These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore  

SciTech Connect

Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

1992-01-01

2

Ground-water recharge through active sand dunes in northwestern Nevada  

USGS Publications Warehouse

Most water-resource investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature to determine energy and moisture balance, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.

Berger, D.L.

1992-01-01

3

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India  

E-print Network

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region be sustainable. Keywords India . Groundwater recharge/water budget . Nutrients . Land use . Sustainability). Groundwater availability problems are likely to be exacerbated in the future by climate change. Average

Scanlon, Bridget R.

4

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India  

E-print Network

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, sulfate, nitrate-N, and phosphate-P profiles for boreholes located in fresh groundwater-irrigated settings-P profiles for boreholes located in brackish groundwater irrigated settings in the eastern study area. Black

Scanlon, Bridget R.

5

Intelligence Artificielle Nicolas Turenne  

E-print Network

Intelligence Artificielle Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Diapo Intro 1 Je vais présenter un cours sur certains concepts de l'Intelligence Artificielle qui se préoccupe de simuler le) * ROSENBLUETH Arturo [12] (Physiologiste) * SHANNON Claude Elwood Shannon (Mathématiques - Intelligence

Turenne, Nicolas

6

Intelligence artificielle Agents intelligents  

E-print Network

Intelligence artificielle Agents intelligents Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon´e Paris Descartes 1 / 21 Intelligence artificielle #12;Agents intelligents Agents intelligents Agents et environnement Rationalit´e PEAS Types d'environnement Structure des agents Conclusion 2 / 21 Intelligence

Bonzon, Elise

7

Intelligence Artificielle Nicolas Turenne  

E-print Network

Intelligence Artificielle Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr #12;Histoire et Arturo [12] (Physiologiste) * SHANNON Claude Elwood Shannon (Mathématiques - Intelligence artificielle Vilmos Csanyi en 1989 développe un modèle de système réplicatif #12;Histoire et Définition : Intelligence

Turenne, Nicolas

8

Intelligence artificielle et radio cognitive  

E-print Network

Intelligence artificielle et radio cognitive Badr Benmammar badr.benmammar@gmail.com cel-00680196,version2-25Mar2012 #12;2 Plan Intelligence artificielle et radio cognitive Algorithmes intelligents Rseaux de neurones Logique floue Processus de dcision de Markov Langages de la radio cognitive Domaines

Paris-Sud XI, Universit de

9

Spatial and Temporal Variability of Groundwater Recharge in Changing Semiarid Dune Environments  

NASA Astrophysics Data System (ADS)

Groundwater recharge (GWR) is one of the major factors controlling water resources in semiarid and arid regions. This time-space-dependent flux is needed for groundwater modeling, analysis of climate change impacts, and water resources management. Typically, climate changes are studied on multi-decadal to centennial time scales, but travel times of soil moisture across the vadose zone vary broadly and may exceed multi-centennial periods in semiarid and arid environments. For given climatic conditions on the land surface, we evaluate travel times in the vadose zone and compare with times scales of climate change studies. This comparison defines the land surface areas contributing to GWR changes where travel times are shorter than times scales of climate change studies. In areas with travel times longer than climate change time scales, GWR remains unchanged over the considered period of water resources management. Such analysis allows for separation of the effect of land surface topography and vadose zone thickness from that of spatial and temporal variations in climate. Our simple travel time estimates are based on the velocity of a pressure pulse from the land surface, equivalent to a kinematic wave approximation of Richards' equation. The underlying assumptions of a unit hydraulic head gradient and relatively small magnitude of changes to upper boundary flux, caused by slow climate changes, are supported by observations in the High Plains aquifer region, USA. The input data include DEMs of land surface and groundwater table elevations, future projections of hydroclimatic variables, precipitation and evapotranspiration (WCRP-CMIP3 with hydrology VIC model outputs), and estimates of hydraulic conductivity from pedotransfer functions. Future GWR rates are estimated in four steps: GIS analysis of vadose zone thickness using difference in DEMs; evaluation of deep drainage rates based on difference between precipitation and evapotranspiration rates (PRISM and MODIS, respectively); calculation of travel times of moisture across the vadose zone and GIS mapping; and inference of time-referenced GWR map. This methodology is applicable to semiarid and arid regions, where overland flow can be neglected and actual evapotranspiration and precipitation data for current and future conditions are available. A study of the Nebraska Sand Hills, USA, the largest vegetated dune field in the Western Hemisphere of area 58,000 km2, provides analysis of spatial and temporal aspects of GWR with consideration of future climate changes.

Zlotnik, Vitaly; Rossman, Nathan; Rowe, Clinton; Szilagyi, Jozsef

2014-05-01

10

A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes  

NASA Astrophysics Data System (ADS)

SummaryThis article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The model simulates the changes in water quality following artificial recharge of pre-treated water from the river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One observation dataset is used for model calibration, and another dataset for validation of model predictions. The total simulation time of the model is 50 years, from 1957 to 2007, with recharge composition varying on a monthly basis and the post audit is performed 26 years after the former model simulation period. The post audit revealed that the original model could reasonably predict conservative transport and kinetic redox reactions (oxygen and nitrate reduction coupled to the oxidation of soil organic carbon), but showed discrepancies in the simulation of cation exchange. Conceptualizations of the former model were inadequate to accurately simulate water quality changes controlled by cation exchange, especially concerning the breakthrough of potassium and magnesium fronts. Changes in conceptualization and model design, including the addition of five flow paths, to a total of six, and the use of parameter estimation software (PEST), resulted in a better model to measurement fit and system representation. No unique parameter set could be found for the model, primarily due to high parameter correlations, and an assessment of the predictive error was made using a calibration constrained Monte-Carlo method, and evaluated against field observations. The predictive error was found to be low for Na+ and Ca2+, except for greater travel times, while the K+ and Mg2+ error was restricted to the exchange fronts at some of the flow paths. Optimized cation exchange coefficients were relatively high, especially for potassium, but still within the observed range in literature. The exchange coefficient for potassium agrees with strong fixation on illite, a main clay mineral in the area. Optimized CEC values were systematically lower than clay and organic matter contents indicated, possibly reflecting preferential flow of groundwater through the more permeable but less reactive aquifer parts. Whereas the artificial recharge initially acted as an intrusion of relatively saline water triggering Na+ for Ca2+ exchange, further increasing total hardness of the recharged water, the gradual long-term reduction in salinity of the river Rhine since the mid 1970s has shifted to an intrusion of fresher water causing Ca2+ for Na+ exchange. As a result, seasonal and longer term reversal of the initial cation exchange processes was observed adding to the general long-term reduction in total hardness of the recharged Rhine water.

Karlsen, R. H.; Smits, F. J. C.; Stuyfzand, P. J.; Olsthoorn, T. N.; van Breukelen, B. M.

2012-08-01

11

Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001  

USGS Publications Warehouse

Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters derived from Medano and Sand Creeks. Major ion chemistry of water from sites completed in the confined aquifer is different than water from sites completed in the unconfined aquifer, but insufficient data exist to quantify if the two aquifers are hydrologically disconnected. Radiocarbon dating of ground water in the confined aquifer indicates it is about 30,000 years old (plus or minus 3,000 years). The peak of the last major ice advance (Wisconsin) during the ice age occurred about 20,000 years before present; ground water from the confined aquifer is much older than that. Water quality and water levels of the interdunal ponds are not affected by waters from the confined aquifer. Instead, the interdunal ponds are affected directly by fluctuations in the water table of the unconfined aquifer. Any lowering of the water table of the unconfined aquifer would result in an immediate decrease in water levels of the interdunal ponds. The water quality of the interdunal ponds probably results from several factors, including the water quality of the unconfined aquifer, evaporation of the pond water, and biologic activity within the ponds.

Rupert, Michael G.; Plummer, L. Niel

2004-01-01

12

Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage in lakes in the sandhills of Nebraska, U.S.A.  

USGS Publications Warehouse

Analysis of water-level fluctuations in about 30 observation wells and 5 lakes in the Crescent Lake National Wildlife Refuge in the sandhills of Nebraska indicates water-table configuration beneath sand dunes in this area varies considerably, depending on the configuration of the topography of the dunes. If the topography of an interlake dunal area is hummocky, ground-water recharge is focused at topographic lows causing formation of water-table mounds. These mounds prevent ground-water movement from topographically high lakes to adjacent lower lakes. If a dune ridge is sharp, the opportunity for focused recharge does not exist, resulting in water-table troughs between lakes. Lakes aligned in descending altitudes, parallel to the principal direction of regional ground-water movement, generally have seepage from higher lakes toward lower lakes. ?? 1986.

Winter, T.C.

1986-01-01

13

Effects of Heterogeneous Vadose Zone Thickness on Spatial and Temporal Groundwater Recharge Characteristics in Dune Environments: An Example from the Nebraska Sand Hills  

NASA Astrophysics Data System (ADS)

We investigate effects of land surface topography on the spatial and temporal distribution of groundwater recharge (GWR). Such effects are important for groundwater modeling, analysis of climate change impacts, and water resources management. Typically, climate changes are investigated on multi-decadal to centennial time scales. However, travel times of soil moisture across the vadose zone vary broadly, extending to multi-centennial periods in arid and semi-arid environments. For given climatic conditions on the land surface, we evaluate travel times in thick vadose zones and compare with climate change time scales. This comparison allows determination of the land surface areas contributing to GWR changes where travel times are shorter than climate change time scales. In areas with travel times longer than climate change time scales, GWR remains unchanged over the considered period of water resources management. Such analysis allows separating the effect of land surface topography from that of spatial and temporal climate variations. Our travel time calculations, based on vertical velocity of the pressure pulse from the land surface, are equivalent to a kinematic wave approximation of Richards' equation. The underlying assumptions (unit head gradients over the entire soil profile and relatively small magnitude of climate changes on the surface) are supported by observations in the High Plains Aquifer region. The computations require a DEM of land surface topography, mapped water table elevations, mapped climate variables on the land surface (IPCC 2007, CMIP3, hydrologic VIC model outputs), and estimates of vadose zone hydraulic conductivity as a function of soil moisture content from pedotransfer functions. The method to generate future GWR estimates includes 4 steps: (1) GIS analysis of vadose zone thickness using DEM and water table map; (2) evaluation of deep drainage based on difference between precipitation and evapotranspiration rates (PRISM and MODIS, respectively); (3) development of a raster map of travel times across the vadose zone with isochrones; and (4) inference of time-referenced GWR map. This method is applicable to arid and semi-arid regions, where overland flow can be neglected and actual evapotranspiration and precipitation data for current and future conditions are available. An example from the Nebraska Sand Hills, USA, the largest vegetated dune field in the Western Hemisphere, provides analysis of spatio-temporal aspects of GWR with and without consideration of future climate changes.

Zlotnik, V. A.; Rossman, N. R.; Rowe, C. M.; Szilagyi, J.

2013-12-01

14

NOUVELLES DONNES SUR L'INSMINATION ARTIFICIELLE PORCINE  

E-print Network

NOUVELLES DONNES SUR L'INSMINATION ARTIFICIELLE PORCINE RSULTATS PRATIQUES F. DU MESNIL DU zootechniques, Jouy-en-Josas. L'importance de la production porcine en France est telle que toute amlioration fournir la possibilit. En plus de cet avantage proprement zootechnique, l'insmination porcine reprsente

Boyer, Edmond

15

Holocene environmental changes in the Whitefish Dunes Area, Door Peninsula, Northern Lake Michigan Basin, USA  

Microsoft Academic Search

A two meter sediment core taken from an inter-dune pond in Whitefish Dunes State Park, Door Peninsula, Wisconsin, provides a record of paleoenvironmental changes in the area from approximately 3600 RCYBP to 5100 RCYBP. The hydrology of the Whitefish Dunes pond is now apparently dependent on ground water recharge from local precipitation that infiltrates into the dunes and from Clark

Barry B. Miller; J. S. Tevesz; John S. Carney

1998-01-01

16

L'aration naturelle et artificielle des lacs  

Microsoft Academic Search

ConclusionPar ce qui prcde, on se rend compte que chaque lac constitue un cas particulier qui doit tre tudi pour lui-mme et que\\u000a l'aration artificielle d'un lac de grandes dimensions est susceptible d'tre ralise.\\u000a \\u000a A notre poque les lacs prennent de plus en plus d'importance comme rservoirs pouvant servir l'alimentation en eau potable.\\u000a Pour remplir ce rle il est indispensable

P. Par Mercier

1957-01-01

17

Sand Dunes  

NSDL National Science Digital Library

Most will agree that nothing is more relaxing that lying or walking on a beach. While unwinding, have you ever wondered what caused those big mounds of sand that you crossed to get there? This topic in depth addresses this issue, featuring Web sites that discuss sand dune processes and formations. Some of the Web sites also discuss research, mining, and protection activities taking place in areas with sand dune.The Environment Bay of Plenty in New Zealand has an online brochure (1) dealing with the coastal processes that form sand dunes and beaches. From this site, users can obtain a general understanding of how dunes change with time. Ted Brambleby developed the second site (2) for the Marine Education Society of Australasia, Inc. This site gives a great overview of the functions and formations of dunes as well as describing their unique beauty and strategies on how to care for the dunes. Produced by Nova Scotia Museum of Natural History, the third site (3) is an online pamphlet discussing the physical features and locations of sand dunes in Nova Scotia. Visitors can also read about the ecosystem supported by these dynamic features. The forth site (4), created by John Mangimeli for the National Park Service, is a review of the scientific research completed throughout the years dealing with the geology of sand dunes. Visitors will find a more in-depth discussion about sand movement, sand accumulation, and sand dune features. The fifth site is a scientific paper (5 ) written by R.L. Van Dam, et al. Studying the long term evolution of the Parengarenga Sandspit, these researchers used ground penetrating radar (GPR) "to (1) explore the possibilities for mapping lateral continuity of the coffee rock, (2) study the sedimentary architecture and stratigraphy of the solitary dunes, and (3) reconstruct the wind regime on the sandspit." The next two sites discuss the threats to sand dunes and activities taking place to protect them. The Lake Michigan Federation addresses the issues of mining (6). Visitors can learn about alternatives to mining dune sand and the ecological values of dunes. The Department of Environmental Quality in Michigan created a site (7) that provides users with statistical information dealing with the amount of sand harvested, the regulations of mining, and maps of critical dune areas. After learning about the formation, processes, threats, and protections efforts; the last site (8), created by Eva Hornecker with the University of Bremen, will allow users to get a real sense of the beauty of the sand dunes. The site features a collage of spectacular images of the Great Sand Dunes in the San Luis Valley.

Enright, Rachel

18

Barchan Dunes  

NASA Technical Reports Server (NTRS)

28 April 2004 One of the simplest forms a sand dune can take is the barchan. The term, apparently, comes from the Arabic word for crescent-shaped dunes. They form in areas with a single dominant wind direction that are also not overly-abundant in sand. The barchan dunes shown here were imaged in March 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) as it passed over a crater in western Arabia Terra near 21.1oN, 17.6oW. The horns and steep slope on each dune, known as the slip face, point toward the south, indicating prevailing winds from the north (top). The picture covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

2004-01-01

19

Dune Geomorphology  

NSDL National Science Digital Library

This activity was developed during the workshop, Teaching Climate Change: Insight from Large Lakes, held in June 2012. Dune Geomorphology by Anthony (Tony) Layzell, University of Kansas Main Campus J. Elmo ...

20

Dune Variety  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

Our final look at the north polar erg was taken at 80 degrees North latitude during Northern summer. This image is of lower resolution than the previous images, but covers a much larger area. The dunes have very little remaining frost cover. Note the large extent of coverage, and the different dune forms.

Image information: VIS instrument. Latitude 80.8, Longitude 184.6 East (175.4 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

21

Sand Dunes  

NSDL National Science Digital Library

This outdoor activity (on page 2 of the PDF) is a full inquiry investigation into how the amount of moisture in a sand dune relates to the number of plants growing there. Groups of learners will scout at least two locations in a sandy area, count the number and types of plants in contact with a 10 meter line, and then sample the moisture in the top 30 cm of sand in each location, graphing their results to analyze their data. Relates to linked video, DragonflyTV: Sand Dunes.

2012-06-26

22

Caterpillar Dunes  

NASA Technical Reports Server (NTRS)

28 June 2004 Looking somewhat like caterpillars, this April 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the rounded, wind-eroded sand dune features in a crater in the southern hemisphere near 61.7oS, 160.3oW. For such rounding to occur, the dune sand might need to be somewhat cemented. The picture covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

2004-01-01

23

COPPICE DUNES Duned (39,880 -22)  

E-print Network

COPPICE DUNES Duned (39,880 - 22) Unduned (144,160 - 78) Numbers in parentheses are acres and percentages respectively Occurrence of coppice dunes is as shown on 1936 aerial photographs; many of these areas are now occupied by buildings and roads. These dunes tend to occur primarily in areas where

24

Lowell's Dunes  

NASA Technical Reports Server (NTRS)

9 December 2004 A century ago, the name Percival Lowell and the planet Mars were intimately linked through his popular writings about canals built by intelligent beings on the fourth planet. Today, a crater in the southern hemisphere of Mars is named for Lowell, who usually observed the planet from a hilltop in Flagstaff, Arizona. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired in October 2004, shows a portion of a sand dune field in western Lowell Crater. The dunes are located near 51.3oS, 82.5oW. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

2004-01-01

25

GROUNDWATER RECHARGE MODELING - AN OVERVIEW  

Microsoft Academic Search

Groundwater recharge must be well understood for the effective utilization of water resources. In this article some of the recent studies in groundwater recharge modeling are detailed and discussed. The topics covered include (1) Recharge modeling in deterministic framework, (2)Recharge modeling in stochastic framework, (3) Recharge modeling using electromagnetic surveys (4) Mountain front recharge (5) Natural recharge estimates for India.

D. Nagesh Kumar

26

Hydrogeology and hydrochemistry of dunes and wetlands along the southern shore of Lake Michigan, Indiana  

USGS Publications Warehouse

The dunes and the wetlands along the southern shore of Lake Michigan are underlain by a complex aquifer system composed of unconsolidated glacial, lacustrine, and eolian deposits. Surficial dune, beach, and glacial lacustrine sands compose an extensive surficial aquifer. The underlying drift contains three major confined sand aquifers. Potentiometric and hydrochemical data are consistent with a conceptual model in which regional and intermediate flow systems, recharged in end moraines south of the dune-beach complexes, discharge into Lake Michigan and the Great Marsh by upward leakage through unconsolidated sediments. Local flow systems in the surficial aquifer, recharged in the major dune-beach complexes, discharge into streams, ditches, and ponded areas in the adjacent interdunal wetlands. Shallow ground water discharges directly into Lake Michigan only north of a water-table divide that underlies the dune-beach complex along the shoreline. The position of ground-water seepage faces is affected by transient water-table mounds observed in the dune-beach complexes at the margins of wetlands. Substantial recharge to the dune complexes probably occurs near these dune-wetland margins. In the dune-beach complexes and intradunal wetlands, the shallow ground and wetland waters are dilute calcium bicarbonate and calcium bicarbonate sulfate types. More mineralized bicarbonate water types having variable proportions of calcium, magnesium, and sodium are found in interior parts of the Great Marsh because this area is probably a discharge zone for the regional and intermediate flow systems.

Shedlock, Robert J.; Cohen, D.A.; Imbrigiotta, T.E.; Thompson, T.A.

1994-01-01

27

ASTER Dunes  

NASA Technical Reports Server (NTRS)

This image of Saudi Arabia shows a great sea of linear dunes in part of the Rub' al Khali, or the Empty Quarter. Acquired on June 25, 2000, the image covers an area 37 kilometers (23 miles) wide and 28 kilometers (17 miles) long in three bands of the reflected visible and infrared wavelength region. The dunes are yellow due to the presence of iron oxide minerals. The inter-dune area is made up of clays and silt and appears blue due to its high reflectance in band 1. The Rub' al Khali is the world's largest continuous sand desert. It covers about 650,000 square kilometers (250,966 square miles) and lies mainly in southern Saudi Arabia, though it does extend into the United Arab Emirates, Oman, and Yemen. One of the world's driest areas, it is uninhabited except for the Bedouin nomads who cross it. The first European to travel through the desert was Bertram Thomas in 1930.

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.

2000-01-01

28

Polar Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Dunes in the Vastitas Borealis region of Mars. These sand seas migrate around the north polar cap following the strong polar vortex winds.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Image information: VIS instrument. Latitude 77.3, Longitude 87.3 East (272.7 West). 19 meter/pixel resolution.

2003-01-01

29

Confrencier : Carle Ct @ Eidos Montral Sujet : L'intelligence artificielle applique au jeu vido : du mythe la ralit.  

E-print Network

Conférencier : Carle Côté @ Eidos Montréal Sujet : L'intelligence artificielle appliquée au jeu février, 2014 à 09 :30 Local : D42011 BIOGRAPHIE Carle Côté est architecte principal en intelligence

Kabanza, Froduald

30

Creating Sand Dunes  

NSDL National Science Digital Library

This experiment demonstrates the formation and movement of sand dunes. Students will simulate the effects of wind using a hair dryer on bare sand, then add stones and grass to observe how the effects are changed. They should be able to explain how sand dunes are formed, what circumstances effect the movement or formation of sand dunes, and relate this information to soil conservation.

1998-01-01

31

Transverse instability of dunes  

E-print Network

The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show numerically and with a linear stability analysis that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.

Eric J. R. Parteli; Jos S. Andrade Jr.; Hans J. Herrmann

2011-09-22

32

Unchanging Desert Sand Dunes  

NASA Astrophysics Data System (ADS)

Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

2013-12-01

33

Estimating groundwater recharge  

USGS Publications Warehouse

Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

Stonestrom, David A.

2011-01-01

34

Artificial recharge of groundwater  

NASA Astrophysics Data System (ADS)

The Task Committee on Guidelines for Artificial Recharge of Groundwater, of the American Society of Civil Engineers' (ASCE) Irrigation and Drainage Division, sponsored an International Symposium on Artificial Recharge of Groundwater at the Inn-at-the-Park Hotel in Anaheim, Calif., August 23-27, 1988. Cosponsors were the U.S. Geological Survey, California Department of Water Resources, University of California Water Resources Center, Metropolitan Water District of Southern California, with cooperation from the U.S. Bureau of Reclamation, International Association of Hydrological Sciences, American Water Resources Association, U.S. Agency for International Development, World Bank, United Nations Department of Technical Cooperation for Development, and a number of local and state organizations.Because of the worldwide interest in artificial recharge and the need to develop efficient recharge facilities, the Anaheim symposium brought together an interdisciplinary group of engineers and scientists to provide a forum for many professional disciplines to exchange experiences and findings related to various types of artificial recharge; learn from both successful and unsuccessful case histories; promote technology transfer between the various disciplines; provide an education resource for communication with those who are not water scientists, such as planners, lawyers, regulators, and the public in general; and indicate directions by which cities or other entities can save funds by having reasonable technical guidelines for implementation of a recharge project.

35

Dunes et plages Derrire les plages se trouvent les dunes,  

E-print Network

Dunes et plages Derrire les plages se trouvent les dunes, constitues par le sable dplac par le dveloppe ensuite. Si cette vgtation est dtruite, les dunes disparaissent et ne protgent plus les ctes et d'autres se dplaant sur le fond. Dunes occupes par la vgtation pionnire Vgtation maritime

36

Dune Avalanche Scars  

NASA Technical Reports Server (NTRS)

05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

2004-01-01

37

Geologic Influences on Groundwater Flow to Inter-Dune Wetlands, Southeastern Virginia  

E-print Network

Geologic Influences on Groundwater Flow to Inter-Dune Wetlands, Southeastern Virginia Matthew stem from changes in the patterns of groundwater recharge and discharge across the island. These soils. The asymmetric shape of the water table could be due to differences in either vegetation cover or permeability

Darby, Dennis

38

The Exxon rechargeable cells  

NASA Astrophysics Data System (ADS)

The design and performance of ambient temperature secondary cells based on the titanium disulfide cathode are discussed. These limited performance products were developed for microelectronic applications such as solar rechargeable watches and clocks which require low drain rate and do not require many deep cycles.

Malachesky, P. A.

1980-04-01

39

WASHINGTON UNIVERSITY RECHARGE CENTERS  

E-print Network

). The government monitors, by routine audits, the University's compliance with federal regulations regarding of federal grants and contracts, we must comply with applicable government requirements (i.e., A-21, A-133 purchases should not be included in billing rates. Recharge centers with less than $250,000 in annual

Subramanian, Venkat

40

Isolated Northern Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

This VIS image was taken at 81 degrees North latitude during Northern spring. In this region, the dunes are isolated from each other. The dunes are just starting to emerge from the winter frost covering appearing dark with bright crests. These dunes are located on top of ice.

Image information: VIS instrument. Latitude 82.1, Longitude 191.3 East (168.7 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

41

Moving sand dunes  

E-print Network

In several desert areas, the slow motion of sand dunes can be a challenge for modern human activities and a threat for the survival of ancient places or archaeological sites. However, several methods exist for surveying the dune fields and estimate their migration rate. Among these methods, the use of satellite images, in particular of those freely available on the World Wide Web, is a convenient resource for the planning of future human settlements and activities.

Sparavigna, Amelia Carolina

2011-01-01

42

Sand dunes as migrating strings.  

PubMed

We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes. PMID:23767529

Guignier, L; Niiya, H; Nishimori, H; Lague, D; Valance, A

2013-05-01

43

Crater Floor Dune Field  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

Our final dune image shows a small dune field inside an unnamed crater south of Nili Fossae.

Image information: VIS instrument. Latitude 20.6, Longitude 79 East (281 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

44

Holden Crater Dune Field  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

A common location for dune fields on Mars is in the basin of large craters. This dune field is located in Holden Crater at 25 degrees South atitude.

Image information: VIS instrument. Latitude -25.5, Longitude 326.8 East (33.2 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

45

Advanced Small Rechargeable Batteries  

NASA Technical Reports Server (NTRS)

Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

Halpert, Gerald

1989-01-01

46

Rechargeable Magnesium Power Cells  

NASA Technical Reports Server (NTRS)

Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

1995-01-01

47

Barchan dune asymmetry: Numerical investigation  

E-print Network

Barchan dunes --- crescent-shaped dunes that form in areas of unidirectional winds and low sand availability --- commonly display an asymmetric shape, with one limb extended downwind. Several factors have been identified as potential causes for barchan dune asymmetry on Earth and Mars: asymmetric bimodal wind regime, topography, influx asymmetry and dune collision. However, the dynamics and potential range of barchan morphologies emerging under each specific scenario that leads to dune asymmetry are far from being understood. In the present work, we use dune modeling in order to investigate the formation and evolution of asymmetric barchans. We find that a bimodal wind regime causes limb extension when the divergence angle between primary and secondary winds is larger than $90^{\\circ}$, whereas the extended limb evolves into a seif dune if the ratio between secondary and primary transport rates is larger than 25%. Calculations of dune formation on an inclined surface under constant wind direction also lead to...

Parteli, Eric J R; Bourke, Mary C; Tsoar, Haim; Poeschel, Thorsten; Herrmann, Hans J

2013-01-01

48

Bright dunes on mars  

USGS Publications Warehouse

Seasonal changes observed on the surface of Mars can in part be attributed to the transport of geological materials by wind. Images obtained by orbiting spacecraft in the 1970s showed large wind-formed features such as dunes, and revealed regional time-varying albedos that could be attributed to the effects of dust erosion and deposition. But the resolution of these images was insufficient to identify different types and sources of aeolian materials, nor could they reveal aeolian deposits other than large dunes or extensive surface coverings that were redistributed by dust storms. Here we present images of Mars with up to 50 times better resolution. These images show that martian dunes include at least two distinct components, the brighter of which we interpret to be composed of relatively soft minerals, possibly sulphates. We also find large areas of the martian surface that have several metres or more of aeolian mantle lacking obvious bedforms.

Thomas, P.C.; Malin, M.C.; Carr, M.H.; Danielson, G.E.; Davies, M.E.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; McEwen, A.S.; Soderblom, L.A.; Veverka, J.

1999-01-01

49

Nili Patera Dune Field  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

This VIS image shows a dune field within Nili Patera, the northern caldera of a large volcanic complex in Syrtis Major.

Image information: VIS instrument. Latitude 9, Longitude 67 East (293 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2005-01-01

50

Imperial Sand Dunes  

NSDL National Science Digital Library

The Bureau of Land Management presents the current news, projects, and the geologic and cultural history of the Imperial Sand Dunes at this website. Users can easily search through an abundance of remarkable images of dunes as well as other Californian landscapes. The website offers links to the current rules, regulations, and management plans. Individuals, who will be traveling to the area, can find the weather forecast, an events calendar, and information on volunteering. Visitors can locate archives of Federal Register Notices as well as news releases.

51

Dune Exploration: Mars Allegories  

NASA Astrophysics Data System (ADS)

We know of one factual habitable planet, although other factual planets can be imagined as habitable. Sometimes the allegory is obvious. E.g., H. G. Wells imagined Martians exterminating humans as an allegory to Englishmen exterminating the Tasmanian aborigines, whilst Percival Lowell saw the global network of Martian canals as a world civilization that had progressed beyond war. But most habitable planets are overtly fictional. The planet properly known as Arrakis and colloquially known as Dune (Herbert 1965) provides an exceptionally well-developed example of a fictional habitable planet. In its particulars Dune resembles a warmer Mars with a breathable oxygen atmosphere. Like Mars, Dune is now a parched desert planet but there are signs that water flowed in the prehistoric past. Dune has small water ice caps at the poles and more extensive deep polar aquifers. The tropics are exceedingly dry but the polar regions are cool and moist enough to have morning dew. Dune is sparsely inhabited by a mix of indigenous and terran flora and fauna. The fictional Dune asks us to consider how much water is enough, why does oxygen accumulate in an atmosphere, and what actually sets the inner edge to the habitable zone. The inner edge of the habitable zone is conventionally set by the onset of the runaway greenhouse effect. The runaway greenhouse occurs when there is enough water vapor in the atmosphere to lift the planet's thermal photosphere off the ground. For a wet planet the mapping between saturation, temperature and optical depth is unique; together these set an upper limit on the rate the amount of thermal radiation that the planet can emit and still maintain a humid atmosphere. A dry atmosphere has a lower opacity for a given temperature, other things equal. With its vast dry equatorial deserts, a habitable Dune can radiate at a significantly higher effective temperature than a wet planet, and so it can provide an abode for life significantly closer to its sun. We use GCM modeling to show that liquid water can exist at places on the surface of a Dune-like planet at insolation levels as much as 170% of the present solar flux of the Earth.

Zahnle, K.; Sleep, N. H.; Abe, Y.; Abe-Ouchi, A.

2005-12-01

52

The Algodones Dunes, California  

NSDL National Science Digital Library

The Center for Biological Diversity blends "conservation biology with litigation, policy advocacy, and an innovative strategic vision" in efforts to protect endangered species and wild places, focusing on the western US. This Web site contains a slide show of images from the Algodones Dunes, California's largest dune system. The fourteen slides show images of the area's natural history and environmental threats, such as effects from off-road vehicles. Each slide is accompanied by a brief description. While not overly informative, this Web site offers visitors a quick overview look at this unique natural area.

53

CLASS XI NRLI COASTAL DUNE  

E-print Network

SESSION NOVEMBER 2011 04 REPORT BY CLASS XI NRLI COASTAL DUNE LAKES: MANAGE- MENT OF A UNIQUE NATURAL RESOURCE T he Walton County area in Florida's panhandle is home to 15 named "coastal dune lakes". Dune lakes are rare geological/ecological features that are found in only five loca ons around

Florida, University of

54

Springtime Dunes, 2004  

NASA Technical Reports Server (NTRS)

12 April 2004 Today is April 12, 2004, the 43rd anniversary of the first human flight into space (Yuri Gagarin, 1961) and the 23rd anniversary of the first NASA Space Shuttle flight (Columbia, 1981). Meanwhile, on Mars, spring is in full swing in the martian northern hemisphere. With spring comes the annual defrosting of the north polar dunes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired on April 7, 2004, shows a field of small barchan (crescent-shaped) dunes covered with the remains of wintertime frost. The dark spots around the base of each dune mark the first signs of the spring thaw. The sand in these dunes is dark, like the black sand beaches of Hawaii or the dark, sandy soil of the rover, Opportunity, landing site, but in winter and spring their dark tone is obscured by bright carbon dioxide frost. This picture is located near 75.9oN, 45.3oW, and covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

2004-01-01

55

Seepage measurements from Long Lake, Indiana Dunes National Lakeshore  

NASA Astrophysics Data System (ADS)

Long Lake, located near Lake Michigan within the dune-complexes of Indiana Dunes National Lakeshore, USA, was formed some time during the Pleistocene and Holocene epochs. A surficial aquifer underlies Long Lake, which is either a source or sink for the later. The hydrologic processes in the lakeshore and surrounding environs have been significantly altered during the agricultural, municipal, and industrial development of the region. Limited data suggest that the organisms of Long Lake have elevated levels of several contaminants. This study attempts to quantify seepage within the lake to assess the potential threat to groundwater quality. Seepage measurements and minipiezometric tests were used to determine seepage within the lake. Seepage measurements and minipiezometric tests suggest that water seeps out of Long Lake, thus recharging the groundwater that flows southwest away from the lake. There is a great deal of variability in the seepage rate, with a mean of 11.510-411.210-4 m d-1. The mean seepage rate of 0.3 m yr-1 for Long Lake is greater than the 0.2 m yr-1 recharge rate estimated for the drainage basin area. The Long Lake recharge volume of 2.5 105 m3 yr-1 is approximately 22% of the volume of the lake and is significant when compared to the total surface recharge volume of 4.8 105 m3 yr-1 to the upper aquifer of the drainage area. There is a potential for contamination of the groundwater system through seepage from the lake from contaminants derived from aerial depositions.

Isiorho, S. A.; Beeching, F. M.; Stewart, P. M.; Whitman, R. L.

1996-09-01

56

Dune formation under bimodal winds  

PubMed Central

The study of dune morphology represents a valuable tool in the investigation of planetary wind systemsthe primary factor controlling the dune shape is the wind directionality. However, our understanding of dune formation is still limited to the simplest situation of unidirectional winds: There is no model that solves the equations of sand transport under the most common situation of seasonally varying wind directions. Here we present the calculation of sand transport under bimodal winds using a dune model that is extended to account for more than one wind direction. Our calculations show that dunes align longitudinally to the resultant wind trend if the angle ?w between the wind directions is larger than 90. Under high sand availability, linear seif dunes are obtained, the intriguing meandering shape of which is found to be controlled by the dune height and by the time the wind lasts at each one of the two wind directions. Unusual dune shapes including the wedge dunes observed on Mars appear within a wide spectrum of bimodal dune morphologies under low sand availability. PMID:20018703

Parteli, Eric J. R.; Durn, Orencio; Tsoar, Haim; Schwmmle, Veit; Herrmann, Hans J.

2009-01-01

57

FLUIDIC: Metal Air Recharged  

ScienceCinema

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-04-02

58

FLUIDIC: Metal Air Recharged  

SciTech Connect

Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

Friesen, Cody

2014-03-07

59

Martian Dune Field  

NASA Technical Reports Server (NTRS)

This spectacular picture of the Martian landscape by the Viking 1 Lander shows a dune field with features remarkably similar to many seen in the deserts of Earth. The dramatic early morning lighting - 7:30 a.m. local Mars time--reveals subtle details and shading. Taken yesterday (August 3) by the Lander s camera #1, the picture covers 100 , looking northeast at left and southeast at right. Viking scientists have studied areas very much like the one in this view in Mexico and in California (Kelso, Death Valley, Yuma). The sharp dune crests indicate the most recent wind storms capable of moving sand over the dunes in the general direction from upper left to lower right. Small deposits downwind of rocks also indicate this wind direction. Large boulder at left is about eight meters (25 feet) from the spacecraft and measures about one by three meters (3 by 10 feet). The meteorology boom, which supports Viking s miniature weather station, cuts through the picture s center. The sun rose two hours earlier and is about 30 above the horizon near the center of the picture.

1976-01-01

60

Rechargeable battery legislative and regulatory issues  

Microsoft Academic Search

Rechargeable batteries and rechargeable consumer products are regulated under a complex system of state, federal and international laws. These laws are designed to promote safety and the environmentally sound recycling or proper disposal of rechargeable batteries and battery-powered products. These laws affect virtually every person involved with rechargeable products, including manufacturers, distributors, retailers, consumers, recyclers, transporters and waste management authorities.

N. England

1993-01-01

61

Arbuscular Mycorrhizas in Coastal Dunes  

Microsoft Academic Search

Sand dune systems are among the best studied of primary successional sites and have attracted the attention of plant ecologists\\u000a for over a century (Cowles 1899). Surprisingly, the traditional explanation of dune succession overlooks the critical contribution\\u000a of mutualistic fungi that facilitate the invasion of barren areas. In fact, many of the dominant, dune-building plants appear\\u000a to be incapable of

R. Koske; J. Gemma; L. Corkidi; C. Sigenza; E. Rincn

62

Mars Digital Dune Database  

NASA Astrophysics Data System (ADS)

Currently, there is no comprehensive, global, digital database for dune deposits on Mars. The advent of a series of successful Mars missions, coupled with advances in technology enabling a significant increase in instrument resolution, have provided a large compilation of data covering a wide range of wavelengths for the Martian surface. Given the recent availability of high-resolution data and detailed surficial information returned from orbital and rover missions, it is critical that we update the Mars global information base by creating a digital database of dune deposits that includes this new influx of data. As of spring 2004, the Thermal Emission Imaging System (THEMIS) infrared (IR) coverage of the surface of Mars was 98% for nighttime and 75% for daytime acquired images, forming a data set of global coverage at a resolution not previously possible. The combination of high-resolution and global coverage makes the THEMIS IR data set the logical choice for a planet wide inventory of dune deposits. Data sets of a global scale like those of Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) will enable rapid and contiguous comparisons with the dune database. Other imagery like that of Mars Orbiter Camera (MOC) will provide very high-resolution, localized visual data for accurate interpretations of morphological characterizations. The dune database will provide researchers with an extensive, comprehensive and stable database for use in a wide-array of global studies. The database will also offer researchers a centralized depository for updating physical parameters with newly validated findings. The initial construction of the database is based upon dune forms or deposits identified, classified and digitized using only THEMIS IR images. These digitized polygons are converted from THEMIS image coordinates to ARCMAP aerographical coordinates, allowing delineation of areal extent of the deposits and preserving relevant THEMIS image information such as Ls, local time, and sun azimuth/angle. The ARCMAP polygons will also retain reference to all THEMIS IR images used in their construction. Where available, THEMIS VIS and/or MOC images will be used to confirm, modify or refine original classifications. In addition to providing an improved resolution for features below the IR image threshold, this secondary examination will also provide a list of cross-referenced THEMIS VIS and MOC images for future investigations. Physical parameters such as wind direction based on slip-face geometry, dune wavelength, elevation, and volume of the deposits will be incorporated into the database on a priority-based schedule. In addition to THEMIS VIS and MOC images, supplemental data sets, such as TES and others, will be used where available to further refine and/or validate existing data on global wind patterns, sediment transport, sources and sinks, and stratigraphic units.

Hayward, R. K.; Titus, T. N.; Mullins, K. F.; Fenton, L. K.; Bourke, M.; Christensen, P. R.

2004-12-01

63

The internal structure of the Mega-dunes in the Badainjaran desert revealed by ground penetrating radar and its implications to arid hydrology  

NASA Astrophysics Data System (ADS)

Badainjaran desert in northwestern China has the world's highest stationary sand dunes, which are up to 500 m tall. Despite the prevailing dry and windy weather conditions the mega dunes were relatively moist underneath a dry surface layer of about 20 cm. It is very common to see a lake directly at the foot of the leeward side of a mega dune. Using 50- and 100-MHz antenna we conducted ground penetrating radar (GPR) surveys on both the windward and leeward of three mega dunes in southeastern Badainjaran desert. The GPR surveys clearly revealed the existence of numerous, almost evenly spaced calcareous cement and travertine features at shallow depth on the windward side of the mega dunes. The leeward tilted orientation of these calcareous cement and travertine features will be likely inducing more infiltration toward the leeward thus getting more recharge to the lake than the windward side. This trend may be one key factors to keep the lake exist in a very arid environment with high evaporation rate. The GPR profile also clearly depicted the shape of the water table beneath the mega dunes. The water table is gradually elevated outward from the lake, implies that the lake is possibly recharged by both precipitation from the vadose zone and the free water recharge from beneath the water table. A preliminary precipitation-evaporation-yield analysis based on our observation indicates that the lakes we studied may be survival if no further reduction of precipitation in this desert area.

Qian, R.; Li, J.; Liu, L.

2013-12-01

64

Biogenic crust dynamics on sand dunes  

E-print Network

Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power, and fixed vegetated dunes and active dunes at high wind power. These results suggest a cross-over between two different forms of desertification.

Kinast, Shai; Yizhaq, Hezi; Ashkenazy, Yosef

2012-01-01

65

Martian Dunes in Infrared  

NASA Technical Reports Server (NTRS)

This collage of six images taken by the camera system on NASA's Mars Odyssey, shows examples of the daytime temperature patterns of martian dunes seen by the infrared camera. The dunes can be seen in this daytime image because of the temperature differences between the sunlit (warm and bright) and shadowed (cold and dark) slopes of the dunes. The temperatures in each image vary, but typically range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) to -15degrees Celsius (5 degrees Fahrenheit). Each image covers an area approximately 32 by 32 kilometers (20 by 20 miles) and was acquired using the infrared Band 9, centered at 12.6 micrometers. Clockwise from the upper left, these images are: (a) Russel crater, 54 degrees south latitude, 13 degrees east longitude; (b) Kaiser crater. 45degrees south latitude, 19 degrees east longitude; (c) Rabe crater, 43south latitude, 35 east longitude; (d) 22 north latitude, 66 degrees east longitude; (e) Proctor crater. 47 degrees south latitude, 30 degrees east longitude; (f) 61 degrees south latitude, 201 degrees east longitude.

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

2002-01-01

66

Sedimentary Rocks and Dunes  

NASA Technical Reports Server (NTRS)

25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

2004-01-01

67

Sojourner at Mermaid Dune  

NASA Technical Reports Server (NTRS)

This color image of the Sojourner rover was taken at the end of day on Sol 30. The rover is perched atop Mermaid Dune, a dark material distinct from the surrounding bright surface. Dark red rover tracks extend from the foreground to the base of the rover's wheels.

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

1997-01-01

68

Closeup of Mermaid Dune  

NASA Technical Reports Server (NTRS)

This pair of images shows a broad view (upper image) and detailed close-up view (lower image) of the disturbed surface near and on Mermaid Dune. Seen slightly right of center in the upper image are two diggings by the rover's wheel. The uppermost rut is in the surface away from Mermaid and is considered to be typical of the surface at the landing site. The closer rut represents the surface at the base of Mermaid on the upwind side. The lower image is an enlargement of the disturbed Mermaid sediments plus those of the underlying substrate; that is, the ground upon which the dune lies. Seen in the close-up are at least two types of sediment, one that seems to be approximately 1.4 cm thick and forms piles with sides sloping at approximately 35 degrees, and another at least 3 cm deep composed of sediment that has a characteristic slope of 41 degrees when piled. It is apparent in the images that there is a size range of sediment present in the rut, sediment that ranges from a few millimeters in size down to below the resolution of the camera.

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

1997-01-01

69

Extraterrestrial dunes: An introduction to the special issue on planetary dune systems  

E-print Network

Extraterrestrial dunes: An introduction to the special issue on planetary dune systems Mary C 2010 Available online 29 April 2010 Keywords: Aeolian Dune Mars Venus Titan Earth Aeolian dune fields of planetary dune systems comes from the application of Earth analogs, wind tunnel experiments and modeling

Bourke, Mary C.

70

Laboratory Observations of Dune Erosion  

NASA Astrophysics Data System (ADS)

Coastal dunes are an important feature along many coastlines, owing to their input to the sediment supply, use as habitat, and ability to protect onshore resources from wave attack. Correct predictions of the erosion and overtopping rates of these features are needed to develop improved responses to coastal dune damage events, and to determining the likelihood and magnitude of future erosion and overtopping on different beaches. We have conducted a large-scale laboratory study at Oregon State University's O.H. Hinsdale Wave Research Laboratory (HWRL) with the goal of producing a comprehensive, near prototype-scale, physical model data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The two goals of this work are (1) to develop a better understanding of swash/dune dynamics and (2) to evaluate and guide further development of dune erosion models. We present initial results from the first phase of the experimental program. An initial beach and dune profile was selected based on field LIDAR-based observations of various U.S. east coast and Gulf coast dune systems. The laboratory beach was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water level and offshore wave heights. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Future work will include studies of fluid overtopping of the dune and sediment overwash and assessment of the resilience of man-made "push-up" dunes to wave attack in comparison with their more-compacted "natural" cousins.

Maddux, T. B.; Ruggiero, P.; Palmsten, M.; Holman, R.; Cox, D. T.

2006-12-01

71

The simplest ENSO recharge oscillator Gerrit Burgers  

E-print Network

The simplest ENSO recharge oscillator Gerrit Burgers Royal Netherlands Meteorological Institute: Burgers, G., F.-F. Jin, and G. J. van Oldenborgh (2005), The simplest ENSO recharge oscillator, Geophys

Wang, Yuqing

72

Grain size dependence of barchan dune dynamics  

E-print Network

The dependence of the barchan dune dynamics on the size of the grains involved is investigated experimentally. Downsized barchan dune slices are observed in a narrow water flow tube. The relaxation time from an initial symmetric triangular heap towards an asymmetric shape attractor increases with dune mass and decreases with grain size. The dune velocity increases with grain size. In contrast, the velocity scaling and the shape of the barchan dune is independent of the size of the grains.

C. Groh; N. Aksel; I. Rehberg; C. Kruelle

2008-11-28

73

Identifying Recharge Location Using Noble Gas Recharge Temperatures, Pajarito Plateau, New Mexico  

Microsoft Academic Search

The solubility of noble gases in water is temperature dependent. Noble gas concentrations in ground water can therefore be used to determine the temperature at the water table at the recharge location (recharge temperature). The Pajarito Plateau in Northern New Mexico is an example of a hydrogeologic setting where noble gas recharge temperatures provide valuable information about recharge location which

A. H. Manning; M. Dale

2008-01-01

74

Choosing appropriate techniques for quantifying groundwater recharge  

USGS Publications Warehouse

Various techniques are available to quantify recharge; however, choosing appropriate techniques is often difficult. Important considerations in choosing a technique include space/time scales, range, and reliability of recharge estimates based on different techniques; other factors may limit the application of particular techniques. The goal of the recharge study is important because it may dictate the required space/time scales of the recharge estimates. Typical study goals include water-resource evaluation, which requires information on recharge over large spatial scales and on decadal time scales; and evaluation of aquifer vulnerability to contamination, which requires detailed information on spatial variability and preferential flow. The range of recharge rates that can be estimated using different approaches should be matched to expected recharge rates at a site. The reliability of recharge estimates using different techniques is variable. Techniques based on surface-water and unsaturated-zone data provide estimates of potential recharge, whereas those based on groundwater data generally provide estimates of actual recharge. Uncertainties in each approach to estimating recharge underscore the need for application of multiple techniques to increase reliability of recharge estimates.

Scanlon, B.R.; Healy, R.W.; Cook, P.G.

2002-01-01

75

Management plans for artificial reservoir recharge  

Microsoft Academic Search

Reservoir recharge is one of the artifical recharge methods that is used extensively to replenish groundwater, especially in arid regions. The efficiency of this method is greatly reduced if an appropriate management plan is not implemented. Selection of a management plan requires precursory site evaluations, surveys and careful consideration of the constraints affecting recharge water and the aquifer. This article

Uygur Sendil

1990-01-01

76

Manganese oxide cathodes for rechargeable batteries  

Microsoft Academic Search

Manganese oxides are considered as promising cathodes for rechargeable batteries due to their low cost and low toxicity as well as the abundant natural resources. In this dissertation, manganese oxides have been investigated as cathodes for both rechargeable lithium and alkaline batteries. Nanostructured lithium manganese oxides designed for rechargeable lithium cells have been synthesized by reducing lithium permanganate with methanol

Dongmin Im

2002-01-01

77

Revised 06-2011 Rechargeable  

E-print Network

Revised 06-2011 Rechargeable Battery And Cell Phone Recycling Program Guidelines University Waste Label (see separate instructions). Step 4: Bag It Insert a battery or cell phone in a provided bag of Missouri Environmental Health and Safety 573-882-3736 http://ehs.missouri.edu/ hazmat

Taylor, Jerry

78

Rechargeable nickel-zinc batteries  

NASA Technical Reports Server (NTRS)

Device proves superiority in having two and one half to three times the energy content of popular lead-zinc or nickel-cadmium batteries. Application to electric utility vehicles improved acceleration rate and nearly doubled driving range between rechargings. Unit contributes substantially toward realization of practical urban electrical automobiles.

Soltis, D. G.

1977-01-01

79

Groundwater recharge from overbank floods  

NASA Astrophysics Data System (ADS)

Overbank flood recharge is increasingly acknowledged as important for estimations of aquifer sustainable yield. The physics of this process in areas with shallow groundwater, however, is not well understood and typically is not included in river or groundwater models. Modeling of the overbank flood recharge process was undertaken using a fully coupled, surface-subsurface flow model to compare the volume of infiltration through a floodplain with varying surface sediment, aquifer, and flood parameters. The infiltration volume was found to increase with the conductance of the clogging layer (represented by a thin veneer of sediments across the floodplain and river bed), flood wave height, peak duration, and aquifer transmissivity and to decrease with increasing water table gradient (positive toward the river). The influence of the flood wave and aquifer hydraulic parameters was more pronounced in systems with sand or loam clogging layers. Irregularities in floodplain elevation had a large effect on infiltration volume. A dimensionless analysis of the flood recharge process identified the factors that limited flood infiltration for each of the modeled scenarios: the clogging layer conductance, unsaturated aquifer storage, or aquifer transmissivity. A dimensionless numberF* was used to predict the limiting factor in floodplain systems. An analytical equation was developed to estimate the infiltration volume for catchments where full numerical modeling is not warranted or applicable. Results from the analytical equation compared favorably with recharge modeled using a more complex numerical model.

Doble, Rebecca C.; Crosbie, Russell S.; Smerdon, Brian D.; Peeters, Luk; Cook, Freeman J.

2012-09-01

80

ARTIFICIAL RECHARGE METHODS OF KARIZ  

Microsoft Academic Search

Kariz is one of the Iranian traditional water harvesting systems. Unfortunately some experts believe that water loss during winter and out of the crop season is the main disadvantage of this method. One of the methods to increase the discharge of kariz, is to recharge the aquifer artificially, where the karez tunnels are dug in them. This can be done

Abdolkarim Behnia

81

The pronounced seasonality of global groundwater recharge  

NASA Astrophysics Data System (ADS)

Groundwater recharged by meteoric water supports human life by providing two billion people with drinking water and by supplying 40% of cropland irrigation. While annual groundwater recharge rates are reported in many studies, fewer studies have explicitly quantified intra-annual (i.e., seasonal) differences in groundwater recharge. Understanding seasonal differences in the fraction of precipitation that recharges aquifers is important for predicting annual recharge groundwater rates under changing seasonal precipitation and evapotranspiration regimes in a warming climate, for accurately interpreting isotopic proxies in paleoclimate records, and for understanding linkages between ecosystem productivity and groundwater recharge. Here we determine seasonal differences in the groundwater recharge ratio, defined here as the ratio of groundwater recharge to precipitation, at 54 globally distributed locations on the basis of 18O/16O and 2H/1H ratios in precipitation and groundwater. Our analysis shows that arid and temperate climates have wintertime groundwater recharge ratios that are consistently higher than summertime groundwater recharge ratios, while tropical groundwater recharge ratios are at a maximum during the wet season. The isotope-based recharge ratio seasonality is consistent with monthly outputs from a global hydrological model (PCR-GLOBWB) for most, but not all locations. The pronounced seasonality in groundwater recharge ratios shown in this study signifies that, from the point of view of predicting future groundwater recharge rates, a unit change in winter (temperate and arid regions) or wet season (tropics) precipitation will result in a greater change to the annual groundwater recharge rate than the same unit change to summer or dry season precipitation.

Jasechko, Scott; Birks, S. Jean; Gleeson, Tom; Wada, Yoshihide; Fawcett, Peter J.; Sharp, Zachary D.; McDonnell, Jeffrey J.; Welker, Jeffrey M.

2014-11-01

82

Exploring the topography and structure of Saharan linear dunes: Implications for characterizing dunes on Titan  

NASA Astrophysics Data System (ADS)

Tens of thousands of sand dunes encircle the equatorial latitudes of Saturn's moon Titan, as seen by the Cassini Radar and visible-NIR instruments. These are linear in form, comparable in size and morphology to large linear dunes in the Egyptian Sahara. Studies of linear dunes in the Sahara can therefore assist in understanding the characteristics and formation of Titan's dunes. High-resolution topographic profiles of the Egyptian dunes indicate winds draw dune sands into broad stable plinths with steep summits that shift with recent winds. The summits of the Qattaniya Dunes west of Cairo are drawn out into crescents along the dune long axis from dominant, northerly winds on a NNW-trending crestline. Ground penetrating radar surveys show equally spaced layers within the dune, suggesting continuous, regular wind regimes formed the dunes. Larger dunes of the Great Sand Sea south of Siwa Oasis exhibit generally similar topographic profiles and fine layering although numerous flanking features complicate the overall morphology. These analyses can be related to studies of wind pattern effects on Titan's dune forms, residence time of sands within dunes on Titan, and the creation and maintenance of evolved dune forms across Titan. Studies of the effects of morphology and internal structure of these dunes on terrestrial radar remote sensing observations will yield additional information concerning Titan's dunes. Scattering models, for example, seek to explain the radar returns from Titan's dunes based on geometry and sand composition so it is valuable to understand the effects of these parameters on terrestrial dunes.

Farr, T. G.; Heggy, E.; Radebaugh, J.

2011-12-01

83

The sedimentary structure of linear sand dunes  

PubMed

Linear sand dunes--dunes that extend parallel to each other rather than in star-like or crescentic forms--are the most abundant type of desert sand dune. But because their development and their internal structure are poorly understood, they are rarely recognized in the rock record. Models of linear dune development have not been able to take into account the sub-surface structure of existing dunes, but have relied instead either on the extrapolation of short-term measurements of winds and sediment transport or on observations of near-surface internal sedimentary structures. From such studies, it has not been clear if linear dunes can migrate laterally. Here we present images produced by ground penetrating radar showing the three-dimensional sedimentary structure of a linear dune in the Namib sand sea, where some of the world's largest linear dunes are situated. These profiles show clear evidence for lateral migration in a linear dune. Moreover, the migration of a sinuous crest-line along the dune produces divergent sets of cross-stratification, which can become stacked as the dune height increases, and large linear dunes can support superimposed dunes that produce stacked sets of trough cross-stratification. These clear structural signatures of linear dunes should facilitate their recognition in geological records. PMID:10894538

Bristow; Bailey; Lancaster

2000-07-01

84

Recent Aeolian Dune Change on Mars  

NASA Technical Reports Server (NTRS)

Previous comparisons of Martian aeolian dunes in satellite images have not detected any change in dune form or position. Here, we show dome dunes in the north polar region that shrank and then disappeared over a period of 3.04 Mars years (5.7 Earth years), while larger, neighboring dunes showed no erosion or movement. The removal of sand from these dunes indicates that not only is the threshold wind speed for saltation exceeded under present conditions on Mars, but that any sand that is available for transport is likely to be moved. Dunes that show no evidence of change could be crusted, indurated. or subject to infrequent episodes of movement.

Bourke, M. C.; Edgett, K. S.; Cantor, B. A.

2007-01-01

85

Freshwater lenses as archive of climate, groundwater recharge, and hydrochemical evolution: Insights from depth-specific water isotope analysis and age determination on the island of Langeoog, Germany  

NASA Astrophysics Data System (ADS)

The age stratification of a freshwater lens on the island of Langeoog, Germany, was reconstructed through depth-specific sampling and groundwater dating using the tritium-helium method. The stratification is strongly affected by the land use and resulting differences in recharge rates. Infiltration at the dune tops is significantly lower than in the valleys, due to repellency of the dry sand. Dune valleys contribute up to four times more groundwater recharge per area than other areas. Housing development in dune areas might therefore significantly decrease the available fresh groundwater. The freshwater column shows a distinct increase of stable isotope values with decreasing depths. Hence, the freshwater lens contains a climate archive which reflects changing environmental conditions at the time of recharge. Combined with tritium-helium dating, this pattern could be matched to climate records which show an increase of the temperature at the time of recharge and rainfall rates during the last 50 years. The spatial and temporal developments of water chemistry during the passage through the lens follow a marked pattern from a sodium and chloride-dominated rainwater of low conductivity to a more mineralized sodium bicarbonate water type, caused by dissolution of carbonate shells close to the surface and subsequent ion exchange of calcium for sodium in the deeper parts.

Houben, Georg J.; Koeniger, Paul; Sltenfu, Jrgen

2014-10-01

86

Research on rechargeable oxygen electrodes  

NASA Technical Reports Server (NTRS)

Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

Giner, J.; Malachesky, P. A.; Holleck, G.

1971-01-01

87

Electrically rechargeable REDOX flow cell  

NASA Technical Reports Server (NTRS)

A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

Thaller, L. H. (inventor)

1976-01-01

88

Iron-Air Rechargeable Battery  

NASA Technical Reports Server (NTRS)

Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

2014-01-01

89

Groundwater recharge and agricultural contamination  

USGS Publications Warehouse

Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

Bhlke, J.K.

2002-01-01

90

Linear stability analysis of transverse dunes  

E-print Network

Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.

Hygor P. M. Melo; Eric J. R. Parteli; Jos S. Andrade Jr; Hans J. Herrmann

2012-02-16

91

Linear stability analysis of transverse dunes  

E-print Network

Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any along-axis perturbation on a transverse dune amplify in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune's slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock cannot exist in a stable form and decay into a chain of crescent-shaped barchans.

Melo, Hygor P M; Andrade, Jos S; Herrmann, Hans J

2012-01-01

92

First Evidence of Dune Movement on Mars  

NASA Astrophysics Data System (ADS)

Many sand dunes on Mars have pristine morphology, fresh grain flows on avalanche faces and sand streamers extending from barchan horns. This suggests that the saltation threshold for sand is exceeded and dune migration is possible under the current Martian climate. However, sand dune movement has not been observed and there is evidence that many of the dunes may be stabilized or indurated. We report the first evidence for the movement of bodies of windblown sand under current climate conditions on Mars. Repeat images of three sand dunes using the Mars Orbiter Camera were acquired between March 1999 and December 2004. We detected the complete removal of sediment from two small dome dunes in a barchan dune field in the North Polar Sand Sea during this time. The third and largest dome dune (77 m wide) in the sample suite had a slight reduction in size, but dune form remained intact. On Earth, dome dunes are circular to oval low mounds of loose, well-sorted, very fine to medium sand. Slip faces are absent or ephemeral and stand only a meter or so high. That these dunes did not migrate, but were eroded, suggests that they were not in equilibrium. Dome dune morphology is not always as effective as e.g., barchan morphology, for trapping sediment, particularly in locations of high velocity winds. In these situations, the removal of sand downwind can lead to the depletion of the dune. Our data confirms that first; the threshold wind speed for saltation is exceeded under present Martian climate conditions. Second, not all dunes on Mars are stabilized or indurated. Third, dune migration is possible under current Martian conditions; however it is likely to be limited to the smallest barchan and dome dunes (i.e. < 20 m wide).

Bourke, M. C.; Edgett, K. S.

2006-12-01

93

Mars Northern Dunes: Volatiles and Geology  

NASA Astrophysics Data System (ADS)

Mars has a vast sea of sand dunes at high northern latitudes known as the north polar erg. These dunes are blanketed with seasonal CO2 frost in the winter and early spring. Sharp dune crests, steep slipfaces and lack of craters suggest that these northern dunes have experienced geologically recent resurfacing. The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) imaged a limited number of sites in the dunes with resolution better than 1 m to look for changes. New HiRISE images show extensive erosion of northern hemisphere dunes associated with seasonal CO2 ice sublimation in the spring. With 2 Mars years of observations we have observed the CO2-ice-free state of the dunes in the first year, frost-covered in late winter, the spring sublimation process, and the ice-free state of the dunes again in the second year. Temporal sequences of images of individual sites were acquired to monitor the sublimation process throughout spring. Ice-free images have been compared between northern summer in MRO year 1 (Mars Year 29) and MRO year 2. New alcoves and aprons are detected on numerous dunes in several sites. In one particular barchan dune field 20% of the dunes show substantial changes and 20% show minor changes. These changes can be traced to locations of early enhanced CO2 ice sublimation. The sublimation activity manifests itself on the dunes as cracks along the dune crest from which dark streaks of sand and dust move down the slipface. The sand travels out onto patterned ground, enabling measurement of the extent of the new aprons, in some cases meters from the dune boundary one year earlier. In order to maintain fresh dunes against such erosion the dune-building processes must still be at work on Mars today. This work was partially supported by JPL/CIT/NASA.

Hansen, Candice; Bridges, N.; Bourke, M.; Byrne, S.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Portyankina, G.; Thomas, N.; Colon, C.

2010-10-01

94

DUNE - a granular flow code  

SciTech Connect

DUNE was designed to accurately model the spectrum of granular. Granular flow encompasses the motions of discrete particles. The particles are macroscopic in that there is no Brownian motion. The flow can be thought of as a dispersed phase (the particles) interacting with a fluid phase (air or water). Validation of the physical models proceeds in tandem with simple experimental confirmation. The current development team is working toward the goal of building a flexible architecture where existing technologies can easily be integrated to further the capability of the simulation. We describe the DUNE architecture in some detail using physics models appropriate for an imploding liner experiment.

Slone, D M; Cottom, T L; Bateson, W B

2004-11-23

95

Eolian reservoir characteristics predicted from dune type  

SciTech Connect

The nature of eolian-dune reservoirs is strongly influenced by stratification types (in decreasing order of quality: grain-flow, grain-fall, wind-ripple deposits) and their packaging by internal bounding surfaces. These are, in turn, a function of dune surface processes and migration behavior, allowing for predictive models of reservoir behavior. Migrating, simple crescentic dunes produce tabular bodies consisting mainly of grain-flow cross-strata, and form the best, most predictable reservoirs. Reservoir character improves as both original dune height and preserved set thickness increase, because fewer grain-fall deposits and a lower percentage of dune-apron deposits occur in the cross-strata, respectively. It is probable that many linear and star dunes migrate laterally, leaving a blanket of packages of wind ripple laminae reflecting deposition of broad, shifting aprons. This is distinct from models generated by freezing large portions of these dunes in place. Trailing margins of linear and star dunes are prone to reworking by sand-sheet processes that decrease potential reservoir quality. The occurrence of parabolic dunes isolated on vegetated sand sheets results in a core of grain-flow and grain-fall deposits surrounded by less permeable and porous deposits. Compound crescentic dunes, perhaps the most preservable dune type, may yield laterally (1) single sets of cross-strate, (2) compound sets derived from superimposed simple dunes, or (3) a complex of diverse sets derived from superimposed transverse and linear elements.

Kocurek, G.; Nielson, J.

1985-02-01

96

Rides et Dunes de Sable Alexandre Valance  

E-print Network

1 Rides et Dunes de Sable Alexandre Valance Institut de Physique de Rennes (IPR), CNRS UMR 6251-linéaire: murissement, saturation Dunes transverses, Barkhanes, Rides éoliennes Sources: · A. Valance: « Dynamique Fluviatile » (Cours M2 Systèmes Complexes, Rennes) · F. Charru et al. : « Ripples and Sand dunes » (Annual

Lucas, Carine - Le Laboratoire de Mathématiques

97

Dune Field in Nili Pateria  

NASA Technical Reports Server (NTRS)

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of the southeastern edge of a large dune field within Nili Patera, an irregularly shaped volcanic caldera that is about 65 kilometers (40 miles) in diameter. The image was acquired at 1333 UTC (8:33 a.m. EST) on Feb. 1, 2007, near 8.8 degrees north latitude, 67.3 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered by the image is just over 10 kilometers (6 miles) wide at its narrowest point.

The top image was constructed from three visible wavelengths that correspond to what our eyes would see; the colors are stretched to bring out subtle color contrast. The bottom image is a spectral map constructed using three infrared wavelengths that usually highlight compositional variations. Areas with high concentrations of iron- and magnesium-rich igneous minerals appear red.

The entire dune field, covering about 500 square kilometers, resides mainly in the southwest quadrant of the caldera, occupying approximately 15% of its floor. Some of the dune forms seen here are 'barchans' -- individual, crescent shaped dunes that form when winds come primarily from one direction, resulting in one slipface. The orientation of the slipfaces indicates that primary winds were coming from the east-northeast. Using images from Mars Global Surveyor's narrow-angle camera, researchers measured approximately 400 slipfaces throughout the dune field and calculated an average azimuth of 245 degrees. Some of the barchans have elongated horns, suggesting that they experienced a slight secondary wind, or that the primary wind direction varied a little. When sufficient sand is available, barchans will coalesce, losing their individual crescentic shape. The resulting dune form, referred to as barchanoid, describes the vast majority of dunes in this image.

In the lower left portion of the image, where the dune pattern is most regular, the distance from dune crest to dune crest is about 400 meters (437 yards). The relationship shown here, with barchans at the margin of a barchanoid dune field, is common on Mars.

CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate.

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

2007-01-01

98

Factors determining desert dune type  

Microsoft Academic Search

While most observers recognize four elemental types of desert dunes (longitudinal, transverse, barchan and star1-3) there is little agreement about which factors determine these types. The angular relationships between the resultant of sand shifting winds and both the crest and principal slipfaces of the elemental types have been discussed qualitatively for many decades. These relationships have been quantified but the

R. J. Wasson; R. Hyde

1983-01-01

99

DUNE: The Dark Universe Explorer  

E-print Network

Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constraints on cosmological parameters, including the equation of state parameter of the dark energy and its evolution from redshift 0 to 1. DUNE is the subject of an ongoing study led by the French Space Agency (CNES), and is being proposed for ESA's Cosmic Vision programme.

A. Refregier; O. Boulade; Y. Mellier; B. Milliard; R. Pain; J. Michaud; F. Safa; A. Amara; P. Astier; E. Barrelet; E. Bertin; S. Boulade; C. Cara; A. Claret; L. Georges; R. Grange; J. Guy; C. Koeck; L. Kroely; C. Magneville; N. Palanque-Delabrouille; N. Regnault; G. Smadja; C. Schimd; Z. Sun

2006-10-03

100

Identifying Recharge Location Using Noble Gas Recharge Temperatures, Pajarito Plateau, New Mexico  

NASA Astrophysics Data System (ADS)

The solubility of noble gases in water is temperature dependent. Noble gas concentrations in ground water can therefore be used to determine the temperature at the water table at the recharge location (recharge temperature). The Pajarito Plateau in Northern New Mexico is an example of a hydrogeologic setting where noble gas recharge temperatures provide valuable information about recharge location which could be utilized in numerical model calibration. Previous studies have identified two potentially significant components of recharge to the regional aquifer underlying the plateau: (1) infiltration of precipitation in the Jemez Mountains adjacent to the plateau (mountain-block recharge); and (2) infiltration of stream water in the bottoms of canyons that traverse the plateau (plateau recharge). However, results regarding the relative importance of these two components are conflicting and uncertain. Their relative magnitude is of particular concern because Los Alamos National Laboratory is located on the plateau, and the susceptibility of the regional aquifer to lab-generated wastes depends directly upon the amount of plateau recharge. The Pajarito Plateau is an ideal location for applying noble gas recharge thermometry; mountain-block recharge should have cool recharge temperatures (<12C) due to the shallow water table in the mountains, whereas plateau recharge should have distinctly warmer recharge temperatures (18 to 21C) due to water table depths of 200 to 300m on the plateau. Noble gas samples were collected from wells screened in the regional aquifer across the plateau. Those analyzed to date from wells screened in the upper 30m of the aquifer yield recharge temperatures of 18 to 23C. Exceptions are two wells located within 2km of the mountain front, which have recharge temperatures of 12 and 13C. The one sample analyzed to date from a well screened deeper in the aquifer (125m below the water table) yields a recharge temperature of 11C. Preliminary results therefore suggest that plateau recharge comprises nearly all of the water in the upper 30m of the regional aquifer throughout much of the plateau. However, the cooler recharge temperatures closer to the mountains and at depth indicate that mountain-block recharge may still constitute most of the total recharge to the aquifer; plateau recharge may be limited to a thin layer along the top of the aquifer at distances >2km from the mountain front.

Manning, A. H.; Dale, M.

2008-12-01

101

Mean residence time in barchan dunes  

NASA Astrophysics Data System (ADS)

A barchan dune migrates when the sediment trapped on its lee side is remobilized by the flow. Then, sand grains may undergo many dune turnover cycles before their ejection along the horns, but the amount of time a sand grain contributes to the dune morphodynamics remains unknown. To estimate such a residence time, we analyze sediment particle motions in steady-state barchan dunes by tracking individual cells of a 3D cellular automaton dune model. The overall sediment flux may be decomposed into advective and dispersive fluxes to estimate the relative contribution of the underlying physical processes to the barchan dune shape. The net lateral sediment transport from the center to the horns indicates that dispersion on the stoss slope is more efficient than avalanches on the lee slope. The combined effect of these two antagonistic dispersive processes restricts the lateral mixing of sediment particles in the central region of barchan dunes. Then, for different flow strengths and dune sizes, we find that the mean residence time of sediment particles in barchan dunes is equal to the surface of the central longitudinal dune slices divided by the input sand flux. We infer that this central slice contains most of the relevant information about barchan dune morphodynamics. Finally, we initiate a discussion about sediment transport and memory in presence of bed forms using the advantages of the particle tracking technique.

Zhang, D.; Yang, X.; Rozier, O.; Narteau, C.

2013-12-01

102

Electrically rechargeable redox flow cells  

NASA Technical Reports Server (NTRS)

Considering the topographical and sizing requirements for a typical pumped water storage installation and the immergence of energy conversion schemes that are time dependent as to their generating capability, a closer look is being given to nonpumped water storage schemes for storing electricity. An electrochemical bulk power storage concept, which was named a rechargeable redox flow cell is described. This scheme, based on pumping a redox couple through a power conversion section, appears to offer high overall efficiency, no cycle life limitations for the electrodes, and deep discharger capability.

Thaller, L. H.

1974-01-01

103

Electrically rechargeable redox flow cells  

NASA Technical Reports Server (NTRS)

Considering the topographical and sizing requirements for a typical pumped water storage installation and the immergence of energy conversion schemes that are time-dependent as to their generating capability, a closer look is being given to nonpumped water storage schemes for storing electricity. An electrochemical bulk power storage concept, called a rechargeable redox flow cell, is described. This scheme, based on pumping a redox couple through a power conversion section, appears to offer high overall efficiency, no cycle life limitations for the electrodes, and deep discharge capability.

Thaller, L. H.

1974-01-01

104

The dune size distribution and scaling relations of barchan dune fields  

E-print Network

Barchan dunes emerge as a collective phenomena involving the generation of thousands of them in so called barchan dune fields. By measuring the size and position of dunes in Moroccan barchan dune fields, we find that these dunes tend to distribute uniformly in space and follow an unique size distribution function. We introduce an analyticalmean-field approach to show that this empirical size distribution emerges from the interplay of dune collisions and sand flux balance, the two simplest mechanisms for size selection. The analytical model also predicts a scaling relation between the fundamental macroscopic properties characterizing a dune field, namely the inter-dune spacing and the first and second moments of the dune size distribution.

Orencio Durn; Veit Schwmmle; Pedro G. Lind; Hans J. Herrmann

2008-10-27

105

Defrosting of Russell Crater Dunes  

NASA Technical Reports Server (NTRS)

These two images (at right) were acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 39 days apart at 19:10 UTC (2:10 PM EST) on December 28, 2006 (upper right) and at 20:06 UTC (3:06 PM EST) on February 5, 2007 (lower right). These CRISM data were acquired in 544 colors covering the wavelength range from 0.36-3.92 micrometers, and show features as small as 20 meters (about 65 feet) across. Both images are false color composites of bands at 2.5, 1.5, and 1.25 micrometers, and are nearly centered at the same location, 54.875oS, 12.919oE (upper right) and 54.895oS, 12.943oE (lower right). Each image is approximately 11 kilometers (7 miles) across at its narrowest. These are part of a series of images capturing the evolution of carbon dioxide frost on the surface of the dunes in Russell Crater.

Russell Crater is one of many craters in the southern highland region of Mars that contain large areas of sand dunes. The sand in these dunes has accumulated over a very long time period -- perhaps millions of years -- as wind blows over the highland terrain, picking up sand in some places and depositing in others. The topography of the craters forces the wind to blow up and over the crater rims, and the wind often isn't strong enough to keep the tiny grains suspended. This makes the sand fall to the ground and gradually pile up, and over time the surface breezes shape the sand into ripples and dunes. A similar process is at work at the Great Sand Dunes National Park and Preserve in Colorado, USA.

The above left image shows a THEMIS daytime infrared mosaic of Russell Crater and the location of its (approximately) 30-kilometer wide dune field in the northeastern quadrant of the crater floor. Superposed on this view and shown enlarged at the upper right is CRISM image FRT000039DF. This CRISM image was acquired during the late Martian southern winter (solar longitude = 157.7o), and the bright blue in this false color composite indicates the presence of carbon dioxide frost (dry ice) on the dunes. Sunlight is coming from the northeast, and the sunlit faces of the dunes appear red because they show very little frost compared to the colder, more shadowed areas. Thirty-nine days later at the beginning of southern spring (solar longitude = 178.9o), CRISM image FRT000042AA (lower right) was acquired almost at the same location. Notably, the bright blue frost-rich areas are considerably smaller and subdued, with slim patches only observed on the shadowed sides of the dunes that are most protected from the warmth of the rising sun. As the southern season continues to march toward summer, all of the frost will soon be gone and won't return until the next Martian winter.

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

2007-01-01

106

Transformer Recharging with Alpha Channeling in Tokamaks  

SciTech Connect

Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________

N.J. Fisch

2009-12-21

107

INTRODUCTION TO ARTIFICIAL GROUND-WATER RECHARGE  

EPA Science Inventory

Artificial ground-water recharge has been practiced for scores of years throughout the world. The purpose of artificial recharge is to increase the rate at which water infiltrates the land surface in order to supplement the quantity of ground water in storage. A variety of rechar...

108

NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994  

EPA Science Inventory

North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

109

Recharge at the Hanford Site: Status report  

SciTech Connect

A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs.

Gee, G.W.

1987-11-01

110

Groundwater Recharge in the Southern High Plains  

E-print Network

i Draft Groundwater Recharge in the Southern High Plains Report ###, Appendix A By Robert C. Reedy P.O. Box 13231 Austin, TX 78711-3231 1(512) 936-0861 January, 2003 #12;ii Table of Contents Page................................................................................. 1 Recharge Estimation for Current Groundwater Availability Modeling Project

Scanlon, Bridget R.

111

High power rechargeable batteries Paul V. Braun  

E-print Network

High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

Braun, Paul

112

Reflections on Dry-Zone Recharge  

NASA Astrophysics Data System (ADS)

Quantifying recharge in regions of low precipitation remains a challenging task. The design of permanent nuclear-waste isolation at Yucca Mountain, Nevada, the design of arid-site landfill covers and the pumping of groundwater in desert cities, like Las Vegas, are examples where accurate recharge estimates are needed because they affect billion-dollar decisions. Recharge cannot be measured directly and must rely on estimation methods of various kinds including chemical tracers, thermal profiling, lysimetry, and water-balance modeling. Chemical methods, like chloride-mass-balance can significantly underestimate actual recharge rates and water-balance models are generally limited by large uncertainties. Studies at the U. S. Department of Energy's Hanford Site in Washington State, USA illustrate how estimates of recharge rates have changed over time and how these estimates can affect waste management decisions. Lysimetry has provided reliable estimates of recharge for a wide range of surface condittions. Lysimetric observations of reduced recharge, resulting from advective drying of coarse rock piles, suggest a way to avoid costly recharge protection using titanium shields at Yucca Mountain. The Pacific Northwest National Laboratory is funded by the U. S. Department of Energy under contract DE-AC05-76-RL01830.

Gee, G. W.

2005-05-01

113

Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia  

NASA Astrophysics Data System (ADS)

SummaryFreshwater lenses have been identified as having penetrated the shallow regional saline groundwater beneath the Cooper Creek floodplain near Ballera (south-west Queensland). Piezometers were installed to evaluate the major-element chemistry along a floodplain transect from a major waterhole (Goonbabinna) to a smaller waterhole (Chookoo) associated with a sand dune complex. The floodplain consists of 2-7 m of impermeable mud underlain by unconsolidated fluvial sands with a saline watertable. Waterholes have in places scoured into the floodplain. The transect reveals that groundwater recharge takes place through the base of the waterholes at times of flood scour, but not through the floodplain mud. Total dissolved solids rise with distance from the waterhole and independently of the presence of sand dunes. Stable water isotopes (? 2H and ? 18O) confirm that recharge is consistent with, and dependant on, monsoonal flooding events. Following floods, the waterholes self-seal and retain water for extended periods, with sulfate-? 34S and ? 18O isotopes suggesting bacterial reduction processes within the hyporheic zone, and limited interaction between the surface water and groundwater during no-flow conditions. The area occupied by the freshwater lenses (TDS < 5000 mg/L) is locally asymmetrical with respect to the channel flow direction, extending down gradient along distances of 300 m.

Cendn, Dioni I.; Larsen, Joshua R.; Jones, Brian G.; Nanson, Gerald C.; Rickleman, Daniel; Hankin, Stuart I.; Pueyo, Juan J.; Maroulis, Jerry

2010-10-01

114

Timing of frost deposition on Martian dunes: A clue to properties of dune particles?  

NASA Technical Reports Server (NTRS)

Scans were made across the Martian dunes found in images taken at several different times to determine the time history of the dune albedo. Atmospheric contributions were estimated using optical depth data and the brightness of shadows in some images. The data show that the dunes brighten very substantially between L(s) = 10 and 40 deg, depending on the latitude. Bright coverings on dunes form outliers 1 to 5 deg north of the cap edge. Formation of the general cap then sometimes reverses the contrast of the dune field with the surrounding area. Causes for the early deposition of frost on dunes relative to surroundings are discussed.

Thomas, P.

1987-01-01

115

Singing-sand avalanches without dunes  

NASA Astrophysics Data System (ADS)

Singing-sand dunes have attracted curiosity for centuries and are now the subject of controversy. We address here two aspects of this controversy: first the possible link between the frequency heard and the shear rate (for a gravity avalanche on a dune slip-face, scaling as 0.4g/d, with d the mean grain diameter), and second, the assumed necessity of a layered dune structure under the avalanche that acts as a resonator. Field recordings of singing dunes over the world reveal that they can present very different spectral characteristics: a dune with polydisperse grains produces a very broad and noisy spectrum, while a dune with sorted grains produces a well-defined frequency. Performing laboratory avalanches on a hard plate with singing-dune sand shows that there is no need for a dune below the sand avalanche to produce the singing sound, and a fortiori neither for the dune's layered structure nor for its particular sound transmission. By sieving the polydisperse grains, the same well-defined frequency is obtained to that of the dune with sorted grains, with the same diameter-frequency relation. The various frequencies heard in the field avalanches match the shear rates not calculated from the average size, but from the various peaks of the grain size distributions.

Dagois-Bohy, S.; Courrech du Pont, S.; Douady, S.

2012-10-01

116

Size distribution and structure of Barchan dune fields  

E-print Network

Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

Orencio Durn; Veit Schwmmle; Pedro G. Lind; Hans J. Herrmann

2011-05-19

117

Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China  

NASA Astrophysics Data System (ADS)

The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of 'frozen' barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the development of vegetation-stabilized dunes, which should be helpful in better understanding of vegetated dune morphology, model verification and prediction, and guiding practical dune stabilization efforts.

Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

2015-01-01

118

Daily cycles in coastal dunes  

USGS Publications Warehouse

Daily cycles of summer sea breezes produce distinctive cyclic foreset deposits in dune sands of the Texas and Oregon coasts. In both areas the winds are strong enough to transport sand only during part of the day, reach a peak during the afternoon, and vary little in direction during the period of sand transport. Cyclicity in the foreset deposits is made evident by variations in the type of sedimentary structure, the texture, and the heavy-mineral content of the sand. Some of the cyclic deposits are made up entirely of one basic type of structure, in which the character of the structure varies cyclically; for example, the angle of climb in a climbing-wind-ripple structure may vary cyclically. Other cyclic deposits are characterized by alternations of two or more structural types. Variations in the concentration of fine-grained heavy minerals, which account for the most striking cyclicity, arise mainly because of segregation on wind-rippled depositional surfaces: where the ripples climb at low angles, the coarsegrained light minerals, which accumulate preferentially on ripple crests, tend to be excluded from the local deposit. Daily cyclic deposits are thickest and best developed on small dunes and are least recognizable near the bases of large dunes. ?? 1988.

Hunter, R.E.; Richmond, B.M.

1988-01-01

119

DUNE: The Dark Universe Explorer  

E-print Network

Understanding the nature of Dark Matter and Dark Energy is one of the most pressing issues in cosmology and fundamental physics. The purpose of the DUNE (Dark UNiverse Explorer) mission is to study these two cosmological components with high precision, using a space-based weak lensing survey as its primary science driver. Weak lensing provides a measure of the distribution of dark matter in the universe and of the impact of dark energy on the growth of structures. DUNE will also include a complementary supernovae survey to measure the expansion history of the universe, thus giving independent additional constraints on dark energy. The baseline concept consists of a 1.2m telescope with a 0.5 square degree optical CCD camera. It is designed to be fast with reduced risks and costs, and to take advantage of the synergy between ground-based and space observations. Stringent requirements for weak lensing systematics were shown to be achievable with the baseline concept. This will allow DUNE to place strong constrai...

Rfrgier, A; Mellier, Y; Milliard, B; Pain, R; Michaud, J; Safa, F; Amara, A; Astier, Pierre; Barrelet, E; Bertin, E; Boulade, S; Cara, C; Claret, A; Georges, L; Grange, R; Guy, J; Koeck, C; Kroely, L; Magneville, C; Palanque-Delabrouille, Nathalie; Regnault, N; Smadja, G; Schimd, C; Sun, Z

2006-01-01

120

Lithium ion rechargeable systems studies  

NASA Astrophysics Data System (ADS)

Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode-increase reversible capacity, and minimize passivation; (2) cathode-extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

Levy, Samuel C.; Lasasse, Robert R.; Cygan, Randall T.; Voigt, James A.

121

Rechargeable lithium-ion cell  

DOEpatents

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01

122

Lithium ion rechargeable systems studies  

SciTech Connect

Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

1995-02-01

123

Investigation of Reversing Sand Dunes at the Bruneau Dunes, Idaho, as Analogs for Features on Mars  

NASA Astrophysics Data System (ADS)

The Bruneau Dunes in south-central Idaho include several large reversing sand dunes located within a cut-off meander of the Snake River. These dunes include the largest single-structured sand dune present in North America. Wind records from the Remote Automated Weather Station (RAWS) installation at the Mountain Home Air Force Base, which is ~21 km NW of the Bruneau Dunes, have proved to be very helpful in assessing the regional wind patterns at this section of the western Snake River Plains province; a bimodal wind regime is present, with seasonal changes of strong (sand-moving) winds blowing from either the northwest or the southeast. During April of 2011, we obtained ten precision topographic surveys across the southernmost reversing dune using a Differential Global Positioning System (DGPS). The DGPS data document the shape of the dune going from a low, broad sand ridge at the southern distal end of the dune to the symmetrically shaped 112-m-high central portion of the dune, where both flanks of the dune consist of active slopes near the angle of repose. These data will be useful in evaluating the reversing dune hypothesis proposed for enigmatic features on Mars called Transverse Aeolian Ridges (TARs), which could have formed either as large mega-ripples or small sand dunes. The symmetric profiles across TARs with heights greater than 1 m are more consistent with measured profiles of reversing sand dunes than with measured profiles of mega-ripples (whose surfaces are coated by large particles ranging from coarse sand to gravel, moved by saltation-induced creep). Using DGPS to monitor changes in the three-dimensional location of the crests of the reversing dunes at the Bruneau Dunes should provide a means for estimating the likely timescale for changes of TAR crests if the Martian features are indeed formed in the same manner as reversing sand dunes on Earth.

Zimbelman, J. R.; Scheidt, S. P.

2012-12-01

124

Measuring and computing natural ground-water recharge at sites in south-central Kansas  

USGS Publications Warehouse

To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a shallower depth to the water table. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. (Author 's abstract)

Sophocleous, M.A.; Perry, C.A.

1987-01-01

125

Parabolic dunes in north-eastern Brazil  

E-print Network

In this work we present measurements of vegetation cover over parabolic dunes with different degree of activation along the north-eastern Brazilian coast. We are able to extend the local values of the vegetation cover density to the whole dune by correlating measurements with the gray-scale levels of a high resolution satellite image of the dune field. The empirical vegetation distribution is finally used to validate the results of a recent continuous model of dune motion coupling sand erosion and vegetation growth.

Duran, O; Bezerra, L J C; Herrmann, H J; Maia, L P

2007-01-01

126

Modle statique d'une PEMFC en vue d'une application au Elodie Lechartier  

E-print Network

Modle statique d'une PEMFC en vue d'une application au pronostic. Elodie Lechartier FEMTO en vue d'une application au pronostic de pile PEMFC, un modle de comportement obtenu grce une to experimental data. MOTS-CLES PEMFC, PHM, modle, statique. 1. Introduction Dans le contexte actuel o le

Paris-Sud XI, Universit de

127

Disturbance drives phylogenetic community structure in coastal dune vegetation  

E-print Network

Disturbance drives phylogenetic community structure in coastal dune vegetation Background Coastal dunes are a globally distributed ecosystem characterized by strong internal gradients in disturbance plant community assembly, but their relative importance in coastal dunes is not well elucidated. We

Schierup, Mikkel Heide

128

Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands  

E-print Network

for the Ground Water Disinfection Rule in the United States [Macler, 1996]. In Netherlands a proposal because of an as yet unknown process. 1. Introduction In this paper, results of a field study, aimed year, drinking water consumption, and dose response relations of pathogens [Regli et al., 1991

Hassanizadeh, S. Majid

129

Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics  

Microsoft Academic Search

Sophocleous, M., 1992. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. J. Hydrol., 137: 113-140. The results of a 6 year recharge st,dy in the Great Bend Prairie of t:entral Kansas are statistically analyzed to regionalize the limited number of site-specific but year-round measurements. Emphasis is placed on easily measured parameters and

Marios Sophocleous

1992-01-01

130

Experimental studies in natural groundwater-recharge dynamics: The analysis of observed recharge events  

Microsoft Academic Search

Sophocleous, M. and Perry, C.A., 1985. Experimental studies in natural groundwater- recharge dynamics: The analysis of observed recharge events. J. Hydrol., 81 : 297--332. The amounts and time distribution of groundwater recharge from precipitation over an approximately 19-month period were investigated at two instrumented sites in south- central Kansas. Precipitation and evapotranspiration sequences, soil-moisture profiles and storage changes, water fluxes

MARIOS SOPHOCLEOUS; CHARLES A. PERRY

1985-01-01

131

Design of an AUV recharging system  

E-print Network

The Odyssey AUV Series uses a Lithium-ion Polymer battery which is able to supply the necessary power for a limited mission time. The current method of recharge includes surfacing the AUV, opening the vehicle, removing the ...

Miller, Bryan D. (Bryan David)

2005-01-01

132

REVISED NORTH CAROLINA GROUNDWATER RECHARGE RATES 1998  

EPA Science Inventory

Revised North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, unpublished map: North Carolina State University, as modified by the NC Department of Environment and Natural Resources (DENR) Division of Water Quality (DWQ) Groundwater Section, (polygons)...

133

Design of an AUV recharging system  

E-print Network

The utility of present Autonomous Underwater Vehicles (AUVs) is limited by their on-board energy storage capability. Research indicates that rechargeable batteries will continue to be the AUV power source of choice for at ...

Gish, Lynn Andrew

2004-01-01

134

Groundwater Recharge Estimates under Agricultural Lands based on Deep Vadose Zone Sampling, Monitoring and Modeling, Mediterranean Climate, Israel  

NASA Astrophysics Data System (ADS)

Models of unsaturated flow and chloride transport under different agricultural settings were calibrated to deep vadose-zone samples or monitoring systems' data. The land settings include irrigated citrus orchards in light and heavy soils, a rain-fed winter crop field, an irrigated summer crop field and a bare sand dune. Vadose zone monitoring system (VMS), which enables continuous measurements of the vadose zone water content and frequent sampling of pore water at selected points across the entire vadose zone were used in three sites. In other sites direct push rigs were used for obtaining continuous core to depths ~ 10 m, and all physical and chemical characterization were derived in the lab. Hydrus 1D code was used for calibrating the models, validation runs (only in monitored sites) and simulations. In orchards, large variability of rechrge rates within the same orchard was observed. On average, relatively low recharge rates were calculated (~10% of precipitation+ irrigation), and high masses of chloride accumulations are found in many profiles obtained under orchards. Recharge variability within the same crop-field was usually smaller than the variability found in orchards while average relative recharge rates are usually higher than in orchards. Calibrated models were used for simulation of long periods and some simple precipitation-recharge statistics for the different land uses were obtained. Scenarios of land-use and climate change where used to produce estimates of the effects of these changes on recharge (e.g. 25% drop in rainfall will lead to ~50% drop in recharge under rain-fed crop).

Kurtzman, D.; Turkeltub, T.; Shapira, R.; Dahan, O.

2011-12-01

135

Issues and challenges facing rechargeable lithium batteries.  

PubMed

Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems. PMID:11713543

Tarascon, J M; Armand, M

2001-11-15

136

Issues and challenges facing rechargeable lithium batteries  

Microsoft Academic Search

Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges

J.-M. Tarascon; M. Armand

2001-01-01

137

Theory of the generalized chloride mass balance method for recharge estimation in groundwater basins characterised by point and diffuse recharge  

NASA Astrophysics Data System (ADS)

Application of the conventional chloride mass balance (CMB) method to point recharge dominant groundwater basins can substantially under-estimate long-term average annual recharge by not accounting for the effects of localized surface water inputs. This is because the conventional CMB method ignores the duality of infiltration and recharge found in karstic systems, where point recharge can be a contributing factor. When point recharge is present in groundwater basins, recharge estimation is unsuccessful using the conventional CMB method with, either unsaturated zone chloride or groundwater chloride. In this paper we describe a generalized CMB that can be applied to groundwater basins with point recharge. Results from this generalized CMB are shown to be comparable with long-term recharge estimates obtained using the watertable fluctuation method, groundwater flow modelling and Darcy flow calculations. The generalized CMB method provides an alternative, reliable long-term recharge estimation method for groundwater basins characterised by both point and diffuse recharge.

Somaratne, N.; Smettem, K. R. J.

2014-01-01

138

Pathfinder Rover Atop Mermaid Dune  

NASA Technical Reports Server (NTRS)

Mars Pathfinder Lander camera image of Sojourner Rover atop the Mermaid 'dune' on Sol 30. Note the dark material excavated by the rover wheels. These, and other excavations brought materials to the surface for examination and allowed estimates of mechanical properties of the deposits.

NOTE: original caption as published in Science Magazine

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

1997-01-01

139

Proposed artificial recharge studies in northern Qatar  

USGS Publications Warehouse

The aquifer system in northern Qatar comprises a water-table aquifer in the Rus Formation which is separated by an aquitard from a partially confined aquifer in the top of the overlying Umm er Radhuma Formation. These two aquifers are composed of limestone and dolomite of Eocene and Paleocene age and contain a fragile lens of freshwater which is heavily exploited as a source of water for agricultural irrigation. Net withdrawals are greatly in excess of total recharge, and quality of ground water is declining. Use of desalinated seawater for artificial recharge has been proposed for the area. Artificial recharge, on a large scale, could stabilize the decline in ground-water quality while allowing increased withdrawals for irrigation. The proposal appears technically feasible. Recharge should be by injection to the Umm er Radhuma aquifer whose average transmissivity is about 2,000 meters squared per day (as compared to an average of about 200 meters squared per day for the Rus aquifer). Implementation of artificial recharge should be preceded by a hydrogeologic appraisal. These studies should include test drilling, conventional aquifer tests, and recharge-recovery tests at four sites in northern Qatar. (USGS)

Kimrey, J.O.

1985-01-01

140

Great Sand Dunes National Monument and Preserve  

E-print Network

inventory program, the National Park Service (NPS) contracted the Colorado Natural Heritage Program (CNHPGreat Sand Dunes National Monument and Preserve 2003 Vascular Plant Inventory Susan Spackman) in 2001-2004 to conduct a field inventory of vascular plants of Great Sand Dunes National Monument

141

Size of Suspended Sediment over Dunes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Samples of suspended sediment were collected at four elevations simultaneously over two-dimensional mobile dunes in two mixtures of 0.5 mm sand in a laboratory flume channel. A constant sampling position relative to the dunes was maintained by adjusting the translation rate of the sampling carriage...

142

Size of Suspended Sediment Over Dunes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Samples of suspended sediment were collected at four elevations simultaneously over two-dimensional mobile dunes in 0.5 mm sand in a laboratory flume channel. A constant sampling position relative to the dunes was maintained by adjusting the translation rate of the sampling carriage to be the same ...

143

On the dynamics of cartoon dunes  

NASA Astrophysics Data System (ADS)

The spatio-temporal evolution of a downsized model for a barchan dune is investigated experimentally in a narrow water flow channel. We observe a rapid transition from the initial configuration to a steady-state dune with constant mass, shape, velocity, and packing fraction. The development towards the dune attractor is shown on the basis of four different starting configurations. The shape of the attractor exhibits all characteristic features of barchan dunes found in nature, namely a gently inclined windward (upstream) side, crest, brink, and steep lee (downstream) side. The migration velocity is reciprocal to the length of the dune and reciprocal to the square root of the value of its mass. The velocity scaling and the shape of the barchan dune is independent of the particle diameter. For small dunes we find significant deviations from a fixed height-length aspect ratio. Moreover, a particle tracking method reveals that the migration speed of the model dune is one order of magnitude slower than that of the individual particles. In particular, the erosion rate consists of comparable contributions from low energy (creeping) and high energy (saltating) particles. Finally, it is shown that the velocity field of the saltating particles is comparable to the velocity field of the driving fluid.

Groh, Christopher; Rehberg, Ingo; Kruelle, Christof A.

2010-03-01

144

Valles Marineris dune sediment provenance and pathways  

NASA Astrophysics Data System (ADS)

Although low-albedo sand is a prevalent component of the martian surface, sources and pathways of the sands are uncertain. As one of the principal present-day martian sediment sinks, the Valles Marineris (VM) rift system hosts a diversity of dune field populations associated with a variety of landforms that serve as potential sediment sources, including spur-and-gully walls, interior layered deposits (ILDs), and landslides. Here, we test the hypothesis that VM dune fields are largely derived from a variety of local and regional (intra-rift) sediment sources. Results show several dune fields are superposed on ancient wall massifs and ILDs that are topographically isolated from extra-rift sand sources. Spectral analysis of dune sand reveals compositional heterogeneity at the basinal-, dune field-, and dune-scales, arguing for discrete, relatively unmixed sediment sources. In Coprates and Melas chasmata, mapping is consistent with the principle sand source for dunes being Noachian-aged upper and lower wall materials composed of primary (igneous) minerals and glasses, some of which show evidence for alteration. In contrast, dune fields in Capri, Juventae, and Ganges chasmata show evidence for partial sediment derivation from adjacent Early Hesperian-aged hydrated sulfate-bearing ILD units. This finding indicates that these ILDs act as secondary sand sources. Dunes containing soft secondary minerals (e.g., monohydrated sulfate) are unlikely to have been derived from distant sources due to the physical weathering of sand grains during transport. Isolated extra-rift dune fields, sand sheets, and sand patches are located on the plateaus surrounding VM and the adjoining areas, but do not form interconnected networks of sand pathways into the rift. If past wind regimes (with respect to directionality and seasonality) were consistent with more recent regimes inferred from morphological analysis (i.e., dune slip faces, wind streaks), and were sufficient in strength and duration, small dune populations within Aurorae Chaos and north of eastern VM might have resulted from extended sand pathways into VM. However, we favor local and regional derivation of dune sand from a variety of intra-rift lithologic sources for most cases. Dune sand sources and the mechanism by which the sand is liberated are discussed in the context of findings described herein, but are broadly applicable to analysis of sediment production elsewhere on Mars.

Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.; Wray, James J.

2014-04-01

145

On the crescentic shape of barchan dune  

E-print Network

Aeolian sand dunes originate from wind flow and sand bed interactions. According to wind properties and sand availability, they can adopt different shapes, ranging from huge motion-less star dunes to small and mobile barchan dunes. The latter are crescentic and emerge under a unidirectional wind, with a low sand supply. Here, a 3d model for barchan based on existing 2d model is proposed. After describing the intrinsic issues of 3d modeling, we show that the deflection of reptating particules due to the shape of the dune leads to a lateral sand flux deflection, which takes the mathematical form of a non-linear diffusive process. This simple and physically meaningful coupling method is used to understand the shape of barchan dunes.

P. Hersen

2004-01-26

146

Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico  

USGS Publications Warehouse

The degree of early diagenesis in eolian dune and interdune sands at White Sands, New Mexico, is largely a function of the relationship between sand location and the water table. Most active and vegetation-stabilized dune sands are in the vadose zone, whereas interdune sands are in the capillary fringe and phreatic zones. Crystallographically controlled dissolution of the framework gypsum grains results in elongate, prismatic etch pits on sand grains from the capillary fringe and phreatic zones, whereas dissolution of sand grains in the vadose zone is slight, causing minute irregularities on grain surfaces. Vadose water percolating through the sand is manifest as meniscus layers. Consequently, dune sands in the vadose zone are cemented mainly by meniscus-shaped gypsum at grain contacts. Pendant cements formed on the lower margins of some sand grains. Cementation in the capillary fringe and the phreatic zone is more extensive than the vadose regardless of strata type. Typically, well-developed gypsum overgrowths form along the entire edge of a grain, or may encompass the entire grain. Complex diagenetic histories are suggested by multiple overgrowths and several episodes of dissolution on single grains, attesting to changing saturation levels with respect to gypsum in the shallow ground water. These changes in saturation are possibly due to periods of dilution by meteoric recharge, alternating with periods of concentration of ions and the formation of cement due to evaporation through the capillary fringe. ?? 1988.

Schenk, C.J.; Fryberger, S.G.

1988-01-01

147

Vegetated linear dunes - chronologically discontinuous archives of several short-term and major dune growth episodes  

NASA Astrophysics Data System (ADS)

Quartz sand dunes cover massive areas defined as arid, making them a potentially important archive of past climates and environments. But, dunes, being highly dynamic and relatively uniform in sedimentological composition, often compromise this potential. Most inland dunes are of the linear type that has a sinuous planar shape. Linear dunes, also associated with active seif dunes, are elongated by oblique cross-(dune) crest deflection of sand grains due to acutely bimodal sand-transporting winds. This prevents formation of long-term and stratigraphically continuous internal dune structure (though fully exposed internal linear dune structures to support this conclusion are rarely found). Therefore, dating of the dune sand by luminescence methods is mainly restricted to the last (re)mobilization phase and cannot track earlier dune growth history. Vegetated linear dunes (VLDs), mainly found in low-latitudes, are characterized by a straight planar shape and a partial shrub cover, and have been proposed to comprise an independent dune type. The stratigraphic cross-section of the VLD includes a sequence of chronologically discontinuous sand units forming the dune core. The accumulation of the units is generally interpreted to pertain to major episodes of strong wind power when sand was available. Possible minor events of sand accumulation are presumed to have been erased by major episodes. The units, often structureless and of similar sedimentological properties can only be discerned by luminescence dating as contacts between units do not necessarily imply chronological boundaries. The VLD core is overlaid by a mantle of sand that while being intermittently morphologically and structurally configured by seasonal winds to depths of several meters, preserves the dune core stratigraphy. Therefore, in a sense, the VLD is a prominent sedimentary body archiving influential short-time and possibly extreme events. Based upon exposed dune stratigraphy, ground-penetrating radar profiling and morphologic analysis, coupled with spatial dense optically stimulated luminescence (OSL) dated full dune cores, the VLD core structure is found to repeat itself in the northwestern Negev (Israel) dunefield, for three time orders, each representing different palaeoclimatic and palaeoenvironmental conditions. Accordingly, a full dune core coring strategy for retrieving luminescence ages which date the major VLD core units is required for adequately dating a vegetated linear dunefield. Exposed sections of VLD cores that reveal the full dune core structure are very important for such dating strategies. The VLD type is suggested to inherently comprise a distinct archive of unique past conditions, mainly since the last glacial. However, further study is required for robust palaeoclimatic interpretation of these archives.

Roskin, Joel

2013-04-01

148

Dunes  

E-print Network

like a mass of red tapeworms than a bouquet. "Momma and Mr. Tom are your parents." REED/ 4 3 Lizzy was always saying things like that, like Momma wasn't her real mom, even though we have pictures of Momma in the hospital when Lizzy was born. I... protecting you from a stranger who has already seen you naked. I decide that it was probably a man who invented the exam bed, with its metal legs jutting out to the sides, promising cold dis-comfort. Robert smiles the way he does when he wants to have sex...

Reed, Michelle

2006-01-01

149

Hybrid eolian dunes of William River Dune field, northern Saskatchewan, Canada  

SciTech Connect

A series of northwest-southeast aligned, large-scale (up to 30 m high) eolian dunes, occurring in a confined (600 km/sup 2/) desert area in northern Saskatchewan, Canada, was examined in the field. Observations were made of dune morphology and internal structure, and patterns of sand movement on the dunes were analyzed in relation to wind events during the summer of 1981. Present cross-sectional profiles exhibit steeper northeast slopes, the lower segment of which are intermittently covered by psammophilous grasses. Dune structure is dominated by northeast-dipping accretion laminae. Three /sup 14/C dates from organic material cropping out on the lower southwest slopes reveal that the dunes have migrated as transverse bed forms at rates of roughly 0.5 m/yr during the last few hundred years. However, a progressive increase in height, bulk, and symmetry along the dune axis from northwest to southeast, suggests an along-dune component of sand transport. This view is supported by (1) field measurements of airflow and along-dune sand transport patterns on 2 dunes, and (2) the present-day wind regime (1963-78). Dominated by north-northeast to northeast winds from January to June and by west-southwest winds from July to December, the resultant potential sand transport vector is toward the southeast, virtually identical to the dune axis.

Carson, M.A.; MacLean, P.A.

1985-02-01

150

Thermoluminescence and radiocarbon dating of Australian desert dunes  

Microsoft Academic Search

Quaternary lithostratigraphic units in continental dunes have been dated at three locations in South Australia by both radiocarbon dating of organic carbon bedded either in dune sands or in deposits correlated with dune building episodes, and by thermoluminescence (TL) sediment dating of the dune sands. It was not possible to date in situ organic carbon and adjacent aeolian quartz particles,

G. J. Gardner; A. J. Mortlock; D. M. Price; M. L. Readhead; R. J. Wasson

1987-01-01

151

Laboratory investigation of dune erosion using stereo video  

Microsoft Academic Search

Simple parameterizations of dune erosion are necessary for forecasting erosion potential prior to an oncoming storm. Dune erosion may be parameterized in terms of the elevation of the total water level (composed of surge, tide, and wave runup) above the dune base and period of exposure of the dune to waves. In this work, we test several versions of this

Margaret L. Palmsten; Robert A. Holman

152

Barchan dune corridors: Field characterization and investigation of control parameters  

E-print Network

Barchan dune corridors: Field characterization and investigation of control parameters H, and the output sand flux of a dune can be computed from the value of its body and horn widths. The dune size direction, in which the dunes have a rather well selected size. Investigating the possible external

Claudin, Philippe

153

Estimated recharge rates at the Hanford Site  

SciTech Connect

The Ground-Water Surveillance Project monitors the distribution of contaminants in ground water at the Hanford Site for the U.S. Department of Energy. A subtask called {open_quotes}Water Budget at Hanford{close_quotes} was initiated in FY 1994. The objective of this subtask was to produce a defensible map of estimated recharge rates across the Hanford Site. Methods that have been used to estimate recharge rates at the Hanford Site include measurements (of drainage, water contents, and tracers) and computer modeling. For the simulations of 12 soil-vegetation combinations, the annual rates varied from 0.05 mm/yr for the Ephrata sandy loam with bunchgrass to 85.2 mm/yr for the same soil without vegetation. Water content data from the Grass Site in the 300 Area indicated that annual rates varied from 3.0 to 143.5 mm/yr during an 8-year period. The annual volume of estimated recharge was calculated to be 8.47 {times} 10{sup 9} L for the potential future Hanford Site (i.e., the portion of the current Site bounded by Highway 240 and the Columbia River). This total volume is similar to earlier estimates of natural recharge and is 2 to 10x higher than estimates of runoff and ground-water flow from higher elevations. Not only is the volume of natural recharge significant in comparison to other ground-water inputs, the distribution of estimated recharge is highly skewed to the disturbed sandy soils (i.e., the 200 Areas, where most contaminants originate). The lack of good estimates of the means and variances of the supporting data (i.e., the soil map, the vegetation/land use map, the model parameters) translates into large uncertainties in the recharge estimates. When combined, the significant quantity of estimated recharge, its high sensitivity to disturbance, and the unquantified uncertainty of the data and model parameters suggest that the defensibility of the recharge estimates should be improved.

Fayer, M.J.; Walters, T.B.

1995-02-01

154

Transient, spatially varied groundwater recharge modeling  

NASA Astrophysics Data System (ADS)

The objective of this work is to integrate field data and modeling tools in producing temporally and spatially varying groundwater recharge in a pilot watershed in North Okanagan, Canada. The recharge modeling is undertaken by using the Richards equation based finite element code (HYDRUS-1D), ArcGIS, ROSETTA, in situ observations of soil temperature and soil moisture, and a long-term gridded climate data. The public version of HYDUS-1D and another version with detailed freezing and thawing module are first used to simulate soil temperature, snow pack, and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGIS to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 50.8 mm/year. Previous studies in the Okanagan Basin used Hydrologic Evaluation of Landfill Performance without any attempt of model performance evaluation, notwithstanding its inherent limitations. Thus, climate change impact results from this previous study and similar others, such as Jyrkama and Sykes (2007), need to be interpreted with caution.

Assefa, Kibreab Amare; Woodbury, Allan D.

2013-08-01

155

Reestablishing Naturally Functioning Dunes on Developed Coasts.  

PubMed

/ The potential for reestablishing dune habitat is investigated in municipalities in New Jersey, USA, where natural coastal landforms and biota have been eliminated or reduced in extent. Dunes are classified using width, relationship to natural and cultural features, and changes through time, and they are assessed for their value as naturally functioning landforms in developed municipalities. The relationship between size and longevity that exists under natural conditions is altered by human activity. Small dunes on privately owned lots can survive as long as larger dunes in natural areas that are located farther inland, and foredunes repaired using sand fences and earth-moving equipment can survive where they could not under natural conditions.Common beach management practices reduce the ecological values of coastal dunes. Mechanical beach cleaning eliminates incipient dunes, habitat for nesting birds, seed sources for pioneer dune colonizers and food for fauna, and artificially small, stabilized foredunes reduce the variability in microenvironments necessary for biodiversity. Recent initiatives for reducing coastal hazards, protecting nesting birds, and encouraging nature-based tourism provide incentive for the development of a restoration program for beaches and dunes that is compatible with human use. Suggested changes in management practice include restricting or rerouting pedestrian traffic, altering beach-cleaning procedures, using symbolic fences to allow for aeolian transport while preventing trampling of dunes, and eliminating or severely restricting exotic species. Landforms will be more natural in function and appearance but will be more dynamic, smaller and in a different position from those in natural areas. Research needs are specified for ecological, geomorphological, and attitudinal studies to support and inform restoration planning. PMID:10552101

Nordstrom; Lampe; Vandemark

2000-01-01

156

Reproducibility and utility of dune luminescence chronologies  

NASA Astrophysics Data System (ADS)

Optically stimulated luminescence (OSL) dating of dune deposits has increasingly been used as a tool to investigate the response of aeolian systems to environmental change. Amalgamation of individual dune accumulation chronologies has been employed in order to distinguish regional from local geomorphic responses to change. However, advances in dating have produced chronologies of increasing complexity. In particular, questions regarding the interpretation of dune ages have been raised, including over the most appropriate method to evaluate the significance of suites of OSL ages when local 'noisy' and discontinuous records are combined. In this paper, these issues are reviewed and the reproducibility of dune chronologies is assessed. OSL ages from two cores sampled from the same dune in the northeast Rub' al Khali, United Arab Emirates, are presented and compared, alongside an analysis of previously published dune ages dated to within the last 30 ka. Distinct periods of aeolian activity and preservation are identified, which can be tied to regional climatic and environmental changes. This case study is used to address fundamental questions that are persistently asked of dune dating studies, including the appropriate spatial scale over which to infer environmental and climatic change based on dune chronologies, whether chronological hiatuses can be interpreted, how to most appropriately combine and display datasets, and the relationship between geomorphic and palaeoclimatic signals. Chronological profiles reflect localised responses to environmental variability and climatic forcing, and amalgamation of datasets, with consideration of sampling resolution, is required; otherwise local factors are always likely to dominate. Using net accumulation rates to display ages may provide an informative approach of analysing and presenting dune OSL chronologies less susceptible to biases resulting from insufficient sampling resolution.

Leighton, Carly L.; Thomas, David S. G.; Bailey, Richard M.

2014-02-01

157

Sixth International Conference on Aeolian Research, Guelph, Canada. 2006 Barchan dune morphodynamics and linear dune formation on Mars  

E-print Network

Sixth International Conference on Aeolian Research, Guelph, Canada. 2006 Barchan dune morphodynamics and linear dune formation on Mars Mary C. Bourke, Planetary Science Institute, Tucson, mbourke@psi.edu Observations of sand dunes in satellite images indicate a wide variety of dune forms on Mars. Similar to Earth

Bourke, Mary C.

158

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars  

E-print Network

Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north] HighResolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal

Bourke, Mary C.

159

Solar recharging system for hearing aid cells.  

PubMed

We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity. PMID:7964140

Gmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muiz, L; Aristimuo, D; Unanue, J M; Torca, J; Urruticoechea, A

1994-09-01

160

Characteristics of groundwater recharge on the North China Plain.  

PubMed

Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge. PMID:24032445

Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

2014-01-01

161

Groundwater Recharge in Texas Bridget R. Scanlon, Alan Dutton,  

E-print Network

................................................................................. 28 Ogallala Aquifer ............................................................................. 20 Recharge Rates for the Major Aquifers Based on Review of Existing Data .................... 21 Evaluation of Techniques Used to Quantify Recharge in the Major Aquifers ................. 22 Conceptual

Scanlon, Bridget R.

162

REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures  

National Institute of Standards and Technology Data Gateway

SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase) REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.

163

'Sharks Teeth' -- Sand Dunes in Proctor Crater  

NASA Technical Reports Server (NTRS)

Sometimes, pictures received from Mars Global Surveyor's Mars Orbiter Camera (MOC) are 'just plain pretty.' This image, taken in early September 2000, shows a group of sand dunes at the edge of a much larger field of dark-toned dunes in Proctor Crater. Located at 47.9oS, 330.4oW, in the 170 km (106 mile) diameter crater named for 19th Century British astronomer Richard A. Proctor (1837-1888), the dunes shown here are created by winds blowing largely from the east/northeast. A plethora of smaller, brighter ripples covers the substrate between the dunes. Sunlight illuminates them from the upper left.

2001-01-01

164

Summary of the DUNE Mission Concept  

E-print Network

The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmolo gical probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, a nd cluster counts. Immediate additional goals concern the evolution of galaxies, to be studied with groundbreaking statistics, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands (1deg$^2$ field-of-view) which will form a unique legacy for astronomy. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept.

Refregier, Alexandre

2008-01-01

165

Summary of the DUNE Mission Concept  

E-print Network

The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmolo gical probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, a nd cluster counts. Immediate additional goals concern the evolution of galaxies, to be studied with groundbreaking statistics, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands (1deg$^2$ field-of-view) which will form a unique legacy for astronomy. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept.

Alexandre Refregier; Marian Douspis; the DUNE collaboration

2008-07-25

166

Observation of Density Segregation inside Migrating Dunes  

E-print Network

Spatiotemporal patterns in nature, such as ripples or dunes, formed by a fluid streaming over a sandy surface show complex behavior despite their simple forms. Below the surface, the granular structure of the sand particles is subject to self-organization processes, exhibiting such phenomena as reverse grading when larger particles are found on top of smaller ones. Here we report results of an experimental investigation with downscaled model dunes revealing that, if the particles differ not in size but in density, the heavier particles, surprisingly, accumulate in the central core close to the top of the dune. This finding contributes to the understanding of sedimentary structures found in nature and might be helpful to improve existing dating methods for desert dunes.

Christopher Groh; Ingo Rehberg; Christof A. Kruelle

2011-09-18

167

Priorities for Future Research on Planetary Dunes  

NASA Astrophysics Data System (ADS)

Planetary Dunes Workshop: A Record of Climate Change; Alamogordo, New Mexico, 28 April to 2 May 2008; Landforms and deposits created by the dynamic interactions between granular material and airflow (eolian processes) occur on several planetary bodies, including Earth, Mars, Titan, and Venus. To address many of the outstanding questions within planetary dune research, a workshop was organized by the U.S. Geological Survey, the Planetary Science Institute, the Desert Research Institute, and the Search for Extraterrestrial Intelligence Institute and was sponsored by the Lunar and Planetary Institute and the Jet Propulsion Laboratory. The workshop brought together researchers from diverse backgrounds, ranging from image analysis and modeling to terrestrial analog studies. The group of approximately 45 international researchers had intense discussions in an attempt to identify the most promising approaches to understanding planetary dune systems. On the basis of these discussions, the group identified the following 10 priorities for future planetary dune research.

Titus, Timothy N.; Lancaster, Nick; Hayward, Rose; Fenton, Lori; Bourke, Mary

2008-11-01

168

Palaeoclimatic Interpretations From Desert Dunes and Sediments  

Microsoft Academic Search

During the late Quaternary, the worlds major deserts experienced dramatic changes in the nature and frequency of aeolian\\u000a processes (Fig. 26.1). Sand seas (ergs) cover 5% of the global land surface and reveal evidence of repeated phases of dune\\u000a formation (Thomas et al. 2005). This paper presents a review of dune-building episodes during late Quaternary time and their\\u000a palaeoclimatic significance.

Vatche P. Tchakerian

169

Invasive plants on disturbed Korean sand dunes  

NASA Astrophysics Data System (ADS)

The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic soils, and conservation of surrounding sand dune areas.

Kim, Kee Dae

2005-01-01

170

Mean sediment residence time in barchan dunes  

NASA Astrophysics Data System (ADS)

When a barchan dune migrates, the sediment trapped on its lee side is later mobilized when exposed on the stoss side. Then sand grains may undergo many dune turnover cycles before their ejection along the horns, but the amount of time a sand grain contributes to the dune morphodynamics remains unknown. To estimate such a residence time, we analyze sediment particle motions in steady state barchans by tracking individual cells of a 3-D cellular automaton dune model. The overall sediment flux may be decomposed into advective and dispersive fluxes to estimate the relative contribution of the underlying physical processes to the barchan shape. The net lateral sediment transport from the center to the horns indicates that dispersion on the stoss slope is more efficient than the convergent sediment fluxes associated with avalanches on the lee slope. The combined effect of these two antagonistic dispersive processes restricts the lateral mixing of sediment particles in the central region of barchans. Then, for different flow strengths and dune sizes, we find that the mean residence time of sediment particles in barchans is equal to the surface of the central longitudinal dune slices divided by the input sand flux. We infer that this central slice contains most of the relevant information about barchan morphodynamics. Finally, we initiate a discussion about sediment transport and memory in the presence of bed forms using the advantages of the particle tracking technique.

Zhang, D.; Yang, X.; Rozier, O.; Narteau, C.

2014-03-01

171

Aeolian Dune Deformation in a Multi-Directional Wind Regime, White Sands Dune Field, New Mexico  

NASA Astrophysics Data System (ADS)

Aeolian dunes commonly exist in a multi-directional wind regime. With each constructive wind event, dunes both migrate and deform as a function of the incidence angle of the primary wind to the local brinkline orientation. Can dune shape after many wind events be predicted from the resultant of these wind events? This question was addressed for sinuous crescentic dunes at the White Sands Dune Field, New Mexico, using: (1) a record of wind events from nearby Holloman AFB, and (2) a time-series of LiDAR-derived digital elevation models (DEMs) in which changes in dune shape can be accurately measured. From June 2007 to June 2010, 1,590 wind events occurred in which wind velocity was above the threshold of 18.66 m/s. Based upon the sand-transporting capacity of each wind event, the rose diagram for the overall wind regime shows three modes: (1) a dominant mode from the SW that occurred throughout the year but was most common during the spring, (2) a secondary mode from the N-NE during winter during the passage of frontal weather systems during the summer, and (3) a tertiary mode from the S-SE that occurred primarily during the summer months. From brinkline tracing and difference maps made from DEMs for June 2007, June 2008, January 2009, September 2009, and June 2010, the impact of each component of the wind regime upon dune morphology is evident. Winds from the SW cause dune migration to the NE, and dune crestlines are oriented nearly perpendicular to this wind direction. N-NE winds cause along-crest crabbing of dune sinuosity, accompanied by scour along the northern flank of convex-downwind lee-face segments. S-SE winds cause local crestal reversal and scour of the lee face. Idealized dune cross-strata can be constructed based upon the impact of each wind event. However, beginning with an initial dune shape, subsequent dune shapes in the DEM time-series cannot be predicted using the resultant for the period and its incidence angle with the initial brinkline. Differences between the predicted and the actual dune shape becomes greater with increasing time. It is postulated that each wind event alters dune shape, even if only to a small degree, thereby creating a new antecedent boundary condition to be acted upon by the next wind event.

Pedersen, A.; Kocurek, G.

2013-12-01

172

Sources of uncertainty in climate change impacts on groundwater recharge  

Microsoft Academic Search

This paper assesses the significance of the many sources of uncertainty in future groundwater recharge estimation, based on lessons learnt from an integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge in East Anglia, UK. Many factors affect simulations of future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment,

I. P. Holman

2007-01-01

173

A bibliography of dunes: Earth, Mars, and Venus  

NASA Technical Reports Server (NTRS)

Dunes are important depositional landforms and sedimentary environments on Earth and Mars, and may be important on Venus. The similarity of dune forms on Earth and Mars, together with the dynamic similarity of aeolian processes on the terrestrial planets indicates that it is appropriate to interpret dune forms and processes on Mars and Venus by using analog studies. However, the literature on dune studies is large and scattered. The aim of this bibliography is to assist investigators by providing a literature resource on techniques which have proved successful in elucidating dune characteristics and processes on Earth, Mars, and Venus. This bibliography documents the many investigations of dunes undertaken in the last century. It concentrates on studies of inland dunes in both hot and cold desert regions on Earth and includes investigations of coastal dunes only if they discuss matters of general significance for dune sediments, processes, or morphology.

Lancaster, N.

1988-01-01

174

Anode for rechargeable ambient temperature lithium cells  

NASA Technical Reports Server (NTRS)

An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

Huang, Chen-Kuo (inventor); Surampudi, Subbarao (inventor); Attia, Alan I. (inventor); Halpert, Gerald (inventor)

1994-01-01

175

Recharging "Hot-Melt" Adhesive Film  

NASA Technical Reports Server (NTRS)

Technique for recharging surface with "hot-melt" film makes use of one sided, high-temperature, pressure-sensitive adhesive tape. Purpose of the one-sided tape is to hold hot-melt charge in place until fused to surface. After adhesive has fused to surface and cooled, tape is removed, leaving adhesive on surface.

Progar, D. J.

1983-01-01

176

Design considerations for rechargeable lithium batteries  

NASA Technical Reports Server (NTRS)

Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

1993-01-01

177

Self-Recharging Virtual Currency David Irwin  

E-print Network

aydan@cs.duke.edu ABSTRACT Market-based control is attractive for networked computing utilities in which self-recharging virtual currency model as a com- mon medium of exchange in a computational market. The key idea is to recycle currency through the economy auto- matically while bounding the rate

Shenoy, Prashant

178

Alloys of clathrate allotropes for rechargeable batteries  

DOEpatents

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09

179

Groundwater Recharge Simulator M. Tech. Thesis  

E-print Network

Groundwater Recharge Simulator M. Tech. Thesis by Dharmvir Kumar Roll No: 07305902 Guide: Prof;Contents 1 Introduction 1 1.1 Groundwater Theory.1.2 Unsaturated Flow and the Water Table . . . . . . . . . . . . . . . . 7 1.1.3 Some more Terminology

Sohoni, Milind

180

Modeling emergent large-scale structures of barchan dune fields  

NASA Astrophysics Data System (ADS)

In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

2013-12-01

181

Predictability of dune activity in real dune fields under unidirectional wind regimes  

NASA Astrophysics Data System (ADS)

We present an analysis of 10 dune fields to test a model-derived hypothesis of dune field activity. The hypothesis suggests that a quantifiable threshold exists for stabilization in unidirectional wind regimes: active dunes have slipface deposition rates that exceed the vegetation deposition tolerance, and stabilizing dunes have the opposite. We quantified aeolian sand flux, slipface geometry, and vegetation deposition tolerance to directly test the hypothesis at four dune fields (Bigstick, White Sands Stable, White Sands Active, and Cape Cod). We indirectly tested the hypothesis at six additional dune fields with limited vegetation data (Hanford, Ao Nuevo, Skagen Odde, Salton Sea, Oceano Stable, and Oceano Active, "inverse calculation sites"). We used digital topographic data and estimates of aeolian sand flux to approximate the slipface deposition rates prior to stabilization. Results revealed a distinct, quantifiable, and consistent pattern despite diverse environmental conditions: the modal peak of prestabilization slipface deposition rates was 80% of the vegetation deposition tolerance at stabilized or stabilizing dune fields. Results from inverse calculation sites indicate deposition rates at stabilized sites were near a hypothesized maximum vegetation deposition tolerance (1 m a-1), and active sites had slipface deposition rates much higher. Overall, these results confirm the hypothesis and provide evidence of a globally applicable, simple, and previously unidentified predictor for the dynamics of vegetation cover in dune fields under unidirectional wind regimes.

Barchyn, Thomas E.; Hugenholtz, Chris H.

2015-02-01

182

Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields  

E-print Network

P13B-1369 Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically. The 67°N latitude, 62 km2 Great Kobuk Sand Dunes (GKSD) are a terrestrial analog for polar, intercrater sand thermal conductivity, higher wet sand thermal conductivity, infiltration of relatively warm summer

Stillman, David E.

183

An approach to identify urban groundwater recharge  

NASA Astrophysics Data System (ADS)

Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, ...). The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i) Identification of potential recharge sources, (ii) Selection of tracers, (iii) Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv) Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%), the sewage network losses (30%), rainfall, concentrated in the non-urbanized areas (17%), from runoff infiltration (20%), and the Bess River (11%). Regarding species, halogens (chloride, fluoride and bromide), sulfate, total nitrogen, and stable isotopes (18O2H, and 34S) behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

Vzquez-Su, E.; Carrera, J.; Tubau, I.; Snchez-Vila, X.; Soler, A.

2010-04-01

184

An approach to identify urban groundwater recharge  

NASA Astrophysics Data System (ADS)

Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, ...). The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i) Identification of potential recharge sources, (ii) Selection of tracers, (iii) Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv) Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%), the sewage network losses (30%), rainfall, concentrated in the non-urbanized areas (17%), from runoff infiltration (20%), and the Bess River (11%). Regarding species, halogens (chloride, fluoride and bromide), sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S) behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

Vzquez-Su, E.; Carrera, J.; Tubau, I.; Snchez-Vila, X.; Soler, A.

2010-10-01

185

Experimental measurement of diffusive extinction depth and soil moisture gradients in dune sand of Western Saudi Arabia  

NASA Astrophysics Data System (ADS)

In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration and water is commonly stored within them because of the low hydraulic conductivity soils within the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the "extinction depth", where it is protected from evaporation during the long dry periods. The stored moisture below the extinction depth can be utilized to support desert agriculture and the subsurface areas below this depth can serve as potential sites for storage of surface runoff or treated waste water by artificial recharge. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. A barrel with a diameter 150 cm and a height of 150 cm was installed underground in the field and was filled with dune sand. The sand was saturated with water and was exposed to natural conditions (evaporation and precipitation) for thirty days. The decline of the water level in the sand column was continuously recorded by using transducers and sensors installed at different depths to monitor the temporal variation of temperature and moisture content within the sand. The moisture content gradient showed a gradual decline during measurement. The effect of the diurnal variation of temperature was observed by the sensors installed in the upper 75 cm and was negligible at greater depths. The water level decline stabilized after twenty days and the extinction depth was established at 85 cm. In the field, a similar extinction depth was observed in the region where sand dunes overlay an impervious basement.

Mughal, I.; Jadoon, K. Z.; Mai, P. M.; Al-Mashharawi, S.; Missimer, T. M.

2012-12-01

186

Ecology of Pacific Northwest coastal sand dunes: a community profile  

SciTech Connect

Sand dunes occur in 33 localities along the 950 km of North American Pacific coast between the Straits of Juan de Fuca (49/sup 0/N) and Cape Mendocino (40/sup 0/). The dune landscape is a mosaic of dune forms: transverse ridge, oblique dune, retention ridge, foredune, parabola dune, sand hummock, blowout, sand plain, deflation plain, dune ridge, swale, remnant forest, and ponds and lakes. These forms are the basic morphological units making up the four dune systems: parallel ridge, parabola dune, transverse ridge, and bay dune. Vegetation is well-developed on stabilized dunes. Of the 21 plant communities identified, nine are herbaceous, five are shrub, and seven are forest. A wide variety of vertebrate animals occur in seven distinct habitats: open dunes, grassland and meadow, shrub thicket, forest, marsh, riparian, and lakes and ponds. Urban development, increased rate of stabilization due to the introduction of European beachgrass (Ammophila arenaria (L.) Link), and massive disturbance resulting from heavy off-road vehicle traffic are the greatest threats to the long-term survival and stability of a number of sand dune habitats. Two animals and three plants dependent on dune habitats are listed as rare, threatened, or endangered. 93 references, 52 figures, 13 tables.

Wiedemann, A.M.

1984-03-01

187

When dunes move together, structure of deserts emerges  

E-print Network

Crescent shaped barchan dunes are highly mobile dunes that are usually presented as a prototypical model of sand dunes. Although they have been theoretically shown to be unstable when considered separately, it is well known that they form large assemblies in desert. Collisions of dunes have been proposed as a mechanism to redistribute sand between dunes and prevent the formation of heavily large dunes, resulting in a stabilizing effect in the context of a dense barchan field. Yet, no models are able to explain the spatial structures of dunes observed in deserts. Here, we use an agent-based model with elementary rules of sand redistribution during collisions to access the full dynamics of very large barchan dune fields. Consequently, stationnary, out of equilibrium states emerge. Trigging the dune field density by a sand load/lost ratio, we show that large dune fields exhibit two assymtotic regimes: a dilute regime, where sand dune nucleation is needed to maintain a dune field, and a dense regime, where dune c...

Gnois, Mathieu; Pont, Sylvain Courrech du; Grgoire, Guillaume

2012-01-01

188

Dunes on Titan observed by Cassini Radar  

USGS Publications Warehouse

Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; The Cassini Radar Team

2008-01-01

189

Layers, Landslides, and Sand Dunes  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Released 27 October 2003

This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.

Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2003-01-01

190

Manganese oxide cathodes for rechargeable batteries  

NASA Astrophysics Data System (ADS)

Manganese oxides are considered as promising cathodes for rechargeable batteries due to their low cost and low toxicity as well as the abundant natural resources. In this dissertation, manganese oxides have been investigated as cathodes for both rechargeable lithium and alkaline batteries. Nanostructured lithium manganese oxides designed for rechargeable lithium cells have been synthesized by reducing lithium permanganate with methanol or hydrogen in various solvents followed by firing at moderate temperatures. The samples have been characterized by wet-chemical analyses, thermal methods, spectroscopic methods, and electron microscopy. It has been found that chemical residues in the oxides such as carboxylates and hydroxyl groups, which could be controlled by varying the reaction medium, reducing agents, and additives, make a significant influence on the electrochemical properties. The Li/Mn ratio in the material has also been found to be a critical factor in determining the rechargeability of the cathodes. The optimized samples exhibit a high capacity of close to 300 mAh/g with good cyclability and charge efficiency. The high capacity with a lower discharge voltage may make these nanostructured oxides particularly attractive for lithium polymer batteries. The research on the manganese oxide cathodes for alkaline batteries is focused on an analysis of the reaction products generated during the charge/discharge processes or by some designed chemical reactions mimicking the electrochemical processes. The factors influencing the formation of Mn3O4 in the two-electron redox process of delta-MnO2 have been studied with linear sweep voltammetry combined with X-ray diffraction. The presence of bismuth, the discharge rate, and the microstructure of the electrodes are found to affect the formation of Mn3O4, which is known to be electrochemically inactive. A faster voltage sweep and a more intimate mixing of the manganese oxide and carbon in the cathode are found to suppress the formation of Mn3O4. Bismuth has also been found to be beneficial in the one-electron process of gamma-MnO 2 when incorporated into the cathode. The results of a series of chemical reactions reveal that bismuth is blocking some reaction paths leading to the unwanted birnessite or Mn3O4. Barium is also found to play a similar role, but it is less effective than bismuth for the same amount of additive. Optimization of the additives has the potential to make the rechargeable alkaline cells based on manganese oxides to successfully compete with other rechargeable systems due to their low cost, environmental friendliness, and excellent safety features.

Im, Dongmin

191

Rechargeable Infection-responsive Antifungal Denture Materials  

PubMed Central

Candida-associated denture stomatitis (CADS) is a significant clinical concern. We developed rechargeable infection-responsive antifungal denture materials for potentially managing the disease. Polymethacrylic acid (PMAA) was covalently bound onto diurethane dimethacrylate denture resins in the curing step. The PMAA resins bound cationic antifungal drugs such as miconazole and chlorhexidine digluconate (CG) through ionic interactions. The anticandidal activities of the drug-containing PMAA-resin discs were sustained for a prolonged period of time (weeks and months). Drug release was much faster at acidic conditions (pH 5) than at pH 7. Drugs bound to the denture materials could be washed out by treatment with EDTA, and the drug-depleted resins could be recharged with the same or a different class of anticandidal drugs. These results suggest clinical potential of the newly developed antifungal denture materials in the management of CADS and other infectious conditions. PMID:20940361

Cao, Z.; Sun, X.; Yeh, C.-K.; Sun, Y.

2010-01-01

192

Nanocomposite polymer electrolyte for rechargeable magnesium batteries  

SciTech Connect

Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

2014-12-28

193

Rechargeable battery-powered flashlight system  

SciTech Connect

A rechargeable battery-operated flashlight system includes a housing for the flashlight, batteries and associated circuitry. A two-pronged plug is rotatably mounted in the housing for movement between two positions, the prongs projecting outwardly through an opening in the housing so that in one position they project into a recess formed by a reentrant portion of the housing and in the other position they project away from the recess. Resilient contacts connect the prongs to the rest of the circuitry, and engage in detents on the prongs in their two positions to inhibit rotation thereof. A wall bracket defines a pocket for releasably accommodating a receptacle fixture for receiving the plug prongs in their one position and for supporting the housing during recharging. In their other position, the prongs can be plugged directly into an AC wall outlet.

Conforti, F.J.; Fenne, K.R.

1984-08-21

194

Lateral migration of linear dunes in the Strzelecki Desert, Australia  

USGS Publications Warehouse

Preferential accumulation of sand on east-facing flanks indicates that the dunes migrated eastward several metres during the Holocene. Moreover, the west-facing flanks of some dunes have experienced a minimum of tens of metres of erosion. This asymmetric erosion and deposition were caused by dune obliquity and lateral migration that may have begun as early as the Pleistocene. Dunes in the Strzelecki Desert and in the adjacent Simpson Desert display a variety of grossly different internal structures. -from Author

Rubin, D.M.

1990-01-01

195

Geology Fieldnotes: Great Sand Dunes National Monument Colorado  

NSDL National Science Digital Library

This article describes the geology of Great Sand Dunes National Monument. The monument is in southern Colorado and contains North America's tallest dunes, which rise over 750 feet high against the Sangre de Cristo Mountains. Great Sand Dunes, containing 30 square miles of dunes, became a national monument in 1932. Features include links to maps, photographs and visitor information as well as a selection of links to related topics.

196

Sand dune movement in the Victoria Valley, Antarctica  

Microsoft Academic Search

We use vertical aerial photographs and LiDAR topographic survey data to estimate dune migration rates in the Victoria Valley dunefield, Antarctica, between 1961 and 2001. Results confirm that the dunes migrated an average of 1.5m\\/year. These values are consistent with other estimates of dune migration from cold climate deserts and are significantly lower than estimates from warm deserts. Dune migration

Mary C. Bourke; Ryan C. Ewing; David Finnegan; Hamish A. McGowan

2009-01-01

197

Mars global digital dune database and initial science results  

USGS Publications Warehouse

A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 kM2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65??N to 65??S latitude and includes ???550 dune fields, covering ???70,000 km2, with an estimated total volume of ???3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ???800,000 km2, ???6 times less than the total areal estimate of ???5,000,000 km2 for terrestrial dunes. Where availability and quality of THEMIS visible (VIS) or Mars Orbiter Camera. narrow-angle (MOC NA) images allow, we classify dunes and include dune slipface measurements, which are derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. For dunes located within craters, the azimuth from crater centroid to dune field centroid (referred to as dune centroid azimuth) is calculated and can provide an accurate method for tracking dune migration within smooth-floored craters. These indicators of wind direction are compared to output from a general circulation model (GCM). Dune centroid azimuth values generally correlate to regional wind patterns. Slipface orientations are less well correlated, suggesting that local topographic effects may play a larger role in dune orientation than regional winds. Copyright 2007 by the American Geophysical Union.

Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Hare, T.M.; Titus, T.N.; Bourke, M.C.; Colaprete, A.; Christensen, P.R.

2007-01-01

198

Mobile dunes and eroding salt marshes  

NASA Astrophysics Data System (ADS)

The paper deals with general outlines of salt marsh and dune vegetation in the Ellenbogen and Listland area on Sylt (Schleswig-Holstein, FRG). The composition of current salt marsh vegetation is considered to be mainly the result of a long-lasting process of tidal inundation, grazing, and a permanent influence of groundwater seepage from the surrounding dunes. The lower salt marsh communities have shown constancy for 67 years, due to the effect of heavy grazing. The mid-upper salt marsh communities demonstrated a succession from a Puccinellia maritima-dominated community of the lower marsh to a Juncus gerardii-dominated community of the mid-upper salt marsh, which may be due to the transport of sand over a short time on the surface of the marsh. The area covered by plant communities of annuals below Mean High Water (MHW) seemed to diminish. Salt marsh soils, especially of the mid-upper marsh, indicate sandy layers resulting from sand drift of the dunes. Dry and wet successional series of the dunes in the Listland/Ellenbogen area both show grassy stages shifting to dwarf shrubs as final stages. White primary dunes can only be found on the accreting shoreline of the Ellenbogen, which is also grazed by sheep; vegetation cover therefore remains dominated by grasses, mosses and lichens. Three mobile dunes (as the most prominent features of this landscape) have been left unaffected by seeding and planting by local authorities. Grazing is considered to be an inadequate tool in nature conservation as long as natural processes are to prevail in the landscape as major determinants.

Neuhaus, R.

1994-06-01

199

Linking restoration ecology with coastal dune restoration  

NASA Astrophysics Data System (ADS)

Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and sustainability.

Lithgow, D.; Martnez, M. L.; Gallego-Fernndez, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodrguez-Revelo, N.; Jimnez-Orocio, O.; Mendoza-Gonzlez, G.; lvarez-Molina, L. L.

2013-10-01

200

Inorganic rechargeable non-aqueous cell  

DOEpatents

A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

Bowden, William L. (Nashua, NH); Dey, Arabinda N. (Needham, MA)

1985-05-07

201

A new rechargeable intelligent vehicle detection sensor  

NASA Astrophysics Data System (ADS)

Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation.

Lin, L.; Han, X. B.; Ding, R.; Li, G.; C-Y Lu, Steven; Hong, Q.

2005-01-01

202

Ampere-Hour Meter For Rechargeable Battery  

NASA Technical Reports Server (NTRS)

Low-power analog/digital electronic circuit meters discharge of storage battery in ampere-hours. By metering discharge, one obtains indication of state of charge of battery and avoids unnecessary recharging, maintaining capacity of battery and prolonging life. Because of its small size and low power consumption, useful in such applications as portable video cameras, communication equipment on boats, portable audio equipment, and portable medical equipment.

Tripp, John S.; Schott, Timothy D.; Tcheng, Ping

1993-01-01

203

Geology Fieldnotes: Sleeping Bear Dunes National Lakeshore, Michigan  

NSDL National Science Digital Library

The Sleeping Bear Dunes National Lakeshore site contains park geology information, park maps, photographs, related links, and visitor information. The park geology section discusses the geologic history of the region and formation of Sleeping Bear Dunes through westerly winds from Lake Michigan. The park maps section includes a map of the Sleeping Bear Dunes National Lakeshore and the surrounding area.

204

Modeling emergent large-scale structures of barchan dune fields  

E-print Network

Modeling emergent large-scale structures of barchan dune fields S. Worman , A.B. Murray , R, barchan dunes typically exist as members of larger fields that display strik- ing, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing

Claudin, Philippe

205

LATE ORDOVICIAN CLIMBING DUNE ASSEMBLAGES, THE SIGNATURE OF GLACIAL OUTBURST ?  

E-print Network

1 LATE ORDOVICIAN CLIMBING DUNE ASSEMBLAGES, THE SIGNATURE OF GLACIAL OUTBURST ? F. GIRARD1, J, stoss-depositional 2D or 3D dunes. Based on data of outcrops from the paraglacial successions to describe climbing dunes assemblages (facies, geometries and depositional model), and to relate them

Paris-Sud XI, Universit de

206

Spatiotemporal model for the progression of transgressive dunes  

E-print Network

Spatiotemporal model for the progression of transgressive dunes H. Yizhaqa, , Y. Ashkenazya , N Transgressive dunes, which are active sand areas surrounded by vegetation, exist on many coasts. In some regions like in Fraser Island in Australia, small dunes shrink while large ones grow, although both experience

Ashkenazy, Yossi "Yosef"

207

Climate and coastal dune vegetation: disturbance, recovery, and succession  

E-print Network

Climate and coastal dune vegetation: disturbance, recovery, and succession Thomas E. Miller Elise Science+Business Media B.V. 2009 Abstract The sand dune habitats found on barrier islands and other. Foredune, interdune, and backdune habitats common to most coastal dunes have very different vegetation

Miller, Thomas E.

208

LATE ORDOVICIAN CLIMBING DUNE ASSEMBLAGES : THE SIGNATURE OF GLACIAL OUTBURST?  

E-print Network

LATE ORDOVICIAN CLIMBING DUNE ASSEMBLAGES : THE SIGNATURE OF GLACIAL OUTBURST? F. GIRARD, J Algeria boundary), this presentation aims to describe climbing dunes assemblages (facies, geometries a continental ice-front and a prograding shoreline - climbing dune assemblages in 3 types of sand

Paris-Sud XI, Universit de

209

Exploring inner structure of Titan's dunes from Cassini Radar observations  

NASA Astrophysics Data System (ADS)

Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (?0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive correlation between the backscatter and elevation along dune profile for the larger, older dunes in the Great Sand Sea in south-western Egypt and Siwa dune field in north-western Egypt, as opposed to the weak negative correlation exhibited by the smaller, younger Qattaniya dunes in north-eastern Egypt. This result is reinforced by our GPR survey on a large dune in the Siwa dune field and a smaller dune in the Qattaniya dune field. Our GPR data suggest the internal structure of larger dunes to consist of greater number of layers/cross-strata than smaller ones in the first 8 meters of the subsurface, which corresponds to the radar penetration depth at (0.8-1.2) GHz. Dunes on Titan exhibit backscatter-height dependency similar to the smaller Qattaniya dunes. In particular, the Shangri-La and Belet dunes on Titan exhibit a significantly stronger, negative correlation for the backscatter-height dependency compared to the Fensal and Aztlan dunes, suggesting a difference in the internal layering, relative ages and formation history of these dunes on Titan.

Sharma, P.; Heggy, E.; Farr, T. G.

2013-12-01

210

Barchan dunes morphology dynamics under different environmental conditions  

NASA Astrophysics Data System (ADS)

The aim of this study was to emphasize significance of diversified dynamics of barchans dune morphology. We analyzed and compared barchans found in two dune fields: Kharga (S Egypt) and Tarfaya-Layoune (S-Morocco). These dune fields are characterized by significantly different factors responsible for dunes development e.g. textural and mineralogical composition of dune sand, dune sand moisture, air humidity, inter dune vegetation cover. For each investigated dune filed and study period (2008, 2010, 2012 for Kharga and 2007, 2011, 2012 for Tarfaya-Layoune dune fields) detailed shape measurement of 20 simple isolated barchans of different dune sizes was made. The 10-2 m horizontal and 1,5 10-2m vertical accuracy was obtained (1 measuring point per 1m2 on average).In order to compare barchan dunes morphology and to determine depositional and erosional patterns, the 3D models were created. For better understanding of this processes, sand bulk density of barchan surface was measured (1 measuring point per 2m2 on average). The velocity of dunes in relation to dune shape was also analyzed. The results show that the relationship between typically correlated parameters change during movement of the barchans. Most values change by a few percent per year (slip face height, dune base area and dune volume) or by a dozen or so percent per year (windward side length, horns length and width). We obtain good linear relationship (with 0,05 significant level) between slip face height and the dune base area (0,77 < R2 < 0,83), dune volume (0,66 < R2 < 0,72), windward side length (0,58 < R2 < 0,87), horns length (0,71 < R2 < 0,90) or horns width (0,79 < R2 < 0,93). The linear relationship between displacement rate and the morphological parameters is not strong (0,54< R2 < 0,81) for Kharga dune field and (0,41< R2 < 0,66) for Tarfaya-Layoune dune field. We noted also good linear relationship between displacement rate and the angle of span of the horns (R2=0,73 on Tarfaya-Layoune dune fields). Comparison of shape change of the same barchan made it possible to determine the depositional and erosional zones. The annual changes of surface altitude do not exceed a few percent of the total sand thickness in analyzed zones (more for small dunes). However, we noted important shape differences between barchans of the same slip face height in two investigated dune fields (up to 20% of sand thickness in the same point). We also found a good correlation between barchans shape and bulk density of dune sand. The highest bulk density of the dune sand is noted at the dune horns (up to 1767kg m-3 for Kharga dune field and up to 1644 kg m-3 for Tarfaya-Layoune dune field). On the windward (stoss) sides the bulk density of the dune sand depends on barchans shape (slope inclination). The lee sides have the value around 1400 kg m-3. Generally our result show relatively small differences in dune morphology dynamics within the same dune field but much greater between the two analyzed areas.

Dluzewski, M.

2012-04-01

211

Variation of bee communities on a sand dune complex in the Great Basin: Implications for sand dune conservation  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sand dunes across the Mojave and Great Basin Deserts house rich bee communities. The pollination services these bees provide can be vital in maintaining the diverse, and often endemic, dune flora. These dune environments, however, are threatened by intense off-highway vehicle (OHV) use. Conservati...

212

Probabilistic analysis of the effects of climate change on groundwater recharge  

Microsoft Academic Search

Groundwater recharge is likely to be affected by climate change. In semiarid regions where groundwater resources are often critical, annual recharge rates are typically small and most recharge occurs episodically. Such episodic recharge is uncertain and difficult to predict. This paper analyzes the impacts of different climate predictions on diffuse episodic recharge at a low-relief semiarid rain-fed agricultural area. The

Gene-Hua Crystal Ng; Dennis McLaughlin; Dara Entekhabi; Bridget R. Scanlon

2010-01-01

213

Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico  

USGS Publications Warehouse

The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

2006-01-01

214

Morphodynamic modeling of aeolian dunes: Review and future plans  

NASA Astrophysics Data System (ADS)

Sand dunes are ubiquitous in deserts, on coasts, on the sea bottom, and on the surface of Mars, Venus and Titan. The quantitative understanding of dune dynamics is thus of relevance for a broad range of physical, geological and planetary sciences. A morphodynamic model for dunes, which combines an analytical description of the average turbulent wind field over the topography with a continuum saltation model, has proven successful to quantitatively reproduce the shape of aeolian dunes of different types. We present a short review on the physics of dune formation and the model development, as well as some future plans for further developments and applications.

Parteli, E. J. R.; Kroy, K.; Tsoar, H.; Andrade, J. S.; Pschel, T.

2014-10-01

215

Dune Succession Predictable patterns of species  

E-print Network

1 Dune Succession Succession · Predictable patterns of species replacements in an ecological colonizers but better competitors, can make do with lower resource levels, eventually outcompete early species ­ Sand cherry, Cottonwoods Two Types of Succession · Primary · Secondary Primary Succession

Cochran-Stafira, D. Liane

216

Dune Succession Predictable patterns of species  

E-print Network

Dune Succession Succession · Predictable patterns of species replacements in an ecological colonizers but better competitors, can make do with lower resource levels, eventually outcompete early species ­ Sand cherry, Cottonwoods Two Types of Succession · Primary · Secondary Primary Succession

Cochran-Stafira, D. Liane

217

Moving dunes on the Google Earth  

E-print Network

Several methods exist for surveying the dunes and estimate their migration rate. Among methods suitable for the macroscopic scale, the use of the satellite images available on Google Earth is a convenient resource, in particular because of its time series. Some examples of the use of this feature of Google Earth are here proposed.

Sparavigna, Amelia Carolina

2013-01-01

218

Beaches, Dunes, and Barrier Islands. Habitat Pac.  

ERIC Educational Resources Information Center

The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of a leader overview, teaching guides and student data sheets for three activities, and a poster. The leader overview describes the nature of beaches, dunes, and barrier islands, tracing their development, settlement, and management and

Fish and Wildlife Service (Dept. of Interior), Washington, DC.

219

Particle dynamics of a cartoon dune  

E-print Network

The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length.

Christopher Groh; Ingo Rehberg; Christof A. Kruelle

2009-11-04

220

Particle dynamics of a cartoon dune  

NASA Astrophysics Data System (ADS)

The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low-energy) and saltating (high-energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length.

Groh, Christopher; Rehberg, Ingo; Kruelle, Christof A.

2010-06-01

221

Diffusion au sommet d'une  

E-print Network

Diffusion au sommet d'une barri`ere de potentiel (I) Diffusion clas- sique/quantique Trajectoires classiques L'equation de Schrodinger Operateur de diffusion Diffusion quantique en dimension 1 Matrice de diffusion Quelques resultats Resonances Le Theor`eme de D. Robert et H. Tamura Trajectoires capt

Ramond, Thierry

222

Probabilistic assessment of beach and dune changes  

USGS Publications Warehouse

The recent availability of spatially-dense airborne lidar data makes assessment of the vulnerability of beaches and dunes to storm impacts practical over long reaches of coast. As an initial test, elevations of the tops (D high) and bases (Dlow) of foredune ridges along a 55-km reach on the northern Outer Banks, NC were found to have considerable spatial variability suggesting that different parts of the barrier island would respond differently to storms. Comparing statistics of storm wave runup to D high and Dlow, we found that net erosion due to overwash and dune retreat should be greatest at the northern and southern ends of the study area and least in the central section. This predicted spatial pattern of storm-induced erosion is similar to the spatial pattern of long-term erosion of the shoreline which may be controlled by additional processes (such as gradients in longshore transport) as well as the cross-shore processes considered here. However, consider feedback where at erosional hot spots there is a deficit of sand (caused by gradients in longshore transport) which lead to lower dunes and enhanced erosional cross-shore processes, such as overwash. Hence, the erosional hot spots would be exacerbated, further increasing the vulnerability of the beach and dunes to net erosion.

Sallenger, A.H., Jr.; Stockdon, H.; Haines, J.; Krabill, W.; Swift, R.; Brock, J.

2004-01-01

223

A review of groundwater recharge under irrigated agriculture in Australia  

NASA Astrophysics Data System (ADS)

Quantification of recharge under irrigated agriculture is one of the most important but difficult tasks. It is the least understood component in groundwater studies because of its large variability in space and time and the difficulty of direct measurement. Better management of groundwater resources is only possible if we can accurately determine all fluxes going into and out of a groundwater system. One of the major challenges facing irrigated agriculture in Australia, and the world, is to reduce uncertainty in estimating or measuring the recharge flux. Reducing uncertainty in groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and sustainable groundwater resource management especially in dry areas where groundwater usage is often the key to economic development. An accurate quantification of groundwater recharge under irrigated systems is also crucial because of its potential impacts on soil profile salinity, groundwater levels and groundwater quality. This paper aims to identify the main recharge control parameters thorough a review of past field and modelling recharge studies in Australia. We find that the main recharge control parameters under irrigated agriculture are soil type, irrigation management, watertable depth, land cover or plant water uptake, soil surface conditions, and soil, irrigation water and groundwater chemistry. The most commonly used recharge estimation approaches include chloride mass balance, water budget equation, lysimeters, Darcy's law and numerical models. Main sources and magnitude of uncertainty in recharge estimates associated with these approaches are discussed.

Riasat, Ali; Mallants, Dirk; Walker, Glen; Silberstein, Richard

2014-05-01

224

Recycling of used Ni-MH rechargeable batteries  

SciTech Connect

The Ni-MH (nickel metal hydride) rechargeable battery was developed several years ago. Its higher electrochemical capacity and greater safety compared with the Ni-Cd rechargeable battery have resulted in very rapid increase in its production. The Ni-MH rechargeable battery consists of Ni, Co and rare earth metals, so that recycling is important to recover these valuable mineral resources. In this study, a basic recycling process for used Ni-MH rechargeable batteries has been developed, in which the Ni, Co and rare earth elements are recovered through a combination of mechanical processing and hydrometallurgical processing.

Yoshida, T.; Ono, H.; Shirai, R. [Mitsui Mining and Smelting Co., Ltd., Ageo, Saitama (Japan). Corporate R and D Center

1995-12-31

225

Making Li-air batteries rechargeable: material challenges  

SciTech Connect

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25

226

Origins of barchan dune asymmetry: insights from numerical simulations  

E-print Network

Barchan dunes --- crescent-shaped dunes that form in areas of unidirectional winds and low sand availability --- commonly display an asymmetric shape, with one limb extended downwind. Several factors have been identified as potential causes for barchan dune asymmetry on Earth and Mars: asymmetric bimodal wind regime, topography, influx asymmetry and dune collision. However, the dynamics and potential range of barchan morphologies emerging under each specific scenario that leads to dune asymmetry are far from being understood. In the present work, we use dune modeling in order to investigate the formation and evolution of asymmetric barchans. We find that a bimodal wind regime causes limb extension when the divergence angle between primary and secondary winds is larger than $90^{\\circ}$, whereas the extended limb evolves into a seif dune if the ratio between secondary and primary transport rates is larger than 25%. Calculations of dune formation on an inclined surface under constant wind direction also lead to barchan asymmetry, however no seif dune is obtained from surface tilting alone. Asymmetric barchans migrating along a tilted surface move laterally, with transverse migration velocity proportional to the slope of the terrain. Limb elongation induced by topography can occur when a barchan crosses a topographic rise. Furthermore, transient asymmetric barchan shapes with extended limb also emerge during collisions between dunes or due to an asymmetric influx. Our findings can be useful for making quantitative inference on local wind regimes or spatial heterogeneities in transport conditions of planetary dune fields hosting asymmetric barchans.

Eric J. R. Parteli; Orencio Durn; Mary C. Bourke; Haim Tsoar; Thorsten Poeschel; Hans J. Herrmann

2013-12-02

227

Defrosting Polar Dunes--'The Snow Leopard'  

NASA Technical Reports Server (NTRS)

The patterns created by dark spots on defrosting south polar dunes are often strange and beautiful. This picture, which the Mars Orbiter Camera team has dubbed, 'the snow leopard,' shows a dune field located at 61.5oS, 18.9oW, as it appeared on July 1, 1999. The spots are areas where dark sand has been exposed from beneath bright frost as the south polar winter cap begins to retreat. Many of the spots have a diffuse, bright ring around them this is thought to be fresh frost that was re-precipitated after being removed from the dark spot. The spots seen on defrosting polar dunes are a new phenomenon that was not observed by previous spacecraft missions to Mars. Thus, there is much about these features that remains unknown. For example, no one yet knows why the dunes become defrosted by forming small spots that grow and grow over time. No one knows for sure if the bright rings around the dark spots are actually composed of re-precipitated frost. And no one knows for sure why some dune show spots that appear to be 'lined-up' (as they do in the picture shown here).

This Mars Global Surveyor Mars Orbiter Camera image is illuminated from the upper left. North is toward the upper right. The scale bar indicates a distance of 200 meters (656 feet).

Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

1999-01-01

228

Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact  

NASA Astrophysics Data System (ADS)

At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat and erosion of the beach itself. Typically dunes are located behind sand beaches and they are part of the beach-dune systems. Such type of dune reduction could be driven by combination of many factors, both natural ones (such as severe storms, erosion, heavy rains or flooding) and human impacts (large number of installed coast-protection structures along the coast, which interrupt the sediment transport, create new sedimentary deficit and generate erosion). During the recent years most of the Bulgarian beaches have progressively eroded and their areas have significantly been decreased. ii) Dunes that have been reduced/damaged and lost due to expanded tourist and housing infrastructures/developments and due to afforestaion activities. The principal sources of human impacts on sand dunes in Bulgaria are rapid coastal urbanization over the recent years (i.e., hotel and residential constructions, roads, parking structures, and other related infrastructure), unregulated camping and "temporary" constructions on the dunes, a lax regulatory environment that tolerates the re-zoning of protected sand dunes to "agricultural" areas. At most recreational sites there were wide coastal dunes, which however have been destroyed during tourist constructions. Such are dunes at the most famous Bulgarian sea resorts of Golden Sands and Sunny Beach in the areas of Varna and Nessebar. As a consequence, major areas along the Bulgarian coast were completely urbanized by hotels and other infrastructures and large sand dune systems were damaged. iii) Dunes located at still undeveloped coastal sections: yet they are naturally preserved and unthreatened by human pressure boom. These are just a few dune sites: at the northernmost portion of the Bulgarian coast (in the area of Durankulak), at the central part in the region of the largest Bulgarian river, Kamchia River, and along the southernmost coastline (in the area of Veleka River). Although sand dunes in Bulgaria are protected areas and national reserves they have been exposed to large anthropogenic pressure in particu

Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.

2012-04-01

229

Geomorphology of coastal sand dunes, Baldwin County, Alabama  

USGS Publications Warehouse

Alabama's coastal eolian deposits are primarily vegetated dunes that are exemplified by sand ridges with flat to undulating upper surfaces and continuous irregular crests. Dune fields occur along Morgan peninsula between the foredune line and Little Lagoon and the Mobile Bay area. These dune fields consist primarily of one or more continuous ridges that parallel the coast and are generally vegetaed to grassy. Washover of the beach and backshore during Hurricane Frederic (1979) and subsequent smaller scale storms resulted in significant erosion of many of Alabama's dune fields. The primary dunes or foredunes are beginning to recover from the effects of these storms; however, numerous breaks in the primary dune line are present. Sand dunes in coastal Alabama provide protection against storm-generated waves and washover. The foredunes are protected by adherence to a Coastal Construction Control Line (CCCL) or construction setback line identified by markers along coastal Baldwin County.

Bearden, Bennett L.; Hummell, Richard L.; Mink, Robert M.

1989-01-01

230

An ultrafast rechargeable aluminium-ion battery.  

PubMed

The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2volts or 1.8-0.8volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2volts, a specific capacity of about 70mAhg(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000mAg(-1) (equivalent to ~3,000Wkg(-1)), and to withstand more than 7,500 cycles without capacity decay. PMID:25849777

Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

2015-04-16

231

Evolution of strategies for modern rechargeable batteries.  

PubMed

This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na ?,?''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred without dendrite formation. The SONY corporation used the LiCoO2/carbon battery to power their initial cellular telephone and launched the wireless revolution. As researchers developed 3D transition-metal hosts, manufacturers introduced spinel and olivine hosts in the Lix[Mn2]O4 and LiFe(PO4) cathodes. However, current Li-ion batteries fall short of the desired specifications for electric-powered automobiles and the storage of electrical energy generated by wind and solar power. These demands are stimulating new strategies for electrochemical cells that can safely and affordably meet those challenges. PMID:22746097

Goodenough, John B

2013-05-21

232

Artificial recharge of groundwater and its role in water management  

USGS Publications Warehouse

This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of freshwater could be made available for the artificial-recharge operations. ?? 1989.

Kimrey, J.O.

1989-01-01

233

Challenges of Artificial Recharge at the Chain of Lakes  

NASA Astrophysics Data System (ADS)

A series of gravel quarry lakes, A through I (i.e. Chain of Lakes) in Alameda County, California are planned to convert to off-channel spreading lakes for artificial groundwater recharge. An operational plan is needed for the near-term improvements that would allow safe and efficient operations of Lake H and Lake I recently acquired for artificial recharge operations. Water source for the groundwater recharge comes from State Water Project (SWP) water releases at the South Bay Aqueduct turnout. The released water flows approximately nine miles in Arroyo Mocho Creek to the planned diversion facility. The recharge system includes multiple water delivery components and recharge components. Reliability of SWP water delivery is a water supply constraint to the recharge system. Hydraulic capacities of each delivery component and recharge capacities of each recharge component are physical constraints to the development of the operational plan. Policy issues identified in the Mitigated Negative Declaration which contains mitigation measures addressing potential impacts of fisheries and erosion are regulatory constraints to the operational plan development. Our approach that addresses technical challenges and policy issues in the development of the operational plan includes i) determination of lake recharge under observed conditions using water budget method; ii) development and calibration of a ground water flow model using MODFLOW; iii) estimation of lake recharge capacity for a range of lake levels using the calibrated ground water flow model; iv) analysis of clogging layer effects on recharge capacity; and v) development and application of operations models for the stream delivery system and the lake system.

Zeng, X.

2004-12-01

234

Valles Marineris dune fields as compared with other martian populations: Diversity of dune compositions, morphologies, and thermophysical properties  

NASA Astrophysics Data System (ADS)

Planetary dune field properties and their bulk bedform morphologies relate to regional wind patterns, sediment supply, climate, and topography. On Mars, major occurrences of spatially contiguous low-albedo sand dunes are primarily found in three major topographic settings: impact craters, high-latitude basins, and linear troughs or valleys, the largest being the Valles Marineris (VM) rift system. As one of the primary present day martian sediment sinks, VM holds nearly a third of the non-polar dune area on Mars. Moreover, VM differs from other regions due to its unusual geologic, topographic, and atmospheric setting. Herein, we test the overarching hypothesis that VM dune fields are compositionally, morphologically, and thermophysically distinct from other low- and mid-latitude (50N-50S latitude) dune fields. Topographic measurements of dune fields and their underlying terrains indicate slopes, roughnesses, and reliefs to be notably greater for those in VM. Variable VM dune morphologies are shown with topographically-related duneforms (climbing, falling, and echo dunes) located among spur-and-gully wall, landslide, and chaotic terrains, contrasting most martian dunes found in more topographically benign locations (e.g., craters, basins). VM dune fields superposed on Late Amazonian landslides are constrained to have formed and/or migrated over >10s of kilometers in the last 50 My to 1 Gy. Diversity of detected dune sand compositions, including unaltered ultramafic minerals and glasses (e.g., high and low-calcium pyroxene, olivine, Fe-bearing glass), and alteration products (hydrated sulfates, weathered Fe-bearing glass), is more pronounced in VM. Observations show heterogeneous sand compositions exist at the regional-, basinal-, dune field-, and dune-scales. Although not substantially greater than elsewhere, unambiguous evidence for recent dune activity in VM is indicated from pairs of high-resolution images that include: dune deflation, dune migration, slip face modification (e.g., alcoves), and ripple modification or migration, at varying scales (10s-100s m2). We conclude that VM dune fields are qualitatively and quantitatively distinct from other low- and mid-latitude dune fields, most readily attributable to the rift's unusual setting. Moreover, results imply dune field properties and aeolian processes on Mars can be largely influenced by regional environment, which may have their own distinctive set of boundary conditions, rather than a globally homogenous collection of aeolian sediment and bedforms.

Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.

2014-02-01

235

Multiple origins of linear dunes on Earth and Titan  

USGS Publications Warehouse

Dunes with relatively long and parallel crests are classified as linear dunes. On Earth, they form in at least two environmental settings: where winds of bimodal direction blow across loose sand, and also where single-direction winds blow over sediment that is locally stabilized, be it through vegetation, sediment cohesion or topographic shelter from the winds. Linear dunes have also been identified on Titan, where they are thought to form in loose sand. Here we present evidence that in the Qaidam Basin, China, linear dunes are found downwind of transverse dunes owing to higher cohesiveness in the downwind sediments, which contain larger amounts of salt and mud. We also present a compilation of other settings where sediment stabilization has been reported to produce linear dunes. We suggest that in this dune-forming process, loose sediment accumulates on the dunes and is stabilized; the stable dune then functions as a topographic shelter, which induces the deposition of sediments downwind. We conclude that a model in which Titan's dunes formed similarly in cohesive sediments cannot be ruled out by the existing data.

Rubin, David M.; Hesp, Patrick A.

2009-01-01

236

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28

237

Comparing groundwater recharge and storage variability from GRACE satellite observations with observed water levels and recharge model simulations  

NASA Astrophysics Data System (ADS)

Sustainable management of groundwater resources, particularly in water stressed regions, requires estimates of groundwater recharge. This study in southern Mali, Africa compares approaches for estimating groundwater recharge and understanding recharge processes using a variety of methods encompassing groundwater level-climate data analysis, GRACE satellite data analysis, and recharge modelling for current and future climate conditions. Time series data for GRACE (2002-2006) and observed groundwater level data (1982-2001) do not overlap. To overcome this problem, GRACE time series data were appended to the observed historical time series data, and the records compared. Terrestrial water storage anomalies from GRACE were corrected for soil moisture (SM) using the Global Land Data Assimilation System (GLDAS) to obtain monthly groundwater storage anomalies (GRACE-SM), and monthly recharge estimates. Historical groundwater storage anomalies and recharge were determined using the water table fluctuation method using observation data from 15 wells. Historical annual recharge averaged 145.0 mm (or 15.9% of annual rainfall) and compared favourably with the GRACE-SM estimate of 149.7 mm (or 14.8% of annual rainfall). Both records show lows and peaks in May and September, respectively; however, the peak for the GRACE-SM data is shifted later in the year to November, suggesting that the GLDAS may poorly predict the timing of soil water storage in this region. Recharge simulation results show good agreement between the timing and magnitude of the mean monthly simulated recharge and the regional mean monthly storage anomaly hydrograph generated from all monitoring wells. Under future climate conditions, annual recharge is projected to decrease by 8% for areas with luvisols and by 11% for areas with nitosols. Given this potential reduction in groundwater recharge, there may be added stress placed on an already stressed resource.

Allen, D. M.; Henry, C.; Demon, H.; Kirste, D. M.; Huang, J.

2011-12-01

238

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries  

E-print Network

Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries Anne-Valerie G conductivity in polymer electrolytes for solid-state rechargeable lithium batteries. However, due to the strong. Herein, we report the design of new block copolymer electrolytes based on poly methyl methacrylate , PMMA

Sadoway, Donald Robert

239

Investigation of Possible Extra ~Recharge During Pumping in Nottinghant .Aquifer  

E-print Network

Investigation of Possible Extra ~Recharge During Pumping in Nottinghant .Aquifer by Jiu J. Jiaoa Abstract Approaches to investigate possible recharge during a pumping test period are demonstrated by analyzing the pumping test data from the Nottingham aquifer, UK. The pumping lasted more than 200 days

Jiao, Jiu Jimmy

240

Estimation of groundwater recharge and discharge across northern Australia  

Microsoft Academic Search

Groundwater recharge is one of the more difficult components of the hydrological cycle to estimate but one that is becoming increasingly important as Australia turns to groundwater resources for future economic development. Also of concern is groundwater discharge. The extraction of groundwater by pumping inevitably reduces groundwater discharge to rivers where the two are connected. Knowledge of both groundwater recharge

Russell S. Crosbie; James L. McCallum; Glenn A. Harrington

2009-01-01

241

Autonomous Battery Recharging for Indoor Mobile Robots Seungjun Oh  

E-print Network

1 Autonomous Battery Recharging for Indoor Mobile Robots Seungjun Oh Australian National University the batteries on a mobile robot. The robot used in this project is the Nomadic Technologies? Nomad XR4000 mobile robot. The battery recharging system was implemented using the robot's built-in sensors to control

242

Sensitivity and uncertainty analysis of the recharge boundary condition  

Microsoft Academic Search

The reliability analysis method is integrated with MODFLOW to study the impact of recharge on the groundwater flow system at a study area in New Jersey. The performance function is formulated in terms of head or flow rate at a pumping well, while the recharge sensitivity vector is computed efficiently by implementing the adjoint method in MODFLOW. The developed methodology

M. I. Jyrkama; J. F. Sykes

2006-01-01

243

Global synthesis of groundwater recharge in semiarid and arid regions  

USGS Publications Warehouse

Global synthesis of the findings from ???140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ???720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nin??o Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nin??os (1977-1998) relative to periods dominated by La Nin??as (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (??? 10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The impact of LU change was much greater than climate variability in Niger (Africa), where replacement of savanna by crops increased recharge by about an order of magnitude even during severe droughts. Sensitivity of recharge to LU/LC changes suggests that recharge may be controlled through management of LU. In irrigated areas, recharge varies from 10 to 485 mm year-1, representing 1-25% of irrigation plus precipitation. However, irrigation pumpage in groundwater-fed irrigated areas greatly exceeds recharge rates, resulting in groundwater mining. Increased recharge related to cultivation has mobilized salts that accumulated in the unsaturated zone over millennia, resulting in widespread groundwater and surface water contamination, particularly in Australia. The synthesis of recharge rates provided in this study contains valuable information for developing sustainable groundwater resource programmes within the context of climate variability and LU/LC change. Copyright ?? 2006 John Wiley & Sons, Ltd.

Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

2006-01-01

244

Global synthesis of groundwater recharge in semiarid and arid regions  

NASA Astrophysics Data System (ADS)

Global synthesis of the findings from 140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374 000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to 720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nio Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nios (1977-1998) relative to periods dominated by La Nias (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The impact of LU change was much greater than climate variability in Niger (Africa), where replacement of savanna by crops increased recharge by about an order of magnitude even during severe droughts. Sensitivity of recharge to LU/LC changes suggests that recharge may be controlled through management of LU. In irrigated areas, recharge varies from 10 to 485 mm year-1, representing 1-25% of irrigation plus precipitation. However, irrigation pumpage in groundwater-fed irrigated areas greatly exceeds recharge rates, resulting in groundwater mining. Increased recharge related to cultivation has mobilized salts that accumulated in the unsaturated zone over millennia, resulting in widespread groundwater and surface water contamination, particularly in Australia. The synthesis of recharge rates provided in this study contains valuable information for developing sustainable groundwater resource programmes within the context of climate variability and LU/LC change.

Scanlon, Bridget R.; Keese, Kelley E.; Flint, Alan L.; Flint, Lorraine E.; Gaye, Cheikh B.; Edmunds, W. Michael; Simmers, Ian

2006-10-01

245

Pooh Bear rock and Mermaid Dune  

NASA Technical Reports Server (NTRS)

One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

1997-01-01

246

Modelling Desert Dune Fields Based on Discrete Dynamics STEVEN R. BISHOPa,  

E-print Network

Modelling Desert Dune Fields Based on Discrete Dynamics STEVEN R. BISHOPa, *, HIROSHI MOMIJIb is developed to model the dynamics of sand dunes. The physical processes display strong non-linearity that has features we monitor morphology, dune growth, dune migration and spatial patterns within a dune field

247

Dune Field in a Southern Highlands Crater  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site]

Released 5 September 2003

Dark dunes sit on a rough, eroding sedimentary surface in the floor of an 83 km diameter crater. This crater is one of dozens in Noachis Terra, in the southern highlands of Mars, to have both dark dunes and an eroding surface. Note how the dunes seem to ignore the underlying rough surface in some cases, while in other places the dunes seem to have wrapped themselves around sharp knobs.

Image information: VIS instrument. Latitude -40.5, Longitude 34.6 East (325.4 West). 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

2003-01-01

248

Viscous liquid flow on Martian dune slopes  

E-print Network

The observed temporary dark streaks on some dune slopes on Mars may be due to thin sheets of water (or some other liquid) trickling downhill. This note corrects conceptual errors in a previous paper (M\\"{o}hlmann and Kereszturi 2010, Icarus 207, 654-658) which affect the velocity profile of such flows, and produce over-estimates of their depths and mass fluxes by factors of almost two.

Dobrovolskis, Anthony R

2014-01-01

249

Viscous liquid flow on Martian dune slopes  

NASA Astrophysics Data System (ADS)

The observed temporary dark streaks on some dune slopes on Mars may be due to thin sheets of water (or some other liquid) trickling downhill. This note corrects conceptual errors in a previous paper (Mhlmann and Kereszturi, 2010, Icarus207, 654-658) which affect the velocity profile of such flows, and produce over-estimates of their depths and mass fluxes by factors of almost two.

Dobrovolskis, Anthony R.

2014-12-01

250

Global map of Titan's dune fields  

NASA Astrophysics Data System (ADS)

Introduction Methane is the second major constituent of Titan's atmosphere; but it should be totally removed at least in ten million years by photochemistry in the stratosphere and condensation in the troposphere [1]. The first process produces hydrocarbons which form the haze and can condensate onto the surface. The second process causes methane rains on the surface, which carve channels networks. The loss of methane is possibly balanced by outgassing during cryovolcanic event [2]. But hydrocarbons grains deposited onto the surface cannot be recycled. They may be stored in the dunes [3], which were first seen by SAR (Synthetic Aperture Radar) [4]. We focus our study on the mapping of the dune fields in order to determine their global distribution. The aim is to constrain the amount of hydrocarbon material existing in the dunes, and to relate it to the duration of the methane cycle. Data from the Visual and Infrared Mapping Spectrometer (VIMS) and RADAR instruments onboard Cassini spacecraft can be used to map Titan's surface. Infrared images, which are mainly sensitive to composition and grain size, are very complementary to the microwave measurements which depend mainly on roughness and topography. We used spectral criteria after empirical correction of aerosols to map the distribution of heterogeneous units on Titan [5]. These units are compared with SAR images in overlapping regions. Titan's surface mosaics with VIMS VIMS probes the first ten of microns of the ground in seven narrow atmospheric windows in the 0.88 to 5.11 ?m wavelength range. We built infrared mosaics with cubes sorted by spatial resolution, by keeping cubes corresponding to favorable observing conditions (incidence, emergence, phase and time exposure). Band ratios were computed and combined in false color composite images (red as 1.59/1.27-?m, green as 2.03/1.27-?m and blue as 1.27/1.08-?m). Band ratios are useful to minimize the effect of illuminating conditions and albedo variations [6]. Mosaics of Titan's surface were created using images acquired during 42 flybys from Ta (October 26th 2004) to T42 (March 25th 2008). These images have been integrated into a Geographic Information System (GIS). Global maps of band ratios appear fuzzy at high latitudes due to a low spatial resolution and to the presence of haze and clouds. The unfavorable observing geometry, with high incidence angles, induces a very strong scattering by the aerosols in these regions. On the contrary, equatorial and mid-latitudes regions have been covered at a medium resolution, in better observing conditions. In our color composites, most of Titan surface appears either in brown units, bluish units or bright units. We observed that brown units cover 18% of the whole Titan's surface and are found in equatorial regions. Dark blue units cover roughly 2% of Titan's surface. They are systematically associated with bright terrains and are never found isolated within brown units (Fig. 1a). Dune patterns were first observed in the infrared with VIMS during the closest approach at T4 and T20 flybys [7, 8]. The detailed study of dune fields by [8] shows that dune patterns are found mainly in brown units and interdunes can account for the observed spectral variability. Dunes with Radar SAR dataset We also use the RADAR data in SAR mode, mainly sensitive to roughness, surface topography and dielectric constant variations. It is independent of solar light conditions and of the presence of clouds. We retrieved the radar swaths from Ta to T25 (February 22nd 2007) flybys from the PDS website and reprojected the data using the ISIS2 software. The spatial resolution of the SAR images allows the direct imaging of the dunes. Most of Titan's dunes appear longitudinal and resemble terrestrial dunes, such as the ones found in Namibia [4]. Detailed morphologic analysis was performed in [9], who inferred a dominant wind eastward to account for their formation. Two kinds of dunes have been observed: sand seas and small dunes in low sand supply zones. Most of the aeolian sand deposits are found in sand

Le Corre, L.; Le Moulic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

2008-09-01

251

Particle dynamics of a cartoon dune  

E-print Network

The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that...

Groh, Christopher; Kruelle, Christof A

2009-01-01

252

Lithium electronic environments in rechargeable battery electrodes  

NASA Astrophysics Data System (ADS)

This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20 at% Mg. Kinetic studies on LaNi5-xSn x alloys proved that the mass transfer of hydrogen through these alloys was not hindered with increasing Sn substitutions for Ni. Collaborations with Energizer(c) found LanNi4.7Sn0.3 alloys to possess limited utility in rechargeable nickel-metal-hydride sealed-cell batteries.

Hightower, Adrian

253

Dune migration in a steep, coarse-bedded stream  

USGS Publications Warehouse

In the North Fork Toutle River at Kid Valley, Washington, weak correlation between flow depth and the standard deviation of bed elevation was noted. Dunes were often superposed on larger bed forms with wave periods between 10 and 30 min. Gradual changes in waveform height and periodicity occurred over several hours during storm runoff. Rates of migration for typical dunes were estimated to be 3 cm s-1, and dune wavelengths were estimated to be 6 to 7 m. -from Author

Dinehart, R.L.

1989-01-01

254

Crescentic dunes on the inner continental shelf off northern California  

USGS Publications Warehouse

These dunes appear to be migrating obliquely to the regional shelf gradient; a preferred offshore direction of tranpsort is indicated by the extended southern wings of many dunes. Over longer time periods (decades), the seaward transport of fine to medium sand in the crescentic dunes is probably an important way by which sand escapes the shallow part of the continental shelf in this region and mixes with the muddy deposits of the central shelf. -from Authors

Cacchione, D.A.; Field, M.E.; Drake, D.E.; Tate, G.B.

1987-01-01

255

The effects of psammophilous plants on sand dune dynamics  

E-print Network

Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth under (i) specific sand drift or (ii) specific wind power. We show that psammophilous plants enrich the sand dune dynamics. Depending on the climatological conditions, it is possible to obtain one, two, or three steady dune states. The activity of the dunes can be associated with the surface cover--bare dunes are active, and dunes with significant cover of vegetation, biogenic soil crust, or psammophilous plants are fixed. Our model shows that under suitable precipitation rates and wind power, the dynamics of the different cover types is in accordance with the common view that dunes are initially stabilized by psammophilous plants that reduce sand activity, thus enhancing the growth of regular vegetation that eventually dominates the cover of the dunes and determines their activity.

Golan Bel; Yosef Ashkenazy

2013-08-30

256

Artificial Recharge Coupled with Flood Mitigation in Jeju, Korea  

NASA Astrophysics Data System (ADS)

The primary goal of this study is to develop and apply the artificial recharge system at Han Stream in Jeju Island, Korea, for not only securing sustainable groundwater resources, but also mitigating severe floods occurred due to the global climate changes. Jeju-friendly Aquifer Recharge Technology (J-ART) in this study has been developed by capturing ephemeral stream water with no interference in the environments such as natural recharge or eco-system, storing the flood water in the reservoirs, recharging it through designed borehole after appropriate water treatment, and then making it to be used at down-gradient production wells. For optimal design of J-ART, we conducted injection tests at the monitoring well (MW5) as well as at the planned recharge site during drilling the recharge wells and performed a modeling with the data obtained. Based on the modeling results, the artificial recharge wells were developed with a design of 10-meter spacing between the wells and 35-40 meter depths, which has a capacity of more than 2,500,000 m3 of groundwater resources in a year. Characterizing groundwater flow from recharge area to discharge area should be achieved to assess the efficiency of J-ART. The resistivity logging employed to predict water flow in unsaturated zone during artificial recharge based on the inverse modeling and resistivity change patterns. Stable isotope studies of deuterium and oxygen-18 of surface waters and groundwaters were carried out to interpret mixing and flow in groundwaters impacted by artificial recharge. Transient models were developed to predict the effects of artificial recharge using the hydraulic properties of aquifers, groundwater levels, and meteorological data. Time series changes of water balance after artificial recharge were analyzed, and residence time of the recharged water was also predicted with a certain degree of uncertainty. Keywords: J-ART, Hydrogeological methods, Geophysical survey, Stable isotopes, Groundwater modeling, Jeju Island. Acknowledgements: This research was supported by a grant (code 3-2-3) from the Sustainable Water Resources Research Center of 21st Century Frontier Research Program.

Kim, Y.; Koo, M.; Lee, K.; Moon, D.; Barry, J. M.; Park, W.

2010-12-01

257

Climate variability effects on urban recharge beneath low impact development  

NASA Astrophysics Data System (ADS)

Groundwater resources in urban and coastal environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) site planning and integrated/best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMP to reduce stormwater runoff and improve surface-water quality. Often considered a secondary management benefit, many BMPs may also enhance recharge to local aquifers; however these hypothesized benefits have not been thoroughly tested or quantified. In this study, we quantify stormwater capture and recharge enhancement beneath a BMP infiltration trench of the LID research network at San Francisco State University, San Francisco, California. Stormwater capture and retention was analyzed using the SCS TR-55 curve number method and in-situ infiltration rates to assess LID storage. Recharge was quantified using vadose zone monitoring equipment, a detailed water budget analysis, and a Hydrus-2D model. Additionally, the effects of historical and predicted future precipitation on recharge rates were examined using precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Observed recharge rates beneath the infiltration trench range from 1,600 to 3,700 mm/year and are an order of magnitude greater than recharge beneath an irrigated grass lawn and a natural setting. The Hydrus-2D model results indicate increased recharge under the GFDL A1F1 scenario compared with historical and GFDL modeled 20th century rates because of the higher frequency of large precipitation events that induce runoff into the infiltration trench. However, under a simulated A1F1 El Nio year, recharge calculated by a water budget does not increase compared with current El Nio recharge rates. In comparison, simulated recharge rates were considerably lower beneath the grass lawn for historical and future precipitation years. This work highlights the potential management strategy of using LID to capture excess runoff during El Nio years that can be recharged and stored as groundwater. An additional benefit of LID in coastal aquifer systems is the ability to capture and redirect precipitation from runoff to recharge that may help mitigate the negative effects from groundwater pumping and sea-water intrusion.

Newcomer, M. E.; Gurdak, J. J.

2012-12-01

258

Origin of the late quaternary dune fields of northeastern Colorado  

USGS Publications Warehouse

Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan dune field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in die lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These studies, which demonstrate the importance of fluvial-source sediments for dune fields in Colorado, may be applicable to other dune fields in North America. Because modern drift potentials in northeastern Colorado are among the highest in the world, the present stability of dunes in the region may be in part a function of the dunes being supply-limited rather than solely transport-limited. Extensive (??? 7700 km2) late Holocene dunes document that eolian sand in northeastern Colorado is very sensitive to small changes in climate or fluvial source conditions.

Muhs, D.R.; Stafford, T.W.; Cowherd, S.D.; Mahan, S.A.; Kihl, R.; Maat, P.B.; Bush, C.A.; Nehring, J.

1996-01-01

259

Linear Dunes and Playas, Simson Desert, South Australia, Australia  

NASA Technical Reports Server (NTRS)

This image of abstract shapes is comprised numerous subparallel, very long, orange colored linear dunes and patchy grey dry lakes (playas). The dunes are aligned north to south in the great central basin of Astralia (27.0S, 138.0E). The regularity of the dunes is created by the winds blowing from the south. As the dunes advance, jaged edges on the south side of each dry lake are formed while the north side is eroded smooth by the wind and water.

1991-01-01

260

Model for a dune field with exposed water table  

E-print Network

Aeolian transport in coastal areas can be significantly affected by the presence of an exposed water table. In some dune fields, such as in Len\\c{c}\\'ois Maranhenses, northeastern Brazil, the water table oscillates in response to seasonal changes of rainfall and rates of evapotranspiration, rising above the ground during the wet season and sinking below in the dry period. A quantitative understanding of dune mobility in an environment with varying groundwater level is essential for coastal management as well as for the study of long-term evolution of many dune fields. Here we apply a model for aeolian dunes to study the genesis of coastal dune fields in presence of an oscillating water table. We find that the morphology of the field depends on the time cycle, $T_{\\mathrm{w}}$, of the water table and the maximum height, $H_{\\mathrm{w}}$, of its oscillation. Our calculations show that long chains of barchanoids alternating with interdune ponds such as found at Len\\c{c}\\'ois Maranhenses arise when $T_{\\mathrm{w}}$ is of the order of the dune turnover time, whereas $H_{\\mathrm{w}}$ dictates the growth rate of dune height with distance downwind. We reproduce quantitatively the morphology and size of dunes at Len\\c{c}\\'ois Maranhenses, as well as the total relative area between dunes.

Marco Cesar M. de M. Luna; Eric J. R. Parteli; Hans J. Herrmann

2011-09-01

261

Rechargeable metal hydrides for spacecraft application  

NASA Technical Reports Server (NTRS)

Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

Perry, J. L.

1988-01-01

262

Advanced rechargeable sodium batteries with novel cathodes  

NASA Astrophysics Data System (ADS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1989-12-01

263

Advanced rechargeable sodium batteries with novel cathodes  

NASA Astrophysics Data System (ADS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h kg -1 theoretical). Energy densities in excess of 180 W h kg -1 have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. We, at JPL, are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. Our approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, our studies have focussed on alternative metal chlorides such as CuCl 2 and organic cathode materials such as TCNE.

Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

264

Polymer Energy Rechargeable System Battery Being Developed  

NASA Technical Reports Server (NTRS)

Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

Manzo, Michelle A.

2003-01-01

265

A model recharge system for the LCC  

SciTech Connect

This report describes a model recharge system for LCC. The model is based on the premise that the charges assessed should accurately reflect the actual cost to the LCC for the resources being used. The benefits of such a system include a sense of absolute fairness to all users, plus incentives to conserve scarce resources. In developing this model it has been necessary to make compromises between conflicting objectives - such as making the model complete and comprehensive while keeping it simple and manageable. When compromises have been made, a brief discussion of the rationale behind each compromise has been included. It is quite possible that additional compromises will have to be made as the model moves toward implementation.

Carlson, R.E.; Hogan, C.B.

1988-05-05

266

Advanced rechargeable sodium batteries with novel cathodes  

NASA Technical Reports Server (NTRS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1990-01-01

267

Advanced rechargeable sodium batteries with novel cathodes  

NASA Technical Reports Server (NTRS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1989-01-01

268

Oxygen electrodes for rechargeable alkaline fuel cells  

NASA Technical Reports Server (NTRS)

Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

Swette, Larry; Giner, Jose

1987-01-01

269

Polymer Energy Rechargeable System (PERS) Development Program  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.

Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao

2001-01-01

270

Does current precipitation play a role in the recharge of groundwater in the deserts of northern China?  

NASA Astrophysics Data System (ADS)

Arid and semi-arid areas account for more than one third of the Chinese landmass and are distributed over elevations ranging from 155 m below sea level to over 5000 m above sea level. The most typical landscapes of this vast and diverse region are sand seas in arid and sandy lands in the semiarid zones. The widely cited value about mean annual evaporation in the deserts of northern China is between ca. 1400 to 3000 mm / year in general and between 3000 and 3800 mm / year in dune fields. Under such a framework modern precipitation would be meaningless to the recharge of groundwater. Our new estimate, based on the weather data from the last four decades, suggests, however, there is a clear overestimate of the evaporation rate in the earlier data. In a sand sea like the Badain Jaran Desert in the western Inner Mongolia, our calculation using a modified Penman equation shows that the mean annual evaporation is ca. 1000 mm from lakes and ca. 100 mm from the land surface. Our estimate is consistent with a new analysis showing that only ca. 10% of chloride in the soluble salts of aeolian sands in western Inner Mongolia comes directly from rainfall while 90% of chloride in these salts is deposited directly by dust accumulation (dry deposition). Limited, short-term experiment with large evaporation ponds supports our new estimate also. Provided that the new estimate tells the truth, we can further conclude that the current precipitation - ca. 100 mm in the southeast of the Badain Jaran Desert - plays a significant role in the recharge of the groundwater that directly feeds a large number of "small" desert lakes in this region. The existence of measurable tritium in the shallow ground water samples from the margins of these desert lakes reconfirms the importance of modern precipitation in the recharge of groundwater as well.

Yang, Xiaoping

2014-05-01

271

76 FR 68503 - Ungulate Management Plan/Environmental Impact Statement, Great Sand Dunes National Park and...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Environmental Impact Statement, Great Sand Dunes National Park and Preserve, CO AGENCY...for the Ungulate Management Plan, Great Sand Dunes National Park and Preserve...for the Ungulate Management Plan, Great Sand Dunes National Park and Preserve,...

2011-11-04

272

76 FR 10915 - Minor Boundary Revision at Indiana Dunes National Lakeshore  

Federal Register 2010, 2011, 2012, 2013, 2014

...Service Minor Boundary Revision at Indiana Dunes National Lakeshore AGENCY: National Park...9(c)(1), the boundary of Indiana Dunes National Lakeshore in the State of Indiana...depicted on a map entitled ``Indiana Dunes National Lakeshore, Proposed...

2011-02-28

273

A COMPARATIVE ANALYSIS OF BARCHAN DUNES IN THE INTRA-CRATER DUNE FIELDS AND THE NORTH POLAR SAND SEA. M.C. Bourke1  

E-print Network

A COMPARATIVE ANALYSIS OF BARCHAN DUNES IN THE INTRA-CRATER DUNE FIELDS AND THE NORTH POLAR SAND@nasm.si.edu. Introduction: Martian sand dunes have the poten- tial to contribute data on geological history through a study of their form. Recognition of the characteristics of both recent and ancient dunes is the first step to- wards

Bourke, Mary C.

274

Quantifying potential recharge in mantled sinkholes using ERT.  

PubMed

Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system. PMID:18823398

Schwartz, Benjamin F; Schreiber, Madeline E

2009-01-01

275

[Effects of reclaimed water recharge on groundwater quality: a review].  

PubMed

Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China. PMID:24015541

Chen, Wei-Ping; L, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

2013-05-01

276

Echo Meadows Project Winter Artificial Recharge.  

SciTech Connect

This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further found that this water can be timed to return to the river during the desired time of the year (summer to early fall). This is because the river stage, which remains relatively high until this time, drops during the irrigation season-thereby releasing the stored groundwater and increasing river flows. A significant side benefit is that these enhanced groundwater return flows will be clean and cold, particularly as compared to the Umatilla River. We also believe that this same type of application of water could be done and the resulting stream flows could be realized in other watersheds throughout the Pacific Northwest. This means that it is critical to compare the results from this baseline report to the full implementation of the project in the next phase. As previously stated, this report only discusses the results of data gathered during the baseline phase of this project. We have attempted to make the data that has been gathered accessible with the enclosed databases and spreadsheets. We provide computer links in this report to the databases so that interested parties can fully evaluate the data that has been gathered. However, we cannot emphasize too strongly that the real value of this project is to implement the phases to come, compare the results of these future phases to this baseline and develop the science and strategies to successfully implement this concept to other rivers in the Pacific Northwest. The results from our verified and calibrated groundwater model matches the observed groundwater data and trends collected during the baseline phase. The modeling results indicate that the return flows may increase to their historic values with the addition of 1 acre-ft/acre of recharge water to the groundwater system (about 9,600 acre-feet total). What this means is that through continued recharge project, you can double to quadruple the annual baseflow of the Umatilla River during the low summer and fall flow periods as compared to the present base-flow. The cool and high quality recharge water is a significant beneficial impact to the river system.

Ziari, Fred

2002-12-19

277

Effects of artificial recharge on the Ogallala aquifer, Texas  

USGS Publications Warehouse

Four recharge tests were conducted by injecting water from playa lakes through wells into the Ogallala Formation. Injection was by gravity flow and by pumping under pressure. At one site, 34-acre feet of water was injected by gravity and produced a significant increase in yield of the well. At a second site, gravity injection of only 0.58 acre-foot caused a significant decrease in permeability due to plugging by suspended sediment. At two other sites, injection by pumping 6 and 14 acre-feet respectively, resulted in discharge of water at the surface and in perching of water above the water table. Differences in success of recharge were largely due to aquifer lithology and, therefore, the type of permeability; the concentration of suspended solids in the recharge water; and the injection technique. The injection technique can be controlled and the concentration of suspended solids can be minimized by treatment, but the site for well recharge will accept water most rapidly if it is selected on the basis of a favorable geohydrologic environment. Geophysical logs were used to study the effect of aquifer lithology on recharge and to understand the movement of injected water. Temperature logs were particularly useful in tracing the movement of recharged water. Natural-gamma, gamma-gamma, and neutron logs provided important data on lithology and porosity in the aquifer and changes in porosity and water distribution resulting from recharge. Effective recharge of the Ogallala Formation, using water from playa lakes, is possible where geohydrologic conditions are favorable and the recharge system is properly constructed.

Brown, Richmond Flint; Keys, W.S.

1985-01-01

278

Precision topography of a reversing sand dune at Bruneau Dunes, Idaho, as an analog for Transverse Aeolian Ridges on Mars  

NASA Astrophysics Data System (ADS)

Ten high precision topographic profiles across a reversing dune were created from a differential global position system (DGPS). The shapes of the profiles reveal a progression from immature to transitional to mature characteristics moving up the dune. When scaled by the basal width along each profile, shape characteristics can be compared for profiles whose horizontal scales differ by orders of magnitude. The comparison of width-scaled Bruneau Dunes profiles to similarly scaled profiles of Transverse Aeolian Ridges (TARs) on Mars indicates that many TARs are likely similar to transitional or mature reversing sand dunes.

Zimbelman, James R.; Scheidt, Stephen P.

2014-02-01

279

Ground-water recharge from streamflow data, NW Florida  

USGS Publications Warehouse

Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.

Vecchioli, John; Bridges, W.C.; Rumenik, R.P.; Grubbs, J.W.

1991-01-01

280

Recharge and discharge calculations to characterize the groundwater hydrologic balance  

SciTech Connect

Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the equivalent to 7 to 24 inches of recharge per year. The four methods provide a good comparative way to quantify the groundwater portion of the hydrologic balance.

Liddle, R.G. [Dept. of the Interior, Knoxville, TN (United States). Office of Surface Mining

1998-12-31

281

Geophysical expression of natural recharge in different geological terrains.  

PubMed

Behavior of the Dar-Zarrouk parameters--longitudinal unit conductance, transverse unit resistance, longitudinal resistivity, and transverse resistivity--has been compared with the behavior of the natural recharge in two geological terrains. Contour patterns of the geophysical parameters and those of natural recharge have been analyzed and a qualitative relation in their behavior was recognized. Graphical comparison of the geophysical and hydrogeological parameters clearly illustrates a qualitative relationship between the two parameters. Use of such qualitative relation in the field of ground water exploration and management studies is explained. A modest beginning is attempted to arrive at a quantitative relation between natural recharge and Dar-Zarrouk parameters. PMID:14649869

Hodlur, G K; Singh, U K; Das, R K; Rangarajan, R; Chand, Ramesh; Singh, S B

2003-01-01

282

Aeolian Processes of the Pismo-Oceano Dune Complex, California  

NASA Astrophysics Data System (ADS)

The Pismo Dunes are located approximately 250 km northwest of Los Angeles and consist of 90 km2 of transverse, parabolic and paleodunes. The Pismo Dunes are one of the largest dune complexes on the west coast and are the largest remaining south of San Francisco Bay, but despite their size, relatively few process morphology studies have focused on their form and history. Specifically, the dune field includes 12 km2 of actively migrating transverse dune ridges advancing onshore in three distinct phases separated by small depressions easily indentified using a LiDAR-generated elevation model. An early field investigation by Tchakerian (1983) revealed a uniform increase in slip face heights and crestline wavelengths inland with no apparent change in grain size. Measurement of recent aerial imagery shows variable migration rates throughout the dunes and wavelengths between 30 and 100 m closest to the beach, in the second ridge between 50 and 140 m, and from 70 to 250 m furthest inland. During El Nio and La Nia periods, westerly winds advance onshore nearly perpendicular to the crestlines, fueling episodic migration of the dune field. It is hypothesized that particularly strong ENSO periods may have led to the development of distinct dune phases with separating depressions and the development of defects along the dune crest. Defects associated with the wakes of incipient vegetation and inter-dune depressions are conspicuous and widespread, though localized and variable through time and space. Aerial imagery taken in September 1994 shows a wider, more even distribution of defects across the dune field than currently visible. The signal is, however, complicated by the closure of the dune field to oversand vehicles in 1982. The closure of much of the complex to vehicular traffic in 1982 may play a role, as Tchakerian's crestline wavelength measurements were far smaller than those obtained for this study while maintaining a likewise increase between phases. At a decadal scale, excessive vehicular traffic may have impeded the transition of emergent, defect-ridden dune forms into mature transverse ridges. Despite the astounding lack to studies focusing on the Pismo Dunes, the complex presents multiple opportunities for inquiry regarding climatic control on dune field evolution, defect law and complex landform pattern development, and long-term anthropogenic alteration of coastal process morphology.

Barrineau, C. P.; Tchakerian, V.; Houser, C.

2012-12-01

283

Origin of the late Quaternary dune fields of northeastern Colorado  

NASA Astrophysics Data System (ADS)

Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan duen field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in the lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These studies, which demonstrate the importance of fluvial-source sediments for dune fields in Colorado, may be applicable to other dune fields in North America. Because modern drift potentials in northeastern Colorado are among the highest in the world, the present stability of dunes in the region may be in part a function of the dunes being supply-limited rather than solely transport-limited. Extensive ( 7700 km 2) late Holocene dunes document that eolian sand in northeastern Colorado is very sensitive to small changes in climate or fluvial source conditions.

Muhs, Daniel R.; Stafford, Thomas W.; Cowherd, Scott D.; Mahan, Shannon A.; Kihl, Rolf; Maat, Paula B.; Bush, Charles A.; Nehring, Jennifer

1996-09-01

284

Titan dune heights retrieval by using Cassini Radar Altimeter  

NASA Astrophysics Data System (ADS)

The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

2014-02-01

285

Relating climate and sand transport to incipient dune development.  

NASA Astrophysics Data System (ADS)

Sea levels are continuously rising, increasing the risk of flooding and coastal erosion in low-elevation countries, such as the Netherlands. Coastal dunes are seen as a flexible and natural type of coastal defence, that is able to keep pace with rising water levels. Until now most research has focussed on dynamics and maintenance of established dunes, largely ignoring two critical transitions in early dune development: the transition from bare beach to vegetated incipient dune and that from incipient dune to established foredune. This knowledge is essential to enable more accurate prediction and even stimulation of new dune formation through sand nourishment. We explored the relative contributions of climate and sand transport to incipient dune development combining a 30 year time-series of aerial photographs (1979 - 2010) of the natural Wadden Island coast with high-resolution monitoring data of sand volume changes and climatic parameters. We selected 20 strips of 2.5 km in length along the coast of the Wadden Islands, with a 2 km buffer between them to avoid autocorrelation. For each of these strips of coast we assessed the changes in presence and area of incipient dunes over periods of 5-6 years. Change in fore dune volume and beach width were derived from high resolution beach elevation data. Seawater level and climate data were derived from a nearby meteorological station Preliminary analysis of the first half of the dataset showed that incipient dune area was positively related to beach width, but negatively to storm intensity. In our poster we will present the whole dataset and discuss the implications of our results for future dune development and anthropogenic sand nourishment schemes.

van Puijenbroek, Marinka; Limpens, Juul; Gleichman, Maurits; Berendse, Frank

2014-05-01

286

Shifting Sands: Quantifying Shoreline and Dune Migration at Indiana Dunes National Lakeshore  

NSDL National Science Digital Library

Spreadsheets Across the Curriculum module/Geology of National Parks course. Students use weighted averages and data from air photos from 1939 to 2005 to calculate the rate of retreat of the shoreline and the advance of the front of dunes along the shoreline.

Module by: Mark Horwitz, University of South Florida Cover Page by: Len Vacher and Denise Davis, University of South Florida

287

Bifurcation analysis of the transition of dune shapes under a unidirectional wind.  

PubMed

A bifurcation analysis of dune shape transition is made. By use of a reduced model of dune morphodynamics, the Dune Skeleton model, we elucidate the transition mechanism between different shapes of dunes under unidirectional wind. It was found that the decrease in the total amount of sand in the system and/or the lateral sand flow shifts the stable state from a straight transverse dune to a wavy transverse dune through a pitchfork bifurcation. A further decrease causes wavy transverse dunes to shift into barchans through a Hopf bifurcation. These bifurcation structures reveal the transition mechanism of dune shapes under unidirectional wind. PMID:22587286

Niiya, Hirofumi; Awazu, Akinori; Nishimori, Hiraku

2012-04-13

288

The role of vegetation in shaping dune morphology  

NASA Astrophysics Data System (ADS)

Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them. Consistent with field observations, we find that basic dune morphology is primarily determined by grass species, with linear or hummocky dunes being built by some species, while others may prevent dune formation. We also find that the evolution of coastal dune morphology is controlled by at least two bio-geomorphic couplings: (1) between vegetation growth and sand transport, which leads to a positive feedback for dune growth, as certain beach grasses maximize growth under sand accretion, which means that an ever denser vegetation implies an ever higher accretion rate; and (2) between vegetation growth and shoreline position through the sand influx. While the first coupling is responsible for dune formation, the second one determines when dunes stop growing and thus controls final dune size. This is particularly relevant for accreting/eroding coastlines where we find that dune size, and thus coastal protection, is maximized for relatively small accretion rates while larger accretion rates lead to formation of a new, smaller dune ridge at the beach.

Duran Vinent, O.; Moore, L. J.; Young, D.

2012-12-01

289

Tour of Park Geology: Sand Dunes  

NSDL National Science Digital Library

This Park Geology site provides links to tours of individual National Parks, Monuments, and Recreation Areas with sand dunes. Where appropriate for each park, links are provided to maps, photographs, geologic research, related links, visitor information, and teacher features (resources for teaching geology with National Park examples). The list includes places such as Death Valley and Mojave National Preserve, along with less well-known areas such as the Pictured Rocks National Lakeshore in Michigan and the Wright Brothers National Memorial in North Carolina.

290

Evidence for community structure and habitat partitioning in coastal dune stiletto flies at the Guadalupe-Nipomo dunes system, California  

PubMed Central

This study provides empirical evidence for habitat selection by North American species of stiletto flies (Diptera: Therevidae), based on local distributions of adults and immatures, and the first hypothesis of community assemblages proposed for a stiletto fly community. Sites at three localities within the Guadalupe-Nipomo dune system were sampled for stiletto flies in 1997 and 2001 by sifting sand, malaise trapping, and hand netting. Nine species were collected from four ecological zones and three intermediate ecological zones: Acrosathe novella (Coquillett), Brachylinga baccata (Loew), Nebritus powelli (Webb and Irwin), Ozodiceromyia sp., Pherocera sp., Tabudamima melanophleba (Loew), Thereva comata Loew, Thereva elizabethae Holston and Irwin, and Thereva fucata Loew. Species associations of adults and larvae with habitats and ecological zones were consistent among sites, suggesting that local distributions of coastal dune stiletto fly species are influenced by differences in habitat selection. In habitats dominated by the arroyo willow,Salix lasiolepsis, stiletto fly larvae of three species were collected in local sympatry, demonstrating that S. lasiolepsis stands along stabilized dune ridges can provide an intermediate ecological zone linking active dune and riparian habitat in the Guadalupe-Nipomo dune system. Sites dominated by European beach grass, Ammophilia arenaria, blue gum, Eucalyptus globulus, and Monterey cypress, Cupressus macrocarpa, are considered unsuitable for stiletto flies, which emphasizes the importance of terrestrial habitats with native vegetation for stiletto fly species. The local distributions of stiletto fly species at the Guadalupe-Nipomo dune system allow the community to be divided into three assemblages; active dune, pioneer scrub, and scrub-riparian. These assemblages may be applicable to other coastal dune stiletto fly communities, and may have particular relevance to stiletto fly species collected in European coastal dunes. The results from this study provide a descriptive framework for studies testing habitat selection in coastal dune stiletto fly species and inform conservation of threatened dune insects. PMID:17119624

Holston, Kevin C.

2005-01-01

291

Biogenic crust dynamics on sand dunes Shai Kinast,1  

E-print Network

]. Their stability is strongly affected by the degree of vegetation coverage. High coverage reduces the wind power crust and vegetation coverage. As the precipitation increases, the dunes are gradually sta- bilized-Gurion University, Beer Sheva, 84105, Israel (Dated: July 3, 2012) Sand dunes are often covered by vegetation

Ashkenazy, Yossi "Yosef"

292

Effect of Bentonite on Permeability of Dune Sand  

Microsoft Academic Search

A compacted mixture of bentonite with sand has been used to form barrier of fluids, in absence of impervious natural soils. This paper focuses on the permeability behavior of dune sand\\/bentonite mixtures. Results of laboratory investigations are presented to show the influence of bentonite on permeability of dune sand. One dimensional consolidation and falling head permeability tests were conducted to

N. K. Ameta; Abhay Shivaji Wayal

293

Holocene eolian activity in the Minot dune field, North Dakota  

USGS Publications Warehouse

Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

Muhs, D.R.; Stafford, T.W., Jr.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

1997-01-01

294

Dunes, Boxcars, and Ball Jars: Mining the Great Lakes Shores  

NSDL National Science Digital Library

Spreadsheets Across the Curriculum module/Geology of National Parks course. Students estimate the volume of sand in Hoosier Slide, a large dome-shaped dune quarried away in the 1920s from what is now Indiana Dunes National Lakeshore. They also estimate the number of boxcars to carry the sand, and the number of Ball jars produced from it.

Module by: Tiffany Roberts, University of South Florida Cover Page by: Len Vacher and Denise Davis, University of South Florida

295

Particle tracking and mean residence time in barchan dunes  

NASA Astrophysics Data System (ADS)

We analyze sediment particles motions in steady-state barchan dunes by tracking individual cells of a 3-D cellular automaton dune model. The overall sediment flux may be decomposed into advective and dispersive fluxes to estimate the relative contribution of the underlying physical processes to the barchan dune shape. The net lateral sediment transport from the center to the horns indicates that dispersion on the stoss slope is more efficient than avalanches on the lee slope. The combined effect of these two antagonistic dispersive processes restricts the lateral mixing of sediment particles in the central region of barchan dunes. Then, for different flow strength and dune size, we find that the mean residence time of sediment particles in barchan dunes is equal to the surface of the central longitudinal dune slices divided by the input sand flux. We infer that this central slice contains most of the relevant information about barchan dune morphodynamics. Finally, we initiate a discussion about sediment transport and memory in presence of bedforms using the advantages of the particle tracking technique.

Zhang, Deguo; Narteau, Clement; Rozier, Olivier

2013-04-01

296

Origin of the late Quaternary dune fields of northeastern Colorado  

Microsoft Academic Search

Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4

Daniel R. Muhs; Thomas W. Stafford; Scott D. Cowherd; Shannon A. Mahan; Rolf Kihl; Paula B. Maat; Charles A. Bush; Jennifer Nehring

1996-01-01

297

tude et ralisation oriente objet d'une cellule minimale  

E-print Network

tude et ralisation oriente objet d'une cellule minimale Hiep Minh Phan Anne acadmique 2010 cellule vivante, de nombreux logiciels sont crs afin de pouvoir tester et vrifier diffrentes'implmentation d'une cellule minimale l'aide de modles spatiaux 2D. Misant sur une grande flexibilit et

Libre de Bruxelles, Universit

298

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2010 CFR

...Property 1 2010-07-01 2010-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2010-07-01

299

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2014 CFR

...Property 1 2014-07-01 2014-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2014-07-01

300

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2013 CFR

... 1 2013-07-01 2013-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks, Forests...AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight. The...

2013-07-01

301

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2011 CFR

... 1 2011-07-01 2011-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks, Forests...AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight. The...

2011-07-01

302

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2012 CFR

... 1 2012-07-01 2012-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks, Forests...AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight. The...

2012-07-01

303

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2012 CFR

...Property 1 2012-07-01 2012-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2012-07-01

304

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2010 CFR

... 1 2010-07-01 2010-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks, Forests...AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight. The...

2010-07-01

305

Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation  

ERIC Educational Resources Information Center

Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional

McDonald, K.

1973-01-01

306

36 CFR 7.80 - Sleeping Bear Dunes National Lakeshore.  

Code of Federal Regulations, 2014 CFR

... 1 2014-07-01 2014-07-01 false Sleeping Bear Dunes National Lakeshore. 7.80 Section 7.80 Parks, Forests...AREAS OF THE NATIONAL PARK SYSTEM 7.80 Sleeping Bear Dunes National Lakeshore. (a) Powerless flight. The...

2014-07-01

307

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2011 CFR

...Property 1 2011-07-01 2011-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2011-07-01

308

36 CFR 7.88 - Indiana Dunes National Lakeshore.  

Code of Federal Regulations, 2013 CFR

...Property 1 2013-07-01 2013-07-01 false Indiana Dunes National Lakeshore. 7.88 Section 7.88 Parks, Forests...REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM 7.88 Indiana Dunes National Lakeshore. (a) Fishing. Unless...

2013-07-01

309

Narrowing the gap between real and simulated barchan dune dynamics  

NASA Astrophysics Data System (ADS)

There are a growing number of computer simulation models capable of reproducing many of the morphological characteristics and dynamics of real barchan sand dunes. While these models offer tremendous insight and opportunities to develop hypotheses, there is a relative paucity of empirical observations to use as a basis for validation. To address this issue we present empirical observations of barchan dune dynamics using high-resolution, multi-temporal satellite imagery from locations in Peru, Namibia, and Mauritania. We highlight the response of barchan dunes to collisions, wind direction variability, interactions with bedrock topography, and depletion of sediment supply. First, we document the process of dunes emerging from the slipfaces of barchan dunes. In the past, this process was only observed in numerical models or interpreted from single-date imagery. We also show that collisions can result in calving or shedding of dunes from the horns. Second, we present the first empirical evidence of barchans changing into dome and "wedge" dunes under the influence of bimodal winds. Third, we show that barchans break down when they encounter uphill topography. However, they can re-form in the lee of a bedrock obstacle if sediment supply is sufficient. Finally, we show that, in the absence of collisions, small barchans can disappear quickly when they lose upwind sediment supply. Altogether, our observations add to the empirical record of barchan dune dynamics and are useful for evaluating the behaviour of numerical models.

Hugenholtz, C.; Barchyn, T. E.

2011-12-01

310

The effects of psammophilous plants on sand dune dynamics  

NASA Astrophysics Data System (ADS)

Mathematical models of sand dune dynamics have considered different types of sand dune cover. However, despite the important role of psammophilous plants (plants that flourish in moving-sand environments) in dune dynamics, the incorporation of their effects into mathematical models of sand dunes remains a challenging task. Here we propose a nonlinear physical model for the role of psammophilous plants in the stabilization and destabilization of sand dunes. There are two main mechanisms by which the wind affects these plants: (i) sand drift results in the burial and exposure of plants, a process that is known to result in an enhanced growth rate, and (ii) strong winds remove shoots and rhizomes and seed them in nearby locations, enhancing their growth rate. Our model describes the temporal evolution of the fractions of surface cover of regular vegetation, biogenic soil crust, and psammophilous plants. The latter reach their optimal growth under either (i) specific sand drift or (ii) specific wind power. The model exhibits complex bifurcation diagrams and dynamics, which explain observed phenomena, and it predicts new dune stabilization scenarios. Depending on the climatological conditions, it is possible to obtain one, two, or, predicted here for the first time, three stable dune states. Our model shows that the development of the different cover types depends on the precipitation rate and the wind power and that the psammophilous plants are not always the first to grow and stabilize the dunes.

Bel, Golan; Ashkenazy, Yosef

2014-07-01

311

cologie et conservation d'une steppe mditerranenne  

E-print Network

?cologie et conservation d'une steppe méditerranéenne La plaine de Crau Laurent Tatin, Axel Wolff des coussouls de Crau. Les paysages des steppes marquent les esprits, à l'évocation de celles du plus singulières au monde. En France, entre la Camargue et les Alpilles, une steppe d'une rare richesse

Canet, Léonie

312

Bipolar rechargeable lithium battery for high power applications  

NASA Technical Reports Server (NTRS)

Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

Hossain, Sohrab; Kozlowski, G.; Goebel, F.

1993-01-01

313

GROUNDWATER RECHARGE/DISCHARGE, NEUSE RIVER WATERSHED, NC  

EPA Science Inventory

The North Carolina Department of Environment and Natural Resources, Division of Water Quality and Groundwater Section, in cooperation with the NC Center for Geographic Information and Analysis, developed the Groundwater Recharge/Discharge digital data to enhance planning, siting ...

314

ENGINEERING ECONOMIC ANALYSIS OF A PROGRAM FOR ARTIFICIAL GROUNDWATER RECHARGE.  

USGS Publications Warehouse

This study describes and demonstrates two alternate methods for evaluating the relative costs and benefits of artificial groundwater recharge using percolation ponds. The first analysis considers the benefits to be the reduction of pumping lifts and land subsidence; the second considers benefits as the alternative costs of a comparable surface delivery system. Example computations are carried out for an existing artificial recharge program in Santa Clara Valley in California. A computer groundwater model is used to estimate both the average long term and the drought period effects of artificial recharge in the study area. Results indicate that the costs of artificial recharge are considerably smaller than the alternative costs of an equivalent surface system. Refs.

Reichard, Eric G.; Bredehoeft, John D.

1984-01-01

315

Impact of Storm Water Recharge Practices on Boston Groundwater Elevations  

E-print Network

Impact of Storm Water Recharge Practices on Boston Groundwater Elevations Brian F. Thomas, S periodically experienced a decline in groundwater elevations and the associated deterioration of untreated wood piles, which support building foundations. To combat declining water tables, Boston enacted

Vogel, Richard M.

316

Reliability of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect

We investigate the reliability If a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. A model system was constructed for this that includes the solar resource, the photovoltaic power supp Iy system, the rechargeable battery and a load. The solar resource and the system load are modeled as SI ochastic processes. The photovoltaic system and the rechargeable battery are modeled deterministically, imd an artificial neural network is incorporated into the model of the rechargeable battery to simulate dartage that occurs during deep discharge cycles. The equations governing system behavior are solved simultaneously in the Monte Carlo framework and a fwst passage problem is solved to assess system reliability.

Barney, P.; Jungst, R.G., Ingersoll, D.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-30

317

Soil Water Balance and Recharge Monitoring at the Hanford Site FY 2010 Status Report  

SciTech Connect

This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

2010-10-27

318

Cryogenic Transport of High-Pressure-System Recharge Gas  

NASA Technical Reports Server (NTRS)

A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near-ambient pressure far below the recharge pressure. As leakage of heat into the tank caused vaporization of the cryogenic fluid, the resulting gas would be vented through the relief valve, which would be set to maintain the pressure in the tank at the transport value. Inasmuch as the density of a cryogenic fluid at atmospheric pressure greatly exceeds that of the corresponding gas in a practical high-pressure tank at room temperature, a tank for transporting a given mass of gas according to the proposed method could be smaller (and, hence, less massive) than is a tank needed for transporting the same mass of gas according to the conventional method.

Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

2010-01-01

319

Hydrogeological Methods for Assessing Feasibility of Artificial Recharge  

NASA Astrophysics Data System (ADS)

This study presents the hydrogeological methods to assess the feasibility of artificial recharge in Jeju Island, Korea for securing both sustainable groundwater resources and severe floods. Jeju-friendly Aquifer Recharge Technology (J-ART) in this study is developing by capturing ephemeral stream water with no interference in the environments such as natural recharge or eco-system, storing the flood water in the reservoirs, recharging it through designed borehole after appropriate water treatment, and then making it to be used at down-gradient production wells. Many hydrogeological methods, including physico-chemical surface water and groundwater monitoring, geophysical survey, stable isotope analysis, and groundwater modeling have been employed to predict and assess the artificially recharged surface waters flow and circulation between recharge area and discharge area. In the study of physico-chemical water monitoring survey, the analyses of surface water level and velocity, of water qualities including turbidity, and of suspended soil settling velocity were performed. For understanding subsurface hydrogeologic characteristics the injection test was executed and the results are 118-336 m2/day of transmissivity and 4,367-11,032 m3/day of the maximum intake water capacity. Characterizing groundwater flow from recharge area to discharge area should be achieved to assess the efficiency of J-ART. The resistivity logging was carried out to predict water flow in unsaturated zone during artificial recharge based on the inverse modeling and resistivity change patterns. Stable isotopes of deuterium and oxygen-18 of surface waters and groundwaters have been determined to interpret mixing and flow in groundwaters impacted by artificial recharge. A numerical model simulating groundwater flow and heat transport to assess feasibility of artificial recharge has been developed using the hydraulic properties of aquifers, groundwater levels, borehole temperatures, and meteorological data. Also, groundwater modeling was performed to aid in artificial recharge system design, such as optimizing number and spacing of injection wells, building up and maintaining a water column inside each operating injection well, and optimizing time. Acknowledgements This research was supported by a grant (code 3-2-3) from the Sustainable Water Resources Research Center of 21st Century Frontier Research Program and the Basic Research Program (09-3414) of KIGAM.

Kim, Y.; Koo, M.; Lee, K.; Moon, D.; Barry, J. M.

2009-12-01

320

Thermal and Electrical Recharging of Sodium/Sulfur Cells  

NASA Technical Reports Server (NTRS)

Efficiency as high as 60 percent achieved. Proposed thermal and electrical recharging scheme expected to increase overall energy efficiency of battery of sodium/sulfur cells (beta cells). Takes advantage of peculiarity in chemical kinetics of recharge portion of operating cycle to give thermal assist to electrically driven chemical reactions. Future application include portable power supplies and energy storage in commercial power systems during offpeak periods.

Richter, Robert

1987-01-01

321

Future prospects of artifical groundwater recharge. [Disposal wells  

Microsoft Academic Search

Storing water underground has the advantages of minimizing evapotranspiration losses, equalizing water temperatures, providing natural filtration, and insuring a protected local water supply during times of emergency. More than 400 cities in the U.S. now use their treated effluent for agricultural irrigation or ground-water recharge. Water reclamation systems may be classified into infiltration basins, ridge-and-furrow, spray-irrigation, spray-runoff, and recharge wells.

1971-01-01

322

Ground water recharge and flow characterization using multiple isotopes.  

PubMed

Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system. PMID:18384592

Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

2008-01-01

323

Groundwater dynamics converted to a groundwater classification as a tool for nature development programs in the dunes  

NASA Astrophysics Data System (ADS)

Within the European Union, Habitat Directives are developed with the aim of restoration and preservation of endangered species. The level of biodiversity in coastal dune systems is generally very high compared to other natural ecosystems, but suffers from deterioration. Groundwater extraction and urbanisation are the main reasons for the decrease in biodiversity. Many restoration actions are being carried out and are focusing on the restoration of groundwater level with the aim of re-establishing rare species. These actions have different degrees of success. The evaluation of the actions is mainly based on the appearance of red list species. The groundwater classes, developed in the Netherlands, are used for the evaluation of opportunities for vegetation, while the natural variability of the groundwater level and quality are under-estimated. Vegetation is used as a seepage indicator. The existing classification is not valid in the Belgian dunes, as the vegetation observed in the study area is not in correspondence with this classification. Therefore, a new classification is needed. The new classification is based on the variability of the groundwater level on a long term with integration of ecological factors. Based on the new classification, the importance of seasonal and inter-yearly fluctuations of the water table can be deduced. Inter-yearly fluctuations are more important in recharge areas while seasonal fluctuations are dominant in discharge areas. The new classification opens opportunities for relating vegetation and groundwater dynamics.

Martens, Kristine; Van Camp, Marc; Van Damme, Dirk; Walraevens, Kristine

2013-08-01

324

Movement of Whole Martian Dunes Difficult to Detect or Confirm  

NASA Technical Reports Server (NTRS)

Dunes on Earth move downwind at different speeds depending upon the local wind conditions, the amount of loose sand available to be transported by wind, the shape and volume of the dunes, and overgrowths of vegetation. Typically, smaller dunes move faster than larger dunes. On Earth, some of the fastest-moving dunes that have been measured (e.g., in the deserts of Peru) move 10 to 30 meters (33 to 100 feet) per year. Small dunes usually have an almost crescent-shape to them, and are known to geologists as barchan dunes.

To look for evidence of dune movement on Mars, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) has been used to re-visit some areas of known barchan dunes--because these types move the fastest--that were observed by the Mariner 9 orbiter in 1972 and the Viking 1 and 2 orbiters between 1976 and 1980. The picture above, left, shows a MOC high-resolution image taken December 25, 1999. The classic, crescentic shape of the dark barchan dunes can be seen in this picture. The steep slopes, also known as the dune slip faces, on these dunes are facing toward the southwest (north is up in both pictures). Thus, the shape of the dunes indicates that they are moving toward the southwest.

The picture above right shows the MOC image from December 1999 superimposed on a Viking 1 image taken May 27, 1978. During the 11 1/2 Mars years that passed between these two dates, it turns out that no difference can be detected in the position of the dunes seen in the MOC image and the Viking image. The earlier Viking image had a resolution of about 17 meters (56 ft) per pixel, while the MOC image had a resolution of about 3.8 meters (12 ft) per pixel. Although it looks like the dunes didn't move between the Viking and MOC images, this observation is limited by the resolution of the Viking image. It is entirely possible that the dunes have moved as much as 17-20 meters (16-66 ft) and one would not be able to tell by comparing the images. As it is, movement of less than 20 meters (66 ft) in 11 martian years (nearly 22 Earth years) is slower than some dunes of similar size and shape on Earth. Thus, it appears that martian dunes are not 'experiencing' the level of activity commonly reported for some of the modern desert dunes found on Earth. The dune field illustrated in these pictures is located in a western Arabia Terra crater at 1.6oN, 351.6oW. Both the Viking and MOC images are illuminated from the left.

2000-01-01

325

The effects of psammophilous plants on sand dune dynamics  

E-print Network

Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth u...

Bel, Golan

2013-01-01

326

Seasonal variation in natural recharge of coastal aquifers  

NASA Astrophysics Data System (ADS)

Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

Mollema, Pauline N.; Antonellini, Marco

2013-06-01

327

The Policy of "Pumping the Recharge" Is Out of Control  

NASA Astrophysics Data System (ADS)

Hydrogeologists have spent several scientific generations in understanding the source of water to well fields and the effects of wells on the interrelated surface water system. The benchmark is by Theis [1940], who emphasized that some groundwater is initially mined during aquifer development and, after sufficient time, well discharge will be made up by diminution of both rejected recharge and natural discharge. Rejected recharge is water that would reside in the aquifer, except for a lack of space available. Theis advised that a perennial safe yield is equivalent to the amount of rejected recharge and natural discharge that is "feasible to utilize." His term "feasible" may have anticipated many current issues about aquifer sustainability. Papers published this year on the Ogallala aquifer in the central United States and on the global groundwater "footprint" [Scanlon et al., 2012; Gleeson et al., 2012] focus on recharge as an index of sustainability and have been featured in the popular press. However, I argue in this Forum that natural recharge rates alone cannot serve to address the core policy question regarding sustainable aquifer conditions in response to well field stresses. For the sake of users of hydrologic guidance, advisors on this topic may wish to reconsider the safe nature of "pumping the recharge."

Balleau, W. Peter

2013-01-01

328

Recharge signal identification based on groundwater level observations.  

PubMed

This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area. PMID:22016042

Yu, Hwa-Lung; Chu, Hone-Jay

2012-10-01

329

Estimating aquifer channel recharge using optical data interpretation.  

PubMed

Recharge through intermittent and ephemeral stream channels is believed to be a primary aquifer recharge process in arid and semiarid environments. The intermittent nature of precipitation and flow events in these channels, and their often remote locations, makes direct flow and loss measurements difficult and expensive. Airborne and satellite optical images were interpreted to evaluate aquifer recharge due to stream losses on the Frio River in south-central Texas. Losses in the Frio River are believed to be a major contributor of recharge to the Edwards Aquifer. The results of this work indicate that interpretation of readily available remote sensing optical images can offer important insights into the spatial distribution of aquifer recharge from losing streams. In cases where upstream gauging data are available, simple visual analysis of the length of the flowing reach downstream from the gauging station can be used to estimate channel losses. In the case of the Frio River, the rate of channel loss estimated from the length of the flowing reach at low flows was about half of the loss rate calculated from in-stream gain-loss measurements. Analysis based on water-surface width and channel slope indicated that losses were mainly in a reach downstream of the mapped recharge zone. The analysis based on water-surface width, however, did not indicate that this method could yield accurate estimates of actual flow in pool and riffle streams, such as the Frio River and similar rivers draining the Edwards Plateau. PMID:21434908

Walter, Gary R; Necsoiu, Marius; McGinnis, Ronald

2012-01-01

330

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

SciTech Connect

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01

331

Channels on Dunes in Russell Crater  

NASA Technical Reports Server (NTRS)

Hundreds of enigmatic small channels are seen to carve into the slopes of these dark sand dunes lying within Russell Crater on Mars. These features were previously identified as gullies in images from the Mars Orbiter Camera (MOC) on Mars Global Surveyor, but the higher resolution HiRISE image brings out many new details and mysteries. The channels extend from near the top of the dunes to their bases, indicating that some fluid material carved into the sand. The channels commonly begin as smaller tributaries joined together, suggesting several sources of fluid. Distinct dark spots are located near where the channels seem to originate. Several channels appear to originate at alcoves. Several of these channels have sinuous middle reaches while others are straighter. Further down slope, some channel edges appear elevated above the surrounding terrain, particularly in the lower reaches. The channels seem to terminate abruptly, with no deposition of material, unlike at the bases of some other gullies on Mars that are not on dunes.

One hypothesis for the origin of the channels, which has previously been proposed by the MOC team, is that CO2 (or maybe H2O) frost is deposited on the dunes in shadows or at night. Some frost may also be incorporated into the internal parts of the dunes due to natural avalanching. When the frost is eventually heated by sunlight, rapid sublimation triggers an avalanche of fluidized sand, forming a gully. HiRISE will continue to target small channel features such as these and may return to search for any changes over time.

Image PSP_001440_1255 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 16, 2006. The complete image is centered at -54.2 degrees latitude, 12.9 degrees East longitude. The range to the target site was 251.4 km (157.1 miles). At this distance the image scale is 50.3 cm/pixel (with 2 x 2 binning) so objects 151 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel and north is up. The image was taken at a local Mars time of 3:41 PM and the scene is illuminated from the west with a solar incidence angle of 85 degrees, thus the sun was about 5 degrees above the horizon. At a solar longitude of 136.3 degrees, the season on Mars is Northern Summer.

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

2006-01-01

332

Advanced rechargeable sodium batteries with novel cathodes  

NASA Technical Reports Server (NTRS)

Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.

Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

1989-01-01

333

Large-eddy simulation of unidirectional turbulent flow over dunes  

NASA Astrophysics Data System (ADS)

We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves the dune at the tips. Barchan dunes induce two counter-rotating streamwise vortices, along each of the horns, which direct high-momentum fluid toward the symmetry plane and low-momentum fluid near the bed away from the centerline.

Omidyeganeh, Mohammad

334

Quantifying Recharge in Semi-Arid Basins: Translating Impact of Climate Variability and Change on Groundwater Resources  

E-print Network

temperature (Barnett et al., 2008). Groundwater recharge is thus likely to be altered due to climate change and variability impacting groundwater resources. Our current knowledge of recharge rates is poor because recharge and change on recharge rates in the future (IPCC, 2007). In arid and semi-arid environments recharge

Fay, Noah

335

Dating of Sand Dunes Using Cosmogenic Chlorine-36: An Example From the Nebraska Sand Hills, USA  

E-print Network

Dating of Sand Dunes Using Cosmogenic Chlorine-36: An Example From the Nebraska Sand Hills, USA Stephen Moysey, Marek Zreda and Jim Goeke The large-scale mobility of sand dunes in continental dune of these landforms. Traditional methods for dating sand dunes, e.g. stratigraphic and radiocarbon dating

Zreda, Marek

336

Speculation on Martian north polar wind circulation and the resultant orientations of polar sand dunes  

Microsoft Academic Search

When seen at frost cap minimum, Martian north polar erg dunes north of 80 deg N record east winds, while those south of that latitude record west winds. Many of the transverse dunes are considered to be reversing dunes, and dunes in the two fields may have reversed at least once during the lifetime of the Viking Orbiters. It is

A. W. Ward; K. B. Doyle

1983-01-01

337

Techniques for GIS modeling of coastal dunes Brian D. Andrews a,*, Paul A. Gares b  

E-print Network

Techniques for GIS modeling of coastal dunes Brian D. Andrews a,*, Paul A. Gares b , Jeffrey D in revised form 5 September 2001; accepted 24 January 2002 Abstract Coastal dunes present a unique problem to coastal scientists because of the dynamic nature of most coastal dune systems. Coastal dunes can change

Thaxton, Christopher S.

338

Two modes for dune orientation -Supplementary information Sylvain Courrech du Pont,1,  

E-print Network

Two modes for dune orientation - Supplementary information Sylvain Courrech du Pont,1, Cl flux over a linear dune 1 B. Bed Instability 2 C. Dune fingering 4 D. Wind speed-up 5 E. Discussion 6 II. Experiments 9 A. Dunes underwater 9 B. Experimental setup 10 C. Orientation, amplitude

Narteau, Clment

339

A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples  

E-print Network

A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples Philippe Claudin to a turbulent shear flow predicts that the wavelength at which the bed destabilises to form dunes should scale in water (subaqueous ripples), in air (aeolian dunes and fresh snow dunes), in a high pressure CO2 wind

Claudin, Philippe

340

Corridors of barchan dunes: Stability and size selection P. Hersen,1  

E-print Network

Corridors of barchan dunes: Stability and size selection P. Hersen,1 K. H. Andersen,2 H. Elbelrhiti 29 January 2004 Barchans are crescentic dunes propagating on a solid ground. They form dune fields in the shape of elongated corridors in which the size and spacing between dunes are rather well selected. We

341

Age and Paleoclimatic Significance of Holocene Sand Dunes in Northeastern Colorado  

Microsoft Academic Search

Stabilized parabolic sand dunes are extensive in northeastern Colorado and adjacent southwestern Nebraska and suggest that precipitation was lower when the dunes were formed than it is now. Orientations of the parabolic dunes indicate a paleowind from the northwest. Soils developed on these dunes are Ustic Torripsamments with A\\/AC\\/C profiles that have morphological and textural properties similar to soils on

Daniel R. Muhs

1985-01-01

342

Implications of Dune Pattern Analysis for Titan's Surface History Christopher Jon Savage  

E-print Network

Implications of Dune Pattern Analysis for Titan's Surface History Christopher Jon Savage A thesis Reserved #12;ABSTRACT Implications of Dune Pattern Analysis for Titan's Surface History Christopher Jon Savage Department of Geological Sciences, BYU Master of Science Analyzing dune parameters such as dune

Seamons, Kent E.

343

An efficient implementation of an adaptive and parallel grid in DUNE  

E-print Network

An efficient implementation of an adaptive and parallel grid in DUNE Adrian Burri, Andreas Dedner-Herder-Str. 10, D-79104 Freiburg i. Br., Germany Email: alugrid@mathematik.uni-freiburg.de, DUNE website: http://dune and parallel grid (ALUGrid) within the Distributed and Unified Numerics Environment DUNE. A generalization

Ohlberger, Mario

344

Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems  

E-print Network

Invasive grasses, climate change, and exposure to storm-wave overtopping in coastal dune ecosystems result in increased risk of flooding in coastal areas. In the Pacific Northwest (USA), coastal dunes and reducing dune height. Here we quantify the relative exposure to storm-wave induced dune overtopping posed

345

Vegetation controls on the maximum size of coastal dunes  

NASA Astrophysics Data System (ADS)

Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the co-evolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand `dune-building' species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the time scale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches: higher waves associated with dissipative beaches increase the disturbance of strand species which shifts foredune formation landwards and thus leads to larger foredunes.

Duran Vinent, Orencio; Moore, Laura J.

2014-05-01

346

Vegetation controls on the maximum size of coastal dunes  

PubMed Central

Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the coevolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady-state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand dune-building species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the timescale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches. Higher waves associated with dissipative beaches increase the disturbance of strand species, which shifts foredune formation landward and thus leads to larger foredunes. In this scenario, plants play a much more active role in modifying their habitat and altering coastal vulnerability than previously thought. PMID:24101481

Durn, Orencio; Moore, Laura J.

2013-01-01

347

Vegetation controls on the maximum size of coastal dunes.  

PubMed

Coastal dunes, in particular foredunes, support a resilient ecosystem and reduce coastal vulnerability to storms. In contrast to dry desert dunes, coastal dunes arise from interactions between biological and physical processes. Ecologists have traditionally addressed coastal ecosystems by assuming that they adapt to preexisting dune topography, whereas geomorphologists have studied the properties of foredunes primarily in connection to physical, not biological, factors. Here, we study foredune development using an ecomorphodynamic model that resolves the coevolution of topography and vegetation in response to both physical and ecological factors. We find that foredune growth is eventually limited by a negative feedback between wind flow and topography. As a consequence, steady-state foredunes are scale invariant, which allows us to derive scaling relations for maximum foredune height and formation time. These relations suggest that plant zonation (in particular for strand "dune-building" species) is the primary factor controlling the maximum size of foredunes and therefore the amount of sand stored in a coastal dune system. We also find that aeolian sand supply to the dunes determines the timescale of foredune formation. These results offer a potential explanation for the empirical relation between beach type and foredune size, in which large (small) foredunes are found on dissipative (reflective) beaches. Higher waves associated with dissipative beaches increase the disturbance of strand species, which shifts foredune formation landward and thus leads to larger foredunes. In this scenario, plants play a much more active role in modifying their habitat and altering coastal vulnerability than previously thought. PMID:24101481

Durn, Orencio; Moore, Laura J

2013-10-22

348

Is Titan's Dune Orientation Controlled by Tropical Methane Storms?  

NASA Astrophysics Data System (ADS)

Titans equatorial regions are covered by eastward oriented linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs) at these latitudes, oriented westward as trade winds on Earth [1, 2].Here, we propose that Titans dune orientation is actually determined by equinoctial tropical methane storms producing a coupling with superrotation and dune formation. Using meso-scale simulations of convective methane clouds [3, 4] with a GCM wind profile featuring the superrotation [5, 6], we show that Titans storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport. Using GCM wind roses and analogies with terrestrial dune fields [7], we show that Titan's dune growth occurs eastward under these conditions. Finally, this scenario combining global circulation winds and methane storms can explain other major features of Titan's dunes (i.e. divergence from the equator, size and spacing).References:[1] Lorenz et al.: The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes, Science (2006)[2] Lorenz & Radebaugh: Global pattern of Titans dunes: Radar survey from the Cassini prime mission, Geophysical Research Letter (2009)[3] Barth & Rafkin.: TRAMS: A new dynamic cloud model for Titans methane clouds, Geophysical Research Letter (2007)[4] Barth & Rafkin.: Convective cloud heights as a diagnostic for methane environment on Titan, Icarus (2010)[5] Charnay & Lebonnois: Two boundary layers in Titan's lower troposphere inferred from a climate model, Nature Geoscience (2012)[6] Lebonnois et al.: Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM, Icarus (2012)[7] Courrech du Pont, Narteau & Gao: Two modes for dune orientation, Geology (2014)

Charnay, Benjamin; Barth, Erika; Rafkin, Scot; Narteau, Clment; Lebonnois, Sbastien; Rodriguez, Sbastien; Courrech du Pont, Sylvain; Lucas, Antoine

2014-11-01

349

Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes  

USGS Publications Warehouse

The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 1215, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

2013-01-01

350

Coupling Stormwater Capture and Managed Aquifer Recharge  

NASA Astrophysics Data System (ADS)

We are quantifying the performance of a system that couples stormwater capture and managed aquifer recharge (MAR). Our field site is a working ranch in the Pajaro Valley, central coastal California, where runoff from ~125 acres of farmed and grazed land is directed into a 2.5-acre infiltration basin. Stormwater captured for MAR at this site would otherwise be routed off the property and eventually into the ocean. We instrumented the site prior to the start of the 2013 water year (1 October 2012) to measure local precipitation, total inflow to the basin, and point-specific infiltration rates across the bottom of the basin using heat as a tracer. We also deployed sediment measurement and collection instruments to quantify the amount, texture, and biochemical nature of sediment accumulating in the basin, and to evaluate associated maintenance requirements for the system. The 2013 water year was relatively dry, with total precipitation less than 50% of the long-term average for this region; most of this precipitation occurred in December 2012. Water level and flow records indicate 17 distinct rain events that generated runoff, most early in the water year. The total inflow to the infiltration basin was 4.1 x 104 m3, equivalent to ~33 ac-ft. During a water year with average precipitation, it appears that this system could collect 80-100 ac-ft of runoff. There was up to 10 cm of sediment accumulation in some parts of the infiltration basin by the end of the rainy season. Sediment samples collected at the end of the season are being processed for analysis of sediment distribution and character. Thermal data are being analyzed to calculate spatial and temporal variations in infiltration rates across the basin. These data will be combined to assess the efficacy of coupling stormwater capture and MAR, and can guide future projects in this region of high groundwater demand and limited resources.

Beganskas, S.; Hill, C. L.; Fisher, A. T.; Los Huertos, M.

2013-12-01

351

Arsenic release during managed aquifer recharge (MAR)  

NASA Astrophysics Data System (ADS)

The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

Pichler, T.; Lazareva, O.; Druschel, G.

2013-12-01

352

Design and simulation of lithium rechargeable batteries  

SciTech Connect

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01

353

Great Sand Dunes National Monument and Preserve  

NSDL National Science Digital Library

This National Park Service website describes the natural resources of this park such as plants, mammals and birds (with species lists); endemic or rare species; geology; hydrology; and wind (eolian) systems. These natural resources include a high mountain valley holding the tallest dunes in North America and flanked by some of the highest peaks in the Rocky Mountains; unique wind-powered geologic systems; insects physically adapted to life in the sand and found nowhere else; alpine lakes and tundra; disappearing ponds; and interdunal wetlands. There is information on hiking and camping in the park and planning a visit; cultural history of the park area including that of ancient Americans; and a photo gallery.

354

Field and Laboratory Investigations of Coastal Dune Morphodynamics  

NASA Astrophysics Data System (ADS)

Coastal dunes are important features along many coastlines, owing to their role in sediment budgets, their use as ecologically unique habitat, and their ability to protect onshore resources from wave attack. Skillful predictions of the erosion and overtopping rates of these features are needed to quantify coastal vulnerability during major storm events. Knowledge of post-storm recovery and subsequent dune growth rates is critical to developing quantitative sediment budgets and ultimately for predicting future shoreline positions. We have been conducting both long-term field and large-scale laboratory studies to improve our understanding of dune morphodynamics and will present results of dune behavior, including various feedback mechanisms, at scales ranging from individual storm events to decadal trends. A large-scale physical model study of dune erosion was recently performed at Oregon State University's O.H. Hinsdale Wave Research Laboratory producing a comprehensive, near prototype-scale data set of hydrodynamics, sediment transport, and morphological evolution during extreme dune erosion events. The laboratory moveable bed beach/dune system was brought to equilibrium with pre-storm random wave conditions. It was subsequently subjected to attack from steadily increasing water levels and offshore wave heights simulating a natural storm surge hydrograph. Observations made include inner surf zone and swash free surface and velocities as well as wave-by-wave estimates of topographical change at high spatial resolution through the use of stereo video imagery. Initial results suggest strong feedbacks between the evolution of the foreshore profile during the storm and episodic dune slumping events. Beach topographic data have been collected quarterly along southwest Washington and northwest Oregon since 1997 resolving the seasonal to interannual morphological variability of a nearly 160-km long high-energy dissipative coastline. Major climate events (such as El Ninos) cause region-wide dune erosion/scarping due to high water levels and increased storminess. However, subsequent dune recovery rates have been variable and appear linked to variations in short-term shoreline change rates and sediment budgets. At interannual scale regions of high shoreline progradation rates experience relatively high dune growth rates. At longer time scales, overall dune morphology is again linked to shoreline change rates but with the highest foredune ridges occurring in areas of relative stable shorelines at decadal scale.

Ruggiero, P.; Maddux, T.; Kaminsky, G.; Palmsten, M.; Holman, R.; Cox, D.

2007-12-01

355

Interdisciplinary research produces results in understanding planetary dunes  

USGS Publications Warehouse

Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes; Flagstaff, Arizona, 1216 June 2012. This workshop, the third in a biennial series, was convened as a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research. The small-group setting facilitated intensive discussions of many problems associated with aeolian processes on Earth, Mars, Venus, Titan, Triton, and Pluto. The workshop produced a list of key scientifc questions about planetary dune felds.

Titus, Timothy N.; Hayward, Rosalyn K.; Dinwiddie, Cynthia L.

2012-01-01

356

Interactions between mycorrhizal colonization and plant life forms along the successional gradient of coastal sand dunes in the eastern Mediterranean, Turkey  

Microsoft Academic Search

The mycorrhizal status of dune plant species in relation to their plant life forms was surveyed along a successional gradient of sand dune on the southern Mediterranean coast of Turkey. Roots of 64 dune plant species belonging to 30 families were collected from sand dune communities at four different successional stages: embryonic dunes (ED), mobile dunes (MD), fixed dunes (FD),

Halil akan; i?dem Karata?

2006-01-01

357

Factors affecting areas contributing recharge to wells in shallow aquifers  

USGS Publications Warehouse

The source of water to wells is ultimately the location where the water flowing to a well enters the boundary surface of the ground-water system. In ground-water systems that receive most of their water from areal recharge, the location of the water entering the ground-water system is at the water table. The area contributing recharge to a discharging well is the surface area that defines the location of the water entering the ground-water system at the water table that flows to the well and is eventually discharged from the well. The calculation of areas contributing recharge to wells is complex because flow paths in ground-water systems change in response to development, and the aquifer material in ground-water systems is heterogeneous and is hidden from direct observation . Hypothetical experiments were undertaken to show the complexities in the delineation of areas contributing recharge to wells. Four different 'cases' are examined to demonstrate the effect of different conceptualized aquifer frameworks on deterministically calculated areas contributing recharge. The main conclusion drawn from the experiments is that, in order to understand the cause and effect relations that affect the quality of water derived from wells, the importance and nature of the variability in the ground-waterflow system must be considered and accounted for in any efforts to 'protect' the water supply.

Reilly, Thomas E.; Pollock, David W.

1993-01-01

358

Fate of human viruses in groundwater recharge systems  

SciTech Connect

The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

Vaughn, J.M.; Landry, E.F.

1980-03-01

359

The Effects of Recharge, Agricultural Pumping and Municipal Pumping on Springflow and Pumping Lifts Within the Edwards Aquifer  

E-print Network

The Effects of Recharge, Agricultural Pumping and Municipal Pumping on Springflow and Pumping Lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 The Effects of Recharge and Pumping Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 The Effects of Agricultural Pumping, Municipal Pumping and Recharge on Comal Springflow

McCarl, Bruce A.

360

Water-use dynamics of a peat swamp forest and a dune forest in Maputaland, South Africa  

NASA Astrophysics Data System (ADS)

Peat swamp forests are the second rarest forest type found in South Africa while dune forests have been under severe threat through mining and agriculture. Both forest types exist in the conservation area, and World Heritage site, known as the iSimangaliso Wetland Park on the East coast of South Africa. The area is prone to severe droughts (Taylor et al., 2006) and recent attempts to understand the local water balance revealed that there was insufficient information on the water use of the indigenous forests of the area. The peat swamp forest and dune forest sites studied in this research were located within close proximity to each other, yet, are characterised by different landscape positions in terms of water availability. The coastal dune forest soil profile was generally dry and sandy and the tree roots did not have access to the water table. In contrast the peat swamp forest is located in an interdunal wetland where the trees have permanent access to water. The climate at both sites is subtropical with a mean annual precipitation of 1200 mm yr-1. However, over 20 months of measurement, the first summer (October 2009 to March 2010) was drier (424 versus 735 mm) than the second summer (October 2010 to March 2011) emphasising the variability of the rainfall in the area and providing a wide range of conditions measured. The sap flow of an evergreen, overstory Syzygium cordatum and a semi-deciduous, understory Shirakiopsis elliptica were measured in the peat swamp forest using the heat ratio method. The Syzygium cordatum water use was not highly seasonal and the daily maximum water use ranged from approximately 30 L d-1 in winter to 45 L d-1 in summer whereas the Shirakiopsis elliptica water use was more seasonal at 2 L d-1 in winter and 12 L d-1 in summer. The water use of the Syzygium cordatum was not influenced by seasonal rainfall variations and was actually higher in the drier summer (October 2009 to March 2010). Three trees of different heights were monitored in the same way in the dune forest and the water use found to be highly seasonal. Over the entire measurement period, the water use was highest for an emergent Mimusops caffra (5 to 45 L d-1), whereas the water use of the Eugenia natalitia (2 to 28 L d-1) and Drypetes natalensis (1 to 4 L d-1) was lower. At the dune forest, the water use was highest in the wetter summer due to the reliance of the trees on rainfall to recharge the soil water. A split-line regression showed that on average, soil water limited tree water use 64% of the time over the measurement period at the dune forest. For modelling tree water use at the dune forest, it was concluded that a two-stage model, taking soil water content into account (from multiple sampling points), would be necessary.

Clulow, A. D.; Everson, C. S.; Price, J. S.; Jewitt, G. P. W.; Scott-Shaw, B. C.

2013-05-01

361

Ideal Microhabitats on Mars: The Astrobiological Potential of Polar Dunes  

Microsoft Academic Search

Astrobiological potential of polar Dark Dunes: they may hold less oxidants, trap water-ice, mm layer of them shields UV radiation, allows light income for photosynthesis. Water uptake in nighttime, temperature in daytime is favorable for metabolism.

T. Gnti; T. Pcs; Sz. Brczi; A. Horvth; A. Kereszturi; A. Sik; E. Szathmry

2009-01-01

362

Ideal Microhabitats on Mars: The Astrobiological Potential of Polar Dunes  

NASA Astrophysics Data System (ADS)

Astrobiological potential of polar Dark Dunes: they may hold less oxidants, trap water-ice, mm layer of them shields UV radiation, allows light income for photosynthesis. Water uptake in nighttime, temperature in daytime is favorable for metabolism.

Gnti, T.; Pcs, T.; Brczi, Sz.; Horvth, A.; Kereszturi, A.; Sik, A.; Szathmry, E.

2009-03-01

363

Methane storms as a driver of Titan's dune orientation  

E-print Network

Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tro...

Charnay, Benjamin; Rafkin, Scot; Narteau, Clment; Lebonnois, Sbastien; Rodriguez, Sbastien; Pont, Sylvain Courrech du; Lucas, Antoine

2015-01-01

364

Aerial view of old station and sand dunes looking east ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Aerial view of old station and sand dunes looking east from tower of newer station. - Vermilion Life Saving Station, Shore of Lake Superior, 10 miles west of Whitefish Point, Paradise, Chippewa County, MI

365

25. Wide view from the dune to the southeast, showing ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

25. Wide view from the dune to the southeast, showing from right to left, surf, beach, bluff, stilwell Hall. - Fort Ord, Soldiers' Club, California State Highway 1 near Eighth Street, Seaside, Monterey County, CA

366

The timing of EV recharging and its effect on utilities  

NASA Astrophysics Data System (ADS)

The impact of electric vehicles (EVs) on electric utilities will in part depend on when the vehicles are recharged. If electricity pricing practices were guided by time of day, recharging of EVs would occur at late night hours, when demand for electricity for other purposes is low. The peak demand by the year 2000 would then increase by only 400 MW, by comparison with 5700 MW for the case of electricity that is uniformly priced throughout the day. It is further established by the present projections that the oil- and gas-burning component of electrical generation would rise by only 27 percent for the late night-charging case, by contrast to 39 percent for the alternative, late afternoon and early evening recharging.

Collins, M. M.; Mader, G. H.

1983-02-01

367

Sulfone-based electrolytes for aluminium rechargeable batteries.  

PubMed

Electrolyte is a key material for success in the research and development of next-generation rechargeable batteries. Aluminium rechargeable batteries that use aluminium (Al) metals as anode materials are attractive candidates for next-generation batteries, though they have not been developed yet due to the lack of practically useful electrolytes. Here we present, for the first time, non-corrosive reversible Al electrolytes working at room temperature. The electrolytes are composed of aluminium chlorides, dialkylsulfones, and dilutants, which are realized by the identification of electrochemically active Al species, the study of sulfone dependences, the effects of aluminium chloride concentrations, dilutions and their optimizations. The characteristic feature of these materials is the lower chloride concentrations in the solutions than those in the conventional Al electrolytes, which allows us to use the Al metal anodes without corrosions. We anticipate that the sulfone-based electrolytes will open the doors for the research and development of Al rechargeable batteries. PMID:25627398

Nakayama, Yuri; Senda, Yui; Kawasaki, Hideki; Koshitani, Naoki; Hosoi, Shizuka; Kudo, Yoshihiro; Morioka, Hiroyuki; Nagamine, Masayuki

2015-02-10

368

Sand Furrows: A new surface feature on martian dunes  

NASA Astrophysics Data System (ADS)

Planetary geomorphology is at the forefront of today's Geoscience endeavours. A characteristic of frontier science is the discovery of new landforms and processes. Sand furrows are a new geomorphic feature that has not been previously described. They are ubiquitous and occur on 95% of polar dune images. Furrows are shallow and narrow erosion forms which can extend up to 300 m along a dune surface. Patterns are reminiscent of fluid flow, perhaps even fluvial flow (e.g., sinuosity, braiding and anastomosing) and are often slope-normal. However, furrows also display attributes that defy gravity (e.g., upslope trending flow paths) and they are not associated with terminal deposits. This suggests that the formative fluid is likely to be a pressurised gas. Cryo-venting has been proposed to explain the formation of dark spots and fans in the seasonal ice cap. It has also been linked to the formation of araniform. Here it is proposed to be the process by which aeolian sediment is eroded to form sand furrows. During the Martian spring, basal sublimation of the seasonal CO2 ice cap occurs on dune surfaces. Weaknesses in the ice allow pressurised gas and some dune sediment to be transported through vents to the surface. Furrows are eroded along the gas flow paths as it moves towards the vent. Cryo-venting is therefore identified as a new style of sediment transport on aeolian dunes in our solar system, and one that is, so far, unique to Mars. An estimate of the sand volume eroded from a sample dune during one Mars' spring is geomorphologically significant and is equivalent to that of a small dome dune on Mars (500m^3). The deposits are diffuse and extend into the interdune as well as back onto the source dune. The geomorphic efficacy of cryo-venting as a mechanism of aeolian dune erosion is dependent on the magnitude and frequency of venting, the location of vents and the scale of the source dune. Small dunes may undergo accelerated erosion rates as the ability to intersect vented sediment is reduced by a small surface area.

Bourke, Mary

2013-04-01

369

Nutrient deficiency in dune slack pioneer vegetation: a review  

Microsoft Academic Search

A review of results of fertilization experiments in wet dune slacks is presented. In most cases the above-ground biomass appeared\\u000a to be limited by nitrogen availability. Primary phosphorus limitation was assessed only once in a dune slack where sod cutting\\u000a had been applied very recently. In most other case studies phosphorus limits biomass production after nitrogen deficiency\\u000a was lifted. Potassium

E. J. Lammerts; A. P. Grootjans

1997-01-01

370

Habitat change in a perched dune system along Lake Superior  

USGS Publications Warehouse

Episodes of habitat change, driven by changes in levels of the Great Lakes, must be considered when assessing human effects upon coastal vegetation and rare species. Paleoecological studies, baseline inventories, and long-term monitoring programs within the Grand Sable Dunes, a perched-dune system along Lake Superior, provide a window on vegetation change at different spatial and temporal scales and also provide an illustrative case study.

Loope, Walter L.; McEachern, A. Kathryn

1998-01-01

371

Crab Burrows are Important Conduits for Groundwater Recharge in Bangladesh  

NASA Astrophysics Data System (ADS)

Recent research suggests that recharge from man-made ponds may stimulate arsenic mobilization within Bangladeshi aquifers. Man-made ponds are widespread throughout Bangladesh and are generally underlain by low permeability clays that could potentially limit flow to the sandy aquifer below if they are not compromised by preferential flow paths. Animal borrows are one common type of preferential flow path through surface clays. Across the Ganges Delta, terrestrial crabs dig borrows, sometimes as long as 10 meters. In our study pond in Munshiganj, Bangladesh we found crab burrows extending through the surficial clays and down into the shallow aquifer spaced approximately every meter. We use these field observations along with a novel, coupled isotope and water balance model to quantify the fluxes into and out of the pond. We show that nearly all of the aquifer recharge from the pond is through crab burrows which have enhanced the hydraulic conductivity of the surficial sediments by several orders of magnitude. In addition we show that the recharging pond water is shifting the solute composition of water beneath the pond. We suggest that, as a result of crab burrows, young ponds may contribute large fluxes of recharge water whereas older ponds may contribute little recharge to the aquifer. All terrestrial crabs have gills that must remain moist to allow for respiration. So, to ensure an uninterrupted water source, their borrows must reach the maximum depth that the water table drops to seasonally after irrigation ceases and before the onset of the monsoon. Once a pond is installed crabs living within the sediments that now make up the new pond bottom would no longer need to construct burrows to ensure a constant supply of water. Over time, burrows that existed prior to pond construction can clog. Water balance data for an old pond at our study site indicates that this pond contributes less recharge than our newly constructed pond.

Stahl, M.; Tarek, M. H.; Yeo, D. C.; Badruzzaman, A.; Harvey, C. F.

2013-12-01

372

Estimating ground water recharge from topography, hydrogeology, and land cover.  

PubMed

Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%. PMID:15726928

Cherkauer, Douglas S; Ansari, Sajjad A

2005-01-01

373

Holocene history of the Great Kobuk Sand Dunes, Northwestern Alaska  

NASA Astrophysics Data System (ADS)

Located just north of the Arctic Circle, the Great Kobuk Sand Dunes (GKSD) are an inland dune field that is closely surrounded by boreal forest. The history of the GKSD tells us about changes in aridity, a climatic parameter whose history is poorly understood at high latitudes. Vegetated dunes in several states of geomorphic preservation surround the active dune field today, evidencing a complex history of Holocene activity. Small lakes in the forest bordering the dunes accumulate wind-blown sand. We use 14C-dated, lake-sediment cores to reconstruct a continuous history of sand influx over the last 8000 yr. The validity of this record is supported by limiting ages obtained from stratigraphic sections within the dune field. The extent of the GKSD underwent a fluctuating shrinkage coincident with Neoglaciation. This downsizing trend was interrupted by periods of increased sand deposition into lakes occurring 4800-4200, 3300-2600, 1300-700, and 300-100 calendar years ago. Aridity in the Kobuk valley during the Holocene probably was controlled by the frequency of North Pacific storms entering the region in late summer. Our results describe the first continuous history of changing moisture balance for central Beringia during the Holocene and comprise a baseline against which future records of climatic and ecological change in this region can be compared.

Mann, D. H.; Heiser, P. A.; Finney, B. P.

2002-02-01

374

Barchan dune corridors: field characterization and investigation of control parameters  

E-print Network

The structure of the barchan field located between Tarfaya and Laayoune (Atlantic Sahara, Morocco) is quantitatively investigated and compared to that in La Pampa de la Joya (Arequipa, Peru). On the basis of field measurements, we show how the volume, the velocity and the output sand flux of a dune can be computed from the value of its body and horn widths. The dune size distribution is obtained from the analysis of aerial photographs. It shows that these fields are in a statistically homogeneous state along the wind direction and present a `corridor' structure in the transverse direction, in which the dunes have a rather well selected size. Investigating the possible external parameters controlling these corridors, we demonstrate that none among topography, granulometry, wind and sand flux is relevant. We finally discuss the dynamical processes at work in these fields (collisions and wind fluctuations), and investigate the way they could regulate the size of the dunes. Furthermore we show that the overall sand flux transported by a dune field is smaller than the maximum transport that could be reached in the absence of dunes, i.e. in saltation over the solid ground.

Hicham Elbelrhiti; Bruno Andreotti; Philippe Claudin

2007-07-10

375

The Dark UNiverse Explorer (DUNE): Proposal to ESA's Cosmic Vision  

E-print Network

The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2m telescope with a combined visible/NIR field-of-view of 1 deg^2. DUNE will carry out an all-sky survey, ranging from 550 to 1600nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE will yield major advances in a broad range of fields in astrophysics including fundamental cosmology, galaxy evolution, and extrasolar planet search. DUNE was recently selected by ESA as one of the mission concepts to be studied in its Cosmic Vision programme.

Alexandre Refregier; the DUNE collaboration

2008-07-24

376

Inorganic electrolyte Li/CuCl2 rechargeable cell  

NASA Astrophysics Data System (ADS)

A rechargeable lithium battery using a cathode of copper(II) chloride and an electrolyte consisting of LiAlCl4.3SO2 has been developed. The efficiency of lithium plating was evaluated in lithium-limited prototype cells. Cathode rechargeability was evaluated in cathode-limited prototypes, and system energy density was demonstrated by use of a wound D cell. The use of an electrolyte system which reacts reversibly with metallic lithium allowed the use of systematic overcharge to eliminate irreversible loss of lithium from the system and to provide for cell balancing. Lithium cycling figures of merit as high as 190 were attained by use of the overcharging.

Dey, A. N.; Bowden, W. L.; Kuo, H. C.; Gopikanth, M. L.; Schlaikjer, C.

1989-06-01

377

Thin Rechargeable Batteries for CMOS SRAM Memory Protection  

NASA Technical Reports Server (NTRS)

New rechargeable battery technology is described and compared with classical primary battery back-up of SRAM PC cards. Thin solid polymer electrolyte cells with the thickness of TSOP memory components (1 mm nominal, 1.1 mm max) and capacities of 14 mAh/sq cm can replace coin cells. The SRAM PC cards with permanently installed rechargeable cells and optional electrochromic low battery voltage indicators will free the periodic PC card user from having to 'feed' their PC cards with coin cells and will allow a quick visual check of stored cards for their battery voltage status.

Crouse, Dennis N.

1993-01-01

378

Modelling of recharge and pollutant fluxes to urban groundwaters.  

PubMed

Urban groundwater resources are of considerable importance to the long-term viability of many cities world-wide, yet prediction of the quantity and quality of recharge is only rarely attempted at anything other than a very basic level. This paper describes the development of UGIf, a simple model written within a GIS, designed to provide estimates of spatially distributed recharge and recharge water quality in unconfined but covered aquifers. The following processes (with their calculation method indicated) are included: runoff and interception (curve number method); evapotranspiration (Penman-Grindley); interflow (empirical index approach); volatilization (Henry's law); sorption (distribution coefficient); and degradation (first order decay). The input data required are: meteorological data, landuse/cover map with event mean concentration attributes, geological maps with hydraulic and geochemical attributes, and topographic and water table elevation data in grid form. Standard outputs include distributions of: surface runoff, infiltration, potential recharge, ground level slope, interflow, actual recharge, pollutant fluxes in surface runoff, travel times of each pollutant through the unsaturated zone, and the pollutant fluxes and concentrations at the water table. The process of validation has commenced with a study of the Triassic Sandstone aquifer underlying Birmingham, UK. UGIf predicts a similar average recharge rate for the aquifer as previous groundwater flow modelling studies, but with significantly more spatial detail: in particular the results indicate that recharge through paved areas may be more important than previously thought. The results also highlight the need for more knowledge/data on the following: runoff estimation; interflow (including the effects of lateral flow and channelling on flow times and therefore chemistry); evapotranspiration in paved areas; the nature of unsaturated zone flow below paved areas; and the role of the pipe network. Although considerably more verification is needed, UGIf shows promise for use: in providing input for regional groundwater solute transport models; in identifying gaps in knowledge and data; in determining which processes are the most important influences on urban groundwater quantity and quality; in evaluating existing recharge models; in planning, for example in investigation of the effects of landuse or climate change; and in assessing groundwater vulnerability. PMID:16325236

Thomas, Abraham; Tellam, John

2006-05-01

379

Rechargeable room-temperature CF(x)-sodium battery.  

PubMed

Here we demonstrate for the first time that CFx cathodes show rechargeable capability in sodium ion batteries with an initial discharge capacity of 1061 mAh g(-1) and a reversible discharge capacity of 786 mAh g(-1). The highly reversible electrochemical reactivity of CFx with Na at room temperature indicates that the decomposition of NaF could be driven by carbon formed during the first discharge. The high reversible capacity made it become a promising cathode material for future rechargeable sodium batteries. PMID:24494989

Liu, Wen; Li, Hong; Xie, Jing-Ying; Fu, Zheng-Wen

2014-02-26

380

Focused Ground-Water Recharge in the Amargosa Desert Basin  

USGS Publications Warehouse

The Amargosa River is an approximately 300-kilometer long regional drainage connecting the northern highlands on the Nevada Test Site in Nye County, Nev., to the floor of Death Valley in Inyo County, Calif. Streamflow analysis indicates that the Amargosa Desert portion of the river is dry more than 98 percent of the time. Infiltration losses during ephemeral flows of the Amargosa River and Fortymile Wash provide the main sources of ground-water recharge on the desert-basin floor. The primary use of ground water is for irrigated agriculture. The current study examined ground-water recharge from ephemeral flows in the Amargosa River by using streamflow data and environmental tracers. The USGS streamflow-gaging station at Beatty, Nev., provided high-frequency data on base flow and storm runoff entering the basin during water years 1998?2001. Discharge into the basin during the four-year period totaled 3.03 million cubic meters, three quarters of which was base flow. Streambed temperature anomalies indicated the distribution of ephemeral flows and infiltration losses within the basin. Major storms that produced regional flow during the four-year period occurred in February 1998, during a strong El Ni?o that more than doubled annual precipitation, and in July 1999. The study also quantified recharge beneath undisturbed native vegetation and irrigation return flow beneath irrigated fields. Vertical profiles of water potential and environmental tracers in the unsaturated zone provided estimates of recharge beneath the river channel (0.04?0.09 meter per year) and irrigated fields (0.1?0.5 meter per year). Chloride mass-balance estimates indicate that 12?15 percent of channel infiltration becomes ground-water recharge, together with 9?22 percent of infiltrated irrigation. Profiles of potential and chloride beneath the dominant desert-shrub vegetation suggest that ground-water recharge has been negligible throughout most of the basin since at least the early Holocene. Surface-based electrical-resistivity imaging provided areal extension of borehole information from sampled profiles. These images indicate narrowly focused recharge beneath the Amargosa River channel, flanked by large tracts of recharge-free basin floor.

Stonestrom, David A.; Prudic, David E.; Walvoord, Michelle A.; Abraham, Jared D.; Stewart-Deaker, Amy E.; Glancy, Patrick A.; Constantz, Jim; Laczniak, Randell J.; Andraski, Brian J.

2007-01-01

381

Estimation of Recharge to the Middle Trinity Aquifer of Central Texas Using Water-Level Fluctuations  

E-print Network

in the study area, comprising about 4500 square miles. The results of the investigation yielded a method of recharge calculation different from the stream baseflow method now in use. The recharge values obtained by this study were substantially less than...

Jennings, Marshall; Chad, Thomas; Burch, John; Creutzburg, Brian; Lambert, Lance

382

Diffuse groundwater recharge in semiarid environments: interactions between climate and soil texture  

Microsoft Academic Search

Previous research, primarily based on environmental tracer techniques, has demonstrated that diffuse recharge in semiarid environments varies greatly through space and time. Typically, there is no diffuse recharge at low-elevation sites in semiarid regions, whereas diffuse recharge often occurs at higher elevations. While there has been no diffuse recharge at low-elevation sites over the past 10^4 yr, it is

E. Small

2003-01-01

383

POSSIBLE ORIGIN OF UNEXPECTEDLY HIGH ALKALINITIES IN QUARTZ SANDS OF HIGH DUNES AT WARREN DUNES STATE PARK, MICHIGAN1  

Microsoft Academic Search

Unexpectedly high pH values (generally 7.9), encountered on loose dune sand and sandy soils on the Warren Dunes of southwest Michigan, were identified initially by the presence of certain lime-loving tree species (hackberry, hoptree, red cedar). Earlier workers (Kurz, 1923; Olson, 1958) had recognized this condition, though their published values do not exceed pH 7.G5, and had explained it as

JANE L. PORSYTH; ERNEST S. HAMILTON

384

Modeling the large-scale structure of a barchan dune field  

E-print Network

In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work and from field observations: (1) Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; (2) when dunes become sufficiently large, small dunes are born on their downwind sides (`calving'); and (3) when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first-order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

S. Worman; A. B. Murray; R. Littlewood; B. Andreotti; P. Claudin

2013-07-12

385

Derived Operating Rules for Allocating Recharges and Withdrawals among Unconnected Aquifers  

E-print Network

the future availability of water for extraction influence recharge and withdrawal decisions. DOI: 10Derived Operating Rules for Allocating Recharges and Withdrawals among Unconnected Aquifers David E and recharge of water in multiple, unconnected aquifers. Management objectives are: 1 minimizing costs; 2

Pasternack, Gregory B.

386

Climate change impacts on groundwater recharge uncertainty, shortcomings, and the way forward?  

Microsoft Academic Search

An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations. Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of

I. P. Holman

2006-01-01

387

Impact of deep plowing on groundwater recharge in a semiarid region  

E-print Network

Impact of deep plowing on groundwater recharge in a semiarid region: Case study, High Plains, Texas September 2008; accepted 17 September 2008; published 20 December 2008. [1] Groundwater recharge is critical in rainfed (nonirrigated) agriculture in a semiarid region on groundwater recharge, which had not been

Scanlon, Bridget R.

388

THE SENSITIVITY OF NORTHERN GROUNDWATER RECHARGE TO CLIMATE CHANGE: A CASE STUDY IN NORTHWEST ALASKA1  

E-print Network

THE SENSITIVITY OF NORTHERN GROUNDWATER RECHARGE TO CLIMATE CHANGE: A CASE STUDY IN NORTHWEST WSE and snow depth compared well with PWBM-simulated groundwater recharge and snow storage. Using to sustain sufficient groundwater recharge. (KEY TERMS: climate variability/change; arctic /antarctic

Massachusetts at Amherst, University of

389

The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario)  

Microsoft Academic Search

Understanding the process of groundwater recharge is fundamental to the management of groundwater resources. Quantifying the future evolution of recharge over time requires not only the reliable forecasting of changes in key climatic variables, but also modelling their impact on the spatially varying recharge process. This paper presents a physically based methodology that can be used to characterize both the

Mikko I. Jyrkama; Jon F. Sykes

2007-01-01

390

Climate change impacts on groundwater recharge uncertainty, shortcomings, and the way forward?  

Microsoft Academic Search

An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations.Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of the

I. P. Holman

2006-01-01

391

Recharge in Karst Shrublands of Central Texas: Monitoring Drip Rates in Shallow Caves  

Microsoft Academic Search

The exceedingly complex subsurface hydrology of karst landscapes presents formidable challenges to understanding recharge rates and the relationships between rainfall and recharge. In this study, we have established a network of drip collectors and monitoring stations in shallow caves in the Edwards Plateau to better understand the dynamics of recharge and eventually for determining the effect of woody plants on

R. A. Bazan; B. P. Wilcox; C. L. Munster; K. Owens; B. Shade

2007-01-01

392

USGS Professional Paper 1703--Ground-Water Recharge in the Arid and Semiarid Southwestern United States--  

E-print Network

USGS Professional Paper 1703--Ground-Water Recharge in the Arid and Semiarid Southwestern United States-- Appendix--1 Thermal Methods for Investigating Ground-Water Recharge By Kyle W. Blasch, Jim is defined as the downward flux of water across the regional water table. The introduction of recharging

393

Spatial Variability of Ground-Water Recharge Estimates in the Glassboro Area, New Jersey  

Microsoft Academic Search

The spatial variability of ground-water recharge estimates in the Glassboro area, NJ, was evaluated using geostatistical methods as a preliminarily assessment of aquifer vulnerability. Recharge was estimated using Darcy's law, based on parameters obtained from pedotransfer functions applied to measured soil texture values. The recharge estimates correspond to sediments overlying the Kirkwood-Cohansey aquifer, which comprises highly permeable unconsolidated sands and

B. T. Nolan; A. L. Baehr

2001-01-01

394

Large Eddy Simulation of Flow and Sediment Transport over Dunes  

NASA Astrophysics Data System (ADS)

Understanding the nature of flow over bedforms has a great importance in fluvial and coastal environments. For example, a bedform is one source of energy dissipation in water waves outside the surf zone in coastal environments. In rivers, the migration of dunes often affects the stability of the river bed and banks. In general, when a fluid flows over a sediment bed, the sediment transport generated by the interaction of the flow field with the bed results in the periodic deformation of the bed in the form of dunes. Dunes generally reach an equilibrium shape, and slowly propagate in the direction of the flow, as sand is lifted in the high shear regions, and redeposited in the separated flow areas. Different numerical approaches have been used in the past to study the flow and sediment transport over bedforms. In most research works, Reynolds Averaged Navier Stokes (RANS) equations are employed to study fluid motions over ripples and dunes. However, evidences suggests that these models can not represent key turbulent quantities in unsteady boundary layers. The use of Large Eddy Simulation (LES) can resolve a much larger range of smaller scales than RANS. Moreover, unsteady simulations using LES give vital turbulent quantities which can help to study fluid motion and sediment transport over dunes. For this steady, we use a three-dimensional, non-hydrostatic model, OpenFOAM. It is a freely available tool which has different solvers to simulate specific problems in engineering and fluid mechanics. Our objective is to examine the flow and sediment transport from numerical stand point for bed geometries that are typical of fixed dunes. At the first step, we performed Large Eddy Simulation of the flow over dune geometries based on the experimental data of Nelson et al. (1993). The instantaneous flow field is investigated with special emphasis on the occurrence of coherent structures. To assess the effect of bed geometries on near bed turbulence, we considered different dune geometries based on dune height and wave length. We will also examine the role of near bed turbulence on sediment transport over dunes. For validation, profiles of velocities, turbulent intensities, and sediment transport calculated by the numerical model will be compared with available experimental measurements.

Agegnehu, G.; Smith, H. D.

2012-12-01

395

WASTEWATER CONTAMINATE REMOVAL FOR GROUNDWATER RECHARGE AT WATER FACTORY 21  

EPA Science Inventory

This is the second report in a series which describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a g...

396

LOCALIZED RECHARGE INFLUENCES ON MTBE TRANSPORT AND WELL PLACEMENT CONSIDERATIONS  

EPA Science Inventory

Vertical characterization of a gasoline release site at East Patchogue, New York showed that methyl tert-butyl ether (MTBE) and aromatic plumes "dived" as they passed beneath a sand pit. That this behavior was caused by aquifer recharge was shown by two pieces of evidence. Fir...

397

College of Chemistry Recharge Rates Computer Graphics Laboratory  

E-print Network

College of Chemistry Recharge Rates Computer Graphics Laboratory Computational Services (effective at cost Linux/Pitzer Center support (effective July 1, 2014) Pitzer Center support $67.00/hour Chemistry & Store Room (effective July 1, 2014) Store Room Cost + 25.60% Compressed Gases Cost + 25% Demurrage $13

Doudna, Jennifer A.

398

PRIORITY POLLUTANTS IN THE CEDAR CREEK WASTEWATER RECLAMATION - RECHARGE FACILITIES  

EPA Science Inventory

The Cedar Creek Wastewater Reclamation Plant (CCWRP) located in Nassau County, NY is a 0.24 cu m/s (5.5 mgd) advanced wastewater treatment (AWT) plant designed to produce a high quality effluent suitable for groundwater recharge. The CCWRP was constructed as a demonstration proje...

399

Wave energy systems for recharging AUV energy supplies  

Microsoft Academic Search

This paper describes ocean wave energy resources and characterizes their global distribution and temporal variability. It presents an overview of wave energy conversion devices that have progressed beyond the laboratory wave tank and have been proven at sea, and which lend themselves to miniaturization and packaging in a configuration suitable for recharging AUV power supplies from a docking station base.

George Hagerman

2002-01-01

400

Oxygen electrodes for rechargeable alkaline fuel cells. II  

NASA Technical Reports Server (NTRS)

The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

Swette, L.; Kackley, N.

1990-01-01

401

Oxygen electrodes for rechargeable alkaline fuel cells-II  

NASA Technical Reports Server (NTRS)

The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

Swette, L.; Kackley, N.

1989-01-01

402

Oxygen electrodes for rechargeable alkaline fuel cells, 3  

NASA Technical Reports Server (NTRS)

The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

Swette, L.; Kackley, N.; Mccatty, S. A.

1991-01-01

403

Modelling the groundwater recharge of an urban area in Germany  

Microsoft Academic Search

Groundwater recharge is an important part of the natural water cycle. This cycle is disturbed particularly in urban areas. Sealing negatively influences the hydrological and mechanical soil properties. The continued sealing of soils, mainly caused by urbanisation, will continue to reduce the infiltration of water to groundwater and increase the surface run-off. Furthermore, recent and future climate changes strongly affect

Sabine Tesch; Volkmar Dunger; Jrg Matschullat

2010-01-01

404

Climate change effects on vegetation characteristics and groundwater recharge  

Microsoft Academic Search

Climate change is among the most pressing issues of our time. Increase in temperature, a decrease in summer precipitation and increase in reference evapotranspiration might affect the water balance, freshwater availability and the spatial distribution and type of vegetation. Precipitation and evapotranspiration (ET) largely determine groundwater recharge. Therefore, climate change likely affects both the spatial and temporal freshwater availability for

2010-01-01

405

On the Fate of Artificial Recharge in a Coastal Aquifer  

Microsoft Academic Search

The increased use of reclaimed water for artificial groundwater recharge purposes has led to concerns about future groundwater quality, particularly as it relates to the introduction of new organic and inorganic contaminants into the subsurface. Here we review the integrated application of isotopic characterization and numerical modeling techniques for assessing the migration of reclaimed water that is used for artificial

A. Tompson; M. Davisson; R. Maxwell; G. Hudson; C. Welty; S. Carle; N. Rosenberg

406

Interdisciplinary Institute for Innovation Optimal Recharging Strategy for  

E-print Network

while the Spanish government has committed to having 1 million electric or hybrid cars on Spanish roads price differentials in electricity tariffs are designed to dissuade car owners from recharging for Electric Vehicles in France Margaret Armstrong Charles El Hajj Moussa Jérôme Adnot Alain Galli Philippe

Paris-Sud XI, Université de

407

Groundwater drainage and recharge by networks of irregular channels  

Microsoft Academic Search

A linear complementarity theory is proposed for the coupled treatment of groundwater seepage and surface runoff along a sloping plane ground perturbed by irregular channels. Steady downslope routing is applied to the two-dimensional overland flow, while Green functions are used to relate the three-dimensional groundwater motion to the surface drainage and recharge distribution. The coupling between the surface and subsurface

Wei-Jay Ni; Herv Capart

2006-01-01

408

Net Recharge Targets to meet Regional Environmental Goals  

E-print Network

. Building on the previous hydrogeology studies in the CIA, further work was carried out to quantify vertical. This project is aimed at investigating the following groundwater management issues in the CIA: Characterise and discharge zones in the CIA. Currently the overall recharge area is around 30 percent of the region

Khan, Shahbaz

409

Encouraging Revegetation in Australia with a Groundwater Recharge Credit Scheme  

Microsoft Academic Search

This paper describes a comprehensive method to design, test and then implement a Payments for Ecosystem Services (PES) framework to combat the environmental consequences of extensive native vegetation clearance in Australia. Clearing of vegetation, primarily due to the expansion of farming areas, has often resulted in regional dryland and irrigation salinity. The market based approach adopted ? a groundwater recharge

Wendy Proctor; Jeffery D. Connor; John Ward; Darla Hatton MacDonald

2007-01-01

410

HOW TO PURCHASE CREDITS OR RECHARGE THE CARD: Preliminaryremarks  

E-print Network

to purchase credits or recharge the bike sharing card is a service provided and managed by velopass sarl. The USI has nothing to do with the management and organization of the bike sharing service for the velopass online shop, you need to do it (it's free) by selecting on the left the button "Registrati

Krause, Rolf

411

Methods Note/ Net Recharge vs. Depth to Groundwater  

E-print Network

soils with a shallow groundwater table. The transition depth (dt) between negative and positive valuesMethods Note/ Net Recharge vs. Depth to Groundwater Relationship in the Platte River Valley rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte

Szilagyi, Jozsef

412

Estimating High Plains Aquifer Recharge Using Temperature Probes  

Technology Transfer Automated Retrieval System (TEKTRAN)

The magnitude of recharge through playa wetlands in the High Plains Region of the United States has been debated, but rarely quantified. The ephemeral nature of water in playas makes it difficult and expensive to observe filling and drying/draining cycles. Inexpensive tools are needed to quantify ...

413

DELINEATING KARST RECHARGE AREAS AT ONONDAGA CAVE STATE PARK  

Technology Transfer Automated Retrieval System (TEKTRAN)

Onondaga Cave State Park is located in the north central portion of the Ozarks near Leasburg, Missouri. The park is known for two extensive cave systems, Onondaga Cave and Cathedral Cave. Both of these cave systems have active streams (1-2 cfs at baseflow) which have unknown recharge areas. As a man...

414

THE ROLE OF UNSATURATED FLOW IN ARTIFICAL RECHARGE PROJECTS  

Microsoft Academic Search

The hydrogeology of the unsaturated zone plays a critical role in determining the suitability of a site for artificial recharge. Optimally, a suitable site has highly permeable soils, capacity for horizontal flow at the aquifer boundary, lack of impeding layers, and a thick unsaturated zone. The suitability of a site is often determined by field and laboratory measurements of soil

Alan L. Flint

415

A polymer electrolyte-based rechargeable lithium\\/oxygen battery  

Microsoft Academic Search

A novel rechargeable Li\\/O battery is reported. It comprises a Li{sup +} conductive organic polymer electrolyte membrane sandwiched by a thin Li metal foil anode, and a thin carbon composite electrode on which oxygen, the electroactive cathode material, accessed from the environment, is reduced during discharge to generate electric power. It features an all solid state design in which electrode

K. M. Abraham; Z. Jiang

1996-01-01

416

Titan's Yin-yang equator: dunes and Xanadu  

NASA Astrophysics Data System (ADS)

Two of Titan's most enigmatic geomorphological features, the dark dunes and the bright Xanadu terrain, encircle Titan's equator. They may bracket the time frame for persistence of surface features on Titan, so understanding their ages is important for evaluating Titan's surface history. Dunes, covering nearly 20% of Titan's surface, are rarely cut by other features and are thus among the youngest on Titan. Pattern analysis reveals current wind strengths and directions and contains information about past wind and sediment supply conditions. In contrast, the rugged Xanadu terrain contains the highest density of likely impact craters of any region on Titan, and thus is among the oldest terrains. Some of the most well-evolved river drainages on Titan are present in Xanadu, and reflect widespread and persistent precipitation and erosion, begun in the distant past and extending perhaps to the present day. As we broaden our vision beyond the study of individual geomorphic features, we seek to find a spatial and temporal connection between them. Dunes abut Xanadu on nearly all sides, and the presence of Xanadu affects the pattern of dunes for many hundreds of kilometers. Yet if dunes are younger than Xanadu and active, it is not clear why they do not invade its topographically subdued margins - perhaps sands are actively removed from the margins of Xanadu by fluvial processes. These processes, however, do not create dune-carving drainages, blur the dune structures or form obvious sand sinks. Piecing together the related evolution of these morphologically disparate yet spatially linked features is critical for creating a viable relative geological time scale for Titan.

Radebaugh, Jani; Lorenz, Ralph; Savage, Chris

2010-04-01

417

Differing Abundances of Gypsum in the Primary and Secondary Dunes of the Martian Dune Field Olympia Undae  

NASA Astrophysics Data System (ADS)

We report on a compositional study in Olympia Undae, located around the polar cap of Mars. Gypsum has been detected throughout the sand sea but with a decline in abundance westward (Langevin et al., 2005). Dune crests are the regions of highest apparent gypsum concentration in CRISM images. Olympia Undae consists of primary dunes formed transverse to circumpolar easterly winds and secondary dunes which lie almost orthogonal to the primary dunes (Ewing et al. 2010). METHODS: We examined a number of CRISM and HiRISE images across the dune field. We focused our preliminary study on FRT0000C31A and FRT0000C2FC, which exhibited the best spectral signatures. Gypsum was identified in CRISM images by its unique 1.45/1.49/1.54 ?m triplet, ~1.94-1.95 ?m band, 2.22/2.27 ?m doublet and 2.49 ?m band with a 2.42 ?m shoulder. Spectra were acquired from regions of interest (ROIs) created along the crests of primary dunes and the low-relief crests of the secondary dunes (Fig. 1). FINDINGS: CRISM spectra of primary and secondary dune crest ROIs from FRT0000C2FC are compared with a gypsum-rich unit in FRT0000CA5C (Fig. 2). The I/F of gypsum-bearing regions is much darker than pure gypsum indicating a mixture composition containing darker components. The depth of the ~1.95 ?m hydration band is ~20-30% stronger for primary dune crests relative to the secondaries, which suggests a similar relationship among the gypsum abundance of these features, assuming similar components and grain sizes. Semi-quantitative analyses are underway to measure this in more detail. Continuing studies are planned with additional images as well. Figure 1 A map-projected view of CRISM image FRT0000C2FC with ROI locations for the primary (P) and secondary (S) dune crests marked. Figure 2 CRISM I/F spectra of gypsum-bearing units in Olympia Undae compared with laboratory reflectance spectra of minerals.

Szumila, I. T.; Bishop, J. L.; Fenton, L. K.; Brown, A. J.

2012-12-01

418

2005 annual progress report: elk and bison grazing ecology in the Great Sand Dunes complex of lands  

USGS Publications Warehouse

Introduction: In 2000 the U.S. Congress authorized the expansion of the former Great Sand Dunes National Monument by establishing a new Great Sand Dunes National Park and Preserve in its place, and establishing the Baca National Wildlife Refuge. The establishment of Great Sand Dunes National Park and Preserve and the new Baca National Wildlife Refuge in the San Luis Valley (SLV), Colorado was one of the most significant land conservation actions in the western U.S. in recent years. The action was a result of cooperation between the National Park Service (NPS), U.S. Fish and Wildlife Service (USFWS), Bureau of Land Management (BLM), U.S. Forest Service (USDA-FS), and The Nature Conservancy (TNC). The new national park, when fully implemented, will consist of 107,265 acres, the new national preserve 41,872 acres, and the new national wildlife refuge (USFWS lands) 92,180 acres (fig. 1). The area encompassed by this designation protects a number of natural wonders and features including a unique ecosystem of natural sand dunes, the entire watershed of surface and groundwaters that are necessary to preserve and recharge the dunes and adjacent wetlands, a unique stunted forest, and other valuable riparian vegetation communities that support a host of associated wildlife and bird species. When the National Park was initially established, there were concerns about over-concentrations and impacts on native plant communities of the unhunted segments of a large and possibly growing elk (Cervus elaphus) population. This led to the designation of the Preserve as a compromise solution, where the elk could be harvested. The Preserve Unit, however, will not address all the ungulate management challenges. In order to reduce the current elk population, harvests of elk may need to be aggressive. But aggressive special hunts of elk to achieve population reductions can result in elk avoidance of certain areas or elk seeking refuge in areas where they cannot be hunted, while removals of whole herd segments and abandonment or alterations of migration routes can occur (Smith and Robbins, 1994; Boyce and others, 1991). Elk may seek refuge from hunting in the newly expanded Park Unit and TNC lands where they might over-concentrate and impact unique vegetation communities. In these sites of refugia, or preferred loafing sites, elk and bison could accelerate a decline in woody riparian shrubs and trees. This decline may also be due to changes in hydrology, climatic, or dunal processes, but ungulate herbivory might exacerbate the effects of those processes. To address the questions and needs of local resource managers, a multi-agency research project was initiated in 2005 to study the ecology, forage relations, and habitat relations of elk and bison in the Great Sand Dunes-Sangre de Cristo-Baca complex of lands. Meetings and discussions of what this research should include were started in 2001 with representatives from NPS, USFWS, TNC, the Colorado Division of Wildlife (CDOW), and USDA-FS/BLM. The final study plan was successfully funded in 2004 with research scheduled to start in 2005. The research was designed to encompass three major study elements: (1) animal movements and population dynamics, (2) vegetation and nutrient effects from ungulate herbivory, and (3) development of ecological models, using empirical data collected from the first two components, that will include estimates of elk carrying capacity and management scenarios for resource managers.

Schoenecker, Kate A.; Lubow, Bruce C.; Zeigenfuss, Linda C.; Mao, Julie

2006-01-01

419

Ecohydrologic process modeling of mountain block groundwater recharge.  

PubMed

Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates. PMID:19702780

Magruder, Ian A; Woessner, William W; Running, Steve W

2009-01-01

420

Groundwater suitability recharge zones modelling - A GIS application  

NASA Astrophysics Data System (ADS)

Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

2014-11-01

421

Defining Flood Recharge Processes: Lower Bill Williams River, Western Arizona  

NASA Astrophysics Data System (ADS)

River networks provide hydrologic connections between upland and headwater catchments and downstream reaches. In arid and semi-arid regions, full connectivity of a river system is rare and moments of connection may only occur during large flood events. Here we investigate the Bill Williams River, among the most arid river basins in the United States. The aridity of this system-and the associated lack of complicating hillslope processes adjacent to the river-provides a unique opportunity to study flood recharge processes in relative isolation. During all but the highest flows, the river infiltrates completely at the east end of Planet Valley and reemerges at the west end where it enters the Bill Williams River National Wildlife Refuge (NWR). Determining the source of baseflow in the lower Bill Williams/NWR, and the residence time of this water in the Planet Valley aquifer, will provide insight into the dependence of streamflow on earlier recharge-inducing floods. Defining this dependence more clearly is the next step toward a detailed knowledge of the long-term, basin-scale impacts of floods on water quality and quantity. To determine the impact of floods and the recharge they induce, surface and groundwater samples were collected during high and low flows throughout the basin from April 2007 through the present. Isotopic (?18OH2O, ?2HH2O) and chemical differences (most notably SO4) in streamflow and groundwater along the system indicate the importance of older groundwater in NWR baseflow-either in the form of prior flood recharge or influxes from local springs. Sulfate isotope analysis (?34SSO4, ?18OSO4) is pending for samples throughout the lower basin and this information should allow streamflow sources to be defined and quantified. This study provides a better characterization of the hydrologic and hydrochemical behavior of a Basin and Range river, and allows the effects of flood recharge processes to be more clearly defined at the basin scale.

Simpson, S. C.; Meixner, T.; Hogan, J.

2008-12-01

422

The simulation of the recharging method of active medical implant based on Monte Carlo method  

NASA Astrophysics Data System (ADS)

The recharging of Active Medical Implant (AMI) is an important issue for its future application. In this paper, a method for recharging active medical implant using wearable incoherent light source has been proposed. Firstly, the models of the recharging method are developed. Secondly, the recharging processes of the proposed method have been simulated by using Monte Carlo (MC) method. Finally, some important conclusions have been reached. The results indicate that the proposed method will help to result in a convenient, safe and low-cost recharging method of AMI, which will promote the application of this kind of implantable device.

Kong, Xianyue; Song, Yong; Hao, Qun; Cao, Jie; Zhang, Xiaoyu; Dai, Pantao; Li, Wansong

2014-11-01

423

Classification of ground-water recharge potential in three parts of Santa Cruz County, California  

USGS Publications Warehouse

Ground-water recharge potential was classified in the Santa Cruz coastal area, North-central area, and Soquel-Aptos area in Santa Cruz County, Calif., for three data elements that affect recharge; slope, soils, and geology. Separate numerical maps for each element were composited into a single numerical map using a classification system that ranked the numbers into areas of good , fair, and poor recharge potential. Most of the Santa Cruz coastal area and the Norht-central area have a poor recharge potential, and much of the Soquel-Aptos area has a good to fair recharge potential. (Kosco-USGS)

Muir, K.S.; Johnson, Michael J.

1979-01-01

424

The Mediterranean Coastal Dunes in Egypt: An Endangered Landscape  

NASA Astrophysics Data System (ADS)

The Mediterranean coast in Egypt extends almost 900 km, the major part of which is bordered by sand dunes of different natures and types. Along the coastline between Alexandria and El-Alamein, a distance of some 100 km, the sand dunes represent a particular landscape with special characteristics and features, and consequently plants with particular attributes. In this area, the belt of sand dunes has developed immediately south of the shore and these dunes may rise up to 10 m in height and extend about 05-15 km inland from the shore. These dunes are famous as a habitat for the fig (Ficus carica L.) cultivation depending on the irregular rainfall. They also represent a landing station and a cross-road for birds such as quail migrating from Europe in the north. In the past, summer resort areas were confined to limited areas with few people, these same areas support the growth of some important plant species, for example, sand binders, medicinal and range plants. For more than two decades, there has been considerable socio-economic change and an open-door policy in the economy of the country has been adopted. One of the consequences of this change is that a great part of the coastal dune belt west of Alexandria till El-Alamein, has been subjected to destruction, due to the continuous construction of summer resort villages. These were built at a distance of about 100 m of the shoreline, extending 400-600 m inland and a breadth of 400 m or more along the shoreline. The area already covered by the dunes is now almost occupied by new buildings, gardens and other infrastructure. The consequences of these human activities are numerous and include impacts on the soil, water resources, the flora and the fauna, migrating birds, trends of the indigenous people, and the cultural environment. The present paper gives a concise environmental setting of the dune belt before the advent of the new activities, and the socio-economic and political attitudes which threaten the dunes. The ecological consequences of the recent human activities and recommendations are presented.

Batanouny, K. H.

1999-08-01

425

A constitutive relationship between mean and local eolian dune migration  

NASA Astrophysics Data System (ADS)

How can eolian dune fields achieve alignment to a wind regime if every sediment transporting wind event displaces curved bedform crests unequally? Gross bedform-normal transport and alignment is a kinematic model that describes how bedforms are oriented and migrate in response to a dominant and subordinate sediment-transport vector. The local bedform normal model describes how eolian dune crests deform non-uniformly in response to a singular sediment-transporting wind event. Bedform crest alignment to sediment transporting wind events is the conceptual underpinning that predicts what fraction of the sediment flux goes into bedform migration in both models. By embracing this geometric commonality we reconcile the two models. The new kinematic model yields a constitutive relationship between mean and local dune crest orientation and kinematics for a statistically steady wind regime. The new kinematic model is applied to calculate mean and directional variation in sediment flux at the White Sands dune field, NM, using meteorological data. The model results are compared to observed dune migration and orientation imaged in a time series of DEMs built from a time series of airborne LiDAR surveys.

Swanson, T.; Mohrig, D. C.; Kocurek, G.

2013-12-01

426

Numerical modeling of the wind flow over a transverse dune  

PubMed Central

Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee the separation bubble displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2?m/s and 0.8?m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39?m/s, whereas a larger value of u* (about 0.49?m/s) is required to initiate this reverse transport. PMID:24091456

Arajo, Ascnio D.; Parteli, Eric J. R.; Pschel, Thorsten; Andrade, Jos S.; Herrmann, Hans J.

2013-01-01

427

Numerical modeling of the wind flow over a transverse dune.  

PubMed

Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee - the separation bubble - displays a surprisingly strong dependence on the wind shear velocity, u: it is nearly independent of u for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u is larger than approximately 0.39 m/s, whereas a larger value of u (about 0.49 m/s) is required to initiate this reverse transport. PMID:24091456

Arajo, Ascnio D; Parteli, Eric J R; Pschel, Thorsten; Andrade, Jos S; Herrmann, Hans J

2013-01-01

428

Numerical modeling of the wind flow over a transverse dune  

E-print Network

Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, $u_{\\ast}$: it is nearly independent of $u_{\\ast}$ for shear velocities within the range between $0.2\\,$m$$s and $0.8\\,$m$$s but increases linearly with $u_{\\ast}$ for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if $u_{\\ast}$ is larger than approximately $0.39\\,$m$$s, whereas a larger value of $u_{\\ast}$ (about $0.49\\,$m$$s) is required to initiate this reverse transport.

Ascnio D. Arajo; Eric J. R. Parteli; Thorsten Poeschel; Jos S. Andrade Jr.; Hans J. Herrmann

2013-09-30

429

Numerical modeling of the wind flow over a transverse dune  

E-print Network

Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\\em{separation bubble}} --- displays a surprisingly strong dependence on the wind shear velocity, $u_{\\ast}$: it is nearly independent of $u_{\\ast}$ for shear velocities within the range between $0.2\\,$m$$s and $0.8\\,$m$$s but increases linearly with $u_{\\ast}$ for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if $u_{\\ast}$ is larger than approximately $0.39\\,$m$$s, whereas a larger value of $u_{\\ast}$ (about $0.49\\,$m$$s) is required to initiate this reverse transport.

Arajo, Ascnio D; Poeschel, Thorsten; Andrade, Jos S; Herrmann, Hans J

2013-01-01

430

Model for a dune field with exposed water table  

E-print Network

Aeolian transport in coastal areas can be significantly affected by the presence of an exposed water table. In some dune fields, such as in Len\\c{c}\\'ois Maranhenses, northeastern Brazil, the water table oscillates in response to seasonal changes of rainfall and rates of evapotranspiration, rising above the ground during the wet season and sinking below in the dry period. A quantitative understanding of dune mobility in an environment with varying groundwater level is essential for coastal management as well as for the study of long-term evolution of many dune fields. Here we apply a model for aeolian dunes to study the genesis of coastal dune fields in presence of an oscillating water table. We find that the morphology of the field depends on the time cycle, $T_{\\mathrm{w}}$, of the water table and the maximum height, $H_{\\mathrm{w}}$, of its oscillation. Our calculations show that long chains of barchanoids alternating with interdune ponds such as found at Len\\c{c}\\'ois Maranhenses arise when $T_{\\mathrm{w}...

Luna, Marco Cesar M de M; Herrmann, Hans J

2011-01-01

431

The Dark UNiverse Explorer (DUNE): Proposal to ESA's Cosmic Vision  

E-print Network

The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2m telescope with a combined visible/NIR field-of-view of 1 deg^2. DUNE will carry out an all-sky survey, ranging from 550 to 1600nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE...

Refregier, Alexandre

2008-01-01