed Central

    Dimov, Luiz Fabio; Franciosi, Adriano Cardozo; Campos, Ana Carolina Pinheiro; Brunoni, André Russowsky

    2016-01-01

    Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment. PMID:27071073

  13. Changing Balance of Spinal Cord Excitability and Nociceptive Brain Activity in Early Human Development.

    PubMed

    Hartley, Caroline; Moultrie, Fiona; Gursul, Deniz; Hoskin, Amy; Adams, Eleri; Rogers, Richard; Slater, Rebeccah

    2016-08-01

    In adults, nociceptive reflexes and behavioral responses are modulated by a network of brain regions via descending projections to the spinal dorsal horn [1]. Coordinated responses to noxious inputs manifest from a balance of descending facilitation and inhibition. In contrast, young infants display exaggerated and uncoordinated limb reflexes [2]. Our understanding of nociceptive processing in the infant brain has been advanced by the use of electrophysiological and hemodynamic imaging [3-6]. From approximately 35 weeks' gestation, nociceptive-specific patterns of brain activity emerge [7], whereas prior to this, non-specific bursts of activity occur in response to noxious, tactile, visual, and auditory stimulation [7-10]. During the preterm period, refinement of spinal cord excitability is also observed: reflex duration shortens, response threshold increases, and improved discrimination between tactile and noxious events occurs [2, 11, 12]. However, the development of descending modulation in human infants remains relatively unexplored. In 40 infants aged 28-42 weeks' gestation, we examined the relationship between nociceptive brain activity and spinal reflex withdrawal activity in response to a clinically essential noxious procedure. Nociceptive-specific brain activity increases in magnitude with gestational age, whereas reflex withdrawal activity decreases in magnitude, duration, and latency across the same developmental period. By recording brain and spinal cord activity in the same infants, we demonstrate that the maturation of nociceptive brain activity is concomitant with the refinement of noxious-evoked limb reflexes. We postulate that, consistent with studies in animals, infant reflexes are influenced by the development of top-down inhibitory modulation from maturing subcortical and cortical brain networks. PMID:27374336

  14. L5 spinal nerve axotomy induces sensitization of cutaneous L4 Aβ-nociceptive dorsal root ganglion neurons in the rat in vivo.

    PubMed

    Djouhri, Laiche

    2016-06-15

    Partial nerve injury often leads to peripheral neuropathic pain (PNP), a major health problem that lacks effective drug treatment. PNP is characterized by ongoing/spontaneous pain, and hypersensitivity to noxious (hyperalgesia) and innocuous (allodynia) stimuli. Preclinical studies using the L5 spinal nerve ligation/axotomy (SNL/SNA) model of PNP suggest that this type of chronic pain results partly from sensitization of ipsilateral L4C-and Aδ-fiber nociceptive dorsal root ganglion (DRG) neurons, but whether L4 β-nociceptors, which constitute a substantial group of DRG neurons, also become sensitized remains unanswered. To address this issue, intracellular recordings from somata of cutaneous Aβ-nociceptors (classified according to their dorsal root conduction velocities (>6.5m/s), and physiologically based on their responses to noxious (but not innocuous) mechanical stimuli) were made from L4-DRGs in normal (control) rats and in rats seven days after L5 SNA in vivo. Compared with control, cutaneous L4 Aβ-nociceptive DRG neurons in SNA rats (that developed mechanical hypersensitivity) exhibited sensitization indicated by: a) decreased mean mechanical threshold (from 57.8±7.1 to 10.3±1.7mN), b) decreased mean dorsal root electrical threshold (from 11.4±0.7 to 4.3±0.4V), c) increased mean response to a suprathreshold mechanical stimulus (from 18.5±1.8 to 34±3.7spikes/sec) and d) an obvious, but non-significant, increase in the incidence of ongoing/spontaneous activity (from 3% to 18%). These findings suggest that cutaneous L4 Aβ-nociceptors also become sensitized after L5 SNA, and that sensitization of this subclass of A-fiber nociceptors may contribute both directly and indirectly to nerve injury-induced PNP. PMID:27173166

  15. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation

    PubMed Central

    Pritchard, Rory A.; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S.

    2016-01-01

    Abstract Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  16. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    PubMed

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated. PMID:26313408

  17. Neuroactive steroids, nociception and neuropathic pain: A flashback to go forward.

    PubMed

    Coronel, María F; Labombarda, Florencia; González, Susana L

    2016-06-01

    The present review discusses the potential role of neurosteroids/neuroactive steroids in the regulation of nociceptive and neuropathic pain, and recapitulates the current knowledge on the main mechanisms involved in the reduction of pain, especially those occurring at the dorsal horn of the spinal cord, a crucial site for nociceptive processing. We will make special focus on progesterone and its derivative allopregnanolone, which have been shown to exert remarkable actions in order to prevent or reverse the maladaptive changes and pain behaviors that arise after nervous system damage in various experimental neuropathic conditions. PMID:27091763

  18. Effects of D-kyotorphin on nociception and NADPH-d neurons in rat's periaqueductal gray after immobilization stress.

    PubMed

    Dzambazova, Elena B; Landzhov, Boycho V; Bocheva, Adriana I; Bozhilova-Pastirova, Anastasia A

    2011-10-01

    D-kyotorphin (D-Kyo) is a synthetic analogue of the neuropeptide kyotorphin and produces naloxone reversible analgesia. Stress-induced analgesia (SIA) is an in-built mammalian pain-suppression response that occurs during or following exposure to a stressful stimulus. The periaqueductal gray (PAG) is implicated as a critical site for processing strategies for coping with different types of stress and pain and NO affects its activity. The objectives of the present study were twofold: (1) to examine the effects of D-Kyo (5 mg/kg) on acute immobilization SIA; (2) to investigate the effect of peptide on NO activity in rat PAG after the stress procedure mentioned above. All drugs were injected intraperitoneally in male Wistar rats. The nociception was measured by the paw pressure and hot plate tests. A histochemical procedure for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-reactive neurons was used as indirect marker of NO activity. Our results revealed that D-Kyo has modulating effects on acute immobilization stress-induced analgesia in rats may be by opioid and non-opioid systems. Although D-Kyo is incapable of crossing the blood-brain barrier it showed an increased number of NADPH-d reactive neurons in dorsolateral periaqueductal gray (dlPAG) in control but not in stressed groups. We may speculate that the effect of D-Kyo in the brain is due to structural and functional interaction between opioidergic and NO-ergic systems or D-Kyo appears itself as a stressor. Further studies are needed to clarify the exact mechanisms of its action. PMID:21046177

  19. Carving executive control at its joints: Working memory capacity predicts stimulus-stimulus, but not stimulus-response, conflict.

    PubMed

    Meier, Matt E; Kane, Michael J

    2015-11-01

    Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774

  20. Altered central nervous system processing of noxious stimuli contributes to decreased nociceptive responding in individuals at risk for hypertension.

    PubMed

    France, Christopher R; Froese, Shannon A; Stewart, Jesse C

    2002-07-01

    Previous evidence indicates that individuals with hypertension and those at increased risk for the disorder exhibit decreased pain perception. To test the hypothesis that attenuation of nociceptive processing in individuals at genetic risk for hypertension is related to differential central modulation of nociceptive transmission, the present study examined descending modulation, alpha-motoneuron excitability, and temporal summation of nociceptive input in young adults with and without a parental history of hypertension. Nociceptive flexion (NFR) and non-nociceptive Hoffman reflexes were assessed at rest and during performance of a mental arithmetic task. Temporal summation was assessed by examining NFR threshold in response to a series of five electrical pulses delivered at 2 Hz. Compared to participants without a parental history of hypertension, offspring of individuals with hypertension exhibited significantly higher NFR thresholds, suggesting that risk for hypertension may be associated with enhanced activation of central pain inhibition pathways. PMID:12098621

  1. Contribution of opioid and metabotropic glutamate receptor mechanisms to inhibition of bladder overactivity by tibial nerve stimulation.

    PubMed

    Matsuta, Yosuke; Mally, Abhijith D; Zhang, Fan; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2013-07-15

    The contribution of metabotropic glutamate receptors (mGluR) and opioid receptors to inhibition of bladder overactivity by tibial nerve stimulation (TNS) was investigated in cats under α-chloralose anesthesia using LY341495 (a group II mGluR antagonist) and naloxone (an opioid receptor antagonist). Slow infusion cystometry was used to measure the volume threshold (i.e., bladder capacity) for inducing a large bladder contraction. After measuring the bladder capacity during saline infusion, 0.25% acetic acid (AA) was infused to irritate the bladder, activate the nociceptive C-fiber bladder afferents, and induce bladder overactivity. AA significantly (P < 0.0001) reduced bladder capacity to 26.6 ± 4.7% of saline control capacity. TNS (5 Hz, 0.2 ms) at 2 and 4 times the threshold (T) intensity for inducing an observable toe movement significantly increased bladder capacity to 62.2 ± 8.3% at 2T (P < 0.01) and 80.8 ± 9.2% at 4T (P = 0.0001) of saline control capacity. LY341495 (0.1-5 mg/kg iv) did not change bladder overactivity, but completely suppressed the inhibition induced by TNS at a low stimulus intensity (2T) and partially suppressed the inhibition at high intensity (4T). Following administration of LY341495, naloxone (0.01 mg/kg iv) completely eliminated the high-intensity TNS-induced inhibition. However, without LY341495 treatment a 10 times higher dose (0.1 mg/kg) of naloxone was required to completely block TNS inhibition. These results indicate that interactions between group II mGluR and opioid receptor mechanisms contribute to TNS inhibition of AA-induced bladder overactivity. Understanding neurotransmitter mechanisms underlying TNS inhibition of bladder overactivity is important for the development of new treatments for bladder disorders. PMID:23576608

  2. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury1,2,3

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  3. Discriminative stimulus properties of the dopamine D3 antagonist PNU-99194A.

    PubMed

    Franklin, S R; Baker, L E; Svensson, K A

    1998-07-01

    It was recently documented that the relatively selective dopamine D3 receptor antagonist, PNU-99194A, is capable of establishing discriminative stimulus control in rats and that the discriminative cue associated with this compound is not similar to that produced by psychostimulants. The present experiment further characterized the discriminative stimulus properties of PNU-99194A by examining several other dopaminergic agents for stimulus generalization in 23 male Sprague-Dawley rats trained to discriminate 10 mg/kg PNU-99194A (SC, 15 min) from vehicle in a two-choice discrimination procedure under an FR10 schedule of food reinforcement. Rats achieved a criterion of ten consecutive sessions with correct lever choice after a median of 35.5 sessions (range 23-78). In substitution tests, the non-selective D2 receptor antagonist, haloperidol (0.01- 0.1 mg/kg), and the mixed D2/D3 antagonists, amisulpiride (3.2-32 mg/kg) and sulpiride (32-200 mg/kg), failed to produce stimulus generalization, while the D3-preferring antagonists, (-)-DS121 (1-10 mg/kg) and (+)-AJ76 (3.2-32 mg/kg), produced complete stimulus generalization. Direct and indirect DA agonists, including apomorphine (0.01-0.32 mg/kg) and d-amphetamine (0.1-1 mg/kg), the D1 agonist SKF38393 (10-100 mg/kg), the D2 selective agonist PNU-95666E (0.32-3.2 mg/kg) and the D3-preferring agonist pramipexole (0.032-1 mg/kg), all produced non-significant amounts of drug-appropriate responding and significantly reduced response rate. It is concluded that PNU-99194A produces a distinctive subjective cue which is probably based on D3 receptor antagonism. PMID:9694525

  4. Stimulus Over-Selectivity in Rats

    ERIC Educational Resources Information Center

    Gibson, Evelyn; Reed, Phil

    2005-01-01

    The present study explored whether a similar phenomenon to stimulus over-selectivity occurred in rats, in the hope of establishing a non-human model for the autism. Rats were serially presented with two-15 seconds, two-element compound stimuli prior to the delivery of food, in an appetitive classical conditioning procedure. Each compound stimulus…

  5. Stimulus Offers Funding Support for Ed. Facilities

    ERIC Educational Resources Information Center

    Ash, Katie

    2009-01-01

    Some two months after enactment of the federal economic-stimulus package, school facilities directors are still trying to piece together how much money will be available under the measure for school construction projects, what it can be used for, and when it can be accessed. Before President Barack Obama signed the $787 billion American Recovery…

  6. Facilities Bonds Prove Hot Item under Stimulus

    ERIC Educational Resources Information Center

    Klein, Alyson

    2009-01-01

    Construction bonding authority--a technical, and often obscure, source of capital funding for school districts--has emerged as a hot ticket for those looking to finance school facilities work under the federal government's economic-stimulus program. School districts left out of the loop for direct funding are lining up for some of at least $24…

  7. States Hurt as Stimulus Loses Steam

    ERIC Educational Resources Information Center

    Cavanagh, Sean; Hollingsworth, Heather

    2011-01-01

    States are finally arriving at the "funding cliff"--the point where about $100 billion in federal economic-stimulus aid for education runs out. The loss seems certain to compound severe budget woes and could mean thousands of school layoffs and the elimination of popular programs and services in districts across the country. The bulk of that…

  8. The Poverty of the Mayan Stimulus

    ERIC Educational Resources Information Center

    Pye, Clifton

    2012-01-01

    Poverty of the stimulus (POS) arguments have instigated considerable debate in the recent linguistics literature. This article uses the comparative method to challenge the logic of POS arguments. Rather than question the premises of POS arguments, the article demonstrates how POS arguments for individual languages lead to a "reductio ad absurdum"…

  9. Electrophysiological Correlates of Stimulus Equivalence Processes

    ERIC Educational Resources Information Center

    Haimson, Barry; Wilkinson, Krista M.; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J.

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g.,…

  10. Stimulus control of cocaine self-administration.

    PubMed Central

    Weiss, Stanley J; Kearns, David N; Cohn, Scott I; Schindler, Charles W; Panlilio, Leigh V

    2003-01-01

    Environmental stimuli that set the occasion wherein drugs are acquired can "trigger" drug-related behavior. Investigating the stimulus control of drug self-administration in laboratory animals should help us better understand this aspect of human drug abuse. Stimulus control of cocaine self-administration was generated here for the first time using multiple and chained schedules with short, frequently-alternating components--like those typically used to study food-maintained responding. The procedures and results are presented along with case histories to illustrate the strategies used to produce this stimulus control. All these multicomponent schedules contained variable-interval (VI) components as well as differential-reinforcement-of-other-behavior (DRO) or extinction components. Schedule parameters and unit dose were adjusted for each rat to produce stable, moderate rates in VI components, with minimal postreinforcement (infusion) pausing, and response cessation in extinction and DRO components. Whole-body drug levels on terminal baselines calculated retrospectively revealed that all rats maintained fairly stable drug levels (mean, 2.3 to 3.4 mg/kg) and molar rates of intake (approximately 6.0 mg/kg/hr). Within this range, no relation between local VI response rates and drug level was found. The stimulus control revealed in cumulative records was indistinguishable from that achieved with food under these schedules, suggesting that common mechanisms may underlie the control of cocaine- and food-maintained behavior. PMID:12696744

  11. States Anxious to Get Details about Stimulus

    ERIC Educational Resources Information Center

    Hoff, David J.

    2009-01-01

    As Congress began debate last week over the size and scope of more than $120 billion in proposed emergency education aid, state leaders were anxiously awaiting the details so they could make specific plans to spend the economic-stimulus money. Governors, state legislators, and state schools chiefs have yet to learn what rules Congress will attach…

  12. Stimulus Configuration, Classical Conditioning, and Hippocampal Function.

    ERIC Educational Resources Information Center

    Schmajuk, Nestor A.; DiCarlo, James J.

    1991-01-01

    The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)

  13. Antagonism of the discriminative stimulus effects of (+)-7-OH-DPAT by remoxipride but not PNU-99194A.

    PubMed

    Christian, A J; Goodwin, A K; Baker, L E

    2001-03-01

    The dopamine (DA) agonist 7-hydroxy-N,N-di-n-propyl-2-amino-tetralin (7-OH-DPAT) has been used extensively as a tool to investigate the role of DA D(3) receptors in the reinforcing and discriminative stimulus properties of psychostimulant drugs. The present study examined the relative importance of D(3) vs. D(2) receptor actions in the discriminative stimulus effects of (+)-7-OH-DPAT (0.03 mg/kg, sc) in 16 male Sprague-Dawley rats trained to discriminate this compound from saline in a two-lever, water-reinforced operant procedure under a FR 20 schedule. Stimulus generalization and antagonism tests were conducted with cocaine and with various selective D(2) and D(3) receptor ligands. In contrast to previous findings that (+)-7-OH-DPAT substitutes for cocaine, the present results demonstrated that cocaine does not produce stimulus generalization in animals trained to discriminate (+)-7-OH-DPAT. Although two D(3)-preferring agonists, PD-128907 and pramipexole, produced complete stimulus generalization to the training drug, two highly selective D(3) antagonists (PNU-99194A, PD 152255) failed to block the discriminative stimulus effects of (+)-7-OH-DPAT. However, the D(2) antagonist remoxipride (3.0 mg/kg) produced a rightward shift in the (+)-7-OH-DPAT dose-response curve. These findings suggest that D(2) receptors are critically involved in mediating the cue properties of (+)-7-OH-DPAT. However, alternative interpretations that PNU-99194A is not entirely D(3) receptor selective should also be considered. PMID:11325388

  14. The role of spinal nitric oxide and glutamate in nociceptive behaviour evoked by high-dose intrathecal morphine in rats.

    PubMed

    Watanabe, Chizuko; Sakurada, Tsukasa; Okuda, Kazuhiro; Sakurada, Chikai; Ando, Ryuichiro; Sakurada, Shinobu

    2003-12-01

    Injection of high-dose of morphine into the spinal lumbar intrathecal (i.t.) space of rats elicits a nociceptive behavioural syndrome characterized by periodic bouts of spontaneous agitation and severe vocalization. The induced behavioural response such as vocalization and agitation was observed dose-dependently by i.t. administration of morphine (125-500 nmol). Pretreatment with naloxone (s.c. and i.t.), an opioid receptor antagonist, failed to reverse the morphine-induced behavioural response. The excitatory effect of morphine was inhibited dose-dependently by pretreatment with 3-((+)2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist and MK-801, a non-competitive NMDA receptor antagonist. The non-selective nitric oxide (NO) synthase inhibitor N(G)-nitro L-arginine methyl ester (L-NAME) inhibited dose-dependently the behavioural response to high-dose i.t. morphine (500 nmol), whereas D-NAME was without affecting the response to high-dose i.t. morphine. In the present study, we measured NO metabolites (nitrite/nitrate) in the extracellular fluid of rat dorsal spinal cord using in vivo microdialysis. The i.t. injection of morphine (500 nmol) evoked significant increases in NO metabolites and glutamate from the spinal cord. Not only NO metabolites but also glutamate released by high-dose morphine were reduced significantly by pretreatment with L-NAME (400 nmol). Pretreatment with CPP and MK-801 showed a significant reduction of the NO metabolites and glutamate levels elevated by high-dose i.t. morphine. These results suggest that the excitatory action of high-dose i.t. morphine may be mediated by an NMDA-NO cascade in the spinal cord. PMID:14659510

  15. Discovery of Prostamide F2α and Its Role in Inflammatory Pain and Dorsal Horn Nociceptive Neuron Hyperexcitability

    PubMed Central

    Giordano, Catia; Boccella, Serena; Lichtman, Aron; Maione, Sabatino; Di Marzo, Vincenzo

    2012-01-01

    It was suggested that endocannabinoids are metabolized by cyclooxygenase (COX)-2 in the spinal cord of rats with kaolin/λ-carrageenan-induced knee inflammation, and that this mechanism contributes to the analgesic effects of COX-2 inhibitors in this experimental model. We report the development of a specific method for the identification of endocannabinoid COX-2 metabolites, its application to measure the levels of these compounds in tissues, and the finding of prostamide F2α (PMF2α) in mice with knee inflammation. Whereas the levels of spinal endocannabinoids were not significantly altered by kaolin/λ-carrageenan-induced knee inflammation, those of the COX-2 metabolite of AEA, PMF2α, were strongly elevated. The formation of PMF2α was reduced by indomethacin (a non-selective COX inhibitor), NS-398 (a selective COX-2 inhibitor) and SC-560 (a selective COX-1 inhibitor). In healthy mice, spinal application of PMF2α increased the firing of nociceptive (NS) neurons, and correspondingly reduced the threshold of paw withdrawal latency (PWL). These effects were attenuated by the PMF2α receptor antagonist AGN211336, but not by the FP receptor antagonist AL8810. Also prostaglandin F2α increased NS neuron firing and reduced the threshold of PWL in healthy mice, and these effects were antagonized by AL8810, and not by AGN211336. In mice with kaolin/λ-carrageenan-induced knee inflammation, AGN211336, but not AL8810, reduced the inflammation-induced NS neuron firing and reduction of PWL. These findings suggest that inflammation-induced, and prostanoid-mediated, enhancement of dorsal horn NS neuron firing stimulates the production of spinal PMF2α, which in turn contributes to further NS neuron firing and pain transmission by activating specific receptors. PMID:22363560

  16. Stimulus intensity modulates multisensory temporal processing.

    PubMed

    Krueger Fister, Juliane; Stevenson, Ryan A; Nidiffer, Aaron R; Barnett, Zachary P; Wallace, Mark T

    2016-07-29

    One of the more challenging feats that multisensory systems must perform is to determine which sensory signals originate from the same external event, and thus should be integrated or "bound" into a singular perceptual object or event, and which signals should be segregated. Two important stimulus properties impacting this process are the timing and effectiveness of the paired stimuli. It has been well established that the more temporally aligned two stimuli are, the greater the degree to which they influence one another's processing. In addition, the less effective the individual unisensory stimuli are in eliciting a response, the greater the benefit when they are combined. However, the interaction between stimulus timing and stimulus effectiveness in driving multisensory-mediated behaviors has never been explored - which was the purpose of the current study. Participants were presented with either high- or low-intensity audiovisual stimuli in which stimulus onset asynchronies (SOAs) were parametrically varied, and were asked to report on the perceived synchrony/asynchrony of the paired stimuli. Our results revealed an interaction between the temporal relationship (SOA) and intensity of the stimuli. Specifically, individuals were more tolerant of larger temporal offsets (i.e., more likely to call them synchronous) when the paired stimuli were less effective. This interaction was also seen in response time (RT) distributions. Behavioral gains in RTs were seen with synchronous relative to asynchronous presentations, but this effect was more pronounced with high-intensity stimuli. These data suggest that stimulus effectiveness plays an underappreciated role in the perception of the timing of multisensory events, and reinforces the interdependency of the principles of multisensory integration in determining behavior and shaping perception. PMID:26920937

  17. Asymmetrical Stimulus Generalization following Differential Fear Conditioning

    PubMed Central

    Bang, Sun Jung; Allen, Timothy A.; Jones, Lauren K.; Boguszewski, Pawel; Brown, Thomas H.

    2008-01-01

    Rodent ultrasonic vocalizations (USVs) are ethologically critical social signals. Rats emit 22 kHz USVs and 50 kHz USVs, respectively, in conjunction with negative and positive affective states. Little is known about what controls emotional reactivity to these social signals. Using male Sprague-Dawley rats, we examined unconditional and conditional freezing behavior in response to the following auditory stimuli: three 22 kHz USVs, a discontinuous tone whose frequency and on-off pattern matched one of the USVs, a continuous tone with the same or lower frequencies, a 4 kHz discontinuous tone with an on-off pattern matched to one of the USVs, and a 50 kHz USV. There were no differences among these stimuli in terms of the unconditional elicitation of freezing behavior. Thus, the stimuli were equally neutral before conditioning. During differential fear conditioning, one of these stimuli (the CS+) always co-terminated with a footshock unconditional stimulus (US) and another stimulus (the CS−) was explicitly unpaired with the US. There were no significant differences among these cues in CS+-elicited freezing behavior. Thus, the stimuli were equally salient or effective as cues in supporting fear conditioning. When the CS+ was a 22 kHz USV or a similar stimulus, rats discriminated based on the principal frequency and/or the temporal pattern of the stimulus. However, when these same stimuli served as the CS−, discrimination failed due to generalization from the CS+. Thus, the stimuli differed markedly in the specificity of conditioning. This strikingly asymmetrical stimulus generalization is a novel bias in discrimination. PMID:18434217

  18. Contextual control of stimulus generalization and stimulus equivalence in hierarchical categorization.

    PubMed Central

    Griffee, Karen; Dougher, Michael J

    2002-01-01

    The purpose of this study was to determine whether hierarchical categorization would result from a combination of contextually controlled conditional discrimination training, stimulus generalization, and stimulus equivalence. First, differential selection responses to a specific stimulus feature were brought under contextual control. This contextual control was hierarchical in that stimuli at the top of the hierarchy all evoked one response, whereas those at the bottom each evoked different responses. The evocative functions of these stimuli generalized in predictable ways along a dimension of physical similarity. Then, these functions were indirectly acquired by a set of nonsense syllables that were related via transitivity relations to the originally trained stimuli. These nonsense syllables effectively served as names for the different stimulus classes within each level of the hierarchy. PMID:12507013

  19. Effects of silymarin on neuropathic pain and formalin-induced nociception in mice

    PubMed Central

    Hassani, Faezeh Vahdati; Rezaee, Ramin; Sazegara, Hasan; Hashemzaei, Mahmoud; Shirani, Kobra; Karimi, Gholamreza

    2015-01-01

    Objective(s): Based on the previous reports, silymarin can suppress nitric oxide, prostaglandin E2 (PGE2), leukotrienes, cytokines production, and neutrophils infiltration. Regarding the fact that inflammation plays an important role in neuropathic and formalin-induced pain, it was assumed that silymarin could reduce pain. The present study investigates the analgesic effects of silymarin in chemical nociception and a model of neuropathic pain. Materials and Methods: Chemical nociception was produced by injection of 20 µl of formalin (0.5% formaldehyde in saline) into the plantar region of the right hind paw. A sciatic-nerve ligated mouse was applied as the model of neuropathic pain and the antinociceptive response of silymarin was examined 14 days after unilateral nerve-ligation using the hot plate test. Results: The intraperitoneal administration of silymarin (25, 50, and, 100 mg/kg) 2 hr prior to the intraplantar formalin injection suppressed the nociceptive response during the late phase of the formalin test significantly, but it was not in a dose-dependent manner. Different doses of silymarin 14 days after unilateral sciatic nerve ligation in hot plate test did not induce obvious antinociception. Conclusion: Results of the present study indicated that repeated administration of silymarin prevents the formalin-induced nociceptive behavior. However, it is not effective in the treatment of sciatic neuropathic pain. PMID:26351564

  20. Pharmacological investigation of the nociceptive response and edema induced by venom of the scorpion Tityus serrulatus.

    PubMed

    Nascimento, Elias B; Costa, Karina A; Bertollo, Caryne M; Oliveira, Antônio Carlos P; Rocha, Leonardo T S; Souza, Adriano L S; Glória, Maria Beatriz A; Moraes-Santos, Tasso; Coelho, Márcio M

    2005-04-01

    In this study we characterized the nociceptive response and edema induced by the venom of the scorpion Tityus serrulatus in rats and mice and carried out a preliminary pharmacological investigation of the mechanisms involved in these responses. Intraplantar injection of the venom (1 or 10mug) induced edema and a marked ipsilateral nociceptive response, characterized by thermal and mechanical allodynia and paw licking behaviour. The nociceptive response was inhibited by previous intraperitoneal administration of indomethacin (4mg/kg), dipyrone (200mg/kg), cyproheptadine (10mg/kg) or morphine (5 or 10mg/kg), but not by dexamethasone (1 or 4mg/kg) or promethazine (1 or 5mg/kg). The edema was inhibited by previous treatment with promethazine (5 or 10mg/kg) or cyproheptadine (5 or 10mg/kg), but not by indomethacin (2 or 4mg/kg), dexamethasone (1 or 4mg/kg) or cromolyn (40 or 80mg/kg). Some bioactive amines, including histamine and 5-hydroxytryptamine, were found in the venom in low concentrations. In conclusion, the nociceptive response and edema induced by the venom of T. serrulatus may result from the action of multiple mediators including eicosanoids, histamine and 5-hydroxytryptamine. These results may lead to a better understanding of the host response to potent animal toxins and also give insights into a more rational pharmacological approach to alleviate the intense pain associated with the scorpion envenomation. PMID:15777954

  1. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors.

    PubMed

    Krock, Emerson; Rosenzweig, Derek H; Chabot-Doré, Anne-Julie; Jarzem, Peter; Weber, Michael H; Ouellet, Jean A; Stone, Laura S; Haglund, Lisbet

    2014-06-01

    Intervertebral disc degeneration (IVD) can result in chronic low back pain, a common cause of morbidity and disability. Inflammation has been associated with IVD degeneration, however the relationship between inflammatory factors and chronic low back pain remains unclear. Furthermore, increased levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are both associated with inflammation and chronic low back pain, but whether degenerating discs release sufficient concentrations of factors that induce nociceptor plasticity remains unclear. Degenerating IVDs from low back pain patients and healthy, painless IVDs from human organ donors were cultured ex vivo. Inflammatory and nociceptive factors released by IVDs into culture media were quantified by enzyme-linked immunosorbent assays and protein arrays. The ability of factors released to induce neurite growth and nociceptive neuropeptide production was investigated. Degenerating discs release increased levels of tumour necrosis factor-α, interleukin-1β, NGF and BDNF. Factors released by degenerating IVDs increased neurite growth and calcitonin gene-related peptide expression, both of which were blocked by anti-NGF treatment. Furthermore, protein arrays found increased levels of 20 inflammatory factors, many of which have nociceptive effects. Our results demonstrate that degenerating and painful human IVDs release increased levels of NGF, inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse to induce neo-innervation and pain in vivo. PMID:24650225

  2. Discrete Pattern of Burst Stimulation in the Ventrobasal Thalamus for Anti-Nociception

    PubMed Central

    Huh, Yeowool; Cho, Jeiwon

    2013-01-01

    The thalamus has been proposed to play a role in sensory modulation via switching between tonic and burst dual firing of individual neurons. Of the two firing modes, altered burst firing has been repeatedly implicated with pathological pain conditions, which suggests that maintaining a certain form of thalamic burst could be crucial for controlling pain. However, specific elements of burst firing that may contribute to pain control have not yet been actively investigated. Utilizing the deep brain stimulation (DBS) technique, we explored the effects of bursting properties in pain control by electrically stimulating the ventrobasal (VB) thalamus in forms of burst patterned to test different aspects of bursts during the formalin induced nociception in mice. Our results demonstrated that electrical stimulations mimicking specific burst firing properties are important in producing an anti-nociceptive effect and found that the ≤3 ms interval between burst pluses (intra-burst-interval: IntraBI) and ≥3 pulses per burst were required to reliably reduce formalin induced nociceptive responses in mice. Periodicity of IntraBI was also suggested to contribute to anti-nociception to a limited extent. PMID:23950787

  3. Painful, degenerating intervertebral discs up-regulate neurite sprouting and CGRP through nociceptive factors

    PubMed Central

    Krock, Emerson; Rosenzweig, Derek H; Chabot-Doré, Anne-Julie; Jarzem, Peter; Weber, Michael H; Ouellet, Jean A; Stone, Laura S; Haglund, Lisbet

    2014-01-01

    Intervertebral disc degeneration (IVD) can result in chronic low back pain, a common cause of morbidity and disability. Inflammation has been associated with IVD degeneration, however the relationship between inflammatory factors and chronic low back pain remains unclear. Furthermore, increased levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are both associated with inflammation and chronic low back pain, but whether degenerating discs release sufficient concentrations of factors that induce nociceptor plasticity remains unclear. Degenerating IVDs from low back pain patients and healthy, painless IVDs from human organ donors were cultured ex vivo. Inflammatory and nociceptive factors released by IVDs into culture media were quantified by enzyme-linked immunosorbent assays and protein arrays. The ability of factors released to induce neurite growth and nociceptive neuropeptide production was investigated. Degenerating discs release increased levels of tumour necrosis factor-α, interleukin-1β, NGF and BDNF. Factors released by degenerating IVDs increased neurite growth and calcitonin gene-related peptide expression, both of which were blocked by anti-NGF treatment. Furthermore, protein arrays found increased levels of 20 inflammatory factors, many of which have nociceptive effects. Our results demonstrate that degenerating and painful human IVDs release increased levels of NGF, inflammatory and nociceptive factors ex vivo that induce neuronal plasticity and may actively diffuse to induce neo-innervation and pain in vivo. PMID:24650225

  4. Exteroceptive aspects of nociception: insights from graphesthesia and two-point discrimination.

    PubMed

    Mørch, Carsten Dahl; Andersen, Ole K; Quevedo, Alexandre S; Arendt-Nielsen, Lars; Coghill, Robert C

    2010-10-01

    The exteroceptive capabilities of the nociceptive system have long been thought to be considerably more limited than those of the tactile system. However, most investigations of spatio-temporal aspects of the nociceptive system have largely focused on intensity coding as consequence of spatial or temporal summation. Graphesthesia, the identification of numbers "written" on the skin, and assessment of the two-point discrimination thresholds were used to compare the exteroceptive capabilities of the tactile and nociceptive systems. Numbers were "written" on the forearm and the abdomen by tactile stimulation and by painful non-contact infrared laser heat stimulation. Subjects performed both graphesthesia tasks better than chance. The tactile graphesthesia tasks were performed with 89% (82-97%) correct responses on the forearm and 86% (79-94%) correct responses on the abdomen. Tactile graphesthesia tasks were significantly better than painful heat graphesthesia tasks that were performed with 31% (23-40%) and 44% (37-51%) correct responses on the forearm and abdomen, respectively. These findings demonstrate that the central nervous system is capable of assembling complex spatio-temporal patterns of nociceptive information from the body surface into unified mental objects with sufficient accuracy to enable behavioral discrimination. PMID:20541867

  5. Carnosine has antinociceptive properties in the inflammation-induced nociceptive response in mice.

    PubMed

    Ohsawa, Masahiro; Mutoh, Junpei; Asato, Megumi; Yamamoto, Shohei; Ono, Hideki; Hisa, Hiroaki; Kamei, Junzo

    2012-05-01

    Carnosine is a biologically active dipeptide that is found in fish and chicken muscle. Recent studies have revealed that carnosine has neuroprotective activity in zinc-induced neural cell apoptosis and ischemic stroke. In the present study, we examined the expression of carnosine in the spinal cord, and the antinociceptive potency of carnosine in a mouse model of inflammation-induced nociceptive pain. Immunohistochemical studies with antiserum against carnosine showed an abundance of carnosine-immunoreactivity in the dorsal horn of the mouse spinal cord. Double-immunostaining techniques revealed that carnosine was expressed in the neurons and astrocytes in the spinal cord. Oral administration of carnosine attenuated the number of writhing behaviors induced by the intraperitoneal administration of 0.6% acetic acid. Treatment with carnosine also attenuated the second phase, but not the first phase, of the nociceptive response to formalin. Moreover, intrathecal, but not intraplanter, administration of carnosine attenuated the second phase of the nociceptive response to formalin. Our immunohistochemical and behavioral data suggest that carnosine has antinociceptive effects toward inflammatory pain, which may be mediated by the attenuation of nociceptive sensitization in the spinal cord. PMID:22366199

  6. Effects of visual cortex activation on the nociceptive blink reflex in healthy subjects.

    PubMed

    Sava, Simona L; de Pasqua, Victor; Magis, Delphine; Magis, Delphine; Schoenen, Jean; Schoenen, Jean

    2014-01-01

    Bright light can cause excessive visual discomfort, referred to as photophobia. The precise mechanisms linking luminance to the trigeminal nociceptive system supposed to mediate this discomfort are not known. To address this issue in healthy human subjects we modulated differentially visual cortex activity by repetitive transcranial magnetic stimulation (rTMS) or flash light stimulation, and studied the effect on supraorbital pain thresholds and the nociceptive-specific blink reflex (nBR). Low frequency rTMS that inhibits the underlying cortex, significantly decreased pain thresholds, increased the 1st nBR block ipsi- and contralaterally and potentiated habituation contralaterally. After high frequency or sham rTMS over the visual cortex, and rMS over the right greater occipital nerve we found no significant change. By contrast, excitatory flash light stimulation increased pain thresholds, decreased the 1st nBR block of ipsi- and contralaterally and increased habituation contralaterally. Our data demonstrate in healthy subjects a functional relation between the visual cortex and the trigeminal nociceptive system, as assessed by the nociceptive blink reflex. The results argue in favour of a top-down inhibitory pathway from the visual areas to trigemino-cervical nociceptors. We postulate that in normal conditions this visuo-trigeminal inhibitory pathway may avoid disturbance of vision by too frequent blinking and that hypoactivity of the visual cortex for pathological reasons may promote headache and photophobia. PMID:24936654

  7. Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man.

    PubMed

    Thomsen, L L; Brennum, J; Iversen, H K; Olesen, J

    1996-05-01

    Several animal studies suggest that nitric oxide (NO) plays a role in central and peripheral modulation of nociception. Glyceryl trinitrate (GTN) exerts its physiological actions via donation of NO. The purpose of the present study was to examine the effect of this NO donor on nociceptive thresholds in man. On two different study days separated by at least a week 12 healthy subjects received a staircase infusion of GTN (0.015, 0.25, 1.0, 2.0 micrograms/kg/min, 20 min each dose) or placebo in a randomized double-blind crossover design. Before the infusion and after 15 min of infusion on each dose, pressure pain detection and tolerance thresholds were determined by pressure algometry (Somomedic AB, Sweden) in three different anatomic regions (finger, a temporal region with interposed myofascial tissue and a temporal region without interposed myofascial tissue). Relative to placebo, the three higher GTN doses induced a decrease in both detection and tolerance thresholds in the temporal region with interposed myofascial tissue (p = 0.003 detection and p = 0.002 tolerance thresholds, Friedman). No such changes were observed in the other two stimulated regions. These results could reflect central facilitation of nociception by NO. However, we regard convergence of nociceptive input from pericranial myofascial tissue and from cephalic blood vessels dilated by NO as a more likely explanation of our findings. PMID:8734768

  8. Distinct temporal filtering mechanisms are engaged during dynamic increases and decreases of noxious stimulus intensity

    PubMed Central

    Mørch, Carsten Dahl; Frahm, Ken Steffen; Coghill, Robert C.; Arendt-Nielsen, Lars; Andersen, Ole Kæseler

    2015-01-01

    Abstract Physical stimuli are subject to pronounced temporal filtering during afferent processing such that changes occurring at certain rates are amplified and others are diminished. Temporal filtering of nociceptive information remains poorly understood. However, the phenomenon of offset analgesia, where a disproportional drop in perceived pain intensity is caused by a slight drop in noxious heat stimulation, indicates potent temporal filtering in the pain pathways. To develop a better understanding of how dynamic changes in a physical stimulus are constructed into an experience of pain, a transfer function between the skin temperature and the perceived pain intensity was modeled. Ten seconds of temperature-controlled near-infrared (970 nm) laser stimulations above the pain threshold with a 1°C increment, decrement, or constant temperature were applied to the dorsum of the hand of healthy human volunteers. The skin temperature was assessed by an infrared camera. Offset analgesia was evoked by laser heat stimulation. The estimated transfer functions showed shorter latencies when the temperature was increased by 1°C (0.53 seconds [0.52-0.54 seconds]) than when decreased by 1°C (1.15 seconds [1.12-1.18 seconds]) and smaller gains (increase: 0.89 [0.82-0.97]; decrease: 2.61 [1.91-3.31]). The maximal gain was observed at rates around 0.06 Hz. These results show that temperature changes occurring around 0.06 Hz are best perceived and that a temperature decrease is associated with a larger but slower change in pain perception than a comparable temperature increase. These psychophysical findings confirm the existence of differential mechanisms involved in temporal filtering of dynamic increases and decreases in noxious stimulus intensity. PMID:26035254

  9. Inducible Lentivirus-Mediated siRNA against TLR4 Reduces Nociception in a Rat Model of Bone Cancer Pain

    PubMed Central

    Pan, Ruirui; Di, Huiting; Zhang, Jinming; Huang, Zhangxiang; Sun, Yuming; Yu, Weifeng; Wu, Feixiang

    2015-01-01

    Although bone cancer pain is still not fully understood by scientists and clinicians alike, studies suggest that toll like receptor 4 (TLR4) plays an important role in the initiation and/or maintenance of pathological pain state in bone cancer pain. A promising treatment for bone cancer pain is the downregulation of TLR4 by RNA interference; however, naked siRNA (small interference RNA) is not effective in long-term treatments. In order to concoct a viable prolonged treatment for bone cancer pain, an inducible lentivirus LvOn-siTLR4 (tetracycline inducible lentivirus carrying siRNA targeting TLR4) was prepared and the antinociception effects were observed in bone cancer pain rats induced by Walker 256 cells injection in left leg. Results showed that LvOn-siTLR4 intrathecal injection with doxycycline (Dox) oral administration effectively reduced the nociception induced by Walker 256 cells while inhibiting the mRNA and protein expression of TLR4. Proinflammatory cytokines as TNF-α and IL-1β in spinal cord were also decreased. These findings suggest that TLR4 could be a target for bone cancer pain treatment and tetracycline inducible lentivirus LvOn-siTLR4 represents a new potential option for long-term treatment of bone cancer pain. PMID:26556957

  10. Inducible Lentivirus-Mediated siRNA against TLR4 Reduces Nociception in a Rat Model of Bone Cancer Pain.

    PubMed

    Pan, Ruirui; Di, Huiting; Zhang, Jinming; Huang, Zhangxiang; Sun, Yuming; Yu, Weifeng; Wu, Feixiang

    2015-01-01

    Although bone cancer pain is still not fully understood by scientists and clinicians alike, studies suggest that toll like receptor 4 (TLR4) plays an important role in the initiation and/or maintenance of pathological pain state in bone cancer pain. A promising treatment for bone cancer pain is the downregulation of TLR4 by RNA interference; however, naked siRNA (small interference RNA) is not effective in long-term treatments. In order to concoct a viable prolonged treatment for bone cancer pain, an inducible lentivirus LvOn-siTLR4 (tetracycline inducible lentivirus carrying siRNA targeting TLR4) was prepared and the antinociception effects were observed in bone cancer pain rats induced by Walker 256 cells injection in left leg. Results showed that LvOn-siTLR4 intrathecal injection with doxycycline (Dox) oral administration effectively reduced the nociception induced by Walker 256 cells while inhibiting the mRNA and protein expression of TLR4. Proinflammatory cytokines as TNF-α and IL-1β in spinal cord were also decreased. These findings suggest that TLR4 could be a target for bone cancer pain treatment and tetracycline inducible lentivirus LvOn-siTLR4 represents a new potential option for long-term treatment of bone cancer pain. PMID:26556957

  11. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia. PMID:26608254

  12. A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception

    PubMed Central

    Hall, F. Scott; Schwarzbaum, Joshua M.; Perona, Maria T.G.; Templin, J. Scott; Caron, Marc G.; Lesch, Klaus-Peter; Murphy, Dennis L.; Uhl, George R.

    2010-01-01

    Norepinephrine and serotonin involvement in nociceptive functions is supported by observations of analgesic effects of norepinephrine transporter (NET) and serotonin transporter (SERT) inhibitors such as amitriptyline. However, the relative contribution of NET and SERT to baseline nociception, as well as amitriptyline analgesia, is unclear. Amitriptyline and morphine analgesia in wild-type (WT) mice and littermates with gene knockout (KO) of SERT, NET or both transporters was conducted using the hotplate and tail-flick tests. Hypoalgesia was observed in NET KO mice, and to a lesser extent in SERT KO mice. The magnitude of this hypoalgesia in NET KO mice was so profound that it limited the assessment of drug-induced analgesia. Nonetheless, the necessary exclusion of these subjects because of profound baseline hypoalgesia strongly supports the role of norepinephrine and NET in basal nociceptive behavior while indicating a much smaller role for serotonin and SERT. To further clarify the role of NET and SERT in basal nociceptive sensitivity further experiments were conducted in SERT KO and NET KO mice across a range of temperatures. NET KO mice were again found to have pronounced thermal hypoalgesia compared to WT mice in both the hotplate and tail-flick tests, and only limited effects were observed in SERT KO mice. Furthermore, in the acetic acid writhing test of visceral nociception pronounced hypoalgesia was again found in NET KO mice, but no effect in SERT KO mice. As some of these effects may have resulted from developmental consequences of NET KO, the effects of the selective NET blocker nisoxetine and the selective SERT blocker fluoxetine were also examined in WT mice: only nisoxetine produced analgesia in these mice. Collectively these data suggest that NET has a far greater role in determining baseline analgesia, and perhaps other analgesic effects, than SERT. PMID:21129446

  13. Different transfer of nociceptive sensitivity from rats with postnatal hippocampal lesions to control rats.

    PubMed

    Yamamotová, Anna; Franek, Miloslav; Vaculín, Simon; St'astný, Frantisek; Bubeníková-Valesová, Vera; Rokyta, Richard

    2007-07-01

    Hippocampal lesions in newborn rats alter the development of mechanisms involved in the processing of nociception. The hippocampal lesion was induced by the bilateral infusion, into the lateral cerebral ventricles, of 0.25 microL of saline containing either 0.25 micromol quinolinic acid (QUIN) and/or 0.25 micromol N-acetyl-L-aspartyl-L-glutamate (NAAG) on postnatal day 12. The same amount of sterile saline was injected into the sham-operated animals (group SHAM). It was expected that the QUIN- and NAAG-lesioned rats would exhibit some differences in thermal pain perception; however, we wanted to know if the control rats would exhibit, at least in part, similar changes in pain perception as their chemically lesioned siblings with which they were housed. Young adult NAAG-injured rats exhibited increased withdrawal latencies in the tail-flick and plantar tests, whereas young adult QUIN-injured animals exhibited only marginally decreased latencies. Nociceptive responses in the SHAM rats paralleled the littermates that had been neonatally treated with QUIN or NAAG, i.e. the responses in the SHAM(QUIN) group decreased, whereas the responses in the SHAM(NAAG) group increased. No significant changes in nociception were observed in intact animals, regardless of which group they were housed with. Our results show that social factors, which were originally demonstrated only for the pain behavior, may also influence basal nociceptive sensitivity in rats. We concluded that the "sham operation" may have had a long-term, nonspecific impact on nociceptive behavior by inducing behavioral mimicry of other animals. PMID:17623020

  14. Stimulus Contrast and Retinogeniculate Signal Processing

    PubMed Central

    Rathbun, Daniel L.; Alitto, Henry J.; Warland, David K.; Usrey, W. Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  15. Stimulus Contrast and Retinogeniculate Signal Processing.

    PubMed

    Rathbun, Daniel L; Alitto, Henry J; Warland, David K; Usrey, W Martin

    2016-01-01

    Neuronal signals conveying luminance contrast play a key role in nearly all aspects of perception, including depth perception, texture discrimination, and motion perception. Although much is known about the retinal mechanisms responsible for encoding contrast information, relatively little is known about the relationship between stimulus contrast and the processing of neuronal signals between visual structures. Here, we describe simultaneous recordings from monosynaptically connected retinal ganglion cells and lateral geniculate nucleus (LGN) neurons in the cat to determine how stimulus contrast affects the communication of visual signals between the two structures. Our results indicate that: (1) LGN neurons typically reach their half-maximal response at lower contrasts than their individual retinal inputs and (2) LGN neurons exhibit greater contrast-dependent phase advance (CDPA) than their retinal inputs. Further analyses suggests that increased sensitivity relies on spatial convergence of multiple retinal inputs, while increased CDPA is achieved, in part, on temporal summation of arriving signals. PMID:26924964

  16. RF stimulus generator with agile modulation features

    NASA Astrophysics Data System (ADS)

    Boychuk, Bohdan; Larkin, Calvin W., Jr.

    The design and capabilities of a microwave/millimeter-wave stimulus generator with deviations and modulation rates up to 500 MHz are described. The oscillator of the system is a combination of YIG and varactor-tuned oscillators (VTO); the oscillator generates a fixed baseband signal with the required modulation characteristics in S-band and then translates this signal to the desired output frequency while preserving all modulation characteristics. The baseband FM loop, which consists of a switchable loop filter, an external frequency-hopping input, and the hyperabrupt VTO; the methods used to obtain frequency modulation; and the implementation of amplitude, phase, and pulse modulations are examined. Consideration is given to the X-band phase-locked source and the synchronizer and YIG circuitry. The RF stimulus generator is applicable to electronic warfare ATE.

  17. Some stimulus properties of inhalants: preliminary findings.

    PubMed

    Vila, J; Colotla, V A

    1981-01-01

    Water-deprived rats allowed access to 0.1% saccharin during 10 min followed by a 15-min (Exp. 1A) or a 30-min (Exp. 1B) exposure to lacquer thinner (6,360 ppm) failed to show a conditioned aversion to the saccharin solution. However, when the solvent odor was paired with water drinking followed by a 0.6 M LiCl injection (Exp. 2) the rats developed an aversion to water associated to lacquer thinner, drinking less than when water was presented alone. The findings suggest that whereas lacquer thinner does not appear to function as an unconditioned stimulus, it may acquire properties of conditioned stimulus in this paradigm of conditioned aversion. PMID:7335142

  18. Stimulus control in a two-choice discrimination procedure

    NASA Technical Reports Server (NTRS)

    Galloway, W. D.

    1973-01-01

    Experimental investigation upon pigeons of the relation between performance during discriminative training and subsequently obtained stimulus control test results. The results obtained support the proposition that bias generated by training dependencies is a major determiner of stimulus control.

  19. Electrophysiological Correlates of Stimulus Equivalence Processes

    PubMed Central

    Haimson, Barry; Wilkinson, Krista M; Rosenquist, Celia; Ouimet, Carolyn; McIlvane, William J

    2009-01-01

    Research reported here concerns neural processes relating to stimulus equivalence class formation. In Experiment 1, two types of word pairs were presented successively to normally capable adults. In one type, the words had related usage in English (e.g., uncle, aunt). In the other, the two words were not typically related in their usage (e.g., wrist, corn). For pairs of both types, event-related cortical potentials were recorded during and immediately after the presentation of the second word. The obtained waveforms differentiated these two types of pairs. For the unrelated pairs, the waveforms were significantly more negative about 400 ms after the second word was presented, thus replicating the “N400” phenomenon of the cognitive neuroscience literature. In addition, there was a strong positive-tending wave form difference post-stimulus presentation (peaked at about 500 ms) that also differentiated the unrelated from related stimulus pairs. In Experiment 2, the procedures were extended to study arbitrary stimulus–stimulus relations established via matching-to-sample training. Participants were experimentally naïve adults. Sample stimuli (Set A) were trigrams, and comparison stimuli (Sets B, C, D, E, and F) were nonrepresentative forms. Behavioral tests evaluated potentially emergent equivalence relations (i.e., BD, DF, CE, etc.). All participants exhibited classes consistent with the arbitrary matching training. They were also exposed also to an event-related potential procedure like that used in Experiment 1. Some received the ERP procedure before equivalence tests and some after. Only those participants who received ERP procedures after equivalence tests exhibited robust N400 differentiation initially. The positivity observed in Experiment 1 was absent for all participants. These results support speculations that equivalence tests may provide contextual support for the formation of equivalence classes including those that emerge gradually during testing

  20. Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Rice, Kenner C; France, Charles P

    2008-02-01

    Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) and related drugs have been studied extensively in rodents, although the generality of those findings across species is not known. The goals of this study were to see whether monkeys could discriminate DOM and to characterize the DOM discriminative stimulus by studying a variety of drugs, including those with hallucinogenic activity in humans. Four rhesus monkeys discriminated between 0.32 mg/kg s.c. DOM and vehicle after an average of 116 (range = 85-166) sessions while responding under a fixed ratio 5 schedule of stimulus shock termination. Increasing doses of DOM occasioned increased responding on the drug lever with the training dose occasioning DOM-lever responding for up to 2 h. The serotonin (5-HT)(2A/2C) receptor antagonists ritanserin and ketanserin, the 5-HT(2A) receptor antagonist (+)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL100907), and its (-)stereoisomer MDL100009 [(-)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol], but not haloperidol, completely blocked the discriminative stimulus effects of DOM. Quipazine as well as several drugs with hallucinogenic activity in humans, including (+)lysergic acid diethylamide, (-)DOM, and 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7), occasioned DOM-lever responding. The kappa-opioid receptor agonists U-50488 and salvinorin A (a hallucinogen) did not exert DOM-like effects and neither did ketamine, phencyclidine, amphetamine, methamphetamine, cocaine, morphine, yohimbine, fenfluramine, 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT), or (+/-)-2-(N-phenethyl-N-1'-propyl)amino-5-hydroxytetralin hydrochloride (N-0434). These data confirm in nonhuman primates a prominent role for 5-HT(2A) receptors in the discriminative stimulus effects of some drugs with hallucinogenic activity in humans. The failure of another drug with hallucinogenic activity (salvinorin A) to substitute for DOM indicates that

  1. Performance breakdown in optimal stimulus decoding

    NASA Astrophysics Data System (ADS)

    Kostal, Lubomir; Lansky, Petr; Pilarski, Stevan

    2015-06-01

    Objective. One of the primary goals of neuroscience is to understand how neurons encode and process information about their environment. The problem is often approached indirectly by examining the degree to which the neuronal response reflects the stimulus feature of interest. Approach. In this context, the methods of signal estimation and detection theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the mathematical model of the stimulus-response relationship is determined. However, little is known about the behavior of different decoding schemes with respect to the bound if the neuronal population size is limited. Main results. We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in dependence on the population size. The onset of the threshold determines a critical range where a small increment in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. Significance. We demonstrate the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population size.

  2. Impact of stimulus uncanniness on speeded response

    PubMed Central

    Takahashi, Kohske; Fukuda, Haruaki; Samejima, Kazuyuki; Watanabe, Katsumi; Ueda, Kazuhiro

    2015-01-01

    In the uncanny valley phenomenon, the causes of the feeling of uncanniness as well as the impact of the uncanniness on behavioral performances still remain open. The present study investigated the behavioral effects of stimulus uncanniness, particularly with respect to speeded response. Pictures of fish were used as visual stimuli. Participants engaged in direction discrimination, spatial cueing, and dot-probe tasks. The results showed that pictures rated as strongly uncanny delayed speeded response in the discrimination of the direction of the fish. In the cueing experiment, where a fish served as a task-irrelevant and unpredictable cue for a peripheral target, we again observed that the detection of a target was slowed when the cue was an uncanny fish. Conversely, the dot-probe task suggested that uncanny fish, unlike threatening stimulus, did not capture visual spatial attention. These results suggested that stimulus uncanniness resulted in the delayed response, and importantly this modulation was not mediated by the feelings of threat. PMID:26052297

  3. STIMULUS AND TRANSDUCER EFFECTS ON THRESHOLD

    PubMed Central

    Flamme, Gregory A.; Geda, Kyle; McGregor, Kara; Wyllys, Krista; Deiters, Kristy K.; Murphy, William J.; Stephenson, Mark R.

    2015-01-01

    Objective This study examined differences in thresholds obtained under Sennheiser HDA200 circumaural earphones using pure tone, equivalent rectangular noise bands, and 1/3 octave noise bands relative to thresholds obtained using Telephonics TDH-39P supra-aural earphones. Design Thresholds were obtained via each transducer and stimulus condition six times within a 10-day period. Study Sample Forty-nine adults were selected from a prior study to represent low, moderate, and high threshold reliability. Results The results suggested that (1) only small adjustments were needed to reach equivalent TDH-39P thresholds, (2) pure-tone thresholds obtained with HDA200 circumaural earphones had reliability equal to or better than those obtained using TDH-39P earphones, (3) the reliability of noise-band thresholds improved with broader stimulus bandwidth and was either equal to or better than pure-tone thresholds, and (4) frequency-specificity declined with stimulus bandwidths greater than one Equivalent Rectangular Band, which could complicate early detection of hearing changes that occur within a narrow frequency range. Conclusions These data suggest that circumaural earphones such as the HDA200 headphones provide better reliability for audiometric testing as compared to the TDH-39P earphones. These data support the use of noise bands, preferably ERB noises, as stimuli for audiometric monitoring. PMID:25549164

  4. Stimulus-responsive nanopreparations for tumor targeting

    PubMed Central

    Zhu, Lin; Torchilin, Vladimir P.

    2012-01-01

    Nanopreparations such as liposomes, micelles, polymeric and inorganic nanoparticles, and small molecule/nucleic acid/protein conjugates have demonstrated various advantages versus “naked” therapeutic molecules. These nanopreparations can be further engineered with functional moieties to improve their performance in terms of circulation longevity, targetability, enhanced intracellular penetration; carrier-mediated enhanced visualization, and stimuli-sensitivity. The idea of application of a stimulus-sensitive drug or imaging agent delivery system for tumor targeting is based on the fact of the significant abnormalities in the tumor microenvironment and its cells, such as an acidic pH, altered redox potential, up-regulated proteins and hyperthermia. These internal conditions as well as external stimuli such as magnetic field, ultrasound and light, can be used to modify the behavior of the nanopreparations that control drug release, improve drug internalization, control the intracellular drug fate and even allow for certain physical interactions, resulting in an enhanced tumor targeting and antitumor effect. This article provides a critical view of current stimulus-sensitive drug delivery strategies and possible future directions in tumor targeting with primary focus on the combined use of stimulus-sensitivity with other strategies in the same nanopreparation, including multifunctional nanopreparations and theranostics. PMID:22869005

  5. Hierarchical stimulus processing by dogs (Canis familiaris).

    PubMed

    Pitteri, Elisa; Mongillo, Paolo; Carnier, Paolo; Marinelli, Lieta

    2014-07-01

    The purpose of this study was to assess the visual processing of global and local levels of hierarchical stimuli in domestic dogs. Fourteen dogs were trained to recognise a compound stimulus in a simultaneous conditioned discrimination procedure and were then tested for their local/global preference in a discrimination test. As a group, dogs showed a non-significant trend for global precedence, although large inter-individual variability was observed. Choices in the test were not affected by either dogs' sex or the type of stimulus used for training. However, the less time a dog took to complete the discrimination training phase, the higher the probability that it chose the global level of test stimulus. Moreover, dogs that showed a clear preference for the global level in the test were significantly less likely to show positional responses during discrimination training. These differences in the speed of acquisition and response patterns may reflect individual differences in the cognitive requirements during discrimination training. The individual variability in global/local precedence suggests that experience in using visual information may be more important than predisposition in determining global/local processing in dogs. PMID:24337824

  6. Stimulus generalization and operant context renewal.

    PubMed

    Podlesnik, Christopher A; Miranda-Dukoski, Ludmila

    2015-10-01

    Context renewal is the relapse of an extinguished response due to changing the stimulus context following extinction. Reinforcing operant responding in Context A and extinguishing in Context B results in relapse when either returning to Context A (ABA renewal) or introducing a novel Context C (ABC renewal). ABA renewal typically is greater than ABC renewal. The present study assessed whether renewal might be conceptualized through excitatory and inhibitory generalization gradients inferred from studies of stimulus generalization. We arranged one keylight-color alternation frequency for pigeons to signal reinforcement in Phase 1 and a different alternation frequency to signal extinction in Phase 2. During a subsequent test in extinction, we presented a range of keylight-alternation frequencies and found renewal to be a function of keylight-alternation frequency. Specifically, Phase-3 responding increased as keylight-alternation frequency differed from that arranged during extinction in Phase 2. Moreover, we observed a shift in the function beyond the originally reinforced keylight-alternation frequency arranged in training (i.e., peak shift). We discuss the relevance of these findings for conceptualizing stimulus-control processes governing generalization gradients for understanding the processes underlying context renewal. PMID:26241660

  7. Measuring Joint Stimulus Control by Complex Graph/Description Correspondences

    ERIC Educational Resources Information Center

    Fields, Lanny; Spear, Jack

    2012-01-01

    Joint stimulus control occurs when responding is determined by the correspondence of elements of a complex sample and a complex comparison stimulus. In academic settings, joint stimulus control of behavior would be evidenced by the selection of an accurate description of a complex graph in which each element of a graph corresponded to particular…

  8. Using Stimulus-Stimulus Pairing and Direct Reinforcement to Teach Vocal Verbal Behavior to Young Children with Autism

    ERIC Educational Resources Information Center

    Carroll, Regina A.; Klatt, Kevin P.

    2008-01-01

    In this study the effect of a stimulus-stimulus pairing procedure was used as part of a clinical investigation to increase vocalizations for two young children diagnosed with autism. This procedure involved pairing a vocal sound with a preferred stimulus (e.g., toy) to condition automatic reinforcement. In addition, this study assessed the effects…

  9. Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors.

    PubMed

    Blakeman, K H; Hao, J-X; Xu, X-J; Jacoby, A S; Shine, J; Crawley, J N; Iismaa, T; Wiesenfeld-Hallin, Z

    2003-01-01

    The neuropeptide galanin may have a role in modulation of nociception, particularly after peripheral nerve injury. The effect of galanin is mediated by at least three subtypes of receptors. In the present study, we assessed the nociceptive sensitivity in mice lacking the galanin receptor 1 gene (Galr1) and the development of neuropathic pain-like behaviours after photochemically induced partial sciatic nerve ischaemic injury. Under basal condition, Galr1 knock-out (Galr1(-/-)) mice had shortened response latency on the hot plate, but not tail flick and paw radiant heat, tests. The mechanical sensitivity was not different between Galr1(-/-) and wild type (Galr1(+/+)) mice, whereas the cold response was moderately enhanced in Galr1(-/-) mice. Both Galr1(-/-) mice and Galr1(+/+) controls developed mechanical and heat hypersensitivity after partial sciatic nerve injury. The duration of such pain-like behaviours was significantly increased in Galr1(-/-). The Galr1(-/-) mice and Galr1(+/+) mice did not differ in their recovery from deficits in toe-spread after sciatic nerve crush. The results provide some evidence for an inhibitory function for the neuropeptide galanin acting on galanin receptor 1 (GALR1) in nociception and neuropathic pain after peripheral nerve injury in mice. PMID:12605908

  10. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    PubMed Central

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  11. Stimulus control topography coherence theory: Foundations and extensions

    PubMed Central

    McIlvane, William J.; Dube, William V.

    2003-01-01

    Stimulus control topography refers to qualitative differences among members of a functional stimulus class. Stimulus control topography coherence refers to the degree of concordance between the stimulus properties specified as relevant by the individual arranging a reinforcement contingency (behavior analyst, experimenter, teacher, etc.) and the stimulus properties that come to control the behavior of the organism (experimental subject, student, etc.) that experiences those contingencies. This paper summarizes the rationale for analyses of discrimination learning outcomes in terms of stimulus control topography coherence and briefly reviews some of the foundational studies that led to this perspective. We also suggest directions for future research, including pursuit of conceptual and methodological challenges to a complete stimulus control topography coherence analysis of processes involved in discriminated and generalized operants. ImagesFigure 3Figure 5 PMID:22478402

  12. Stimulus devaluation induced by stopping action.

    PubMed

    Wessel, Jan R; O'Doherty, John P; Berkebile, Michael M; Linderman, David; Aron, Adam R

    2014-12-01

    Impulsive behavior in humans partly relates to inappropriate overvaluation of reward-associated stimuli. Hence, it is desirable to develop methods of behavioral modification that can reduce stimulus value. Here, we tested whether one kind of behavioral modification--the rapid stopping of actions in the face of reward-associated stimuli--could lead to subsequent devaluation of those stimuli. We developed a novel paradigm with three consecutive phases: implicit reward learning, a stop-signal task, and an auction procedure. In the learning phase, we associated abstract shapes with different levels of reward. In the stop-signal phase, we paired half those shapes with occasional stop-signals, requiring the rapid stopping of an initiated motor response, while the other half of shapes was not paired with stop signals. In the auction phase, we assessed the subjective value of each shape via willingness-to-pay. In 2 experiments, we found that participants bid less for shapes that were paired with stop-signals compared to shapes that were not. This suggests that the requirement to try to rapidly stop a response decrements stimulus value. Two follow-on control experiments suggested that the result was specifically due to stopping action rather than aversiveness, effort, conflict, or salience associated with stop signals. This study makes a theoretical link between research on inhibitory control and value. It also provides a novel behavioral paradigm with carefully operationalized learning, treatment, and valuation phases. This framework lends itself to both behavioral modification procedures in clinical disorders and research on the neural underpinnings of stimulus devaluation. PMID:25313953

  13. Stimulus devaluation induced by stopping action

    PubMed Central

    Wessel, Jan R.; O’Doherty, John P.; Berkebile, Michael M.; Linderman, David; Aron, Adam R.

    2014-01-01

    Impulsive behavior in humans partly relates to inappropriate overvaluation of reward-associated stimuli. Hence, it is desirable to develop methods of behavioral modification that can reduce stimulus value. Here, we tested whether one kind of behavioral modification – the rapid stopping of actions in the face of reward-associated stimuli – could lead to subsequent devaluation of those stimuli. We developed a novel paradigm with three consecutive phases: implicit reward learning, a stop-signal task, and an auction procedure. In the learning phase, we associated abstract shapes with different levels of reward. In the stop-signal phase, we paired half those shapes with occasional stop-signals, requiring the rapid stopping of an initiated motor response, while the other half of shapes was not paired with stop signals. In the auction phase, we assessed the subjective value of each shape via willingness-to-pay. In two experiments, we found that participants bid less for shapes that were paired with stop-signals compared to shapes that were not. This suggests that the requirement to try to rapidly stop a response decrements stimulus value. Two follow-on control experiments suggested that the result was specifically due to stopping action rather than aversiveness, effort, conflict, or salience associated with stop signals. This study makes a theoretical link between research on inhibitory control and value. It also provides a novel behavioral paradigm with carefully operationalized learning, treatment, and valuation phases. This framework lends itself to both behavioral modification procedures in clinical disorders, and research on the neural underpinnings of stimulus devaluation. PMID:25313953

  14. Stimulus-parity synaesthesia versus stimulus-dichotomy synaesthesia: Odd, even or something else?

    PubMed Central

    White, Rebekah C.; Plassart, Anna

    2015-01-01

    In stimulus-parity synaesthesia, a range of stimuli—for example, letters, numbers, weekdays, months, and colours (the inducers)—elicit an automatic feeling of oddness or evenness (the concurrent). This phenomenon was first described by Théodore Flournoy in 1893, and has only recently been “rediscovered.” Here, we describe an individual who experiences a comparable phenomenon, but uses the labels negative and positive rather than odd and even. Stimulus-parity synaesthesia may be broader than first supposed, and it is important that assessments are sensitive to this breadth. PMID:26034572

  15. Effects of serotonin 5-HT3 receptor antagonists on stress-induced colonic hyperalgesia and diarrhoea in rats: a comparative study with opioid receptor agonists, a muscarinic receptor antagonist and a synthetic polymer.

    PubMed

    Hirata, T; Keto, Y; Nakata, M; Takeuchi, A; Funatsu, T; Akuzawa, S; Sasamata, M; Miyata, K

    2008-05-01

    In this study, we examined the effects of serotonin (5-HT)3 receptor antagonists (5-HT3RAs) including ramosetron, alosetron, and cilansetron on colonic nociceptive threshold in rats. Furthermore, we established a restraint stress-induced colonic hyperalgesia model in rats, and compared the inhibitory effects of 5-HT3RAs on restraint stress-induced colonic hyperalgesia and diarrhoea with those of loperamide, trimebutine, tiquizium and polycarbophil. The colonic nociceptive threshold was measured as the balloon pressure at the time the rat showed a nociceptive response during colonic distension by an intrarectally inserted balloon. Oral administration of ramosetron (3-30 microg kg(-1)), alosetron (30-300 microg kg(-1)), or cilansetron (30-300 microg kg(-1)) increased the colonic nociceptive threshold in a dose-dependent manner in non-stressed rats. Restraint stress for 1 h significantly decreased the colonic nociceptive threshold, but ramosetron (0.3-3 microg kg(-1)), alosetron (3-30 microg kg(-1)), cilansetron (3-30 microg kg(-1)) and trimebutine (100-1000 mg kg(-1)) significantly inhibited the decrease in the threshold. Loperamide (3-30 mg kg(-1)), tiquizium (100-1000 mg kg(-1)) and polycarbophil (1000 mg kg(-1)) did not affect the restraint stress-induced decrease in the colonic nociceptive threshold. All drugs tested in this study showed dose-dependent inhibition of restraint stress-induced diarrhoea in rats. These results indicate that, unlike existing antidiarrhoeal and spasmolytic agents, 5-HT3RAs have inhibitory effects on colonic nociception, and prevented restraint stress-induced both diarrhoea and hyperalgesia at almost the same doses in rats. This suggests that the 5-HT3RAs may be useful in ameliorating both colonic hyperalgesia and diarrhoea in patients with irritable bowel syndrome. PMID:18221252

  16. Trigemino-hypoglossal somatic reflex in the pharmacological studies of nociception in orofacial area.

    PubMed

    Zubrzycki, Marek; Janecka, Anna; Zubrzycka, Maria

    2015-01-01

    Disorders involving the orofacial area represent a major medical and social problem. They are a consequence of central nociceptive processes associated with stimulation of the trigeminal nerve nucleus. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neuropeptide solutions, can be used in the pharmacological studies of nociception in orofacial area. The investigated neuropeptides diffuse through the cerebroventricular lining producing an analgesic effect either directly, through the trigemino-hypoglossal reflex arc neurons or indirectly through the periaqueductal central gray, raphe nuclei or locus coeruleus neurons. The aim of this review is to present the effect of pharmacological activity of various neuropeptides affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats. PMID:26581382

  17. Gravity stress elevates the nociceptive threshold level with immunohistochemical changes in the rat brain

    NASA Astrophysics Data System (ADS)

    Kumei, Yasuhiro; Shimokawa, Reiko; Kimoto, Mari; Kawauchi, Yasuko; Shimokawa, Hitoyata; Makita, Koshi; Ohya, Keiichi; Toda, Kazuo

    2001-08-01

    Young Wistar male rats were exposed to 2G hypergravity by continuous centrifugation for 15 minutes. The nociceptive threshold was measured by using the von Frey type filament on the rat skin surfaces after hypergravity exposure. Following the hypergravity exposure, rats were sacrificed with anesthesia, then perfused and fixed for immunohistochemical examination. The 2G hypergravity elevated the nociceptive threshold up to 2-fold and induced analgesic effects on rats that remained for 2 hours after termination of centrifugation. Expression of Fos-immunoreactive proteins was prominently induced by 2G hypergravity in the arcuate nucleas and the paraventricular nucleus of the hypothalamus. The 15-minute flash exposure to 2G hypergravity induced pain suppression in rats, which might be attributed to change of neuronal activity in rat hypothalamus.

  18. The roles of sodium channels in nociception: implications for mechanisms of pain

    PubMed Central

    Cummins, Theodore R; Sheets, Patrick L; Waxman, Stephen G

    2007-01-01

    Understanding the role of voltage-gated sodium channels in nociception may provide important insights into pain mechanisms. Voltage-gated sodium channels are critically important for electrogenesis and nerve impulse conduction, and a target for important clinically relevant analgesics such as lidocaine. Furthermore, within the last decade studies have shown that certain sodium channel isoforms are predominantly expressed in peripheral sensory neurons associated with pain sensation, and that the expression and functional properties of voltage-gated sodium channels in peripheral sensory neurons can be dynamically regulated following axonal injury or peripheral inflammation. These data suggest that specific voltage-gated sodium channels may play crucial roles in nociception. Experiments with transgenic mice lines have clearly implicated Nav1.7, Nav1.8 and Nav1.9 in inflammatory, and possibly neuropathic, pain. However the most convincing and perhaps most exciting results regarding the role of voltage-gated sodium channels has come out recently from studies on human inherited disorders of nociception. Point mutations in Nav1.7 have been identified in patients with two distinct autosomal dominant severe chronic pain syndromes. Electrophysiological experiments indicate that these pain-associated mutations cause small yet significant changes in the gating properties of voltage-gated sodium channels that are likely to contribute substantially to the development of chronic pain. Equally exciting, a recent study has indicated that recessive mutations in Nav1.7 that eliminate functional current can result in an apparent complete, and possibly specific, indifference to pain in humans, suggesting that isoform specific blockers could be very effective in treating pain. In this review we will examine what is known about the roles of voltage-gated sodium channels in nociception. PMID:17766042

  19. Ovariectomy Results in Variable Changes in Nociception, Mood and Depression in Adult Female Rats

    PubMed Central

    Li, Li-Hong; Wang, Zhe-Chen; Yu, Jin; Zhang, Yu-Qiu

    2014-01-01

    Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX), a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%)-induced nociceptive responses (such as elevating and licking or biting) during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI) of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact). Using formalin-induced conditioned place avoidance (F-CPA), which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA). In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way. PMID:24710472

  20. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    PubMed

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. PMID:25917334

  1. Presynaptic inhibitory effects of fluvoxamine, a selective serotonin reuptake inhibitor, on nociceptive excitatory synaptic transmission in spinal superficial dorsal horn neurons of adult mice.

    PubMed

    Tomoyose, Orie; Kodama, Daisuke; Ono, Hideki; Tanabe, Mitsuo

    2014-01-01

    Fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor, has been shown to exert analgesic effects in humans and laboratory animals. However, its effects on spinal nociceptive synaptic transmission have not been fully characterized. Here, whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of fluvoxamine on monosynaptic A-fiber- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) evoked in response to electrical stimulation of a dorsal root were studied. Fluvoxamine (10 - 100 μM) concentration-dependently suppressed both monosynaptic A-fiber- and C-fiber-mediated EPSCs, which were attenuated by the selective 5-HT1A receptor antagonist WAY100635. In the presence of the selective 5-HT3 receptor antagonist tropisetron, fluvoxamine hardly suppressed A-fiber-mediated EPSCs, whereas its inhibitory effect on C-fiber-mediated EPSCs was not affected. Although fluvoxamine increased the paired-pulse ratio of A-fiber-mediated EPSCs, it increased the frequency of spontaneous and miniature EPSCs (sEPSCs and mEPSCs). Since sEPSCs and mEPSCs appeared to arise largely from spinal interneurons, we then recorded strontium-evoked asynchronous events occurring after A-fiber stimulation, whose frequency was reduced by fluvoxamine. These results suggest that fluvoxamine reduces excitatory synaptic transmission from primary afferent fibers via presynaptic mechanisms involving 5-HT1A and/or 5-HT3 receptors, which may contribute to its analgesic effects. PMID:25252797

  2. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input.

    PubMed

    Henssen, Dylan J H A; Kurt, Erkan; Kozicz, Tamas; van Dongen, Robert; Bartels, Ronald H M A; van Cappellen van Walsum, Anne-Marie

    2016-01-01

    Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes. PMID:27242449

  3. Optoactivation of Locus Ceruleus Neurons Evokes Bidirectional Changes in Thermal Nociception in Rats

    PubMed Central

    Hickey, Louise; Li, Yong; Fyson, Sarah J.; Watson, Thomas C.; Perrins, Ray; Hewinson, James; Teschemacher, Anja G.; Furue, Hidemasa; Lumb, Bridget M.

    2014-01-01

    Pontospinal noradrenergic neurons are thought to form part of a descending endogenous analgesic system that exerts inhibitory influences on spinal nociception. Using optogenetic targeting, we tested the hypothesis that excitation of the locus ceruleus (LC) is antinociceptive. We transduced rat LC neurons by direct injection of a lentiviral vector expressing channelrhodopsin2 under the control of the PRS promoter. Subsequent optoactivation of the LC evoked repeatable, robust, antinociceptive (+4.7°C ± 1.0, p < 0.0001) or pronociceptive (−4.4°C ± 0.7, p < 0.0001) changes in hindpaw thermal withdrawal thresholds. Post hoc anatomical characterization of the distribution of transduced somata referenced against the position of the optical fiber and subsequent further functional analysis showed that antinociceptive actions were evoked from a distinct, ventral subpopulation of LC neurons. Therefore, the LC is capable of exerting potent, discrete, bidirectional influences on thermal nociception that are produced by specific subpopulations of noradrenergic neurons. This reflects an underlying functional heterogeneity of the influence of the LC on the processing of nociceptive information. PMID:24647936

  4. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    PubMed Central

    Cooper, Mark S.; Przebinda, Adam S.

    2011-01-01

    Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain. PMID:22110931

  5. Encoding of mechanical nociception differs in the adult and infant brain

    PubMed Central

    Fabrizi, Lorenzo; Verriotis, Madeleine; Williams, Gemma; Lee, Amy; Meek, Judith; Olhede, Sofia; Fitzgerald, Maria

    2016-01-01

    Newborn human infants display robust pain behaviour and specific cortical activity following noxious skin stimulation, but it is not known whether brain processing of nociceptive information differs in infants and adults. Imaging studies have emphasised the overlap between infant and adult brain connectome architecture, but electrophysiological analysis of infant brain nociceptive networks can provide further understanding of the functional postnatal development of pain perception. Here we hypothesise that the human infant brain encodes noxious information with different neuronal patterns compared to adults. To test this we compared EEG responses to the same time-locked noxious skin lance in infants aged 0–19 days (n = 18, clinically required) and adults aged 23–48 years (n = 21). Time-frequency analysis revealed that while some features of adult nociceptive network activity are present in infants at longer latencies, including beta-gamma oscillations, infants display a distinct, long latency, noxious evoked 18-fold energy increase in the fast delta band (2–4 Hz) that is absent in adults. The differences in activity between infants and adults have a widespread topographic distribution across the brain. These data support our hypothesis and indicate important postnatal changes in the encoding of mechanical pain in the human brain. PMID:27345331

  6. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study

    PubMed Central

    Yang, Huan; Meijer, Hil G. E.; Doll, Robert J.; Buitenweg, Jan R.; van Gils, Stephan A.

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month. PMID:27252644

  7. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study.

    PubMed

    Yang, Huan; Meijer, Hil G E; Doll, Robert J; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month. PMID:27252644

  8. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery.

    PubMed

    Jeanne, M; Clément, C; De Jonckheere, J; Logier, R; Tavernier, B

    2012-08-01

    The analgesia nociception index (ANI) is an online heart rate variability analysis proposed for assessment of the antinociception/nociception balance. In this observational study, we compared ANI with heart rate (HR) and systolic blood pressure (SBP) during various noxious stimuli in anaesthetized patients. 15 adult patients undergoing laparoscopic appendectomy or cholecystectomy were studied. Patients received target controlled infusions of propofol (adjusted to maintain the Bispectral index in the range [40-60]) and remifentanil (with target increase in case of haemodynamic reactivity [increase in HR and/or SBP >20% of baseline]), and cisatracurium. Medical staff was blind to the ANI monitor. ANI and haemodynamic data were recorded at predefined times before and during surgery, including tetanic stimulation of the ulnar nerve before start of surgery. Anaesthesia induction decreased HR and SBP, while high ANI values (88 [17]) were recorded, indicating parasympathetic predominance. In 10 out of 11 patients, tetanic stimulation led to a transient (<5 min) decrease in ANI to 48 (40) whereas HR and SBP did not change. After start of surgery, ANI decreased to 60 (39) and decreased further to 50 (15) after the pneumoperitoneum was inflated, while there was no significant change in HR or SBP. When haemodynamic reactivity occurred, ANI had further decreased to 40 (15). After completion of surgery, ANI returned to 90 (34). ANI seems more sensitive than HR and SBP to moderate nociceptive stimuli in propofol-anaesthetized patients. Whether ANI monitoring may allow preventing haemodynamic reactivity to noxious stimuli remains to be demonstrated. PMID:22454275

  9. Analysis of nociception, sex and peripheral nerve innervation in the TMEV animal model of multiple sclerosis

    PubMed Central

    Lynch, Jessica L.; Gallus, Nathan J.; Ericson, Marna E.; Beitz, Alvin J.

    2009-01-01

    Although pain was previously not considered an important element of multiple sclerosis (MS), recent evidence indicates that over 50% of MS patients suffer from chronic pain. In the present study, we utilized the Theiler’s murine encephalomyelitis virus (TMEV) model of MS to examine whether changes in nociception occur during disease progression and to investigate whether sex influences the development of nociception or disease-associated neurological symptoms. Using the rotarod assay, TMEV infected male mice displayed increased neurological deficits when compared to TMEV infected female mice, which mimics what is observed in human MS. While both male and female TMEV infected mice exhibited thermal hyperalgesia and mechanical allodynia, female mice developed mechanical allodynia at a faster rate and displayed significantly more mechanical allodynia than male mice. Since neuropathic symptoms have been described in MS patients, we quantified sensory nerve fibers in the epidermis of TMEV-infected and non-infected mice to determine if there were alterations in epidermal nerve density. There was a significantly higher density of PGP9.5 and CGRP immunoreactive axons in the epidermis of TMEV-infected mice versus controls. Collectively these results indicate that the TMEV model is well suited to study the mechanisms of MS-induced nociception and suggest that alterations in peripheral nerve innervation may contribute to MS pain. PMID:17766043

  10. Emotional modulation of pain and spinal nociception in persons with major depressive disorder (MDD)

    PubMed Central

    Terry, Ellen L.; DelVentura, Jennifer L.; Bartley, Emily J.; Vincent, Ashley; Rhudy, Jamie L.

    2013-01-01

    Major depressive disorder (MDD) is associated with risk for chronic pain, but the mechanisms contributing to the MDD and pain relationship are unclear. To examine whether disrupted emotional modulation of pain might contribute, this study assessed emotional processing and emotional modulation of pain in healthy controls and unmedicated persons with MDD (14 MDD, 14 controls). Emotionally-charged pictures (erotica, neutral, mutilation) were presented in four blocks. Two blocks assessed physiological-emotional reactions (pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations. Results indicated pictures generally evoked the intended emotional responses; erotic pictures elicited pleasure, subjective arousal, and smaller startle magnitudes, whereas mutilation pictures elicited displeasure, corrugator EMG activation, and subjective/physiological arousal. However, emotional processing was partially disrupted in MDD as evidenced by a blunted pleasure response to erotica and a failure to modulate startle according to a valence linear trend. Furthermore, emotional modulation of pain was observed in controls, but not MDD, even though there were no group differences in NFR threshold or emotional modulation of NFR. Together, these results suggest supraspinal processes associated with emotion processing and emotional modulation of pain may be disrupted in MDD, but brain-to-spinal cord processes that modulate spinal nociception are intact. Thus, emotional modulation of pain deficits may be a phenotypic marker for future pain risk in MDD. PMID:23954763

  11. Encoding of mechanical nociception differs in the adult and infant brain.

    PubMed

    Fabrizi, Lorenzo; Verriotis, Madeleine; Williams, Gemma; Lee, Amy; Meek, Judith; Olhede, Sofia; Fitzgerald, Maria

    2016-01-01

    Newborn human infants display robust pain behaviour and specific cortical activity following noxious skin stimulation, but it is not known whether brain processing of nociceptive information differs in infants and adults. Imaging studies have emphasised the overlap between infant and adult brain connectome architecture, but electrophysiological analysis of infant brain nociceptive networks can provide further understanding of the functional postnatal development of pain perception. Here we hypothesise that the human infant brain encodes noxious information with different neuronal patterns compared to adults. To test this we compared EEG responses to the same time-locked noxious skin lance in infants aged 0-19 days (n = 18, clinically required) and adults aged 23-48 years (n = 21). Time-frequency analysis revealed that while some features of adult nociceptive network activity are present in infants at longer latencies, including beta-gamma oscillations, infants display a distinct, long latency, noxious evoked 18-fold energy increase in the fast delta band (2-4 Hz) that is absent in adults. The differences in activity between infants and adults have a widespread topographic distribution across the brain. These data support our hypothesis and indicate important postnatal changes in the encoding of mechanical pain in the human brain. PMID:27345331

  12. Validation of a Modified Algometer to Measure Mechanical Nociceptive Thresholds in Awake Dogs

    PubMed Central

    Chen, Hui Cheng; Goh, Yong Meng; Abubakar, Adamu Abdul; Fakurazi, Sharida

    2015-01-01

    This study was conducted to validate the use of a modified algometer device to measure mechanical nociceptive thresholds in six dogs. Dogs were administered morphine intravenously (IV) at 1 mg/kg or saline at equivolume in a crossover design with one-week washout period. Mechanical nociceptive thresholds were determined before, after the administration of treatments at 5 minutes, and hourly for 8 hours. Thresholds were recorded at the carpal pad, metacarpal foot pad, tibia, femur, and abdomen. Heart rates, body temperature, and respiration were recorded at similar time points. Thresholds increased significantly (P < 0.05) from baseline values for up to 3 hours at tibia and abdomen, 4 hours at metacarpal pad, and 5 hours at the carpal pad and femur. Hypothermia, bradycardia, and change in respiration were observed in all dogs after morphine injection. Saline did not alter any threshold levels during the eight-hour study period, indicating no evidence of tolerance, learned avoidance, or local hyperaesthesia. The device and methods of testing were well tolerated by all the dogs. Results suggest that the modified algometer and method of application are useful to measure nociceptive mechanical thresholds in awake dogs. PMID:26075236

  13. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-12-01

    Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade. PMID:26301611

  14. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input

    PubMed Central

    Henssen, Dylan J. H. A.; Kurt, Erkan; Kozicz, Tamas; van Dongen, Robert; Bartels, Ronald H. M. A.; van Cappellen van Walsum, Anne-Marie

    2016-01-01

    Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called trigeminothalamic tracts have been investigated before. In these animal-based studies from the previous century, the intracerebral pathways were mapped using different retro- and anterograde tracing methods. We review the literature on the trigeminothalamic tracts focusing on these animal tracer studies. Subsequently, we related the observations of these studies to clinical findings using fMRI trials. The intracerebral trigeminal pathways can be subdivided into three pathways: a ventral (contralateral) and dorsal (mainly ipsilateral) trigeminothalamic tract and the intranuclear pathway. Based on the reviewed evidence we hypothesize the co-existence of an ipsilateral nociceptive conduction tract to the cerebral cortex and we translate evidence from animal-based research to the human anatomy. Our hypothesis differs from the classical idea that orofacial pain arises only from nociceptive information via the contralateral, ventral trigeminothalamic pathway. Better understanding of the histology, anatomy and connectivity of the trigeminal fibers could contribute to the discovery of a more effective pain treatment in patients suffering from various orofacial pain syndromes. PMID:27242449

  15. Pavlovian Discriminative Stimulus Effects of Methamphetamine in Male Japanese quail (Coturnix japonica)

    PubMed Central

    Bolin, B. Levi; Singleton, Destiny L.; Akins, Chana K.

    2014-01-01

    Pavlovian drug discrimination (DD) procedures demonstrate that interoceptive drug stimuli may come to control behavior by informing the status of conditional relationships between stimuli and outcomes. This technique may provide insight into processes that contribute to drug-seeking, relapse, and other maladaptive behaviors associated with drug abuse. The purpose of the current research was to establish a model of Pavlovian DD in male Japanese quail. A Pavlovian conditioning procedure was used such that 3.0 mg/kg methamphetamine served as a feature positive stimulus for brief periods of visual access to a female quail and approach behavior was measured. After acquisition training, generalization tests were conducted with cocaine, nicotine, and haloperidol under extinction conditions. SCH 23390 was used to investigate the involvement of the dopamine D1 receptor subtype in the methamphetamine discriminative stimulus. Results showed that cocaine fully substituted for methamphetamine but nicotine only partially substituted for methamphetamine in quail. Haloperidol dose-dependently decreased approach behavior. Pretreatment with SCH 23390 modestly attenuated the methamphetamine discrimination suggesting that the D1 receptor subtype may be involved in the discriminative stimulus effects of methamphetamine. The findings are discussed in relation to drug abuse and associated negative health consequences. PMID:24965811

  16. Effects of ifenprodil on the discriminative stimulus effects of cocaine in rhesus monkeys.

    PubMed

    Fujiwara, Atsushi; Wakasa, Yoshio; Hironaka, Naoyuki; Sasaki, Mikio; Iino, Masahiko; Yanagita, Tomoji

    2007-02-01

    Ifenprodil is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist which prefers NR2B-containing NMDA receptors to NR2A-containing NMDA receptors. It has been reported that ifenprodil suppresses morphine-induced place preference in mice. In this study, the effects of ifenprodil on the discriminative stimulus effects of cocaine were examined in rhesus monkeys. Five monkeys were trained to discriminate cocaine at 0.25 or 0.5 mg/kg im from saline using a standard two-lever drug-discrimination paradigm under a fixed-ratio schedule of food reinforcement. A single dose of cocaine (0.06-0.5 mg/kg) produced a dose-dependent increase in cocaine-appropriate response, and training doses produced 100% cocaine-lever response in each monkey. Pretreatment with ifenprodil (1 or 2 mg/kg, i.v.) blocked the cocaine-appropriate response when low doses of cocaine were used. The results suggest that NR2B-containing NMDA receptor-mediated mechanisms modulate the discriminative stimulus effects of cocaine in rhesus monkeys. PMID:17393777

  17. Membership of Defined Responses in Stimulus Classes

    PubMed Central

    Lionello-DeNolf, Karen M.; Braga-Kenyon, Paula

    2012-01-01

    Sidman (2000) has suggested that in addition to conditional and discriminative stimuli, class-consistent defined responses can also become part of an equivalence class. In the current study, this assertion was tested using a mixed-schedule procedure that allowed defined response patterns to be “presented” as samples in the absence of different occasioning stimuli. Four typically developing adults were first trained to make distinct response topographies to two visual color stimuli, and then were taught to match those color stimuli to two different form-sample stimuli in a matching task. Three separate tests were given in order to determine whether training had established two classes each comprised of a response, a color, and a form: a form-response test in which the forms were presented to test if the participants would make differential responses to them; and two response-matching tests to test if the participants would match visual stimulus comparisons to response-pattern samples. Three of the four participants showed class-consistent responding in the tests, although some participants needed additional training prior to passing the tests. In general, the data indicated that the different response patterns had entered into a class with the visual stimuli. These results add to a growing literature on the role of class-consistent responding in stimulus class formation, and provide support for the notion that differential responses themselves can become a part of an equivalence class. PMID:24778458

  18. Multisensory temporal integration: Task and stimulus dependencies

    PubMed Central

    Stevenson, Ryan A.; Wallace, Mark T.

    2013-01-01

    The ability of human sensory systems to integrate information across the different modalities provides a wide range of behavioral and perceptual benefits. This integration process is dependent upon the temporal relationship of the different sensory signals, with stimuli occurring close together in time typically resulting in the largest behavior changes. The range of temporal intervals over which such benefits are seen is typically referred to as the temporal binding window (TBW). Given the importance of temporal factors in multisensory integration under both normal and atypical circumstances such as autism and dyslexia, the TBW has been measured with a variety of experimental protocols that differ according to criterion, task, and stimulus type, making comparisons across experiments difficult. In the current study we attempt to elucidate the role that these various factors play in the measurement of this important construct. The results show a strong effect of stimulus type, with the TBW assessed with speech stimuli being both larger and more symmetrical than that seen using simple and complex non-speech stimuli. These effects are robust across task and statistical criteria, and are highly consistent within individuals, suggesting substantial overlap in the neural and cognitive operations that govern multisensory temporal processes. PMID:23604624

  19. Hospital Clowning as Play Stimulus in Healthcare

    PubMed Central

    Anes, Laura; Obi, Marianne

    2014-01-01

    A serious illness, a chronic medical condition or a hospital bed should not deny any child her/his basic right to play, a right essential for children’s development and general wellbeing. In fact, it is in these frightening and anxious moments that play and the stimulus that it provides can help the most. This article will focus on the impacts and benefits of professional hospital clowning for the wellbeing and recovery process of ill and hospitalized children. Our experience has shown that through interactive play and humor, “clowndoctors” can create an enabling and supportive environment that facilitates children’s adaptation to the hospital setting and improves their acceptance of medical procedures and staff. While moving from bedside to bedside, RED NOSES clowndoctors encourage children’s active participation and support their natural instinct to play, fully including them in the interaction, if the children wish to do so. Therefore, clowndoctor performances offer ill children much needed stimulus, self-confidence and courage, elements fundamental to reducing their vulnerability. In this piece, a special emphasis will be put on the various approaches used by RED NOSES clowndoctors to bond and reach out to children suffering from different medical conditions.

  20. Conditional tonic stimulus control of nonspecific arousal.

    PubMed

    Kimmel, H D; Birbaumer, N; Elbert, T; Lutzenberger, W; Rockstroh, B

    1983-01-01

    Subjects performed a reaction time (RT) task in the presence of colored indirect lighting which had previously been associated with either sporadic electric shock (Unsafe context) or no shock (Safe context). Autonomic and cortical processes were influenced by the visual context in two ways. Nonspecific arousal was elevated in the Unsafe context as compared with the Safe context (larger SCR and more accelerative HR change elicited by the RT warning stimulus, and retarded habituation of the middle component of the slow cortical potential during the warning stimulus). In addition, information processing may have been impaired in the Unsafe as compared to the Safe context, since the earliest component of the SCR and the N100 component of the auditory evoked potential were both reduced. Higher frequency of unelicited SCR was observed following changes from a Safe to an Unsafe context than with reverse changes, during the association of these contexts with shock, but this was the only evidence of direct tonic conditioning. In general, the results demonstrate the degree to which psychophysiological processes may be influenced by tonic environmental conditions. PMID:6622070

  1. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    PubMed Central

    2014-01-01

    It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states. PMID:25276794

  2. TRPV currents and their role in the nociception and neuroplasticity.

    PubMed

    Satheesh, Noothan Jyothi; Uehara, Yoshio; Fedotova, Julia; Pohanka, Miroslav; Büsselberg, Dietrich; Kruzliak, Peter

    2016-06-01

    Transient receptor potential channels sensitive to vanilloids (TRPVs) are group of ion channels which are sensitive to various tissue damaging signals and their activation is generally perceived as pain. Therefore, they are generally named as nociceptors. Understanding their activation and function as well as their interaction with intracellular pathways is crucial for the development of pharmacological interference in order to reduce pain perception. The current review summarizes basic facts in regard to TRPV and discusses their relevance in the sensing of (pain-) signals and their intracellular processing, focussing on their modulation of the intracellular calcium ([Ca(2+)]i) signal. Furthermore we discuss the basic mechanisms how the modification of [Ca(2+)]i through TRPV might induce long-term-potentiation (LTP) or long-term- depression (LTD) and from "memories" of pain. Understanding of these mechanisms is needed to localize the best point of interference for pharmacological treatment. Therefore, high attention is given to highlight physiological and pathological processes and their interaction with significant modulators and their roles in neuroplasticity and pain modulation. PMID:26825374

  3. Matching-to-Sample and Stimulus-Pairing-Observation Procedures in Stimulus Equivalence: The Effects of Number of Trials and Stimulus Arrangement

    ERIC Educational Resources Information Center

    Kinloch, Jennifer May; McEwan, James Stewart Anderson; Foster, T. Mary

    2013-01-01

    Studies comparing the effectiveness of the stimulus-pairing-observation and matching-to-sample procedures in facilitating equivalence relations have reported conflicting findings. This study compared the effectiveness of these procedures and examined the effect of stimulus arrangement and the number of training trials completed prior to each…

  4. Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis.

    PubMed

    Terada, Yuka; Fujimura, Mayuko; Nishimura, Sachiyo; Tsubota, Maho; Sekiguchi, Fumiko; Kawabata, Atsufumi

    2015-02-01

    Hydrogen sulfide (H(2)S), formed by multiple enzymes, including cystathionine-γ-lyase (CSE), targets Ca(v)3.2 T-type Ca(2+) channels (T channels) and transient receptor potential ankyrin-1 (TRPA1), facilitating somatic pain. Pancreatitis-related pain also appears to involve activation of T channels by H(2)S formed by the upregulated CSE. Therefore, this study investigates the roles of the Ca(v)3.2 isoform and/or TRPA1 in pancreatic nociception in the absence and presence of pancreatitis. In anesthetized mice, AP18, a TRPA1 inhibitor, abolished the Fos expression in the spinal dorsal horn caused by injection of a TRPA1 agonist into the pancreatic duct. As did mibefradil, a T-channel inhibitor, in our previous report, AP18 prevented the Fos expression following ductal NaHS, an H(2)S donor. In the mice with cerulein-induced acute pancreatitis, the referred hyperalgesia was suppressed by NNC 55-0396 (NNC), a selective T-channel inhibitor; zinc chloride; or ascorbic acid, known to inhibit Ca(v)3.2 selectively among three T-channel isoforms; and knockdown of Ca(v)3.2. In contrast, AP18 and knockdown of TRPA1 had no significant effect on the cerulein-induced referred hyperalgesia, although they significantly potentiated the antihyperalgesic effect of NNC at a subeffective dose. TRPA1 but not Ca(v)3.2 in the dorsal root ganglia was downregulated at a protein level in mice with cerulein-induced pancreatitis. The data indicate that TRPA1 and Ca(v)3.2 mediate the exogenous H(2)S-induced pancreatic nociception in naïve mice and suggest that, in the mice with pancreatitis, Ca(v)3.2 targeted by H(2)S primarily participates in the pancreatic pain, whereas TRPA1 is downregulated and plays a secondary role in pancreatic nociceptive signaling. PMID:25267397

  5. Effects of Intrathecal Carbenoxolone Treatment on Nociception and Analgesia in Rat

    PubMed Central

    Kamalpour, Marjan; Fereidoni, Masoud; Moghimi, Ali

    2014-01-01

    Background: Gap junctions (GJ) are important in pain signalling at the spinal cord level. Aims: The aim of this investigation was to study the effects of GJ on nociception and the analgesic/hyperalgesic effects of morphine following administration of carbenoxolone as a GJ blocker. Male Wistar rats (200–250 g) were divided into three groups: saline i.p., 10 mg/kg and 1 μg/kg i.p. morphine, each with two subgroups. One was treated intrathecally with saline and the other with carben oxolone. Study Design: Animal experiment. Methods: The thermal nociception threshold was measured prior to and after injections using the tail flick test. Chemical nociception assessment was conducted using a 0.05-mL subplantar injection of 2.5% formalin. Results: Both formalin-induced neurogenic and inflammatory nociception were reduced in the [saline i.p./carbenoxolone i.t.] and [morphine 1 μg/kg, i.p./carbenoxolone i.t.] subgroups (p<0.001). The 10 mg/kg i.p. morphine, i.t./carbenoxolone treatment reduced morphine-induced analgesia in the inflammatory phase (p<0.05), while it was ineffective in the neurogenic phase. Carbenoxolone decreased 1 μg/kg i.p. morphine-induced hyperalgesia in the tail flick test (p<0.001). Conclusion: Based on the results, GJ probably play a role in nociception at the spinal cord level. This may be due to the facilitation of inflammatory mediators released from glial cells or the connection between stimulatory interneurons and projection neurons. GJ blocking attenuated morphine-induced analgesia. This may be due to the attenuation of pre/post-synaptic inhibitory effects of morphine at the spinal cord level. As demonstrated by the investigations, GJ are present between inhibitory interneurons. Therefore, we can assume that blockage of GJ between inhibitory interneurons will reduce morphine-induced analgesia at the spinal cord level. However, this requires further investigation. PMID:25207190

  6. GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus

    PubMed Central

    Pérez-González, David; Hernández, Olga; Covey, Ellen; Malmierca, Manuel S.

    2012-01-01

    The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechanism of SSA are currently unknown. We used microiontophoretic application of gabazine to examine the role of GABAA-mediated inhibition in SSA in the inferior colliculus, the midbrain center for auditory processing. We found that gabazine slowed down the process of adaptation to high probability stimuli but did not abolish it, with response magnitude and latency still depending on the probability of the stimulus. Blocking GABAA receptors increased the firing rate to high and low probability stimuli, but did not completely equalize the responses. Together, these findings suggest that GABAA-mediated inhibition acts as a gain control mechanism that enhances SSA by modifying the responsiveness of the neuron. PMID:22479591

  7. Role of TRPV1 channels of the dorsal periaqueductal gray in the modulation of nociception and open elevated plus maze-induced antinociception in mice.

    PubMed

    Mascarenhas, Diego Cardozo; Gomes, Karina Santos; Nunes-de-Souza, Ricardo Luiz

    2015-10-01

    Recent findings have identified the presence of transient receptor potential vanilloid-1 (TRPV1) channels within the dorsal portion of the periaqueductal gray (dPAG), suggesting their involvement in the control of pain and environmentally-induced antinociception. Environmentally, antinociception may be achieved through the use of an open elevated plus maze (oEPM, an EPM with 4 open arms), a highly aversive environmental situation. Here, we investigated the role of these TRPV1 channels within the dPAG in the modulation of a tonic pain and in the oEPM-induced antinociception. Male Swiss mice, under the nociceptive effect of 2.5% formalin injected into the right hind paw, received intra-dPAG injections of the TRPV1 agonist (capsaicin: 0, 0.01, 0.1 or 1.0 nmol/0.2 μL; Experiment 1) or antagonist (capsazepine: 0, 10 or 30 nmol/0.2 μL; Experiment 2) or combined injections of capsazepine (30 nmol) and capsaicin (1.0 nmol) (Experiment 3) and the time spent licking the formalin-injected paw was recorded. In Experiment 4, mice received intra-dPAG capsazepine (0 or 30 nmol) and were exposed to the oEPM or to a control situation, an enclosed EPM (eEPM; an EPM with 4 enclosed arms). Results showed that while capsaicin (1 nmol) decreased the time spent licking the formalin-injected paw, capsazepine did not change nociceptive response. Capsazepine (30 nmol) blocked pain inhibition induced by capsaicin and mildly attenuated the oEPM-induced antinociception. Our results revealed an important role of TRPV1 channels within the dPAG in the modulation of pain and in the phenomenon known as fear-induced antinociception in mice. PMID:26183651

  8. Antinociceptive Effect of 3-(2,3-Dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one in Mice Models of Induced Nociception.

    PubMed

    Ismail, Nur Izzati; Ming-Tatt, Lee; Lajis, Nordin; Akhtar, Muhammad Nadeem; Akira, Ahmad; Perimal, Enoch Kumar; Israf, Daud Ahmad; Sulaiman, Mohd Roslan

    2016-01-01

    The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It also produced a significant increase in response latency time in the hot-plate test and a marked reduction in time spent licking the injected paw in both phases of the formalin-induced paw-licking test. In addition, it was also demonstrated that DMFP exhibited significant inhibition of the neurogenic nociceptive response induced by intraplantar injections of capsaicin and glutamate. Moreover, the antinociceptive effect of DMFP in the acetic acid-induced abdominal-writhing test and the hot-plate test was not antagonized by pretreatment with a non-selective opioid receptor antagonist, naloxone. Finally, DMFP did not show any toxic effects and/or mortality in a study of acute toxicity and did not interfere with motor coordination during the Rota-rod test. Our present results show that DMFP exhibits both peripheral and central antinociceptive effects. It was suggested that its peripheral antinociceptive activity is associated with attenuated production and/or release of NO and various pro-inflammatory mediators, while central antinociceptive activity seems to be unrelated to the opioidergic system, but could involve, at least in part, an interaction with the inhibition of capsaicin-sensitive fibers and the glutamatergic system. PMID:27556438

  9. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo.

    PubMed

    Smith, Spencer L; Smith, Ikuko T; Branco, Tiago; Häusser, Michael

    2013-11-01

    Neuronal dendrites are electrically excitable: they can generate regenerative events such as dendritic spikes in response to sufficiently strong synaptic input. Although such events have been observed in many neuronal types, it is not well understood how active dendrites contribute to the tuning of neuronal output in vivo. Here we show that dendritic spikes increase the selectivity of neuronal responses to the orientation of a visual stimulus (orientation tuning). We performed direct patch-clamp recordings from the dendrites of pyramidal neurons in the primary visual cortex of lightly anaesthetized and awake mice, during sensory processing. Visual stimulation triggered regenerative local dendritic spikes that were distinct from back-propagating action potentials. These events were orientation tuned and were suppressed by either hyperpolarization of membrane potential or intracellular blockade of NMDA (N-methyl-d-aspartate) receptors. Both of these manipulations also decreased the selectivity of subthreshold orientation tuning measured at the soma, thus linking dendritic regenerative events to somatic orientation tuning. Together, our results suggest that dendritic spikes that are triggered by visual input contribute to a fundamental cortical computation: enhancing orientation selectivity in the visual cortex. Thus, dendritic excitability is an essential component of behaviourally relevant computations in neurons. PMID:24162850

  10. The Role of 5-HT1A Receptors in Long-Term Adaptation of Newborn Rats to Hypoxia.

    PubMed

    Mikhailenko, V A; Butkevich, I P

    2016-08-01

    We studied the effects of neonatal hypoxia on adaptive behavior of rats during prepubertal and pubertal periods in the control and after repeated injections of 5-HT1A receptor agonist buspirone. Hypoxia enhanced the inflammatory nociceptive response and exacerbated the depressive-like behavior. Repeated injections of buspirone starting from the neonatal period produced a long-term normalizing effect on the inflammatory nociceptive response and psychoemotional behavior disturbed by hypoxia. The protective effect of buspirone can result from strengthening of the adaptive potencies of the serotoninergic system via activation of 5-HT1A receptors that up-regulate secretion of trophic factor S100β under conditions of serotonin deficiency typical of rats exposed to neonatal hypoxia. Buspirone promotes recovery of the afferent and efferent connections of the raphe nuclei with the prefrontal cortex and spinal cord involved in integration of the anti-nociceptive and psychoemotional systems. PMID:27591870

  11. Changes in the Bispectral Index in Response to Loss of Consciousness and No Somatic Movement to Nociceptive Stimuli in Elderly Patients

    PubMed Central

    Yang, Ning; Yue, Yun; Pan, Jonathan Z; Zuo, Ming-Zhang; Shi, Yu; Zhou, Shu-Zhen; Peng, Wen-Ping; Gao, Jian-Dong

    2016-01-01

    Background: Bispectral index (BIS) is considered very useful to guide anesthesia care in elderly patients, but its use is controversial for the evaluation of the adequacy of analgesia. This study compared the BIS changes in response to loss of consciousness (LOC) and loss of somatic response (LOS) to nociceptive stimuli between elderly and young patients receiving intravenous target-controlled infusion (TCI) of propofol and remifentanil. Methods: This study was performed on 52 elderly patients (aged 65–78 years) and 52 young patients (aged 25–58 years), American Society of Anesthesiologists physical status I or II. Anesthesia was induced with propofol administered by TCI. A standardized noxious electrical stimulus (transcutaneous electrical nerve stimulation, [TENS]) was applied (50 Hz, 80 mA, 0.25 ms pulses for 4 s) to the ulnar nerve at increasing remifentanil predicted effective-site concentration (Ce) until patients lost somatic response to TENS. Changes in awake, prestimulus, poststimulus BIS, heart rate, mean arterial pressure, pulse oxygen saturation, predicted plasma concentration, Ce of propofol, and remifentanil at both LOC and LOS clinical points were investigated. Results: BISLOC in elderly group was higher than that in young patient group (65.4 ± 9.7 vs. 57.6 ± 12.3) (t = 21.58, P < 0.0001) after TCI propofol, and the propofol Ce at LOC was 1.6 ± 0.3 μg/ml in elderly patients, which was significantly lower than that in young patients (2.3 ± 0.5 μg/ml) (t = 7.474, P < 0.0001). As nociceptive stimulation induced BIS to increase, the mean of BIS maximum values after TENS was significantly higher than that before TENS in both age groups (t = 8.902 and t = 8.019, P < 0.0001). With increasing Ce of remifentanil until patients lost somatic response to TENS, BISLOS was the same as the BISLOC in elderly patients (65.6 ± 10.7 vs. 65.4 ± 9.7), and there were no marked differences between elderly and young patient groups in BISawake, BISLOS, and Ce of

  12. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses

    PubMed Central

    Sumie, Makoto; Shiokawa, Hiroaki; Yamaura, Ken; Karashima, Yuji; Hoka, Sumio; Yoshimura, Megumu

    2016-01-01

    Background Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord. Methods We made patch-clamp recordings from substantia gelatinosa (SG) neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli. Results Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs) evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs) were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine. Conclusions We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal

  13. Attention modulation of stimulus rivalry under swapping paradigm

    PubMed Central

    Doualot, Audrey; Simard, Mathieu; Saint-Amour, Dave

    2014-01-01

    Stimulus rivalry refers to the sustained periods of perceptual dominance that occur when different visual stimuli are swapped at a regular rate between eyes. This phenomenon is thought to involve mainly eye-independent mechanisms. Although several studies have reported that attention can increase image predominance in conventional binocular rivalry, it is unknown whether attention can specifically modulate stimulus rivalry. We addressed this question and manipulated the spatial characteristic of the stimuli to assess whether such an attention modulation could depend on visual processing hierarchy. The results showed that selective attention of stimulus rivalry significantly increased the predominance of the attended stimulus, regardless of the stimulus' spatial characteristics. No effect was observed on the swapping percept. The findings are discussed in the context of recent models attempting to characterize stimulus rivalry between eye-dependent and eye-independent levels. PMID:25469220

  14. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain. PMID:26490459

  15. Novelty, stimulus control, and operant variability

    PubMed Central

    Shahan, Timothy A.; Chase, Philip N.

    2002-01-01

    Although behavior analysis has been criticized for failure to account for response novelty, many common behavior-analytic concepts and processes (e.g., selectionism, the operant, reinforcement, and stimulus control) assume variability both in the environment and in behavior. The importance of the relation between variability and novelty, particularly for verbal behavior, is discussed, and concepts used to account for novel behavior are examined. Experimental findings also are reviewed that suggest that variability in behavior can come under discriminative control, and these findings are applied to describe novel instances of behavior that may arise during problem solving. We conclude that variations provided and selected by the terms of the three-term contingency are powerful means for understanding novel behavior. PMID:22478385

  16. Hippocampal culture stimulus with 4-megahertz ultrasound

    NASA Astrophysics Data System (ADS)

    Muratore, Robert; LaManna, Justine K.; Lamprecht, Michael R.; Morrison, Barclay, III

    2012-10-01

    Among current modalities, ultrasound uniquely offers both millisecond and millimeter accuracy in noninvasively stimulating brain tissue. In addition, by sweeping the ultrasound beam within the refractory period of the neuronal tissue, ultrasonic neuromodulation can be adapted to target extended or multiply connected regions with quasi-simultaneity. Towards the development of this safe brain stimulus technique, the response of rat hippocampal cultures to ultrasound was investigated. Hippocampal slices, 0.4-mm thick, were obtained from 8-day old Sprague Dawley rats and cultured for 6 days. The in vitro cultures were exposed to multiple 100-ms 4.04-MHz ultrasound pulses from a 42-mm diameter, 90-mm spherical cap transducer. Peak pressure ranged from 0 through about 77 kPa. Responses in the form of electrical potentials from a sixty channel electrode array were digitized and recorded. The DG and CA1 regions of the hippocampus exhibited similar ultrasonically-evoked field potentials.

  17. Spatiotemporal Dynamics of Cortical Representations during and after Stimulus Presentation.

    PubMed

    van de Nieuwenhuijzen, Marieke E; van den Borne, Eva W P; Jensen, Ole; van Gerven, Marcel A J

    2016-01-01

    Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within the next 110 ms, activation spread out to include the temporal lobe before returning to residing mainly in the occipital lobe again. After stimulus offset, a peak in information was observed, comparable to the peak after stimulus onset. Moreover, similar processes, albeit not identical, seemed to underlie both peaks. Information about the categorical identity of the stimulus remained present until 677 ms after stimulus offset, during which period the stimulus had to be retained in working memory. Activation patterns initially resembled those observed during stimulus presentation. After about 200 ms, however, this representation changed and class-specific activity became more equally distributed over the four lobes. These results show that, although there are common processes underlying stimulus representation both during and after stimulus presentation, these representations change depending on the specific stage of perception and maintenance. PMID:27242453

  18. Spatiotemporal Dynamics of Cortical Representations during and after Stimulus Presentation

    PubMed Central

    van de Nieuwenhuijzen, Marieke E.; van den Borne, Eva W. P.; Jensen, Ole; van Gerven, Marcel A. J.

    2016-01-01

    Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within the next 110 ms, activation spread out to include the temporal lobe before returning to residing mainly in the occipital lobe again. After stimulus offset, a peak in information was observed, comparable to the peak after stimulus onset. Moreover, similar processes, albeit not identical, seemed to underlie both peaks. Information about the categorical identity of the stimulus remained present until 677 ms after stimulus offset, during which period the stimulus had to be retained in working memory. Activation patterns initially resembled those observed during stimulus presentation. After about 200 ms, however, this representation changed and class-specific activity became more equally distributed over the four lobes. These results show that, although there are common processes underlying stimulus representation both during and after stimulus presentation, these representations change depending on the specific stage of perception and maintenance. PMID:27242453

  19. Parallel and orthogonal stimulus in ultradiluted neural networks

    NASA Astrophysics Data System (ADS)

    Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.

    2006-10-01

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .

  20. Stimulus-Stimulus Pairing to Increase Vocalizations in Children with Language Delays: a Review.

    PubMed

    Shillingsburg, M Alice; Hollander, Diane L; Yosick, Rachel N; Bowen, Crystal; Muskat, Lori R

    2015-10-01

    Stimulus-stimulus pairing (SSP) is a procedure used to increase vocalizations in children with significant language delays. However, results from studies that have examined the effectiveness of SSP have been discrepant. The following review of the literature summarizes the results from 13 experiments published between 1996 and 2014 that used this procedure with children with language delays. Studies were analyzed across various participant and procedural variables, and an effect size estimate (nonoverlap of all pairs) was calculated for a portion of the participants in the studies reviewed. Results indicated an overall moderate intervention effect for SSP of speech sounds. Recommendations are provided for future researchers about information to report and potential avenues for future studies. PMID:27606213

  1. The phase of pre-stimulus alpha oscillations influences the visual perception of stimulus timing.

    PubMed

    Milton, Alex; Pleydell-Pearce, Christopher W

    2016-06-01

    This study examined the influence of pre-stimulus alpha phase and attention on whether two visual stimuli occurring closely in time were perceived as simultaneous or asynchronous. The results demonstrated that certain phases of alpha in the period immediately preceding stimulus onset were associated with a higher proportion of stimuli judged to be asynchronous. Furthermore, this effect was shown to occur independently of both visuo-spatial attention and alpha amplitude. The findings are compatible with proposals that alpha phase reflects cyclic shifts in neuronal excitability. Importantly, however, the results further suggest that fluctuations in neuronal excitability can create a periodicity in neuronal transfer that can have functional consequences that are decoupled from changes in alpha amplitude. This study therefore provides evidence that perceptual processes fluctuate periodically although it remains uncertain whether this implies the discrete temporal framing of perception. PMID:26924284

  2. Morphine-induced suppression of conditioned stimulus intake: Effects of stimulus type and insular cortex lesions

    PubMed Central

    Lin, Jian-You; Roman, Christopher; Reilly, Steve

    2009-01-01

    Intake of an unconditionally preferred taste stimulus (e.g., saccharin) is reduced by contingent administration of a drug of abuse (e.g., morphine). We examined the influence of insular cortex (IC) lesions on morphine-induced suppression of an olfactory cue and two taste stimuli with different levels of perceived innate reward value. Two major findings emerged from this study. First, morphine suppressed intake of an aqueous odor as well as each taste stimulus in neurologically intact rats. Second, IC lesions disrupted morphine-induced suppression of the taste stimuli but not the aqueous odor cue. These results indicate that the perceived innate reward value of the CS is not a factor that governs drug-induced intake suppression. PMID:19631620

  3. Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics.

    PubMed

    Mulavara, Ajitkumar P; Fiedler, Matthew J; Kofman, Igor S; Wood, Scott J; Serrador, Jorge M; Peters, Brian; Cohen, Helen S; Reschke, Millard F; Bloomberg, Jacob J

    2011-04-01

    Stochastic resonance (SR) is a phenomenon whereby the response of a non-linear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. Stochastic resonance using imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, has been shown to significantly improve ocular stabilization reflexes in response to whole-body tilt; improved balance performance during postural disturbances and optimize covariance between the weak input periodic signals introduced via venous blood pressure receptors and the heart rate responses. In our study, 15 subjects stood on a compliant surface with their eyes closed. They were given low-amplitude binaural bipolar stochastic electrical stimulation of the vestibular organs in two frequency ranges of 1-2 and 0-30 Hz over the amplitude range of 0 to ±700 μA. Subjects were instructed to maintain an upright stance during 43-s trials, which consisted of baseline (zero amplitude) and stimulation (non-zero amplitude) periods. Measures of stability of the head and trunk using inertial motion unit sensors attached to these segments and the whole body using a force plate were measured and quantified in the mediolateral plane. Using a multivariate optimization criterion, our results show that the low levels of vestibular stimulation given to the vestibular organs improved balance performance in normal healthy subjects in the range of 5-26% consistent with the stochastic resonance phenomenon. In our study, 8 of 15 and 10 of 15 subjects were responsive for the 1-2- and 0-30-Hz stimulus signals, respectively. The improvement in balance performance did not differ significantly between the stimulations in the two frequency ranges. The amplitude of optimal stimulus for improving balance performance was predominantly in the range of ±100 to ±400 μA. A device based on SR stimulation of the vestibular system might be useful as either a training

  4. Preoperative anxiety induces no clinically relevant effect on intraoperative nociceptive levels during breast surgery under general anesthesia.

    PubMed

    Hashimoto, Kazuma; Iwayama, Sachiko; Sano, Yuka; Tatara, Tsuneo; Hirose, Munetaka

    2015-12-01

    Anxiety can affect acute and chronic postoperative pain after breast surgery. Nociceptive response during surgery might also be affected by preoperative anxiety even under unconscious state during general anesthesia. The aim of this retrospective study was to investigate nociceptive responses during breast surgery under general anesthesia in patients with or without preoperative anxiety. Patients (n = 45) were divided into a low-anxiety group (n = 25) and a high-anxiety group (n = 20) in accordance with preoperative scores for the State Trait Anxiety Inventory. We performed discriminant analysis to compare nociception during surgery using three intraoperative averaged values: heart rate; systolic blood pressure; and perfusion index. No significant differences in discriminant score were seen between groups (p = 0.10). Although we performed propensity score-matching to reduce the bias due to confounding variables in this retrospective study, there was also no significant difference in levels of nociceptive response between groups (p = 0.06). In conclusion, the level of nociception during breast surgery is not significantly affected by preoperative anxiety. PMID:25995061

  5. Context modulates early stimulus processing when resolving stimulus-response conflict.

    PubMed

    Scerif, Gaia; Worden, Michael S; Davidson, Matthew; Seiger, Liat; Casey, B J

    2006-05-01

    When responding to stimuli in our environment, the presence of multiple items associated with task-relevant responses affects both ongoing response selection and subsequent behavior. Computational modeling of conflict monitoring and neuroimaging data predict that the recent context of response competition will bias the selection of certain stimuli over others very early in the processing stream through increased focal spatial attention. We used high-density EEG to test this hypothesis and to investigate the contextual effects on nonspatial, early stimulus processing in a modified flanker task. Subjects were required to respond to a central arrow and to ignore potentially conflicting information from flanking arrows in trials preceded by a series of either compatible or incompatible trials. On some trials, we presented the flanking arrows in the absence of the central target. The visual P1 component was selectively enhanced only for incompatible trials when preceded by incompatible ones, suggesting that contextual effects depend on feature-based processing, and not only simple enhancement of the target location. Context effects also occurred on no-target trials as evidenced by an enhanced early-evoked response when they followed compatible compared to incompatible trials, suggesting that spatial attention was also modulated by recent context. These results support a multi-componential account of spatial and nonspatial attention and they suggest that contextually driven cognitive control mechanisms can operate on specific stimulus features at extremely early stages of processing within stimulus-response conflict tasks. PMID:16768377

  6. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    PubMed Central

    Park, Chul-Kyu

    2015-01-01

    In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region. PMID:26617436

  7. A D2-like receptor family agonist produces analgesia in mechanonociception but not in thermonociception at the spinal cord level in rats.

    PubMed

    Almanza, Angélica; Simón-Arceo, Karina; Coffeen, Ulises; Fuentes-García, Ruth; Contreras, Bernardo; Pellicer, Francisco; Mercado, Francisco

    2015-10-01

    The administration of dopaminergic drugs produces analgesia in individuals experiencing different types of pain. Analgesia induced by these drugs at the spinal cord level is mediated by D2-like agonists, which specifically inhibit the detection of nociceptive stimuli by sensory afferents. The extent of the analgesia provided by spinal dopamine agonists remains controversial, and the cellular mechanism of this analgesic process is poorly understood. The objective of this study was to evaluate the analgesic effect of quinpirole, a D2-like agonist, based on two nociceptive tests and at various doses that were selected to specifically activate dopamine receptors. We found that intrathecal quinpirole administration produces analgesia of mechanical but not thermal nociception and that the analgesic effect of quinpirole is reversed by a mix of D2, D3, and D4 receptor-specific antagonists, suggesting that the activation of all D2-like receptors is involved in the analgesia produced by intrathecal quinpirole. The differential effect on thermal and mechanical nociception was also tested upon the activation of μ-opioid receptors. As reported previously, low doses of the μ-opioid receptor agonist DAMGO produced analgesia of only thermonociception. This evidence shows that a D2-like receptor agonist administered at the spinal cord level produces analgesia specific to mechanonociception but not thermonociception. PMID:26303304

  8. Autoimmunity contributes to nociceptive sensitization in a mouse model of complex regional pain syndrome.

    PubMed

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Czirr, Eva; Stan, Trisha; Sahbaie, Peyman; Wyss-Coray, Tony; Kingery, Wade S; Clark, J David

    2014-11-01

    Complex regional pain syndrome (CRPS) is a painful, disabling, chronic condition whose etiology remains poorly understood. The recent suggestion that immunological mechanisms may underlie CRPS provides an entirely novel framework in which to study the condition and consider new approaches to treatment. Using a murine fracture/cast model of CRPS, we studied the effects of B-cell depletion using anti-CD20 antibodies or by performing experiments in genetically B-cell-deficient (μMT) mice. We observed that mice treated with anti-CD20 developed attenuated vascular and nociceptive CRPS-like changes after tibial fracture and 3 weeks of cast immobilization. In mice with established CRPS-like changes, the depletion of CD-20+ cells slowly reversed nociceptive sensitization. Correspondingly, μMT mice, deficient in producing immunoglobulin M (IgM), failed to fully develop CRPS-like changes after fracture and casting. Depletion of CD20+ cells had no detectable effects on nociceptive sensitization in a model of postoperative incisional pain, however. Immunohistochemical experiments showed that CD20+ cells accumulate near the healing fracture but few such cells collect in skin or sciatic nerves. On the other hand, IgM-containing immune complexes were deposited in skin and sciatic nerve after fracture in wild-type, but not in μMT fracture/cast, mice. Additional experiments demonstrated that complement system activation and deposition of membrane attack complexes were partially blocked by anti-CD20+ treatment. Collectively, our results suggest that CD20-positive B cells produce antibodies that ultimately support the CRPS-like changes in the murine fracture/cast model. Therapies directed at reducing B-cell activity may be of use in treating patients with CRPS. PMID:25218828

  9. Autoimmunity contributes to nociceptive sensitization in a mouse model of complex regional pain syndrome

    PubMed Central

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Czirr, Eva; Stan, Trisha; Sahbaie, Peyman; Wyss-Coray, Tony; Kingery, Wade S.; Clark, J. David

    2014-01-01

    Complex regional pain syndrome (CRPS) is a painful, disabling, chronic condition whose etiology remains poorly understood. The recent suggestion that immunological mechanisms may underlie CRPS provides an entirely novel framework in which to study the condition and consider new approaches to treatment. Using a murine fracture/cast model of CRPS, we studied the effects of B-cell depletion using anti-CD20 antibodies or by performing experiments in genetically B-cell-deficient (µMT) mice. We observed that mice treated with anti-CD20 developed attenuated vascular and nociceptive CRPS-like changes after tibial fracture and 3 weeks of cast immobilization. In mice with established CRPS-like changes, the depletion of CD-20+ cells slowly reversed nociceptive sensitization. Correspondingly, µMT mice, deficient in producing immunoglobulin M (IgM), failed to fully develop CRPS-like changes after fracture and casting. Depletion of CD20+ cells had no detectable effects on nociceptive sensitization in a model of postoperative incisional pain, however. Immunohistochemical experiments showed that CD20+ cells accumulate near the healing fracture but few such cells collect in skin or sciatic nerves. On the other hand, IgM-containing immune complexes were deposited in skin and sciatic nerve after fracture in wild-type, but not in µMT fracture/cast, mice. Additional experiments demonstrated that complement system activation and deposition of membrane attack complexes were partially blocked by anti-CD20+ treatment. Collectively, our results suggest that CD20-positive B cells produce antibodies that ultimately support the CRPS-like changes in the murine fracture/cast model. Therapies directed at reducing B-cell activity may be of use in treating patients with CRPS. PMID:25218828

  10. Antioxidants attenuate multiple phases of formalin-induced nociceptive response in mice.

    PubMed

    Hacimuftuoglu, A; Handy, C R; Goettl, V M; Lin, C G; Dane, S; Stephens, R L

    2006-10-16

    An emerging theme in the study of the pathophysiology of chronic and persistent pain is the role of pro-oxidant substances. Reactive oxygen species (ROS) have been implicated in contributing to and/or maintaining conditions of chronic pain. Recent pre-clinical reports suggest that antioxidants are effective analgesics in neuropathic and inflammatory pain models. The present study extends this work by examining the effect of three antioxidants on tissue injury-induced nociception. C57BL6 mice (20-25 g) were pretreated with either phenyl-N-tert-butylnitrone (PBN; 50 mg/kg, i.p.), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxy (TEMPOL; 200 or 50 mg/kg, i.p.), N-acetyl-L-cysteine (NAC; 200 or 100mg/kg, i.p.), or vehicle (0.5 ml/100 g), 5 min before intraplantar formalin (10%, 20 microl) injection. Nociceptive responding, indicated by licking or biting the affected hindlimb, was quantified for 30 min after formalin injection. Each drug was effective in attenuating two or more phases (acute, quiescent, and tonic) of the formalin response. To assess putative site of action, intrathecal TEMPOL (380 nmol/5 microl, i.t.) was given 5 min before intraplantar formalin. Intrathecal TEMPOL produced a 83% reduction in nociceptive responding in the tonic phase, but no significant attenuation of the acute phase response. To confirm that the antioxidant property of intrathecal TEMPOL was responsible for its analgesic effect on the formalin-induced pain response, intrathecal TEMPOL was coadministered with the free radical donor tert-butylhydroperoxide (tert-BuOOH). Tert-BuOOH coadminstration reversed the TEMPOL-induced analgesia in the tonic intraplantar formalin response reduction. The data suggest that pro-oxidant species may be important mediators of tissue injury-induced algesia in rodents, and that a spinal site of action is implicated in the tonic response. PMID:16919817

  11. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    PubMed

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P < 0.01) reduced the amplitude of the reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. PMID:25056352

  12. Trafficking of Na+/Ca2+ exchanger to the site of persistent inflammation in nociceptive afferents.

    PubMed

    Scheff, Nicole N; Gold, Michael S

    2015-06-01

    Persistent inflammation results in an increase in the amplitude and duration of depolarization-evoked Ca(2+) transients in putative nociceptive afferents. Previous data indicated that these changes were the result of neither increased neuronal excitability nor an increase in the amplitude of depolarization. Subsequent data also ruled out an increase in voltage-gated Ca(2+) currents and recruitment of Ca(2+)-induced Ca(2+) release. Parametric studies indicated that the inflammation-induced increase in the duration of the evoked Ca(2+) transient required a relatively large and long-lasting increase in the concentration of intracellular Ca(2+) implicating the Na(+)/Ca(2+) exchanger (NCX), a major Ca(2+) extrusion mechanism activated with high intracellular Ca(2+) loads. The contribution of NCX to the inflammation-induced increase in the evoked Ca(2+) transient in rat sensory neurons was tested using fura-2 AM imaging and electrophysiological recordings. Changes in NCX expression and protein were assessed with real-time PCR and Western blot analysis, respectively. An inflammation-induced decrease in NCX activity was observed in a subpopulation of putative nociceptive neurons innervating the site of inflammation. The time course of the decrease in NCX activity paralleled that of the inflammation-induced changes in nociceptive behavior. The change in NCX3 in the cell body was associated with a decrease in NCX3 protein in the ganglia, an increase in the peripheral nerve (sciatic) yet no change in the central root. This single response to inflammation is associated with changes in at least three different segments of the primary afferent, all of which are likely to contribute to the dynamic response to persistent inflammation. PMID:26041911

  13. Determine Optimal Stimulus Amplitude for Using Vestibular Stochastic Stimulation to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J.J.; Mulavara, A.P.

    2015-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for sensorimotor adaptability (SA) training applications customized to each crewmember. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds [2]. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s long sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower. In the balance task, subjects stood on an unstable surface and had to maintain balance

  14. Molecular mechanism of modulation of nociceptive neuron membrane excitability by a tripeptide.

    PubMed

    Shelykh, T N; Rogachevsky, I V; Nozdrachev, A D; Veselkina, O S; Podzorova, S A; Krylov, B V; Plakhova, V B

    2016-01-01

    Using the whole-cell patch-clamp method, the ability of arginine-containing tripeptide Ac-RER-NH2, dipeptide Ac-RR-NH2, and free Arg molecule to modulate the membrane excitability of nociceptors was studied. Extracellular Ac-RER-NH2 upon interaction with the outer membrane of the nociceptive neuron decreases the Zeff value of the activation gating system of Nav1.8 channels. Thus, the tripeptide Ac-RER-NH2 can be considered as a new effective and safe analgesic. PMID:27025494

  15. Endogenous descending facilitation and inhibition differ in control of formalin intramuscularly induced persistent muscle nociception.

    PubMed

    Lei, Jing; You, Hao-Jun

    2013-10-01

    In conscious rats, intramuscular injection of 2.5% formalin into the gastrocnemius muscle, at volumes between 25 and 200 μl, evoked dose-dependent biphasic persistent flinching activities: phase 1 (0-10 min) and phase 2 (10-60 min). During this intramuscular formalin-induced ipsilateral muscle nociception, bilateral secondary mechanical hyperalgesia and heat hypoalgesia assessed by measuring thresholds of paw withdrawal reflex to noxious mechanical and heat stimuli were observed (P<0.05). Lesion of either the ipsilateral dorsal funiculus (DF) or contralateral thalamic mediodorsal (MD) nucleus significantly alleviated the formalin-induced flinches in both phase 1 and phase 2 of the behavioral response, and blocked the occurrence of secondary mechanical hyperalgesia, but not heat hypoalgesia. By contrast, lesion of the ipsilateral dorsal lateral funiculus (DLF) or contralateral thalamic ventromedial (VM) nucleus markedly enhanced the formalin induced flinching behavior in the late part (30-60 min) of phase 2 alone; phase 1 and early part (10-30 min) of phase 2 response were unaffected. Heat hypoalgesia, but not mechanical hyperalgesia, was markedly attenuated by this treatment (P<0.05). Microinjection of GABA (0.1 μg/0.5 μl) into the thalamic MD nucleus significantly depressed the intramuscular formalin-induced biphasic persistent nociception, and the occurrence of bilateral secondary mechanical hyperalgesia was significantly delayed (P<0.05). By contrast, microinjection of GABA into the thalamic VM nucleus significantly enhanced the formalin-induced nociceptive behavior in the late part (30-60 min) of phase 2, and the bilateral secondary heat hypoalgesia was temporarily prevented (P<0.05). The present study demonstrates that intramuscular formalin evokes biphasic muscle nociception, and that bilateral secondary mechanical hyperalgesia and heat hypoalgesia are differentially controlled by endogenous descending facilitation and inhibition respectively. It is

  16. Deprivation in American Affluence: The Theory of Stimulus Addiction.

    ERIC Educational Resources Information Center

    Machell, David F.

    1991-01-01

    Discusses theory of stimulus addiction, a process of human accommodation to stimuli which fosters dependency and may foster addiction. Suggests that a society of affluence may be prone to addictiveness because the more continuous the stimuli the person experiences, the more tolerance is created, and with tolerance comes stimulus deprivation.…

  17. Stimulus Variability and Perceptual Learning of Nonnative Vowel Categories

    ERIC Educational Resources Information Center

    Brosseau-Lapre, Francoise; Rvachew, Susan; Clayards, Meghan; Dickson, Daniel

    2013-01-01

    English-speakers' learning of a French vowel contrast (/schwa/-/slashed o/) was examined under six different stimulus conditions in which contrastive and noncontrastive stimulus dimensions were varied orthogonally to each other. The distribution of contrastive cues was varied across training conditions to create single prototype, variable far…