These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore  

SciTech Connect

Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

1992-01-01

2

Ground-Water Recharge Through Active Sand Dunes in Northwestern Nevada  

Microsoft Academic Search

Most water-resouree investigations in semiarid basins of the Great Basin in western North America conclude that groundwater recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an

David L. Berger

1992-01-01

3

Ground-water recharge through active sand dunes in northwestern Nevada  

USGS Publications Warehouse

Most water-resource investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature to determine energy and moisture balance, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.

Berger, D.L.

1992-01-01

4

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India  

NASA Astrophysics Data System (ADS)

Water and nutrient availability for crop production are critical issues in (semi)arid regions. Unsaturated-zone Cl tracer data and nutrient (NO3 and PO4) concentrations were used to quantify recharge rates using the Cl mass balance approach and nutrient availability in the Thar Desert, Rajasthan, India. Soil cores were collected in dune/interdune settings in the arid Thar Desert (near Jaisalmer) and in rain-fed (nonirrigated) and irrigated cropland in the semiarid desert margin (near Jaipur). Recharge rates were also simulated using unsaturated zone modeling. Recharge rates in sparsely vegetated dune/interdune settings in the Jaisalmer study area are 2.7-5.6 mm/year (2-3% of precipitation, 165 mm/year). In contrast, recharge rates in rain-fed agriculture in the Jaipur study area are 61-94 mm/year (10-16% of precipitation, 600 mm/year). Minimum recharge rates under current freshwater irrigated sites are 50-120 mm/year (8-20% of precipitation). Nitrate concentrations are low at most sites. Similarity in recharge rates based on SO4 with those based on Cl is attributed to a meteoric origin of SO4 and generally conservative chemical behavior in these sandy soils. Modeling results increased confidence in tracer-based recharge estimates. Recharge rates under rain-fed agriculture indicate that irrigation of 20-40% of cultivated land with 300 mm/year should be sustainable.

Scanlon, Bridget R.; Mukherjee, Abhijit; Gates, John; Reedy, Robert C.; Sinha, Amarendra K.

2010-06-01

5

Management of aquifer recharge Groundwater storage in the sand dunes of Viet Nam  

Microsoft Academic Search

The management of aquifer recharge (MAR) can be a valuable approach to increasing the volume of water supplies and to maintaining groundwater-dependent ecosystems. MAR can also be used to improve the security and quality of water supplies as well as to protect water resources from saline intrusion. MAR was carried out in sand dunes coastal areas of Viet Nam to

Nguyen Thi; Kim Thoa; Giuseppe Arduino; Paolo Bono; Nguyen Van Giang; Bui Tran Vuong

6

Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands  

E-print Network

Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands Jack F was dosed with bacteriophages MS2 and PRD1 for 11 days at a constant concentration in a 10- by 15-m attachment as well as first-order inactivation was employed to simulate the bacteriophage breakthrough curves

Hassanizadeh, S. Majid

7

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India  

Microsoft Academic Search

Water and nutrient availability for crop production are critical issues in (semi)arid regions. Unsaturated-zone Cl tracer\\u000a data and nutrient (NO3 and PO4) concentrations were used to quantify recharge rates using the Cl mass balance approach and nutrient availability in the\\u000a Thar Desert, Rajasthan, India. Soil cores were collected in dune\\/interdune settings in the arid Thar Desert (near Jaisalmer)\\u000a and in

Bridget R. Scanlon; Abhijit Mukherjee; John Gates; Robert C. Reedy; Amarendra K. Sinha

2010-01-01

8

A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes  

NASA Astrophysics Data System (ADS)

SummaryThis article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The model simulates the changes in water quality following artificial recharge of pre-treated water from the river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One observation dataset is used for model calibration, and another dataset for validation of model predictions. The total simulation time of the model is 50 years, from 1957 to 2007, with recharge composition varying on a monthly basis and the post audit is performed 26 years after the former model simulation period. The post audit revealed that the original model could reasonably predict conservative transport and kinetic redox reactions (oxygen and nitrate reduction coupled to the oxidation of soil organic carbon), but showed discrepancies in the simulation of cation exchange. Conceptualizations of the former model were inadequate to accurately simulate water quality changes controlled by cation exchange, especially concerning the breakthrough of potassium and magnesium fronts. Changes in conceptualization and model design, including the addition of five flow paths, to a total of six, and the use of parameter estimation software (PEST), resulted in a better model to measurement fit and system representation. No unique parameter set could be found for the model, primarily due to high parameter correlations, and an assessment of the predictive error was made using a calibration constrained Monte-Carlo method, and evaluated against field observations. The predictive error was found to be low for Na+ and Ca2+, except for greater travel times, while the K+ and Mg2+ error was restricted to the exchange fronts at some of the flow paths. Optimized cation exchange coefficients were relatively high, especially for potassium, but still within the observed range in literature. The exchange coefficient for potassium agrees with strong fixation on illite, a main clay mineral in the area. Optimized CEC values were systematically lower than clay and organic matter contents indicated, possibly reflecting preferential flow of groundwater through the more permeable but less reactive aquifer parts. Whereas the artificial recharge initially acted as an intrusion of relatively saline water triggering Na+ for Ca2+ exchange, further increasing total hardness of the recharged water, the gradual long-term reduction in salinity of the river Rhine since the mid 1970s has shifted to an intrusion of fresher water causing Ca2+ for Na+ exchange. As a result, seasonal and longer term reversal of the initial cation exchange processes was observed adding to the general long-term reduction in total hardness of the recharged Rhine water.

Karlsen, R. H.; Smits, F. J. C.; Stuyfzand, P. J.; Olsthoorn, T. N.; van Breukelen, B. M.

2012-08-01

9

Dunes  

E-print Network

Dunes MICHELLE REED On October SO, 1993, the Mirage Resorts, Inc., imploded the casino and north tower, which was televised. The Dunes's death signified the birth of another resort. n I ily, we're going to be late," Robert says. He paces... to say about the Dunes." Robert sighs loudly as he moves around the room. He fluffs the pillows beside me on the sofa and straightens the pile of magazines on the floor beside his chair. It's not his fault that he doesn't understand. He doesn't know...

Reed, Michelle

2006-01-01

10

Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001  

USGS Publications Warehouse

Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters derived from Medano and Sand Creeks. Major ion chemistry of water from sites completed in the confined aquifer is different than water from sites completed in the unconfined aquifer, but insufficient data exist to quantify if the two aquifers are hydrologically disconnected. Radiocarbon dating of ground water in the confined aquifer indicates it is about 30,000 years old (plus or minus 3,000 years). The peak of the last major ice advance (Wisconsin) during the ice age occurred about 20,000 years before present; ground water from the confined aquifer is much older than that. Water quality and water levels of the interdunal ponds are not affected by waters from the confined aquifer. Instead, the interdunal ponds are affected directly by fluctuations in the water table of the unconfined aquifer. Any lowering of the water table of the unconfined aquifer would result in an immediate decrease in water levels of the interdunal ponds. The water quality of the interdunal ponds probably results from several factors, including the water quality of the unconfined aquifer, evaporation of the pond water, and biologic activity within the ponds.

Rupert, Michael G.; Plummer, L. Niel

2004-01-01

11

Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage in lakes in the sandhills of Nebraska, U.S.A.  

USGS Publications Warehouse

Analysis of water-level fluctuations in about 30 observation wells and 5 lakes in the Crescent Lake National Wildlife Refuge in the sandhills of Nebraska indicates water-table configuration beneath sand dunes in this area varies considerably, depending on the configuration of the topography of the dunes. If the topography of an interlake dunal area is hummocky, ground-water recharge is focused at topographic lows causing formation of water-table mounds. These mounds prevent ground-water movement from topographically high lakes to adjacent lower lakes. If a dune ridge is sharp, the opportunity for focused recharge does not exist, resulting in water-table troughs between lakes. Lakes aligned in descending altitudes, parallel to the principal direction of regional ground-water movement, generally have seepage from higher lakes toward lower lakes. ?? 1986.

Winter, T.C.

1986-01-01

12

Intelligence Artificielle Algorithmes et recherches heuristiques  

E-print Network

Intelligence Artificielle Algorithmes et recherches heuristiques Elise Bonzon http://web ´etats sont d´evelopp´es Id´ee : Utiliser une fonction d'´evaluation f pour chaque noeud mesure l ville n et Bucharest La recherche gloutonne d´eveloppe le noeud qui para^it le plus proche de l

Bonzon, Elise

13

Effects of Heterogeneous Vadose Zone Thickness on Spatial and Temporal Groundwater Recharge Characteristics in Dune Environments: An Example from the Nebraska Sand Hills  

NASA Astrophysics Data System (ADS)

We investigate effects of land surface topography on the spatial and temporal distribution of groundwater recharge (GWR). Such effects are important for groundwater modeling, analysis of climate change impacts, and water resources management. Typically, climate changes are investigated on multi-decadal to centennial time scales. However, travel times of soil moisture across the vadose zone vary broadly, extending to multi-centennial periods in arid and semi-arid environments. For given climatic conditions on the land surface, we evaluate travel times in thick vadose zones and compare with climate change time scales. This comparison allows determination of the land surface areas contributing to GWR changes where travel times are shorter than climate change time scales. In areas with travel times longer than climate change time scales, GWR remains unchanged over the considered period of water resources management. Such analysis allows separating the effect of land surface topography from that of spatial and temporal climate variations. Our travel time calculations, based on vertical velocity of the pressure pulse from the land surface, are equivalent to a kinematic wave approximation of Richards' equation. The underlying assumptions (unit head gradients over the entire soil profile and relatively small magnitude of climate changes on the surface) are supported by observations in the High Plains Aquifer region. The computations require a DEM of land surface topography, mapped water table elevations, mapped climate variables on the land surface (IPCC 2007, CMIP3, hydrologic VIC model outputs), and estimates of vadose zone hydraulic conductivity as a function of soil moisture content from pedotransfer functions. The method to generate future GWR estimates includes 4 steps: (1) GIS analysis of vadose zone thickness using DEM and water table map; (2) evaluation of deep drainage based on difference between precipitation and evapotranspiration rates (PRISM and MODIS, respectively); (3) development of a raster map of travel times across the vadose zone with isochrones; and (4) inference of time-referenced GWR map. This method is applicable to arid and semi-arid regions, where overland flow can be neglected and actual evapotranspiration and precipitation data for current and future conditions are available. An example from the Nebraska Sand Hills, USA, the largest vegetated dune field in the Western Hemisphere, provides analysis of spatio-temporal aspects of GWR with and without consideration of future climate changes.

Zlotnik, V. A.; Rossman, N. R.; Rowe, C. M.; Szilagyi, J.

2013-12-01

14

Dune Variety  

NASA Technical Reports Server (NTRS)

9 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a variety of dark sand dune patterns and shapes in the north polar region of Mars. Small, aligned dunes in some cases have merged to form elongated dunes. These features are located near 76.4oN, 272.9oW. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2004-01-01

15

I. PRODUCTION ARTIFICIELLE D'LMENTS RADIOACTIFS II. PREUVE CHIMIQUE DE LA TRANSMUTATION DES LMENTS  

E-print Network

I. PRODUCTION ARTIFICIELLE D'?L?MENTS RADIOACTIFS II. PREUVE CHIMIQUE DE LA TRANSMUTATION DES transmutation. Leur destruction suit une loi exponentielle; la décroissance de moitié a lieu en 14 min., 2 min doute à la transmutation de deux isotopes de Mg. Ces éléments radioactifs nouveaux sont probablement des

Paris-Sud XI, Université de

16

Barchan Dunes  

NASA Technical Reports Server (NTRS)

28 April 2004 One of the simplest forms a sand dune can take is the barchan. The term, apparently, comes from the Arabic word for crescent-shaped dunes. They form in areas with a single dominant wind direction that are also not overly-abundant in sand. The barchan dunes shown here were imaged in March 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) as it passed over a crater in western Arabia Terra near 21.1oN, 17.6oW. The horns and steep slope on each dune, known as the slip face, point toward the south, indicating prevailing winds from the north (top). The picture covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2004-01-01

17

Spring Dunes  

NASA Technical Reports Server (NTRS)

22 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes in the north polar region of Mars. In this scene, the dunes, and the plain on which the dunes reside, are at least in part covered by a bright carbon dioxide frost. Dark spots indicate areas where the frost has begun to change, either by subliming away to expose dark sand, changing to a coarser particle size, or both. The winds responsible for the formation of these dunes blew from the lower left (southwest) toward the upper right (northeast).

Location near: 76.3oN, 261.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

2006-01-01

18

Dune Geomorphology  

NSDL National Science Digital Library

This activity was developed during the workshop, Teaching Climate Change: Insight from Large Lakes, held in June 2012. Dune Geomorphology by Anthony (Tony) Layzell, University of Kansas Main Campus J. Elmo ...

19

Experimental studies in natural groundwater-recharge dynamics: The analysis of observed recharge events  

NASA Astrophysics Data System (ADS)

The amounts and time distribution of groundwater recharge from precipitation over an approximately 19-month period were investigated at two instrumented sites in south-central Kansas. Precipitation and evapotranspiration sequences, soil-moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperatures, water-table hydrographs, and water-level changes in nearby wells clearly depict the recharge process. Antecedent moisture conditions and the thickness and nature of the unsaturated zone were found to be the major factors affecting recharge. Although the two instrumented sites are located in sand-dune environments in areas characterized by shallow water table and subhumid continental climate, a significant difference was observed in the estimated effective recharge. The estimates ranged from less than 2.5 to approximately 154 mm at the two sites from February to June 1983. The main reasons for this large difference in recharge estimates were the greater thickness of the unsaturated zone and the lower moisture content in that zone resulting from lower precipitation and higher potential evapotranspiration for one of the sites. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study.

Sophocleous, Marios; Perry, Charles A.

1985-11-01

20

Dune Variety  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

Our final look at the north polar erg was taken at 80 degrees North latitude during Northern summer. This image is of lower resolution than the previous images, but covers a much larger area. The dunes have very little remaining frost cover. Note the large extent of coverage, and the different dune forms.

Image information: VIS instrument. Latitude 80.8, Longitude 184.6 East (175.4 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

21

Spotty Dunes  

NASA Technical Reports Server (NTRS)

27 July 2004 Frost-covered dunes develop spots and streaks as they begin to defrost in springtime. This April 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of north polar dunes in the early stages of the defrosting process. At the time the image was acquired, Mars was only 1 month into the northern spring season. The picture is located near 75.9oN, 266.0oW, and is illuminated by sunlight from the lower left. The image covers an area about 3 km (1.9 mi) wide.

2004-01-01

22

Frosty Dunes  

NASA Technical Reports Server (NTRS)

29 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows frost-covered sand dunes in the martian north polar region. The winds responsible for these dunes generally blew from the southwest (lower left).

Location near: 80.0oN, 114.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

2005-01-01

23

Copernicus Dunes  

NASA Technical Reports Server (NTRS)

22 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark teardrop-shaped sand dunes in eastern Copernicus Crater. The winds responsible for these dunes generally blow from the south-southwest (lower left).

Location near: 48.7oS, 167.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

2005-01-01

24

COPPICE DUNES Duned (39,880 -22)  

E-print Network

COPPICE DUNES Duned (39,880 - 22) Unduned (144,160 - 78) Numbers in parentheses are acres and percentages respectively Occurrence of coppice dunes is as shown on 1936 aerial photographs; many of these areas are now occupied by buildings and roads. These dunes tend to occur primarily in areas where

25

Frosted Dunes  

NASA Technical Reports Server (NTRS)

17 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of sand dunes, covered by seasonal carbon dioxide frost, in the martian north polar region. Over the course of northern hemisphere spring, the carbon dioxide frost sublimes away, slowly revealing the dark sand that makes up the dunes. The dark spots in this image may be patches of freshly-exposed sand, or they could be places where the CO2 frost has changed, either becoming rougher, coarser-grained (larger crystals), or both. A rougher or coarser-grained surface will appear darker because of an increase in shadowing of the surface by the small-scale roughness elements.

Location near: 75.2oN, 51.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

2006-01-01

26

Frosty Dunes  

NASA Technical Reports Server (NTRS)

12 April 2006 Today, the MOC Team celebrates the 45th anniversary of the first human flight into space, that of Yuri Gagarin on 12 April 1961, and the 25th anniversary of the first NASA Space Shuttle flight on 12 April 1981, by briefly pondering the wonders of our Solar System and the opportunities of the age in which we live. Although humans have not ventured to the Moon in more than 30 years, and have not yet gone to Mars, we can all go there through the eyes of our robotic explorers.

Mars, perhaps the most Earth-like (yet so very different!) planet in our star's system, is tilted on its axis by about 25o-not all that different than Earth's 23.5o. Thus, Mars, like Earth, experiences a changing of seasons as the planet revolves around the Sun. At high latitudes in each hemisphere during autumn and winter, carbon dioxide frost accumulates on the surface.

This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes covered and delineated by seasonal frost in the north polar region of Mars. The winds responsible for the formation of these dunes blew primarily from the northwest (upper left), with additional influences from the north and northeast. During the late spring and summer seasons, these dunes would look much darker than their surroundings, but in this late winter image, the dunes and the plains on which they occur are all covered with carbon dioxide frost.

Location near: 78.4oN, 76.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

2006-01-01

27

December's Dunes  

NASA Technical Reports Server (NTRS)

This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows sand dunes in the north polar region of Mars, as they appeared during northern summer in December 2004.

Location near: 78.1oN, 227.2oW Image width: 3.0 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

28

Recharge unit provides for optimum recharging of battery cells  

NASA Technical Reports Server (NTRS)

Percent recharge unit permits each cell of a rechargeable battery to be charged to a preset capacity of the cell. The unit automatically monitors and controls a rechargeable battery subjected to charge-discharge cycling tests.

Baer, D.; Ford, F. E.

1968-01-01

29

Hydrogeology and hydrochemistry of dunes and wetlands along the southern shore of Lake Michigan, Indiana  

USGS Publications Warehouse

The dunes and the wetlands along the southern shore of Lake Michigan are underlain by a complex aquifer system composed of unconsolidated glacial, lacustrine, and eolian deposits. Surficial dune, beach, and glacial lacustrine sands compose an extensive surficial aquifer. The underlying drift contains three major confined sand aquifers. Potentiometric and hydrochemical data are consistent with a conceptual model in which regional and intermediate flow systems, recharged in end moraines south of the dune-beach complexes, discharge into Lake Michigan and the Great Marsh by upward leakage through unconsolidated sediments. Local flow systems in the surficial aquifer, recharged in the major dune-beach complexes, discharge into streams, ditches, and ponded areas in the adjacent interdunal wetlands. Shallow ground water discharges directly into Lake Michigan only north of a water-table divide that underlies the dune-beach complex along the shoreline. The position of ground-water seepage faces is affected by transient water-table mounds observed in the dune-beach complexes at the margins of wetlands. Substantial recharge to the dune complexes probably occurs near these dune-wetland margins. In the dune-beach complexes and intradunal wetlands, the shallow ground and wetland waters are dilute calcium bicarbonate and calcium bicarbonate sulfate types. More mineralized bicarbonate water types having variable proportions of calcium, magnesium, and sodium are found in interior parts of the Great Marsh because this area is probably a discharge zone for the regional and intermediate flow systems.

Shedlock, Robert J.; Cohen, D.A.; Imbrigiotta, T.E.; Thompson, T.A.

1994-01-01

30

Defrosty Dunes  

NASA Technical Reports Server (NTRS)

19 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a sand dune field in the north polar region of Mars. The dunes are covered with frozen carbon dioxide which accumulated over the autumn and winter months in the northern hemisphere. During the spring, the time at which this image was acquired, the carbon dioxide begins to sublime away, going directly from solid to gas, just as dry ice does here on Earth. The dark spots, streaked by blowing winds, may be places where the frost has been removed (exposing underlying dark sand), places where the grain size or roughness of the frost has increased (increasing shadowing due to the change in texture), or both.

Location near: 79.7oN, 148.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

2006-01-01

31

ASTER Dunes  

NASA Technical Reports Server (NTRS)

This image of Saudi Arabia shows a great sea of linear dunes in part of the Rub' al Khali, or the Empty Quarter. Acquired on June 25, 2000, the image covers an area 37 kilometers (23 miles) wide and 28 kilometers (17 miles) long in three bands of the reflected visible and infrared wavelength region. The dunes are yellow due to the presence of iron oxide minerals. The inter-dune area is made up of clays and silt and appears blue due to its high reflectance in band 1. The Rub' al Khali is the world's largest continuous sand desert. It covers about 650,000 square kilometers (250,966 square miles) and lies mainly in southern Saudi Arabia, though it does extend into the United Arab Emirates, Oman, and Yemen. One of the world's driest areas, it is uninhabited except for the Bedouin nomads who cross it. The first European to travel through the desert was Bertram Thomas in 1930.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

2000-01-01

32

SUR LA DSINTGRATION ARTIFICIELLE DE QUELQUES LMENTS PRODUITE A L'AIDE DE RAYONS a DU POLONIUM  

E-print Network

SUR LA D?SINT?GRATION ARTIFICIELLE DE QUELQUES ?L?MENTS PRODUITE A L'AIDE DE RAYONS a DU POLONIUM préparations de polonium de diverses intensités. On a constaté la présence de particules de désintégration pour

Paris-Sud XI, Université de

33

Rechargeable battery powered electric car and recharging station therefor  

Microsoft Academic Search

The invention discloses a rechargeable battery powered electric vehicle comprising an electric motor powered by a rechargeable storage battery in combination with a recharging station comprising extendible electrodes for supplying recharging power for the vehicle's storage battery, the vehicle comprising a charging circuit connected to the battery with one lead grounded to the vehicle body and one lead connected to

Rose; W. R. II

1979-01-01

34

Climate change effects on vegetation characteristics and groundwater recharge  

NASA Astrophysics Data System (ADS)

Climate change is among the most pressing issues of our time. Increase in temperature, a decrease in summer precipitation and increase in reference evapotranspiration might affect the water balance, freshwater availability and the spatial distribution and type of vegetation. Precipitation and evapotranspiration (ET) largely determine groundwater recharge. Therefore, climate change likely affects both the spatial and temporal freshwater availability for nature conservation, agriculture and drinking water supply. Moreover, in the coastal (dune) areas, the groundwater recharge is crucial to the maintenance of the freshwater bell and the dynamics of the fresh - salt interface. Current knowledge, however, is insufficient to estimate reliably the effects of climate change on future freshwater availability. Future groundwater recharge, the driving force of the groundwater system, can only be assessed if we understand how vegetation responds to changing climatic conditions, and how vegetation feedbacks on groundwater recharge through altered actual ET. Although the reference ET (i.e. the ET of a reference vegetation, defined as a short grassland completely covering the soil and optimally provided by water) is predicted to increase, the future actual ET (i.e. the ET of the actual real vegetation under the real moisture conditions) is highly unknown. It is the dynamics in the actual ET, however, through which the vegetation feeds back on the groundwater recharge. In an earlier study we showed that increased atmospheric CO2 raises the water use efficiency of plants, thus reducing ET. Here we demonstrate another important vegetation feedback in dune systems: the fraction of bare soil and non-rooting species (lichens and mosses) in the dune vegetation will increase when, according to the expectations, summers become drier. From our calculations it appeared that on south slopes of dunes, which receive more solar radiation and are warmer than north facing surfaces, the fraction of vascular plants may drop from 70 to 20 percent in the future (2050) climate due to increased moisture deficits. ET of bare soil and non-rooting species is much lower than that of vascular plants and thus the vegetation composition feeds back on the soil moisture conditions. Knowledge on such feedback mechanisms is indispensable in the analysis of climate change effects on the future groundwater recharge. Important questions are how, in the course of time, climate change will affect both groundwater table depth and dynamics, and how water management could adapt to these changes. We pursue a dynamic modeling approach that takes account of the interacting processes in the soil-plant-atmosphere system, including feedback mechanisms of the vegetation. This allows us to analyze climate change effects on groundwater recharge and thus future freshwater availability.

Bartholomeus, R.; Voortman, B.; Witte, J.

2010-12-01

35

Climate change effects on vegetation characteristics and groundwater recharge  

NASA Astrophysics Data System (ADS)

Climate change is among the most pressing issues of our time. Increase in temperature, a decrease in summer precipitation and increase in reference evapotranspiration might affect the water balance, freshwater availability and the spatial distribution and type of vegetation. Precipitation and evapotranspiration (ET) largely determine groundwater recharge. Therefore, climate change likely affects both the spatial and temporal freshwater availability for nature conservation, agriculture and drinking water supply. Moreover, in the coastal (dune) areas, the groundwater recharge is crucial to the maintenance of the freshwater bell and the dynamics of the fresh - salt interface. Current knowledge, however, is insufficient to estimate reliably the effects of climate change on future freshwater availability. Future groundwater recharge, the driving force of the groundwater system, can only be assessed if we understand how vegetation responds to changing climatic conditions, and how vegetation feedbacks on groundwater recharge through altered actual ET. Although the reference ET (i.e. the ET of a reference vegetation, defined as a short grassland completely covering the soil and optimally provided by water) is predicted to increase, the future actual ET (i.e. the ET of the actual real' vegetation under the real' moisture conditions) is highly unknown. It is the dynamics in the actual ET, however, through which the vegetation feeds back on the groundwater recharge. In an earlier study we showed that increased atmospheric CO2 raises the water use efficiency of plants, thus reducing ET. Here we demonstrate another important vegetation feedback in dune systems: the fraction of bare soil and non-rooting species (lichens and mosses) in the dune vegetation will increase when, according to the expectations, summers become drier. From our calculations it appeared that on south slopes of dunes, which receive more solar radiation and are warmer than north facing surfaces, the fraction of vascular plants may drop from 70 to 20 percent in the future (2050) climate due to increased moisture deficits. ET of bare soil and non-rooting species is much lower than that of vascular plants and thus the vegetation composition feeds back on the soil moisture conditions. Knowledge on such feedback mechanisms is indispensable in the analysis of climate change effects on the future groundwater recharge. Important questions are how, in the course of time, climate change will affect both groundwater table depth and dynamics, and how water management could adapt to these changes. We pursue a dynamic modeling approach that takes account of the interacting processes in the soil-plant-atmosphere system, including feedback mechanisms of the vegetation. This allows us to analyze climate change effects on groundwater recharge and thus future freshwater availability.

(Flip) Witte, J. P. M.; (Ruud) Bartholomeus, R. P.; (Gijsbert) Cirkel, D. G.

2010-05-01

36

Polar Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Dunes in the Vastitas Borealis region of Mars. These sand seas migrate around the north polar cap following the strong polar vortex winds.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Image information: VIS instrument. Latitude 77.3, Longitude 87.3 East (272.7 West). 19 meter/pixel resolution.

2003-01-01

37

'Endurance Crater's' Dazzling Dunes  

NASA Technical Reports Server (NTRS)

As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This approximate true-color panoramic camera image highlights the reddish-colored dust present throughout the scene.

Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

2004-01-01

38

Creating Sand Dunes  

NSDL National Science Digital Library

This experiment demonstrates the formation and movement of sand dunes. Students will simulate the effects of wind using a hair dryer on bare sand, then add stones and grass to observe how the effects are changed. They should be able to explain how sand dunes are formed, what circumstances effect the movement or formation of sand dunes, and relate this information to soil conservation.

1998-01-01

39

Rechargeable hybrid aqueous batteries  

NASA Astrophysics Data System (ADS)

A new aqueous rechargeable battery combining an intercalation cathode with a metal (first order electrode) anode has been developed. The concept is demonstrated using LiMn2O4 and zinc metal electrodes in an aqueous electrolyte containing two electrochemically active ions (Li+ and Zn2+). The battery operates at about 2V and preliminarily tests show excellent cycling performance, with about 90% initial capacity retention over 1000 charge-discharge cycles. Use of cation-doped LiMn2O4 cathode further improves the cyclability of the system, which reaches 95% capacity retention after 4000 cycles. The energy density for a prototype battery, estimated at 50-80Whkg-1, is comparable or superior to commercial 2V rechargeable batteries. The combined performance attributes of this new rechargeable aqueous battery indicate that it constitutes a viable alternative to commercial lead-acid system and for large scale energy storage application.

Yan, Jing; Wang, Jing; Liu, Hao; Bakenov, Zhumabay; Gosselink, Denise; Chen, P.

2012-10-01

40

Transverse instability of dunes  

E-print Network

The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show numerically and with a linear stability analysis that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.

Eric J. R. Parteli; Jos S. Andrade Jr.; Hans J. Herrmann

2011-09-22

41

The Exxon rechargeable cells  

NASA Astrophysics Data System (ADS)

The design and performance of ambient temperature secondary cells based on the titanium disulfide cathode are discussed. These limited performance products were developed for microelectronic applications such as solar rechargeable watches and clocks which require low drain rate and do not require many deep cycles.

Malachesky, P. A.

1980-04-01

42

Unchanging Desert Sand Dunes  

NASA Astrophysics Data System (ADS)

Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

2013-12-01

43

Modelling vegetated dune landscapes  

NASA Astrophysics Data System (ADS)

This letter presents a self-organising cellular automaton model capable of simulating the evolution of vegetated dunes with multiple types of plant response in the environment. It can successfully replicate hairpin, or long-walled, parabolic dunes with trailing ridges as well as nebkha dunes with distinctive deposition tails. Quantification of simulated landscapes with eco-geomorphic state variables and subsequent cluster analysis and PCA yields a phase diagram of different types of coastal dunes developing from blow-outs as a function of vegetation vitality. This diagram indicates the potential sensitivity of dormant dune fields to reactivation under declining vegetation vitality, e.g. due to climatic changes. Nebkha simulations with different grid resolutions demonstrate that the interaction between the (abiotic) geomorphic processes and the biological vegetation component (life) introduces a characteristic length scale on the resultant landforms that breaks the typical self-similar scaling of (un-vegetated) bare-sand dunes.

Baas, A. C. W.; Nield, J. M.

2007-03-01

44

Frosted Sand Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] (Released 22 July 2002) This image, located near 79.6 N and 142.7 E, displays sand dunes covered in CO2 frost. This is a region of Mars that contains circumpolar sand seas. The large sand deposits and the high winds that circulate around the pole allow for the formation of a huge dune field that surrounds the north polar cap. As the northern hemisphere progresses towards winter, CO2 frost condenses out of the atmosphere and covers the dunes. During northern spring, the CO2 sublimates and the dunes are once again uncovered and active. This image was taken as northern spring progresses and the crests of the dunes are just starting to be exposed. The dark dune material absorbs sunlight more efficiently than the brighter frost, aiding in the sublimation of the remaining frost.

2002-01-01

45

North Polar Sand Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-417, 10 July 2003

The martian north polar ice cap is surrounded by fields of dark, windblown sand dunes. This March 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes near 76.5oN, 264.7oW. The steep dune slip faces indicate wind transport of sand from the lower left toward the upper right. Sunlight illuminates the scene from the lower left.

2003-01-01

46

Advanced Small Rechargeable Batteries  

NASA Technical Reports Server (NTRS)

Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

Halpert, Gerald

1989-01-01

47

REMOTELY RECHARGEABLE EPD  

SciTech Connect

Radiation measurements inside the Contact Decon Maintenance Cell (CDMC) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) are required to determine stay times for personnel. A system to remotely recharge the transmitter of an Electronic Personnel Dosimeter (EPD) and bail assembly to transport the EPD within the CDMC was developed by the Savannah River National Laboratory (SRNL) to address this need.

Vrettos, N; Athneal Marzolf, A; Scott Bowser, S

2007-11-13

48

Rechargeable Magnesium Power Cells  

NASA Technical Reports Server (NTRS)

Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

1995-01-01

49

Water Table Fluctuations Induced by Intermittent Recharge  

Microsoft Academic Search

The problem of water table fluctuations in response to repeated recharges is considered. The effect on the water table of intermittent constant recharge (recharge applied intermittently at a constant rate) and of intermittent instantaneous recharge (recharge applied instantaneoulsy at regular intervals) is analyzed in detail. The final results are shown to consist of a combination of periodic and transient components;

Marinus Maasland

1959-01-01

50

Nearly-defrosted Dunes  

NASA Technical Reports Server (NTRS)

22 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of north polar dunes in late spring, just before the final patches of wintertime frost sublimed away. The dunes beneath the frost are dark because they contain minerals rich in reduced (unoxidized) iron. The dune slip faces (the steepest slopes on the dunes) point toward the upper right (northeast), indicating that the dominant winds involved in sand transport in this region blow from the lower left (southwest). These dunes are located near 76.3oN, 261.1oW. The image covers an area about 3 km (1.9 mi) wide and sunlight illuminates the scene from the lower left.

2004-01-01

51

Frosty North Polar Dunes  

NASA Technical Reports Server (NTRS)

10 January 2004 While it is summer in Gusev Crater, where the Mars Exploration Rover, Spirit, is operating, it is winter in the martian northern hemisphere. Just this week, the north polar dune fields began to emerge into sunlight after months of frigid darkness. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view of frost-covered north polar dunes was acquired on 8 January 2004. The steepest slopes on the dunes--their slipfaces--point toward the upper right (northeast), indicating that the dominant winds responsible for their formation came from the opposite direction (lower left, southwest). Sunlight illuminates these dunes from the lower left, which may seem surprising because the brightest slopes on the dunes face the lower right. The brighter slopes are a frost phenomenon; most likely, these are areas with thicker frost deposits. In summer, the dunes would not have frost and would appear much darker than their surroundings. This early view of north polar dunes in winter is located near 75.8oN, 266.3oW. This view covers an area 3 km (1.9 mi) wide.

2004-01-01

52

Hydrologic Modeling of the White Sands Dune Field, New Mexico  

NASA Astrophysics Data System (ADS)

The shallow groundwater flow system of White Sands dune field, located within the Tularosa Basin of Southern New Mexico, likely stabilizes the base of the largest gypsum dunefield in the world. Water table geometry and elevation play a critical role in controlling dune thickness, spatial extent, and migration rates. The White Sands National Monument (WHSA) is concerned that lowering the water table may lead to increased scour and migration of the dune field, which could be unfavorable to the preservation of the flora and fauna that have adapted to survive there. In response to projected increases in groundwater pumping in the regional Tularosa Basin groundwater system, changes in surface water use, and the threat of climate change, the WHSA is interested in understanding how these changes on a regional scale may impact the shallow dune aquifer. We have collected hydrological, geochemical, and geophysical data in order to identify the sources of recharge that contribute to the shallow dune aquifer and to assess interactions between this water table aquifer and the basin-scale, regional system. Vertical head gradients, temperature, and water quality data strongly suggest that local precipitation is the primary source of recharge to the dune aquifer today. This suggests that the modern dune system is relatively isolated from the deeper regional system. However, geochemical and electrical resistivity data indicates that the deeper basin groundwater system does contribute to the shallow system and suggests that hydrologic conditions have changed on geologic time scales. We have constructed a preliminary cross-sectional hydrologic model to attempt to characterize the interaction of the shallow dune aquifer with the deeper basin groundwater. The model cross-section extends about 80 km across the Tularosa Basin in a NW-SE direction parallel to the primary flow path. We represented 6 km of Precambrian crystalline basement, Paleozoic sedimentary rocks as well as Pleistocene and Quaternary units. Preliminary results indicate a component of deep groundwater flows to a depth of 5 km and is discharged near Lake Lucero located west of the WHSA. Computed and observed salinity and groundwater residence times are the primary means of model calibration. The results will allow for an improved understanding of the interaction between the basin- and dune-scale groundwater flow systems.

Bourret, S. M.; Newton, B. T.; Person, M. A.

2013-12-01

53

North Polar Dunes  

NASA Technical Reports Server (NTRS)

23 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. Surrounding much of the north polar ice cap are fields of sand dunes. In this case, the strongest winds responsible for the dunes blew off the polar cap (not seen here), from the north-northwest (upper left).

Location near: 76.5oN, 63.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2006-01-01

54

Frosty Dune Field  

NASA Technical Reports Server (NTRS)

1 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows frost-covered sand dunes in the early northern spring of 2004 in the north polar region. Sunlight illuminates the dunes from the bottom/lower left, but frost on slopes facing the lower right create the illusion of sunlight from that direction. This dune field, which would appear quite dark in summertime, is located near 80.3oN, 148.7oW. The picture covers an area about 3 km (1.9 mi) across.

2004-01-01

55

Dark Polar Dunes  

NASA Technical Reports Server (NTRS)

20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

2005-01-01

56

North Polar Dunes  

NASA Technical Reports Server (NTRS)

14 April 2004 The north polar cap of Mars is nearly surrounded by fields of dark sand dunes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the north polar dunes as they appeared in late winter in January 2004. At the time, the dunes were covered with frost. The image is located near 77.8oN, 52.8oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

2004-01-01

57

Fortune Cookie Sand Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-432, 25 July 2003

This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

2003-01-01

58

Chasma Boreale Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-354, 8 May 2003

In this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, wind has streaked a field of defrosting sand dunes in Chasma Boreale in the martian north polar region. Dune slip faces--the steep slope formed by avalanching sand on each dune--and the dark streaks indicate that wind transports sediment from the lower left toward the upper right. The picture covers an area about 3 km (1.9 mi) wide near 84.6oN, 358.5oW. Sunlight illuminates the scene from the lower left.

2003-01-01

59

North Polar Dunes  

NASA Technical Reports Server (NTRS)

20 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a grouping of elongated, dark (low albedo) sand dunes in the north polar region of Mars. This picture was acquired during early summer in October 2004. The larger dune mass in this image may have accumulated through the coalescence of smaller dunes. These features are located near 85.7oN, 180.4oW. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

2004-01-01

60

Dune Avalanche Scars  

NASA Technical Reports Server (NTRS)

05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

2004-01-01

61

Polar Sand Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-495, 26 September 2003

This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows windblown sand dunes in Chasma Boreale, a wide trough in the north polar region of Mars. The dunes are shown here in their summertime configuration; that is, they are not covered with seasonal frost. The dunes are dark because the grains that make up these sandy landforms consist of dark minerals and/or fragments of dark-toned rock. The steepest slopes on these dunes, their slipfaces, point toward the top/upper left (northwest), indicating that winds blow the sand from the lower right (southeast). This picture is located near 84.7oN, 359.3oW, and covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

2003-01-01

62

Springtime for Dunes  

NASA Technical Reports Server (NTRS)

06 August 2004 The springtime retreat of the north polar seasonal frost cap is progressing on schedule. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the state of defrosting north polar sand dunes just three days ago on 3 August 2004. Dark areas on the dunes are patches of bare sand; bright areas are remnants of frost deposited during the previous winter. Summer will arrive on 20 September 2004. These dunes are located near 76.3oN, 263.5oW. Their steepest slopes, known as the slip face of each dune, point toward the northeast (upper right), indicating wind transport of sand from the southwest (lower left). The image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2004-01-01

63

Frost on Dunes  

NASA Technical Reports Server (NTRS)

18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes.

Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

2005-01-01

64

Dark Sand Dunes  

NASA Technical Reports Server (NTRS)

13 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. The dominant winds responsible for these dunes blew from the lower left (southwest). They are located near 76.6oN, 257.2oW. The picture covers an area 3 km (1.9 mi) across; sunlight illuminates the scene from the upper right.

2005-01-01

65

Isolated Northern Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

This VIS image was taken at 81 degrees North latitude during Northern spring. In this region, the dunes are isolated from each other. The dunes are just starting to emerge from the winter frost covering appearing dark with bright crests. These dunes are located on top of ice.

Image information: VIS instrument. Latitude 82.1, Longitude 191.3 East (168.7 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

66

Moving sand dunes  

E-print Network

In several desert areas, the slow motion of sand dunes can be a challenge for modern human activities and a threat for the survival of ancient places or archaeological sites. However, several methods exist for surveying the dune fields and estimate their migration rate. Among these methods, the use of satellite images, in particular of those freely available on the World Wide Web, is a convenient resource for the planning of future human settlements and activities.

Sparavigna, Amelia Carolina

2011-01-01

67

Dark Barchan Dunes  

NASA Technical Reports Server (NTRS)

13 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows north polar sand dunes in the summertime. During winter and early spring, north polar dunes are covered with bright frost. When the frost sublimes away, the dunes appear darker than their surroundings. To a geologist, sand has a very specific meaning. A sand grain is defined independently of its composition; it is a particle with a size between 62.5 and 2000 microns. Two thousand microns equals 2 millimeters. The dunes are dark because they are composed of sand grains made of dark minerals and/or rock fragments. Usually, dark grains indicate the presence of unoxidized iron, for example, the dark volcanic rocks of Hawaii, Iceland, and elsewhere. This dune field is located near 71.7oN, 51.3oW. Dune slip faces indicate winds that blow from the upper left toward lower right. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2004-01-01

68

FLUIDIC: Metal Air Recharged  

ScienceCinema

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02

69

FLUIDIC: Metal Air Recharged  

SciTech Connect

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07

70

Holden Crater Dune Field  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

A common location for dune fields on Mars is in the basin of large craters. This dune field is located in Holden Crater at 25 degrees South atitude.

Image information: VIS instrument. Latitude -25.5, Longitude 326.8 East (33.2 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

71

Crater Floor Dune Field  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

Our final dune image shows a small dune field inside an unnamed crater south of Nili Fossae.

Image information: VIS instrument. Latitude 20.6, Longitude 79 East (281 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

72

Barchan dune asymmetry: Numerical investigation  

E-print Network

Barchan dunes --- crescent-shaped dunes that form in areas of unidirectional winds and low sand availability --- commonly display an asymmetric shape, with one limb extended downwind. Several factors have been identified as potential causes for barchan dune asymmetry on Earth and Mars: asymmetric bimodal wind regime, topography, influx asymmetry and dune collision. However, the dynamics and potential range of barchan morphologies emerging under each specific scenario that leads to dune asymmetry are far from being understood. In the present work, we use dune modeling in order to investigate the formation and evolution of asymmetric barchans. We find that a bimodal wind regime causes limb extension when the divergence angle between primary and secondary winds is larger than $90^{\\circ}$, whereas the extended limb evolves into a seif dune if the ratio between secondary and primary transport rates is larger than 25%. Calculations of dune formation on an inclined surface under constant wind direction also lead to...

Parteli, Eric J R; Bourke, Mary C; Tsoar, Haim; Poeschel, Thorsten; Herrmann, Hans J

2013-01-01

73

Ripples and Dunes  

NASA Technical Reports Server (NTRS)

27 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes on the floor of an impact crater west of Hellas Planitia. Portions of the crater floor are exposed near the center and lower right corner of the image but, in general, the floor is covered by large, windblown ripples. The dark dune sand typically covers ripples, indicating that the dunes are younger and made of a more mobile material.

Location near: 43.7oS, 320.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

2006-01-01

74

Dunes with Frost  

NASA Technical Reports Server (NTRS)

31 May 2004 Springtime for the martian northern hemisphere brings defrosting spots and patterns to the north polar dune fields. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 76.7oN, 250.4oW. In summer, these dunes would be darker than their surroundings. However, while they are still covered by frost, they are not any darker than the substrate across which the sand is slowly traveling. Dune movement in this case is dominated by winds that blow from the southwest (lower left) toward the northeast (upper right). The picure covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2004-01-01

75

Dunes of the North  

NASA Technical Reports Server (NTRS)

30 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows linear and barchan sand dunes in Chasma Boreale, a broad erosional trough in the martian north polar region. Winds responsible for these dunes generally blow from upper right toward the lower left. Martian dunes tend to be darker than their counterparts on Earth because they are composed of darker, iron-bearing minerals and rock fragments.

Location near: 84.2oN, 37.9oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

76

Defrosting North Polar Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-323, 12 December 2002

Each spring as the sun comes up over the polar regions, the seasonal frosts that have accumulated there during winter begin to sublime away. Dunes are among the first features to show spots and streaks resulting from the defrosting process. Unknown is whether the dark spots and streaks are sand (from the dune) that has been mobilized by wind, or frost that has become disrupted and coarse-grained (coarse grains of ice can look darker than fine grains). This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows north polar dunes near 76.6oN, 255.9oW in early spring. The image, acquired in June 2002, is 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

2002-01-01

77

Aligned Defrosting Dunes  

NASA Technical Reports Server (NTRS)

17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

2004-01-01

78

Bright dunes on mars  

USGS Publications Warehouse

Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.

Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; Veverka, J.

1999-01-01

79

Nili Patera Dune Field  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

This VIS image shows a dune field within Nili Patera, the northern caldera of a large volcanic complex in Syrtis Major.

Image information: VIS instrument. Latitude 9, Longitude 67 East (293 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

80

Sand Dunes in Hellas  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-537, 7 November 2003

The smooth, rounded mounds in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture are sand dunes. The scene is located in southern Hellas Planitia and was acquired in mid-southern autumn, the ideal time of year for Hellas imaging. Sunlight illuminates the scene from the upper left. These dunes are located near 49.1oS, 292.6oW. The picture covers an area 3 km (1.9 mi) wide.

2003-01-01

81

North Polar Dunes  

NASA Technical Reports Server (NTRS)

10 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows low-albedo sand dunes in the north polar region. The slip faces on the dunes face toward the lower left, indicating that the dominant winds in this region blow or blew from the upper right.

Location near: 82.4oN, 46.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

82

North Polar Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-499b, 30 September 2003

The steepest slope on a sand dune, the slipface, indicates the general direction that wind has been transporting sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows several dark sand dunes in the north polar region. Sand transport in this case is from the lower left (southwest) toward the upper right (northeast). The picture is located near 76.5oN, 257.4oW, and covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

2003-01-01

83

Dark Polar Dunes  

NASA Technical Reports Server (NTRS)

26 May 2004 The north polar cap of Mars is surrounded by fields of dark sand dunes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows several dunes in the north polar region. The winds responsible for them blow from the lower left toward the upper right. The picture is located near 78.6oN, 243.9oW. Sunlight illuminates the scene from the lower left, and the picture covers an area about 3 km (1.9 mi) across.

2004-01-01

84

Polar Dunes, Spotted  

NASA Technical Reports Server (NTRS)

23 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sand dunes in the martian north polar region in mid-spring, July 2004. In summer, the dunes will be dark. As they defrost, dark spots form on their surfaces. This image is located near 82.8oN, 219.6oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the lower left.

2004-01-01

85

Sand Dunes with Frost  

NASA Technical Reports Server (NTRS)

9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

2004-01-01

86

Martian Sand Dunes  

NASA Technical Reports Server (NTRS)

6 January 2004

The north polar cap of Mars is nearly surrounded by fields of dark, windblown sand dunes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 73.5oN, 75.0oW. The orientation of these dunes indicate that the dominant winds--particularly those that occur during storms--come from the upper left (northwest). The picture covers an area about 3 km (1.9 mi) across, and is illuminated by sunlight from the lower left.

2005-01-01

87

The Algodones Dunes, California  

NSDL National Science Digital Library

The Center for Biological Diversity blends "conservation biology with litigation, policy advocacy, and an innovative strategic vision" in efforts to protect endangered species and wild places, focusing on the western US. This Web site contains a slide show of images from the Algodones Dunes, California's largest dune system. The fourteen slides show images of the area's natural history and environmental threats, such as effects from off-road vehicles. Each slide is accompanied by a brief description. While not overly informative, this Web site offers visitors a quick overview look at this unique natural area.

2002-01-01

88

CLASS XI NRLI COASTAL DUNE  

E-print Network

SESSION NOVEMBER 2011 04 REPORT BY CLASS XI NRLI COASTAL DUNE LAKES: MANAGE- MENT OF A UNIQUE NATURAL RESOURCE T he Walton County area in Florida's panhandle is home to 15 named "coastal dune lakes". Dune lakes are rare geological/ecological features that are found in only five loca ons around

Florida, University of

89

Frost-covered dunes  

NASA Technical Reports Server (NTRS)

MOC image of dunes in Chasma Boreale, a giant trough in the north polar cap. This September 1998 view shows dark sand emergent from beneath a veneer of bright frost left over from the northern winter that ended in July 1998.

1999-01-01

90

Small Dunes in Hellas  

NASA Technical Reports Server (NTRS)

4 July 2004 This April 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small dune field in southeastern Hellas Planitia near 41.4oS, 275.6oW. The image covers an area about 3 km (1.9 mi) wide; sunlight illuminates the scene from the upper left.

2004-01-01

91

North Polar Dunes  

NASA Technical Reports Server (NTRS)

14 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows north polar dune morphologies.

Location near: 78.0oN, 256.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

92

Springtime Dunes, 2004  

NASA Technical Reports Server (NTRS)

12 April 2004 Today is April 12, 2004, the 43rd anniversary of the first human flight into space (Yuri Gagarin, 1961) and the 23rd anniversary of the first NASA Space Shuttle flight (Columbia, 1981). Meanwhile, on Mars, spring is in full swing in the martian northern hemisphere. With spring comes the annual defrosting of the north polar dunes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired on April 7, 2004, shows a field of small barchan (crescent-shaped) dunes covered with the remains of wintertime frost. The dark spots around the base of each dune mark the first signs of the spring thaw. The sand in these dunes is dark, like the black sand beaches of Hawaii or the dark, sandy soil of the rover, Opportunity, landing site, but in winter and spring their dark tone is obscured by bright carbon dioxide frost. This picture is located near 75.9oN, 45.3oW, and covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

2004-01-01

93

Proctor Crater Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2002-01-01

94

Functional materials for rechargeable batteries.  

PubMed

There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. PMID:21394791

Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

2011-04-19

95

Dunes reveal Titan's recent history  

NASA Astrophysics Data System (ADS)

Large fields of linear dunes are abundant on Titan, covering nearly 20% of the surface. They are among the youngest features and represent interactions between near-surface winds and sediment. This interaction may vary from area to area creating unique populations of eolian features identified by dune field parameters such as crest-to-crest spacing, dune width and orientation. These parameters respond to changes in near-surface conditions over periods of time ranging from minutes to many thousands of years depending on dune size and the duration of the changes. While pattern analysis of dune field parameters on Earth and, in this study, Titan reveals much about current climatic conditions, such as wind regimes and wetter vs. drier areas, many inferences about past conditions can also be made. Initial pattern analysis of linear dunes on Titan reveals a single population of linear dunes representing a large percentage of all observed dunes. This single population is the result of two leading possibilities: Either there has been only one long period of dune building, leading to very old cores that have been built upon over long periods of time, perhaps punctuated with few or many intervals of non-deposition; or the current conditions of dune building have persisted long enough to completely erase any evidence of previous conditions. We have not yet worked through all the input parameters to adjust Earth's time scales to Titan's, and thus it is not yet possible to give a precise age for Titan's dunes. However, if these large linear dunes are similar to Earth's large linear dunes, they may represent at least several thousand years of dune building.

Savage, Christopher J.; Radebaugh, Jani

2010-04-01

96

Dune formation under bimodal winds  

PubMed Central

The study of dune morphology represents a valuable tool in the investigation of planetary wind systemsthe primary factor controlling the dune shape is the wind directionality. However, our understanding of dune formation is still limited to the simplest situation of unidirectional winds: There is no model that solves the equations of sand transport under the most common situation of seasonally varying wind directions. Here we present the calculation of sand transport under bimodal winds using a dune model that is extended to account for more than one wind direction. Our calculations show that dunes align longitudinally to the resultant wind trend if the angle ?w between the wind directions is larger than 90. Under high sand availability, linear seif dunes are obtained, the intriguing meandering shape of which is found to be controlled by the dune height and by the time the wind lasts at each one of the two wind directions. Unusual dune shapes including the wedge dunes observed on Mars appear within a wide spectrum of bimodal dune morphologies under low sand availability. PMID:20018703

Parteli, Eric J. R.; Durn, Orencio; Tsoar, Haim; Schwmmle, Veit; Herrmann, Hans J.

2009-01-01

97

Polar Layers and Dunes  

NASA Technical Reports Server (NTRS)

23 July 2004 Acquired just a few days ago on 21 July 2004, this 1.7 m/pixel (5.6 ft/pixel) Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layer outcrops and sand dunes in the Chasma Boreale portion of the martian north polar cap. At this time, it is spring and these polar landforms are still covered by frost left over from the winter that ended back in March 2004. In summer, the dunes in this image will be darker than anything else in the scene. The picture is located near 85.1oN, 3.7oW, and covers an area about 1.5 km (0.9 mi) wide. This view is illuminated by sunlight from the upper right.

2004-01-01

98

Dunes and Wind Streaks  

NASA Technical Reports Server (NTRS)

12 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows small, dark, north polar sand dunes and attendant wind streaks located near 76.7oN, 317.6oW. The dominant winds responsible for these features blow from the southwest (lower left). The image covers an area about 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

2004-01-01

99

Chasma Boreale Dunes  

NASA Technical Reports Server (NTRS)

9 February 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes overlying an eroded, layered substrate in Chasma Boreale, amid the materials of the martian north polar cap.

Location near: 84.5oN, 358.3oW Image width: 3.0 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

100

North Polar Dunes  

NASA Technical Reports Server (NTRS)

This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand dunes in the north polar region of Mars. The scene, obtained in December 2004, is located near 85.2oN, 169.1oW. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper right.

2005-01-01

101

Expressing user profiles for data recharging  

Microsoft Academic Search

Mobile devices need two basic renewable resources - power and data. Power recharging is easy; data recharging is a much more problematic activity. It requires complex interaction between a user and a collection of data sources. We provide an automatic data recharging capability based on user profiles written in an expressive profile language. A profile identifies relevant information and orders

Mitch Cherniack; Michael J. Franklin; Stan Zdonik

2001-01-01

102

Reusable Energy and Power Sources: Rechargeable Batteries  

ERIC Educational Resources Information Center

Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a

Hsiung, Steve C.; Ritz, John M.

2007-01-01

103

Dunes et plages Derrire les plages se trouvent les dunes,  

E-print Network

Dunes et plages Derrière les plages se trouvent les dunes, constituées par le sable déplacé par le développe ensuite. Si cette végétation est détruite, les dunes disparaissent et ne protégent plus les côtes et d'autres se déplaçant sur le fond. Dunes occupées par la végétation pionnière Végétation maritime

104

Frost-free Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes

These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2006-01-01

105

Rechargeable nickel-zinc batteries  

NASA Technical Reports Server (NTRS)

Device proves superiority in having two and one half to three times the energy content of popular lead-zinc or nickel-cadmium batteries. Application to electric utility vehicles improved acceleration rate and nearly doubled driving range between rechargings. Unit contributes substantially toward realization of practical urban electrical automobiles.

Soltis, D. G.

1977-01-01

106

Aquifer Management with Logistic Recharge  

Microsoft Academic Search

Theoretical principles of sustainable aquifer management are laid out in this work. The premise of our treatment is that groundwater is a renewable, although exhaustible, natural resource. The theory of this work is aimed at aquifers with a relatively homogeneous recharge that can be approximated by a logistic growth function. Sustainable aquifer exploitation occurs when the rate of ground-water extraction

Hugo A. Laiciga; Roy B. Leipnik

2001-01-01

107

Revised 06-2011 Rechargeable  

E-print Network

Nickel ­ Cadmium Nickel Metal Hydride Li-ion Pb Acid NiCd NiMH Used mainly in consumer electronics UsedRevised 06-2011 Rechargeable Battery And Cell Phone Recycling Program Guidelines University Waste Label (see separate instructions). Step 4: Bag It Insert a battery or cell phone in a provided bag

Taylor, Jerry

108

The pronounced seasonality of global groundwater recharge  

NASA Astrophysics Data System (ADS)

recharged by meteoric water supports human life by providing two billion people with drinking water and by supplying 40% of cropland irrigation. While annual groundwater recharge rates are reported in many studies, fewer studies have explicitly quantified intra-annual (i.e., seasonal) differences in groundwater recharge. Understanding seasonal differences in the fraction of precipitation that recharges aquifers is important for predicting annual recharge groundwater rates under changing seasonal precipitation and evapotranspiration regimes in a warming climate, for accurately interpreting isotopic proxies in paleoclimate records, and for understanding linkages between ecosystem productivity and groundwater recharge. Here we determine seasonal differences in the groundwater recharge ratio, defined here as the ratio of groundwater recharge to precipitation, at 54 globally distributed locations on the basis of 18O/16O and 2H/1H ratios in precipitation and groundwater. Our analysis shows that arid and temperate climates have wintertime groundwater recharge ratios that are consistently higher than summertime groundwater recharge ratios, while tropical groundwater recharge ratios are at a maximum during the wet season. The isotope-based recharge ratio seasonality is consistent with monthly outputs from a global hydrological model (PCR-GLOBWB) for most, but not all locations. The pronounced seasonality in groundwater recharge ratios shown in this study signifies that, from the point of view of predicting future groundwater recharge rates, a unit change in winter (temperate and arid regions) or wet season (tropics) precipitation will result in a greater change to the annual groundwater recharge rate than the same unit change to summer or dry season precipitation.

Jasechko, Scott; Birks, S. Jean; Gleeson, Tom; Wada, Yoshihide; Fawcett, Peter J.; Sharp, Zachary D.; McDonnell, Jeffrey J.; Welker, Jeffrey M.

2014-11-01

109

Biogenic crust dynamics on sand dunes  

E-print Network

Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power, and fixed vegetated dunes and active dunes at high wind power. These results suggest a cross-over between two different forms of desertification.

Kinast, Shai; Yizhaq, Hezi; Ashkenazy, Yosef

2012-01-01

110

Sedimentary Rocks and Dunes  

NASA Technical Reports Server (NTRS)

25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

2004-01-01

111

North Polar Dunes  

NASA Technical Reports Server (NTRS)

31 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. They are streaming away (toward the left) from a low escarpment at the edge of an outlier of polar water ice (the bright area on the right). The picture covers an area about 3 km (1.9 mi) wide and is located near 80.7oN, 80.2oW. Sunlight illuminates the scene from the lower left.

2004-01-01

112

North Polar Dune Patterns  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-478, 9 September 2003

Dark, windblown sand forms spectacular geometric patterns in the north polar sand seas, particularly in regions where strong winds converge from different directions over the course of a year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows some of these dark dune patterns near 77.8oN, 284.4oW. The picture covers an area 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2003-01-01

113

Dune-tastic  

NASA Technical Reports Server (NTRS)

6 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a frosty, springtime scene in the north polar region of Mars. The area is blanketed by a maze of sand dunes; their appearance is enhanced by subliming, seasonal carbon dioxide frost.

Location near: 80.2oN, 168.8oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

2006-01-01

114

Chasma Boreale Dunes  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-517, 18 October 2003

Frost covers dark sand dunes in this springtime view from Chasma Boreale in the martian north polar region. Dark spots indicate areas where the cold, carbon dioxide frost has begun to sublime away. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is located near 84.7oN, 359.3oW and covers an area 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

2003-01-01

115

Sojourner at Mermaid Dune  

NASA Technical Reports Server (NTRS)

This color image of the Sojourner rover was taken at the end of day on Sol 30. The rover is perched atop Mermaid Dune, a dark material distinct from the surrounding bright surface. Dark red rover tracks extend from the foreground to the base of the rover's wheels.

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

1997-01-01

116

Lethal Sandslides from Eolian Dunes  

Microsoft Academic Search

Fossil vertebrates entombed within the Upper Cretaceous Djadokhta Formation of southern Mongolia bear testimony to a heretofore unknown geologic phenomenon: mass wasting of eolian dunes during heavy rainstorms. Evaporation of shallow-penetrating rainwater led to progressive calcite accumulation in a thin layer of sand about 0.5 m below the surface of dune lee slopes. During rare heavy rainstorms, a perched water

David B. Loope; Joseph A. Mason; Lowell Dingus

1999-01-01

117

Electrically rechargeable REDOX flow cell  

NASA Technical Reports Server (NTRS)

A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

Thaller, L. H. (inventor)

1976-01-01

118

Research on rechargeable oxygen electrodes  

NASA Technical Reports Server (NTRS)

Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

Giner, J.; Malachesky, P. A.; Holleck, G.

1971-01-01

119

Nanomaterials for rechargeable lithium batteries.  

PubMed

Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries. PMID:18338357

Bruce, Peter G; Scrosati, Bruno; Tarascon, Jean-Marie

2008-01-01

120

Rechargeable solid state lithium microbatteries  

Microsoft Academic Search

A rechargeable thin-film lithium battery that can be used as a miniature power supply for small devices has been developed. The battery consists of an amorphous vanadium pentoxide (aV2O5) cathode, an amorphous lithium phosphorus oxynitride (Lipon) electrolyte, and a lithium anode. A thin-film cover layer protects the battery from exposure to air and water vapor. The battery can deliver up

J. B. Bates; G. R. Gruzalski; C. F. Luck

1993-01-01

121

Predicting vegetation-stabilized dune field morphology  

NASA Astrophysics Data System (ADS)

The morphology of vegetation-stabilized dune fields on the North American Great Plains (NAGP) mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare, with the exception of transverse and barchan mega-dunes in the Nebraska Sand Hills. We present a hypothesis from a numerical dune field model explaining the vegetation-stabilized morphology of dunes under unidirectional wind. Simulations with a range of initial dune morphologies (closely-spaced transverse to disperse barchans) indicate that stabilized morphology is determined by the ratio of slipface deposition rate to deposition tolerance of vegetation. Slipface deposition rate is related to dune height, flux, and celerity. With a fixed depositional tolerance, large, slow-moving dunes have low slipface deposition rates and freeze in place once vegetation is introduced. Relatively small, fast dunes have high slipface deposition rates and evolve into parabolic dunes, often colliding during stabilization. Our hypothesis could explain differences in stabilized morphology across the NAGP and elsewhere.

Barchyn, Thomas E.; Hugenholtz, Chris H.

2012-09-01

122

Ripples or Dunes?  

NASA Technical Reports Server (NTRS)

This approximate true-color image taken by the Mars Exploration Rover Spirit's panoramic camera shows the windblown waves of soil that characterize the rocky surface of Gusev Crater, Mars. Scientists were puzzled about whether these geologic features were 'ripples' or 'dunes.' Ripples are shaped by gentle winds that deposit coarse grains on the tops or crests of the waves. Dunes are carved by faster winds and contain a more uniform distribution of material. Images taken of these features by the rover's microscopic imager on the 41st martian sol, or day, of the rover's mission revealed their identity to be ripples. This information helps scientists better understand the winds that shape the landscape of Mars. This image was taken early in Spirit's mission.

[figure removed for brevity, see original site] Click on image for larger view [Image credit: NASA/JPL/ASU]

This diagram illustrates how windblown sediments travel. There are three basic types of particles that undergo different motions depending on their size. These particles are dust, sand and coarse sand, and their sizes approximate flour, sugar, and ball bearings, respectively. Sand particles move along the 'saltation' path, hitting the surface downwind. When the sand hits the surface, it sends dust into the atmosphere and gives coarse sand a little shove. Mars Exploration Rover scientists are studying the distribution of material on the surface of Mars to better understand how winds shaped the landscape.

2004-01-01

123

Storm over Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Today's image shows a storm front moving across an area of the north pole populated with hundreds of small dark sand dunes. The north polar region contains large regions of sand dunes, perhaps providing the some of the material raised into these clouds.

Image information: VIS instrument. Latitude 75.7, Longitude 323.7 East (36.3 West). 40 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2004-01-01

124

Closeup of Mermaid Dune  

NASA Technical Reports Server (NTRS)

This pair of images shows a broad view (upper image) and detailed close-up view (lower image) of the disturbed surface near and on Mermaid Dune. Seen slightly right of center in the upper image are two diggings by the rover's wheel. The uppermost rut is in the surface away from Mermaid and is considered to be typical of the surface at the landing site. The closer rut represents the surface at the base of Mermaid on the upwind side. The lower image is an enlargement of the disturbed Mermaid sediments plus those of the underlying substrate; that is, the ground upon which the dune lies. Seen in the close-up are at least two types of sediment, one that seems to be approximately 1.4 cm thick and forms piles with sides sloping at approximately 35 degrees, and another at least 3 cm deep composed of sediment that has a characteristic slope of 41 degrees when piled. It is apparent in the images that there is a size range of sediment present in the rut, sediment that ranges from a few millimeters in size down to below the resolution of the camera.

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

1997-01-01

125

Groundwater recharge and agricultural contamination  

USGS Publications Warehouse

Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

Bhlke, J.K.

2002-01-01

126

Choosing appropriate techniques for quantifying groundwater recharge  

Microsoft Academic Search

. Various techniques are available to quantify recharge; however, choosing appropriate techniques is often difficult. Important\\u000a considerations in choosing a technique include space\\/time scales, range, and reliability of recharge estimates based on different\\u000a techniques; other factors may limit the application of particular techniques. The goal of the recharge study is important\\u000a because it may dictate the required space\\/time scales of

Bridget R. Scanlon; Richard W. Healy; Peter G. Cook

2002-01-01

127

Rechargeable lithium battery technology - A survey  

NASA Technical Reports Server (NTRS)

The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

Halpert, Gerald; Surampudi, Subbarao

1990-01-01

128

Identifying and quantifying urban recharge: a review  

Microsoft Academic Search

. The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments.\\u000a Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation.\\u000a Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported\\u000a into most

David N. Lerner

2002-01-01

129

First Evidence of Dune Movement on Mars  

Microsoft Academic Search

Many sand dunes on Mars have pristine morphology, fresh grain flows on avalanche faces and sand streamers extending from barchan horns. This suggests that the saltation threshold for sand is exceeded and dune migration is possible under the current Martian climate. However, sand dune movement has not been observed and there is evidence that many of the dunes may be

M. C. Bourke; K. S. Edgett

2006-01-01

130

Freshwater lenses as archive of climate, groundwater recharge, and hydrochemical evolution: Insights from depth-specific water isotope analysis and age determination on the island of Langeoog, Germany  

NASA Astrophysics Data System (ADS)

age stratification of a freshwater lens on the island of Langeoog, Germany, was reconstructed through depth-specific sampling and groundwater dating using the tritium-helium method. The stratification is strongly affected by the land use and resulting differences in recharge rates. Infiltration at the dune tops is significantly lower than in the valleys, due to repellency of the dry sand. Dune valleys contribute up to four times more groundwater recharge per area than other areas. Housing development in dune areas might therefore significantly decrease the available fresh groundwater. The freshwater column shows a distinct increase of stable isotope values with decreasing depths. Hence, the freshwater lens contains a climate archive which reflects changing environmental conditions at the time of recharge. Combined with tritium-helium dating, this pattern could be matched to climate records which show an increase of the temperature at the time of recharge and rainfall rates during the last 50 years. The spatial and temporal developments of water chemistry during the passage through the lens follow a marked pattern from a sodium and chloride-dominated rainwater of low conductivity to a more mineralized sodium bicarbonate water type, caused by dissolution of carbonate shells close to the surface and subsequent ion exchange of calcium for sodium in the deeper parts.

Houben, Georg J.; Koeniger, Paul; Sltenfu, Jrgen

2014-10-01

131

Laboratory Observations of Dune Erosion  

NASA Astrophysics Data System (ADS)

Coastal dunes are an important feature along many coastlines, owing to their input to the sediment supply, use as habitat, and ability to protect onshore resources from wave attack. Correct predictions of the erosion and overtopping rates of these features are needed to develop improved responses to coastal dune damage events, and to determining the likelihood and magnitude of future erosion and overtopping on different beaches. We have conducted a large-scale laboratory study at Oregon State University's O.H. Hinsdale Wave Research Laboratory (HWRL) with the goal of producing a comprehensive, near prototype-scale, physical model data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The two goals of this work are (1) to develop a better understanding of swash/dune dynamics and (2) to evaluate and guide further development of dune erosion models. We present initial results from the first phase of the experimental program. An initial beach and dune profile was selected based on field LIDAR-based observations of various U.S. east coast and Gulf coast dune systems. The laboratory beach was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water level and offshore wave heights. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Future work will include studies of fluid overtopping of the dune and sediment overwash and assessment of the resilience of man-made "push-up" dunes to wave attack in comparison with their more-compacted "natural" cousins.

Maddux, T. B.; Ruggiero, P.; Palmsten, M.; Holman, R.; Cox, D. T.

2006-12-01

132

Lethal Sandslides from Eolian Dunes.  

PubMed

Fossil vertebrates entombed within the Upper Cretaceous Djadokhta Formation of southern Mongolia bear testimony to a heretofore unknown geologic phenomenon: mass wasting of eolian dunes during heavy rainstorms. Evaporation of shallow-penetrating rainwater led to progressive calcite accumulation in a thin layer of sand about 0.5 m below the surface of dune lee slopes. During rare heavy rainstorms, a perched water table developed at the top of calcitic zones. Positive pore water pressure led to translational slides and fast-moving sediment gravity flows that overwhelmed animals on the lee slopes of large dunes and in interdune areas. PMID:10517885

Loope; Mason; Dingus

1999-11-01

133

Recent aeolian dune change on Mars  

Microsoft Academic Search

Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04Mars years (5.7Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that

M. C. Bourke; K. S. Edgett; B. A. Cantor

2008-01-01

134

Grain size dependence of barchan dune dynamics  

E-print Network

The dependence of the barchan dune dynamics on the size of the grains involved is investigated experimentally. Downsized barchan dune slices are observed in a narrow water flow tube. The relaxation time from an initial symmetric triangular heap towards an asymmetric shape attractor increases with dune mass and decreases with grain size. The dune velocity increases with grain size. In contrast, the velocity scaling and the shape of the barchan dune is independent of the size of the grains.

C. Groh; N. Aksel; I. Rehberg; C. Kruelle

2008-11-28

135

Gypsum Dunes from White Sands National Monument - Potential Analog to North Polar Dunes on Mars  

Microsoft Academic Search

Three aspects of White Sands gypsum dunes evolution relating to climate variation are discussed in comparison to Olimpia Undae gypsum-rich dunes on Mars: gypsum source, groundwater discharge into interdunes areas, and desiccation of dunes.

A. Szynkiewicz; L. M. Pratt; M. Glamoclija; D. Bustos

2008-01-01

136

Gypsum Dunes from White Sands National Monument - Potential Analog to North Polar Dunes on Mars  

NASA Astrophysics Data System (ADS)

Three aspects of White Sands gypsum dunes evolution relating to climate variation are discussed in comparison to Olimpia Undae gypsum-rich dunes on Mars: gypsum source, groundwater discharge into interdunes areas, and desiccation of dunes.

Szynkiewicz, A.; Pratt, L. M.; Glamoclija, M.; Bustos, D.

2008-03-01

137

NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994  

EPA Science Inventory

North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

138

Maximizing Charging Throughput in Rechargeable Sensor Networks  

E-print Network

Maximizing Charging Throughput in Rechargeable Sensor Networks Xiaojiang Ren Weifa Liang Wenzheng reliable energy supplies for sensors in wireless rechargeable sensor net- works. The adoption of wireless. The lifetime of traditional battery-powered sensor networks is limited by the capacities of batteries. Even

Liang, Weifa

139

Transformer Recharging with Alpha Channeling in Tokamaks  

SciTech Connect

Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________

N.J. Fisch

2009-12-21

140

Recharge at the Hanford Site: Status report  

SciTech Connect

A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs.

Gee, G.W.

1987-11-01

141

Identifying and quantifying urban recharge: a review  

NASA Astrophysics Data System (ADS)

The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.

Lerner, David N.

2002-02-01

142

INTRODUCTION TO ARTIFICIAL GROUND-WATER RECHARGE  

EPA Science Inventory

Artificial ground-water recharge has been practiced for scores of years throughout the world. The purpose of artificial recharge is to increase the rate at which water infiltrates the land surface in order to supplement the quantity of ground water in storage. A variety of rechar...

143

Recent Aeolian Dune Change on Mars  

NASA Technical Reports Server (NTRS)

Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

2007-01-01

144

Rechargeable lithium-ion cell  

DOEpatents

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01

145

Rechargeable lead-acid batteries.  

PubMed

Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages. PMID:2211174

1990-09-01

146

Predicting vegetation-stabilized dune morphology  

NASA Astrophysics Data System (ADS)

The morphology of vegetation-stabilized dune fields on the North American Great Plains mostly comprises parabolic dunes; stabilized barchan and transverse dunes are rare. One notable exception is the Nebraska Sand Hills (NSH), where massive grass-covered barchan and transverse dunes bear proof of former desert-like conditions. We present a hypothesis from a numerical dune field model to explain the vegetation-stabilized morphology of dunes. The model incorporates a growth curve that preferentially grows vegetation in regions of sediment deposition with a sharp drop in growth at the peak depositional tolerance of vegetation, qualitatively matching biological response to erosion and deposition. Simulations on a range of pre-stabilization dune morphologies, from large closely-spaced transverse dunes to small dispersed barchans, indicate that the stabilized morphology is largely determined by the ratio of slipface deposition rate to peak depositional tolerance of vegetation. Conceptually, slipface deposition rate is related to dune height and celerity. By keeping depositional tolerance constant (representing a constant vegetation type and climate) the model shows that large slow-moving dunes have low slipface deposition rates and essentially 'freeze' in place once vegetation is introduced, retaining their pre-vegetation morphology. Small fast-moving dunes have higher slipface deposition rates and evolve into parabolic dunes. We hypothesize that, when barchan and transverse dunes are subjected to a stabilizing climate shift that increases vegetation growth rate, they retain their pre-stabilization morphology if deposition rates are below the depositional tolerance of stabilizing vegetation, otherwise they become parabolic dunes. This could explain why NSH dunes are stabilized in barchan and transverse morphologies while elsewhere on the Great Plains dune fields are dominated by smaller parabolic dunes.

Barchyn, T.; Hugenholtz, C.

2012-04-01

147

Breeding and solitary wave behavior of dunes.  

PubMed

Beautiful dune patterns can be found in deserts and along coasts due to the instability of a plain sheet of sand under the action of the wind. Barchan dunes are highly mobile aeolian dunes found in areas of low sand availability and unidirectional wind fields. Up to now modelization mainly focused on single dunes or dune patterns without regarding the mechanisms of dune interactions. We study the case when a small dune bumps into a bigger one. Recently Schwmmle and Herrmann [Nature (London) 426, 610 (2003)] and Katsuki [(e-print cond-mat 0403312)] have shown that under certain circumstances dunes can behave like solitary waves. This means that they can "cross" each other which has been questioned by many researchers before. In other cases we observe coalescence--i.e., both dunes merge into one--breeding--i.e., the creation of three baby dunes at the center and horns of a Barchan dune--or budding--i.e., the small dune, after "crossing" the big one, is unstable and splits into two new dunes. PMID:16196557

Durn, O; Schwmmle, V; Herrmann, H

2005-08-01

148

Linear Dunes on Earth and Mars Comparative Research  

NASA Astrophysics Data System (ADS)

Simple linear dunes, rare on Mars, are the most widespread dune type on Earth. Two types of linear dunes are known on Earth: seif dunes and vegetated linear dunes (VLDs). We will discuss the formation of linear dunes on Earth and on Mars.

Tsoar, H.

2014-07-01

149

Linear stability analysis of transverse dunes  

E-print Network

Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.

Melo, Hygor P M; Andrade, Jos S; Herrmann, Hans J

2012-01-01

150

Linear stability analysis of transverse dunes  

E-print Network

Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.

Hygor P. M. Melo; Eric J. R. Parteli; Jos S. Andrade Jr; Hans J. Herrmann

2012-02-13

151

Regional Estimation of Total Recharge to Ground Water in Nebraska  

E-print Network

Regional Estimation of Total Recharge to Ground Water in Nebraska by Jozsef Szilagyi1m2,F. Edwin Harvey', and Jerry F. Ayers' Abstract Naturally occurring long-term mean annual recharge to ground water (GIS) layers of land cover, elevation of land and ground water surfaces,base recharge, and the recharge

Szilagyi, Jozsef

152

Mars Northern Dunes: Volatiles and Geology  

NASA Astrophysics Data System (ADS)

Mars has a vast sea of sand dunes at high northern latitudes known as the north polar erg. These dunes are blanketed with seasonal CO2 frost in the winter and early spring. Sharp dune crests, steep slipfaces and lack of craters suggest that these northern dunes have experienced geologically recent resurfacing. The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) imaged a limited number of sites in the dunes with resolution better than 1 m to look for changes. New HiRISE images show extensive erosion of northern hemisphere dunes associated with seasonal CO2 ice sublimation in the spring. With 2 Mars years of observations we have observed the CO2-ice-free state of the dunes in the first year, frost-covered in late winter, the spring sublimation process, and the ice-free state of the dunes again in the second year. Temporal sequences of images of individual sites were acquired to monitor the sublimation process throughout spring. Ice-free images have been compared between northern summer in MRO year 1 (Mars Year 29) and MRO year 2. New alcoves and aprons are detected on numerous dunes in several sites. In one particular barchan dune field 20% of the dunes show substantial changes and 20% show minor changes. These changes can be traced to locations of early enhanced CO2 ice sublimation. The sublimation activity manifests itself on the dunes as cracks along the dune crest from which dark streaks of sand and dust move down the slipface. The sand travels out onto patterned ground, enabling measurement of the extent of the new aprons, in some cases meters from the dune boundary one year earlier. In order to maintain fresh dunes against such erosion the dune-building processes must still be at work on Mars today. This work was partially supported by JPL/CIT/NASA.

Hansen, Candice; Bridges, N.; Bourke, M.; Byrne, S.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Portyankina, G.; Thomas, N.; Colon, C.

2010-10-01

153

First Evidence of Dune Movement on Mars  

NASA Astrophysics Data System (ADS)

Many sand dunes on Mars have pristine morphology, fresh grain flows on avalanche faces and sand streamers extending from barchan horns. This suggests that the saltation threshold for sand is exceeded and dune migration is possible under the current Martian climate. However, sand dune movement has not been observed and there is evidence that many of the dunes may be stabilized or indurated. We report the first evidence for the movement of bodies of windblown sand under current climate conditions on Mars. Repeat images of three sand dunes using the Mars Orbiter Camera were acquired between March 1999 and December 2004. We detected the complete removal of sediment from two small dome dunes in a barchan dune field in the North Polar Sand Sea during this time. The third and largest dome dune (77 m wide) in the sample suite had a slight reduction in size, but dune form remained intact. On Earth, dome dunes are circular to oval low mounds of loose, well-sorted, very fine to medium sand. Slip faces are absent or ephemeral and stand only a meter or so high. That these dunes did not migrate, but were eroded, suggests that they were not in equilibrium. Dome dune morphology is not always as effective as e.g., barchan morphology, for trapping sediment, particularly in locations of high velocity winds. In these situations, the removal of sand downwind can lead to the depletion of the dune. Our data confirms that first; the threshold wind speed for saltation is exceeded under present Martian climate conditions. Second, not all dunes on Mars are stabilized or indurated. Third, dune migration is possible under current Martian conditions; however it is likely to be limited to the smallest barchan and dome dunes (i.e. < 20 m wide).

Bourke, M. C.; Edgett, K. S.

2006-12-01

154

Measuring and computing natural ground-water recharge at sites in south-central Kansas  

USGS Publications Warehouse

To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)

Sophocleous, M.A.; Perry, C.A.

1987-01-01

155

Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics  

Microsoft Academic Search

Sophocleous, M., 1992. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. J. Hydrol., 137: 113-140. The results of a 6 year recharge st,dy in the Great Bend Prairie of t:entral Kansas are statistically analyzed to regionalize the limited number of site-specific but year-round measurements. Emphasis is placed on easily measured parameters and

Marios Sophocleous

1992-01-01

156

DUNE - a granular flow code  

SciTech Connect

DUNE was designed to accurately model the spectrum of granular. Granular flow encompasses the motions of discrete particles. The particles are macroscopic in that there is no Brownian motion. The flow can be thought of as a dispersed phase (the particles) interacting with a fluid phase (air or water). Validation of the physical models proceeds in tandem with simple experimental confirmation. The current development team is working toward the goal of building a flexible architecture where existing technologies can easily be integrated to further the capability of the simulation. We describe the DUNE architecture in some detail using physics models appropriate for an imploding liner experiment.

Slone, D M; Cottom, T L; Bateson, W B

2004-11-23

157

Eolian reservoir characteristics predicted from dune type  

SciTech Connect

The nature of eolian-dune reservoirs is strongly influenced by stratification types (in decreasing order of quality: grain-flow, grain-fall, wind-ripple deposits) and their packaging by internal bounding surfaces. These are, in turn, a function of dune surface processes and migration behavior, allowing for predictive models of reservoir behavior. Migrating, simple crescentic dunes produce tabular bodies consisting mainly of grain-flow cross-strata, and form the best, most predictable reservoirs. Reservoir character improves as both original dune height and preserved set thickness increase, because fewer grain-fall deposits and a lower percentage of dune-apron deposits occur in the cross-strata, respectively. It is probable that many linear and star dunes migrate laterally, leaving a blanket of packages of wind ripple laminae reflecting deposition of broad, shifting aprons. This is distinct from models generated by freezing large portions of these dunes in place. Trailing margins of linear and star dunes are prone to reworking by sand-sheet processes that decrease potential reservoir quality. The occurrence of parabolic dunes isolated on vegetated sand sheets results in a core of grain-flow and grain-fall deposits surrounded by less permeable and porous deposits. Compound crescentic dunes, perhaps the most preservable dune type, may yield laterally (1) single sets of cross-strate, (2) compound sets derived from superimposed simple dunes, or (3) a complex of diverse sets derived from superimposed transverse and linear elements.

Kocurek, G.; Nielson, J.

1985-02-01

158

Dune Succession Predictable patterns of species  

E-print Network

Dune Succession Succession · Predictable patterns of species replacements in an ecological, reproduce rapidly, grow fast PIONEER SPECIES ­ Marram grass on fore dunes · Later species are poorer eruption ­ ex. newly dug pond ­ ex. bare rock after glacier recedes ­ ex. dunes Secondary Succession · Old

Cochran-Stafira, D. Liane

159

Rides et Dunes de Sable Alexandre Valance  

E-print Network

1 Rides et Dunes de Sable Alexandre Valance Institut de Physique de Rennes (IPR), CNRS UMR 6251-linéaire: murissement, saturation Dunes transverses, Barkhanes, Rides éoliennes Sources: · A. Valance: « Dynamique Fluviatile » (Cours M2 Systèmes Complexes, Rennes) · F. Charru et al. : « Ripples and Sand dunes » (Annual

Lucas, Carine - Le Laboratoire de Mathématiques

160

Dune Succession Predictable patterns of species  

E-print Network

1 Dune Succession Succession · Predictable patterns of species replacements in an ecological, reproduce rapidly, grow fast PIONEER SPECIES ­ Marram grass on fore dunes · Later species are poorer eruption ­ ex. newly dug pond ­ ex. bare rock after glacier recedes ­ ex. dunes Secondary Succession · Old

Cochran-Stafira, D. Liane

161

REVISED NORTH CAROLINA GROUNDWATER RECHARGE RATES 1998  

EPA Science Inventory

Revised North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, unpublished map: North Carolina State University, as modified by the NC Department of Environment and Natural Resources (DENR) Division of Water Quality (DWQ) Groundwater Section, (polygons)...

162

Groundwater Recharge Simulator M. Tech. Thesis  

E-print Network

Groundwater Recharge Simulator M. Tech. Thesis by Dharmvir Kumar Roll No: 07305902 Guide: Prof;Contents 1 Introduction 1 1.1 Groundwater Theory.1.5 Groundwater Flow Equation . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Numerical Solvers and Boundary

Sohoni, Milind

163

Design of an AUV recharging system  

E-print Network

The utility of present Autonomous Underwater Vehicles (AUVs) is limited by their on-board energy storage capability. Research indicates that rechargeable batteries will continue to be the AUV power source of choice for at ...

Gish, Lynn Andrew

2004-01-01

164

Dune Field in Nili Pateria  

NASA Technical Reports Server (NTRS)

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of the southeastern edge of a large dune field within Nili Patera, an irregularly shaped volcanic caldera that is about 65 kilometers (40 miles) in diameter. The image was acquired at 1333 UTC (8:33 a.m. EST) on Feb. 1, 2007, near 8.8 degrees north latitude, 67.3 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered by the image is just over 10 kilometers (6 miles) wide at its narrowest point.

The top image was constructed from three visible wavelengths that correspond to what our eyes would see; the colors are stretched to bring out subtle color contrast. The bottom image is a spectral map constructed using three infrared wavelengths that usually highlight compositional variations. Areas with high concentrations of iron- and magnesium-rich igneous minerals appear red.

The entire dune field, covering about 500 square kilometers, resides mainly in the southwest quadrant of the caldera, occupying approximately 15% of its floor. Some of the dune forms seen here are 'barchans' -- individual, crescent shaped dunes that form when winds come primarily from one direction, resulting in one slipface. The orientation of the slipfaces indicates that primary winds were coming from the east-northeast. Using images from Mars Global Surveyor's narrow-angle camera, researchers measured approximately 400 slipfaces throughout the dune field and calculated an average azimuth of 245 degrees. Some of the barchans have elongated horns, suggesting that they experienced a slight secondary wind, or that the primary wind direction varied a little. When sufficient sand is available, barchans will coalesce, losing their individual crescentic shape. The resulting dune form, referred to as barchanoid, describes the vast majority of dunes in this image.

In the lower left portion of the image, where the dune pattern is most regular, the distance from dune crest to dune crest is about 400 meters (437 yards). The relationship shown here, with barchans at the margin of a barchanoid dune field, is common on Mars.

CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate.

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

2007-01-01

165

Teeny tiny windmills could recharge phones Share it now!  

E-print Network

Teeny tiny windmills could recharge phones Green Tech Share it now! 0 One of the tiny windmills recharge phones | VantageWire 2/1/2014http://www.vantagewire.com/2014/01/teeny-tiny-windmills-could-recharge-phones could recharge phones | VantageWire 2/1/2014http://www.vantagewire.com/2014/01/teeny-tiny-windmills-could-recharge-phones

Chiao, Jung-Chih

166

Factors determining desert dune type  

Microsoft Academic Search

While most observers recognize four elemental types of desert dunes (longitudinal, transverse, barchan and star1-3) there is little agreement about which factors determine these types. The angular relationships between the resultant of sand shifting winds and both the crest and principal slipfaces of the elemental types have been discussed qualitatively for many decades. These relationships have been quantified but the

R. J. Wasson; R. Hyde

1983-01-01

167

DUNE: The Dark Universe Explorer  

E-print Network

Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constraints on cosmological parameters, including the equation of state parameter of the dark energy and its evolution from redshift 0 to 1. DUNE is the subject of an ongoing study led by the French Space Agency (CNES), and is being proposed for ESA's Cosmic Vision programme.

A. Refregier; O. Boulade; Y. Mellier; B. Milliard; R. Pain; J. Michaud; F. Safa; A. Amara; P. Astier; E. Barrelet; E. Bertin; S. Boulade; C. Cara; A. Claret; L. Georges; R. Grange; J. Guy; C. Koeck; L. Kroely; C. Magneville; N. Palanque-Delabrouille; N. Regnault; G. Smadja; C. Schimd; Z. Sun

2006-10-03

168

Groundwater Recharge Estimates under Agricultural Lands based on Deep Vadose Zone Sampling, Monitoring and Modeling, Mediterranean Climate, Israel  

NASA Astrophysics Data System (ADS)

Models of unsaturated flow and chloride transport under different agricultural settings were calibrated to deep vadose-zone samples or monitoring systems' data. The land settings include irrigated citrus orchards in light and heavy soils, a rain-fed winter crop field, an irrigated summer crop field and a bare sand dune. Vadose zone monitoring system (VMS), which enables continuous measurements of the vadose zone water content and frequent sampling of pore water at selected points across the entire vadose zone were used in three sites. In other sites direct push rigs were used for obtaining continuous core to depths ~ 10 m, and all physical and chemical characterization were derived in the lab. Hydrus 1D code was used for calibrating the models, validation runs (only in monitored sites) and simulations. In orchards, large variability of rechrge rates within the same orchard was observed. On average, relatively low recharge rates were calculated (~10% of precipitation+ irrigation), and high masses of chloride accumulations are found in many profiles obtained under orchards. Recharge variability within the same crop-field was usually smaller than the variability found in orchards while average relative recharge rates are usually higher than in orchards. Calibrated models were used for simulation of long periods and some simple precipitation-recharge statistics for the different land uses were obtained. Scenarios of land-use and climate change where used to produce estimates of the effects of these changes on recharge (e.g. 25% drop in rainfall will lead to ~50% drop in recharge under rain-fed crop).

Kurtzman, D.; Turkeltub, T.; Shapira, R.; Dahan, O.

2011-12-01

169

'Endurance Crater's' Dazzling Dunes (false-color)  

NASA Technical Reports Server (NTRS)

As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces.

Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

2004-01-01

170

The dune size distribution and scaling relations of barchan dune fields  

E-print Network

Barchan dunes emerge as a collective phenomena involving the generation of thousands of them in so called barchan dune fields. By measuring the size and position of dunes in Moroccan barchan dune fields, we find that these dunes tend to distribute uniformly in space and follow an unique size distribution function. We introduce an analyticalmean-field approach to show that this empirical size distribution emerges from the interplay of dune collisions and sand flux balance, the two simplest mechanisms for size selection. The analytical model also predicts a scaling relation between the fundamental macroscopic properties characterizing a dune field, namely the inter-dune spacing and the first and second moments of the dune size distribution.

Orencio Durn; Veit Schwmmle; Pedro G. Lind; Hans J. Herrmann

2007-01-16

171

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India  

E-print Network

, Rajasthan, India Bridget R. Scanlon & Abhijit Mukherjee & John Gates & Robert C. Reedy & Amarendra K. Sinha using the Cl mass balance approach and nutrient availability in the Thar Desert, Rajasthan, India. Soil

Scanlon, Bridget R.

172

Defrosting of Russell Crater Dunes  

NASA Technical Reports Server (NTRS)

These two images (at right) were acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 39 days apart at 19:10 UTC (2:10 PM EST) on December 28, 2006 (upper right) and at 20:06 UTC (3:06 PM EST) on February 5, 2007 (lower right). These CRISM data were acquired in 544 colors covering the wavelength range from 0.36-3.92 micrometers, and show features as small as 20 meters (about 65 feet) across. Both images are false color composites of bands at 2.5, 1.5, and 1.25 micrometers, and are nearly centered at the same location, 54.875oS, 12.919oE (upper right) and 54.895oS, 12.943oE (lower right). Each image is approximately 11 kilometers (7 miles) across at its narrowest. These are part of a series of images capturing the evolution of carbon dioxide frost on the surface of the dunes in Russell Crater.

Russell Crater is one of many craters in the southern highland region of Mars that contain large areas of sand dunes. The sand in these dunes has accumulated over a very long time period -- perhaps millions of years -- as wind blows over the highland terrain, picking up sand in some places and depositing in others. The topography of the craters forces the wind to blow up and over the crater rims, and the wind often isn't strong enough to keep the tiny grains suspended. This makes the sand fall to the ground and gradually pile up, and over time the surface breezes shape the sand into ripples and dunes. A similar process is at work at the Great Sand Dunes National Park and Preserve in Colorado, USA.

The above left image shows a THEMIS daytime infrared mosaic of Russell Crater and the location of its (approximately) 30-kilometer wide dune field in the northeastern quadrant of the crater floor. Superposed on this view and shown enlarged at the upper right is CRISM image FRT000039DF. This CRISM image was acquired during the late Martian southern winter (solar longitude = 157.7o), and the bright blue in this false color composite indicates the presence of carbon dioxide frost (dry ice) on the dunes. Sunlight is coming from the northeast, and the sunlit faces of the dunes appear red because they show very little frost compared to the colder, more shadowed areas. Thirty-nine days later at the beginning of southern spring (solar longitude = 178.9o), CRISM image FRT000042AA (lower right) was acquired almost at the same location. Notably, the bright blue frost-rich areas are considerably smaller and subdued, with slim patches only observed on the shadowed sides of the dunes that are most protected from the warmth of the rising sun. As the southern season continues to march toward summer, all of the frost will soon be gone and won't return until the next Martian winter.

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

2007-01-01

173

Modeling Recharge - can it be Done?  

NASA Astrophysics Data System (ADS)

In sub-humid areas where rainfall is relatively low and sporadic, recharge (defined as water movement beyond the active root zone) is the small difference between the much larger numbers rainfall and evapotranspiration. It is very difficult to measure and often modeling is resorted to instead. But is modeling this small number any less difficult than measurement? In Australia there is considerable debate over the magnitude of recharge under different agricultural systems because of its contribution to rising saline groundwater levels following the clearing of native vegetation in the last 100 years. Hence the adequacy of measured and modeled estimates of recharge is under close scrutiny. Results will be presented for the water balance of an intensively monitored 8 year sequence of crops and pastures. Measurements included meteorological inputs, evapotranspiration measured with a pair of weighing lysimeters, and soil water content was measured with TDR and neutron moisture meter. Recharge was estimated from the percolate removed from the lysimeters as well as, when conditions were suitable, from soil water measurements and combined soil water and evapotranspiration measurements. This data was simulated using a comprehensive soil-plant-atmosphere model (APSIM). Comparison with field measurements shows that the recharge can be simulated with an accuracy similar to that with which it can be measured. However, is either sufficiently accurate for the applications for which they are required?

Verburg, K.; Bond, W. J.; Smith, C. J.; Dunin, F. X.

2001-12-01

174

Summertime View of North Polar Sand Dunes  

NASA Technical Reports Server (NTRS)

10 October 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of dunes in one of the several north polar dune fields. The bright surfaces adjacent to some of the dunes are patches of frost. These dunes spend much of the autumn, winter, and spring seasons covered with carbon dioxide frost. Only in late spring and in summer are the dark windblown sands fully exposed.

Over the course of the 9+ years of the MGS mission, the MOC team has sought evidence that sand dunes may be migrating downwind over time. However, no clear examples of the movement of a whole dune have been identified. On Earth, such movement is typically detectable in air photos of the smallest active dunes over periods of a few years. Owing to the fact that the north polar dunes spend much of each martian year under a cover of frost, perhaps these move much more slowly than their frost-free, terrestrial counterparts. The sand may also be somewhat cemented by ice or minerals, likewise preventing vigorous dune migration in the present environment.

This view covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left. The dunes are located near 79.8oN, 127.1oW, and the picture was acquired on 11 September 2006.

2006-01-01

175

Size distribution and structure of Barchan dune fields  

E-print Network

Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

Orencio Durn; Veit Schwmmle; Pedro G. Lind; Hans J. Herrmann

2007-01-16

176

Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China  

NASA Astrophysics Data System (ADS)

The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of frozen barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the development of vegetation-stabilized dunes, which should be helpful in better understanding of vegetated dune morphology, model verification and prediction, and guiding practical dune stabilization efforts.

Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

2015-01-01

177

Mars global digital dune database: MC-30  

USGS Publications Warehouse

The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65 N. to 65 S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60 N. to 90 N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60 to 90 S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System (THEMIS) Infrared (IR) images. In the previous two reports, some dune fields may have been unintentionally excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100 m/pixel) certainly caused us to exclude smaller dune fields. In this report, mapping is more complete. The Arizona State University THEMIS daytime IR mosaic provided complete IR coverage, and it is unlikely that we missed any large dune fields in the South Pole (SP) region. In addition, the increased availability of higher resolution images resulted in the inclusion of more small (~1 km2) sand dune fields and sand patches. To maintain consistency with the previous releases, we have identified the sand features that would not have been included in earlier releases. While the moderate to large dune fields in MGD3 are likely to constitute the largest compilation of sediment on the planet, we acknowledge that our database excludes numerous small dune fields and some moderate to large dune fields as well. Please note that the absence of mapped dune fields does not mean that dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera (MOC) narrow angle, Mars Express High Resolution Stereo Camera, or Mars Reconnaissance Orbiter Context Camera and High Resolution Imaging Science Experiment images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the approximate prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model is also included. In addition to polygons locating dune fields, the database includes ~700 of the THEMIS VIS and MOC images that were used to build the database.

Hayward, R.K.; Fenton, L.K.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

2012-01-01

178

Dunes of the Frozen North  

NASA Technical Reports Server (NTRS)

19 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark north polar dunes overlying other materials in the north polar region.

Location near: 79.1oN, 228.8oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

179

Dunes of the Frozen North  

NASA Technical Reports Server (NTRS)

21 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark north polar dunes overlying other materials in the north polar region.

Location near: 79.1oN, 228.8oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

2005-01-01

180

Daily cycles in coastal dunes  

USGS Publications Warehouse

Daily cycles of summer sea breezes produce distinctive cyclic foreset deposits in dune sands of the Texas and Oregon coasts. In both areas the winds are strong enough to transport sand only during part of the day, reach a peak during the afternoon, and vary little in direction during the period of sand transport. Cyclicity in the foreset deposits is made evident by variations in the type of sedimentary structure, the texture, and the heavy-mineral content of the sand. Some of the cyclic deposits are made up entirely of one basic type of structure, in which the character of the structure varies cyclically; for example, the angle of climb in a climbing-wind-ripple structure may vary cyclically. Other cyclic deposits are characterized by alternations of two or more structural types. Variations in the concentration of fine-grained heavy minerals, which account for the most striking cyclicity, arise mainly because of segregation on wind-rippled depositional surfaces: where the ripples climb at low angles, the coarsegrained light minerals, which accumulate preferentially on ripple crests, tend to be excluded from the local deposit. Daily cyclic deposits are thickest and best developed on small dunes and are least recognizable near the bases of large dunes. ?? 1988.

Hunter, R.E.; Richmond, B.M.

1988-01-01

181

DUNE: The Dark Universe Explorer  

E-print Network

Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constrai...

Rfrgier, A; Mellier, Y; Milliard, B; Pain, R; Michaud, J; Safa, F; Amara, A; Astier, Pierre; Barrelet, E; Bertin, E; Boulade, S; Cara, C; Claret, A; Georges, L; Grange, R; Guy, J; Koeck, C; Kroely, L; Magneville, C; Palanque-Delabrouille, Nathalie; Regnault, N; Smadja, G; Schimd, C; Sun, Z

2006-01-01

182

Using groundwater levels to estimate recharge  

USGS Publications Warehouse

Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

Healy, R.W.; Cook, P.G.

2002-01-01

183

Impacts of vegetation change on groundwater recharge  

NASA Astrophysics Data System (ADS)

Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

Bond, W. J.; Verburg, K.; Smith, C. J.

2003-12-01

184

Extraterrestrial dunes: An introduction to the special issue on planetary dune systems  

E-print Network

Extraterrestrial dunes: An introduction to the special issue on planetary dune systems Mary C on extraterrestrial surfaces are similar to those on Earth, although some have notable differences in bedform scale

Bourke, Mary C.

185

Growth mechanisms and dune orientation on Titan  

NASA Astrophysics Data System (ADS)

Dune fields on Titan cover more than 17% of the moon's surface, constituting the largest known surface reservoir of organics. Their confinement to the equatorial belt, shape, and eastward direction of propagation offer crucial information regarding both the wind regime and sediment supply. Herein, we present a comprehensive analysis of Titan's dune orientations using automated detection techniques on nonlocal denoised radar images. By coupling a new dune growth mechanism with wind fields generated by climate modeling, we find that Titan's dunes grow by sediment transport on a nonmobile substratum. To be fully consistent with both the local crestline orientations and the eastward propagation of Titan's dunes, the sediment should be predominantly transported by strong eastward winds, most likely generated by equinoctial storms or occasional fast westerly gusts. Additionally, convergence of the meridional transport predicted in models can explain why Titan's dunes are confined within 30 latitudes, where sediment fluxes converge.

Lucas, Antoine; Rodriguez, Sbastien; Narteau, Clment; Charnay, Benjamin; Pont, Sylvain Courrech; Tokano, Tetsuya; Garcia, Amandine; Thiriet, Mlanie; Hayes, Alexander G.; Lorenz, Ralph D.; Aharonson, Oded

2014-09-01

186

Solar recharging system for hearing aid cells.  

PubMed

We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity. PMID:7964140

Gmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muiz, L; Aristimuo, D; Unanue, J M; Torca, J; Urruticoechea, A

1994-09-01

187

REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures  

National Institute of Standards and Technology Data Gateway

SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase) REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.

188

Investigation of Reversing Sand Dunes at the Bruneau Dunes, Idaho, as Analogs for Features on Mars  

NASA Astrophysics Data System (ADS)

The Bruneau Dunes in south-central Idaho include several large reversing sand dunes located within a cut-off meander of the Snake River. These dunes include the largest single-structured sand dune present in North America. Wind records from the Remote Automated Weather Station (RAWS) installation at the Mountain Home Air Force Base, which is ~21 km NW of the Bruneau Dunes, have proved to be very helpful in assessing the regional wind patterns at this section of the western Snake River Plains province; a bimodal wind regime is present, with seasonal changes of strong (sand-moving) winds blowing from either the northwest or the southeast. During April of 2011, we obtained ten precision topographic surveys across the southernmost reversing dune using a Differential Global Positioning System (DGPS). The DGPS data document the shape of the dune going from a low, broad sand ridge at the southern distal end of the dune to the symmetrically shaped 112-m-high central portion of the dune, where both flanks of the dune consist of active slopes near the angle of repose. These data will be useful in evaluating the reversing dune hypothesis proposed for enigmatic features on Mars called Transverse Aeolian Ridges (TARs), which could have formed either as large mega-ripples or small sand dunes. The symmetric profiles across TARs with heights greater than 1 m are more consistent with measured profiles of reversing sand dunes than with measured profiles of mega-ripples (whose surfaces are coated by large particles ranging from coarse sand to gravel, moved by saltation-induced creep). Using DGPS to monitor changes in the three-dimensional location of the crests of the reversing dunes at the Bruneau Dunes should provide a means for estimating the likely timescale for changes of TAR crests if the Martian features are indeed formed in the same manner as reversing sand dunes on Earth.

Zimbelman, J. R.; Scheidt, S. P.

2012-12-01

189

Parabolic dunes in north-eastern Brazil  

E-print Network

In this work we present measurements of vegetation cover over parabolic dunes with different degree of activation along the north-eastern Brazilian coast. We are able to extend the local values of the vegetation cover density to the whole dune by correlating measurements with the gray-scale levels of a high resolution satellite image of the dune field. The empirical vegetation distribution is finally used to validate the results of a recent continuous model of dune motion coupling sand erosion and vegetation growth.

Duran, O; Bezerra, L J C; Herrmann, H J; Maia, L P

2007-01-01

190

Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields  

E-print Network

P13B-1369 Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields Dinwiddie, C. L.1 ; D. M. Hooper1 ; T. I. Michaels2 ; R. N. Mcginnis1 ; D and Engineering Laboratory, U.S. Army Corps of Engineers, Ft. Wainwright, AK, United States. Martian dune systems

Stillman, David E.

191

Disturbance drives phylogenetic community structure in coastal dune vegetation  

E-print Network

Disturbance drives phylogenetic community structure in coastal dune vegetation Background Coastal dunes are a globally distributed ecosystem characterized by strong internal gradients in disturbance plant community assembly, but their relative importance in coastal dunes is not well elucidated. We

Schierup, Mikkel Heide

192

Micro Windmills to Recharge Cell Leave a reply  

E-print Network

Micro Windmills to Recharge Cell Phones Leave a reply The Windmill in Action At the University of Texas Arlington, scientists J.C. Chiao and Smitha Rao have developed micro-windmills which recharge Page 1 of 2Micro Windmills to Recharge Cell Phones | MADE 2/3/2014http://themadeblog.com/micro

Chiao, Jung-Chih

193

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries  

E-print Network

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z information and constitutive material properties to calculate the response of rechargeable batteries of a recharge- able battery provides valuable insight into optimizing the perfor- mance of the device

García, R. Edwin

194

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries  

E-print Network

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries Anne-Vale´rie G conductivity in polymer electrolytes for solid-state rechargeable lithium batteries. However, due to the strong in solid-state rechargeable lithium batteries. Yet, technical obstacles to their commercialization derive

Sadoway, Donald Robert

195

Block Copolymer-Templated Nanocomposite Electrodes for Rechargeable Lithium Batteries  

E-print Network

Block Copolymer-Templated Nanocomposite Electrodes for Rechargeable Lithium Batteries S. C. Mui-organizing, nanocomposite electrode SONE system was developed as a model lithium alloy-based anode for rechargeable lithium of rechargeable lithium batteries, the search for high capacity anodes that avoid the safety concerns associated

Sadoway, Donald Robert

196

Sources of uncertainty in climate change impacts on groundwater recharge  

Microsoft Academic Search

This paper assesses the significance of the many sources of uncertainty in future groundwater recharge estimation, based on lessons learnt from an integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge in East Anglia, UK. Many factors affect simulations of future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment,

I. P. Holman

2007-01-01

197

Composite Electrolytes for Lithium Rechargeable Batteries  

Microsoft Academic Search

The paper reviews and presents attributes of emerging polymer-ceramic composite electrolytes for lithium rechargeable batteries. The electrochemical data of a diverse range of composite electrolytes reveal that the incorporation of a ceramic component in a polymer matrix leads to enhanced conductivity, increased lithium transport number, and improved electrode-electrolyte interfacial stability. The conductivity enhancement depends upon the weight fraction of the

Binod Kumar; Lawrence G. Scanlon

2000-01-01

198

Recharging Our Sense of Idealism: Concluding Thoughts  

ERIC Educational Resources Information Center

In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice

D'Andrea, Michael; Dollarhide, Colette T.

2011-01-01

199

Tradable recharge rights in Coleambally Irrigation Area  

Microsoft Academic Search

Irrigated agriculture in Australia often leads to recharge of shared groundwater systems causing saline shallow watertables and soil salinity. In turn, these biophysical impacts impose costs, including reduced agricultural productivity, damage to ecosystems and degradation of local and off-site infrastructure, on irrigators and other members of the community. To the extent these costs are external to landowners they are not

Stuart Whitten; Shahbaz Khan

200

Anode for rechargeable ambient temperature lithium cells  

NASA Technical Reports Server (NTRS)

An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

Huang, Chen-Kuo (inventor); Surampudi, Subbarao (inventor); Attia, Alan I. (inventor); Halpert, Gerald (inventor)

1994-01-01

201

Design considerations for rechargeable lithium batteries  

NASA Technical Reports Server (NTRS)

Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

1993-01-01

202

Rechargeable solid polymer electrolyte battery cell  

DOEpatents

A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

Skotheim, Terji (East Patchoque, NY)

1985-01-01

203

Alloys of clathrate allotropes for rechargeable batteries  

DOEpatents

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09

204

Insights from a Geophysical and Geomorphological Mars Analog Field Study at the Great Kobuk Sand Dunes, Northwestern Alaska  

NASA Astrophysics Data System (ADS)

Terrestrial dune systems are used as natural analogs to improve understanding of the processes by which planetary dunes form and evolve. Selected terrestrial analogs are often warm-climate dune fields devoid of frozen volatiles, but cold-climate dunes offer a better analog for polar dunes on Mars. The cold-climate Great Kobuk Sand Dunes (GKSD) of Kobuk Valley National Park, Alaska, are a high-latitude, slowly migrating analog for polar, inter- and intracrater dune fields on Mars. The 67N latitude, 62 km2 GKSD consist of moderately well sorted, fine-grained sands deposited within the Kobuk River valley ~50 km north of the Arctic Circle and ~160 km inland from Kotzebue Sound. Winds at the GKSD are influenced significantly by complex surrounding topography, an influence that is similar to many high-latitude inter- and intracrater dune fields on Mars. Average annual temperature and precipitation at the GKSD are -5C and 430 mm. The dune field is generally resistant to atmospheric forcing (wind) for a significant portion of the year because of snowcover, similar to the effect that seasonal CO2 and H2O frost mantling have on Martian polar dunes. The dune field, which ranges in elevation from 33 to 170 m above mean sea level, consists of sand sheets as well as climbing and reversing barchanoid, transverse, longitudinal, and star dunes. Several tributaries to the Kobuk River bound and dissect the GKSD, producing cutbank exposures and alcoves that reveal internal structure. We report results from our detailed geophysical and geomorphological site characterization field study, which was conducted near peak freeze conditions from March 15 through April 2, 2010. We used multifrequency ground-penetrating radar (25, 50, 100, 250, 500, 1000 MHz) and capacitively coupled resistivity methods to image the internal structure of representative dunes, and performed ground truthing using a sampling auger, natural exposures, and Real-Time Kinematic Differential GPS. Data from twenty system-wide geophysical surveys and ten boreholes revealed the presence of a shallow water table throughout the active portion of the GKSD. The distinctive water table radar signature was that of a reflector that closely parallels topography and cuts across steeply dipping bedforms. The water table is slightly nearer the surface within interdunes than it is below dune crests. The presence of water did not inhibit signal penetration; features were recognizable at two-way travel times of 560 to 1100 ns using 25, 50, and 100 MHz antennas. Our results suggest the dune field may serve as a localized recharge zone, with volatiles emplaced through both snowfall and rainfall, although a supra-permafrost talik cannot yet be ruled out. We interpret the available evidence to suggest that longlived snowcover combined with a shallow aqueous reservoir is primarily responsible for the low migration rate of this dune system (1.3 m per year).

McGinnis, R. N.; Dinwiddie, C. L.; Stillman, D.; Bjella, K.; Hooper, D. M.; Grimm, R. E.

2010-12-01

205

Defrosting North Polar Dune Field  

NASA Technical Reports Server (NTRS)

MGS MOC Release No. MOC2-331, 15 April 2003

This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures frost-covered north polar sand dunes in springtime as they are beginning to defrost. Dark spots and streaks indicate areas where frozen carbon dioxide has started to be removed by sublimation and wind. The picture covers an area 3 km (1.9 mi) wide near 76.3oN, 264.9oW. Sunlight illuminates the scene from the lower left.

2003-01-01

206

Pathfinder Rover Atop Mermaid Dune  

NASA Technical Reports Server (NTRS)

Mars Pathfinder Lander camera image of Sojourner Rover atop the Mermaid 'dune' on Sol 30. Note the dark material excavated by the rover wheels. These, and other excavations brought materials to the surface for examination and allowed estimates of mechanical properties of the deposits.

NOTE: original caption as published in Science Magazine

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

1997-01-01

207

Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico  

USGS Publications Warehouse

The degree of early diagenesis in eolian dune and interdune sands at White Sands, New Mexico, is largely a function of the relationship between sand location and the water table. Most active and vegetation-stabilized dune sands are in the vadose zone, whereas interdune sands are in the capillary fringe and phreatic zones. Crystallographically controlled dissolution of the framework gypsum grains results in elongate, prismatic etch pits on sand grains from the capillary fringe and phreatic zones, whereas dissolution of sand grains in the vadose zone is slight, causing minute irregularities on grain surfaces. Vadose water percolating through the sand is manifest as meniscus layers. Consequently, dune sands in the vadose zone are cemented mainly by meniscus-shaped gypsum at grain contacts. Pendant cements formed on the lower margins of some sand grains. Cementation in the capillary fringe and the phreatic zone is more extensive than the vadose regardless of strata type. Typically, well-developed gypsum overgrowths form along the entire edge of a grain, or may encompass the entire grain. Complex diagenetic histories are suggested by multiple overgrowths and several episodes of dissolution on single grains, attesting to changing saturation levels with respect to gypsum in the shallow ground water. These changes in saturation are possibly due to periods of dilution by meteoric recharge, alternating with periods of concentration of ions and the formation of cement due to evaporation through the capillary fringe. ?? 1988.

Schenk, C.J.; Fryberger, S.G.

1988-01-01

208

Size of Suspended Sediment over Dunes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Samples of suspended sediment were collected at four elevations simultaneously over two-dimensional mobile dunes in two mixtures of 0.5 mm sand in a laboratory flume channel. A constant sampling position relative to the dunes was maintained by adjusting the translation rate of the sampling carriage...

209

Automatic rainfall recharge model induction by evolutionary computational intelligence  

NASA Astrophysics Data System (ADS)

Genetic programming (GP) is used to develop models of rainfall recharge from observations of rainfall recharge and rainfall, calculated potential evapotranspiration (PET) and soil profile available water (PAW) at four sites over a 4 year period in Canterbury, New Zealand. This work demonstrates that the automatic model induction method is a useful development in modeling rainfall recharge. The five best performing models evolved by genetic programming show a highly nonlinear relationship between rainfall recharge and the independent variables. These models are dominated by a positive correlation with rainfall, a negative correlation with the square of PET, and a negative correlation with PAW. The best performing GP models are more reliable than a soil water balance model at predicting rainfall recharge when rainfall recharge is observed in the late spring, summer, and early autumn periods. The ``best'' GP model provides estimates of cumulative sums of rainfall recharge that are closer than a soil water balance model to observations at all four sites.

Hong, Yoon-Seok Timothy; White, Paul A.; Scott, David M.

2005-08-01

210

On the crescentic shape of barchan dune  

E-print Network

Aeolian sand dunes originate from wind flow and sand bed interactions. According to wind properties and sand availability, they can adopt different shapes, ranging from huge motion-less star dunes to small and mobile barchan dunes. The latter are crescentic and emerge under a unidirectional wind, with a low sand supply. Here, a 3d model for barchan based on existing 2d model is proposed. After describing the intrinsic issues of 3d modeling, we show that the deflection of reptating particules due to the shape of the dune leads to a lateral sand flux deflection, which takes the mathematical form of a non-linear diffusive process. This simple and physically meaningful coupling method is used to understand the shape of barchan dunes.

P. Hersen

2003-08-06

211

Relation of hydrologic processes to groundwater and surface-water levels and flow directions in a dune-beach complex at Indiana Dunes National Lakeshore and Beverly Shores, Indiana  

USGS Publications Warehouse

The potential for high groundwater levels to cause wet basements (groundwater flooding) is of concern to residents of communities in northwestern Indiana. Changes in recharge from precipitation increases during 2006-9, water-level changes from restoration of nearby wetlands in the Great Marsh in 1998-2002, and changes in recharge due to the end of groundwater withdrawals for water supply since 2005 in a community at Beverly Shores, Ind., were suspected as factors in increased groundwater levels in an unconfined surficial aquifer beneath nearby parts of a dune-beach complex. Results of this study indicate that increased recharge from precipitation and snowmelt was the principal cause of raised water levels in the dune-beach complex from 2006 to 2009. Annual precipitation totals in 2006-9 ranged from 43.88 to 55.75 inches per year (in/yr) and were substantially greater than the median 1952-2009 precipitation of 36.35 in/yr. Recharge to groundwater from precipitation in 2006-9 ranged from 13.5 to 22 in/yr; it was higher than the typical 11 in/yr because of large precipitation events and precipitation amounts received during non-growing-season months. An estimated increase in net recharge from reduced groundwater use in Beverly Shores since 2005 ranged from 1.6 in/yr in 2006 to 1.9 in/yr in 2009. Surface-water levels in the wetland were as much as about 1.1 feet higher in 2007-9 (after the 1998-2002 wetland restoration) than during seasonally wet periods in 1979-89. Similar surface-water levels and ponded water were likely during winter and spring wet periods before and after wetland restoration. High water levels similar to those in 2009 were measured elsewhere in the dune-beach complex near a natural wetland during the spring months in 1991 and 1993 after receipt of near record precipitation. Recharge from similarly high precipitation amounts in 2008-9 was also a likely cause of high groundwater levels in other parts of the dune-beach complex, such as at Beverly Shores. Perennial mounding of the water table in the surficial aquifer indicates that the recharge that created the water-table mound originates within the dune-beach complex and not through flow from the adjacent hydrologic boundaries: the restored wetland, Lake Michigan, and Derby Ditch. Infiltrating precipitation causes most seasonal and episodic rises in groundwater levels beneath the dune-beach complex. Groundwater-level fluctuations lasting days to weeks in the dune-beach complex in 2008-9 were superimposed on a seasonal high water-table altitude that began with the recharge from snowmelt and rain in February 2009 and maintained through July 2009. Increases in water-table-mound altitude under the dune-beach complex recurred in 2008-9 in response to the largest rain events of 1 inch or more and to snowmelt. Smaller, shorter-term rises in water level after individual rain events persisted over hours to less than 1 week. Groundwater-level fluctuations varied over a relatively narrow range of about 2 to 3 feet, with no net fluctuations greater than 4 feet. Groundwater levels in or near low parts of the dune-beach complex were frequently within 0 to 6 feet of the land surface and indicate the potential for groundwater flooding. Groundwater-level gradients from the water-table mound to wells next to surface-water discharges increase after rainfall and snowmelt events and recede slowly as groundwater discharges from the aquifer. Evapotranspiration is responsible for part of the general pattern of decreasing water-table altitudes observed from May to August 2009. Rapid water-level rises in the restored wetland after precipitation do not likely have an effect on groundwater flooding elsewhere in the dune-beach complex. Surface-water-level fluctuations during this study generally varied over a narrower range, approximately from 1 to 1.5 feet, as compared with groundwater fluctuations, except after a very large, 10.77-inch rainfall. Time-delayed and smaller groundwater-level

Buszka, Paul M.; Cohen, David A.; Lampe, David C.; Pavlovic, Noel B.

2011-01-01

212

Investigation of groundwater recharge in arid environments through continuous monitoring of water fluxes within the unsaturated zone  

NASA Astrophysics Data System (ADS)

For groundwater resources management in arid environments the rate of aquifer replenishment due to groundwater recharge is one of the most important factors and unfortunately also one of the most difficult to derive with sufficient accuracy. In general, the potential evaporation by far exceeds the precipitation limiting groundwater recharge. Unsaturated zone processes play a key role in groundwater recharge as the thickness of the unsaturated zone in arid areas may reach several thenth of meters, compared to millimeters or centimeters of assumed groundwater recharge per year. This indicates the complexity of the problem. Overcoming the field capacity along the infiltration path to initiate downward movement on such a long distance to the groundwater table would require the recharge of tenths or even hundreds of years. Also, precipitation is highly variable in space, time, and intensity and may be followed by hot and dry conditions leading to an alternation of downward and upward movement of water. For this study, field sites in the Kingdom of Saudi Arabia (located app. 200km SW of Riyadh) were selected that represent typical settings for potential groundwater recharge in arid regions, i.e. sand dune areas and wadi beds. In the field campaign vibro-coring techniques applying direct-push technologies (Geoprobe 7720DT) were used to retrieve undisturbed soil sampling down to depths of about 15 m in the unsaturated zone. The drilled boreholes were consequently used for the installation of specially designed flat cable TDR sensors that provide continuous monitoring of the soil moisture content in high vertical resolution. In addition, temperature sensors were installed to monitor temperature fluctuations in the unsaturated zone. We present data on the analyses of soil samples as well as on the measured water content evolution over time as determined by the TDR flat band cables. Results show, that significant changes in water content occurred within the observation time indicating the potential for groundwater recharge even under the arid conditions encountered at the field sites. Acknowledgements The authors would like to acknowledge the cooperation between Helmholtz-Centre for Environmental Research-UFZ (Leipzig, Germany); Technical University of Darmstadt (Germany); GIZ-IS/Dornier Consulting (Riyadh Office, Kingdom of Saudi Arabia) and the Ministry of Water and Electricity (Kingdom of Saudi Arabia); within the framework of the German Federal Ministry of Education and Research (BMBF) funded research program IWAS (http://www.iwas-sachsen.ufz.de/).

Kallioras, A.; Reshid, M.; Dietrich, P.; Rausch, R.; Al-Saud, M.; Schuth, C.

2012-04-01

213

Monitoring Cave Recharge in the Edwards Aquifer Recharge Zone for Natural and Simulated Rainfall Events  

NASA Astrophysics Data System (ADS)

Across semi-arid regions of the world, woody plant encroachment is widespread with potential implications for groundwater recharge and streamflow. In an effort to better understand the interactions between woody plants and recharge, we are monitoring drip rates in shallow caves in the Edwards Aquifer recharge zone of Central Texas. The surface is covered by a dense stand of ashe juniper (Juniperus ashei). In addition to stemflow, throughfall, and surface runoff was monitored for both natural precipitation events as well as simulated rainfall. Interception and throughfall are measured using a grid of rain gauges and throughfall collectors. Surface runoff measurements were quantified with a 15.24 centimeter H- flume instrumented with an ultrasonic water level sensor. Drip collectors constructed inside the cave collect recharge entering the cave from the ceiling. Large scale rainfall simulation equipment onsite allows us to "re-create" these naturally occurring rainfall events and compare the resulting data with that from the original event. Performing these types of tests allows us to learn important information about the cave footprint's ability to transmit recharge waters into the cave. During a simulation, water is applied directly to the cave footprint and not to the entire hillslope as in a natural rain event. We found that recharge for the natural and simulated events were similar. In each case, recharge makes up less than 5% of the water budget, in spite of the fact that there was little, if any, surface runoff. The working hypothesis is that most of the rainfall is routed off the hillslope as lateral subsurface flow.

Gregory, L.; Veni, G.; Shade, B.; Wilcox, B. P.; Munster, C. L.; Owens, M. K.

2005-12-01

214

Hybrid eolian dunes of William River Dune field, northern Saskatchewan, Canada  

SciTech Connect

A series of northwest-southeast aligned, large-scale (up to 30 m high) eolian dunes, occurring in a confined (600 km/sup 2/) desert area in northern Saskatchewan, Canada, was examined in the field. Observations were made of dune morphology and internal structure, and patterns of sand movement on the dunes were analyzed in relation to wind events during the summer of 1981. Present cross-sectional profiles exhibit steeper northeast slopes, the lower segment of which are intermittently covered by psammophilous grasses. Dune structure is dominated by northeast-dipping accretion laminae. Three /sup 14/C dates from organic material cropping out on the lower southwest slopes reveal that the dunes have migrated as transverse bed forms at rates of roughly 0.5 m/yr during the last few hundred years. However, a progressive increase in height, bulk, and symmetry along the dune axis from northwest to southeast, suggests an along-dune component of sand transport. This view is supported by (1) field measurements of airflow and along-dune sand transport patterns on 2 dunes, and (2) the present-day wind regime (1963-78). Dominated by north-northeast to northeast winds from January to June and by west-southwest winds from July to December, the resultant potential sand transport vector is toward the southeast, virtually identical to the dune axis.

Carson, M.A.; MacLean, P.A.

1985-02-01

215

A new rechargeable intelligent vehicle detection sensor  

NASA Astrophysics Data System (ADS)

Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation.

Lin, L.; Han, X. B.; Ding, R.; Li, G.; C-Y Lu, Steven; Hong, Q.

2005-01-01

216

Rechargeable lithium batteries with aqueous electrolytes.  

PubMed

Rechargeable lithium-ion batteries that use an aqueous electrolyte have been developed. Cells with LiMn(2)O(4) and VO(2)(B) as electrodes and 5 M LiNO(3) in water as the electrolyte provide a fundamentally safe and cost-effective technology that can compete with nickelcadmium and lead-acid batteries on the basis of stored energy per unit of weight. PMID:17744893

Li, W; Dahn, J R; Wainwright, D S

1994-05-20

217

Rechargeable batteries with organic radical cathodes  

Microsoft Academic Search

The first known application of stable radicals for energy storage systems is presented. A stable nitroxyl polyradical, poly (2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA) has been synthesized and applied to the cathode active materials in rechargeable batteries. These fabricated batteries have demonstrated an average discharge voltage of 3.5 V and a discharge capacity of 77 Ah\\/kg, which corresponds to 70% of the theoretical

K. Nakahara; S Iwasa; M Satoh; Y Morioka; J Iriyama; M Suguro; E Hasegawa

2002-01-01

218

Rechargeable lithium batteries with aqueous electrolytes  

Microsoft Academic Search

Rechargeable lithium-ion batteries that use an aqueous electrolyte have been developed. Cells with LiMnO and VO(B) as electrodes and 5 M LiNO in water as the electrolyte provide a fundamentally safe and cost-effective technology that can compete with nickel-cadmium and lead-acid batteries on the basis of stored energy per unit of weight.14 refs., 4 figs.

Wu Li; J. R. Dahn; D. S. Wainwright

1994-01-01

219

Ampere-Hour Meter For Rechargeable Battery  

NASA Technical Reports Server (NTRS)

Low-power analog/digital electronic circuit meters discharge of storage battery in ampere-hours. By metering discharge, one obtains indication of state of charge of battery and avoids unnecessary recharging, maintaining capacity of battery and prolonging life. Because of its small size and low power consumption, useful in such applications as portable video cameras, communication equipment on boats, portable audio equipment, and portable medical equipment.

Tripp, John S.; Schott, Timothy D.; Tcheng, Ping

1993-01-01

220

Recharge monitoring in an interplaya setting  

SciTech Connect

The objective of this investigation is to monitor infiltration in response to precipitation events in an interplaya setting. The authors evaluated data gathered from the interplaya recharge monitoring installation at the Pantex Plant from March through December 1998. They monitored thermocouple psychrometer (TCP) instruments to measure water potential and time-domain reflectometry (TDR) probes to measure water content and bulk soil conductivity. Heat-dissipation sensor (HDS) instruments were monitored to supplement the TCP data.

Scanlon, B.R.; Reedy, R.C.; Liang, J. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

1999-03-01

221

High temperature rechargeable molten slat battery  

SciTech Connect

This patent describes a high temperature rechargeable molten salt battery. It comprises a transition metal-sulfide as the cathode, a lithium-aluminum alloy as the anode, a molten lithium salt as the electrolyte, and an alkaline earth metal sulfide as an additive to the transition metal sulfide cathode wherein the cathode mix is prepared by physically mixing the alkaline earth metal sulfide and the transition metal sulfide in the proper ratios.

Plichta, E.J.; Behl, W.

1990-09-11

222

Rechargeable batteries and battery management systems design  

Microsoft Academic Search

Estimated worldwide sales for rechargeable batteries, was around US$36 billion in 2008 and this is expected to grow towards US$51 billion by 2013. As per market reports, US demand for primary and secondary batteries will increase by 2.5% annually to 16.8 billion in 2012, while primary batteries will account for 5.8 billion with a growth rate of 3%. The insatiable

N. Kularatna

2010-01-01

223

Conceptual models of the evolution of transgressive dune field systems  

NASA Astrophysics Data System (ADS)

This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

Hesp, Patrick A.

2013-10-01

224

Conceptual models of the evolution of transgressive dune field systems  

NASA Astrophysics Data System (ADS)

This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, tree islands' and bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to restore' some perceived loss of ecosystem or dune functioning.

A. Hesp, Patrick

2013-10-01

225

Mars Global Digital Dune Database; MC-1  

USGS Publications Warehouse

The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as an ArcReader project which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in an ArcMap project. The ArcMap project allows fuller use of the data, but requires ESRI ArcMap(Registered) software. A fuller description of the projects can be found in the NP_Dunes_ReadMe file (NP_Dunes_ReadMe folder_ and the NP_Dunes_ReadMe_GIS file (NP_Documentation folder). For users who prefer to create their own projects, the data are available in ESRI shapefile and geodatabase formats, as well as the open Geography Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. (NP_Documentation folder) Documentation files are available in PDF and ASCII (.txt) files. Tables are available in both Excel and ASCII (.txt)

Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

2010-01-01

226

Late Pleistocene dune activity in the central Great Plains, USA  

Microsoft Academic Search

Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated

J. A. Mason; J. B. Swinehart; P. R. Hanson; D. B. Loope; R. J. Goble; X. Miao; R. L. Schmeisser

227

Seasonal Erosion and Restoration of Mars' Northern Polar Dunes  

Microsoft Academic Search

Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO2 seasonal polar caps. Numerous dunes in

C. J. Hansen; M. Bourke; N. T. Bridges; S. Byrne; C. Colon; S. Diniega; C. Dundas; K. Herkenhoff; A. McEwen; M. Mellon; G. Portyankina; N. Thomas

2011-01-01

228

Barchan and Linear Dunes on Earth and Mars - Comparative Research  

Microsoft Academic Search

High resolution images from MGS and MRO reveal, in detail, ripples and dunes on Mars that were not discerned in old Viking images. The two basic dune types known on Earth, barchan (and transverse) and seif (linear), are also common on Mars, although seif dunes are quite rare on that planet. Some Martian barchan and seif dunes have a different

H. Tsoar; K. S. Edgett; V. Schatz; E. J. Parteli; H. J. Herrmann

2007-01-01

229

Barchan dune corridors: Field characterization and investigation of control parameters  

E-print Network

Barchan dune corridors: Field characterization and investigation of control parameters H, and the output sand flux of a dune can be computed from the value of its body and horn widths. The dune size direction, in which the dunes have a rather well selected size. Investigating the possible external

Claudin, Philippe

230

Thermoluminescence and radiocarbon dating of Australian desert dunes  

Microsoft Academic Search

Quaternary lithostratigraphic units in continental dunes have been dated at three locations in South Australia by both radiocarbon dating of organic carbon bedded either in dune sands or in deposits correlated with dune building episodes, and by thermoluminescence (TL) sediment dating of the dune sands. It was not possible to date in situ organic carbon and adjacent aeolian quartz particles,

G. J. Gardner; A. J. Mortlock; D. M. Price; M. L. Readhead; R. J. Wasson

1987-01-01

231

The Search for Dune Movement on Mars  

NASA Astrophysics Data System (ADS)

Although aeolian processes are active on Mars, questions remain about whether the current wind regime is adequate to cause dune movement. Early studies using Viking images might have detected movement in the northern erg, but that study was limited by image resolution. Since 1997, the Mars Orbiter Camera (MOC) on Mars Global Surveyor has been returning narrow angle (NA) images at resolutions of 1.5-12 m/pixel, and overlapping pairs of these images acquired at sufficiently spaced times can be used to search for dune movement. Whereas most images acquired during the Mapping Phase of the mission were near-nadir looking, images from the Extended and Relay portions of the mission often had look directions off nadir (ROTO images). This geometry causes parallax and complicates the search for dune movement but does not prevent it. Dune locations in MOC (and now THEMIS) images can also be compared to locations in Viking images, but movement would need to be on a larger scale because of the larger pixel sizes of Viking and THEMIS images. Results showing evidence for dune movement or for dune immobility would both be important for understanding the current martian aeolian setting and how it might have changed over time. The MSSS website and a USGS database of potentially overlapping MOC narrow angle images have been used to identify image pairs that could be used to determine whether dunes moved during the time spanned by the images. Of the over 150,000 MOC NA images released, only a small subset are overlapping pairs, and only a subset of those contain dunes. At this time, no definite dune movement has yet been detected, but the study is being expanded to cover more areas on Mars and to include more images as they become available.

Williams, K. K.

2004-12-01

232

Looking Back at 'Purgatory Dune'  

NASA Technical Reports Server (NTRS)

The wheels of NASA's Mars Exploration Rover Opportunity dug more than 10 centimeters (4 inches) deep into the soft, sandy material of a wind-shaped ripple in Mars' Meridiani Planum region during the rover's 446th martian day, or sol (April 26, 2005). Getting the rover out of the ripple, dubbed 'Purgatory Dune,' required more than five weeks of planning, testing, and carefully monitored driving. Opportunity used its navigation camera to capture this look back at the ripple during sol 491 (June 11, 2005), a week after the rover drove safely onto firmer ground. The ripple that became a sand trap is about one-third meter (one foot) tall and 2.5 meters (8 feet) wide.

2005-01-01

233

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars  

E-print Network

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north] HighResolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal

Bourke, Mary C.

234

Sixth International Conference on Aeolian Research, Guelph, Canada. 2006 Barchan dune morphodynamics and linear dune formation on Mars  

E-print Network

Sixth International Conference on Aeolian Research, Guelph, Canada. 2006 Barchan dune morphodynamics and linear dune formation on Mars Mary C. Bourke, Planetary Science Institute, Tucson, mbourke@psi.edu Observations of sand dunes in satellite images indicate a wide variety of dune forms on Mars. Similar to Earth

Bourke, Mary C.

235

Application of GIS Based Tools for Groundwater Recharge and Evapotranspiration Estimation: Arc-Recharge and RIPGIS-NET  

NASA Astrophysics Data System (ADS)

Water managers are increasingly concerned about the potential impact of climate variability and change on groundwater resources. Climate impacts on groundwater resources are primarily determined by altering the amount of recharge and evapotranspiration (ET). Typically, groundwater models employ temporally static recharge or ET rates with limited spatial variability across the basin. As a result most groundwater models cannot be used to assess the impacts of climate on groundwater resources. A primary challenge addressing this shortcoming is the need for spatially and temporally explicit recharge and ET model inputs. Geographic Information Systems (GIS) and spatially explicit data can be applied to develop these improved model inputs by quantifying and distributing recharge and ET across the model domain. Two ArcGIS desktop applications were developed for ArcGIS 9.2 to enhance recharge and ET estimation- Arc- Recharge and RIPGIS-NET. Arc-Recharge an ArcGIS 9.2 custom application is developed to quantify and distribute recharge along MODFLOW cells. Using spatially explicit precipitation data and Digital Elevation Model (DEM), Arc-Recharge routes water through the landscape and distributes the recharge to the appropriate groundwater model cells. RIPGIS-NET is an ArcGIS custom application that was developed to provide parameters for the RIP-ET package. RIP-ET is an improved MODFLOW ET module that simulates ET using a set of eco-physiologically based ET curves. RIPGIS-NET improves alluvial recharge estimation by providing spatially explicit information about the riparian/wetland ET. Application of Arc-Recharge and RIPGIS-NET in groundwater modeling enhances recharge and ET estimation by incorporating temporally and spatially explicit data. Using such tools, assessment of climate variability on groundwater resources will be enhanced.

Ajami, H.; Hogan, J.; Maddock, T.; Meixner, T.

2007-12-01

236

Three-dimensional mapping of airflow over dunes  

NASA Astrophysics Data System (ADS)

Similar to the way a river, flowing across Earth's surface, influences sediment transport and shaping of the landscape, coastal winds, which flow over dunes, affect how the dune shapes evolve and how sand is transported along the coast. Wind flow over dunes has been extensively studied, but in most cases, that research has been two-dimensional and focused on straight dunes with smooth slopes and no vegetation or other features that might affect how airflow separates at the crest of the dune.

Balcerak, Ernie

2013-05-01

237

Longitudinal dunes on Mars: Relation to current wind regimes  

NASA Technical Reports Server (NTRS)

Longitudinal dunes are extremely rare on Mars, but constitute a substantial fraction of terrestrial desert dunes. We report finding isolated examples of longitudinal dunes on Mars and relate their occurence to expected sand transport regimes. Terrestrial longitudinal dunes form in bimodal and multimodal transport regimes. General circulation models and streak data indicate that bimodal and multimodal transport of sand should be very rare on Mars. Thus the dearth of longitudinal dunes on Mars is consistant with their apparent formation conditions on Earth.

Lee, Pascal; Thomas, Peter C.

1995-01-01

238

Longitudinal dunes on Mars: Relation to current wind regimes  

NASA Technical Reports Server (NTRS)

Longitudinal dunes are extremely rare on Mars, but constitute a substantial fraction of terrestrial desert dunes. We report finding isolated examples of longitudinal dunes on Mars and relate their occurrence to expected sand transport regimes. Terrestrial longitudinal dunes form in bimodal and multimodal transport regimes. General circulation models and streak data indicate that bimodal and multimodal transport of sand should be very rare on Mars. Thus the dearth of longitudinal dunes on Mars is consistent with their apparent formation conditions on Earth.

Lee, Pascal; Thomas, Peter C.

1995-01-01

239

Probabilistic analysis of the effects of climate change on groundwater recharge  

Microsoft Academic Search

Groundwater recharge is likely to be affected by climate change. In semiarid regions where groundwater resources are often critical, annual recharge rates are typically small and most recharge occurs episodically. Such episodic recharge is uncertain and difficult to predict. This paper analyzes the impacts of different climate predictions on diffuse episodic recharge at a low-relief semiarid rain-fed agricultural area. The

Gene-Hua Crystal Ng; Dennis McLaughlin; Dara Entekhabi; Bridget R. Scanlon

2010-01-01

240

Priorities for Future Research on Planetary Dunes  

NASA Astrophysics Data System (ADS)

Planetary Dunes Workshop: A Record of Climate Change; Alamogordo, New Mexico, 28 April to 2 May 2008; Landforms and deposits created by the dynamic interactions between granular material and airflow (eolian processes) occur on several planetary bodies, including Earth, Mars, Titan, and Venus. To address many of the outstanding questions within planetary dune research, a workshop was organized by the U.S. Geological Survey, the Planetary Science Institute, the Desert Research Institute, and the Search for Extraterrestrial Intelligence Institute and was sponsored by the Lunar and Planetary Institute and the Jet Propulsion Laboratory. The workshop brought together researchers from diverse backgrounds, ranging from image analysis and modeling to terrestrial analog studies. The group of approximately 45 international researchers had intense discussions in an attempt to identify the most promising approaches to understanding planetary dune systems. On the basis of these discussions, the group identified the following 10 priorities for future planetary dune research.

Titus, Timothy N.; Lancaster, Nick; Hayward, Rose; Fenton, Lori; Bourke, Mary

2008-11-01

241

Summary of the DUNE Mission Concept  

E-print Network

The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmolo gical probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, a nd cluster counts. Immediate additional goals concern the evolution of galaxies, to be studied with groundbreaking statistics, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands (1deg$^2$ field-of-view) which will form a unique legacy for astronomy. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept.

Refregier, Alexandre

2008-01-01

242

Observation of Density Segregation inside Migrating Dunes  

E-print Network

Spatiotemporal patterns in nature, such as ripples or dunes, formed by a fluid streaming over a sandy surface show complex behavior despite their simple forms. Below the surface, the granular structure of the sand particles is subject to self-organization processes, exhibiting such phenomena as reverse grading when larger particles are found on top of smaller ones. Here we report results of an experimental investigation with downscaled model dunes revealing that, if the particles differ not in size but in density, the heavier particles, surprisingly, accumulate in the central core close to the top of the dune. This finding contributes to the understanding of sedimentary structures found in nature and might be helpful to improve existing dating methods for desert dunes.

Christopher Groh; Ingo Rehberg; Christof A. Kruelle

2011-09-18

243

Summary of the DUNE Mission Concept  

E-print Network

The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmolo gical probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, a nd cluster counts. Immediate additional goals concern the evolution of galaxies, to be studied with groundbreaking statistics, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands (1deg$^2$ field-of-view) which will form a unique legacy for astronomy. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept.

Alexandre Refregier; Marian Douspis; the DUNE collaboration

2008-07-25

244

Invasive plants on disturbed Korean sand dunes  

NASA Astrophysics Data System (ADS)

The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic soils, and conservation of surrounding sand dune areas.

Kim, Kee Dae

2005-01-01

245

Palaeoclimatic Interpretations From Desert Dunes and Sediments  

Microsoft Academic Search

During the late Quaternary, the worlds major deserts experienced dramatic changes in the nature and frequency of aeolian\\u000a processes (Fig. 26.1). Sand seas (ergs) cover 5% of the global land surface and reveal evidence of repeated phases of dune\\u000a formation (Thomas et al. 2005). This paper presents a review of dune-building episodes during late Quaternary time and their\\u000a palaeoclimatic significance.

Vatche P. Tchakerian

246

Making Li-air batteries rechargeable: material challenges  

SciTech Connect

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25

247

A review of groundwater recharge under irrigated agriculture in Australia  

NASA Astrophysics Data System (ADS)

Quantification of recharge under irrigated agriculture is one of the most important but difficult tasks. It is the least understood component in groundwater studies because of its large variability in space and time and the difficulty of direct measurement. Better management of groundwater resources is only possible if we can accurately determine all fluxes going into and out of a groundwater system. One of the major challenges facing irrigated agriculture in Australia, and the world, is to reduce uncertainty in estimating or measuring the recharge flux. Reducing uncertainty in groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and sustainable groundwater resource management especially in dry areas where groundwater usage is often the key to economic development. An accurate quantification of groundwater recharge under irrigated systems is also crucial because of its potential impacts on soil profile salinity, groundwater levels and groundwater quality. This paper aims to identify the main recharge control parameters thorough a review of past field and modelling recharge studies in Australia. We find that the main recharge control parameters under irrigated agriculture are soil type, irrigation management, watertable depth, land cover or plant water uptake, soil surface conditions, and soil, irrigation water and groundwater chemistry. The most commonly used recharge estimation approaches include chloride mass balance, water budget equation, lysimeters, Darcy's law and numerical models. Main sources and magnitude of uncertainty in recharge estimates associated with these approaches are discussed.

Riasat, Ali; Mallants, Dirk; Walker, Glen; Silberstein, Richard

2014-05-01

248

Geophysical Methods for Investigating Ground-Water Recharge  

USGS Publications Warehouse

While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods that are currently available or under development for recharge monitoring. The material is written primarily for hydrogeologists. Uses of geophysical methods for improving recharge monitoring are explored through brief discussions and case studies. The intent is to indicate how geophysical methods can be used effectively in studying recharge processes and quantifying recharge. As such, the material constructs a framework for matching the strengths of individual geophysical methods with the manners in which they can be applied for hydrologic analyses. The appendix is organized in three sections. First, the key hydrologic parameters necessary to determine the rate, timing, and patterns of recharge are identified. Second, the basic operating principals of the relevant geophysical methods are discussed. Methods are grouped by the physical property that they measure directly. Each measured property is related to one or more of the key hydrologic properties for recharge monitoring. Third, the emerging conceptual framework for applying geophysics to recharge monitoring is presented. Examples of the application of selected geophysical methods to recharge monitoring are presented in nine case studies. These studies illustrate hydrogeophysical applications under a wide range of conditions and measurement scales, which vary from tenths of a meter to hundreds of meters. The case studies include practice-proven as well as emerging applications of geophysical methods to recharge monitoring.

Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

2007-01-01

249

Autumn Frost, North Polar Sand Dunes  

NASA Technical Reports Server (NTRS)

Autumn in the martian northern hemisphere began around August 1, 1999. Almost as soon as northern fall began, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) started documenting the arrival of autumn frost--a precursor to the cold winter that will arrive in late December 1999. The first features to become covered by frost were the sand dunes that surround the north polar ice cap. The dunes seen here would normally appear very dark--almost black--except when covered by frost. Why the dunes begin to frost sooner than the surrounding surfaces is a mystery: perhaps the dunes contain water vapor that emerges from the sand during the day and condenses again at night. This picture shows dunes near 74.7oN, 61.4oW at a resolution of about 7.3 meters (24 feet) per pixel. The area covered is about 3 km (1.9 mi) across and is illuminated from the upper right. The picture appears to be somewhat fuzzy and grainy because the dunes here are seen through the thin haze of the gathering north polar winter hood (i.e., clouds).

1999-01-01

250

Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations  

USGS Publications Warehouse

The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90N to 90S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ?60,000 km2 of medium to large-size dark dune fields and ?15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ?70,000 km2), and north pole (NP, ?845,000 km2) portions of the database, bringing the global total to ?975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40S and 80S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

Hayward, Rosalyn; Fenton, Lori; Titus, Timothy N.

2013-01-01

251

Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations  

NASA Astrophysics Data System (ADS)

The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90N to 90S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds 60,000 km2 of medium to large-size dark dune fields and 15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, 70,000 km2), and north pole (NP, 845,000 km2) portions of the database, bringing the global total to 975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40S and 80S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

Hayward, R. K.; Fenton, L. K.; Titus, T. N.

2014-02-01

252

Thin-film rechargeable lithium batteries  

SciTech Connect

Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

Dudney, N.J.; Bates, J.B.; Lubben, D. [Oak Ridge National Lab., TN (United States). Solid State Div.

1995-06-01

253

A bibliography of dunes: Earth, Mars, and Venus  

NASA Technical Reports Server (NTRS)

Dunes are important depositional landforms and sedimentary environments on Earth and Mars, and may be important on Venus. The similarity of dune forms on Earth and Mars, together with the dynamic similarity of aeolian processes on the terrestrial planets indicates that it is appropriate to interpret dune forms and processes on Mars and Venus by using analog studies. However, the literature on dune studies is large and scattered. The aim of this bibliography is to assist investigators by providing a literature resource on techniques which have proved successful in elucidating dune characteristics and processes on Earth, Mars, and Venus. This bibliography documents the many investigations of dunes undertaken in the last century. It concentrates on studies of inland dunes in both hot and cold desert regions on Earth and includes investigations of coastal dunes only if they discuss matters of general significance for dune sediments, processes, or morphology.

Lancaster, N.

1988-01-01

254

Modeling emergent large-scale structures of barchan dune fields  

NASA Astrophysics Data System (ADS)

In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

2013-12-01

255

Artificial recharge of groundwater and its role in water management  

USGS Publications Warehouse

This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of freshwater could be made available for the artificial-recharge operations. ?? 1989.

Kimrey, J.O.

1989-01-01

256

Challenges of Artificial Recharge at the Chain of Lakes  

NASA Astrophysics Data System (ADS)

A series of gravel quarry lakes, A through I (i.e. Chain of Lakes) in Alameda County, California are planned to convert to off-channel spreading lakes for artificial groundwater recharge. An operational plan is needed for the near-term improvements that would allow safe and efficient operations of Lake H and Lake I recently acquired for artificial recharge operations. Water source for the groundwater recharge comes from State Water Project (SWP) water releases at the South Bay Aqueduct turnout. The released water flows approximately nine miles in Arroyo Mocho Creek to the planned diversion facility. The recharge system includes multiple water delivery components and recharge components. Reliability of SWP water delivery is a water supply constraint to the recharge system. Hydraulic capacities of each delivery component and recharge capacities of each recharge component are physical constraints to the development of the operational plan. Policy issues identified in the Mitigated Negative Declaration which contains mitigation measures addressing potential impacts of fisheries and erosion are regulatory constraints to the operational plan development. Our approach that addresses technical challenges and policy issues in the development of the operational plan includes i) determination of lake recharge under observed conditions using water budget method; ii) development and calibration of a ground water flow model using MODFLOW; iii) estimation of lake recharge capacity for a range of lake levels using the calibrated ground water flow model; iv) analysis of clogging layer effects on recharge capacity; and v) development and application of operations models for the stream delivery system and the lake system.

Zeng, X.

2004-12-01

257

Using noble gases to investigate mountain-front recharge  

USGS Publications Warehouse

Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

Manning, A.H.; Solomon, D.K.

2003-01-01

258

Reactivation of Coastal Dunes Documented by Subsurface Imaging of the Great Dune Ridge, Lithuania  

Microsoft Academic Search

BUYNEVICH, I., BITINAS, A. and PUPIENIS, D., 2007. Reactivation of coastal dunes documented by subsurface imaging of the Great Dune Ridge, Lithuania. Journal of Coastal Research, SI 50 (Proceedings of the 9th International Coastal Symposium), 226 - 230. Gold Coast, Australia, ISSN 0749.0208 Large coastal and inland dunefields often consist of multiple generations defined by periods of stability and reactivation.

I. Buynevich; A. Bitinas; D. Pupienis

2007-01-01

259

Prototype systems for rechargeable magnesium batteries.  

PubMed

The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction. Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts. Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems. PMID:11048714

Aurbach, D; Lu, Z; Schechter, A; Gofer, Y; Gizbar, H; Turgeman, R; Cohen, Y; Moshkovich, M; Levi, E

2000-10-12

260

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28

261

Monitoring Groundwater Recharge In the Sierra Nevada Mountains For  

E-print Network

Monitoring Groundwater Recharge In the Sierra Nevada Mountains For Impact On Hydrologic Resources The Issue Snowmelt is a significant source of replenishing groundwater resources in the western United States. In addition, this groundwater recharge process is typically a major contributor to streamflow

262

Current collectors for rechargeable Li-Air batteries  

SciTech Connect

Here we report the negative influence of porous nickel foam for use as current collectors in rechargeable Li-air batteries. Uncoated nickel foam promotes the decomposition of LiPF6-organic carbonate electrolytes under normal charging conditions reported for rechargeable Li-air cells. We have identified Ni free porous carbon supports as more appropriate cathode current collectors.

Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL

2011-01-01

263

ESTIMATION OF GROUND WATER RECHARGE USING SOIL MOISTURE BALANCE APPROACH  

E-print Network

ESTIMATION OF GROUND WATER RECHARGE USING SOIL MOISTURE BALANCE APPROACH C. P. Kumar* ABSTRACT The amount of water that may be extracted from an aquifer without causing depletion is primarily dependent upon the ground water recharge. Thus, a quantitative evaluation of spatial and temporal distribution

Kumar, C.P.

264

Estimating infiltration recharge using a response function model  

Microsoft Academic Search

Rainfall infiltration influences both the quantity and quality of groundwater systems. The knowledge of the process of infiltration recharge is of great importance to the management of groundwater systems and the hydraulically connected streams. In this study, a response function model is developed to estimate soil water flux at the water table or the process of infiltration recharge from rainfall

Jinquan Wu; Renduo Zhang; Jinzhong Yang

1997-01-01

265

Determining the recharge mode of Sahelian aquifers using water isotopes  

Microsoft Academic Search

It is proposed that the drainage network plays an important role in the recharge process of the fractured aquifers in the African Precambrian shield and that the fractured aquifer system is likely to be hydraulically continuous; this contrasts with most previous studies, which suggested direct recharge by rainwater percolation. Two areas were selected in Niger for the study of the

Pierre Girard; Claude Hillaire-Marcel; Marie Solange Oga

1997-01-01

266

Probabilistic estimation and prediction of groundwater recharge in a semi-arid environment  

E-print Network

Quantifying and characterizing groundwater recharge are critical for water resources management. Unfortunately, low recharge rates are difficult to resolve in dry environments, where groundwater is often most important. ...

Ng, Gene-Hua Crystal

2009-01-01

267

The role of dune interactions and wind fluctuations in the selection of dune sizes within barchan fields  

NASA Astrophysics Data System (ADS)

Sand dunes dominate desert morphology. They naturally emerge under strong winds and sufficient sand supply from the interaction between sand transport, topography and hydrodynamics. The fact that dunes are mobile landforms gives a dynamical character to desert geomorphology with potential implications for the surrounding ecosystems. As dune mobility is closely related to dune morphology, in particular its size, the study of the long-term evolution of desert areas requires a better understanding of (1) the factors behind dune size selection and (2) the multi-scale nature of dune morphology. Recently it has been shown that dune size is bounded both at small and large scales by sand transport and hydrodynamics, respectively. The smallest dune size is limited to several meters in length by the existence of the so called "saturation length", i.e. the characteristic length of transport transients. The maximum dune size, in the order of hundreds of meters, is in turn limited by the stabilizing effect of the upper limit of the atmospheric boundary layer. Dune dynamics at both scales is also qualitatively different as elementary dunes emerge from a linear instability, and are thus ubiquitous, while giant dunes seem to result from the coalescence of smaller ones. In consequence, a typical dune field should consist in a roughly continuous hierarchy of dune sizes, with many elementary dunes and very few giant dunes. However, in several cases this is not the correct picture as dune sizes are quite uniform and seems to cluster around an intermediate value that is well above the minimum but much smaller than the maximum one. This points to an alternative selection mechanism different from the simple dune merging. Here, we argue that the combination of dune collisions and wind fluctuations, at least within barchan fields, is able to stop the continuous merging process and select a characteristic dune size in function of local conditions. To that end we use a morphodynamic dune model capable of reproducing the evolution of dune fields for different wind regimes. We find that colliding dunes of very different sizes tend to merge and thus increase the average dune size within the field. In contrast, colliding dunes of comparable sizes tend to redistribute the volume such that both dunes become more equal afterwards, which limits dune growth. In accordance with previous results, we find that dune growth is also limited by wind fluctuations, both in intensity and direction, which lead to the formation of elementary barchans from dune calving. As a result, the balance between those processes contributing to dune growth and those limiting it is able to select a specific, non-trivial dune size. In addition, simulations also suggest that this balance can be unstable in certain conditions and start a positive feedback for dune growth. As collisions with very large dunes have a higher probability of leading to the merging of both dunes, dune growth may continue until it is eventually limited by the size of the atmospheric boundary layer.

Duran Vinent, O.; Parteli, E. J.; Herrmann, H. J.

2012-12-01

268

Advances of aqueous rechargeable lithium-ion battery: A review  

NASA Astrophysics Data System (ADS)

The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

Alias, Nurhaswani; Mohamad, Ahmad Azmin

2015-01-01

269

A Mystery Unraveled: Booming Sand Dunes  

NASA Astrophysics Data System (ADS)

"Booming" sand dunes have intrigued travelers and scientist for centuries. These dunes emit a persistent, low-frequency sound during a slumping event or a natural avalanche on the leeward face of the dune. The sound can last for several minutes and be audible from miles away. The resulting acoustic emission is characterized by a dominant audible frequency (70 - 105 Hz) and several higher harmonics. In the work of Vriend et al. (2007), seismic refraction experiments proved the existence of a multi-layer internal structure in the dune that acts as a waveguide for the acoustic energy. Constructive interference between the reflecting waves enables the amplification and sets the frequency of each boom. A relationship was established that correctly predicts the measured frequency in terms of the thickness (~ 2.0 m) and the seismic body wave velocity of the loose, dry surficial layer (~ 240 m/s) and the substrate half-space (~ 350 m/s). The current work highlights additional measurements and simulations supporting the waveguide model for booming sand dunes. Experiments with ground penetrating radar continuously display the subsurface features which confirm the layered subsurface structure within the dune. Cross-correlation analysis shows that the booming sound propagates at speeds close to the measured body wave velocity. Squeaking sounds, which are generated during the onset of the slide and precede the sustained booming emission, have been found to have distinctly different characteristics. These short bursts of sound are emitted at a lower frequency (50 - 65 Hz) and propagate at a lower propagation speed (125 m/s) than the booming emission. The acoustic and elastic wave propagation in the dune has been simulated with a finite difference code. The interaction between the air and the ground produces a coupling wave along the surface. The reflections in the surficial layer propagate in a dispersive band at a group velocity that is slower than the phase velocity of the layer. Different source mechanisms are used in order to simulate the squeaking and booming emission within the dune. pace{.1in} {\\footnotesize Vriend, N. M., M. L. Hunt, R. W. Clayton, C E. Brennen, K. S. Brantley, and A. Ruiz-Angulo (2007), Solving the mystery of booming sand dunes, Geophys. Res. Lett., 34, L16306, doi:10.1029/2007GL030276.}

Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

2007-12-01

270

When dunes move together, structure of deserts emerges  

E-print Network

Crescent shaped barchan dunes are highly mobile dunes that are usually presented as a prototypical model of sand dunes. Although they have been theoretically shown to be unstable when considered separately, it is well known that they form large assemblies in desert. Collisions of dunes have been proposed as a mechanism to redistribute sand between dunes and prevent the formation of heavily large dunes, resulting in a stabilizing effect in the context of a dense barchan field. Yet, no models are able to explain the spatial structures of dunes observed in deserts. Here, we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan dune fields. Consequently, stationnary, out of equilibrium states emerge. Trigging the dune field density by a sand load/lost ratio, we show that large dune fields exhibit two assymtotic regimes: a dilute regime, where sand dune nucleation is needed to maintain a dune field, and a dense regime, where dune c...

Gnois, Mathieu; Pont, Sylvain Courrech du; Grgoire, Guillaume

2012-01-01

271

Ecology of Pacific Northwest coastal sand dunes: a community profile  

SciTech Connect

Sand dunes occur in 33 localities along the 950 km of North American Pacific coast between the Straits of Juan de Fuca (49/sup 0/N) and Cape Mendocino (40/sup 0/). The dune landscape is a mosaic of dune forms: transverse ridge, oblique dune, retention ridge, foredune, parabola dune, sand hummock, blowout, sand plain, deflation plain, dune ridge, swale, remnant forest, and ponds and lakes. These forms are the basic morphological units making up the four dune systems: parallel ridge, parabola dune, transverse ridge, and bay dune. Vegetation is well-developed on stabilized dunes. Of the 21 plant communities identified, nine are herbaceous, five are shrub, and seven are forest. A wide variety of vertebrate animals occur in seven distinct habitats: open dunes, grassland and meadow, shrub thicket, forest, marsh, riparian, and lakes and ponds. Urban development, increased rate of stabilization due to the introduction of European beachgrass (Ammophila arenaria (L.) Link), and massive disturbance resulting from heavy off-road vehicle traffic are the greatest threats to the long-term survival and stability of a number of sand dune habitats. Two animals and three plants dependent on dune habitats are listed as rare, threatened, or endangered. 93 references, 52 figures, 13 tables.

Wiedemann, A.M.

1984-03-01

272

Layers, Landslides, and Sand Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Released 27 October 2003

This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.

Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2003-01-01

273

Dunes on Titan observed by Cassini Radar  

USGS Publications Warehouse

Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; The Cassini Radar Team

2008-01-01

274

Groundwater recharge rate and zone structure estimation using PSOLVER algorithm.  

PubMed

The quantification of groundwater recharge is an important but challenging task in groundwater flow modeling because recharge varies spatially and temporally. The goal of this study is to present an innovative methodology to estimate groundwater recharge rates and zone structures for regional groundwater flow models. Here, the unknown recharge field is partitioned into a number of zones using Voronoi Tessellation (VT). The identified zone structure with the recharge rates is associated through a simulation-optimization model that couples MODFLOW-2000 and the hybrid PSOLVER optimization algorithm. Applicability of this procedure is tested on a previously developed groundwater flow model of the Tahtal? Watershed. Successive zone structure solutions are obtained in an additive manner and penalty functions are used in the procedure to obtain realistic and plausible solutions. One of these functions constrains the optimization by forcing the sum of recharge rates for the grid cells that coincide with the Tahtal? Watershed area to be equal to the areal recharge rate determined in the previous modeling by a separate precipitation-runoff model. As a result, a six-zone structure is selected as the best zone structure that represents the areal recharge distribution. Comparison to results of a previous model for the same study area reveals that the proposed procedure significantly improves model performance with respect to calibration statistics. The proposed identification procedure can be thought of as an effective way to determine the recharge zone structure for groundwater flow models, in particular for situations where tangible information about groundwater recharge distribution does not exist. PMID:23746002

Ayvaz, M Tamer; Eli, Alper

2014-01-01

275

Determining the recharge mode of Sahelian aquifers using water isotopes  

NASA Astrophysics Data System (ADS)

It is proposed that the drainage network plays an important role in the recharge process of the fractured aquifers in the African Precambrian shield and that the fractured aquifer system is likely to be hydraulically continuous; this contrasts with most previous studies, which suggested direct recharge by rainwater percolation. Two areas were selected in Niger for the study of the aquifer recharge process using isotopic analyses of water ( 2H, 18O, 3H). The first area, centred on the village of Kobio, is the 21-km 2 drainage basin of the Lomona intermittent stream, some 60 km southwest of Niamey (the capital city of Niger). The second area, in the vicinity of Niamey, represents a portion of the Niger basin, draining a surface area many orders of magnitude larger than the Lomona basin. The mean 18O composition of water from all wells in the Kobio aquifer provides evidence for recharge by evaporated water. This is confirmed by the concomitant increase of 18O content with rising static water levels as recharge proceeded. Tritium data suggest progressive aging of the Kobio aquifer water in the flow direction inferred from static water levels, with a down-gradient depletion of 18O composition, suggesting that `enriched' recharge water is progressively mixed with `depleted' aquifer water. Recharge by a reach of the Lomona is proposed to explain these results. In the Niamey area wells, the 18O time series clearly define an injection of evaporated water from the surface into the fractured aquifer. This recharging plume of evaporated water most likely originates from the Niger River. Thus, isotope data for two drainage basins of very different sizes indicate that aquifers are recharged by water from the rivers and that the flow regime of surface waters controls the recharge process.

Girard, Pierre; Hillaire-Marcel, Claude; Oga, Marie Solange

1997-10-01

276

Nanocarbon networks for advanced rechargeable lithium batteries.  

PubMed

Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting network for alloy anodes, such as Si and Ge, to accelerate electron transport, alleviate volume change, and prevent the agglomeration of active nanoparticles. Finally, we describe the power of nanocarbon networks for the next generation rechargeable lithium batteries, including Li-S, Li-O(2), and Li-organic batteries, and provide insights into the design of ideal nanocarbon networks for these devices. In addition, we address the ways in which nanocarbon networks can expand the applications of rechargeable lithium batteries into the emerging fields of stationary energy storage and transportation. PMID:22953777

Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

2012-10-16

277

Lithium electronic environments in rechargeable battery electrodes  

NASA Astrophysics Data System (ADS)

This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20 at% Mg. Kinetic studies on LaNi5-xSn x alloys proved that the mass transfer of hydrogen through these alloys was not hindered with increasing Sn substitutions for Ni. Collaborations with Energizer(c) found LanNi4.7Sn0.3 alloys to possess limited utility in rechargeable nickel-metal-hydride sealed-cell batteries.

Hightower, Adrian

278

Morphology and Distribution of Common Sand Dunes on Mars: Comparison With the Earth  

Microsoft Academic Search

Massed crescentic ridges are the most common dunes in the north circumpolar erg and crater floor dune fields on Mars; they are similar in plan to dunes that are typical of many desert basin ergs and dune fields on Earth. This correspondence implies that the dynamics of dune formation are similar on the two planets, despite martian constraints on dune

Carol S. Breed; Maurice J. Grolier; John F. McCauley

1979-01-01

279

Mobile dunes and eroding salt marshes  

NASA Astrophysics Data System (ADS)

The paper deals with general outlines of salt marsh and dune vegetation in the Ellenbogen and Listland area on Sylt (Schleswig-Holstein, FRG). The composition of current salt marsh vegetation is considered to be mainly the result of a long-lasting process of tidal inundation, grazing, and a permanent influence of groundwater seepage from the surrounding dunes. The lower salt marsh communities have shown constancy for 67 years, due to the effect of heavy grazing. The mid-upper salt marsh communities demonstrated a succession from a Puccinellia maritima-dominated community of the lower marsh to a Juncus gerardii-dominated community of the mid-upper salt marsh, which may be due to the transport of sand over a short time on the surface of the marsh. The area covered by plant communities of annuals below Mean High Water (MHW) seemed to diminish. Salt marsh soils, especially of the mid-upper marsh, indicate sandy layers resulting from sand drift of the dunes. Dry and wet successional series of the dunes in the Listland/Ellenbogen area both show grassy stages shifting to dwarf shrubs as final stages. White primary dunes can only be found on the accreting shoreline of the Ellenbogen, which is also grazed by sheep; vegetation cover therefore remains dominated by grasses, mosses and lichens. Three mobile dunes (as the most prominent features of this landscape) have been left unaffected by seeding and planting by local authorities. Grazing is considered to be an inadequate tool in nature conservation as long as natural processes are to prevail in the landscape as major determinants.

Neuhaus, R.

1994-06-01

280

Linking restoration ecology with coastal dune restoration  

NASA Astrophysics Data System (ADS)

Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and sustainability.

Lithgow, D.; Martnez, M. L.; Gallego-Fernndez, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodrguez-Revelo, N.; Jimnez-Orocio, O.; Mendoza-Gonzlez, G.; lvarez-Molina, L. L.

2013-10-01

281

Mars global digital dune database and initial science results  

USGS Publications Warehouse

A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 kM2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65??N to 65??S latitude and includes ???550 dune fields, covering ???70,000 km2, with an estimated total volume of ???3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ???800,000 km2, ???6 times less than the total areal estimate of ???5,000,000 km2 for terrestrial dunes. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera. narrow-angle (MOC NA) images allow, we classify dunes and include dune slipface measurements, which are derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid (referred to as dune centroid azimuth) is calculated and can provide an accurate method for tracking dune migration within smooth-floored craters. These indicators of wind direction are compared to output from a general circulation model (GCM). Dune centroid azimuth values generally correlate to regional wind patterns. Slipface orientations are less well correlated, suggesting that local topographic effects may play a larger role in dune orientation than regional winds. Copyright 2007 by the American Geophysical Union.

Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, A.; Christensen, P.R.

2007-01-01

282

Advances in development of rechargeable mitochondrial antioxidants.  

PubMed

It has been about 15 years since the introduction of the rechargeable mitochondria-targeted antioxidants (RMA). Two major groups have been developing RMA of the MitoQ and SkQ types independently, and many additional trials have been done by other researchers. This has provided solid preclinical evidence of RMA efficacy in various models. Human trials of systemic MitoQ were not followed by further advances, but the safety of MitoQ and, most likely, other RMA in humans has been demonstrated. A prooxidant effect at higher concentrations of RMA was described. For RMA of the SkQ type, a large window between anti- and prooxidant concentrations was observed, which makes SkQs promising as potential medicines. Significant RMA-induced improvements in many diseases that do not have an accepted treatment have been described. This justifies further clinical trials of RMA. PMID:25149221

Lukashev, Alexander N; Skulachev, Maxim V; Ostapenko, Victoria; Savchenko, Alla Yu; Pavshintsev, V V; Skulachev, Vladimir P

2014-01-01

283

Oxygen electrodes for rechargeable alkaline fuel cells  

NASA Technical Reports Server (NTRS)

Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

Swette, Larry; Giner, Jose

1987-01-01

284

Rechargeable metal hydrides for spacecraft application  

NASA Technical Reports Server (NTRS)

Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

Perry, J. L.

1988-01-01

285

Advanced rechargeable sodium batteries with novel cathodes  

NASA Technical Reports Server (NTRS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1990-01-01

286

Polymer Energy Rechargeable System (PERS) Development Program  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.

Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao

2001-01-01

287

Thin-film rechargeable lithium batteries  

SciTech Connect

Small thin-film rechargeable cells have been fabricated with a lithium phosphorus oxyniuide electrolyte, Li metal anode, and Li{sub 1-x}Mn{sub 2}O{sub 4} as the cathode film. The cathode films were fabricated by several different techniques resulting in both crystalline and amorphous films. These were compared by observing the cell discharge behavior. Estimates have been made for the scale-up of such a thin-film battery to meet the specifications for the electric vehicle application. The specific energy, energy density, and cycle life are expected to meet the USABC mid-term criteria. However, the areas of the thin-films needed to fabricate such a cell are very large. The required areas could be greatly reduced by operating the battery at temperatures near 100{degrees}C or by enhancing the lithium ion transport rate in the cathode material.

Dudney, N.J.; Bates, J.B.; Lubben, D.

1994-11-01

288

Advanced rechargeable sodium batteries with novel cathodes  

NASA Technical Reports Server (NTRS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1989-01-01

289

Spinel electrodes for rechargeable lithium batteries.  

SciTech Connect

This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).

Thackeray, M. M.

1999-11-10

290

Polar margin dunes and winds on Mars  

NASA Technical Reports Server (NTRS)

The approximately concentric arrangement of layered deposits and dune fields at the two Martian poles may reflect a nearly steady state dispersal of material from the polar deposits. Data on effective surface winds from high resolution Viking Images combined with theory of local winds suggest that the northern dunes are in part confined to a latitude band by winds generated by their own low albedo. Dispersal of the dark sand from the southern polar region is not subject to this kind of feedback because the irregular topography prevents areal accumulations sufficiently extensive to produce winds.

Thomas, Peter C.; Gierasch, Peter

1995-01-01

291

Monitoring of recharge water quality under woodland  

NASA Astrophysics Data System (ADS)

The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

1988-03-01

292

Rechargeable thin-film lithium batteries  

SciTech Connect

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

1993-08-01

293

Echo Meadows Project Winter Artificial Recharge.  

SciTech Connect

This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further found that this water can be timed to return to the river during the desired time of the year (summer to early fall). This is because the river stage, which remains relatively high until this time, drops during the irrigation season-thereby releasing the stored groundwater and increasing river flows. A significant side benefit is that these enhanced groundwater return flows will be clean and cold, particularly as compared to the Umatilla River. We also believe that this same type of application of water could be done and the resulting stream flows could be realized in other watersheds throughout the Pacific Northwest. This means that it is critical to compare the results from this baseline report to the full implementation of the project in the next phase. As previously stated, this report only discusses the results of data gathered during the baseline phase of this project. We have attempted to make the data that has been gathered accessible with the enclosed databases and spreadsheets. We provide computer links in this report to the databases so that interested parties can fully evaluate the data that has been gathered. However, we cannot emphasize too strongly that the real value of this project is to implement the phases to come, compare the results of these future phases to this baseline and develop the science and strategies to successfully implement this concept to other rivers in the Pacific Northwest. The results from our verified and calibrated groundwater model matches the observed groundwater data and trends collected during the baseline phase. The modeling results indicate that the return flows may increase to their historic values with the addition of 1 acre-ft/acre of recharge water to the groundwater system (about 9,600 acre-feet total). What this means is that through continued recharge project, you can double to quadruple the annual baseflow of the Umatilla River during the low summer and fall flow periods as compared to the present base-flow. The cool and high quality recharge water is a significant beneficial impact to the river system.

Ziari, Fred

2002-12-19

294

Spatiotemporal model for the progression of transgressive dunes  

E-print Network

Spatiotemporal model for the progression of transgressive dunes H. Yizhaqa, , Y. Ashkenazya , N Transgressive dunes, which are active sand areas surrounded by vegetation, exist on many coasts. In some regions like in Fraser Island in Australia, small dunes shrink while large ones grow, although both experience

Ashkenazy, Yossi "Yosef"

295

Climate and coastal dune vegetation: disturbance, recovery, and succession  

E-print Network

Climate and coastal dune vegetation: disturbance, recovery, and succession Thomas E. Miller ? Elise Science+Business Media B.V. 2009 Abstract The sand dune habitats found on barrier islands and other. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation

Miller, Thomas E.

296

LATE ORDOVICIAN CLIMBING DUNE ASSEMBLAGES, THE SIGNATURE OF GLACIAL OUTBURST ?  

E-print Network

1 LATE ORDOVICIAN CLIMBING DUNE ASSEMBLAGES, THE SIGNATURE OF GLACIAL OUTBURST ? F. GIRARD1, J, stoss-depositional 2D or 3D dunes. Based on data of outcrops from the paraglacial successions to describe climbing dunes assemblages (facies, geometries and depositional model), and to relate them

Paris-Sud XI, Université de

297

Modeling emergent large-scale structures of barchan dune fields  

E-print Network

Modeling emergent large-scale structures of barchan dune fields S. Worman , A.B. Murray , R, barchan dunes typically exist as members of larger fields that display strik- ing, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing

Claudin, Philippe

298

Thermoluminescence dating on gypseous dunes of Lake Amadeus, central Australia  

Microsoft Academic Search

The formation of shoreline gypseous dunes is a major event in the Quaternary history of many playas in central Australia. The dunes probably were formed during a period of high regional water table when abundant gypsum was deposited in a near?shore groundwater seepage zone and deflated on to the shoreline dunes. Ten samples from two sites at Lake Amadeus, a

X. Y. Chen; J. R. Prescott; J. T. Hutton

1990-01-01

299

Geostatistical estimates of future recharge for the Death Valley region  

SciTech Connect

Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale.

Hevesi, J.A. [Geological Survey, Las Vegas, NV (United States); Flint, A.L. [Geological Survey, Sacramento, CA (United States)

1998-12-01

300

Stable isotope tracers: natural and anthropogenic recharge, Orange County, California  

NASA Astrophysics Data System (ADS)

Stable isotopic techniques have been utilized to locate occurrences and trace movements of a variety of naturally and anthropogenically recharged waters in aquifers of Orange County, California. This basin is of particular interest not only because it provides the dominant water supply for the two million residents of this well-populated county, but also because it is representative of a common arid environment where natural recharge is dominated by distant, high-elevation precipitation transported by a major river. Such arid basins are particularly sensitive to climatic and anthropogenic disturbance of their recharge and their subsurface hydrology. In order to identify distinctive waters, oxygen and hydrogen stable isotope ratios from Orange County wells have been compared with a regional database including an array of surface water samples representative of watershed runoff. Four distinctive subsurface water types can be resolved. Waters of "local" rainfall and imported, "Colorado" River aqueduct origins are easily distinguished from dominant, "native" Santa Ana river compositions by use of hydrogen and oxygen stable isotope analysis. Recent human interference with Santa Ana river flow and recharge is also marginally resolvable by isotopic techniques. Distinguishable isotopic signatures of "recent" Santa Ana recharge appear to be due to evaporative loss, perhaps during storage in the Prado Reservoir or in percolation ponds, prior to recharge into Orange County aquifers. Characterization of traceable isotopic signatures of distinct natural and anthropogenic recharge components provides a major advance towards use of such techniques for developing a well constrained, three-dimensional hydrologic model for this complex basin.

Williams, Alan E.

1997-12-01

301

Analysis of links between groundwater recharge and discharge areas and wetland plant communities distribution in Middle Biebrza Basin, Poland  

NASA Astrophysics Data System (ADS)

Natural evolution of wetlands is strongly dependent on groundwater dynamics, soil aeration and climate. These environmental factors determine the constant development of wetland plant communities and peat forming processes. Depending on spatial distribution of groundwater flow systems and recharge and discharge conditions, shallow groundwater can also be influenced by phreatophytic plants. Such feedback plays an important role in wetland development, especially when landuse or climate changes occur. Thus, understanding the links between dynamics of biotopic and biocenotic relations is crucial for wetland management aimed at the comprehensive set of conservation strategies. Main aim of this study was to review links between valuable wetland plant communities and the groundwater recharge/discharge conditions of particular habitats of Middle Biebrza Basin, Poland. The study area consists of various types of wetland landscapes, of which the dominant are fens. Organogenic top layer is intersected locally by sandy dunes and glaci-fluvial residual plateaus. The northern boundary of the study area is covered with an outwash plateau. A three-dimensional regional groundwater flow model was set up to quantify groundwater system and flow paths. Model calibration involved measured heads of the unconfined organogenic top layer and the underlaying, confined sandy aquifer. Measured thickness of unsaturated zone as well as physical parameters of organogenic layer were taken into account in interpretation of shallow groundwater dynamics. Recharge to groundwater was spatially distributed in accordance to analysis of measured precipitation-groundwater level relationships. Cell-by-cell flow analysis and groundwater exfiltration analysis were applied to map groundwater recharge and discharge areas within the modelled area. Results of groundwater modelling were validated with phytosociologic research combined with remote-sensing based spatial analysis of wetland habitats distribution. Results indicated spatial distibution of water balance components of different wetland habitats. In areas of fen plant communities, modelled intensity of vertical upward groundwater flow to the top layer is significantly higher than in ombrotrophic habitats. Research indicated, that spatial patterns of groundwater recharge/discharge intensity is strongly linked to areal distribution of water quality dependent phreatophytic plant communities. In certain areas, simulated drainage conditions increased the thickness of the unsaturated zone, which explains a crucial response of wetland evolution in the last centuries: redirection of groundwater flow towards artificial canals resulted in diminished throughflow in organogenic layer, which causes accumulation of acidic rain water and - consequently - development of ombrotrophic habitats.

Grygoruk, Mateusz; Batelaan, Okke; Okruszko, Tomasz; Kotowski, Wiktor; Rycharski, Marek; Chormanski, Jaroslaw; Miroslaw-Swiatek, Dorota

2010-05-01

302

Effects of artificial recharge on the Ogallala aquifer, Texas  

USGS Publications Warehouse

Four recharge tests were conducted by injecting water from playa lakes through wells into the Ogallala Formation. Injection was by gravity flow and by pumping under pressure. At one site, 34-acre feet of water was injected by gravity and produced a significant increase in yield of the well. At a second site, gravity injection of only 0.58 acre-foot caused a significant decrease in permeability due to plugging by suspended sediment. At two other sites, injection by pumping 6 and 14 acre-feet respectively, resulted in discharge of water at the surface and in perching of water above the water table. Differences in success of recharge were largely due to aquifer lithology and, therefore, the type of permeability; the concentration of suspended solids in the recharge water; and the injection technique. The injection technique can be controlled and the concentration of suspended solids can be minimized by treatment, but the site for well recharge will accept water most rapidly if it is selected on the basis of a favorable geohydrologic environment. Geophysical logs were used to study the effect of aquifer lithology on recharge and to understand the movement of injected water. Temperature logs were particularly useful in tracing the movement of recharged water. Natural-gamma, gamma-gamma, and neutron logs provided important data on lithology and porosity in the aquifer and changes in porosity and water distribution resulting from recharge. Effective recharge of the Ogallala Formation, using water from playa lakes, is possible where geohydrologic conditions are favorable and the recharge system is properly constructed.

Brown, Richmond Flint; Keys, W.S.

1985-01-01

303

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars  

Microsoft Academic Search

High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis

Ryan C. Ewing; Aymeric-Pierre B. Peyret; Gary Kocurek; Mary Bourke

2010-01-01

304

Exploring inner structure of Titan's dunes from Cassini Radar observations  

NASA Astrophysics Data System (ADS)

Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (?0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive correlation between the backscatter and elevation along dune profile for the larger, older dunes in the Great Sand Sea in south-western Egypt and Siwa dune field in north-western Egypt, as opposed to the weak negative correlation exhibited by the smaller, younger Qattaniya dunes in north-eastern Egypt. This result is reinforced by our GPR survey on a large dune in the Siwa dune field and a smaller dune in the Qattaniya dune field. Our GPR data suggest the internal structure of larger dunes to consist of greater number of layers/cross-strata than smaller ones in the first 8 meters of the subsurface, which corresponds to the radar penetration depth at (0.8-1.2) GHz. Dunes on Titan exhibit backscatter-height dependency similar to the smaller Qattaniya dunes. In particular, the Shangri-La and Belet dunes on Titan exhibit a significantly stronger, negative correlation for the backscatter-height dependency compared to the Fensal and Aztlan dunes, suggesting a difference in the internal layering, relative ages and formation history of these dunes on Titan.

Sharma, P.; Heggy, E.; Farr, T. G.

2013-12-01

305

A free cellular model of dune dynamics: Application to El Fangar spit dune system (Ebro Delta, Spain)  

NASA Astrophysics Data System (ADS)

Currently, dune field surveying is employed to assess dune net volume changes and their accretion and erosion patterns. In dune fields with complex sediment sources and sink interactions such as El Fangar Spit (Ebro Delta, Spain), it is difficult to establish the sediment input and output with only net volume changes estimated by dune field surveying. This work presents a free dune dynamic cellular model that incorporates algorithms that introduce wind data into the erosion and transport processes. The model can be applied to dune systems with variable wind regime. A calibration methodology based on the morphological reproduction of the observed dune field evolution is proposed. The model and the calibration methodology is applied to a region of El Fangar dune system surveyed with DGPS on 15th and 18th April 2012. The difference between the final measured dune state and the best morphological reproduction obtained with the model is employed to estimate the sediment flux. This operation yields an output sand flux of 98.8 m3 and an input of 292.6 m3. This algorithm could have a great impact on the study of complex dune systems where the dunes act as sinks and sources of beach sediments and in the characterization of the beach-dune interactions.

Barrio-Parra, Fernando; Rodrguez-Santalla, Inmaculada

2014-01-01

306

Mountain-Block Hydrology and Mountain-Front Recharge* John L. Wilson and Huade Guan  

E-print Network

Mountain-Block Hydrology and Mountain-Front Recharge* John L. Wilson and Huade Guan New Mexico of recharge to basin aquifers oc- curs along the mountain front. Traditionally called "mountain-front recharge, mountain-front recharge estimates are based on the general pre- cipitation characteristics of the mountain

Texas at San Antonio, University of

307

Point pattern analysis of north polar crescentic dunes, Mars: A geography of dune self-organization  

Microsoft Academic Search

The geographic signature of dune distribution and self-organization as measured by the R-statistic offers a viewpoint on the geography of crescentic eolian systems and proposes an index from which to determine the degree of self-organization across a variety of spatial scales. Fields of simple dunes (dome, barchan, barchan-seif) are comparatively less regular in distribution than are those fields, or part

Mark A. Bishop

2007-01-01

308

Point pattern analysis of north polar crescentic dunes, Mars: A geography of dune self-organization  

NASA Astrophysics Data System (ADS)

The geographic signature of dune distribution and self-organization as measured by the R-statistic offers a viewpoint on the geography of crescentic eolian systems and proposes an index from which to determine the degree of self-organization across a variety of spatial scales. Fields of simple dunes (dome, barchan, barchan-seif) are comparatively less regular in distribution than are those fields, or part thereof, that consist of compound (barchanoid) morphologies whose patterns are more highly regular.

Bishop, Mark A.

2007-11-01

309

Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico  

USGS Publications Warehouse

The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

2006-01-01

310

Dune Morphology and Substrate Dependence on Titan  

NASA Astrophysics Data System (ADS)

We are using Cassini's Visual and Infrared Mapping Spectrometer (VIMS) to study Titan's sand. Specifically, we are constraining the sand's composition, the precise composition of which is still unknown. Water ice has been ruled out, leaving atmospherically-derived hydrocarbons as the best fit. The means of constraint involved spectrally unmixing images of Titan's dunes. We selected our spectral endmembers using high resolution VIMS IR images (noodle maps), specifically from T20. We have 5 spectral endmembers, labeled by color from VIMS IR maps: dark brown, dark blue, Xanadu bright, equatorially bright, and 5- micron bright. We set up a linear model to test on mixed substrate pixels from the northern Fensal sand dunes. Our model assumes some percent dark brown (sand) and some percent one other endmember. The product is a substrate map of Titan's dune fields, which we will compare with RADAR maps of the same area. Our results will determine if substrate type plays a role in dune morphology and location.

Vixie, Graham; Barnes, Jason; Radebaugh, Jani

2010-10-01

311

Beaches, Dunes, and Barrier Islands. Habitat Pac.  

ERIC Educational Resources Information Center

The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of a leader overview, teaching guides and student data sheets for three activities, and a poster. The leader overview describes the nature of beaches, dunes, and barrier islands, tracing their development, settlement, and management and

Fish and Wildlife Service (Dept. of Interior), Washington, DC.

312

Particle dynamics of a cartoon dune  

E-print Network

The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length.

Christopher Groh; Ingo Rehberg; Christof A. Kruelle

2009-11-04

313

Moving dunes on the Google Earth  

E-print Network

Several methods exist for surveying the dunes and estimate their migration rate. Among methods suitable for the macroscopic scale, the use of the satellite images available on Google Earth is a convenient resource, in particular because of its time series. Some examples of the use of this feature of Google Earth are here proposed.

Sparavigna, Amelia Carolina

2013-01-01

314

Barchan and Linear Dunes on Earth and Mars - Comparative Research  

NASA Astrophysics Data System (ADS)

High resolution images from MGS and MRO reveal, in detail, ripples and dunes on Mars that were not discerned in old Viking images. The two basic dune types known on Earth, barchan (and transverse) and seif (linear), are also common on Mars, although seif dunes are quite rare on that planet. Some Martian barchan and seif dunes have a different morphology, particularly as evident in the Martian north polar region. Some of the barchans have an elongated, elliptical shape, while some of the linear dunes lack the sinuosity commonly associated with terrestrial seif dunes. These barchan and linear dunes occur together, side-by-side, and in some cases are merged to create a single bed-form. Induration of the dunes, or crust formation, can explain the occurrence of these dunes of unusual morphology in the Martian north polar region. Crusts may form as water vapor diffuses into and out of the fine-grained materials on the planet's surface. Salts would be deposited as intergranular cement. Because these bedforms occur in the polar region, the cementing agent could be ice instead of salts; indeed, the dunes spend more than half each Martian year beneath a covering of seasonal frost, mostly frozen carbon dioxide. Elliptical shaped barchans were created artificially in Saudi Arabia by spraying advancing barchan dunes with crude oil to stabilize them until the dunes reached a streamlined body shape. Simulation work indicates that the same process can occur on the indurated Martian barchans, but by cementation of grains rather than introduction of oil. Short lee dunes that have a linear shape with a sharp-edged crest are known to form from sand accumulation at the lee side of obstacles. Once a dune is stabilized by induration or crust, it functions as an obstacle to the wind. Linear lee dunes stabilized by ice (water or carbon dioxide) or mineral crust may elongate and form a long linear dune that aligns parallel to the wind. Melting of the ice will set up a straight linear dune, with loose sand, parallel to the dominant wind. Field observations on terrestrial deserts show that such a dune can only be formed when it is covered by vegetation. If vegetation is removed the bare linear dune disintegrates into small barchans. Simulation also shows that linear dune is unstable and deforms until it takes the shape of a string of barchans, which are the stable shape under unidirectional winds.

Tsoar, H.; Edgett, K. S.; Schatz, V.; Parteli, E. J.; Herrmann, H. J.

2007-05-01

315

Morphodynamic modeling of aeolian dunes: Review and future plans  

NASA Astrophysics Data System (ADS)

Sand dunes are ubiquitous in deserts, on coasts, on the sea bottom, and on the surface of Mars, Venus and Titan. The quantitative understanding of dune dynamics is thus of relevance for a broad range of physical, geological and planetary sciences. A morphodynamic model for dunes, which combines an analytical description of the average turbulent wind field over the topography with a continuum saltation model, has proven successful to quantitatively reproduce the shape of aeolian dunes of different types. We present a short review on the physics of dune formation and the model development, as well as some future plans for further developments and applications.

Parteli, E. J. R.; Kroy, K.; Tsoar, H.; Andrade, J. S.; Pschel, T.

2014-10-01

316

Defrosting Polar Dunes--'The Snow Leopard'  

NASA Technical Reports Server (NTRS)

The patterns created by dark spots on defrosting south polar dunes are often strange and beautiful. This picture, which the Mars Orbiter Camera team has dubbed, 'the snow leopard,' shows a dune field located at 61.5oS, 18.9oW, as it appeared on July 1, 1999. The spots are areas where dark sand has been exposed from beneath bright frost as the south polar winter cap begins to retreat. Many of the spots have a diffuse, bright ring around them this is thought to be fresh frost that was re-precipitated after being removed from the dark spot. The spots seen on defrosting polar dunes are a new phenomenon that was not observed by previous spacecraft missions to Mars. Thus, there is much about these features that remains unknown. For example, no one yet knows why the dunes become defrosted by forming small spots that grow and grow over time. No one knows for sure if the bright rings around the dark spots are actually composed of re-precipitated frost. And no one knows for sure why some dune show spots that appear to be 'lined-up' (as they do in the picture shown here).

This Mars Global Surveyor Mars Orbiter Camera image is illuminated from the upper left. North is toward the upper right. The scale bar indicates a distance of 200 meters (656 feet).

Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

1999-01-01

317

Origins of barchan dune asymmetry: insights from numerical simulations  

E-print Network

Barchan dunes --- crescent-shaped dunes that form in areas of unidirectional winds and low sand availability --- commonly display an asymmetric shape, with one limb extended downwind. Several factors have been identified as potential causes for barchan dune asymmetry on Earth and Mars: asymmetric bimodal wind regime, topography, influx asymmetry and dune collision. However, the dynamics and potential range of barchan morphologies emerging under each specific scenario that leads to dune asymmetry are far from being understood. In the present work, we use dune modeling in order to investigate the formation and evolution of asymmetric barchans. We find that a bimodal wind regime causes limb extension when the divergence angle between primary and secondary winds is larger than $90^{\\circ}$, whereas the extended limb evolves into a seif dune if the ratio between secondary and primary transport rates is larger than 25%. Calculations of dune formation on an inclined surface under constant wind direction also lead to barchan asymmetry, however no seif dune is obtained from surface tilting alone. Asymmetric barchans migrating along a tilted surface move laterally, with transverse migration velocity proportional to the slope of the terrain. Limb elongation induced by topography can occur when a barchan crosses a topographic rise. Furthermore, transient asymmetric barchan shapes with extended limb also emerge during collisions between dunes or due to an asymmetric influx. Our findings can be useful for making quantitative inference on local wind regimes or spatial heterogeneities in transport conditions of planetary dune fields hosting asymmetric barchans.

Eric J. R. Parteli; Orencio Durn; Mary C. Bourke; Haim Tsoar; Thorsten Poeschel; Hans J. Herrmann

2013-04-24

318

ENGINEERING ECONOMIC ANALYSIS OF A PROGRAM FOR ARTIFICIAL GROUNDWATER RECHARGE.  

USGS Publications Warehouse

This study describes and demonstrates two alternate methods for evaluating the relative costs and benefits of artificial groundwater recharge using percolation ponds. The first analysis considers the benefits to be the reduction of pumping lifts and land subsidence; the second considers benefits as the alternative costs of a comparable surface delivery system. Example computations are carried out for an existing artificial recharge program in Santa Clara Valley in California. A computer groundwater model is used to estimate both the average long term and the drought period effects of artificial recharge in the study area. Results indicate that the costs of artificial recharge are considerably smaller than the alternative costs of an equivalent surface system. Refs.

Reichard, Eric G.; Bredehoeft, John D.

1984-01-01

319

Transportation Center Seminar "Electric Vehicle Recharging: Decision Support  

E-print Network

Transportation Center Seminar "Electric Vehicle Recharging: Decision Support Tools for Drivers Conference Center Refreshments available at 3:30 pm Abstract: Plug-in electric vehicles (PEVs) have become electric vehicles. #12;

Bustamante, Fabián E.

320

Reliability of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect

We investigate the reliability If a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. A model system was constructed for this that includes the solar resource, the photovoltaic power supp Iy system, the rechargeable battery and a load. The solar resource and the system load are modeled as SI ochastic processes. The photovoltaic system and the rechargeable battery are modeled deterministically, imd an artificial neural network is incorporated into the model of the rechargeable battery to simulate dartage that occurs during deep discharge cycles. The equations governing system behavior are solved simultaneously in the Monte Carlo framework and a fwst passage problem is solved to assess system reliability.

Barney, P.; Jungst, R.G., Ingersoll, D.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-30

321

Bipolar rechargeable lithium battery for high power applications  

NASA Technical Reports Server (NTRS)

Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

Hossain, Sohrab; Kozlowski, G.; Goebel, F.

1993-01-01

322

Improved zinc electrode and rechargeable zinc-air battery  

DOEpatents

The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

Ross, P.N. Jr.

1988-06-21

323

GROUNDWATER RECHARGE/DISCHARGE, NEUSE RIVER WATERSHED, NC  

EPA Science Inventory

The North Carolina Department of Environment and Natural Resources, Division of Water Quality and Groundwater Section, in cooperation with the NC Center for Geographic Information and Analysis, developed the Groundwater Recharge/Discharge digital data to enhance planning, siting ...

324

Seasonal erosion and restoration of Mars' northern polar dunes  

USGS Publications Warehouse

Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO 2 seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

Hansen, C.J.; Bourke, M.; Bridges, N.T.; Byrne, S.; Colon, C.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Mellon, M.; Portyankina, G.; Thomas, N.

2011-01-01

325

Seasonal Erosion and Restoration of Mars Northern Polar Dunes  

NASA Astrophysics Data System (ADS)

Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars CO2 seasonal polar caps. Numerous dunes in Mars north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars current climate.

Hansen, C. J.; Bourke, M.; Bridges, N. T.; Byrne, S.; Colon, C.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Mellon, M.; Portyankina, G.; Thomas, N.

2011-02-01

326

Geomorphology of coastal sand dunes, Baldwin County, Alabama  

USGS Publications Warehouse

Alabama's coastal eolian deposits are primarily vegetated dunes that are exemplified by sand ridges with flat to undulating upper surfaces and continuous irregular crests. Dune fields occur along Morgan peninsula between the foredune line and Little Lagoon and the Mobile Bay area. These dune fields consist primarily of one or more continuous ridges that parallel the coast and are generally vegetaed to grassy. Washover of the beach and backshore during Hurricane Frederic (1979) and subsequent smaller scale storms resulted in significant erosion of many of Alabama's dune fields. The primary dunes or foredunes are beginning to recover from the effects of these storms; however, numerous breaks in the primary dune line are present. Sand dunes in coastal Alabama provide protection against storm-generated waves and washover. The foredunes are protected by adherence to a Coastal Construction Control Line (CCCL) or construction setback line identified by markers along coastal Baldwin County.

Bearden, Bennett L.; Hummell, Richard L.; Mink, Robert M.

1989-01-01

327

Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact  

NASA Astrophysics Data System (ADS)

At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat and erosion of the beach itself. Typically dunes are located behind sand beaches and they are part of the beach-dune systems. Such type of dune reduction could be driven by combination of many factors, both natural ones (such as severe storms, erosion, heavy rains or flooding) and human impacts (large number of installed coast-protection structures along the coast, which interrupt the sediment transport, create new sedimentary deficit and generate erosion). During the recent years most of the Bulgarian beaches have progressively eroded and their areas have significantly been decreased. ii) Dunes that have been reduced/damaged and lost due to expanded tourist and housing infrastructures/developments and due to afforestaion activities. The principal sources of human impacts on sand dunes in Bulgaria are rapid coastal urbanization over the recent years (i.e., hotel and residential constructions, roads, parking structures, and other related infrastructure), unregulated camping and "temporary" constructions on the dunes, a lax regulatory environment that tolerates the re-zoning of protected sand dunes to "agricultural" areas. At most recreational sites there were wide coastal dunes, which however have been destroyed during tourist constructions. Such are dunes at the most famous Bulgarian sea resorts of Golden Sands and Sunny Beach in the areas of Varna and Nessebar. As a consequence, major areas along the Bulgarian coast were completely urbanized by hotels and other infrastructures and large sand dune systems were damaged. iii) Dunes located at still undeveloped coastal sections: yet they are naturally preserved and unthreatened by human pressure boom. These are just a few dune sites: at the northernmost portion of the Bulgarian coast (in the area of Durankulak), at the central part in the region of the largest Bulgarian river, Kamchia River, and along the southernmost coastline (in the area of Veleka River). Although sand dunes in Bulgaria are protected areas and national reserves they have been exposed to large anthropogenic pressure in particu

Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.

2012-04-01

328

Soil Water Balance and Recharge Monitoring at the Hanford Site FY 2010 Status Report  

SciTech Connect

This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

2010-10-27

329

Cryogenic Transport of High-Pressure-System Recharge Gas  

NASA Technical Reports Server (NTRS)

A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near-ambient pressure far below the recharge pressure. As leakage of heat into the tank caused vaporization of the cryogenic fluid, the resulting gas would be vented through the relief valve, which would be set to maintain the pressure in the tank at the transport value. Inasmuch as the density of a cryogenic fluid at atmospheric pressure greatly exceeds that of the corresponding gas in a practical high-pressure tank at room temperature, a tank for transporting a given mass of gas according to the proposed method could be smaller (and, hence, less massive) than is a tank needed for transporting the same mass of gas according to the conventional method.

Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

2010-01-01

330

Fate of human viruses in groundwater recharge systems  

Microsoft Academic Search

The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for

J. M. Vaughn; E. F. Landry

1980-01-01

331

The chemistry and status of rechargeable molten-salt batteries  

Microsoft Academic Search

The chemistry and the state of development of rechargeable molten salt cells and batteries of current interest are reviewed in this work. Molten-salt cells offer the most attractive combination of high specific energy (100-200 Wh\\/kg), high specific power (50-200 W\\/kg), and long cycle life (300-1500 cycles) of any rechargeable cells under investigation at this time. It is these important features

E. J. Cairns; G. Mamantov; R. P. Tischer; D. R. Vissers

1983-01-01

332

Recharge signal identification based on groundwater level observations.  

PubMed

This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area. PMID:22016042

Yu, Hwa-Lung; Chu, Hone-Jay

2012-10-01

333

Estimating aquifer channel recharge using optical data interpretation.  

PubMed

Recharge through intermittent and ephemeral stream channels is believed to be a primary aquifer recharge process in arid and semiarid environments. The intermittent nature of precipitation and flow events in these channels, and their often remote locations, makes direct flow and loss measurements difficult and expensive. Airborne and satellite optical images were interpreted to evaluate aquifer recharge due to stream losses on the Frio River in south-central Texas. Losses in the Frio River are believed to be a major contributor of recharge to the Edwards Aquifer. The results of this work indicate that interpretation of readily available remote sensing optical images can offer important insights into the spatial distribution of aquifer recharge from losing streams. In cases where upstream gauging data are available, simple visual analysis of the length of the flowing reach downstream from the gauging station can be used to estimate channel losses. In the case of the Frio River, the rate of channel loss estimated from the length of the flowing reach at low flows was about half of the loss rate calculated from in-stream gain-loss measurements. Analysis based on water-surface width and channel slope indicated that losses were mainly in a reach downstream of the mapped recharge zone. The analysis based on water-surface width, however, did not indicate that this method could yield accurate estimates of actual flow in pool and riffle streams, such as the Frio River and similar rivers draining the Edwards Plateau. PMID:21434908

Walter, Gary R; Necsoiu, Marius; McGinnis, Ronald

2012-01-01

334

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

SciTech Connect

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01

335

Wearable textile battery rechargeable by solar energy.  

PubMed

Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. PMID:24164580

Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

2013-01-01

336

Advanced rechargeable sodium batteries with novel cathodes  

NASA Technical Reports Server (NTRS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.

Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1989-01-01

337

Rechargeable thin-film lithium batteries  

SciTech Connect

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01

338

Thin-film rechargeable lithium batteries  

SciTech Connect

Rechargeable thin-films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin-film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-11-01

339

Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties  

NASA Astrophysics Data System (ADS)

Planetary dune field properties and their bulk bedform morphologies relate to regional wind patterns, sediment supply, climate, and topography. On Mars, major occurrences of spatially contiguous low-albedo sand dunes are primarily found in three major topographic settings: impact craters, high-latitude basins, and linear troughs or valleys, the largest being the Valles Marineris (VM) rift system. As one of the primary present day martian sediment sinks, VM holds nearly a third of the non-polar dune area on Mars. Moreover, VM differs from other regions due to its unusual geologic, topographic, and atmospheric setting. Herein, we test the overarching hypothesis that VM dune fields are compositionally, morphologically, and thermophysically distinct from other low- and mid-latitude (50N-50S latitude) dune fields. Topographic measurements of dune fields and their underlying terrains indicate slopes, roughnesses, and reliefs to be notably greater for those in VM. Variable VM dune morphologies are shown with topographically-related duneforms (climbing, falling, and echo dunes) located among spur-and-gully wall, landslide, and chaotic terrains, contrasting most martian dunes found in more topographically benign locations (e.g., craters, basins). VM dune fields superposed on Late Amazonian landslides are constrained to have formed and/or migrated over >10s of kilometers in the last 50 My to 1 Gy. Diversity of detected dune sand compositions, including unaltered ultramafic minerals and glasses (e.g., high and low-calcium pyroxene, olivine, Fe-bearing glass), and alteration products (hydrated sulfates, weathered Fe-bearing glass), is more pronounced in VM. Observations show heterogeneous sand compositions exist at the regional-, basinal-, dune field-, and dune-scales. Although not substantially greater than elsewhere, unambiguous evidence for recent dune activity in VM is indicated from pairs of high-resolution images that include: dune deflation, dune migration, slip face modification (e.g., alcoves), and ripple modification or migration, at varying scales (10s-100s m2). We conclude that VM dune fields are qualitatively and quantitatively distinct from other low- and mid-latitude dune fields, most readily attributable to the rift's unusual setting. Moreover, results imply dune field properties and aeolian processes on Mars can be largely influenced by regional environment, which may have their own distinctive set of boundary conditions, rather than a globally homogenous collection of aeolian sediment and bedforms.

Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.

2014-02-01

340

2/24/2014 Micro-Windmills to Recharge Cell Phones http://www.jadecadelina.com/innovation/micro-windmills-recharge-phones/ 1/2  

E-print Network

2/24/2014 Micro-Windmills to Recharge Cell Phones http://www.jadecadelina.com/innovation/micro & Technology Search this site... R ECEN T P OSTS welcome Micro-Windmills to Recharge Cell Phones Super Ty phoon (required) Micro-Windmills to Recharge Cell Phones January 16, 2014 · by mr.jade · in Energy, Innovation

Chiao, Jung-Chih

341

4/6/2014 Micro Windmill Recharges Phone Batteries | Solar Feeds http://www.solarfeeds.com/micro-windmill-recharges-phone-batteries/ 1/3  

E-print Network

4/6/2014 Micro Windmill Recharges Phone Batteries | Solar Feeds http://www.solarfeeds.com/micro-windmill-recharges-phone-batteries/ 1/3 Micro Windmill Recharges Phone Batteries 15 January of 2014 by SolarFeeds A UT Arlington the electricity that could be collected by the cell phone's battery. Rao's works in micro-robotic devices

Chiao, Jung-Chih

342

Corridors of barchan dunes: Stability and size selection.  

PubMed

Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We show that even very realistic models for solitary dunes do not reproduce these corridors. Instead, two instabilities take place. First, barchans receive a sand flux at their back proportional to their width while the sand escapes only from their horns. Large dunes proportionally capture more sand than they lose, while the situation is reversed for small ones: therefore, solitary dunes cannot remain in a steady state. Second, the propagation speed of dunes decreases with the size of the dune: this leads, through the collision process, to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further, yet unknown, mechanisms regulating and selecting the size of dunes. PMID:14995611

Hersen, P; Andersen, K H; Elbelrhiti, H; Andreotti, B; Claudin, P; Douady, S

2004-01-01

343

Estimated Infiltration, Percolation, and Recharge Rates at the Rillito Creek Focused Recharge Investigation Site, Pima County, Arizona  

USGS Publications Warehouse

A large fraction of ground water stored in the alluvial aquifers in the Southwest is recharged by water that percolates through ephemeral stream-channel deposits. The amount of water currently recharging many of these aquifers is insufficient to meet current and future demands. Improving the understanding of streambed infiltration and the subsequent redistribution of water within the unsaturated zone is fundamental to quantifying and forming an accurate description of streambed recharge. In addition, improved estimates of recharge from ephemeral-stream channels will reduce uncertainties in water-budget components used in current ground-water models. This chapter presents a summary of findings related to a focused recharge investigation along Rillito Creek in Tucson, Arizona. A variety of approaches used to estimate infiltration, percolation, and recharge fluxes are presented that provide a wide range of temporal- and spatial-scale measurements of recharge beneath Rillito Creek. The approaches discussed include analyses of (1) cores and cuttings for hydraulic and textural properties, (2) environmental tracers from the water extracted from the cores and cuttings, (3) seepage measurements made during sustained streamflow, (4) heat as a tracer and numerical simulations of the movement of heat through the streambed sediments, (5) water-content variations, (6) water-level responses to streamflow in piezometers within the stream channel, and (7) gravity changes in response to recharge events. Hydraulic properties of the materials underlying Rillito Creek were used to estimate long-term potential recharge rates. Seepage measurements and analyses of temperature and water content were used to estimate infiltration rates, and environmental tracers were used to estimate percolation rates through the thick unsaturated zone. The presence or lack of tritium in the water was used to determine whether or not water in the unsaturated zone infiltrated within the past 40 years. Analysis of water-level and temporal-gravity data were used to estimate recharge volumes. Data presented in this chapter were collected from 1999 though 2002. Precipitation and streamflow during this period were less than the long-term average; however, two periods of significant streamflow resulted in recharge?one in the summer of 1999 and the other in the fall/winter of 2000. Flux estimates of infiltration and recharge vary from less than 0.1 to 1.0 cubic meter per second per kilometer of streamflow. Recharge-flux estimates are larger than infiltration estimates. Larger recharge fluxes than infiltration fluxes are explained by the scale of measurements. Methods used to estimate recharge rates incorporate the largest volumetric and temporal scales and are likely to have fluxes from other nearby sources, such as unmeasured tributaries, whereas the methods used to estimate infiltration incorporate the smallest scales, reflecting infiltration rates at individual measurement sites.

Hoffmann, John P.; Blasch, Kyle W.; Pool, Don R.; Bailey, Matthew A.; Callegary, James B.

2007-01-01

344

Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields  

NASA Astrophysics Data System (ADS)

Martian dune systems belong to two broad categories: (i) the sprawling north polar erg, rich in and immobilized by seasonal and perennial volatiles; and (ii) isolated low- to high-latitude dune fields confined by topography. While modern dune migration on Mars is nearly imperceptibly slow, recent studies are producing robust evidence for aeolian activity, including bedform modification. Cold-climate terrestrial dunes containing volatile reservoirs provide an important analog to Martian polar dunes because permafrost and seasonal cycles of CO2 and H2O frost mantling are thought to partially decouple Martian polar dunes from atmospheric forcing. The 67N latitude, 62 km2 Great Kobuk Sand Dunes (GKSD) are a terrestrial analog for polar, intercrater dune fields on Mars. Formative winds affected by complex topography and the presence of volatiles and intercalated snow within the GKSD have direct analogy to factors that impede migration of Martian polar dunes. This system offers the opportunity to study cold-climate, noncoastal, topographically constrained, climbing and reversing barchanoid, transverse, longitudinal, and star dunes. The Kobuk Valley climate is subarctic and semiarid with long, cold winters and brief, warm summers. Niveoaeolian sedimentation occurs within west-facing lee slope catchments. In March 2010, we found the seasonally frozen layer to range in thickness from 1.5 to 4.0 m, and no evidence for shallow permafrost. Instead, using GPR and boreholes, we found a system-wide groundwater aquifer that nearly parallels topography and cuts across steeply dipping bedforms. GPR cannot uniquely detect ice and water; however, a similar analysis of rover-based GPR might be used to detect volatiles in Martian dunes. The perennial volatile reservoir is liquid because of mean annual air temperature, intense solar heating before, during, and after 38 days of continuous summer daylight, high dry sand thermal conductivity, higher wet sand thermal conductivity, infiltration of relatively warm summer precipitation, and the insulative properties of longlived snowcover. We hypothesize that the seasonally frozen layer and niveoaeolian deposits combined with a shallow aqueous reservoir are responsible for the low migration rate of the GKSD (i.e., ~1.3 m/yr over a recent 5-year period). Just as migration of the GKSD is affected by partial to full snowcover for 70% of the year, Martian polar dunes are affected by partial to full frost mantling for 70% of the year, significantly limiting the duration of aeolian transport. Thin water films surrounding sand grains at the GKSD make moist sand cohesive and structurally stable, like a solid. The partially saturated sand above the capillary fringe of an unconfined aquifer in the GKSD will limit sand available for aeolian transport, potentially similar to effects of permafrost within a Martian dune. We will present our geophysical, geomorphologic, and meteorologic field data and modeling analyses.

Dinwiddie, C. L.; Hooper, D. M.; Michaels, T. I.; McGinnis, R. N.; Stillman, D.; Bjella, K.; Stothoff, S.; Walter, G. R.; Necsoiu, M.; Grimm, R. E.

2010-12-01

345

Pooh Bear rock and Mermaid Dune  

NASA Technical Reports Server (NTRS)

One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

1997-01-01

346

Viscous liquid flow on Martian dune slopes  

E-print Network

The observed temporary dark streaks on some dune slopes on Mars may be due to thin sheets of water (or some other liquid) trickling downhill. This note corrects conceptual errors in a previous paper (M\\"{o}hlmann and Kereszturi 2010, Icarus 207, 654-658) which affect the velocity profile of such flows, and produce over-estimates of their depths and mass fluxes by factors of almost two.

Dobrovolskis, Anthony R

2014-01-01

347

Viscous liquid flow on Martian dune slopes  

NASA Astrophysics Data System (ADS)

The observed temporary dark streaks on some dune slopes on Mars may be due to thin sheets of water (or some other liquid) trickling downhill. This note corrects conceptual errors in a previous paper (Mhlmann and Kereszturi, 2010, Icarus207, 654-658) which affect the velocity profile of such flows, and produce over-estimates of their depths and mass fluxes by factors of almost two.

Dobrovolskis, Anthony R.

2014-12-01

348

Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change  

Microsoft Academic Search

In a study area spanning the martian surface poleward of 50 S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ? 116400km2, leading to a global dune field coverage estimate of ?904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields

Lori K. Fenton; Rosalyn K. Hayward

2010-01-01

349

Morphology and distribution of common 'sand' dunes on Mars - Comparison with the earth  

Microsoft Academic Search

A comparative study of Martian and terrestrial dunes was made based on Viking Orbiter pictures and aerial pictures of terrestrial deserts. The morphological similarity between the Martian dunes and terrestrial crescentic dunes implies that the dynamics of dune formation are similar on the two planets, despite Martian constraints on dune formation that include much higher velocity winds required to move

C. S. Breed; M. J. Grolier; J. F. McCauley

1979-01-01

350

Modelling Desert Dune Fields Based on Discrete Dynamics STEVEN R. BISHOPa,  

E-print Network

Modelling Desert Dune Fields Based on Discrete Dynamics STEVEN R. BISHOPa, *, HIROSHI MOMIJIb is developed to model the dynamics of sand dunes. The physical processes display strong non-linearity that has features we monitor morphology, dune growth, dune migration and spatial patterns within a dune field

351

Dunes on Mars, `Venus', Earth, and subaqueous ripples: a scaling law for their elementary size  

E-print Network

Dunes on Mars, `Venus', Earth, and subaqueous ripples: a scaling law for their elementary size P@pmmh.espci.fr Dunes and bedforms are observed in considerably di- verse environments: aeolian dunes of sand as well as snow, dunes under water, but also dunes on Mars or Titan. Summarising our work published in [1], we

Claudin, Philippe

352

Oxygen electrodes for rechargeable alkaline fuel cells  

NASA Technical Reports Server (NTRS)

Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

Swette, L.; Kackley, N.

1989-01-01

353

Design and simulation of lithium rechargeable batteries  

SciTech Connect

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01

354

Arsenic release during managed aquifer recharge (MAR)  

NASA Astrophysics Data System (ADS)

The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

Pichler, T.; Lazareva, O.; Druschel, G.

2013-12-01

355

Annual monsoon rains recorded by Jurassic dunes.  

PubMed

Pangaea, the largest landmass in the Earth's history, was nearly bisected by the Equator during the late Palaeozoic and early Mesozoic eras. Modelling experiments and stratigraphic studies have suggested that the supercontinent generated a monsoonal atmospheric circulation that led to extreme seasonality, but direct evidence for annual rainfall periodicity has been lacking. In the Mesozoic era, about 190 million years ago, thick deposits of wind-blown sand accumulated in dunes of a vast, low-latitude desert at Pangaea's western margin. These deposits are now situated in the southwestern USA. Here we analyse slump masses in the annual depositional cycles within these deposits, which have been described for some outcrops of the Navajo Sandstone. Twenty-four slumps, which were generated by heavy rainfall, appear within one interval representing 36 years of dune migration. We interpret the positions of 20 of these masses to indicate slumping during summer monsoon rains, with the other four having been the result of winter storms. The slumped lee faces of these Jurassic dunes therefore represent a prehistoric record of yearly rain events. PMID:11452305

Loope, D B; Rowe, C M; Joeckel, R M

2001-07-01

356

Dune Morphology and Substrate Dependence on Titan  

NASA Astrophysics Data System (ADS)

We are using Cassini's Visual and Infrared Mapping Spectrometer (VIMS) to study Titan's sand. Specifically, we are constraining the sand's composition, the precise composition of which is still unknown. Water ice has been ruled out, leaving atmospherically-derived hydrocarbons as the best fit. We spectrally unmixed chosen pixels, each representing one unique composition, to determine the composition of Titan's equatorial sand seas. We selected our spectral endmembers using high resolution VIMS IR images (noodle maps), specifically from T20. We have 5 spectral endmembers, labeled by color from VIMS IR maps: dark brown, dark blue, Xanadu bright, equatorially bright, and 5-micron bright. The exact superposition of spectral endmembers of the sand's composition remains the subject of further study. We set up a linear model to test on mixed substrate pixels from the T20 flyby of Cassini over the northern Fensal sand dunes. Our model assumes some percent dark brown (sand) and some percent one other endmember. The product is a substrate map of Titan's dune fields, which we will compare with RADAR maps of the same area. Our results will determine if substrate type plays a role in dune morphology and location.

Vixie, Graham D.; Barnes, J. W.; Radebaugh, J.

2010-10-01

357

Particle dynamics of a cartoon dune  

E-print Network

The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that...

Groh, Christopher; Kruelle, Christof A

2009-01-01

358

Thermal Methods for Investigating Ground-Water Recharge  

USGS Publications Warehouse

Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water flux in the subsurface is difficult, prompting investigators to pursue indirect methods. Geophysical approaches that exploit the coupled relation between heat and water transport provide an attractive class of methods that have become widely used in investigations of recharge. This appendix reviews the application of heat to the problem of recharge estimation. Its objective is to provide a fairly complete account of the theoretical underpinnings together with a comprehensive review of thermal methods in practice. Investigators began using subsurface temperatures to delineate recharge areas and infer directions of ground-water flow around the turn of the 20th century. During the 1960s, analytical and numerical solutions for simplified heat- and fluid-flow problems became available. These early solutions, though one-dimensional and otherwise restricted, provided a strong impetus for applying thermal methods to problems of liquid and vapor movement in systems ranging from soils to geothermal reservoirs. Today?s combination of fast processors, massive data-storage units, and efficient matrix techniques provide numerical solutions to complex, three-dimensional transport problems. These approaches allow researchers to take advantage of the considerable information content routinely achievable in high-accuracy temperature work.

Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

2007-01-01

359

Artificial-Recharge Experiments and Operations on the Southern High Plains of Texas and New Mexico  

USGS Publications Warehouse

Experiments using highly turbid water from playa lakes for injection into the Ogallala Formation have resulted in greatly decreased yield of the recharge wells, Recharge of ground or surface water of good quality has indicated, however, that injection through wells is an effective method of recharging the aquifer. Water that is slightly turbid can be successfully injected for a period of time, but generally results in constantly declining yields and capacity for recharge. Redevelopment through pumping and surging significantly prolongs the life of recharge wells under some conditions. Surface spreading is little practiced on the High Plains, but locally may be a feasible means of artificial recharge.

Brown, Richmond F.; Signor, Donald C.

1973-01-01

360

Fate of human viruses in groundwater recharge systems  

SciTech Connect

The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

Vaughn, J.M.; Landry, E.F.

1980-03-01

361

Crescentic dunes on the inner continental shelf off northern California  

USGS Publications Warehouse

These dunes appear to be migrating obliquely to the regional shelf gradient; a preferred offshore direction of tranpsort is indicated by the extended southern wings of many dunes. Over longer time periods (decades), the seaward transport of fine to medium sand in the crescentic dunes is probably an important way by which sand escapes the shallow part of the continental shelf in this region and mixes with the muddy deposits of the central shelf. -from Authors

Cacchione, D.A.; Field, M.E.; Drake, D.E.; Tate, G.B.

1987-01-01

362

The effects of psammophilous plants on sand dune dynamics  

E-print Network

Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth under (i) specific sand drift or (ii) specific wind power. We show that psammophilous plants enrich the sand dune dynamics. Depending on the climatological conditions, it is possible to obtain one, two, or three steady dune states. The activity of the dunes can be associated with the surface cover--bare dunes are active, and dunes with significant cover of vegetation, biogenic soil crust, or psammophilous plants are fixed. Our model shows that under suitable precipitation rates and wind power, the dynamics of the different cover types is in accordance with the common view that dunes are initially stabilized by psammophilous plants that reduce sand activity, thus enhancing the growth of regular vegetation that eventually dominates the cover of the dunes and determines their activity.

Golan Bel; Yosef Ashkenazy

2013-08-30

363

Dune migration in a steep, coarse-bedded stream  

USGS Publications Warehouse

In the North Fork Toutle River at Kid Valley, Washington, weak correlation between flow depth and the standard deviation of bed elevation was noted. Dunes were often superposed on larger bed forms with wave periods between 10 and 30 min. Gradual changes in waveform height and periodicity occurred over several hours during storm runoff. Rates of migration for typical dunes were estimated to be 3 cm s-1, and dune wavelengths were estimated to be 6 to 7 m. -from Author

Dinehart, R.L.

1989-01-01

364

Submarine sand dunes and sedimentary environments in Oceanographer Canyon.  

USGS Publications Warehouse

Reveals an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3m and have wavelengths up to 15m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec.-from Authors

Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

1984-01-01

365

Model for a dune field with exposed water table  

E-print Network

Aeolian transport in coastal areas can be significantly affected by the presence of an exposed water table. In some dune fields, such as in Len\\c{c}\\'ois Maranhenses, northeastern Brazil, the water table oscillates in response to seasonal changes of rainfall and rates of evapotranspiration, rising above the ground during the wet season and sinking below in the dry period. A quantitative understanding of dune mobility in an environment with varying groundwater level is essential for coastal management as well as for the study of long-term evolution of many dune fields. Here we apply a model for aeolian dunes to study the genesis of coastal dune fields in presence of an oscillating water table. We find that the morphology of the field depends on the time cycle, $T_{\\mathrm{w}}$, of the water table and the maximum height, $H_{\\mathrm{w}}$, of its oscillation. Our calculations show that long chains of barchanoids alternating with interdune ponds such as found at Len\\c{c}\\'ois Maranhenses arise when $T_{\\mathrm{w}}$ is of the order of the dune turnover time, whereas $H_{\\mathrm{w}}$ dictates the growth rate of dune height with distance downwind. We reproduce quantitatively the morphology and size of dunes at Len\\c{c}\\'ois Maranhenses, as well as the total relative area between dunes.

Marco Cesar M. de M. Luna; Eric J. R. Parteli; Hans J. Herrmann

2011-09-01

366

Sand dune materials and polar layered deposits on Mars  

NASA Technical Reports Server (NTRS)

The possible place of sand in the Martian polar layered deposits is examined. The erosional features in layered deposits and the morphologic relationship of dunes and the layered deposits are discussed. The colors of the polar dunes are shown to be similar to the colors of dunes at other latitudes, suggesting that the polar dunes can be explained without any special or exotic mechanism. Consideration is given to mixing and segregation of materials by eolian processes observed on Mars, showing that sand was probably carried to the polar regions during part of the formation of the layered deposits.

Thomas, Peter; Weitz, Catherine

1989-01-01

367

A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea  

NASA Technical Reports Server (NTRS)

Martian sand dunes have the potential to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step towards understanding the present as well as past aeolian systems, and by proxy, climatic conditions on Mars. Dunes studied in detail in Viking 1 and 2 Orbiter images have been classified as barchan, barchanoid, transverse, and complex. Regionally, they are concentrated in four locations: The North and South Polar regions, in intra crater dune fields and in troughs and valleys. Here we present the results of a morphometric analysis of barchan dunes in two of these locations: the North Polar Sand Sea (NPSS) and intra-crater dunes.

Bourke, M. C.; Balme, M.; Zimbelman, J.

2004-01-01

368

78 FR 76731 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Rechargeable Lithium...  

Federal Register 2010, 2011, 2012, 2013

...Series Airplanes; Rechargeable Lithium Ion Batteries and Battery Systems AGENCY: Federal...the installation of rechargeable lithium ion batteries and battery system that will be...equipment that uses rechargeable lithium ion batteries and battery systems in the...

2013-12-19

369

78 FR 52107 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Rechargeable Lithium...  

Federal Register 2010, 2011, 2012, 2013

...Series Airplanes; Rechargeable Lithium Ion Batteries and Battery Systems AGENCY: Federal...specifically the rechargeable lithium ion batteries and battery system that will be...equipment that uses rechargeable lithium ion batteries and battery systems in the...

2013-08-22

370

A COMPARATIVE ANALYSIS OF BARCHAN DUNES IN THE INTRA-CRATER DUNE FIELDS AND THE NORTH POLAR SAND SEA. M.C. Bourke1  

E-print Network

A COMPARATIVE ANALYSIS OF BARCHAN DUNES IN THE INTRA-CRATER DUNE FIELDS AND THE NORTH POLAR SAND@nasm.si.edu. Introduction: Martian sand dunes have the poten- tial to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step to- wards

Bourke, Mary C.

371

76 FR 10915 - Minor Boundary Revision at Indiana Dunes National Lakeshore  

Federal Register 2010, 2011, 2012, 2013

...Service Minor Boundary Revision at Indiana Dunes National Lakeshore AGENCY: National Park...9(c)(1), the boundary of Indiana Dunes National Lakeshore in the State of Indiana...depicted on a map entitled ``Indiana Dunes National Lakeshore, Proposed...

2011-02-28

372

76 FR 19304 - Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard  

Federal Register 2010, 2011, 2012, 2013

...Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard AGENCY: Fish and Wildlife...December 14, 2010, proposed rule to list the dunes sagebrush lizard (Sceloporus arenicolus...period for the proposed rule to list the dunes sagebrush lizard (Sceloporus...

2011-04-07

373

76 FR 62087 - Draft Conservation Plan and Draft Environmental Assessment; Dunes Sagebrush Lizard, Texas  

Federal Register 2010, 2011, 2012, 2013

...Plan and Draft Environmental Assessment; Dunes Sagebrush Lizard, Texas AGENCY: Fish...the draft Texas Conservation Plan for the Dunes Sagebrush Lizard (TCP). The draft TCP...Service (Service) and the Applicant for the dunes sagebrush lizard (Sceloporus...

2011-10-06

374

77 FR 11061 - Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for the Dunes Sagebrush...  

Federal Register 2010, 2011, 2012, 2013

...Plants; Proposed Endangered Status for the Dunes Sagebrush Lizard AGENCY: Fish and Wildlife...2010, proposed endangered status for the dunes sagebrush lizard (Sceloporus arenicolus...a signed conservation agreement for the dunes sagebrush lizard in Texas. We are...

2012-02-24

375

Hydrogeology of Regional Valley Fill Aquifers with Mountain System Recharge  

NASA Astrophysics Data System (ADS)

Groundwater in the North Okanagan was investigated using an integrated physical, geochemical and numerical approach. The North Okanagan Groundwater Characterization and Assessment (NOGWCA) project began with an investigation of the geology and hydrostratigraphy of the North Okanagan region. The Deep Creek and Fortune Creek watersheds were found to contain multiple valley-fill aquifers which are recharged via mountain system recharge (MSR) and direct recharge to unconfined aquifers in the valley bottom. Detailed hydrometric data indicates groundwater recharge within the alluvial fan of Fortune Creek, and discharge to surface water in the lower reaches of Deep Creek. Valley side recharge from the adjacent mountains generates artesian conditions in the valley center. Physical hydrogeological measurements and groundwater and surface water geochemistry were used to determine the overall groundwater flow regime, inter-aquifer exchange and surface-water groundwater interactions. Conservative elements and deuterium/oxygen isotopes were used in a mixing cell model (MCM) approach to assess groundwater flow between aquifers. Efforts to accurately quantify and understand MSR are hampered by sparse data on the geochemical character of bedrock aquifers. Watershed scale recharge estimates and water balances were derived from a regional integrated climate dataset coupled to FEFLOW simulations. The first stage modeled steady state conditions within the main valley center aquifer. Integrated surface water and groundwater modeling is to be carried out in the future. The groundwater flow modeling will contribute to subsequent water management decisions at the watershed scale. Climate change and economic change scenarios will be considered in the integrated surface water and groundwater modeling.

Ping, J.; Nichol, C.; Wei, A.

2009-05-01

376

Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for Transverse Aeolian Ridges on Mars  

NASA Astrophysics Data System (ADS)

Ten high precision topographic profiles across a reversing dune were created from a differential global position system (DGPS). The shapes of the profiles reveal a progression from immature to transitional to mature characteristics moving up the dune. When scaled by the basal width along each profile, shape characteristics can be compared for profiles whose horizontal scales differ by orders of magnitude. The comparison of width-scaled Bruneau Dunes profiles to similarly scaled profiles of Transverse Aeolian Ridges (TARs) on Mars indicates that many TARs are likely similar to transitional or mature reversing sand dunes.

Zimbelman, James R.; Scheidt, Stephen P.

2014-02-01

377

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars  

NASA Astrophysics Data System (ADS)

High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

2010-08-01

378

Mars Global Digital Dune Database: MC2-MC29  

USGS Publications Warehouse

Introduction The Mars Global Digital Dune Database presents data and describes the methodology used in creating the database. The database provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields from 65? N to 65? S latitude and encompasses ~ 550 dune fields. The database will be expanded to cover the entire planet in later versions. Although we have attempted to include all dune fields between 65? N and 65? S, some have likely been excluded for two reasons: 1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or 2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera narrow angle (MOC NA) images allowed, we classifed dunes and included dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid was calculated. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes over 1800 selected Thermal Emission Imaging System (THEMIS) infrared (IR), THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as a series of ArcReader projects which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in ArcMap projects. The ArcMap projects allow fuller use of the data, but require ESRI ArcMap? software. Multiple projects were required to accommodate the large number of images needed. A fuller description of the projects can be found in the Dunes_ReadMe file and the ReadMe_GIS file in the Documentation folder. For users who prefer to create their own projects, the data is available in ESRI shapefile and geodatabase formats, as well as the open Geographic Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. ReadMe files are available in PDF and ASCII (.txt) files. Tables are available in both Excel (.xls) and ASCII formats.

Hayward, Rosalyn K.; Mullins, Kevin F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, Anthony; Christensen, P.R.

2007-01-01

379

Rechargeable room-temperature CF(x)-sodium battery.  

PubMed

Here we demonstrate for the first time that CFx cathodes show rechargeable capability in sodium ion batteries with an initial discharge capacity of 1061 mAh g(-1) and a reversible discharge capacity of 786 mAh g(-1). The highly reversible electrochemical reactivity of CFx with Na at room temperature indicates that the decomposition of NaF could be driven by carbon formed during the first discharge. The high reversible capacity made it become a promising cathode material for future rechargeable sodium batteries. PMID:24494989

Liu, Wen; Li, Hong; Xie, Jing-Ying; Fu, Zheng-Wen

2014-02-26

380

Thin Rechargeable Batteries for CMOS SRAM Memory Protection  

NASA Technical Reports Server (NTRS)

New rechargeable battery technology is described and compared with classical primary battery back-up of SRAM PC cards. Thin solid polymer electrolyte cells with the thickness of TSOP memory components (1 mm nominal, 1.1 mm max) and capacities of 14 mAh/sq cm can replace coin cells. The SRAM PC cards with permanently installed rechargeable cells and optional electrochromic low battery voltage indicators will free the periodic PC card user from having to 'feed' their PC cards with coin cells and will allow a quick visual check of stored cards for their battery voltage status.

Crouse, Dennis N.

1993-01-01

381

Focused Ground-Water Recharge in the Amargosa Desert Basin  

USGS Publications Warehouse

The Amargosa River is an approximately 300-kilometer long regional drainage connecting the northern highlands on the Nevada Test Site in Nye County, Nev., to the floor of Death Valley in Inyo County, Calif. Streamflow analysis indicates that the Amargosa Desert portion of the river is dry more than 98 percent of the time. Infiltration losses during ephemeral flows of the Amargosa River and Fortymile Wash provide the main sources of ground-water recharge on the desert-basin floor. The primary use of ground water is for irrigated agriculture. The current study examined ground-water recharge from ephemeral flows in the Amargosa River by using streamflow data and environmental tracers. The USGS streamflow-gaging station at Beatty, Nev., provided high-frequency data on base flow and storm runoff entering the basin during water years 1998?2001. Discharge into the basin during the four-year period totaled 3.03 million cubic meters, three quarters of which was base flow. Streambed temperature anomalies indicated the distribution of ephemeral flows and infiltration losses within the basin. Major storms that produced regional flow during the four-year period occurred in February 1998, during a strong El Ni?o that more than doubled annual precipitation, and in July 1999. The study also quantified recharge beneath undisturbed native vegetation and irrigation return flow beneath irrigated fields. Vertical profiles of water potential and environmental tracers in the unsaturated zone provided estimates of recharge beneath the river channel (0.04?0.09 meter per year) and irrigated fields (0.1?0.5 meter per year). Chloride mass-balance estimates indicate that 12?15 percent of channel infiltration becomes ground-water recharge, together with 9?22 percent of infiltrated irrigation. Profiles of potential and chloride beneath the dominant desert-shrub vegetation suggest that ground-water recharge has been negligible throughout most of the basin since at least the early Holocene. Surface-based electrical-resistivity imaging provided areal extension of borehole information from sampled profiles. These images indicate narrowly focused recharge beneath the Amargosa River channel, flanked by large tracts of recharge-free basin floor.

Stonestrom, David A.; Prudic, David E.; Walvoord, Michelle A.; Abraham, Jared D.; Stewart-Deaker, Amy E.; Glancy, Patrick A.; Constantz, Jim; Laczniak, Randell J.; Andraski, Brian J.

2007-01-01

382

Aeolian Processes of the Pismo-Oceano Dune Complex, California  

NASA Astrophysics Data System (ADS)

The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Nio and La Nia periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal scale, excessive vehicular traffic may have impeded the transition of emergent, defect-ridden dune forms into mature transverse ridges. Despite the astounding lack to studies focusing on the Pismo Dunes, the complex presents multiple opportunities for inquiry regarding climatic control on dune field evolution, defect law and complex landform pattern development, and long-term anthropogenic alteration of coastal process morphology.

Barrineau, C. P.; Tchakerian, V.; Houser, C.

2012-12-01

383

78 FR 76772 - Special Conditions: Airbus Model A350-900 Airplanes; Permanently Installed Rechargeable Lithium...  

Federal Register 2010, 2011, 2012, 2013

...Permanently Installed Rechargeable Lithium-Ion Batteries and Battery Systems AGENCY: Federal...permanently installed rechargeable lithium-ion batteries and battery systems. These batteries...did not anticipate the use of lithium-ion batteries and battery systems on...

2013-12-19

384

78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...  

Federal Register 2010, 2011, 2012, 2013

...Rechargeable Lithium Battery and Battery Systems--Small and Medium Size...Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size...from last Plenary meeting. Li-ion Current Events. Status of...

2013-09-11

385

78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...  

Federal Register 2010, 2011, 2012, 2013

...Rechargeable Lithium Battery and Battery Systems--Small and Medium Size...Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size...and discussion of next steps. Li-ion Current Events. Working...

2013-06-25

386

Shifting Sands: Quantifying Shoreline and Dune Migration at Indiana Dunes National Lakeshore  

NSDL National Science Digital Library

Spreadsheets Across the Curriculum module/Geology of National Parks course. Students use weighted averages and data from air photos from 1939 to 2005 to calculate the rate of retreat of the shoreline and the advance of the front of dunes along the shoreline.

Module by: Mark Horwitz, University of South Florida Cover Page by: Len Vacher and Denise Davis, University of South Florida

387

Groundwater dynamics converted to a groundwater classification as a tool for nature development programs in the dunes  

NASA Astrophysics Data System (ADS)

Within the European Union, Habitat Directives are developed with the aim of restoration and preservation of endangered species. The level of biodiversity in coastal dune systems is generally very high compared to other natural ecosystems, but suffers from deterioration. Groundwater extraction and urbanisation are the main reasons for the decrease in biodiversity. Many restoration actions are being carried out and are focusing on the restoration of groundwater level with the aim of re-establishing rare species. These actions have different degrees of success. The evaluation of the actions is mainly based on the appearance of red list species. The groundwater classes, developed in the Netherlands, are used for the evaluation of opportunities for vegetation, while the natural variability of the groundwater level and quality are under-estimated. Vegetation is used as a seepage indicator. The existing classification is not valid in the Belgian dunes, as the vegetation observed in the study area is not in correspondence with this classification. Therefore, a new classification is needed. The new classification is based on the variability of the groundwater level on a long term with integration of ecological factors. Based on the new classification, the importance of seasonal and inter-yearly fluctuations of the water table can be deduced. Inter-yearly fluctuations are more important in recharge areas while seasonal fluctuations are dominant in discharge areas. The new classification opens opportunities for relating vegetation and groundwater dynamics.

Martens, Kristine; Van Camp, Marc; Van Damme, Dirk; Walraevens, Kristine

2013-08-01

388

Using dune moisture chemistry to reconstruct late Quaternary climate change in Africa: records of changing moisture availability.  

NASA Astrophysics Data System (ADS)

Whilst dune landforms continue to be scrutinized as a geoproxy for palaeoenvironmental reconstruction from their accumulation histories, their sediments also have, hitherto underplayed, potential as an archive of past moisture availability. Dune sediments represent the unsaturated zone of the hydrogeology of dryland environments and contain preserved geochemical signatures within pore moisture. Whilst these chemical signals have been widely utilised as tools to calculate the recharge rates to dryland aquifers (as a proportion of precipitation input) they also have great potential for providing a time series of changes to past moisture availability at the surface, through using the variation in chemistry with depth. We review the use of unsaturated zone pore-chemistry as a tool in African drylands from both hemispheres, considering the length of records currently available. Existing short records, of a few decades, illustrate good correspondence to independent records, such as rainfall time series and river flow data. We will also attempt to identify additional key locations that have the potential to record longer time-series, that might rival the 1,000 year records now available from Chinese drylands.

Stone, Abi; Edmunds, Mike

2014-05-01

389

Space Radar Image of Namibia Sand Dunes  

NASA Technical Reports Server (NTRS)

This spaceborne radar image shows part of the vast Namib Sand Sea on the west coast of southern Africa, just northeast of the city of Luderitz, Namibia. The magenta areas in the image are fields of sand dunes, and the orange area along the bottom of the image is the surface of the South Atlantic Ocean. The region receives only a few centimeters (inches) of rain per year. In most radar images, sandy areas appear dark due to their smooth texture, but in this area the sand is organized into steep dunes, causing bright radar reflections off the dune 'faces.' This effect is especially pronounced in the lower center of the image, where many glints of bright radar reflections are seen. Radar images of this hyper-arid region have been used to image sub-surface features, such as abandoned stream courses. The bright green features in the upper right are rocky hills poking through the sand sea. The peninsula in the lower center, near Hottentott Bay, is Diaz Point; Elizabeth Point is south of Diaz Point. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 11, 1994. The image is 54.2 kilometers by 82.2 kilometers (33.6 miles by 51.0 miles) and is centered at 26.2 degrees South latitude, 15.1 degrees East longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, horizontally received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

1994-01-01

390

The role of vegetation in shaping dune morphology  

NASA Astrophysics Data System (ADS)

Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them. Consistent with field observations, we find that basic dune morphology is primarily determined by grass species, with linear or hummocky dunes being built by some species, while others may prevent dune formation. We also find that the evolution of coastal dune morphology is controlled by at least two bio-geomorphic couplings: (1) between vegetation growth and sand transport, which leads to a positive feedback for dune growth, as certain beach grasses maximize growth under sand accretion, which means that an ever denser vegetation implies an ever higher accretion rate; and (2) between vegetation growth and shoreline position through the sand influx. While the first coupling is responsible for dune formation, the second one determines when dunes stop growing and thus controls final dune size. This is particularly relevant for accreting/eroding coastlines where we find that dune size, and thus coastal protection, is maximized for relatively small accretion rates while larger accretion rates lead to formation of a new, smaller dune ridge at the beach.

Duran Vinent, O.; Moore, L. J.; Young, D.

2012-12-01

391

Evidence for community structure and habitat partitioning in coastal dune stiletto flies at the Guadalupe-Nipomo dunes system, California.  

PubMed

This study provides empirical evidence for habitat selection by North American species of stiletto flies (Diptera: Therevidae), based on local distributions of adults and immatures, and the first hypothesis of community assemblages proposed for a stiletto fly community. Sites at three localities within the Guadalupe-Nipomo dune system were sampled for stiletto flies in 1997 and 2001 by sifting sand, malaise trapping, and hand netting. Nine species were collected from four ecological zones and three intermediate ecological zones: Acrosathe novella (Coquillett), Brachylinga baccata (Loew), Nebritus powelli (Webb and Irwin), Ozodiceromyia sp., Pherocera sp., Tabudamima melanophleba (Loew), Thereva comata Loew, Thereva elizabethae Holston and Irwin, and Thereva fucata Loew. Species associations of adults and larvae with habitats and ecological zones were consistent among sites, suggesting that local distributions of coastal dune stiletto fly species are influenced by differences in habitat selection. In habitats dominated by the arroyo willow,Salix lasiolepsis, stiletto fly larvae of three species were collected in local sympatry, demonstrating that S. lasiolepsis stands along stabilized dune ridges can provide an intermediate ecological zone linking active dune and riparian habitat in the Guadalupe-Nipomo dune system. Sites dominated by European beach grass, Ammophilia arenaria, blue gum, Eucalyptus globulus, and Monterey cypress, Cupressus macrocarpa, are considered unsuitable for stiletto flies, which emphasizes the importance of terrestrial habitats with native vegetation for stiletto fly species. The local distributions of stiletto fly species at the Guadalupe-Nipomo dune system allow the community to be divided into three assemblages; active dune, pioneer scrub, and scrub-riparian. These assemblages may be applicable to other coastal dune stiletto fly communities, and may have particular relevance to stiletto fly species collected in European coastal dunes. The results from this study provide a descriptive framework for studies testing habitat selection in coastal dune stiletto fly species and inform conservation of threatened dune insects. PMID:17119624

Holston, Kevin C

2005-01-01

392

Evidence for community structure and habitat partitioning in coastal dune stiletto flies at the Guadalupe-Nipomo dunes system, California  

PubMed Central

This study provides empirical evidence for habitat selection by North American species of stiletto flies (Diptera: Therevidae), based on local distributions of adults and immatures, and the first hypothesis of community assemblages proposed for a stiletto fly community. Sites at three localities within the Guadalupe-Nipomo dune system were sampled for stiletto flies in 1997 and 2001 by sifting sand, malaise trapping, and hand netting. Nine species were collected from four ecological zones and three intermediate ecological zones: Acrosathe novella (Coquillett), Brachylinga baccata (Loew), Nebritus powelli (Webb and Irwin), Ozodiceromyia sp., Pherocera sp., Tabudamima melanophleba (Loew), Thereva comata Loew, Thereva elizabethae Holston and Irwin, and Thereva fucata Loew. Species associations of adults and larvae with habitats and ecological zones were consistent among sites, suggesting that local distributions of coastal dune stiletto fly species are influenced by differences in habitat selection. In habitats dominated by the arroyo willow,Salix lasiolepsis, stiletto fly larvae of three species were collected in local sympatry, demonstrating that S. lasiolepsis stands along stabilized dune ridges can provide an intermediate ecological zone linking active dune and riparian habitat in the Guadalupe-Nipomo dune system. Sites dominated by European beach grass, Ammophilia arenaria, blue gum, Eucalyptus globulus, and Monterey cypress, Cupressus macrocarpa, are considered unsuitable for stiletto flies, which emphasizes the importance of terrestrial habitats with native vegetation for stiletto fly species. The local distributions of stiletto fly species at the Guadalupe-Nipomo dune system allow the community to be divided into three assemblages; active dune, pioneer scrub, and scrub-riparian. These assemblages may be applicable to other coastal dune stiletto fly communities, and may have particular relevance to stiletto fly species collected in European coastal dunes. The results from this study provide a descriptive framework for studies testing habitat selection in coastal dune stiletto fly species and inform conservation of threatened dune insects. PMID:17119624

Holston, Kevin C.

2005-01-01

393

Services la vie tudiante ORGANISATION D'UNE ACTIVIT TUDIANTE  

E-print Network

Services à la vie étudiante ORGANISATION D'UNE ACTIVIT? ?TUDIANTE Premières étapes 1 Pour le financement de projets pertinents à votre domaine d'études. Exemple : l'organisation d nombre d'étudiants de la communauté universitaire. Exemple : l'organisation d'une sortie socioculturelle

Vellend, Mark

394

Morphology and dynamics of star dunes from numerical modelling  

NASA Astrophysics Data System (ADS)

Star dunes are giant pyramidal dunes composed of interlaced arms with sinuous crests and slip faces oriented in various directions. The radial symmetry and the size of the pattern seem to illustrate a high degree of complexity between multidirectional wind regime and topography. However, compared to other dune types, little is known about the formation and the evolution of star-dunes, which are ubiquitous in modern sand seas. Here, using a discrete model based on feedback mechanisms between flow and bedform dynamics, we show that star dune morphology results from a combination of longitudinal dunes produced by primary winds. Depending on the wind regime, star dune arms may radiate or not. In opposition to the bedform alignment on an erodible bed, the crest of the propagating arms have an orientation that maximises the sand flux in the direction of arm growth. This behaviour is described by an analytical solution when taking arm aspect ratios into account. Thanks to the 3D sedimentary structures produced by the model, we also find that arm morphodynamics is controlled by the frequency of wind reorientation. When this frequency increases, arm dimensions decreases and growth rate increases. We suggest that this arm propagation is an important mass exchange process in dune fields.

Narteau, C.; Courrech Du Pont, S.; Zhang, D.; Rozier, O.

2012-12-01

395

Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation  

ERIC Educational Resources Information Center

Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional

McDonald, K.

1973-01-01

396

Model for the genesis of coastal dune fields with vegetation  

NASA Astrophysics Data System (ADS)

Vegetation greatly affects the formation and dynamics of dune fields in coastal areas. In the present work, we use dune modeling in order to investigate the genesis and early development stages of coastal dune fields in the presence of vegetation. The model, which consists of a set of coupled equations for the turbulent wind field over the landscape, the saltation flux and the growth of vegetation cover on the surface, is applied to calculate the evolution of a sand patch placed upwind of a vegetated terrain and submitted to unidirectional wind and constant sand influx. Different dune morphologies are obtained, depending on the characteristic rate of vegetation growth relative to wind strength: barchans, transverse dunes with trailing ridges, parabolic dunes and vegetated, alongshore sand barriers or foredunes. The existence of a vegetation-free backshore is found to be important for the nucleation timescale of coastal dune generations. The role of the sand influx and of the maximum vegetation cover density for the dune shape is also discussed.

de M. Luna, Marco C. M.; Parteli, Eric J. R.; Durn, Orencio; Herrmann, Hans J.

2011-06-01

397

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

...2014-07-01 2014-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section...NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless... (c) Bicycling. (1) The Sleeping Bear Heritage Trail, approximately 27...

2014-07-01

398

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2012 CFR

...Property 1 2012-07-01 2012-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight....

2012-07-01

399

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2011 CFR

...Property 1 2011-07-01 2011-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight....

2011-07-01

400

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2010 CFR

...Property 1 2010-07-01 2010-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight....

2010-07-01

401

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section...NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless... (c) Bicycling. (1) The Sleeping Bear Heritage Trail, approximately 27...

2013-07-01

402

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2011 CFR

...Property 1 2011-07-01 2011-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2011-07-01

403

Holocene eolian activity in the Minot dune field, North Dakota  

USGS Publications Warehouse

Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

Muhs, D.R.; Stafford, T.W., Jr.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

1997-01-01

404

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2012 CFR

...Property 1 2012-07-01 2012-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2012-07-01

405

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

...Property 1 2014-07-01 2014-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2014-07-01

406

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2010 CFR

...Property 1 2010-07-01 2010-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2010-07-01

407

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2013 CFR

...Property 1 2013-07-01 2013-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2013-07-01

408

Coastal Dune Forest Development and the Regeneration of Millipede Communities  

E-print Network

Coastal Dune Forest Development and the Regeneration of Millipede Communities Bereket H. Redi,1, the similarity of millipede assemblages on the two chrono- sequences to those on three sets of reference sites farther away. Key words: coastal dune forests, millipedes, regeneration, rehabilitation, succession

Pretoria, University of

409

Dunes, Boxcars, and Ball Jars: Mining the Great Lakes Shores  

NSDL National Science Digital Library

Spreadsheets Across the Curriculum module/Geology of National Parks course. Students estimate the volume of sand in Hoosier Slide, a large dome-shaped dune quarried away in the 1920s from what is now Indiana Dunes National Lakeshore. They also estimate the number of boxcars to carry the sand, and the number of Ball jars produced from it.

Module by: Tiffany Roberts, University of South Florida Cover Page by: Len Vacher and Denise Davis, University of South Florida

410

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries  

E-print Network

Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R and cathode binder thin-®lm, solid-state, rechargeable lithium batteries of the type Li/ BCE/LiMnO2 have been to be addressed to meet the demanding requirements of a commercially viable solid- state rechargeable battery

Sadoway, Donald Robert

411

A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants  

E-print Network

A Wireless Power Interface for Rechargeable Battery Operated Neural Recording Implants Pengfei Li a biocompatible rechargeable battery. As battery technology continues to advance toward higher volumetric for a low power elec- tronic interface capable of supporting a rechargeable battery implant framework

Slatton, Clint

412

Real-time Scheduling of periodic tasks in a monoprocessor system with rechargeable energy storage  

E-print Network

such as a solar panel or a furl cell, and a rechargeable energy storage such as a battery or a super- capacitor with a rechargeable battery. In this model, all task periods are identical, all task deadlines are equal to the common that the wasted recharging energy is minimized and the battery level is at all times within two limits, starting

Paris-Sud XI, Université de

413

Climate change impacts on groundwater recharge uncertainty, shortcomings, and the way forward?  

Microsoft Academic Search

An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations. Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of

I. P. Holman

2006-01-01

414

Climate change impacts on groundwater recharge uncertainty, shortcomings, and the way forward?  

Microsoft Academic Search

An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations.Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of the

I. P. Holman

2006-01-01

415

Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge  

Microsoft Academic Search

Groundwater recharge is a complex process reflecting many interactions between climate, vegetation and soils. Climate change will impact upon groundwater recharge but it is not clear which climate variables have the greatest influence over recharge. This study used a sensitivity analysis of climate variables using a modified version of WAVES, a soil-vegetation-atmosphere-transfer model (unsaturated zone), to determine the importance of

J. L. McCallum; R. S. Crosbie; G. R. Walker; W. R. Dawes

2010-01-01

416

A dimensionless number describing the effects of recharge and geometry on discharge from simple karstic aquifers  

Microsoft Academic Search

The responses of karstic aquifers to storms are often used to obtain information about aquifer geometry. In general, spring hydrographs are a function of both system geometry and recharge. However, the majority of prior work on storm pulses through karst has not studied the effect of recharge on spring hydrographs. To examine the relative importance of geometry and recharge, we

M. D. Covington; C. M. Wicks; M. O. Saar

2009-01-01

417

Spatiotemporal model for the progression of transgressive dunes  

NASA Astrophysics Data System (ADS)

Transgressive dune fields, which are active sand areas surrounded by vegetation, exist on many coasts. In some regions like in Fraser Island in Australia, small dunes shrink while large ones grow, although both experience the same climatic conditions. We propose a general mathematical model for the spatiotemporal dynamics of vegetation cover on sand dunes and focus on the dynamics of transgressive dunes. Among other possibilities, the model predicts growth parallel to the wind with shrinkage perpendicular to the wind, where, depending on geometry and size, a transgressive dune can initially grow although eventually shrink. The larger is the initial area the slower its stabilization process. The models predictions are supported by field observations from Fraser Island in Australia.

Yizhaq, Hezi; Ashkenazy, Yosef; Levin, Noam; Tsoar, Haim

2013-10-01

418

The effects of psammophilous plants on sand dune dynamics  

E-print Network

Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth u...

Bel, Golan

2013-01-01

419

Maintaining Sensor Networks Perpetually Via Wireless Recharging Mobile Vehicles  

E-print Network

Maintaining Sensor Networks Perpetually Via Wireless Recharging Mobile Vehicles Weifa Liang resonant coupling is a promising technology for wireless sensor networks as it can provide a controllable mobile vehicles to charge sensors in a sensor network so that none of the sensors runs out of its energy

Liang, Weifa

420

PRINCIPALS OF ORGANIC CONTAMINANT BEHAVIOR DURING ARTIFICIAL RECHARGE  

EPA Science Inventory

The behavior of a variety of organic contaminants having low molecular weight has been observed during groundwater recharge with reclaimed water. The evidence is site-specific, but is believed to have broader implications regarding the general behavior of organic contaminants in ...

421

Oxygen electrodes for rechargeable alkaline fuel cells, 3  

NASA Technical Reports Server (NTRS)

The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

Swette, L.; Kackley, N.; Mccatty, S. A.

1991-01-01

422

Oxygen electrodes for rechargeable alkaline fuel cells-II  

NASA Technical Reports Server (NTRS)

The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

Swette, L.; Kackley, N.

1989-01-01

423

Oxygen electrodes for rechargeable alkaline fuel cells. II  

NASA Technical Reports Server (NTRS)

The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

Swette, L.; Kackley, N.

1990-01-01

424

Climate Change Effects on Yucca Mountain Region Groundwater Recharge  

Microsoft Academic Search

Groundwater geochemical data from 211 sampling locations in the Amargosa Desert region are analyzed to better understand the general flow system and climate-induced changes in recharge around Fortymile Wash near Yucca Mountain. Major ion groundwater chemistry was examined using the multivariate statistical methods of principal component analysis and k-means cluster analysis. These analyses showed several groundwater signatures, or potential flowpaths;

Arturo Woocay; John C. Walton

2006-01-01

425

A fuzzy logic model for estimation of groundwater recharge  

Microsoft Academic Search

Water budget models are commonly accepted methods for estimating the groundwater recharge. Some of the inputs to these models such as soil-moisture deficit, actual evapotranspiration, direct runoff etc, are difficult to measure. The space dynamic nature of these parameters makes their quantification even more difficult. The error in estimation increases significantly during extreme events. In addition, it has been found

A. K. Awasthi; O. P. Dubey; S. Sharma

2005-01-01

426

Methods Note/ Net Recharge vs. Depth to Groundwater  

E-print Network

Methods Note/ Net Recharge vs. Depth to Groundwater Relationship in the Platte River Valley rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte soils with a shallow groundwater table. The transition depth (dt) between negative and positive values

Szilagyi, Jozsef

427

A Wireless Power Interface for Rechargeable Battery Operated Medical Implants  

Microsoft Academic Search

This brief presents a highly integrated wirelessly powered battery charging circuit for miniature lithium (Li)-ion rechargeable batteries used in medical implant applications. An inductive link and integrated Schottky barrier rectifying diodes are used to extract the DC signal from a power carrier while providing low forward voltage drop for improved efficiency. The battery charger employs a new control loop that

Pengfei Li; Rizwan Bashirullah

2007-01-01

428

A polymer electrolyte-based rechargeable lithium\\/oxygen battery  

Microsoft Academic Search

A novel rechargeable Li\\/O battery is reported. It comprises a Li{sup +} conductive organic polymer electrolyte membrane sandwiched by a thin Li metal foil anode, and a thin carbon composite electrode on which oxygen, the electroactive cathode material, accessed from the environment, is reduced during discharge to generate electric power. It features an all solid state design in which electrode

K. M. Abraham; Z. Jiang

1996-01-01

429

Recent developments and likely advances in lithium rechargeable batteries  

Microsoft Academic Search

Developments in lithium rechargeable batteries since the last International Power Sources Symposium in Manchester in 2001 are described. The major developments are that, as expected, lithium cobalt oxide cathode material is being replaced by lithium cobalt\\/nickel oxide and polymer electrolyte batteries are now coming into production. Likely future developments are new cathode and electrolyte materials to reduce cost and to

A. G. Ritchie

2004-01-01

430

Carbon materials for lithium-ion rechargeable batteries  

Microsoft Academic Search

The recent development of lithium rechargeable batteries results from the use of carbon materials as lithium reservoir at the negative electrode. Reversible intercalation, or insertion, of lithium into the carbon host lattice avoids the problem of lithium dendrite formation and provides large improvement in terms of cycleability and safety. This paper reviews the main achievements on performance and understanding of

S. Flandrois; B. Simon

1999-01-01

431

24. APPERATUS FOR RECHARGING MINERS' HEADLAMPS, LOCATED AGAINST THE NORTH ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

24. APPERATUS FOR RECHARGING MINERS' HEADLAMPS, LOCATED AGAINST THE NORTH WALL OF THE LOWER LEVEL OF THE CHIPPY HOIST HOUSE, LOOKING NORTHWEST. SOME OF THE BATTERY PACKS ARE STILL IN PLACE, AND ONE HAS A LAMP HANGING AT THE END - Butte Mineyards, Anselmo Mine, Butte, Silver Bow County, MT

432

Rechargeable batteries: advances since 1977. [Collection of US patents  

Microsoft Academic Search

This book is based on US patents (including DOE patents) issued since January 1978 that deal with rechargeable batteries. It both supplies detailed technical information and can be used as a guide to the patent literature. Subjects treated are as follows: lead-acid batteries (grids, electrodes, terminals and connectors, polyolefin separators, polyvinyl chloride separators, other polymeric separators, other separators, electrolytes, venting

1980-01-01

433

Secure recharge of disposable RFID tickets Riccardo Focardi1  

E-print Network

, so to avoid the card cloning or the restoring some already used resources. In summary, (i) we give Ultralight cards in detail, and we present a new secure method for the recharge of these RFID disposable but yet realistic semantics of these cards, and we also define a simple imperative language suitable

Focardi, Riccardo

434

Moderate temperature rechargeable NaNiS2 cells  

NASA Technical Reports Server (NTRS)

A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

Abraham, K. M.

1983-01-01

435

Aquifer storage and recharge: Innovation in water resources management  

Microsoft Academic Search

Stormwater and treated sewerage effluent, previously regarded as waste, are now being reused in South Australia through the innovative aquifer storage and recharge technique. After pretreatment in wetlands, this water is stored in otherwise unused brackish aquifers for summer irrigation of parklands. Trials are underway using recycled water from the Bolivar Wastewater Treatment Plant for irrigation of market gardens. This

S. R. Barnett; S. R. Howles; R. R. Martin; N. Z. Gerges

2000-01-01

436

Investigation of Possible Extra ~Recharge During Pumping in Nottinghant .Aquifer  

E-print Network

completely from aquifer storage. The value may approach zero if it is estimated based on the draw- downInvestigation of Possible Extra ~Recharge During Pumping in Nottinghant .Aquifer by Jiu J. Jiaoa by analyzing the pumping test data from the Nottingham aquifer, UK. The pumping lasted more than 200 days

Jiao, Jiu Jimmy

437

Cycle-life sensor for rechargeable lithium batteries. Phase 1  

Microsoft Academic Search

The research addressed the problem of characterizing the state of a rechargeable Li battery as a function of cycle life history. Because all Li batteries are hermetically sealed, researchers chose to evaluate the amount and distribution of Li-electrolyte degradation products in situ by the application of electroanalytical techniques at microelectrodes imbedded in the cell package. Good correlations between Li stripping

Koch

1988-01-01

438

Technology uses micro-windmills to recharge cell phones  

E-print Network

was quite surprised with the micro-windmill idea when we showed the demo video of working devices," Rao saidTechnology uses micro-windmills to recharge cell phones A micro-windmill is pictured on the face designed a micro-windmill that generates wind energy and may become an innovative solution to cell phone

Chiao, Jung-Chih

439

Issue and challenges facing rechargeable thin film lithium batteries  

Microsoft Academic Search

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries

Arun Patil; Vaishali Patil; Dong Wook Shin; Ji-Won Choi; Dong-Soo Paik; Seok-Jin Yoon

2008-01-01

440

WASTEWATER CONTAMINATE REMOVAL FOR GROUNDWATER RECHARGE AT WATER FACTORY 21  

EPA Science Inventory

This is the second report in a series which describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a g...

441

Computational uncertainty analysis of groundwater recharge in catchment  

Microsoft Academic Search

In this paper, a computational environinformatics (environmental informatics) operation for mapping the groundwater climatological recharge in regional sub-basin is presented. It is based on a soilwater balance (SWB) and spatial statistics integrated in a GIS environment. Mediterranean is a region with large demands for groundwater supplies. However, water catchment data are affected by large uncertainty, arising from sampling and modelling,

Nazzareno Diodato; Michele Ceccarelli

2006-01-01

442

Groundwater suitability recharge zones modelling - A GIS application  

NASA Astrophysics Data System (ADS)

Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

2014-11-01

443

Enhanced recharge and karst, Edwards aquifer, south central Texas  

SciTech Connect

Enhanced recharge is a water management strategy which can add significant quantities of ground water to the available water resources of the San Antonio region by utilizing the immense storage capacity of the unconfined zone of the Edwards aquifer. The Edwards aquifer presently is the sole source of water for a population of over 1,200,000, meeting public supply, industrial, and irrigation demands over a wide area of south central Texas. Valdina Farms Sinkhole is located adjacent to Seco Creek in Medina County and is in the recharge zone of the aquifer. Initial studies indicated that the sinkholes was capable of taking flood flows from Seco Creek and functioning as a recharge structure. Stream channels in the cavern system associated with Valdina Farms Sinkhole were incised into cave deposits and flood debris was present in the caverns at some distance from the sinkhole. Chemical analyses of samples of water from the cave and from nearby wells showed nitrate concentrations that decreased with distance from the cavern. Gradient of the potentiometric surface in the vicinity of the cave was very low, indicating high values of hydraulic conductivity for the aquifer. Based on evidence from these field studies a dam was constructed in 1982 on Seco Creek and a flood diversion channel was excavated to the sinkhole. Reservoir capacity is 2 acre-feet and design recharge rate is 3.8-6.7 m[sup 3]/sec. Annual recharge at the sinkhole has varied from 0 during periods of low runoff to 12,915 acre-feet.

Hammond, W.W. Jr. (Univ. of Texas, San Antonio, TX (United States). Center for Water Research)

1993-02-01

444

Classification of ground-water recharge potential in three parts of Santa Cruz County, California  

USGS Publications Warehouse

Ground-water recharge potential was classified in the Santa Cruz coastal area, North-central area, and Soquel-Aptos area in Santa Cruz County, Calif., for three data elements that affect recharge; slope, soils, and geology. Separate numerical maps for each element were composited into a single numerical map using a classification system that ranked the numbers into areas of good , fair, and poor recharge potential. Most of the Santa Cruz coastal area and the Norht-central area have a poor recharge potential, and much of the Soquel-Aptos area has a good to fair recharge potential. (Kosco-USGS)

Muir, K.S.; Johnson, Michael J.

1979-01-01

445

Late Pleistocene dune activity in the central Great Plains, USA  

NASA Astrophysics Data System (ADS)

Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of cold, short growing seasons with relatively low precipitation and low atmospheric CO 2 that increased plant moisture stress, limiting the ability of vegetation to stabilize active dune sand. The apparent coexistence of large mobile dunes with boreal forest taxa suggests a Late Pleistocene environment with few modern analogs.

Mason, J. A.; Swinehart, J. B.; Hanson, P. R.; Loope, D. B.; Goble, R. J.; Miao, X.; Schmeisser, R. L.

2011-12-01

446

Flow Fields Over Unsteady Three Dimensional Dunes  

NASA Astrophysics Data System (ADS)

The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows, over a range of both spatial and temporal scales. This is primarily through adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and the increase in flow resistance. A series of experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239?m) mobile bed was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a Large Eddy Simulation (LES) model, which provided a three dimensional time dependent prediction of flow over the four static beds. The numerical predicted flow is analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE). The results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for sediment entrainment and sediment transport dynamics during bed form adjustment. Finally, the flow predictions enable a reassessment of the drag caused by the superimposed bed forms generated by unsteady flow.

Hardy, R. J.; Reesink, A.; Parsons, D. R.; Ashworth, P. J.; Best, J.

2013-12-01

447

Transient,spatially-varied recharge for groundwater modeling  

NASA Astrophysics Data System (ADS)

This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin and other parts of Canada by using the HELP code. However, HELP has known limitations related with boundary conditions as well as spatial and temporal discretization options, and thus cannot simulate highly variable fluxes near boundaries. The limitations are even more pronounced in semi-arid areas like the Okanagan Basin where upward fluxes can be high, because HELP assumes that water below evaporative zone simply drains to the base of a soil column without accounting for upward fluxes. In addition to these limitations, previous studies that used HELP for recharge estimation, [Towes and Allen, 2009; Jyrkama and Sykes, 2007], did not attempt to verify model performance in their study area. The study here presents an integrated procedure that can help address some of these often neglected modelling challenges. The significance of the method in transient groundwater modeling is demonstrated by applying the spatially and temporally varying recharge boundary condition to a saturated zone groundwater model, MIKESHE [DHI, 2009a]. The water table simulated using this method is found to be within 0.6 m of the observed values, whereas the water levels estimated using uniform recharge boundary condition can fluctuate by as much as 1.6 m. Root mean square errors were estimated at 0.3 and 0.94 respectively.

Assefa, Kibreab; Woodbury, Allan

2013-04-01

448

Monitoring induced denitrification in an artificial aquifer recharge system.  

NASA Astrophysics Data System (ADS)

As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicen del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: ?15N and ?18O of dissolved nitrate, ?34S and ?18O of dissolved sulphate, ?13C of dissolved inorganic carbon, and ?2H and ?18O of water. Dissolved nitrate isotopic composition (?15NNO3 from +9 to +21 o and ?18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme literature ?N values of -4o and -22o respectively (Aravena and Robertson, 1998; Pauwels et al., 2000). Ongoing denitrification batch experiments will allow us to determine the specific nitrogen and oxygen isotopic fractionation induced by the organic reactive layer, in order to estimate more precisely the extent of denitrification during artificial aquifer recharge. These results confirmed that the reactive layer induces denitrification in the recharge ponds area, proving the usefulness of an isotopic approach to characterize water quality improvement occurring during artificial aquifer recharge. References 1. Aravena, R., Robertson, W.D., 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36(6): 975-982. 2. Pauwels, H., J.C., Kloppmann, W., 2000. Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes. Chemical Geology, 168(3-4): 307-324. Acknowledgment This study was supported by the projects CGL2011-29975-C04-01 from the Spanish Government, 2009SGR-00103 from the Catalan Government and ENPI/2011/280-008 from the European Commission. Please fill in your abstract text.