Science.gov

Sample records for recharge des nappes

  1. Recharge

    SciTech Connect

    Fayer, Michael J.

    2008-01-17

    This chapter describes briefly the nature and measurement of recharge in support of the CH2M HILL Tank Farm Vadose Zone Project. Appendix C (Recharge) and the Recharge Data Package (Fayer and Keller 2007) provide a more thorough and extensive review of the recharge process and the estimation of recharge rates for the forthcoming RCRA Facility Investigation report for Hanford single-shell tank (SST) Waste Management Areas (WMAs).

  2. Crimean orogene: A nappe interpretation

    SciTech Connect

    Popadyuk, I.V.; Smirnov, S.E. )

    1993-09-01

    On the International Tectonic Map of Europe, the Crimean orogene presents a structure that has no analog in the Alpine orogenic belt. The Crimean mountain system lacks nappe structures of Alpine age. Its geosynclinal folding deformation is restricted to the Tavria flysch formation, previously dated as Triassic-Liassic. Therefore, the Crimean orogene was considered as the Kimmerian tectonotype. In our model, the Crimean orogene is characterized by nappe structures. The Yayla nappe is composed to Upper Jurassic and Neocomian sediments and is located below the Tavrian nappe, which consists of the Tavrian flysch formation. We dated the age of the Tavrian formation as Hauterivian-Aptian on the basis of published ammonite finds in the stratotype section. Nappe displacements are dated roughly as Austrian (albian) by the occurrence of upper-middle Albian sediments below the nappes and the Upper Cretaceous age of their neoautochthonous sedimentary cover. These north-vergent nappes have a horizontal displacement of about 20 km. In the eastern part of the orogene, these nappe structures were overprinted by Laramide-Savic (Paleocene and end Oligocene-early Miocene) deformations, as evident in the Kerch peninsula. The nature of these late deformation is not clear. The hydrocarbon potential of the prenapping autochthonous series has not yet been studied. Exploration for oil and gas in the Crimean sector of the Black Sea must take the suggested model and its implications into account.

  3. Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Ting, Cheh-Shyh; Kerh, Tienfuan; Liao, Chiu-Jung

    Due to rapid economic growth in the Pingtung Plain of Taiwan, the use of groundwater resources has changed dramatically. Over-pumping of the groundwater reservoir, which lowers hydraulic heads in the aquifers, is not only affecting the coastal area negatively but has serious consequences for agriculture throughout the plain. In order to determine the safe yield of the aquifer underlying the plain, a reliable estimate of groundwater recharge is desirable. In the present study, for the first time, the chloride mass-balance method is adopted to estimate groundwater recharge in the plain. Four sites in the central part were chosen to facilitate the estimations using the ion-chromatograph and Thiessen polygon-weighting methods. Based on the measured and calculated results, in all sites, including the mountain and river boundaries, recharge to the groundwater is probably 15% of the annual rainfall, excluding recharge from additional irrigation water. This information can improve the accuracy of future groundwater-simulation and management models in the plain. Résumé Du fait de la croissance économique rapide de la plaine de Pingtung à Taiwan, l'utilisation des ressources en eau souterraine s'est considérablement modifié. La surexploitation des aquifères, qui a abaissé le niveau des nappes, n'affecte pas seulement la région côtière, mais a de sérieuses répercutions sur l'agriculture dans toute la plaine. Afin de déterminer les ressources renouvelables de l'aquifère sous la plaine, une estimation précise de la recharge de la nappe est nécessaire. Dans cette étude, le taux de recharge de la nappe a d'abord été estimé au moyen d'un bilan de matière de chlorure. Quatre sites de la partie centrale ont été sélectionnés pour réaliser ces estimations, à l'aide d'un chromatographe ionique et de la méthode des polygones de Thiessen. A partir des résultats mesurés et calculés, à chaque site, et en prenant comme limites les montagnes et les rivi

  4. An assessment of recharge estimates from stream and well data and from a coupled surface-water/groundwater model for the des Anglais catchment, Quebec (Canada)

    NASA Astrophysics Data System (ADS)

    Chemingui, Asma; Sulis, Mauro; Paniconi, Claudio

    2015-12-01

    Estimation of groundwater recharge is of critical importance for effective management of freshwater resources. Three common and distinct approaches for calculating recharge rely on techniques of baseflow separation, well hydrograph analysis, and numerical modeling. In this study, these three methods are assessed for a watershed in southwestern Quebec, Canada. A physically based surface-subsurface model provides estimates of spatially distributed recharge; two baseflow separation filters estimate recharge from measured streamflow; and a well hydrograph master recession curve technique calculates recharge from water-table elevation records. The recharge results obtained are in good agreement over the entire catchment, producing an annual aquifer recharge of 10-30 % of rainfall. The annual average estimated across all methods is 200 mm/year. High variability is obtained for the monthly and seasonal recharge patterns (e.g. respectively, 0-30 mm for September and 0-95 mm for the summer), in particular between the baseflow filters and the well hydrograph technique and between the hydrograph technique and the simulated estimates at the observation wells. Recharge occurs predominantly in the spring months for the different approaches, except for the master recession curve method for which the highest recharge estimates are obtained during the summer. The recharge distribution obtained with the model shows that the main recharge area of the aquifer is the Covey Hill region. The use of a fully integrated physically based model enables the construction of an arbitrary number of well hydrographs to enhance the representativity of the master recession curve technique.

  5. Downstream of downtown: urban wastewater as groundwater recharge

    NASA Astrophysics Data System (ADS)

    Foster, S. S. D.; Chilton, P. J.

    Wastewater infiltration is often a major component of overall recharge to aquifers around urban areas, especially in more arid climates. Despite this, such recharge still represents only an incidental (or even accidental) byproduct of various current practices of sewage effluent handling and wastewater reuse. This topic is reviewed through reference to certain areas of detailed field research, with pragmatic approaches being identified to reduce the groundwater pollution hazard of these practices whilst attempting to retain their groundwater resource benefit. Since urban sewage effluent is probably the only `natural resource' whose global availability is steadily increasing, the socioeconomic importance of this topic for rapidly developing urban centres in the more arid parts of Asia, Africa, Latin America and the Middle East will be apparent. L'infiltration des eaux usées est souvent la composante essentielle de toute la recharge des aquifères des zones urbaines, particulièrement sous les climats les plus arides. Malgré cela, une telle recharge ne constitue encore qu'un sous-produit incident, ou même accidentel, de pratiques courantes variées du traitement de rejets d'égouts et de réutilisation d'eaux usées. Ce sujet est passé en revue en se référant à certaines régions étudiées en détail, par des approches pragmatiques reconnues pour permettre de réduire les risques de pollution des nappes dues à ces pratiques tout en permettant d'en tirer profit pour leur ressource en eau souterraine. Puisque les effluents d'égouts urbains sont probablement la seule « ressource naturelle » dont la disponibilité globale va croissant constamment, l'importance socio-économique de ce sujet est évidente pour les centres urbains à développement rapide de l'Asie, de l'Afrique, de l'Amérique latine et du Moyen-Orient. La infiltración de aguas residuales es a menudo un componente principal de la recarga total en acuíferos ubicados en torno a zonas urbanas

  6. How to Select and Order NAPP and NHAP Photographs

    USGS Publications Warehouse

    U.S. Geological Survey

    2001-01-01

    The locations of aerial photographs from the National Aerial Photography Program (NAPP) and the National High Altitude Photography (NHAP) program are shown on flight-line indexes, which are available on microfiche or printed copy of microfiche.

  7. Hyperextension in the northern Caledonides: the Gargia nappe in Finnmark

    NASA Astrophysics Data System (ADS)

    Corfu, Fernando; Andersen, Torgeir B.

    2015-04-01

    Hyperextension stretches the lithosphere to the breaking point leading to the exhumation of serpentinized upper mantle peridotites, and the development of sedimentary basins and tectonic melange. The products of such processes are well documented along recent passive margins and in the Alps. Melange defines also a prominent nappe units extending along the southern Scandinavian Caledonides, where it is interpreted as the product of extension during formation of Iapetus (Andersen et al. 2012). In western Finnmark, northern Norway, a melange-type assemblage with km-size serpentinite bodies embedded in various metasedimentary rocks, schists and mylonitic units occurs in the Gargia nappe. The nappe overlies an autochthonous basement suite of Early Paleoproterozoic basalts and associated sedimentary rocks and its Neoproterozic sedimentary cover, including a tillite horizon. The Gargia nappe is itself overlain by the Kalak Nappe Complex, which in this region is composed mainly of psammites, likely deposited around 1000 Ma. The Kalak Nappe Complex contains the record of a multistage tectonic evolution with several episodes of magmatism and metamorphism between 900 and 550 Ma that paleogeographically do not fit the Archean to Paleoproterozoic evolution of the underlying autochthon of the Baltic Shield. Because of this recent new information, the postulation, in past decades, of an origin of the Kalak Nappe Complex from the Baltic margin has been problematic. The presence of exhumed mantle serpentinite bodies in the underlying Gargia Nappe, however, provides evidence for a truly allochthonus nature of the overlying nappes. The serpentinite mega-boudins of the Gargia Nappe are embedded in mica schists, hornblende schists, rare marbles, and mylonitic gneisses. Preliminary U-Pb geochronology indicates that the protoliths of the mylonitic gneisses are about 2830 Ma and probably were derived from the deformed basement gneisses, likely of Archean age, in the nappe. The time of

  8. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    NASA Astrophysics Data System (ADS)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  9. Thermal history of the westernmost Eastern Alps (Penninic Rhenodanubian Flysch nappes, Helvetic nappes, and Subalpine Molasse thrust sheets)

    NASA Astrophysics Data System (ADS)

    Zerlauth, Michael; Bertrand, Audrey; Rantitsch, Gerd; Groß, Doris; Ortner, Hugo; Pomella, Hannah; Fügenschuh, Bernhard

    2016-07-01

    The frontal part of the westernmost Eastern Alps comprises from top to bottom of the Austroalpine and Penninic nappes, Ultrahelvetic slices, and two Helvetic thrust sheets, thrust upon the northern Alpine Molasse Basin. The thermal evolution of the Penninic Rhenodanubian Flysch nappes, the Helvetic nappes, and the allochthonous part of the Alpine Molasse Basin is constrained by vitrinite reflectance measurements and apatite fission track dating and implemented in a tectonic evolution scheme. Within the Helvetic nappes, vitrinite reflectance increases regionally from north to south and stratigraphically from the Campanian-Maastrichtian Wang Formation to the Toarcian Mols Member. Apatite fission track ages from Penninic and Subalpine Molasse units are consistently younger than the deposition age. They indicate therefore a post-depositional thermal overprint exceeding approximately 120 °C, the upper temperature limit of the apatite partial annealing zone. 1D thermal modelling suggests that the Penninic nappes attained deepest burial between the latest Cretaceous and Early Palaeocene with the Penninic basal thrust being located at approximately 8 km in the north compared to approximately 12 km in the south. Deepest burial of the upper Helvetic nappe occurred between the latest Eocene and Early Miocene. Its base was buried down to approximately 10.5 km in the north compared to 11.5 km in the south. Exhumation of the entire nappe stack started in the Early to Middle Miocene. For both Penninic and Helvetic models, a heatflow minimum during the Cenozoic deformation (max. 27-32 mW/m2), followed by an increase from the Middle Miocene onwards (up to 60 mW/m2), was assumed.

  10. A petrological and geochemical study of the Surna Nappe (Seve Nappe Complex?) in the Central Scandinavian Caledonides, Norway

    NASA Astrophysics Data System (ADS)

    Weigand, Silvia; Hauzenberger, Christoph; Gasser, Deta

    2016-04-01

    The Seve Nappe Complex, mainly outcropping and investigated in Sweden, comprises relics of Ordovician HP and UHP metamorphic rocks, which were overprinted by upper amphibolite facies metamorphism and anataxis during the Silurian. In Norway, in the hinterland of the Caledonian orogen, rocks of the Surna and Blåhø nappes are generally correlated with the Seve Nappe Complex. However, no detailed metamorphic studies are available from these units to compare it with the Seve Nappe Complex. The Surna and Blåhø nappes are located between the oceanic-derived Støren nappe and the continentally-derived Sætra nappe. Due to a strong post-Caledonian extensional and transtensional overprint and a close proximity to the MTFC (Møre-Trøndelag Fault Complex, a prominent post-Caledonian strike-slip fault complex) investigations of the early metamorphic history of the Surna and Blåhø nappes are challenging. In this contribution we present the results of a petrological and geochemical study of the Surna Nappe, from a ca. 10 km wide transect across this nappe west of Trondheim in Norway. The nappe is lithologically very heterogenous, consisting of quartz-rich mica-schists, amphibole-garnet-mica-schists, amphibolites, calcsilicates as well as pegmatites. Geochemically, the whole rock compositions vary from ultrabasic to acidic, but a distinction between metavolcanic and metasedimentary origin of the lithologies is not always straightforward. Although there are metabasic rocks present they do not show a mineral assemblage with a relic eclogite facies. Garnet occurs in several lithologies and is used together with plagioclase and biotite for conventional geothermobarometry using the TWQ and PET software tools. Additionally, Zr-in-rutile and garnet-biotite thermometers were applied. PT calculations from 18 different samples reveal PT conditions of 600 to 700°C and pressures of 10 to 16 kbar. The elevated phengite content in muscovite (Si up to 3.28) in a few samples may indicate

  11. A northwest trending, Jurassic Fold Nappe, northernmost Zacatecas, Mexico

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas H.; McKee, James W.; Jones, Norris W.

    1991-04-01

    The Caopas, Rodeo, and Nazas formations exposed in the San Julián uplift of northern Zacatecas are distinguished principally on the basis of style and intensity of deformation; they are parts of the same early Mesozoic(?) volcanogenic suite. This suite was the source for overlying volcaniclastic conglomerate and sandstone (La Joya Formation) that appears transitional into succeeding Late Jurassic (Oxfordian?) Zuloaga Limestone. Deformation that was contemporaneous with the deposition of the lower part of the Zuloaga produced an asymmetrical northwest trending fold nappe that was driven southwestward. The massive quartz-porphyry core of the structure (Caopas Formation) moved somewhat independently of the encasing, more ductile rocks (Rodeo and Nazas formations). Phyllonite developed in the nose of the nappe; the upright limb was attenuated and ruptured. In zones where deformation due to the nappe-forming process was weaker, a gently dipping foliation, possibly related to an older episode of recumbent folding, is preserved. Orientation, age, and location of the nappe suggest that it is a manifestation of transpressional stress developed along the Mojave-Sonora megashear as left-lateral movement carried the Jurassic arc toward the southeast.

  12. Crustal imbrication and nappe folding in the southeastern Tauern Window

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Gipper, Peter; Handy, Mark R.; Oberhänsli, Roland

    2013-04-01

    Metapelitic rocks in the cover of the European Basement exposed in the southeastern Tauern Window document a polyphase deformational history associated with Cenozoic subduction, accretion and exhumation along the European continental margin during Alpine Orogeny. The Mallnitz area is special in exposing almost all structural levels of the Alpine metamorphic edifice, including a stack of imbricated nappes derived from the European margin (Venediger Nappe System) that is separated by a roof thrust from overlying ophiolites of Alpine Tethys (Glockner Nappe). Our samples record four distinct phases of mineral growth and define a clockwise P-T path with two baric peaks that are separated by a period of decompression: (1) Pseudomorphs after lawsonite preserved within garnet clasts and predate the earliest schistosity in the area. These pseudomorphs are interpreted to document Paleogene accretion and subduction of a distal part of the European margin, possibly to blueschist-facies conditions; (2) Subsequent growth of a first generation of biotite and phengite forming the earliest schistosity indicate temperatures of about 560°C at 8 kbar. Chloritoid inclusions in garnet yield similar temperatures within error and are characteristic of amphibolite-facies conditions during isoclinal folding of the obducted nappes; (3) Newly formed staurolite and a second generation of micas characterize the second and main schistosity in the area which, together with continued garnet growth, indicate a second peak of metamorphism at 600°C and 9 kbar. We attribute this second baric peak to tectonic imbrication and thickening associated with the formation of the Venediger Nappe Complex. Subsequently, the nappe stack was exhumed in Late Paleogene time at nearly isothermal conditions. Cross micas overgrow the main schistosity and their recorded range of decreasing temperatures and pressures indicate ongoing exhumation and cooling in Neogene time. We relate this to upright folding and doming

  13. Nappe structure in a crustal scale duplex in Swat, Pakistan

    SciTech Connect

    Lawrence, R.D.; Snee, L.W.; Rosenberg, P.S.

    1985-01-01

    In the internal zone of thrust belts of continental collision orogens like the Himalaya metamorphic rocks of deep origin record penetrative ductile deformation. In Swat, Pakistan, this zone between the Indus suture and the sedimentary fold-and-thrust belt is narrower and tectonically simpler than elsewhere along the Himalayan orogenic belt. Here the authors have recognized large overturned, orthogneiss cored nappes of 15 km half wavelength. These are defined by para-amphibolite marker beds found in upright stratigraphic section above and in overturned section below the gneissic cores. They distinguish premetamorphic granite porphyry and tourmaline granite intruded into quartzose metasediments as gneissic cores of the nappes and a surrounding sequence of quartzites, amphibolites, and carbonates that were either deposited unconformably above the cores or premetamorphically thrust over them. Metamorphic isogrades cut across the nappe and /sup 40/Ar//sup 39/Ar hornblende dates indicate that metamorphic culmination occurred around 37-40 Ma at about 550/sup 0/C and at depths of about 20 km. These structures thus appear to predate the recognized age of metamorphism and thrusting of crystalline rocks on the MCT in the central Himalaya. They represent an early deep burial of the leading edge of the Indian shield by ophiolite slabs of oceanic lithosphere and/or the Kohistan island arc. By 30 Ma metamorphic temperatures (/sup 40/Ar//sup 39/Ar muscovite) had dropped to 320/sup 0/C, and the nappes were rising through the crust on underlying thrusts. The entire structure is very similar to that of the internal zone of the Alps, but such features have not previously been described in the Himalaya.

  14. The metamorphic evolution of the Kathmandu Nappe area

    NASA Astrophysics Data System (ADS)

    Zhuk, Yuliya

    2016-04-01

    The Kathmandu Nappe area in central Nepal was initially discovered in the beginning of the 70s and mapped some years later. While the first investigation showed that the Kathmandu Nappe belonged to the less metamorphosed sedimentary and volcanic formations, later findings proved the Kathmandu Nappe to have a distinct lithology and stratigraphy with a separate metamorphic evolution. The aim of this project is to further investigate the geologic evolution of the area. The proposed method for investigation is to perform a detailed geological mapping of the area, collect rock samples based on the mapped information and analyse the samples using optical microscope analysis and zircon crystal morphology analysis. The Kathmandu Nappe forms a huge N100° synclinorium, divided into the lower Bhimpedi group, the Phulchauki group and the Cambrian-Ordovician granites. Detailed geological maps will be generated by focusing on the contact between the metasediment and Palung-, Ipa-, and Agragranite bodies. There are two expected findings. For one, the granite is expected to be younger than the metasediment, suggesting them to be caused by two different tectonic events. This would mean that the granite shows a clear intrusive relation with many pre-existing faults, and, therefore, that it was little affected by faulting. To prove or discard this, a detailed geological mapping will be used. For two, the granite is expected to have a crustal origin. This would mean that the magma generation probably occurred through anatexis of continental crust. To prove or discard this, the origin of the granite bodies will be identified and compared using optical microscope analysis and zircon crystal morphology.

  15. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe Jacob Jan; Hafkenscheid, E.; Spakman, Wim; Meulenkamp, J. E.; Wortel, Rinus

    2005-04-01

    We quantitatively investigate the relation between nappe stacking and subduction in the Aegean region. If nappe stacking is the result of the decoupling of upper-crustal parts (5 10 km thick) from subducting lithosphere, then the amount of convergence estimated from balancing the nappe stack provides a lower limit to the amount of convergence accommodated by subduction. The balanced nappe stack combined with the estimated amount of completely subducted lithosphere indicates 700 km of Jurassic and 2400 km of post-Jurassic convergence. From seismic tomographic images of the underlying mantle, we estimate 2100 2500 km of post-Jurassic convergence. We conclude that (1) the imaged slab represents the subducted lithosphere that originally underlay the nappes, (2) since the Early Cretaceous, subduction in the Aegean has occurred in one single subduction zone, and (3) the composition of the original basement of the nappes indicates that at least 900 km of sub-upper-crust continental lithosphere subducted in the Aegean.

  16. Groundwater capture processes under a seasonal variation in natural recharge and discharge

    NASA Astrophysics Data System (ADS)

    Maddock, Thomas, III.; Vionnet, Leticia Beatriz

    "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une

  17. Nappe-Bounding Shear Zones Initiated On Syn-Tectonic, Pegmatite-Filled Extensional Shear Fractures During Deep-Crustal Nappe Flow In A Large Hot Orogen

    NASA Astrophysics Data System (ADS)

    Culshaw, Nicholas; Gerbi, Christopher; Marsh, Jeffrey; Regan, Peter

    2014-05-01

    The Central Gneiss Belt (CGB) of the Proterozoic western Grenville Province is an extensive exposure of the mid-crustal levels (upper amphibolite facies, lesser granulites) of a large hot orogen. Numerical models give a credible prediction of structure and metamorphism accompanying CGB deep-crustal nappe flow and define a temporal framework based on four developmental phases: thickening, heating, nappe-flow and post convergence extensional spreading. These phases are diachronous in direction of orogen propagation and imply a spatial framework: externides (close to orogen-craton boundary) containing moderately inclined thickening and/or extensional structures, and internides containing thickening structures overprinted by sub-horizontal nappe flow structures, which may be locally overprinted by those due to extensional spreading. Although on average of granitoid composition, CGB nappes differ in rheology, varying from fertile and weak (unmetamorphosed before Grenville, meltable) to infertile and strong (metamorphosed at high grade before Grenville, unmeltable) or mixed fertile-infertile protoliths. Deformation style varies from diffuse in fertile nappes, weakened by pervasive melting, to localised in shear zones on boundaries or interiors of infertile nappes. Specifically, in terms of deformation phase and location within the orogen, shear zones occur as: thickening structures of externides, early thickening- and later overprinting nappe-flow structures of infertile internide nappes, and extension-related shear zones in externides and internides. Many of the nappe-flow shear zones of the internides are associated with pegmatites. One example has been recognized of a preserved progression from small-scale fracture arrays to regional shear zone. The sequence is present on a km-scale and initiates in the interior of a nappe of layered granulite with arrays of pegmatite filled extensional-shear fractures (mm to cm width) displaying amphibolized margins. The fracture

  18. Structure of the Chamba nappe and position of the Main Central Thrust in Kashmir Himalaya

    NASA Astrophysics Data System (ADS)

    Thakur, V. C.

    1998-04-01

    The Chamba nappe, composed of an approximately 8 km thick sequence of Late Precambrian to Jurassic age rocks is located between the Higher Himalaya Crystallines (HHC) and the Lesser Himalayan (LH) formations of Panjal Imbricate Zone (PIZ) in the Kashmir Himalaya. To the south, the Panjal Thrust, demarcating the base, brings the Chamba nappe rocks over the Panjal Imbricate Zone. To the north, the Chamba nappe rocks lie over the metamorphic HHC along the south dipping Chenab Normal Fault (CNB). A pervasive stretching lineation defined by a mineral lineation, stretched pebbles and felspar phenocrysts plunges NE-NNE and occurs on the foliation/cleavage surface. This lineation is related to southward displacement of the Chamba nappe. The Chamba nappe is folded by regional scale fold, viz. the Chamba, Tandi and Bharmor synclines and the Tisa anticline. These NW-SE trending folds structures were developed synchronously with southward thrusting of the Chamba nappe. The Chamba nappe results from southwestward sliding of cover rocks from their basement (HHC) due to topographic uplift. The Main Central Thrust (MCT) in Kashmir Himalaya is different from that of the Kumaun and Nepal Himalaya. The MCT (Vaikrita Thrust) does not extend west of the Beas river, but it is exposed in the Rampur Window and the Kishtwar Window separating the HHC from the underlying LH rocks. Southward propagation of the MCT from the window zone, up-cutting the overlying HHC, is transferred to the Panjal Thrust which transports the Chamba nappe to the south over the Lesser Himalayan formations.

  19. 3-D numerical models of viscous flow applied to fold nappes and the Rawil depression in the Helvetic nappe system (western Switzerland)

    NASA Astrophysics Data System (ADS)

    von Tscharner, M.; Schmalholz, S. M.; Epard, J.-L.

    2016-05-01

    The Helvetic nappe system exhibits three-dimensional (3-D) features such as the lateral variation in geometry between the Morcles and Doldenhorn fold nappes or the Rawil depression. We perform 3-D finite element simulations of linear and power-law viscous flow to investigate fold nappe formation during shortening of a half graben with laterally varying thickness. 3-D ellipsoids and corresponding 2-D intersection ellipses are used to quantify finite strain. Fold nappes which formed above a thicker graben have (i) larger amplitudes, (ii) a less sheared and thinned overturned limb, and (iii) a larger thickness than fold nappes formed above a thinner graben. These results agree with observations for the Morcles and Doldenhorn nappes. We also perform 3-D simulations for a tectonic scenario suggested for the evolution of the Rawil depression. The basement is shortened and extended laterally and includes a graben which is oblique to the shortening direction and acts as mechanical weak zone. The graben causes laterally varying basement uplift generating a depression whose amplitude depends on the graben orientation and the stress exponent of basement and sediments. The axial plunge of the depression is smaller (approximately 10°) than the observed plunge (approximately 30°) indicating that additional processes are required to explain the geometry of the Rawil depression.

  20. Alternatives for the source of the exotic green clasts from Moldavian Nappes (East Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Tatu, M.

    2009-04-01

    Important segment of the Carpathian chain, the East Carpathians consists of several tectonic units build up during the Mesozoic and Cenozoic closure of the Tethyan Ocean. These tectonic units are composed by crystalline basements and sedimentary covers, or only by sedimentary piles and they represent a result of two compressional phases of Alpine orogenesis: one during Late Cretaceous that was responsible for thrusting of Central East Carpathian Nappes and Outher Dacian Nappes, and a second phase during Early and Middle Miocene interval that involved the Moldavian Nappes as the external nappes (Sandulescu, 1988). The Moldavian Nappes consist of cover nappes tectonically detached from the basement upon which it was deposited. From inside towards outside several units occur: Convolute Flysch Nappe, Macla Nappe, Audia Nappe, Tarcau Nappe, Marginal Folds Nappe and Subcarpathian Nappe (Sãndulescu et al., 1981). If the internal units (up to Audia Nappe) are represented by the Cretaceous sediment piles, in the external units, especially in the Tarcau Nappe and also in the Marginal Folds Nappe the lithology is dominated by the Paleogene deposits, especially by the Oligocene formations. The most particular for these units are the presence of heterogeneous composition induced by the wildflysch type sedimentation. Previous researchers have considered the piles of the both units as flyschoid deposits, and for a minor central part (Slon Facies) they accepted a wildflysch scenario. Based on our field studies between Prahova valley (Romania) and Tisa upper stream basin (Ukraine), the different sedimentary strata (the Oligocene Tarcau, Fusaru, Kliwa sandstones, dysodilic and menilitic rocks, polymictic conglomerates, marls and argillaceous deposits together with Upper Cretaceous polymictic conglomerates and green-reddish argillaceous deposits) are tectonically mixed during the late-Oligocene - Middle Miocene events. The mechanism of sedimentary mélange is supposed to be related

  1. Finite strains within recumbent folds of the kishorn Nappe, northwest Scotland

    NASA Astrophysics Data System (ADS)

    Potts, G. J.

    1982-10-01

    This study is based on the Torridonian and Cambro-Ordovician rocks of the Kishorn Nappe on the Isle of Skye and the adjacent mainland of Scotland. Grain shape fabric, Skolithos pipe shape analysis and palaeomagnetic techniques have been used to give an indication of the strain distribution and possible mechanisms involved in the generation of the recumbent folds within the Kishorn Nappe. Results indicate that recumbent folding has occurred without internal deformation.

  2. The structure and tectonic evolution of the Aguilón fold-nappe, Sierra Alhamilla, Betic Cordilleras, SE Spain

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; van den Eeckhout, B.; Janzen, E.; Konert, G.; Simon, O. J.; Weijermars, R.

    Detailed structural work in the Sierra Alhamilla, SE Spain, shows that the Aguilón nappe, comprising Triassic and older metasedimentary rocks, is a fold-nappe. The most prominent set of small-scale folds changes from dominantly N-vergent in the upper, right-way-up limb to S-vergent in the greatly thinned lower limb. The nappe closes to the north, and must have been emplaced in this direction. Nappe formation was accompanied by small-scale folding and extensive solution-transfer producing a pronounced differentiated crenulation cleavage. These structures overprint an earlier set of folds and cleavage, and are overprinted in turn by late N-vergent structures. The lower limb of the nappe was thinned and disrupted during continued nappe transport. Pre-Triassic schist in the core of the nappe was affected by medium-grade metamorphism of probable post-Triassic age. The contact with low-grade Permo-Triassic sediments above and below the schist coincides with a distinct change in metamorphic grade. This contact may be a post-metamorphic extensional fault that is now folded around the nappe, which suggests that nappe formation was preceded by extensional faulting. This is consistent with gravity spreading as the driving process for nappe emplacement.

  3. Discovery of microdiamond in the Åreskutan Nappe of the Seve Nappe Complex, overlying the COSC-1 drillhole

    NASA Astrophysics Data System (ADS)

    Klonowska, Iwona; Janák, Marian; Majka, Jarosław; ‎ Froitzheim, Nikolaus; Gee, David G.

    2015-04-01

    The Seve Nappe Complex (SNC) crops out for about 800 km along the Scandian mountain belt in northwestern Sweden. In the central Scandes of Jämtland and Tröndelag, the SNC has been mapped 200 km westards into the hinterland, via the Tömmerås and Trollheimen antiforms into the northern parts of the Western Gneiss Region. The Complex is dominated by psammitic metasediments and amphibolites derived from dolerites, basalts and gabbros (locally ultramafites) comprising an outer continental margin assemblage, inferred to represent the Cryogenian-Ediacaran, extended outer margin of Baltica. Although most of the SNC is in amphibolite facies, eclogites and garnet peridotites are locally preserved both in Sweden and farther west in Trollheimen. More pelitic metasediments occur at higher levels in the Complex and the high grade metamorphism is usually accompanied by partial melting and leucogranites. Isotope dating indicates that HP/UHP metamorphism is of mostly of Ordovician age and related to continent-arc subduction during closure of the Iapetus Ocean. In recent years, closer investigation of the high grade metamorphism has led not only to the identification of UHP assemblages in the eclogites and garnet peridotites (Janák et al. 2013, Klonowska et al. 2014), but also that the host paragneisses contain clear evidence of subduction (Majka et al. 2014), with microdiamond inclusions in garnet. Most recently on Åreskutan (Klonowska et al., this volume), on the mountain top above the COSC-1 drillhole, diamond-bearing gneisses have been found. Garnets in Åreskutan gneisses are characterized by inclusion-rich cores. Graphite, carbonates, quartz and CO2-fluid inclusions together with diamonds and moissanite are concentrated in swarms. Garnets are homogeneous, almandine-rich (Alm65-68Prp26-33Grs3-5Sps2-3). However, the highest grossular content is observed in garnet cores (5mol.%). Phengite is characterized by Si content of 3.19-3.47 apfu. Thermodynamic modelling indicates

  4. Dynamics of tectonic nappes: Thrusting versus intrusion or dynamic pressure versus lithostatic pressure

    NASA Astrophysics Data System (ADS)

    Markus Schmalholz, Stefan; Podladchikov, Yuri; Medvedev, Sergei

    2014-05-01

    Despite extensive research, the dynamics of tectonic nappes exhibiting high and ultra-high pressure ((U)HP) rocks is still debated. We classify existing models for nappe formation into two types, and refer to them as thrust and intrusion model. Thrust models approximate the orogen as wedge with a rigid buttress behind and a subducting lithospheric slab beneath. The dominant process of nappe formation is thrusting (brittle and/or ductile) that generates a dominant top-to-the-foreland shear sense. Rocks remain within crustal depth (<~60 km). Uplift and exhumation of (U)HP rocks is explained by underplating accompanied by isostatic uplift, extension in higher levels of the wedge and erosion. Thrust models can explain the imbricate nappe stacking and first-order structural observations in the Western Alps. However, in the last decades (U)HP rocks were found in nappes, and it is usually assumed that metamorphic pressure is a good indicator of maximum burial. This assumption represents a fundamental problem for the thrust model, namely to account for the large burial depth of (U)HP rocks indicating depths >100 km. Nappe formation at such mantle depths cannot be explained by the thrust model. In intrusion models (U)HP rocks are subducted to mantle depths and return to crustal depths by buoyancy driven or tectonically forced flow. Nappes are formed during the return flow with an opposite shear sense at the bottom and top of the nappe. Intrusion models could reproduce the first-order patterns of P-T-time paths of the Western Alps. However, there are problems with intrusion models. First, the intrusion scenario requires a major extensional shear zone in the hanging wall of the exhuming (U)HP unit. However, for most (U)HP units of the Western Alps the earliest coherent structures recorded along the upper boundary are top-to-the-foreland shear zones (consistent with thrust models). Second, dynamic intrusion models are usually unable to generate an imbricate nappe stack. The

  5. Appendix C: Recharge

    SciTech Connect

    Fayer, Michael J.; Keller, Jason M.

    2008-01-17

    This appendix provides estimates of recharge rates for the soil and vegetation conditions in and around the single-shell tank (SST) waste management areas (WMAs). The purpose is to combine published data with recent information to provide the most current recharge estimates. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). Methods used include lysimetry, tracers, and simuations. This appendix summarizes the information in the recharge data package for the SST Waste Management Areas), which builds upon previous reports on the Hanford vadose zone data and Integrated Disposal Facility recharge with information available after those reports were published, including field measurements and simulations using weather data through 2006.

  6. Contrasting metamorphic evolutions of metasediments from the Çine and Selimiye nappes in the Anatolide belt, western Turkey

    NASA Astrophysics Data System (ADS)

    Régnier, J. L.; Ring, U.; Passchier, C. W.; Güngör, T.

    2003-04-01

    Metasediments from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Relatively high-grade metasediments from the Çine nappe underneath the Selimiye shear zone record maximum P-T conditions of about 7 kbar and >550^oC. Metasediments from the overlying Selimiye nappe have maximum P-T conditions of 4 kbar and ˜525^oC near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top-S shear sense. Metamorphism in the Selimiye nappe decreases structural upwards as indicated by mineral isograds defining the garnet-chlorite zone at the base, the chloritoid-biotite zone and the biotite-chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite-facies metamorphic event but remained active after the peak of metamorphism. Protolith and 40Ar/39Ar mica dating, as well as tectonometamorphic relationships with the Eocene Cyclades-Menderes thrust, which occurs above the Selimiye nappe in the study area, suggest an Eocene age of metamorphism in the Selimiye nappe. Our preferred interpretation is that metamorphism in the metasediments of the Çine nappe directly below the Selimiye shear zone is of the same age. Metasediments of the Çine nappe 20-30 km north of the Selimiye shear zone record maximum P-T conditions of 8-11 kbar and 600-650^oC. Kinematic indicators show a top-N shear sense associated with prograde amphibolite-facies metamorphism. The age for amphibolite-facies metamorphism in this part of the Çine nappe is less clear. The tectonometamorphic fabric in orthogneiss, which underlies the metasediments of the Çine nappe is ˜550 Ma, and is cut by undeformed

  7. Contrasting metamorphic evolutions of metasediments from the Çine and Selimiye nappes in the Anatolide belt, western Turkey

    NASA Astrophysics Data System (ADS)

    Régnier, J. L.; Ring, U.; Passchier, C. W.; Güngör, T.

    2003-04-01

    Metasediments from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Relatively high-grade metasediments from the Çine nappe underneath the Selimiye shear zone record maximum P-T conditions of about 7 kbar and >550^oC. Metasediments from the overlying Selimiye nappe have maximum P-T conditions of 4 kbar and ˜525^oC near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top-S shear sense. Metamorphism in the Selimiye nappe decreases structural upwards as indicated by mineral isograds defining the garnet-chlorite zone at the base, the chloritoid-biotite zone and the biotite-chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite-facies metamorphic event but remained active after the peak of metamorphism. Protolith and 40Ar/39Ar mica dating, as well as tectonometamorphic relationships with the Eocene Cyclades-Menderes thrust, which occurs above the Selimiye nappe in the study area, suggest an Eocene age of metamorphism in the Selimiye nappe. Our preferred interpretation is that metamorphism in the metasediments of the Çine nappe directly below the Selimiye shear zone is of the same age. Metasediments of the Çine nappe 20--30 km north of the Selimiye shear zone record maximum P-T conditions of 8--11 kbar and 600--650^oC. Kinematic indicators show a top-N shear sense associated with prograde amphibolite-facies metamorphism. The age for amphibolite-facies metamorphism in this part of the Çine nappe is less clear. The tectonometamorphic fabric in orthogneiss, which underlies the metasediments of the Çine nappe is ˜550 Ma, and is cut by undeformed

  8. The Exxon rechargeable cells. [solar rechargeable clocks

    NASA Technical Reports Server (NTRS)

    Malachesky, P. A.

    1980-01-01

    The design and performance of ambient temperature secondary cells based on the titanium disulfide cathode are discussed. These limited performance products were developed for microelectronic applications such as solar rechargeable watches and clocks which require low drain rate and do not require many deep cycles.

  9. 3D FEM modeling of fold nappe formation in the Western Swiss Alps

    NASA Astrophysics Data System (ADS)

    von Tscharner, M.; Schmalholz, S.

    2012-04-01

    Fold nappes are recumbent folds with amplitudes exceeding 10 km and have been presumably formed by heterogeneous simple shear. They often exhibit a constant sense of shearing and a non-linear increase of shear strain towards their overturned limb. The fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge directions characterize the Wildstrubel depression (Rawil depression, Ramsay, 1981). The Morcles nappe is mainly the result of layer contraction and shearing (Ramsay, 1981). During the compression the massive limestones were more competent than the surrounding marls and shales, which led to the buckling characteristics of the Morcles nappe, especially in the north-dipping normal limb. There are still no 3D numerical studies which investigate the fundamental dynamics of the formation of the large-scale 3D structure including the Morcles and Doldenhorn fold nappes and the related Wildstrubel depression. Such studies require a numerical algorithm that can accurately track material interfaces for large differences in material properties (e.g. between limestone and shale) and for large deformations. We present a numerical algorithm based on the finite element method (FEM) which can simulate 3D fluid flow for a power-law viscous rheology. Our FEM code combines a numerical marker technique and a deformable Lagrangian mesh with re-meshing (Poliakov and Podladchikov, 1992) and is used to study the formation of 3D fold nappes similar to the ones in the Western Swiss Alps. The numerical method requires the interpolation of material properties to the integration points because the layer interface can lie within a finite element. To guarantee accuracy the number of integration points in the finite elements is increased considerably. The interpolation is only performed during several re-meshing steps when the deformed Lagrangian mesh is too distorted

  10. Basement lithostratigraphy of the Adula nappe: implications for Palaeozoic evolution and Alpine kinematics

    NASA Astrophysics Data System (ADS)

    Cavargna-Sani, Mattia; Epard, Jean-Luc; Bussy, François; Ulianov, Alex

    2014-01-01

    The Adula nappe belongs to the Lower Penninic domain of the Central Swiss Alps. It consists mostly of pre-Triassic basement lithologies occurring as strongly folded and sheared gneisses of various types with mafic boudins. We propose a new lithostratigraphy for the northern Adula nappe basement that is supported by detailed field investigations, U-Pb zircon geochronology, and whole-rock geochemistry. The following units have been identified: Cambrian clastic metasediments with abundant carbonate lenses and minor bimodal magmatism (Salahorn Formation); Ordovician metapelites associated with amphibolite boudins with abundant eclogite relicts representing oceanic metabasalts (Trescolmen Formation); Ordovician peraluminous metagranites of calc-alkaline affinity ascribed to subduction-related magmatism (Garenstock Augengneiss); Ordovician metamorphic volcanic-sedimentary deposits (Heinisch Stafel Formation); Early Permian post-collisional granites recording only Alpine orogenic events (Zervreila orthogneiss). All basement lithologies except the Permian granites record a Variscan + Alpine polyorogenic metamorphic history. They document a complex Paleozoic geotectonic evolution consistent with the broader picture given by the pre-Mesozoic basement framework in the Alps. The internal consistency of the Adula basement lithologies and the stratigraphic coherence of the overlying Triassic sediments suggest that most tectonic contacts within the Adula nappe are pre-Alpine in age. Consequently, mélange models for the Tertiary emplacement of the Adula nappe are not consistent and must be rejected. The present-day structural complexity of the Adula nappe is the result of the intense Alpine ductile deformation of a pre-structured entity.

  11. Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

  12. The Alpine nappe stack in western Austria: a crustal-scale cross section

    NASA Astrophysics Data System (ADS)

    Pomella, Hannah; Ortner, Hugo; Zerlauth, Michael; Fügenschuh, Bernhard

    2015-04-01

    Based on an N-S-oriented crustal-scale cross section running east of the Rhine Valley in Vorarlberg, western Austria, we address the Alpine nappe stack and discuss the boundary between Central and Eastern Alps. For our cross section, we used surface geology, drillings and reinterpreted seismic lines, together with published sections. The general architecture of the examined area can be described as a typical foreland fold-and-thrust belt, comprising the tectonic units of the Subalpine Molasse, (Ultra-)Helvetic, Penninic and Austroalpine nappes. These units overthrusted the autochthonous Molasse along the south-dipping listric Alpine basal thrust. The European Basement, together with its autochthonous cover, dips gently towards the south and is dissected by normal faults and trough structures. The seismic data clearly show an offset not only of the top of the European Basement, but also of the Mesozoic cover and the Lower Marine Molasse. This indicates an activity of the structures as normal faults after the sedimentation of the Lower Marine Molasse. The Subalpine Molasse is multiply stacked, forming a triangle zone at the boundary with the foreland Molasse. The shortening within the Subalpine Molasse amounts to approximately 45 km (~67 %), as deduced from our cross section with the Lower Marine Molasse as a reference. The hinterland-dipping duplex structure of the Helvetic nappes is deduced from surface and borehole data. There are at least two Helvetic nappes needed to fill the available space between the Molasse below and the Northpenninic above. This is in line with the westerly located NRP20-East transect (Schmid et al., Tectonics 15(5):1047-1048, 1996; Schmid et al., The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle, 2004), where the two Helvetic nappes are separated by the Säntis thrust. Yet in contrast to the Helvetic nappes in the NRP20-East transect, both of our Helvetic nappes comprise Cretaceous and Jurassic strata. This change is

  13. Ravia nappe, Bryan County, Oklahoma: a gravity slide block off the Tishomingo uplift

    SciTech Connect

    Jacobson, M.I.

    1983-08-01

    The Ravia nappe in Bryan County, Oklahoma, is located along the southwestern flank of the Tishomingo uplift, between the Cumberland and East Durant oil fields. This mass of Cambrian-Ordovician through Mississippian sediments tectonically overlies younger Springer shales (Pennsylvanian) of the Ardmore basin. Previously, this feature has been interpreted to have been thrust southward along the Cumberland fault, a fault parallel to the Ravia thrust. Reinterpretation of this area, with additional well data, indicates the Ravia nappe is a gravity slide block off the uplifted Tishomingo mountains. The Ravia nappe is interpreted to have been originally the southwest overturned limb of the Tishomingo uplift. Prior to the major thrusting on the Ravia thrust, but after compressional folding and uplift of the Tishomingo mountains, a breakaway fault formed across the most intensely folded beds. The breakaway fault undercut the overturned southwestern limb of the Tishomingo uplift in a concave-upward fault surface. Gravitational forces caused the Ravia nappe Mississippian Caney rocks to Cambrian-Ordoviciena Arbuckle rocks to slide rotationally southwestward 2.5 mi (4 km). Topographic relief prior to the slide may have been as much as 9000 ft (2700 m). The slide occurred sometime during late Morrowan to early Desmoinesian.

  14. Rechargeable hybrid aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Wang, Jing; Liu, Hao; Bakenov, Zhumabay; Gosselink, Denise; Chen, P.

    2012-10-01

    A new aqueous rechargeable battery combining an intercalation cathode with a metal (first order electrode) anode has been developed. The concept is demonstrated using LiMn2O4 and zinc metal electrodes in an aqueous electrolyte containing two electrochemically active ions (Li+ and Zn2+). The battery operates at about 2 V and preliminarily tests show excellent cycling performance, with about 90% initial capacity retention over 1000 charge-discharge cycles. Use of cation-doped LiMn2O4 cathode further improves the cyclability of the system, which reaches 95% capacity retention after 4000 cycles. The energy density for a prototype battery, estimated at 50-80 Wh kg-1, is comparable or superior to commercial 2 V rechargeable batteries. The combined performance attributes of this new rechargeable aqueous battery indicate that it constitutes a viable alternative to commercial lead-acid system and for large scale energy storage application.

  15. Recharging Batteries Chemically

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rowlette, J.; Graf, J.

    1985-01-01

    Iron/air batteries recharged chemically by solution of strong base in alcohol or by basic alcohol solution of reducing agent. Although method still experimental, it has potential for batteries in electric automobiles or as energy system in remote applications. Also used in quiet operations where noise or infrared signature of diesel engine is not desired.

  16. Extension in the Aegean nappe-stacks: Numerical Model and their Geological Validation

    NASA Astrophysics Data System (ADS)

    Lecomte, E.; Huet, B.; Le Pourhiet, L.; Labrousse, L.; Jolivet, L.

    2010-12-01

    After mountain building, the crust exhibits complex structure. Especially, thickening achieved by nappe-stacking induces rheological heterogenities at all scales: from the fault scale up to the crustal scale. This process is likely to influence post-orogenic evolution. However, it is generally not considered in numerical models. In this study, we consider the impact of pre-existing thrusts and nappes structures on the mode of post-orogenic extension. We focus on thermomechanical modeling of reactivation of convergent structures inherited from compression. The Aegean domain that experienced extension after the formation of the Hellenides is considered as a natural laboratory. Natural data are used to constrain a priori the geometry and rheology of the models and to validate them a posteriori. Three problems at different scales are considered. Firstly, we model the reactivation of a thrust as a low angle normal fault. Recent studies show that Aegean detachments were active in the brittle field with very shallow dips. These observations are in contradiction with the classical fault mechanics theory. In order to reconcile both point of view, we propose a new model by introducing an elasto-plastic frictional fault gouge that is able to compact. Our models show that plastic strain on badly oriented faults is favored by compaction of the fault gouge. Secondly, we model the formation of the Corinth rift. The Phyllite-Quartizte nappe is introduced in the upper crust as a weak shallow-dipping layer between the Pindos and Tripolitza massive carbonate nappes. The competence contrast between this nappe and its surrounding controls the dynamics of rifting. High competence contrast leads to the formation of crustal-scale planar faults rooting on the brittle ductile transition of the crust and thin-skinned listric faults rooting on the nappe itself. This model is consistent with the observed microseismicity patterns, the asymmetry of the Corinth Gulf, and the kinematics of fault

  17. Late exhumation of the Alpine foreland (Digne nappe, France) constrained by low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Schwartz, Stéphane; Gautheron, Cécile; Dumont, Thierry; Nomade, Jérôme; Audin, Laurence; Pinna-Jamme, Rosella; Barbarand, Jocelyn

    2015-04-01

    The frontal part of the southwestern Alpine belt is characterized by important compressional deformation marked by the emplacement of the Digne nappe and the formation of the Valavoire thrust-sheet. The final displacement of this nappe is dated Late Miocene thanks to continental molasses of the foreland basin, which are folded in its footwall and form the famous Vélodrôme recumbent syncline. The stratigraphic series of the Digne nappe is made of more than 5000 m thick Liassic to Eocene deposits a part of which overthrust the vélodrôme syncline. In order to quantify this overburden and the timing of the subsequent exhumation and erosion of the Valavoire thrust-sheet we performed a low temperature apatite fission tracks (AFT) and (U-Th)/He (AHe) study on the Tertiary molasses sampled at Faucon du Caire and Esclangon area in order to (i) characterize the thermal conditions during burial and exhumation (ii) and to propose a coherent evolution of the European foreland in the front of the Digne nappe. AHe and AFT data obtained on detrital grains present for Faucon du Caire and Esclangon molasses minimum ages ranging of 3-5 Ma. From these data we determine than the Faucon du Caire molasses have been totally reset for He system and whereas the Esclangon molasses have been only partially reset. Using QTQt inverse modeling and He damage codes (Gallagher et al., 2012), the thermal history results implied a burial at 90-100°C for the Esclangon molasses and >120°C for the Faucon du Caire molasses and a similar exhumation starting at 5.5±0.5 Ma. From these results, we conclude that the thermal conditions during burial associated with the Digne nappe thrusting were enough sufficient to reset the detrital apatites in Miocene sediments. This implies several kilometers of tectonic overload. Maximum burial occurred at ~6 Ma ago, which precludes the occurrence of any Messinian incision overlain by the nappe in the Barles half-window as recently proposed (Hippolyte et al., 2011

  18. Structural, metamorphic and magmatic history of the Mondon¯edo nappe (Hercynian belt, NW Spain)

    NASA Astrophysics Data System (ADS)

    Bastida, F.; Martinez-Catalan, J. R.; Pulgar, J. A.

    The Mondon¯edo nappe is one of the main units in the internal zone of the Hercynian belt in the Iberian Peninsula. It consists of low to medium grade metasediments, late Precambrian and Palaeozoic in age, folded by large D1 E-verging recumbent structures, and thrusted several tens of km towards the east during a D2 deformation episode. At the base of the thrust sheet, a shear zone of up to 3 km thick was developed. Granitoid bodies, which were intruded after D1 and before or during D2, were deformed in this basal zone. The geometry of D1 and D2 structures and that of the isograds are described, as well as the relationships between metamorphism and deformation. A structural evolution is inferred which shows an episode of generalized ductile deformation ( D1) followed by another in which the deformation tended to concentrate in a subhorizontal ductile shear zone ( D2) and culminated with the thrusting along an important fracture. The shear zone originated in a thermally softened level which, according to metamorphic data, was at temperatures in the range 550-600°C. The structural, metamorphic and magmatic features of the Mondon¯edo nappe suggest a relationship with a crustal scale overthrusting of the continental mass to which the nappe belongs. This could be a consequence of the collision against another continental mass to the west.

  19. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    NASA Astrophysics Data System (ADS)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2016-05-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  20. Rechargeable Magnesium Power Cells

    NASA Technical Reports Server (NTRS)

    Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

    1995-01-01

    Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

  1. REMOTELY RECHARGEABLE EPD

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Scott Bowser, S

    2007-11-13

    Radiation measurements inside the Contact Decon Maintenance Cell (CDMC) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) are required to determine stay times for personnel. A system to remotely recharge the transmitter of an Electronic Personnel Dosimeter (EPD) and bail assembly to transport the EPD within the CDMC was developed by the Savannah River National Laboratory (SRNL) to address this need.

  2. Advanced Small Rechargeable Batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  3. Low temperature thermochronological constrains on the late exhumation of the Alpine foreland (Digne nappe, France).

    NASA Astrophysics Data System (ADS)

    Schwartz, S.; Gautheron, C.; Audin, L.; Dumont, T.; Nomade, J.; Pinna-Jamme, R.

    2015-12-01

    The frontal part of the southwestern Alpine belt is characterized by important compressional deformation marked by the emplacement of the Digne nappe and the formation of the Valavoire thrust-sheet. The final emplacement of this nappe is dated Late Miocene thanks to Tertiary continental molasses of the foreland basin that are involved in the famous Vélodrôme recumbent syncline and exposed in erosional windows. The stratigraphic series of the Digne nappe is made of ~5000 m thick Liassic to Eocene deposits, which overthrust the vélodrôme syncline. We performed a low temperature apatite fission tracks (AFT) and (U-Th)/He (AHe) study on detrital grains of Tertiary molasses in order to (i) characterize the thermal conditions during burial and exhumation and to (ii) propose a late tectonic evolution in the front of the European Alpine foreland. Tertiary molasses were sampled in two sites of the erosional windows at different elevations. Samples present dispersed AHe and AFT ages due to an incomplete resetting of both thermochronometers, expected for the lowest elevation samples. In detail, AHe ages ranges from 2±0.2 to 60.4±5.4 Ma, whereas central AFT ages range from 11±1 to 67±16 Ma. On both sites, the total and partial reset of the thermochronological data suggests a heating event after the sediment deposition. Using QTQt inverse modeling and He damage codes, we determined the samples thermal history. The results implied a common burial temperature at 110±5°C during ~5Ma and a similar exhumation starting at 6±1 Ma. From these results, we conclude that the thermal conditions during burial associated with the Digne nappe thrusting were sufficient to reset the detrital apatites. Using mean surface temperature of 10°C and typical thermal gradient from 25°C/km, our new data show that the Digne Nappe reached at least 4.5 to 3.6 km-thick on both sites before further erosion. We propose that the late exhumation occurred at ~6 Ma ago, before the Messinian incision

  4. Recharge into a shingle beach

    NASA Astrophysics Data System (ADS)

    Keating, T.

    1984-04-01

    Traditionally, groundwater recharge in the U.K. has been calculated by the Penman method on a monthly basis, using values of potential evaporation derived from averaged meteorological data and monthly totals of rainfall. Recent work by K.W.F. Howard and J.W. Lloyd has shown that these monthly totals considerably underestimate recharge calculated over shorter time periods and they suggested that 1-day, or at worst, 10-day intervals should be used. In this paper field experiments to measure recharge into a shingle beach are reported. These experiments were made with a lysimeter over a 6-yr. period and have shown that recharge into the shingle occurs whenever significant precipitation occurs, even during the summer months. The Penman model is shown to be unrealistic for estimating recharge into such a beach and an alternative model for calculating recharge is proposed. This model is shown to yield good results.

  5. Reinterpretation of nappe structures in the Central Alps Evidence from 3D foliation field modelling

    NASA Astrophysics Data System (ADS)

    Maxelon, M.; Mancktelow, N. S.

    2003-04-01

    The Lepontine Alps represent the classic region for both, fold nappe development at mid-crustal levels and fold interference patterns from outcrop to regional scale. They have also been proposed as models for rapid burial and exhumation. However, before such models can be applied or critically assessed, the geometry of the units involved must be accurately known in three dimensions and this is a challenging task in this complex region. The three-dimensional geometry of the Lepontine nappes is not established unequivocally, as the integration and visualisation of structural data reflecting at least five different deformation phases has not yet been achieved satisfactorily. The present study focusses on a combination of new structural mapping in critical and/or contradictory areas, existing observations and their geostatistical assessment with modern computer-based tools (Editeur Géologique, Gocad) in order to develop a testable three-dimensional model of the geometry of the Lepontine Nappes in the Central Alps. Here we present a regional-scale three dimensional model of the southern central part of the Lepontine Region, bordered by the Swiss-Italian frontier in the east and Valle Leventina to the west and by Biasca and Locarno to the north and south. The model visualises a geostatistical calculation of the dominant foliation field in three dimensions, based on field measurements. The present day tectonostratigraphy and nappe geometry are mainly influenced by the three earliest recognisable Alpine deformation phases D_1 to D_3. D_1 structures are associated with first-time crustal nappe emplacement. Lithologies that are interpreted as nappe separators - mainly Mesozoic sediments such as "Bündnerschiefer" - have mostly been interleaved between the nappes during D_1, which entails strong isoclinal folding and pronounced boudinage of the infolded lithologies, with the development of a penetrative foliation S_1. S_1 and the infolded Mesozoic have been intensely

  6. Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen

    NASA Astrophysics Data System (ADS)

    Möller, Charlotte; Andersson, Jenny; Dyck, Brendan; Antal Lundin, Ildiko

    2015-06-01

    We demonstrate a case of eclogite exhumation in a partially molten, low-viscosity fold nappe within high-grade metamorphosed crust in the Eastern Segment of the Sveconorwegian orogen. The nappe formed during tectonic extrusion, melt-weakening assisted exhumation and foreland-directed translation of eclogitized crust, and stalled at 35-40 km depth within the collisional belt. The eclogites are structurally restricted to a regional recumbent fold in which stromatic orthogneiss with pods of amphibolitized eclogite make up the core. High-temperature mylonitic gneiss with remnants of kyanite eclogite (P > 15 kbar) composes a basal shear zone 50 km long and < 4 km wide. Heterogeneously sheared and partly migmatized augen gneiss forms a tectonostratigraphic marker in front of and beneath the nappe, and is in turn structurally enveloped by a composite sequence of orthogneisses and metabasites. The entire tectonostratigraphic pile underwent near-pervasive deformation and recrystallization under high-pressure granulite and upper amphibolite conditions. U-Pb SIMS metamorphic zircon ages of eclogite and stromatic orthogneiss constrain the time of eclogitization at 988 ± 6 Ma and 978 ± 7 Ma. Migmatization, concomitant deformation, and exhumation are dated at 976 ± 6 Ma, and crystallization of post-kinematic melt at 956 ± 7 Ma. Orthogneiss protoliths are dated at 1733 ± 11 and 1677 ± 10 Ma (stromatic gneiss) and 1388 ± 7 Ma (augen gneiss in footwall), demonstrating origins indigenous to the Eastern Segment. Eclogitization and exhumation were coeval with the Rigolet phase of the Grenvillian orogeny, reflecting the late stage of continental collision during construction of the supercontinent Rodinia.

  7. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  8. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  9. The Gaissa Nappe, Finnmark, North Norway: an example of a deeply eroded external imbricate zone within the Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Townsend, C.; Roberts, D.; Rice, A. H. N.; Gayer, R. A.

    The Lower Allochthon of the Caledonides of Finnmark, northern Norway, is represented solely by the Gaissa Nappe, which is composed of sub-greenschist facies sedimentary rocks of late Riphean to Tremadoc age. The lithostratigraphic sequence has been shortened by thrusting and folding in an ESE direction. Based on mapping and structural profiling east of Porsangerfjord, the Gaissa Nappe can be divided into four structural segments: the Børsely duplex, developed beneath the Kalak Nappe of the Middle Allochthon, is oblique to an imbricate fan, the Munkavarri imbricate zone, east of which is the Guiverassa duplex zone that is partly covered by the Vuonjalrassa thrust sheet. The sole thrust to the Gaissa Nappe is a flat planar surface which truncates the common N-S folds and associated cleavage in the rocks of the Gaissa Nappe. The Vuonjalrassa-Gaissa thrust cuts down section in the transport direction, possibly as a result of early tectonic downwarping. A balanced cross-section and a hanging-wall diagram have been partially restored, indicating that the metasediments of the trailing edge of the Munkavarri imbricate zone have been displaced by 104 km in their ESE translation direction. Taking the sequence west of Porsangerfjord into consideration, an overall contraction of more than 150 km is possible. In the east, it is argued that the basal Gaissa décollement, formerly thought to die out and pass laterally into an unconformity, extends to the northeast beyond the head of Tanafjord. Folds that occur in front of the sole thrust on the Varanger Peninsula imply the presence of a blind thrust. In an orogenic context, the Gaissa Nappe forms a series of imbricated thrust sheets in the external part to the collision belt, produced during the Finnmarkian orogenic event in late Cambrian to early Ordovician time.

  10. Microstructural and fabric studies from the rocks of the Moine Nappe, Eriboll, NW Scotland

    NASA Astrophysics Data System (ADS)

    Evans, D. J.; White, S. H.

    Microstructures and quartz c-axis fabric diagrams from mylonites and psammitic Moine schists, collected in traverses across the lower levels of the Moine Nappe in the Eriboll area, are presented. On approaching the Moine Thrust from the Kyle of Tongue, the following microstructural sequence is encountered: interlayered coarse grained biotite psammitic and schistose tectonites being in part mylonitic with two platy slide zones, one containing biotite and the other only muscovite and chlorite and both showing quartz microstructures indicative of post-tectonic relaxation; these pass into more mylonitic rocks nearer the thrust zone which in turn passes into the main chlorite-grade mylonite belt and finally, adjacent to the Moine Thrust, into reworked lower chlorite grade mylonites. Although there is some local variation, the overall quartz c-axis fabric is an incomplete asymmetric type I girdle. The main variation is the development of type II girdles in the reworked, ultrafine grained mylonites. The extent of the mylonitization is more extensive than previously reported. Studies of folds within the mylonite belt have revealed eye structures and small-scale folds; many are sheath folds. They cannot be unequivocally correlated with large-scale recumbent folds within the Moine Nappe. The results presented indicate that mylonitization is not limited to a single phase, and raises the possibility that there may be earlier Caledonian or possibly Precambrian structural elements present in the Eriboll region Moines prior to much of the mylonitization.

  11. Basement-cover relationships in the Tambo nappe (Central Alps, Switzerland): geometry, structure and kinematics

    NASA Astrophysics Data System (ADS)

    Baudin, Thierry; Marquer, Didier; Persoz, Francis

    1993-05-01

    In the Pennine zone of the Central Alps, the Tambo nappe forms a thin crystalline sliver embedded in the Mesozoic cover. Four Tertiary Alpine deformations are observed. The D1 ductile deformation is linked to the progressive Eocene stacking of the nappes towards the northwest. During D1, basement deformation is governed by imbricate tectonics whereas cover is thin-skinned and intensively folded. These different structures reflect the original strong rheological contrast between basement and cover. During the heterogeneous and ductile D2 deformation, the behaviour of the basement and cover became similar. The strong vertical D2 shortening, associated with a 'top-to-the-east' shear, led to the folding of the prior SE-dipping structures, developing SE-vergent folds with axes close to the E-W L2 stretching lineation. D2 corresponds to post-collisional crustal thinning following D2 crustal thickening. The D3 and D4 deformations occurred under retrograde conditions and can be correlated with uplift and late dextral movement on the Insubric line, respectively.

  12. Kinematics of the Central Taurides during Neotethys closure and collision, the nappes in the Sultan Mountains, Turkey

    NASA Astrophysics Data System (ADS)

    Güngör, Talip

    2013-07-01

    In the Central Taurides, the Sultan Mountains comprise in ascending order the Çimendere unit and the Akşehir, Doğanhisar, Çay nappes composed of metasedimentary sequences deposited from Cambrian to Tertiary. The overthrust of the Çay nappe on the Lutetian Celeptaş formation representing the uppermost stratigraphic position in the Çimendere unit indicates that the latest nappe emplacement occurred during the Middle Eocene. The Oligocene and Miocene rocks are in post-tectonic facies in the west Central Taurides. The kinematic data from these nappes related to closure of the Neotethys reveal a top-NE shear sense in the northwest part and a top-SE shear sense in the southeast part of the Sultan Mountains. The Sultan Mountains are located in the north part of the Isparta Angle which was tectonically assembled by the Lycian, Hoyran-Beyşehir-Hadim and Antalya allochthons on the Bey Dağları and Anamas-Akseki autochthons from the Latest Cretaceous to the Late Pliocene. The previous paleomagnetic data showed that the west and east subsections of the Isparta Angle were subjected to post-Eocene 30°-40° anticlockwise and clockwise rotations, respectively. In consideration of these paleomagnetic data, the kinematic data measured in the Sultan Mountains might be restored into approximately E-W-trending linear fabric associated with a top-E shear sense. These new kinematic data from the nappes in the Sultan Mountains disagree with the existing tectonic models that suggest N-S nappe translation over the Central Taurides during the latest Cretaceous-Middle Eocene. The alternative tectonic model for the Antalya nappes in the core of the Isparta Angle related to east-west compression suggests westward and eastward nappe emplacements on the surrounding autochthons. However, the new kinematic data presented here point consistently to a top-E shear sense in all tectonostratigraphic units in the Sultan Mountains currently located in the north part of the Anamas

  13. Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River Delta, Switzerland

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; Eugster, Werner

    A simple method for calibrating the dual-porosity MACRO model via in situ TDR measurements during a brief infiltration run (2.8 h) is proposed with the aim of estimating local groundwater recharge (GR). The recharge was modeled firstly by considering the entire 3 m of unsaturated soil, and secondly by considering only the topsoil to the zero-flux plane (0-0.70 m). The modeled recharge was compared against the GR obtained from field measurements. Measured GR was 313 mm during a 1-year period (15 October 1990-15 October 1991). The best simulation results were obtained when considering the entire unsaturated soil under equilibrium conditions excluding the macropore flow effect (330 mm), whereas under non-equilibrium conditions GR was overestimated (378 mm). Sensitivity analyses showed that the investigation of the topsoil is sufficient in estimating local GR in this case, since the water stored below this depth appears to be below the typical rooting depth of the vegetation and is not available for evapotranspiration. The modeled recharge under equilibrium conditions for the 0.7-m-topsoil layer was found to be 364 mm, which is in acceptable agreement with measurements. Une méthode simple pour la calibration du modèle à double porosité MACRO par des mesures TDR in situ durant un bref essai d'infiltration (2.8 h) a été proposée pour l'estimation locale de la recharge de la nappe (RN). La RN a été d'abord simulée en tenant compte de toute la zone non saturée (3 m) et ensuite, en considérant uniquement la couverture du sol entre zéro et le plan du flux nul (0.70 m). La RN simulée a été comparée à la RN observée. La RN mesurée durant une année (15 octobre 1990-15 octobre 1991) était de 313 mm. Les meilleures simulations ont été obtenues en tenant compte de toute la zone non saturée sous les conditions d'équilibre excluant le flux préférentiel (330 mm). Sous les conditions de non équilibre, la RN a été surestimée (378 mm). Les analyses de

  14. Thermally-Rechargeable Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1985-01-01

    Proposed liquid-sodium/sulfur electrochemical cell recharged by heat, rather than electric generator. Concept suitable for energy storage for utilites, mobile electronic equipment, and solar thermoelectric power systems. Sodium ions driven across membrane with aid of temperature differential.

  15. Water-induced fabrics of olivine in peridotites from the Lindas Nappe, Bergen arc, western Norway

    NASA Astrophysics Data System (ADS)

    Jung, Sejin; Jung, Haemyeong; Austrheim, Hâkon

    2010-05-01

    The Bergen Arc, western Norway is composed of several units distributed in an arc shape. Lindas Nappe is one of these units. Two peridotite outcrops in Lindas Nappe anorthosite complex were studied to understand deformation conditions of olivine. A mylonite zone was found in the peridoties and deformation fabrics of small olivine in the area were also studied. Lattice preferred orientation (LPO) of olivine was determined using the electron backscattered diffraction (EBSD) in SEM. Water content of olivine in the samples was measured using the Fourier transformation infrared (FTIR) spectroscopy. We observed three different types of LPOs (E-, B-, and A-type) of olivine in a large grain area. Sample (372) showed that [100] axes of olivine are aligned subparallel to the lineation and [001] axes aligned normal to the foliation, which is known as E-type LPO of olivine (Jung et al., 2006). Three samples (375, 380, and 381) showed that [001] axes of olivine are aligned subparallel to the lineation and [010] axes aligned normal to the foliation, which is known as B-type LPO of olivine. Another sample (379) in the large grain area showed that [100] axes of olivine are aligned subparallel to the lineation and [010] axes aligned normal to the foliation, which is known as A-type LPO of olivine. On the other hand, we observed two types of LPOs of olivine in a mylonite zone with a small grain-size: B- and C-type. C-type LPO is characterized as [001] axes of olivine aligned subparallel to the lineation and [100] axes of olivine aligned nearly normal to the foliation. Previous experimental study showed that B-, C-, and E-type LPO patterns were observed in a wet condition and A-type LPO was observed in a dry condition (Jung et al., 2006). FTIR analysis of olivine revealed that a sample showing the A-type LPO showed only small IR absorption peaks in the range of wave numbers 3000 - 3750 cm-1. In contrast, samples showing B-, C-, and E-type LPO showed large IR absorption peaks in the

  16. How does shear zone nucleate? An example from the Suretta nappe (Swiss Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Goncalves, Philippe; Poilvet, Jean-Charles; Oliot, Emilien; Trap, Pierre; Marquer, Didier

    2016-05-01

    In order to address the question of the processes involved during shear zone nucleation, we present a petro-structural analysis of millimetre-scale shear zones within the Roffna rhyolite (Suretta nappe, Eastern central Alps). Field and microscopic evidences show that ductile deformation is localized along discrete fractures that represent the initial stage of shear zone nucleation. During incipient brittle deformation, a syn-kinematic metamorphic assemblage of white mica + biotite + epidote + quartz precipitated at ca. 8.5 ± 1 kbar and 480 ± 50 °C that represent the metamorphic peak conditions of the nappe stacking in the continental accretionary wedge during Tertiary Alpine subduction. The brittle to ductile transition is characterized by the formation of two types of small quartz grains. The Qtz-IIa type is produced by sub-grain rotation. The Qtz-IIb type has a distinct CPO such that the orientation of c-axis is perpendicular to the shear fracture and basal and rhombhoedric slip systems are activated. These Qtz-IIb grains can either be formed by recrystallization of Qtz-IIa or by precipitation from a fluid phase. The shear zone widening stage is characterized by a switch to diffusion creep and grain boundary sliding deformation mechanisms. During the progressive evolution from brittle nucleation to ductile widening of the shear zone, fluid-rock interactions play a critical role, through chemical mass-transfer, metasomatic reactions and switch in deformation mechanisms.

  17. Functional materials for rechargeable batteries.

    PubMed

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. PMID:21394791

  18. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  19. Choosing appropriate techniques for quantifying groundwater recharge

    USGS Publications Warehouse

    Scanlon, B.R.; Healy, R.W.; Cook, P.G.

    2002-01-01

    Various techniques are available to quantify recharge; however, choosing appropriate techniques is often difficult. Important considerations in choosing a technique include space/time scales, range, and reliability of recharge estimates based on different techniques; other factors may limit the application of particular techniques. The goal of the recharge study is important because it may dictate the required space/time scales of the recharge estimates. Typical study goals include water-resource evaluation, which requires information on recharge over large spatial scales and on decadal time scales; and evaluation of aquifer vulnerability to contamination, which requires detailed information on spatial variability and preferential flow. The range of recharge rates that can be estimated using different approaches should be matched to expected recharge rates at a site. The reliability of recharge estimates using different techniques is variable. Techniques based on surface-water and unsaturated-zone data provide estimates of potential recharge, whereas those based on groundwater data generally provide estimates of actual recharge. Uncertainties in each approach to estimating recharge underscore the need for application of multiple techniques to increase reliability of recharge estimates.

  20. Organic facies characteristics of the Carboniferous Pamucakyayla Formation, western Taurus, Antalya Nappes, Kemer (Antalya/Turkey)

    NASA Astrophysics Data System (ADS)

    Bertan Gulludag, Cevdet; Altunsoy, Mehmet; Ozcelik, Orhan

    2015-04-01

    The study area is located in the western part of the Taurus Belt (SW Turkey). This region exhibits a complex structure involving two autochthonous units surrounded and imbricated with three allochthonous complexes. Antalya Nappes is a complex tectonic imbricate structure including sedimantary and ultrabasic rocks. In this study, organic facies characteristics of Carboniferous coaly units in the Pamucakyayla region (Kemer, Antalya-Turkey) were examined. The Carboniferous Pamucakyayla Formation, which is characterized by sandstone, claystone, marl and coaly units. This units includes different levels of coal seams in different thicknesses. Organic matter is composed predominantly of woody and amorphous material, with a minor contribution of planty and coaly material. Kerogen in the deposits is type II/III, as indicated by organic petrographic observations and Rock-Eval data. Total organic carbon (TOC) values are generally between 0.01 and 1.44 %, but reach 5.81 % in the formation. Tmax values vary between 446 and 451 °C and indicate mature zone (Based on the value of 0.25 % TOC). Organic facies type BC, C and CD were identified in the investigated units. Organic facies BC is related sandstoneand marl lithofacies. This facis is deposited under an anoxic water column in a fine grained clastics, where rapid deposition creates anoxia in the sediments after deposition. This facies is characterized by average values of HI around 317 (equivalent to type II kerogene), TOC around 0.02 %, and an average of S2 of 0.04 mg HC/g of rock. Organic facies C is related to sandstone, marl and coal lithofacies. This facies is characterized by average values of HI around 176 (equivalent to type III kerogene), TOC around 0.19 %, and an average of S2 of 0.03 mg HC/g of rock. The organic matter is partly oxidized, and terrestrial. Organic facies C is the "gas-prone" facies. Organic facies CD is related to limestone, marl and coal lithofacies. This facies is characterized by average values

  1. Rechargeable nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Soltis, D. G.

    1977-01-01

    Device proves superiority in having two and one half to three times the energy content of popular lead-zinc or nickel-cadmium batteries. Application to electric utility vehicles improved acceleration rate and nearly doubled driving range between rechargings. Unit contributes substantially toward realization of practical urban electrical automobiles.

  2. Hydrocarbon possibilities of concealed Mesozoic-Paleogene sediments below Himalayan nappes - reappraisal

    SciTech Connect

    Acharyya, S.K.; Ray, K.K.

    1982-01-01

    Hydrocarbon exploration of the Ganga (Ganges) and Sub-Himalayan basins indicates the presence of upper Neogene-Quaternary continental molasse and the absence of Paleogene sediments regarded as hydrocarbon source beds. Marine to brackish water Paleogene-lower Neogene sediments, closely fringing the Sub-Himalayan foothills, increase in thickness northward. Their presence and facies in the frontal schuppen zone and in the Lesser Himalayan windows, commonly in close association with upper Mesozoic shelf sediments, indicate a formerly greater width for the late Mesozoic-early Neogene shelf-miogeosynclinal basin. The pre-Tertiary rocks of the Lesser Himalayas are in nappes floored by the flat-lying sole thrust redesignated the Main Boundary thrust (MBT). Schuppen structure and lateral shortening complicate the geometry of the MBT. Pre-Tertiary tectonic grain and metamorphism, ubiquitously developed within the Lesser Himalayan cover rocks, are typically absent in the subjacent Paleogene-lower Neogene window-zone sediments. This opinion is corroborated by a few oil and gas shows from the Eocene limestone outcrops close to the MBT and also from the Lesser Himalayan pre-Tertiary metamorphic cover rocks.

  3. Identifying Groundwater Recharge in Arid Regions

    NASA Astrophysics Data System (ADS)

    Thomas, B. F.; Famiglietti, J. S.

    2015-12-01

    Recharge epodicity in arid regions provides a method to estimate annual groundwater recharge given a relationship expressed as the recharge to precipitation ratio. Traditionally, in-situ observations are required to identify aquifer recharge events, while more advanced approaches such as the water-table fluctuation method or the episodic master recession method are necessary to delineate the recharge event. Our study uses the Gravity Recovery and Climate Experiment (GRACE) observations to estimate monthly changes in groundwater storage which are attributed to the combination of groundwater abstraction and episodic recharge in the arid southwestern United States. Our results illustrate the ability of remote sensing technologies to identify episodic groundwater recharge in arid regions which can be used within sustainable groundwater management frameworks to effectively manage groundwater resources.

  4. Estimate of regional groundwater recharge rate in the Central Haouz Plain, Morocco, using the chloride mass balance method and a geographical information system

    NASA Astrophysics Data System (ADS)

    Ait El Mekki, Ouassil; Laftouhi, Nour-Eddine; Hanich, Lahoucine

    2015-09-01

    Located in the extreme northwest of Africa, the Kingdom of Morocco is increasingly affected by drought. Much of the country is characterised by an arid to semi-arid climate and the demand for water is considerably higher than the supply, particularly on the Haouz Plain in the centre of the country. The expansion of agriculture and tourism, in addition to industrial development and mining, have exacerbated the stress on water supplies resulting in drought. It is therefore necessary to adopt careful management practices to preserve the sustainability of the water resources in this region. The aquifer recharge rate in the piedmont region that links the High Atlas and the Central Haouz Plain was estimated using the chloride mass balance hydrochemical method, which is based on the relationship between the chloride concentrations in groundwater and rainwater. The addition of a geographical information system made it possible to estimate the recharge rate over the whole 400 km2 of the study area. The results are presented in the form of a map showing the spatialized recharge rate, which ranges from 13 to 100 mm/year and the recharge percentage of the total rainfall varies from 3 to 25 % for the hydrological year 2011-2012. This approach will enable the validation of empirical models covering areas >6200 km2, such as the Haouz nappe.

  5. Recharge Data for Hawaii Island

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Recharge data for Hawaii Island in shapefile format. The data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. Oki, D. S. 1999. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii. U.S. Water-Resources Investigation Report: 99-4073. Oki, D. S. 2002. Reassessment of Ground-water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii. U.S. Geological Survey Water-Resources Investigation report 02-4006.

  6. Research on rechargeable oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Giner, J.; Malachesky, P. A.; Holleck, G.

    1971-01-01

    Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

  7. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  8. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  9. Nanomaterials for rechargeable lithium batteries.

    PubMed

    Bruce, Peter G; Scrosati, Bruno; Tarascon, Jean-Marie

    2008-01-01

    Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries. PMID:18338357

  10. Survey of rechargeable battery technology

    SciTech Connect

    Not Available

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  11. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  12. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  13. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  14. Prograde garnet-bearing ultramafic rocks from the Tromsø Nappe, northern Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Ravna, Erling J. K.; Kullerud, Kåre; Ellingsen, Edel

    2006-12-01

    Garnet-bearing peridotitic rocks closely associated with eclogite within the Tromsø Nappe of the northern Scandinavian Caledonides show good evidence for prograde metamorphism. Early stages are recognized as inclusions of hornblende and chlorite in the cores of large garnet poikiloblasts. Closer to the garnet rim, clinopyroxene and Cr-poor spinel appear as additional inclusion phases. Four suites of spinel inclusions can be distinguished based on optical properties and chemical composition. The innermost suite (suite 1) has the lowest Cr# and highest Mg#. Further rimward, the spinel inclusions gradually change in composition, with increasing Cr# and decreasing Mg#. Spinel is rare in the matrix, but locally chromitic spinel occurs as larger grains. Garnet poikiloblasts are rimmed by a kelyphite zone consisting of Hbl + Cr-poor Spl or Opx ± Cpx + Cr-poor Spl, and locally an inner zone of Na-rich Hbl + Chl. Matrix assemblage in the garnet-bearing peridotitic rocks is Hbl + Chl + Cpx + Ol ± Cr-rich spinel, defining a strong foliation wrapping around garnets and associated kelyphites. Thin layers of garnet-orthopyroxenite and garnet-hornblende-zoisite-chlorite rocks are presumably coeval with the matrix foliation of the peridotitic rocks. In dunitic to harzburgitic compositions large undulatory grains of Ol + Opx ± Chl + Spl apparently define the maximum- P conditions. This assemblage is succeeded by a recrystallized assemblage of Ol ± Tlc ± Mgs, which in turn is overgrown by strain-free poikiloblasts of orthopyroxene, indicating a temperature increase. This is postdated by Tlc + Ath ± Mgs, and finally serpentine. P- T estimates for the inclusion suites of clinopyroxene and spinel in garnet clearly indicate garnet growth and spinel consumption in a regime of increasing P. The inner suite (suite 1) apparently was in equilibrium with garnet, clinopyroxene and olivine at 1.40 GPa, 675 °C, whereas included spinel with maximum Cr# (suite 4) indicate 2.40 GPa at 740

  15. Variability in simulated recharge using different GCMs

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Cannon, A. J.; Toews, M. W.; Scibek, J.

    2010-10-01

    Variations in the prediction of recharge is addressed by comparing recharge simulated using climate data generated using a state-of-the-art downscaling method, TreeGen, with a range of global climate models (GCMs). The study site is the transnational Abbotsford-Sumas aquifer in coastal British Columbia, Canada and Washington State, USA, and is representative of a wet coastal climate. Sixty-four recharge zones were defined based on combinations of classed soil permeability, vadose zone permeability, and unsaturated zone depth (or depth to water table) mapped in the study area. One-dimensional recharge simulations were conducted for each recharge zone using the HELP hydrologic model, which simulates percolation through a vertical column. The HELP model is driven by mean daily temperature, daily precipitation, and daily solar radiation. For the historical recharge simulations, the climate data series was generated using the LARS-WG stochastic weather generator. Historical recharge was compared to recharge simulated using climate data series derived from the TreeGen downscaling model for three future time periods: 2020s (2010-2039), 2050s (2040-2069), and 2080s (2070-2099) for each of four GCMs (CGCM3.1, ECHAM5, PCM1, and CM2.1). Recharge results are compared on an annual basis for the entire aquifer area. Both increases and decreases relative to historical recharge are simulated depending on time period and model. By the 2080s, the range of model predictions spans -10.5% to +23.2% relative to historical recharge. This variability in recharge predictions suggests that the seasonal performance of the downscaling tool is important and that a range of GCMs should be considered for water management planning.

  16. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  17. Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe

    NASA Astrophysics Data System (ADS)

    Quesnel, Benoît; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; John, Cédric M.; Dierick, Malorie; Agrinier, Pierre; Drouillet, Maxime

    2016-06-01

    The stable isotope compositions of veins provide information on the conditions of fluid-rock interaction and on the origin of fluids and temperatures. In New Caledonia, magnesite and silica veins occur throughout the Peridotite Nappe. In this work, we present stable isotope and clumped isotope data in order to constrain the conditions of fluid circulation and the relationship between fluid circulation and nickel ore-forming laterization focusing on the Koniambo Massif. For magnesite veins occurring at the base of the nappe, the high δ18O values between 27.8‰ and 29.5‰ attest to a low temperature formation. Clumped isotope analyses on magnesite give temperatures between 26 °C and 42 °C that are consistent with amorphous silica-magnesite oxygen isotope equilibrium. The meteoric origin of the fluid is indicated by calculated δ18Owater values between -3.4‰ to +1.5‰. Amorphous silica associated with magnesite or occurring in the coarse saprolite level displays a narrow range of δ18O values between 29.7‰ and 35.3‰. For quartz veins occurring at the top of the bedrock and at the saprolite level, commonly in association with Ni-talc-like minerals, the δ18O values are lower, between 21.8‰ and 29.0‰ and suggest low-temperature hydrothermal conditions (∼40-95 °C). Thermal equilibration of the fluid along the geothermic gradient before upward flow through the nappe and/or influence of exothermic reactions of serpentinization could be the source(s) of heat needed to form quartz veins under such conditions.

  18. Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe

    NASA Astrophysics Data System (ADS)

    Quesnel, Benoît; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; John, Cédric M.; Dierick, Malorie; Agrinier, Pierre; Drouillet, Maxime

    2016-06-01

    The stable isotope compositions of veins provide information on the conditions of fluid-rock interaction and on the origin of fluids and temperatures. In New Caledonia, magnesite and silica veins occur throughout the Peridotite Nappe. In this work, we present stable isotope and clumped isotope data in order to constrain the conditions of fluid circulation and the relationship between fluid circulation and nickel ore-forming laterization focusing on the Koniambo Massif. For magnesite veins occurring at the base of the nappe, the high δ18O values between 27.8‰ and 29.5‰ attest to a low temperature formation. Clumped isotope analyses on magnesite give temperatures between 26 °C and 42 °C that are consistent with amorphous silica-magnesite oxygen isotope equilibrium. The meteoric origin of the fluid is indicated by calculated δ18Owater values between -3.4‰ to +1.5‰. Amorphous silica associated with magnesite or occurring in the coarse saprolite level displays a narrow range of δ18O values between 29.7‰ and 35.3‰. For quartz veins occurring at the top of the bedrock and at the saprolite level, commonly in association with Ni-talc-like minerals, the δ18O values are lower, between 21.8‰ and 29.0‰ and suggest low-temperature hydrothermal conditions (∼40-95 °C). Thermal equilibration of the fluid along the geothermic gradient before upward flow through the nappe and/or influence of exothermic reactions of serpentinization could be the source(s) of heat needed to form quartz veins under such conditions.

  19. Hot granulite nappes — Tectonic styles and thermal evolution of the Proterozoic granulite belts in East Africa

    NASA Astrophysics Data System (ADS)

    Fritz, Harald; Tenczer, Veronika; Hauzenberger, Christoph; Wallbrecher, Eckart; Muhongo, Sospeter

    2009-11-01

    A section through the Neoproterozoic Mozambique Belt of Tanzania exposes western foreland (Archaean Tanzania Craton and Palaeoproterozoic Usagaran Belt), marginal (Western Granulites) and eastern, internal (Eastern Granulites) portions of the orogen. The assembly of granulite nappes at ca. 620 Ma displays westward emplacement along an eastward deepening basal decollement and forward propagation of thrusts, climbing from the deep crust to the surface. This goes along with eastward increase of syntectonic temperatures, derived from prevalent deformation mechanisms, and eastward decrease of the kinematic vorticity number. Distinctly different pressure - temperature paths with a branch of isothermal decompression (ITD) in Western Granulites and isobaric cooling (IBC) in Eastern Granulites reflect residence times of rocks within lower crustal levels. Western Granulites, exhumed rapidly at the orogen margin, display ITD and non-coaxial fabrics. Eastern Granulites in the internal orogen portions escaped from rapid exhumation and show IBC and co-axial flow fabrics. The vertical variation of structural elements, i.e. basement — cover relations within the Eastern Granulites, shows decoupling between lower and middle crust with horizontal west — east stretching in the basement and horizontal west — east shortening in the cover. A model of hot fold nappes [Beaumont, C., Nguyen, M.H., Jamieson, R.A., Ellis, S., 2006. Crustal flow modes in large hot orogens. In: Law, R.D., Searle, M.P., Godin, L., (eds). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications. vol. 268, 91-145] is adopted to explain flow diversity in the deep crust. The lower crust represented by Eastern Granulite basement flowed coaxially outwards (westward) in response to thickened crust and elevated gravitational forces, supported by a melt-weakened, viscous channel at the crustal base. Horizontal flow with rates faster than thermal

  20. Progressive deformation structures associated with ductile thrusts in the Moine Nappe, Sutherland, N. Scotland

    NASA Astrophysics Data System (ADS)

    Holdsworth, Robert E.

    In the deeper parts of mountain belts, polyphase structural sequences observed at outcrop-scale can arise due either to overprinting of regionally distinct deformation phases (e.g. reworking, changes in orogenic boundary conditions), or to localized controls that bring about transient changes in the patterns of ductile flow. These are unlikely to be mutually exclusive processes, and examples from Scotland demonstrate that, once regionally separate events are delimited using radiometric evidence, it is possible to isolate complex deformation sequences arising due to local controls. In the western Moine Nappe of Sutherland, the dominant structures were formed during Caledonian ductile thrusting towards the WNW, whilst earlier (?Precambrian) phases are relatively minor in importance. Two groups of Caledonian folds and fabrics are recognized in many exposures: main phase ( D2) structures which are broadly contemporaneous with ductile thrust fabrics, and later secondary phase ( F3) folds. The latter can be divided into two geometric groups: sheath-fold types which formed initially as WNW-overturned buckles subsequently modified by ductile shearing; and asymmetric types, which are commonly open folds apparently formed with axes close or sub-parallel to the thrust transport direction. Secondary structures show a close spatial association with high strain zones along ductile thrusts, and can be shown to have formed during the later stages of thrusting in certain critical exposures. I propose that they may form due to strain perturbations resulting from variations in the relative rates of ductile flow within the mylonites. Where differential shearing occurs due to flow-normal perturbations, wrench-related asymmetric fold types may form. In contrast, secondary sheath-fold structures may result from localized compression phases caused by flow-parallel perturbations. Local flow-perturbation models may be appropriate in situations where the distribution of later structures is

  1. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    EPA Science Inventory

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  2. INTRODUCTION TO ARTIFICIAL GROUND-WATER RECHARGE

    EPA Science Inventory

    Artificial ground-water recharge has been practiced for scores of years throughout the world. The purpose of artificial recharge is to increase the rate at which water infiltrates the land surface in order to supplement the quantity of ground water in storage. A variety of rechar...

  3. Identifying and quantifying urban recharge: a review

    NASA Astrophysics Data System (ADS)

    Lerner, David N.

    2002-02-01

    The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.

  4. Improved Carbon Anodes For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1994-01-01

    Carbon anodes for rechargeable lithium cells improved by choosing binder contents and fabrication conditions to achieve maximum porosity, uniform loading, and maximum reversible lithium capacity. Stacking electrodes under pressure during assembly of cells increases cyclability of lithium. Rechargeable, high-energy-density lithium cells containing improved carbon anodes find use in spacecraft, military, communications, automotive, and other demanding applications.

  5. Transformer Recharging with Alpha Channeling in Tokamaks

    SciTech Connect

    N.J. Fisch

    2009-12-21

    Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________

  6. Reflections on Dry-Zone Recharge

    NASA Astrophysics Data System (ADS)

    Gee, G. W.

    2005-05-01

    Quantifying recharge in regions of low precipitation remains a challenging task. The design of permanent nuclear-waste isolation at Yucca Mountain, Nevada, the design of arid-site landfill covers and the pumping of groundwater in desert cities, like Las Vegas, are examples where accurate recharge estimates are needed because they affect billion-dollar decisions. Recharge cannot be measured directly and must rely on estimation methods of various kinds including chemical tracers, thermal profiling, lysimetry, and water-balance modeling. Chemical methods, like chloride-mass-balance can significantly underestimate actual recharge rates and water-balance models are generally limited by large uncertainties. Studies at the U. S. Department of Energy's Hanford Site in Washington State, USA illustrate how estimates of recharge rates have changed over time and how these estimates can affect waste management decisions. Lysimetry has provided reliable estimates of recharge for a wide range of surface condittions. Lysimetric observations of reduced recharge, resulting from advective drying of coarse rock piles, suggest a way to avoid costly recharge protection using titanium shields at Yucca Mountain. The Pacific Northwest National Laboratory is funded by the U. S. Department of Energy under contract DE-AC05-76-RL01830.

  7. Recharge at the Hanford Site: Status report

    SciTech Connect

    Gee, G.W.

    1987-11-01

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs.

  8. A new restoration of the NFP20-East cross section and possible tectonic overpressure in the Penninic Adula Nappe (Central Alps)

    NASA Astrophysics Data System (ADS)

    Pleuger, J.; Podladchikov, Y.

    2012-04-01

    The Adula Nappe in the eastern Central Alps is one of the four units in the Alps from which ultrahigh-pressure rocks have been reported. Several very different models for its tectonic history have been published but none of these models is fully satisfactory. In the models of Schmid et al. (1996) and Engi et al. (2001), the main mechanism of exhumation is assumed to be extrusion. The extrusion models require top-to-the-hinterland, i.e. top-to-the-south faulting in the hanging wall of the exhuming nappe for which there is no evidence. Froitzheim et al. (2003) proposed a scenario with two different subduction zones, an internal one in which the South Penninic and Briançonnais domains were subducted, and an external one in which the North Penninc domain and the European margin, including the Adula nappe, were subducted. In this model, the exhumation of the Adula nappe results from the subduction of the overlying sub-Briançonnais and sub-South-Penninic mantle in the internal subduction zone. The Adula nappe would then have been exhumed from below into a top-to-the-north shear zone also affecting the overriding Briançonnais units. The main shortcoming of this model is that otherwise there is little evidence for two Alpine subduction zones. All the models cited above are based on the conversion of peak pressures obtained from geobarometry to depth by assuming lithostatic pressures. This results in a much greater burial depth of the Adula Nappe with respect to the surrounding units which poses major problems when trying to reconcile maximum burial depths of the Penninic nappes with their structural record. We performed a new restoration of the NFP20-East cross section (Schmid et al. 1996) without applying a lithostatic pressure-to-depth conversion but a purely geometrical restoration of deformation events in the Penninic nappe stack. The major constraints on these reconstructions are given by strain estimates for the major deformation phases in the units overlying the

  9. Lithium ion rechargeable systems studies

    SciTech Connect

    Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

    1995-02-01

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  10. Lithium ion rechargeable systems studies

    NASA Astrophysics Data System (ADS)

    Levy, Samuel C.; Lasasse, Robert R.; Cygan, Randall T.; Voigt, James A.

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode-increase reversible capacity, and minimize passivation; (2) cathode-extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  11. Rechargeable lithium-ion cell

    DOEpatents

    Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  12. Rechargeable lead-acid batteries.

    PubMed

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages. PMID:2211174

  13. Recharge and groundwater models: An overview

    USGS Publications Warehouse

    Sanford, W.

    2002-01-01

    Recharge is a fundamental component of groundwater systems, and in groundwater-modeling exercises recharge is either measured and specified or estimated during model calibration. The most appropriate way to represent recharge in a groundwater model depends upon both physical factors and study objectives. Where the water table is close to the land surface, as in humid climates or regions with low topographic relief, a constant-head boundary condition is used. Conversely, where the water table is relatively deep, as in drier climates or regions with high relief, a specified-flux boundary condition is used. In most modeling applications, mixed-type conditions are more effective, or a combination of the different types can be used. The relative distribution of recharge can be estimated from water-level data only, but flux observations must be incorporated in order to estimate rates of recharge. Flux measurements are based on either Darcian velocities (e.g., stream base-flow) or seepage velocities (e.g., groundwater age). In order to estimate the effective porosity independently, both types of flux measurements must be available. Recharge is often estimated more efficiently when automated inverse techniques are used. Other important applications are the delineation of areas contributing recharge to wells and the estimation of paleorecharge rates using carbon-14.

  14. Cyclic ductile and brittle deformation related to coseismic thrust fault propagation: Structural record at the base of a basement nappe (Preveli, Crete)

    NASA Astrophysics Data System (ADS)

    Nüchter, Jens-Alexander; Wassmann, Sara; Stöckhert, Bernhard

    2013-09-01

    structural record at the base of a basement nappe (Preveli nappe, Crete, Greece) thrust upon sedimentary rocks is investigated, aimed on understanding mechanisms which result in decoupling of the thrust sheet from its original substratum. We identify several superimposed deformation stages, each with characteristic structural style and indications of episodic deformation at initially high differential stress. The final stage involves formation of a matrix supported breccia transected by pseudotachylytes, comprising the lowermost 30 m of the nappe. Brecciation and pseudotachylyte formation occurred in a single event, and structures were not modified afterward. Complete induration of breccia and composition of phengite crystallized during devitrification of pseudotachylytes place the sequence of events into the middle crust. We propose a model relating episodic deformation and cyclic stress history to propagation of a thrust fault in a limited number of seismic events. Terminal brecciation and frictional fusion record passage of the fault front beneath the site of observation and decoupling of the thrust sheet. Absence of discernible further deformation is consistent with negligible basal friction during transport as a nappe. Brecciation and pseudotachylyte formation mark the switch from a history of repeated coseismic loading and postseismic stress relaxation in the plastosphere, driven by seismic events on the approaching thrust fault, to passive transport with deformation localized in a weak thrust plane. For a sequence of superimposed ductile to brittle structures, our model provides an alternative to progressive cooling and exhumation concomitant with deformation over millions of years.

  15. The internal deformation of the Peridotite Nappe of New Caledonia: A structural study of serpentine-bearing faults and shear zones in the Koniambo Massif

    NASA Astrophysics Data System (ADS)

    Quesnel, Benoît; Gautier, Pierre; Cathelineau, Michel; Boulvais, Philippe; Couteau, Clément; Drouillet, Maxime

    2016-04-01

    We present a structural analysis of serpentine-bearing faults and shear zones in the Koniambo Massif, one of the klippes of the Peridotite Nappe of New Caledonia. Three structural levels are recognized. The upper level is characterized by a dense network of fractures. Antigorite and polygonal serpentine form slickenfibers along fault planes with distinct kinematics. As a result, the upper level keeps the record of at least two deformation events, the first associated with the growth of antigorite (WNW-ESE extension), the second with the growth of polygonal serpentine (NW-SE compression). The lower level coincides with the 'serpentine sole' of the nappe, which consists of massive tectonic breccias overlying a layer of mylonitic serpentinites. The sole records pervasive tangential shear with top-to-SW kinematics and represents a décollement at the base of the nappe. The intermediate level is characterized by the presence of several meters-thick conjugate shear zones accommodating NE-SW shortening. Like the sole, these shear zones involve polygonal serpentine and magnesite as the main syn-kinematic mineral phases. The shear zones likely root into the basal décollement, either along its roof or, occasionally, around its base. Compared to top-to-SW shearing along the sole, the two deformation events recorded in the upper level are older. The three structural levels correlate well with previously recognized spatial variations in the degree of serpentinization. It is therefore tempting to consider that the intensity of serpentinization played a major role in the way deformation has been distributed across the Peridotite Nappe. However, even the least altered peridotites, in the upper level, contain so much serpentine that, according to theoretical and experimental work, they should be nearly as weak as pure serpentinite. Hence, no strong vertical gradient in strength due to variations in the degree of serpentinization is expected within the exposed part of the nappe

  16. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics

    USGS Publications Warehouse

    Sophocleous, M.

    1992-01-01

    The results of a 6 year recharge study in the Great Bend Prairie of central Kansas are statistically analyzed to regionalize the limited number of site-specific but year-round measurements. Emphasis is placed on easily measured parameters and field-measured data. The results of the statistical analysis reveal that a typical recharge event in central Kansas lasts 5-7 days, out of which 3 or 4 days are precipitation days with total precipitation of ??? 83 mm. The maximum soil-profile water storage and the maximum groundwater level resulting from the recharge event exhibit the lowest coefficients of variation, whereas the amount of recharge exhibits the highest coefficient of variation. The yearly recharge in the Great Bend Prairie ranged from 0 to 177 mm with a mean of 56 mm. Most of the recharge events occur during the months of April, May, and June, which coincide with the months of highest precipitation in the region. A multiple regression analysis revealed that the most influential variables affecting recharge are, in order of decreasing importance, total annual precipitation average maximum soil-profile water storage during the spring months, average shallowest depth to water table during the same period, and spring rainfall rate. Classification methods, whereby relatively homogeneous hydrologic-unit areas based on the four recharge-affecting variables are identified, were combined with a Geographic Information Systems (ARC/INFO) overlay analysis to derive an area-wide map of differing recharge regions. This recharge zonation is in excellent agreement with the field-site recharge values. The resulting area-weighted average annual recharge for the region is 36 mm. ?? 1992.

  17. Numerical analysis of deep-seated mass movements in the Magura Nappe; Flysch Belt of the Western Carpathians (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Baron, I.; Agliardi, F.; Ambrosi, C.; Crosta, G. B.

    2005-04-01

    Deep-seated slope failures are common features in the mountains of the Raca Unit, Magura Nappe of the Flysch Belt of Western Carpathians. Since they represent very complicated system, understanding of their evolution and triggers still remains unclear. We tried to provide a back-analysis of their development by using a finite difference code (FDM) of continua (Flac 4.0). We confirmed that such large mass movements could be triggered by water saturation of the bedrock in the three particular geological and geomorphic settings. Such situation could have been caused by heavy rainfalls in humid phases of the Holocene or permafrost melting in Late Glacial. The effects of faulting, very deep weathering of the bedrock, low geotechnical parameters of smectite-rich material and the local slope geometry have also been accounted for in numerical models, as well as the other triggering factors of slope instability. FDM modelled shear zones are in agreement with observations.

  18. U-Pb detrital zircon analysis of pre-Timanian passive-margin successions and Caledonian nappes of North Norway

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Roberts, David; Pease, Victoria

    2014-05-01

    The Neoproterozoic passive-margin successions of the pre-Timanian margin, northern Norway, include the thick, deep-marine to deltaic, basinal Barents Sea Group and a fluvial to shallow-marine platformal domain to the south. To the west, different rock successions occur in the Lower, Middle and Upper Allochthons of the Norwegian Caledonides. Many detrital investigations of circum-Arctic terranes claim to recognize a Timanian 'fingerprint' (c. 610-560 Ma zircon ages from subduction-related granitoids generated during Timanian orogenesis), yet the detrital zircon U-Pb age spectrum of these sediments has not been fully assessed. Provenance analysis of pre-Timanian passive-margin formations and selected Caledonian nappe rocks is used to characterize their provenance. This will allow us to evaluate to what extent (if any) these passive-margin sediments have been recycled, to recognize them in younger sedimentary formations, and to possibly correlate the now widely distributed allochthonous fragments which occur throughout the circum-Arctic. Twelve samples were collected across four tectonic units. The principal results so far include: 1) A single sample (STP1) from the Late Ediacaran Stáhpogieddi Formation, Gaissa Nappe Complex (GNC), has a major peak at c. 550 Ma and is likely to represent deposition in the Timanian foreland basin. Another sample (BRE1) from the same region is much different with two major peaks at 2.8-2.7 Ga and 2.4 Ga whose significance remains to be determined. 2) Seven samples show classic Baltican affinity, including FUG1, GRN1 and GMS1 from parautochthonous/autochthonous formations in the Tanafjorden-Varangerfjorden Region (TVR), VEI1 and F-4 from formations lying unconformably upon in-situ Palaeoproterozoic- Archean metamorphic complexes, and LAN1 and IFJ1 from the Laksefjord Nappe Complex. Their provenance includes: i) age peaks at c. 2.8-2.7 Ga, indicating input from the northern Fennoscandian Shield which is dominated by Neoarchaean complexes

  19. REVISED NORTH CAROLINA GROUNDWATER RECHARGE RATES 1998

    EPA Science Inventory

    Revised North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, unpublished map: North Carolina State University, as modified by the NC Department of Environment and Natural Resources (DENR) Division of Water Quality (DWQ) Groundwater Section, (polygons)

  20. 3D numerical modeling of the lateral transition between viscous overthrusting and folding with application to the Helvetic nappe system

    NASA Astrophysics Data System (ADS)

    Spitz, Richard; Schmalholz, Stefan; Kaus, Boris

    2016-04-01

    The Helvetic nappe system of the European Alps is generally described as a complex of fold and thrust belts. While the overall geology of the system has been studied in detail, the understanding of the tectonic development and mechanical interconnection between overthrusting and folding is still incomplete. One clue comes from the mechanical stratigraphy and the corresponding lateral transition from overthrusting to folding, which is characteristic for the Helvetic nappe system. We employ a three-dimensional numerical model with linear and non-linear viscous rheology to investigate the control of the lateral variation in the thickness of a weak detachment horizon on the transition from folding to overthrusting during continental shortening. The model configuration is based on published work based on 2D numerical simulations. The simulations are conducted with the three-dimensional staggered-grid finite difference code LaMEM (Lithosphere and Mantle Evolution Model), which allows for coupled nonlinear thermo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology and computation on massive parallel machines. Our model configuration consists of a stiff viscous layer, with a pre-existing weak zone, resting within a weaker viscous matrix. The reference viscosity ratio μL/μM (for the same strain rate) between the layer and matrix ranges from 10 to 200. The simulations were run with several distinct initial geometries by altering the thickness of the detachment horizon below the stiff layer across the configurations. Shortening with a constant bulk rate is induced by the prescription of a horizontal velocity on one side of the model. The first results of our simulations highlight the general importance of the initial geometry on the lateral transition from overthrusting to folding. Additionally, models with a stepwise lateral variation of the detachment horizon indicate a fold development orthogonal to the main compressional axis.

  1. Issues and challenges facing rechargeable lithium batteries.

    PubMed

    Tarascon, J M; Armand, M

    2001-11-15

    Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems. PMID:11713543

  2. Proposed artificial recharge studies in northern Qatar

    USGS Publications Warehouse

    Kimrey, J.O.

    1985-01-01

    The aquifer system in northern Qatar comprises a water-table aquifer in the Rus Formation which is separated by an aquitard from a partially confined aquifer in the top of the overlying Umm er Radhuma Formation. These two aquifers are composed of limestone and dolomite of Eocene and Paleocene age and contain a fragile lens of freshwater which is heavily exploited as a source of water for agricultural irrigation. Net withdrawals are greatly in excess of total recharge, and quality of ground water is declining. Use of desalinated seawater for artificial recharge has been proposed for the area. Artificial recharge, on a large scale, could stabilize the decline in ground-water quality while allowing increased withdrawals for irrigation. The proposal appears technically feasible. Recharge should be by injection to the Umm er Radhuma aquifer whose average transmissivity is about 2,000 meters squared per day (as compared to an average of about 200 meters squared per day for the Rus aquifer). Implementation of artificial recharge should be preceded by a hydrogeologic appraisal. These studies should include test drilling, conventional aquifer tests, and recharge-recovery tests at four sites in northern Qatar. (USGS)

  3. Artificial recharge of groundwater: hydrogeology and engineering

    NASA Astrophysics Data System (ADS)

    Bouwer, Herman

    2002-02-01

    Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4.

  4. Constraining exhumation pathway in an accretionary wedge by (U-Th)/He thermochronology—Case study on Meliatic nappes in the Western Carpathians

    NASA Astrophysics Data System (ADS)

    Putiš, Marián; Danišík, Martin; Ružička, Peter; Schmiedt, Ivan

    2014-11-01

    This study reconstructs the late stages in the exhumation history of a nappe derived from the Meliatic accretionary wedge in the Western Carpathians by means of zircon and apatite (U-Th)/He dating. The Meliatic accretionary wedge formed due to the closure of the Neotethyan Triassic-Jurassic Meliata-Hallstatt Ocean in the Late Jurassic. The studied fragments of the blueschist-bearing Meliatic Bôrka Nappe were metamorphosed at low-temperature and high- to medium-pressure conditions at ca. 160-150 Ma and included into the accretionary wedge. The time of the accretionary wedge formation constrains the beginning of the Bôrka Nappe northward thrusting over the Gemeric Unit of the evolving Central Western Carpathians (CWC) orogenic wedge. The zircon (U-Th)/He data on four samples recorded three evolutionary stages: (i) cooling through the ∼180 °C isotherm at 130-120 Ma related to starting collapse of the accretionary wedge, following exhumation of the high-pressure slices in the Meliatic accretionary wedge; (ii) postponed exhumation and cooling of some fragments through the ∼180 °C isotherm from 115 to 95 Ma due to ongoing collapse of this wedge; and (iii) cooling from 80 to 65 Ma, postdating the thrusting (∼100-80 Ma) of the Bôrka Nappe slices during the Late Cretaceous compression related to formation of the CWC orogenic wedge. The third stage already documents cooling of the Meliatic Bôrka Nappe slices in the CWC orogenic wedge. The apatite (U-Th)/He data may indicate cooling of a Bôrka Nappe slice to near-surface temperatures at ∼65 Ma. The younger AHe age clusters indicate that at least one, or possibly two, reheating events could have occurred in the longer interval from ∼40 to ∼10 Ma during the Oligocene-Miocene. These were related to sedimentary burial and/or the magmatism as documented in other parts of the CWC.

  5. UHT overprint of HP rocks? A case study from the Adula nappe complex (Central Alps, N Italy)

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Zanchetta, Stefano; Malaspina, Nadia; Poli, Stefano

    2014-05-01

    The Adula-Cima Lunga nappe complex is located on the eastern flank of the Lepontine Dome and represents the highest of the Lower Penninic units of the Central Alps. The Adula nappe largely consists of orthogneiss and paragneiss of pre-Mesozoic origin, variably retrogressed eclogites preserved as boudins within paragneiss, minor ultramafic bodies and metasedimentary rocks of presumed Mesozoic age. The higher metamorphic conditions have been estimated for the peridotite lenses in the southern part of the nappe at pressure over 3.0 GPa and temperature of 800-850°C. Garnet lherzolite bodies crop out at three localities, from west to east: Cima di Gagnone, Alpe Arami and Mt. Duria. After the partial subduction of the European distal margin beneath the Africa-Adria margin, the HP rocks were overprinted by an upper amphibolite facies metamorphism that postdates the main phase of nappe stacking. In the southern sector of the Lepontine Dome, adjacent to the Insubric Fault, metamorphic conditions promoted extensive migmatization of both metasedimentary and metagranitoid rocks. In one single outcrop, at Monte Duria, garnet lherzolites occur in m-sized boudins hosted within partly granulitized amphibole-bearing and k-feldspar gneisses that contain also some decimeter-sized boudins of both mafic and metapelitic eclogites. This rock association is in turn embedded within the migmatitic gneisses that form most of the southern sector of the Adula nappe. Petrographic and chemical analyses indicate that garnet peridotite is composed of olivine (XMg=0.88), orthopyroxene, clinopyroxene and garnet (Py68; Cr2O3 up to 1.45 wt%) with inclusions of Cr-rich spinel (up to Cr/(Al+Cr)=0.55) surrounded by kelyphitic symplectites of opx + cpx/amph + spl. These reaction produced double coronas, one composed of opx (former ol) and one composed of cpx + opx+ spl. In one kelyphite, we observed the uncommon occurrence of ZrO2 (baddeleyite) and ZrTi2O6 (srilankite). Tiny crystals of these two Zr

  6. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  7. Estimated recharge rates at the Hanford Site

    SciTech Connect

    Fayer, M.J.; Walters, T.B.

    1995-02-01

    The Ground-Water Surveillance Project monitors the distribution of contaminants in ground water at the Hanford Site for the U.S. Department of Energy. A subtask called {open_quotes}Water Budget at Hanford{close_quotes} was initiated in FY 1994. The objective of this subtask was to produce a defensible map of estimated recharge rates across the Hanford Site. Methods that have been used to estimate recharge rates at the Hanford Site include measurements (of drainage, water contents, and tracers) and computer modeling. For the simulations of 12 soil-vegetation combinations, the annual rates varied from 0.05 mm/yr for the Ephrata sandy loam with bunchgrass to 85.2 mm/yr for the same soil without vegetation. Water content data from the Grass Site in the 300 Area indicated that annual rates varied from 3.0 to 143.5 mm/yr during an 8-year period. The annual volume of estimated recharge was calculated to be 8.47 {times} 10{sup 9} L for the potential future Hanford Site (i.e., the portion of the current Site bounded by Highway 240 and the Columbia River). This total volume is similar to earlier estimates of natural recharge and is 2 to 10x higher than estimates of runoff and ground-water flow from higher elevations. Not only is the volume of natural recharge significant in comparison to other ground-water inputs, the distribution of estimated recharge is highly skewed to the disturbed sandy soils (i.e., the 200 Areas, where most contaminants originate). The lack of good estimates of the means and variances of the supporting data (i.e., the soil map, the vegetation/land use map, the model parameters) translates into large uncertainties in the recharge estimates. When combined, the significant quantity of estimated recharge, its high sensitivity to disturbance, and the unquantified uncertainty of the data and model parameters suggest that the defensibility of the recharge estimates should be improved.

  8. Transient, spatially varied groundwater recharge modeling

    NASA Astrophysics Data System (ADS)

    Assefa, Kibreab Amare; Woodbury, Allan D.

    2013-08-01

    The objective of this work is to integrate field data and modeling tools in producing temporally and spatially varying groundwater recharge in a pilot watershed in North Okanagan, Canada. The recharge modeling is undertaken by using the Richards equation based finite element code (HYDRUS-1D), ArcGIS™, ROSETTA, in situ observations of soil temperature and soil moisture, and a long-term gridded climate data. The public version of HYDUS-1D and another version with detailed freezing and thawing module are first used to simulate soil temperature, snow pack, and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGIS™ to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8 mm/year. Previous studies in the Okanagan Basin used Hydrologic Evaluation of Landfill Performance without any attempt of model performance evaluation, notwithstanding its inherent limitations. Thus, climate change impact results from this previous study and similar others, such as Jyrkama and Sykes (2007), need to be interpreted with caution.

  9. Towards a calcium-based rechargeable battery

    NASA Astrophysics Data System (ADS)

    Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M. R.

    2016-02-01

    The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density. For multivalent charge carriers (Mn+), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li+ (ref. ). Whereas proof of concept has been achieved for magnesium, the electrodeposition of calcium has so far been thought to be impossible and research has been restricted to non-rechargeable systems. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes.

  10. Towards a calcium-based rechargeable battery.

    PubMed

    Ponrouch, A; Frontera, C; Bardé, F; Palacín, M R

    2016-02-01

    The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density. For multivalent charge carriers (M(n+)), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li(+) (ref. ). Whereas proof of concept has been achieved for magnesium, the electrodeposition of calcium has so far been thought to be impossible and research has been restricted to non-rechargeable systems. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes. PMID:26501412

  11. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  12. Experimental studies in natural groundwater-recharge dynamics: The analysis of observed recharge events

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1985-01-01

    The amounts and time distribution of groundwater recharge from precipitation over an approximately 19-month period were investigated at two instrumented sites in south-central Kansas. Precipitation and evapotranspiration sequences, soil-moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperatures, water-table hydrographs, and water-level changes in nearby wells clearly depict the recharge process. Antecedent moisture conditions and the thickness and nature of the unsaturated zone were found to be the major factors affecting recharge. Although the two instrumented sites are located in sand-dune environments in areas characterized by shallow water table and subhumid continental climate, a significant difference was observed in the estimated effective recharge. The estimates ranged from less than 2.5 to approximately 154 mm at the two sites from February to June 1983. The main reasons for this large difference in recharge estimates were the greater thickness of the unsaturated zone and the lower moisture content in that zone resulting from lower precipitation and higher potential evapotranspiration for one of the sites. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. ?? 1985.

  13. Groundwater recharge from point to catchment scale

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  14. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  15. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2007-11-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  16. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  17. Karst and artificial recharge: Theoretical and practical problems. A preliminary approach to artificial recharge assessment

    NASA Astrophysics Data System (ADS)

    Daher, Walid; Pistre, Séverin; Kneppers, Angeline; Bakalowicz, Michel; Najem, Wajdi

    2011-10-01

    SummaryManaged Aquifer Recharge (MAR) is an emerging sustainable technique that has already generated successful results and is expected to solve many water resource problems, especially in semi-arid and arid zones. It is of great interest for karst aquifers that currently supply 20-25% of the world's potable water, particularly in Mediterranean countries. However, the high heterogeneity in karst aquifers is too complex to be able to locate and describe them simply via field observations. Hence, as compared to projects in porous media, MAR is still marginal in karst aquifers. Accordingly, the present work presents a conceptual methodology for Aquifer Rechargeability Assessment in Karst - referred to as ARAK. The methodology was developed noting that artificial recharge in karst aquifers is considered an improbable challenge to solve since karst conduits may drain off recharge water without any significant storage, or recharge water may not be able to infiltrate. The aim of the ARAK method is to determine the ability of a given karst aquifer to be artificially recharged and managed, and the best sites for implementing artificial recharge from the surface. ARAK is based on multi-criteria indexation analysis modeled on karst vulnerability assessment methods. ARAK depends on four independent criteria, i.e. Epikarst, Rock, Infiltration and Karst. After dividing the karst domain into grids, these criteria are indexed using geological and topographic maps refined by field observations. ARAK applies a linear formula that computes the intrinsic rechargeability index based on the indexed map for every criterion, coupled with its attributed weighting rate. This index indicates the aptitude for recharging a given karst aquifer, as determined by studying its probability first on a regional scale for the whole karst aquifer, and then by characterizing the most favorable sites. Subsequently, for the selected sites, a technical and economic feasibility factor is applied, weighted

  18. Characteristics of groundwater recharge on the North China Plain.

    PubMed

    Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

    2014-01-01

    Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge. PMID:24032445

  19. REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase)   REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.

  20. Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California

    SciTech Connect

    Wakabayashi, J. )

    1992-01-01

    This paper presents a new synthesis of Franciscan Complex tectonics, with the emphasis on the pre-San Andreas fault history of these rocks. Field relations suggest that the Franciscan is characterized by nappe structures that formed during sequential accretion at the trench. The presence of these structures along with other field relations, including the lack of evidence for large offset of conglomerate suites, indicates that strike-slip fault systems of large displacement ({gt}500 km) did not cut the Franciscan Complex during subduction. Regional geology and comparisons to modern arc-trench systems suggest that strike-slip faulting associated with oblique subduction took place inboard (east) of the Franciscan in the vicinity of the magmatic arc. The Franciscan varies along strike, because individual accreted elements (packets of trench sediment, seamounts, etc.) did not extend the full length of the trench. Different depths of underplating, distribution of post-metamorphic faulting, and level of erosion produced the present-day surface distribution of high P/T metamorphism. Franciscan Complex tectonic history is presented in this paper.

  1. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Berndtsson, R.; Kompani-Zare, M.; Persson, M.

    2012-08-01

    Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system the recharge volume can be increased even for small flood events while the recharge through the river channel increases only for major flood events.

  2. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Berndtsson, R.; Kompani-Zare, M.; Persson, M.

    2013-02-01

    Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  3. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  4. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  5. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  6. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  7. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  8. Application potential of rechargeable lithium batteries

    SciTech Connect

    Hunger, H.F.; Bramhall, P.J.

    1983-10-01

    Rechargeable lithium cells with Cr /SUB 0.5/ V/sub 0/ /sub 5/S/sub 2/ and MoO/sub 3/ cathodes were investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). Current densities and capacities as a function of temperature, cathode utilization efficiencies versus cycle life, and shelf lives were determined. The state of charge could be related to open circuit voltages after partial discharge. The potential of the system for communication applications is discussed. Recent advances in rechargeable lithium batteries were mainly due to the discovery of stable, cyclic ether electrolyte solvents (1) and to the use of rechargeable cathode materials (2). The practical usefulness of rechargeable lithium cells with Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ and MoO/sub 3/ cathodes was investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was mainly 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). The two cathode materials were chosen because Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ resembles TiS/sub 2/ in capacity and cycling behavior and MoO/sub 3/ is a low cost cathode material of interest.

  9. Recharging Our Sense of Idealism: Concluding Thoughts

    ERIC Educational Resources Information Center

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  10. Regional Analysis of Ground-Water Recharge

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge. The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  11. Ductile nappe stacking and refolding in the Cycladic Blueschist Unit: insights from Sifnos Island (south Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Aravadinou, Eirini; Xypolias, Paraskevas; Chatzaras, Vasileios; Iliopoulos, Ioannis; Gerogiannis, Nikolaos

    2015-10-01

    New geological and structural mapping combined with kinematic and amphibole chemistry analyses is used to investigate the deformation history of the Cycladic Blueschist Unit (CBU) on Sifnos Island (Cyclades, Aegean Sea). We concentrate on north Sifnos, an area characterized by exceptionally well-preserved eclogites and blueschists. Our data show that the early, main phase (D2) of ductile deformation in the CBU occurred synchronous with the transition from prograde to close-to-peak retrograde conditions. This deformation phase took place at middle Eocene and is related to ESE-directed thrusting that emplaced the metavolcano-sedimentary subunit over the Marble subunit. The subsequent exhumation-related (D3) deformation is characterized by gently NE-plunging folds and NE-directed contractional shear zones that formed parallel to the axial planes of folds. NE-directed shearing occurred under blueschist and transitional blueschist-/greenschist-facies conditions during late Eocene-Oligocene and caused the restacking of the early nappe pile. We suggest that a mechanism of ductile extrusion of the CBU in a tectonic setting of net compression could explain better the recorded exhumation-related deformation than a mechanism of syn- and post-orogenic extension. Our new kinematic results in combination with previous works in the Cyclades area reveal a regional scale change in tectonic transport direction from (W)NW-(E)SE at Late Cretaceous-middle Eocene to (E)NE-(W)SW at late Eocene-Oligocene times. The observed change in transport direction may be governed by the relative motion of Africa with respect to Europe during Alpine orogeny.

  12. Sedimentology of a Mid-Late Ordovician carbonate mud-mound complex from the Kathmandu nappe in Central Nepal

    NASA Astrophysics Data System (ADS)

    Pas, Damien; Da Silva, Anne-Christine; Dhital, Megh Raj; Boulvain, Frédéric

    2011-08-01

    This sedimentological study of the Godavari quarry is the first relating to the Palaeozoic Tethyan sedimentary rocks of the Katmandu nappe (Central Nepal). Sedimentological analyses led to the identification of six microfacies belonging to a large carbonate mud-mound complex, which can be divided into mound, flank and off-mound main depositional settings. Identification of two dasycladaceans ( Dasyporell a cf. silurica ( Stolley, 1893) and Vermiporella sp.) in the mound facies gives a Mid-Late Ordovician age to this newly discovered Godavari carbonate mud-mound, which makes this mound one of the oldest ever described in the Asian continent. The mound microfacies are characterized by a high micritic content, the presence of stromatactis and the prevalence of red coloured sediments (the red pigmentation probably being related to organic precipitation of iron). The flank microfacies are characterized by a higher crinoid and argillaceous content and the presence of bio- and lithoclasts concentrated in argillaceous lenses. Finally, the off-mound microfacies show very few bioclasts and a high argillaceous content. Palaeoenvionmental interpretation of microfacies, in terms of bathymetry, leads us to infer that the Godavari mud-mound started to grow in a deep environment setting below the photic and wave action zones and that it evolved to occupy a location below the fair weather wave base. Cementation of cavities within the mound facies underlines a typical transition from a marine to a burial diagenetic environment characterized by: (1) a radiaxial non luminescent feroan calcite cement (marine) showing a bright orange luminescent band in its middle part; (2) a bright zoned orange fringe of automorphic feroan calcite (meteoric phreatic); (3) a dull orange xenomorphic feroan calcite cement in the centre of cavities (burial) and (4) a saddle dolomite within the centre of larger cavities. The faunal assemblage (diversity and relative proportion) of the Godavari mound facies

  13. Elastic anisotropy and borehole stress estimation in the Seve Nappe Complex from the COSC-1 well, Åre, Sweden.

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba

    2015-04-01

    The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile

  14. Manganese oxide cathodes for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Im, Dongmin

    Manganese oxides are considered as promising cathodes for rechargeable batteries due to their low cost and low toxicity as well as the abundant natural resources. In this dissertation, manganese oxides have been investigated as cathodes for both rechargeable lithium and alkaline batteries. Nanostructured lithium manganese oxides designed for rechargeable lithium cells have been synthesized by reducing lithium permanganate with methanol or hydrogen in various solvents followed by firing at moderate temperatures. The samples have been characterized by wet-chemical analyses, thermal methods, spectroscopic methods, and electron microscopy. It has been found that chemical residues in the oxides such as carboxylates and hydroxyl groups, which could be controlled by varying the reaction medium, reducing agents, and additives, make a significant influence on the electrochemical properties. The Li/Mn ratio in the material has also been found to be a critical factor in determining the rechargeability of the cathodes. The optimized samples exhibit a high capacity of close to 300 mAh/g with good cyclability and charge efficiency. The high capacity with a lower discharge voltage may make these nanostructured oxides particularly attractive for lithium polymer batteries. The research on the manganese oxide cathodes for alkaline batteries is focused on an analysis of the reaction products generated during the charge/discharge processes or by some designed chemical reactions mimicking the electrochemical processes. The factors influencing the formation of Mn3O4 in the two-electron redox process of delta-MnO2 have been studied with linear sweep voltammetry combined with X-ray diffraction. The presence of bismuth, the discharge rate, and the microstructure of the electrodes are found to affect the formation of Mn3O4, which is known to be electrochemically inactive. A faster voltage sweep and a more intimate mixing of the manganese oxide and carbon in the cathode are found to suppress

  15. Assessing controls on diffuse groundwater recharge using unsaturated flow modeling

    NASA Astrophysics Data System (ADS)

    Keese, K. E.; Scanlon, B. R.; Reedy, R. C.

    2005-06-01

    Understanding climate, vegetation, and soil controls on recharge is essential for estimating potential impacts of climate variability and land use/land cover change on recharge. Recharge controls were evaluated by simulating drainage in 5-m-thick profiles using a one-dimensional (1-D) unsaturated flow code (UNSAT-H), climate data, and vegetation and soil coverages from online sources. Soil hydraulic properties were estimated from STATSGO/SSURGO soils data using pedotransfer functions. Vegetation parameters were obtained from the literature. Long-term (1961-1990) simulations were conducted for 13 county-scale regions representing arid to humid climates and different vegetation and soil types, using data for Texas. Areally averaged recharge rates are most appropriate for water resources; therefore Geographic Information Systems were used to determine spatial weighting of recharge results from 1-D models for the combination of vegetation and soils in each region. Simulated 30-year mean annual recharge in bare sand is high (51-709 mm/yr) and represents 23-60% (arid-humid) of mean annual precipitation (MAP). Adding vegetation reduced recharge by factors of 2-30 (humid-arid), and soil textural variability reduced recharge by factors of 2-11 relative to recharge in bare sand. Vegetation and soil textural variability both resulted in a large range of recharge rates within each region; however, spatially weighted, long-term recharge rates were much less variable and were positively correlated with MAP (r2 = 0.85 for vegetated sand; r2 = 0.62 for variably textured soils). The most realistic simulations included vegetation and variably textured soils, which resulted in recharge rates from 0.2 to 118 mm/yr (0.1-10% of MAP). Mean annual precipitation explains 80% of the variation in recharge and can be used to map recharge.

  16. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  17. Recharge and Evapotranspiration Assessment In Kalahari

    NASA Astrophysics Data System (ADS)

    Lubczynski, M.; Obakeng, O.

    2006-12-01

    Sustainability of groundwater resources in Kalahri is constrained not only by recharge to the aquifers but also by discharge from them. Natural groundwater discharge takes place in 3 different ways, as aquifer groundwater outflow, direct tree root water uptake called groundwater transpiration (Tg) and as upward vapor-liquid water movement called groundwater evaporation (Eg), the latter two called groundwater evapotranspiration (ETg). The evaluation of ETg and recharge was the main goal of this study. Due to generally large depth of groundwater table in Kalahari, >60 m, Eg was assumed as negligible component of groundwater balances while in contrast Tg has been considered significant already since 90-ties. This was because of fragments of tree roots of Boscia albitrunca and Acacia erioloba found in borehole cores at depth of >60 m. Some of those roots reach groundwater, which allow them to remain green throughout dry seasons. This study was carried out using hydrological monitoring consisting of 10 multi-sensor towers and 17 groundwater monitoring points. Soil moisture movement was investigated by profile monitoring. The deepest profile was down to 76 m depth. The soil moisture results revealed complicated pattern characterized by a combination of diffuse and preferential flow. The actual evapotranspiration was estimated by the Bowen-ratio and temperature-profile methods which provided overestimated results as compared with rainfall so the recharge could not be deduced directly. Therefore recharge was derived indirectly, through 1D lumped parameter model that used rainfall and PET as input and heads as calibration reference. That model indicated recharge 0-50 mm/yr. For understanding tree impact upon groundwater recharge, tree sap velocity was monitored for 2 years using the Granier method on 41 trees of 9 species in 8 plots of 30x30m. The estimated plot transpirations showed large spatio-temporal variability, 3-71 mm/yr and occasionally exceeded recharge. In order

  18. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  19. Inorganic rechargeable non-aqueous cell

    SciTech Connect

    Bowden, William L.; Dey, Arabinda N.

    1985-05-07

    A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

  20. The rechargeable aluminum-ion battery.

    PubMed

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour. PMID:22051794

  1. Charge Control Investigation of Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Otzinger, B.; Somoano, R.

    1984-01-01

    An ambient temperature rechargeable Li-TiS2 cell was cycled under conditions which simulate aerospace applications. A novel charge/discharge state-of-charge control scheme was used, together with tapered current charging, to overcome deleterious effects associated with end-of-charge and end-of-discharge voltages. The study indicates that Li-TiS2 cells hold promise for eventual synchronous satellite-type applications. Problem areas associated with performance degradation and reconditioning effects are identified.

  2. The rechargeable aluminum-ion battery

    SciTech Connect

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  3. Ampere-Hour Meter For Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Schott, Timothy D.; Tcheng, Ping

    1993-01-01

    Low-power analog/digital electronic circuit meters discharge of storage battery in ampere-hours. By metering discharge, one obtains indication of state of charge of battery and avoids unnecessary recharging, maintaining capacity of battery and prolonging life. Because of its small size and low power consumption, useful in such applications as portable video cameras, communication equipment on boats, portable audio equipment, and portable medical equipment.

  4. Where the Caledonides crosses the Grenville: The Grenvillian Glenelg Inlier as an allochthonous pip within a fold-nappe complex in the Scottish Caledonides

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Ramsay, J. G.; Leslie, A. G.; Tanner, P. W. G.; Dietrich, D.; Goodenough, K. M.

    2012-04-01

    The Grenvillian (1100 - 990 Ma) and Caledonian (470-420 Ma) orogenies represent pivotal tectonic events in the evolution of Laurentia and Baltica. Significantly, these two orogenic belts lie at a high angle to one another, with an inferred intersection in NW Scotland. This relationship is most readily examined at the Glenelg Inlier of NW Scotland, a basement gneiss inlier within the Scottish Caledonides nappe pile. This inlier contains a Western Glenelg Inlier, composed of orthogneiss with no record of Grenville metamorphism, and a separate Eastern Glenelg Inlier, comprising both ortho-and paragneisses that experienced Grenvillian eclogite-facies metamorphism. The two components of the Glenelg Inlier are interleaved and/or infolded with locally unconformable, basal Moine Supergroup metasediments, deposited (just) after Grenvillian orogenesis. The inlier and the metasediments are now located in the hanging wall of the well-studied Caledonian Moine Thrust. Despite decades of research and classical structural studies, the overall geometry and structural evolution of the Glenelg Inlier and the surrounding Moine metasediments remain elusive. The synthesis presented here is based upon both new, and hitherto unpublished, mapping. The Glenelg Inlier and enclosing Moine were deformed by three generations of major ductile fold structures (F1-F3). In areas of medium strain, away from the basement inliers, F2 and F3 large-scale structures face and verge towards the west, and record coaxial interference patterns. In areas of higher strain, F2 fold axes were rotated into parallelism with the (westerly) transport direction. Subsequent refolding of these F2 folds by west-vergent (N-S trending) F3 folds led in some areas to high-angle, non-coaxial fold interference patterns, including dome-and-basin structures. On structural grounds, both F2 and F3 are thought to be of Caledonian age. An approximate restoration of the F2 and F3 folds reveals the pre-F2 basement-cover architecture

  5. Ground water recharge from Lake Chad

    SciTech Connect

    Isiorho, S.; Matisoff, G.; McCall, P.L.

    1985-01-01

    Lake Chad is a shallow, closed basin lake located in Sub-Sharan Africa. It has the largest drainage basin of any lake in the world, and is also very old, being formed by tectonic processes during the Cretaceous. These features should combine to form a saline lake, but the open waters of Lake Chad are reasonably fresh, having a total dissolved solids concentration of about 320 mg/1. This apparent discrepancy can be explained by noting that recharge of the unconfined aquifer to the SW in Nigeria by ground water infiltration through the lakebed can remove significant quantities of water and dissolved solutes from the lake. The authors have measured and calculated ground water infiltration and velocities by several techniques. Direct, volumetric measurements of ground water recharge seepage give velocities on the order of .28-8.8 x 10/sup -3/ m/day. Tracer monitoring in a borehole dilution test yielded ground water velocities of 3.6 m/day to the SW (away from the lake). Hydraulic conductivities approx. .004-.6 m/day were determined by falling head measurements. Finally, using static water levels, the potentiometric surface within approx. 80 km of the southwest portion of Lake Chad yields water table gradients of 1.0-1.7 x 10/sup -4/ away from the lake. These results confirm that surface water and solute inflow to Lake Chad is removed by recharge to the unconfined aquifer in Nigeria.

  6. Dendrites Inhibition in Rechargeable Lithium Metal Batteries

    NASA Astrophysics Data System (ADS)

    Aryanfar, Asghar

    The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices. In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached "dead" lithium particles. Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.

  7. Quantifying Potential Groundwater Recharge In South Texas

    NASA Astrophysics Data System (ADS)

    Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.

    2015-12-01

    Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.

  8. An ultrafast rechargeable aluminium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  9. Insights on high-grade deformation in quartzo-feldspathic gneisses during the early Variscan exhumation of the Cabo Ortegal nappe, NW Iberia

    NASA Astrophysics Data System (ADS)

    José Fernández, Francisco; Llana-Fúnez, Sergio; Valverde-Vaquero, Pablo; Marcos, Alberto; Castiñeiras, Pedro

    2016-04-01

    High-grade, highly deformed gneisses crop out continuously along the Masanteo peninsula and constitute the upper part of the lower crustal section in the Cabo Ortegal nappe (NW Spain). The rock sequence formed by migmatitic quartzo-feldspathic (qz-fsp) gneisses and mafic rocks records the early Ordovician (ca. 480-488 Ma) injection of felsic dioritic/granodioritic dykes at the base of the qz-fsp gneisses, and Devonian eclogitization (ca. 390.4 ± 1.2 Ma), prior to its exhumation. A SE-vergent ductile thrust constitutes the base of quartzo-feldspathic gneissic unit, incorporating mafic eclogite blocks within migmatitic gneisses. A NW-vergent detachment displaced metasedimentary qz-fsp gneisses over the migmatites. A difference in metamorphic pressure of ca. 0.5 GPa is estimated between both gneissic units. The tectono-metamorphic relationships of the basal ductile thrust and the normal detachment bounding the top of the migmatites indicate that both discrete mechanical contacts were active before the recumbent folding affecting the sequence of gneisses during their final emplacement. The progressive tectonic exhumation from eclogite to greenschist facies conditions occurred over ca. 10 Ma and involved bulk thinning of the high-grade rock sequence in the high pressure and high temperature (HP-HT) Cabo Ortegal nappe. The necessary strain was accommodated by the development of a widespread main foliation, dominated by flattening, that subsequently localized to a network of anastomosing shear bands that evolved to planar shear zones. Qz-fsp gneisses and neighbouring mafic granulites were exhumed at > 3 mm yr-1, and the exhumation path involved a cooling of ˜ 20 °C/100 MPa, These figures are comparable to currently active subduction zones, although exhumation P-T trajectory and ascent rates are at the hotter and slower end in comparison with currently active similar settings, suggesting an extremely ductile deformation environment during the exhumation of qz

  10. A regression model to estimate regional ground water recharge.

    PubMed

    Lorenz, David L; Delin, Geoffrey N

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available. PMID:17335484

  11. A regression model to estimate regional ground water recharge

    USGS Publications Warehouse

    Lorenz, D.L.; Delin, G.N.

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available.

  12. Basin-scale recharge in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Hogan, J. F.; Duffy, C.; Eastoe, C.; Ferre, T. P. A.; Goodrich, D.; Hendrickx, J.; Hibbs, B.; Phillips, F.; Small, E.; Wilson, J.

    2003-04-01

    The major domestic water source in the arid southwestern United States is groundwater from alluvial basin aquifers. Accurate estimates of basin-scale groundwater recharge rates are a critical need for developing sustainable or "safe yield" groundwater pumping. Basin-scale recharge rates are typically estimated using inverse hydrologic modeling or geochemical tracers (e.g. chloride mass balance). These methods, while useful, have a high level of uncertainty and provide no information about the mechanisms of groundwater recharge. SAHRA - an NSF Science and Technology Center focused on the Sustainability of semi-Arid Hydrology and Riparian Areas - has developed an integrated research plan to address this problem. Our approach is two-fold. First we are investigating the "input" components that comprise basin-scale recharge: basin floor recharge, alluvial channel recharge, mountain front recharge, and mountain block recharge. Each component has unique spatial and temporal scales and thus requires distinct methods. Our research is aimed at understanding the factors (e.g. vegetation type, bedrock lithology, soil structure) that control recharge rates in each of these locations. With such an understanding one could then scale from point measurements to the basin-scale using remote sensing data. Our second approach is to employ isotopic tracers to determine water sources, groundwater ages and residence times of the groundwater and surface water "outputs"; these values can then be used to better calibrate recharge rates in groundwater models. By focusing our studies on two basins, the San Pedro River Basin in Arizona and the Rio Grande in New Mexico, we hope to develop a better understanding of the importance of different recharge pathways for basin-scale recharge and which methods are best suited for estimating basin-scale recharge.

  13. Modelling overbank flood recharge at a continental scale

    NASA Astrophysics Data System (ADS)

    Doble, R.; Crosbie, R.; Peeters, L.; Joehnk, K.; Ticehurst, C.

    2013-10-01

    Accounting for groundwater recharge from overbank flooding is required to reduce uncertainty and error in river loss terms and groundwater sustainable yield calculations. However, continental and global scale models of surface water-groundwater interactions rarely include an explicit process to account for overbank flood recharge (OFR). This paper upscales previously derived analytical equations to a continental scale using national soil atlas data and satellite imagery of flood inundation, resulting in recharge maps for seven hydrologically distinct Australian catchments. Recharge for three of the catchments was validated against independent recharge estimates from bore hydrograph responses and one catchment was additionally validated against point scale recharge modelling and catchment scale change in groundwater storage. Flood recharge was predicted for four of the seven catchments modelled, but there was also unexplained recharge present from the satellite flood inundation mapping data. At a catchment scale, recharge from overbank flooding was somewhat under predicted using the analytical equations, but there was good confidence in the spatial patterns of flood recharge produced. Due to the scale of the input data, there were no significant relationships found when compared at a point scale. Satellite derived flood inundation data and uncertainty in soil maps were the key limitations to the accuracy of the modelled recharge. Use of this method to model OFR was found to be appropriate at a catchment to continental scale, given appropriate data sources. The proportion of OFR was found to be at least 4% of total change in groundwater storage in one of the catchments for the period modelled, and at least 15% of the riparian recharge. Accounting for OFR is an important, and often overlooked, requirement for closing water balances in both the surface water and groundwater domains.

  14. Modelling overbank flood recharge at a continental scale

    NASA Astrophysics Data System (ADS)

    Doble, R.; Crosbie, R.; Peeters, L.; Joehnk, K.; Ticehurst, C.

    2014-04-01

    Accounting for groundwater recharge from overbank flooding is required to reduce uncertainty and error in river-loss terms and groundwater sustainable-yield calculations. However, continental- and global-scale models of surface water-groundwater interactions rarely include an explicit process to account for overbank flood recharge (OFR). This paper upscales previously derived analytical equations to a continental scale using national soil atlas data and satellite imagery of flood inundation, resulting in recharge maps for seven hydrologically distinct Australian catchments. Recharge for three of the catchments was validated against independent recharge estimates from bore hydrograph responses and one catchment was additionally validated against point-scale recharge modelling and catchment-scale change in groundwater storage. Flood recharge was predicted for four of the seven catchments modelled, but there was also unexplained recharge present from the satellite's flood inundation mapping data. At a catchment scale, recharge from overbank flooding was somewhat under-predicted using the analytical equations, but there was good confidence in the spatial patterns of flood recharge produced. Due to the scale of the input data, there were no significant relationships found when compared at a point scale. Satellite-derived flood inundation data and uncertainty in soil maps were the key limitations to the accuracy of the modelled recharge. Use of this method to model OFR was found to be appropriate at a catchment to continental scale, given appropriate data sources. The proportion of OFR was found to be at least 4% of total change in groundwater storage in one of the catchments for the period modelled, and at least 15% of the riparian recharge. Accounting for OFR is an important, but often overlooked, requirement for closing water balances in both the surface water and groundwater domains.

  15. Generator and rechargeable battery system for pedal powered vehicles

    SciTech Connect

    Ryan, D.

    1985-11-26

    A generator and rechargeable battery system for use with pedal powered vehicles, such as bicycles, and where either the generator or battery can intermittently power a load such as a lighting system of the vehicle in one mode of operation, and in which the generator can recharge the battery in another mode of operation. A simple selection switch which is manually operable by the operator of the vehicle enables selection between powering of the load or recharging of the battery.

  16. [Study on the guideline for groundwater recharge with reclaimed water].

    PubMed

    He, Xing-hai; Ma, Shi-hao

    2004-09-01

    Groundwater recharge with reclaimed water is the most beneficial way to extend reuse applications, and has the vast development foreground. In this paper, the domestic and international applications and guidelines for groundwater recharge with reclaimed water were summarized. Based on the quality of reclaimed water and the conditions of hydrological geology, the reclaimed water quality criteria for groundwater recharge was suggested including 22 basic controlling items and 52 selective controlling items, and the control technology was presented. PMID:15623024

  17. A review of groundwater recharge under irrigated agriculture in Australia

    NASA Astrophysics Data System (ADS)

    Riasat, Ali; Mallants, Dirk; Walker, Glen; Silberstein, Richard

    2014-05-01

    Quantification of recharge under irrigated agriculture is one of the most important but difficult tasks. It is the least understood component in groundwater studies because of its large variability in space and time and the difficulty of direct measurement. Better management of groundwater resources is only possible if we can accurately determine all fluxes going into and out of a groundwater system. One of the major challenges facing irrigated agriculture in Australia, and the world, is to reduce uncertainty in estimating or measuring the recharge flux. Reducing uncertainty in groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and sustainable groundwater resource management especially in dry areas where groundwater usage is often the key to economic development. An accurate quantification of groundwater recharge under irrigated systems is also crucial because of its potential impacts on soil profile salinity, groundwater levels and groundwater quality. This paper aims to identify the main recharge control parameters thorough a review of past field and modelling recharge studies in Australia. We find that the main recharge control parameters under irrigated agriculture are soil type, irrigation management, watertable depth, land cover or plant water uptake, soil surface conditions, and soil, irrigation water and groundwater chemistry. The most commonly used recharge estimation approaches include chloride mass balance, water budget equation, lysimeters, Darcy's law and numerical models. Main sources and magnitude of uncertainty in recharge estimates associated with these approaches are discussed.

  18. Making Li-air batteries rechargeable: material challenges

    SciTech Connect

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  19. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  20. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay. PMID:25849777

  1. Electrical Resistivity Imaging and Depression Focused Recharge

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Hayashi, M.; Berthold, S.

    2003-12-01

    Seasonal wetlands and small depressions play a fundamental role in recharging regional aquifers in the northern glaciated planes. Water from snowmelt collects in the depressions in the spring and infiltrates into the ground after the soil unfreezes. Infiltrating water leaches salts from the soil beneath depressions. The majority of the infiltrating water moves to the local uplands where it leaves the ground through ET leaving behind zones of evaporitically concentrated salts. A small percentage infiltrates down to the regional aquifer. Leaching and concentrating salts effect the electrical resistivity distribution of the subsurface. Three-dimensional electrical resistivity imaging (ERI) was combined with groundwater and soil measurements to generate a conceptual model of three dimensional fluid flow at San Denis, Saskatchewan. Water chemistry was used to generate a conceptual model of different geochemical zones which could be distinguished by the electrical conductivity of pore water. The Waxman-Smits equation was used to link groundwater electrical conductivity to in situ bulk resistivity. Electrical resisistivity from ERI was then used to map geochemical zones in the subsurface. ERI and chemistry show that infiltrating water reaches a regional aquifer at 20 meters depth. Seasonal wetlands have large zones of high resistivity that reach to the regional water table indicating that salts have been leached out of the tills to the depth of the regional aquifer. Small local depressions also have zones of leached soil beneath them indicating that they contribute to regional groundwater recharge. Since there are millions of small depressions, they may play a fundamental role in groundwater recharge and must be considered in land management. The images show a complex distribution of salts. Most of the salt is located in the upper weathered zone in the glacial tills and the horizontal distribution is controled by the locations of wetlands, steepness of slopes and the

  2. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the

  3. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  4. Evolution of strategies for modern rechargeable batteries.

    PubMed

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  5. Recharge from rectangular areas to finite aquifers

    NASA Astrophysics Data System (ADS)

    Rao, N. H.; Sarma, P. B. S.

    1981-10-01

    A generalized analytical solution is derived for the growth of groundwater mound in finite aquifers bounded by open water bodies, in response to recharge from rectangular areas. Finite Fourier transforms are used to solve the linearized differential equation of groundwater flow. Unlike earlier solutions, the method presented here does not require the use of tables for evaluation of complicated functions. The solution is evaluated by comparison with existing numerical and analytical results. In stream-aquifer systems similar to those described above, application of the proposed solution is more realistic than using solutions available for infinite aquifers.

  6. Glossary of testing terminology for rechargeable batteries

    SciTech Connect

    Butler, P.C.

    1988-10-01

    The Battery Test Working Task Force was formed in 1983 for the purpose of coordinating the evaluation of development rechargeable batteries by DOE-funded labs. The Task Force developed this glossary of testing terminology to improve the accuracy of communication and to permit meaningful comparisons of test results. It consists of a section of technical terms and a separate section of programmatic phrases and acronyms. The glossary emphasizes terms related to electric vehicle batteries due to the significant development and testing activities in this area. 8 refs.

  7. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  8. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  9. Artificial recharge of groundwater and its role in water management

    USGS Publications Warehouse

    Kimrey, J.O.

    1989-01-01

    This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of

  10. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  11. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  12. Prototype systems for rechargeable magnesium batteries.

    PubMed

    Aurbach, D; Lu, Z; Schechter, A; Gofer, Y; Gizbar, H; Turgeman, R; Cohen, Y; Moshkovich, M; Levi, E

    2000-10-12

    The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction. Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts. Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems. PMID:11048714

  13. Electrochemically active polymers for rechargeable batteries

    SciTech Connect

    Novak, P.; Haas, O.; Santhanam, K.S.V.; Mueller, K.

    1997-01-01

    Electrochemical energy storage systems (batteries) have a tremendous role in technical applications. In this review the authors examine the prospects of electroactive polymers in view of the properties required for such batteries. Conducting organic polymers are considered here in the light of their rugged chemical environment: organic solvents, acids, and alkalis. The goal of the present article is to provide, first of all in tabular form, a survey of electroactive polymers in view of potential applications in rechargeable batteries. It reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes. The theoretical values of specific charge of the polymers are comparable to those of metal oxide electrodes, but are not as high as those of most of the metal electrodes normally used in batteries. Therefore, it is an advantage in conventional battery designs to use the conducting polymer as a positive electrode material in combination with a negative electrode such as Li, Na, Mg, Zn, MeH{sub x}, etc. 504 refs.

  14. Urban Network Implications On Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Duque, J.; Chambel, A.

    Urbanisation has had a major impact on groundwater beneath Évora city (South Portu- gal). Évora is an ancient city and the growth of impermeable areas due to urbanisation has lead to a reduction in groundwater recharge. The specific type of residential land use has a major influence on the permeability of the recharge area. The use of ground- water inside the city of Évora is largely for particular gardening and small farming supplies. In the oldest part of the city (inside of the city walls) there is little use of groundwater, while in the part of the city outside the city walls usage is more effec- tive. This study provides evidence that the municipality or particular people can use groundwater to irrigate the majority gardens, instead of using cleaned water from the Monte Novo Dam. This will also provide a solution to the control of pollution that occurs due to losses from the sewerage system of the city.

  15. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  16. Current collectors for rechargeable Li-Air batteries

    SciTech Connect

    Veith, Gabriel M; Dudney, Nancy J

    2011-01-01

    Here we report the negative influence of porous nickel foam for use as current collectors in rechargeable Li-air batteries. Uncoated nickel foam promotes the decomposition of LiPF6-organic carbonate electrolytes under normal charging conditions reported for rechargeable Li-air cells. We have identified Ni free porous carbon supports as more appropriate cathode current collectors.

  17. Advances of aqueous rechargeable lithium-ion battery: A review

    NASA Astrophysics Data System (ADS)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  18. Global synthesis of groundwater recharge in semiarid and arid regions

    USGS Publications Warehouse

    Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ???140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ???720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nin??o Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nin??os (1977-1998) relative to periods dominated by La Nin??as (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (??? 10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The

  19. Serpentinite slices within a tectonic zone at the base of the Juvavic nappe system in the Northern Calcareous Alps (Austria): characterization and origin

    NASA Astrophysics Data System (ADS)

    Boehm, Katharina; Schuster, Ralf; Wagreich, Michael; Koller, Friedrich; Wimmer-Frey, Ingeborg

    2014-05-01

    The investigated serpentinites are present in an ENE-WSW orientated tectonic zone at the base of Juvavic nappes (Northern Calcareous Alps), situated at the eastern margin of the Eastern Alps (Lower Austria). They form small tectonically squeezed slices, which are embedded in Permotriassic schists and Middle to Upper Triassic limestones. These serpentinites play an important, but not yet understood role in reconstructing Neotethys evolution, Alpine Orogeny and the correlation of Dinarides and Alps. The largest serpentinite body near to Unterhöflein is 400 to 100 meters in size and was investigated by mineralogical (XRD) and petrological/geochemical (XRF) methods. The primary mineral composition is olivine + orthopyroxene + clinopyroxene + chrome spinel. Pseudomorphs of pyroxenes are visible macroscopically, but almost all primary minerals are replaced by serpentine minerals. Former olivine is converted to chrysotile minerals, which show typical reticulate textures, orthopyroxene turned into lizardite pseudomorphs and chrome spinel is almost completely altered to magnetite. Major contents of chrysotile-α, chrysotile-γ and lizardite and minor antigorite, as well as secondary minerals like talc, chlorite and hydrogrossular were identified with XRD. Results from whole rock geochemistry indicate harzburgitic precursor rocks for the serpentinites. According to the low antigorite content, the rocks have only a weak metamorphic imprint and therefore an obduction rather than a subduction history is likely. This leads to the assumption that these serpentinites possibly originate from the Neotethys and not from the Penninic oceanic realm. Further, the tectonic position of the serpentinite slices is in close vicinity to sediments of the Meliata unit which also occur between Juvavic and underlying Tirolic nappe system (Mandl & Ondrejickova, 1993). Additionally, remnants from ophiolite nappes are found reworked into the surrounding Upper Cretaceous Gosau Group. In the latter

  20. New evidence of a magmatic arc in the southern Brasília Belt, Brazil: The Serra da Água Limpa batholith (Socorro-Guaxupé Nappe)

    NASA Astrophysics Data System (ADS)

    Vinagre, Rodrigo; Trouw, Rudolph A. J.; Mendes, Julio Cezar; Duffles, Patrícia; Peternel, Rodrigo; Matos, Gabriel

    2014-10-01

    This paper presents a detailed description of the Neoproterozoic Serra da Água Limpa batholith (SALB) and the interpretation of its genesis. The batholith, located along the border of the states of Minas Gerais and São Paulo, was involved in the Socorro-Guaxupé Nappe, a tectonic unit that integrates the southern Brasília Belt. The tectonic evolution of this nappe is related to the convergence and subsequent collision between the Paranapanema paleocontinent, representing the upper plate, with the São Francisco paleocontinent, resulting in the construction of the southern Brasília Belt. The active margin of the Paranapanema paleocontinent developed during the pre-collisional stage a magmatic arc composed of batholithic igneous bodies. The Socorro-Guaxupé Nappe represents this active margin and SALB is one of those bodies. U-Pb dating (Laser Ablation, LA-ICP-MS) in zircon was performed in five samples of SALB. The results are as follows: sample RDTM 62, 667 ± 10 Ma; RDPA 44, 645 ± 5 Ma; RDPA 46, 630 ± 12 Ma; VAC 10, 631 ± 7 Ma and RDIT 41, 635 ± 8 Ma. These ages indicate that the body crystallized between 670 and 630 Ma, with predominance of ages in the interval 645-630 Ma, demonstrating that the magmatic event that formed the arc lasted at least 40 myr. Younger ages, measured in rims of zircon grains, mainly in the range 625-600 Ma were interpreted as metamorphic ages. The lithogeochemical analyses indicate that the I-type rocks of the Serra da Água Limpa batholith belong to the high K calc-alkaline series, and are metaluminous to slightly peraluminous. Tectonic environment diagrams also indicate that the batholith was produced in a volcanic arc setting which is confirmed by negative anomalies of elements of high ionic potential (HFS) in multi-element diagrams. Whole rock Sm-Nd isotope analyses show highly negative εNd values (-12 to -7), indicating significant crustal contamination or origin of the magma by melting of enriched lower crust.

  1. Ophiolitic detritus in Kimmeridgian resedimented limestones and its provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Gawlick, Hans-Jürgen; Aubrecht, Roman; Schlagintweit, Felix; Missoni, Sigrid; Plašienka, Dušan

    2015-12-01

    The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated "Jurassic gravitational tectonics". Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+-Cr3+-Al3+ diagram). In the Mg/(Mg+ Fe2+) vs. Cr/(Cr+ Al) diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite provenance of the analysed

  2. Chloride-Mass-Balance: Cautions in Predicting Increased Recharge Rates

    SciTech Connect

    Gee, Glendon W.; Zhang, Z. F.; Tyler , S. W.; Albright , W. H.; Singleton , M. J.

    2005-02-01

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6 m deep lysimeter at a simulated waste-burial ground, located on the Department of Energy’s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20% of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  3. Groundwater recharge rate and zone structure estimation using PSOLVER algorithm.

    PubMed

    Ayvaz, M Tamer; Elçi, Alper

    2014-01-01

    The quantification of groundwater recharge is an important but challenging task in groundwater flow modeling because recharge varies spatially and temporally. The goal of this study is to present an innovative methodology to estimate groundwater recharge rates and zone structures for regional groundwater flow models. Here, the unknown recharge field is partitioned into a number of zones using Voronoi Tessellation (VT). The identified zone structure with the recharge rates is associated through a simulation-optimization model that couples MODFLOW-2000 and the hybrid PSOLVER optimization algorithm. Applicability of this procedure is tested on a previously developed groundwater flow model of the Tahtalı Watershed. Successive zone structure solutions are obtained in an additive manner and penalty functions are used in the procedure to obtain realistic and plausible solutions. One of these functions constrains the optimization by forcing the sum of recharge rates for the grid cells that coincide with the Tahtalı Watershed area to be equal to the areal recharge rate determined in the previous modeling by a separate precipitation-runoff model. As a result, a six-zone structure is selected as the best zone structure that represents the areal recharge distribution. Comparison to results of a previous model for the same study area reveals that the proposed procedure significantly improves model performance with respect to calibration statistics. The proposed identification procedure can be thought of as an effective way to determine the recharge zone structure for groundwater flow models, in particular for situations where tangible information about groundwater recharge distribution does not exist. PMID:23746002

  4. Improved Recharge Estimation from Portable, Low-Cost Weather Stations.

    PubMed

    Holländer, Hartmut M; Wang, Zijian; Assefa, Kibreab A; Woodbury, Allan D

    2016-03-01

    Groundwater recharge estimation is a critical quantity for sustainable groundwater management. The feasibility and robustness of recharge estimation was evaluated using physical-based modeling procedures, and data from a low-cost weather station with remote sensor techniques in Southern Abbotsford, British Columbia, Canada. Recharge was determined using the Richards-based vadose zone hydrological model, HYDRUS-1D. The required meteorological data were recorded with a HOBO(TM) weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long-term study purpose (27 years). Undisturbed soil cores were taken at two locations in the vicinity of the HOBO(TM) weather station. The derived soil hydraulic parameters were used to characterize the soil in the numerical model. Model performance was evaluated using observed soil moisture and soil temperature data obtained from subsurface remote sensors. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 and 816 mm. The mean annual recharge was estimated at 848 and 859 mm/year based on a time series of 27 years. The relative ratio of annual recharge-precipitation varied from 43% to 69%. From a monthly recharge perspective, the majority (80%) of recharge due to precipitation occurred during the hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Furthermore, this method is able to predict transient recharge estimates, and can provide a reasonable tool for estimates on nutrient leaching that is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil. PMID:26011672

  5. Nanocarbon networks for advanced rechargeable lithium batteries.

    PubMed

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  6. Lithium electronic environments in rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Hightower, Adrian

    This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20

  7. Artificial Recharge Coupled with Flood Mitigation in Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Koo, M.; Lee, K.; Moon, D.; Barry, J. M.; Park, W.

    2010-12-01

    The primary goal of this study is to develop and apply the artificial recharge system at Han Stream in Jeju Island, Korea, for not only securing sustainable groundwater resources, but also mitigating severe floods occurred due to the global climate changes. Jeju-friendly Aquifer Recharge Technology (J-ART) in this study has been developed by capturing ephemeral stream water with no interference in the environments such as natural recharge or eco-system, storing the flood water in the reservoirs, recharging it through designed borehole after appropriate water treatment, and then making it to be used at down-gradient production wells. For optimal design of J-ART, we conducted injection tests at the monitoring well (MW5) as well as at the planned recharge site during drilling the recharge wells and performed a modeling with the data obtained. Based on the modeling results, the artificial recharge wells were developed with a design of 10-meter spacing between the wells and 35-40 meter depths, which has a capacity of more than 2,500,000 m3 of groundwater resources in a year. Characterizing groundwater flow from recharge area to discharge area should be achieved to assess the efficiency of J-ART. The resistivity logging employed to predict water flow in unsaturated zone during artificial recharge based on the inverse modeling and resistivity change patterns. Stable isotope studies of deuterium and oxygen-18 of surface waters and groundwaters were carried out to interpret mixing and flow in groundwaters impacted by artificial recharge. Transient models were developed to predict the effects of artificial recharge using the hydraulic properties of aquifers, groundwater levels, and meteorological data. Time series changes of water balance after artificial recharge were analyzed, and residence time of the recharged water was also predicted with a certain degree of uncertainty. Keywords: J-ART, Hydrogeological methods, Geophysical survey, Stable isotopes, Groundwater modeling

  8. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  9. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  10. Rechargeable high-temperature batteries [Book Chapter

    SciTech Connect

    Cairns, Elton J.

    1981-01-01

    There has been growing research and development effort in the area of high-specific-energy, high-specific-power rechargeable batteries since the mid 1960s and it has been used in electric vehicles, electric utility networks, and solar- and wind-powered electric generator systems. Nonaqueous systems have been found to be the most attractive candidates for the above relatively large-scale applications. Only the high-temperature cells offer the attractive combination of features sought for the cited applications: a specific energy above 100 Wh/kg, a specific power above 100 W/kg, a cycle life in excess of 500 cycles (at 100% depth of discharge), and a projected cost of less than $50† per kWh of energy storage capability.

  11. Polymer Energy Rechargeable System Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

  12. Spinel electrodes for rechargeable lithium batteries.

    SciTech Connect

    Thackeray, M. M.

    1999-11-10

    This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).

  13. Unlinkable Priced Oblivious Transfer with Rechargeable Wallets

    NASA Astrophysics Data System (ADS)

    Camenisch, Jan; Dubovitskaya, Maria; Neven, Gregory

    We present the first truly unlinkable priced oblivious transfer protocol. Our protocol allows customers to buy database records while remaining fully anonymous, i.e., (1) the database does not learn who purchases a record, and cannot link purchases by the same customer; (2) the database does not learn which record is being purchased, nor the price of the record that is being purchased; (3) the customer can only obtain a single record per purchase, and cannot spend more than his account balance; (4) the database does not learn the customer's remaining balance. In our protocol customers keep track of their own balances, rather than leaving this to the database as done in previous protocols. Our priced oblivious transfer protocol is also the first to allow customers to (anonymously) recharge their balances. Finally, we prove our protocol secure in the standard model (i.e., without random oracles).

  14. Polymer Energy Rechargeable System (PERS) Development Program

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.

  15. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  16. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  17. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  18. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  19. Simulation of the xerographic recharge process

    SciTech Connect

    Feng, Chang; Parker, S.E.; Lean, Meng H.

    1996-12-31

    Laser xerography (e.g. laser printing, photo-copying, etc.) involves the sequential steps: uniform charging of the photoconductor surface, discharging spots with a laser beam, developing the latent image on the photoconductor surface by the attachment of charged toner particles, and finally transfer-ring the image to paper through mechanical and electrostatic forces. Simulations have been developed that model these process from first-principles. Color reproduction involves multiple passes through these steps; once for each color separation (e.g. multiple toner layers on the photoconductor). Here we study the charging of the photoconductor surface, in situations of high mass-coverage with a 2D fluid model, and low mass coverage with a 3D particle model. Charge is sprayed using a corona, type discharge called a scorotron. We axe developing a 2D fluid model of the recharge process based on extending existing models. We use empirical IN data for the scorotron. A Boundary Integral Equation Method (BIEM) is used to solve for the field, and method of characteristics (MOC) to solve the charge continuity equation. Also developed, is a 3D particle model, where the field is solved using 3D BIEM and ionized air molecules axe treated as point charges which follow their average drift motion. Diffusion can be neglected because of the high voltage bias. Toner particles axe treated as finite size spherical dielectrics with nonuniform attached surface charge. We will show initial numerical results for both models. The purpose of this work is to develop a better understanding of how charge in transported through the toner layers in subsequent recharging during color laser xerography.

  20. The Cretaceous-Paleogene boundary in turbiditic deposits identified to the bed: a case study from the Skole Nappe (Outer Carpathians, southern Poland)

    NASA Astrophysics Data System (ADS)

    Gasiński, M. Adam; Uchman, Alfred

    2011-08-01

    The Cretaceous-Paleogene (K-T) boundary has been recognized in turbiditic sediments of the Ropianka Formation in the Skole Nappe (Bąkowiec section) on the basis of planktonic foraminiferids with an accuracy of 40 cm. Such precise determination of the K-T boundary for the first time in the Carpathians and in turbiditic flysch sediments in general was possible due to the successive occurrence of the Early Paleocene planktonic taxa of the P1 Zone above the latest Maastrichtian Abathomphalus mayaroensis Zone with the Racemiguembelina fructicosa Subzone. The trends in composition of the latest Maastrichtian foraminiferal assemblages are similar to the Gaj section from the adjacent thrust sheet, probably due to the influence of the same paleoenvironmental factors.

  1. Echo Meadows Project Winter Artificial Recharge.

    SciTech Connect

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  2. High-grade deformation in quartzo-feldspathic gneisses during the early Variscan exhumation of the Cabo Ortegal nappe, NW of Iberia

    NASA Astrophysics Data System (ADS)

    Fernández, F. J.; Llana-Fúnez, S.; Marcos, A.; Castiñeiras, P.; Valverde-Vaquero, P.

    2015-12-01

    High-grade highly deformed gneisses crop out continuously along the Masanteo peninsula in the Cabo Ortegal nappe (NW Spain). The rock sequence formed by quartzo-feldspathic gneisses and mafic rocks records two partial melting events: during the Early Ordovician (ca. 480-488 Ma.), at the base of the Qz-Fsp gneisses, and immediately after eclogization (ca. 390.4 ± 1.2 Ma), during its early Variscan exhumation. Despite the strain accumulated during their final exhumation in which a pervasive blastomylonitic S2 foliation was developed, primary sedimentary layering in Qz-Fsp gneisses is well preserved locally at the top of the sequence. This first stage of the exhumation process occurred in ~ 10 Ma, during which bulk flattening of the high-grade rock sequence was accommodated by anastomosing shear bands that evolved to planar shear zones. Strain was progressively localized along the boundaries of the migmatitic Qz-Fsp gneisses. A SE-vergent ductile thrust constitutes the base of gneisses, incorporating eclogite blocks-in-matrix. A NW-vergent detachment placed the metasedimentary Qz-Fsp gneisses over the migmatitic Qz-Fsp gneisses. A difference in metamorphic pressure of ca. 0.5 GPa is estimated between both gneissic units. The high-grade deformation reduced substantially the thickness of the gneissic rock sequence during the process of exhumation controlled by change in the strain direction and the progressive localization of strain. The combined movement of the top detachment and basal thrust resulted in an extrusion of the migmatites within the nappe, directed to the SE in current coordinates.

  3. Structure and U-Pb zircon geochronology of an Alpine nappe stack telescoped by extensional detachment faulting (Kulidzhik area, Eastern Rhodopes, Bulgaria)

    NASA Astrophysics Data System (ADS)

    Georgiev, Neven; Froitzheim, Nikolaus; Cherneva, Zlatka; Frei, Dirk; Grozdev, Valentin; Jahn-Awe, Silke; Nagel, Thorsten J.

    2016-01-01

    The Rhodope Metamorphic Complex is a stack of allochthons assembled during obduction, subduction, and collision processes from Jurassic to Paleogene and overprinted by extensional detachment faults since Middle Eocene. In the study area, the following nappes occur in superposition (from base to top): an orthogneiss-dominated unit (Unit I), garnet-bearing schist with amphibolite and serpentinite lenses (Unit II), greenschist, phyllite, and calcschist with reported Jurassic microfossils (Unit III), and muscovite-rich orthogneiss (Unit IV). U-Pb dating of zircons from a K-feldspar augengneiss (Unit I) yielded a protolith age of ca. 300 Ma. Garnet-bearing metasediment from Unit II yielded an age spectrum with distinct populations between 310 and 250 Ma (detrital), ca. 150 Ma, and ca. 69 Ma (the last two of high-grade metamorphic origin). An orthogneiss from Unit IV yielded a wide spectrum of ages. The youngest population gives a concordia age of 581 ± 5 Ma, interpreted as the age of the granitic protolith. Unit I represents the Lower Allochthon (Byala Reka-Kechros Dome), Unit II the Upper Allochthon (Krumovitsa-Kimi Unit), Unit III the Uppermost Allochthon (Circum-Rhodope Belt), and Unit IV a still higher, far-travelled unit of unknown provenance. Telescoping of the entire Rhodope nappe stack to a thickness of only a few 100 m is due to Late Eocene north directed extensional shearing along the newly defined Kulidzhik Detachment which is part of a major detachment system along the northern border of the Rhodopes. Older top-to-the south mylonites in Unit I indicate that Tertiary extension evolved from asymmetric (top-to-the-south) to symmetric (top-to-the-south and top-to-the-north), bivergent unroofing.

  4. Stable isotope tracers: natural and anthropogenic recharge, Orange County, California

    NASA Astrophysics Data System (ADS)

    Williams, Alan E.

    1997-12-01

    Stable isotopic techniques have been utilized to locate occurrences and trace movements of a variety of naturally and anthropogenically recharged waters in aquifers of Orange County, California. This basin is of particular interest not only because it provides the dominant water supply for the two million residents of this well-populated county, but also because it is representative of a common arid environment where natural recharge is dominated by distant, high-elevation precipitation transported by a major river. Such arid basins are particularly sensitive to climatic and anthropogenic disturbance of their recharge and their subsurface hydrology. In order to identify distinctive waters, oxygen and hydrogen stable isotope ratios from Orange County wells have been compared with a regional database including an array of surface water samples representative of watershed runoff. Four distinctive subsurface water types can be resolved. Waters of "local" rainfall and imported, "Colorado" River aqueduct origins are easily distinguished from dominant, "native" Santa Ana river compositions by use of hydrogen and oxygen stable isotope analysis. Recent human interference with Santa Ana river flow and recharge is also marginally resolvable by isotopic techniques. Distinguishable isotopic signatures of "recent" Santa Ana recharge appear to be due to evaporative loss, perhaps during storage in the Prado Reservoir or in percolation ponds, prior to recharge into Orange County aquifers. Characterization of traceable isotopic signatures of distinct natural and anthropogenic recharge components provides a major advance towards use of such techniques for developing a well constrained, three-dimensional hydrologic model for this complex basin.

  5. Quantifying potential recharge in mantled sinkholes using ERT.

    PubMed

    Schwartz, Benjamin F; Schreiber, Madeline E

    2009-01-01

    Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system. PMID:18823398

  6. Geostatistical estimates of future recharge for the Death Valley region

    SciTech Connect

    Hevesi, J.A.; Flint, A.L.

    1998-12-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale.

  7. Effects of artificial recharge on the Ogallala aquifer, Texas

    USGS Publications Warehouse

    Brown, Richmond Flint; Keys, W.S.

    1985-01-01

    Four recharge tests were conducted by injecting water from playa lakes through wells into the Ogallala Formation. Injection was by gravity flow and by pumping under pressure. At one site, 34-acre feet of water was injected by gravity and produced a significant increase in yield of the well. At a second site, gravity injection of only 0.58 acre-foot caused a significant decrease in permeability due to plugging by suspended sediment. At two other sites, injection by pumping 6 and 14 acre-feet respectively, resulted in discharge of water at the surface and in perching of water above the water table. Differences in success of recharge were largely due to aquifer lithology and, therefore, the type of permeability; the concentration of suspended solids in the recharge water; and the injection technique. The injection technique can be controlled and the concentration of suspended solids can be minimized by treatment, but the site for well recharge will accept water most rapidly if it is selected on the basis of a favorable geohydrologic environment. Geophysical logs were used to study the effect of aquifer lithology on recharge and to understand the movement of injected water. Temperature logs were particularly useful in tracing the movement of recharged water. Natural-gamma, gamma-gamma, and neutron logs provided important data on lithology and porosity in the aquifer and changes in porosity and water distribution resulting from recharge. Effective recharge of the Ogallala Formation, using water from playa lakes, is possible where geohydrologic conditions are favorable and the recharge system is properly constructed.

  8. The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Winograd, Isaac J.; Riggs, Alan C.; Coplen, Tyler B.

    A comparison of the stable-isotope signatures of spring waters, snow, snowmelt, summer (July thru September) rain, and cool season (October thru June) rain indicates that the high-intensity, short-duration summer convective storms, which contribute approximately a third of the annual precipitation to the Spring Mountains, provide only a small fraction (perhaps 10%) of the recharge to this major upland in southern Nevada, USA. Late spring snowmelt is the principal means of recharging the fractured Paleozoic-age carbonate rocks comprising the central and highest portion of the Spring Mountains. Daily discharge measurements at Peak Spring Canyon Creek during the period 1978-94 show that snowpacks were greatly enhanced during El Niño events. Résumé La comparaison des signatures isotopiques stables des eaux de sources, de neige, de fonte de neige, des pluies d'été (juillet à septembre) et de saison froide (octobre à juin) montre que les précipitations convectives d'été de forte intensité et de courte durée, apportant un tiers des précipitations annuelles reçues par les Monts Spring, ne participent que pour une faible part (10%) à la recharge de cette importante zone d'altitude du sud du Nevada (États-Unis). La fonte tardive de la neige au printemps constitue l'essentiel de la recharge des roches carbonatées fracturées d'âge paléozoïque formant la partie centrale et la plus haute des Monts Spring. Les données journalières de débit sur la rivière du canyon de Peak Spring, entre 1978 et 1994, montrent que les hauteurs de neige ont été plus élevées pendant les événements El Niño. Resumen La comparación entre las marcas isotópicas de aguas de manantiales, nieve, deshielo, lluvias de verano (julio a septiembre) y resto de lluvias (octubre a junio) indican que las tormentas de verano, de corta duración y gran intensidad, las cuales suponen alrededor de un tercio de la precipitación total anual en las Spring Mountains, proporcionan sólo una

  9. Recharge and discharge calculations to characterize the groundwater hydrologic balance

    SciTech Connect

    Liddle, R.G.

    1998-12-31

    Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the

  10. Geophysical expression of natural recharge in different geological terrains.

    PubMed

    Hodlur, G K; Singh, U K; Das, R K; Rangarajan, R; Chand, Ramesh; Singh, S B

    2003-01-01

    Behavior of the Dar-Zarrouk parameters--longitudinal unit conductance, transverse unit resistance, longitudinal resistivity, and transverse resistivity--has been compared with the behavior of the natural recharge in two geological terrains. Contour patterns of the geophysical parameters and those of natural recharge have been analyzed and a qualitative relation in their behavior was recognized. Graphical comparison of the geophysical and hydrogeological parameters clearly illustrates a qualitative relationship between the two parameters. Use of such qualitative relation in the field of ground water exploration and management studies is explained. A modest beginning is attempted to arrive at a quantitative relation between natural recharge and Dar-Zarrouk parameters. PMID:14649869

  11. Ajustement du rechargement et des mecanismes de reactivite des reacteurs CANDU pour les cycles de combustible avances

    NASA Astrophysics Data System (ADS)

    St-Aubin, Emmanuel

    This research project main objectives are to set up and apply a methodology that can determine the potential of advanced thorium-based fuel cycles in CANDU reactors and that is able to adjust reactivity devices, in such a way as to maintain their reference efficiency for these new fuels. In order to select these fuel cycles, a large alternative fuel envelope is submitted to several discriminating criteria. A coarse parametric core modeling, that takes into account standard reactivity devices, is first used to highlight candidates presenting the best economical performances and to eliminate non viable options. Then, for the best candidates, the neutronic modeling is optimized before considering reactivity devices adjustment. For every reactivity device managed by the reactor regulating system, innovative generic optimization methods are used to achieve specific objectives for every fuel cycle, all of them being based on the reference natural uranium cycle behavior. Specific optimization objectives are assessed by simulating advanced fuel cycle for specific operating conditions, including : normal on-power refueling period, spurious reactor trip and fueling machine unavailibility. Unlike the generalized perturbative approach proposed in the OPTEX code, we have successfully implemented a multi-step method able to maximize both the energy extracted from the fuel using an equilibrium refueling optimization, and the reactivity devices adequacy. We also propose new reactivity device supercell models that provides accurate reactor databases for a fraction of the computing cost usually needed using a full model with a similar spatial discretization. Our approach is verified by comparing our simulation results with results published in the literature for the reference fuel cycle. The methodology developed identified advanced fuel cycles, containing up to 60%v. thorium, thereby increasing resources utilization by more than 50% and multiplying the fuel average exit burn-up by a factor of 4.4 when compared with the reference cycle. The reactivity devices were also retained after our optimization processes, requiring only minor modifications to the original design. We determined that a 10%v. heavy water doping of the light water within liquid zone controllers could increase the average exit burnup of the reference cycle by almost 1%, without any adverse consequence to the reactor control. This method is validated through its systematic application to numerous different cases. It demonstrates its capability to achieve very different objectives related to reactivity devices requirements, thus it can be now used for other similar studies.

  12. Improved zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  13. Bipolar rechargeable lithium battery for high power applications

    NASA Technical Reports Server (NTRS)

    Hossain, Sohrab; Kozlowski, G.; Goebel, F.

    1993-01-01

    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

  14. ENGINEERING ECONOMIC ANALYSIS OF A PROGRAM FOR ARTIFICIAL GROUNDWATER RECHARGE.

    USGS Publications Warehouse

    Reichard, Eric G.; Bredehoeft, John D.

    1984-01-01

    This study describes and demonstrates two alternate methods for evaluating the relative costs and benefits of artificial groundwater recharge using percolation ponds. The first analysis considers the benefits to be the reduction of pumping lifts and land subsidence; the second considers benefits as the alternative costs of a comparable surface delivery system. Example computations are carried out for an existing artificial recharge program in Santa Clara Valley in California. A computer groundwater model is used to estimate both the average long term and the drought period effects of artificial recharge in the study area. Results indicate that the costs of artificial recharge are considerably smaller than the alternative costs of an equivalent surface system. Refs.

  15. Reliability of Rechargeable Batteries in a Photovoltaic Power Supply System

    SciTech Connect

    Barney, P.; Jungst, R.G., Ingersoll, D.; O'Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-30

    We investigate the reliability If a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. A model system was constructed for this that includes the solar resource, the photovoltaic power supp Iy system, the rechargeable battery and a load. The solar resource and the system load are modeled as SI ochastic processes. The photovoltaic system and the rechargeable battery are modeled deterministically, imd an artificial neural network is incorporated into the model of the rechargeable battery to simulate dartage that occurs during deep discharge cycles. The equations governing system behavior are solved simultaneously in the Monte Carlo framework and a fwst passage problem is solved to assess system reliability.

  16. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  17. Investigation of artificial recharge of aquifers in Nebraska

    USGS Publications Warehouse

    Lichtler, William F.; Stannard, David I.; Kouma, Edwin

    1980-01-01

    Progressive declines of ground-water levels in some areas of Nebraska prompted this investigation into the technical feasibility of recharging aquifers through wells, impoundments, pits, and canals. Information gained from a literature search and from preliminary tests was used to design several artificial-recharge experiments in Nebraska from 1977 to 1979. In well experiments, 0.46 billion gallons of water from an aquifer recharged by the Platte River was transported by pipeline and injected through a well into a sand and gravel aquifer near Aurora. Recharge was at about 730 gallons per minute during tests of 6- and 8-months duration. No evidence of clogging of the aquifer due to chemical reactions, air entrainment, or bacteria was detected in either test. In the 6-month test, evidence of clogging due to fine sediment in the recharge water was detected; however, analysis of this test indicated that recharge could have continued for several years before rehabilitation would have become necessary. Results of the 8-month test confirmed results of the earlier test until casing failure in the supply well and subsequent sediment deposition in the recharge well caused rapid water-level rise in the recharge well. In surface-spreading experiments, maximum infiltration rates from 24-foot-diameter ring infiltrometers near Aurora and Tryon were 0.4 and 11 feet per day, respectively. Results indicate that large-scale surface spreading is feasible only where low-permeability layers are absent in the subsurface. Infiltration rates from reuse pits ranged from 0.01 to 1.6 feet per day, indicating highly variable subsurface permeability. Flow measurements in an irrigation canal near Farwell indicate an infiltration rate of 0.37 feet per day. (USGS)

  18. Modelling of groundwater mound formation resulting from transient recharge

    NASA Astrophysics Data System (ADS)

    Rai, S. N.; Ramana, D. V.; Thiagarajan, S.; Manglik, A.

    2001-06-01

    An analytical solution of a linearized Boussinesq equation is obtained to predict water table fluctuations as a result of time varying recharge from a strip basin for any number of recharge cycles. The analytical solution is obtained by using finite Fourier sine transform. Applications of the solution for the prediction of water table fluctuations and sensitivity analysis are demonstrated with the help of example problems.

  19. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1989-06-27

    This patent describes an improved zinc electrode for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed.

  20. An Early Proterozoic metamorphic basement of the Tuva-Mongolia microcontinent as a part of the Tunka fold-nappe terrane (South Siberia): constraints from U/Pb geochronology

    NASA Astrophysics Data System (ADS)

    Zhimulev, Fedor; Safonova, Inna; Ryabinin, Alexander; Buslov, Mikhail

    2010-05-01

    The eastern Altai-Sayan orogenic belt in South Siberia was formed in the Ordovician as a direct result of the collision between the Siberian continent and the Tuva-Mongolia (TM) microcontinent. In this part of the Altai-Sayan, carbonate and terrigenous rocks are widespread and commonly regarded as deformed fragments of the sedimentary cover of the TM microcontinent. The TM microcontinent basement has a complex structure including small blocks of the Early Proterozoic continental crust and accreted Proterozoic island-arc units. The Gargan block, the western edge of which is considered to be Tuva-Mongolia, is the only reliable Early Proterozoic metamorphic unit of the TM basement. The ages of other high-grade metamorphic complexes in the region are Ordovician though, formed during the Siberia-TM collision, and therefore can not be regarded as fragments of the microcontinental basement as has been done hitherto. Further eastward, tectonic nappes dominated by biotite gneisses occur within the fold-and-thrust structure of the Tunka terrane. The gneisses, which are hardly mylonitized and include boudins of garnet-amphibolite, which are intruded by migmatite veins. The gneiss nappes are thrust on the red Carboniferous conglomerates and sandstones of the Sagansair Formation, which is a synorogenic continental molasse. Zircon grains were extracted from the gneissic units and dated by ICP-MS (U/Pb). All the dated grains are (sub)rounded, mostly unzoned, however, several grains display core and rims. The U/Pb dating yielded the ages of 2.7 - 2.4 Ga in the cores and 2.0 - 1.7 Ga in the rims. The gneiss nappe is one of a package of several nappes, all thrust over the Siberian Craton to the north. The gneisses nappe is thrust over the tectonically emplaced metacarbonate cover of the TM microcontinent. We suggest that these gneissic units are an eastern fragment of the TM microcontinent basement. Exhumation of the gneiss nappe consequently possibly took place during a Late

  1. Sedimentary Origins Of The Block-In-Matrix Fabric Of A Mélange Between Coherent Nappes Of A Subduction Complex: Localization Of The Paleosubduction Megathrust Along The Upper Mélange Contact

    NASA Astrophysics Data System (ADS)

    Wakabayashi, J.

    2011-12-01

    The Franciscan subduction complex of California comprises coherent nappes and intervening mélanges. The difference in metamorphic grade and/or accretionary age of adjacent coherent nappes suggests localization of paleosubduction megathrust horizons between them. One of the best examples of a mélange between coherent nappes crops out in an inactive quarry in El Cerrito in the eastern San Francisco Bay area. The upper coherent nappe consists of foliated, jadeite-bearing, blueschist facies metagraywacke, whereas the lower coherent nappe comprises prehnite-pumpellyite facies graywacke with little or no penetrative fabric makes. Detrital zircon geochronology indicates maximum depositional ages of 102 and 100 Ma, respectively, for these units. The foliation or bedding of the graywackes and their contacts strike northwest and dip northeast. C-s fabrics, shear bands, and asymmetric porphyroclasts show a consistent tops-to-the-southwest shear sense in the upper coherent unit, and this fabric developed with syntectonic growth of glaucophane, lawsonite, and jadeite. The intervening mélange has a matrix made up primarily of dark gray shale, with blocks of mostly graywacke, chert, and basalt. The mélange consists of mostly or entirely prehnite-pumpellyite facies material except for the upper 5-10 meters that features metamorphic growth of lawsonite, glaucophane, and jadeite. Thus, the metamorphic contrast between the two nappes, equivalent to at least 10 km in differential burial depth and greater amount of fault displacement, occurs within this narrow zone. The upper half of the mélange (~50 meters of structural thickness) exhibits a pronounced foliation oriented parallel to the bounding contacts. The foliation deflects into shear bands and c-surfaces and this fabric shows a consistent tops-to-the-southwest shear sense. Strain appears to increase structurally upward within the mélange. The structurally lowest part of the mélange displays virtually no strain, with

  2. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    SciTech Connect

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  3. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  4. Transient Rechargeable Batteries Triggered by Cascade Reactions.

    PubMed

    Fu, Kun; Liu, Zhen; Yao, Yonggang; Wang, Zhengyang; Zhao, Bin; Luo, Wei; Dai, Jiaqi; Lacey, Steven D; Zhou, Lihui; Shen, Fei; Kim, Myeongseob; Swafford, Laura; Sengupta, Louise; Hu, Liangbing

    2015-07-01

    Transient battery is a new type of technology that allows the battery to disappear by an external trigger at any time. In this work, we successfully demonstrated the first transient rechargeable batteries based on dissoluble electrodes including V2O5 as the cathode and lithium metal as the anode as well as a biodegradable separator and battery encasement (PVP and sodium alginate, respectively). All the components are robust in a traditional lithium-ion battery (LIB) organic electrolyte and disappear in water completely within minutes due to triggered cascade reactions. With a simple cut-and-stack method, we designed a fully transient device with an area of 0.5 cm by 1 cm and total energy of 0.1 J. A shadow-mask technique was used to demonstrate the miniature device, which is compatible with transient electronics manufacturing. The materials, fabrication methods, and integration strategy discussed will be of interest for future developments in transient, self-powered electronics. The demonstration of a miniature Li battery shows the feasibility toward system integration for all transient electronics. PMID:26083530

  5. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  6. Recharge to the North Richland well field

    SciTech Connect

    Law, A.G.

    1989-07-01

    The investigation was based on a preliminary ground-water flow model of the 1100 Area. Because few local data were available for this effort, an existing regional ground-water flow model of the Hanford Site was applied, which is based on the Variable Thickness Transient (VTT) ground-water flow code (Kipp et al., 1976). A submodel of the Hanford Site model was developed based on the VTT code. An independent model consisting of a simple representation of the local conditions in the vicinity of the North Richland well field was also used in the investigation. This model, based on the MODFLOW code (McDonald and Harbaugh, 1984), was used in a series of transient simulations to examine dynamic aspects of the well field/recharge basin. Results from this simple model also provide an independent, qualitative check of results produced with the 1100 Area model based on the VTT code. This report summarizes the 1100 Area modeling investigation, including the approach used to generate results for the regional and 1100 Area VTT models, the approach used in the transient MODFLOW model, results from some initial steady-state and transient simulations with the submodel and the MODFLOW models, and resulting conclusions and recommendations. Because local data were lacking to develop and calibrate the models, the investigation described in this report can best be described as a ''sensitivity analysis'' of ground-water flow in the 1100 Area. 4 refs., 10 figs., 2 tabs.

  7. Wearable textile battery rechargeable by solar energy.

    PubMed

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. PMID:24164580

  8. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.

  9. Seasonal variation in natural recharge of coastal aquifers

    NASA Astrophysics Data System (ADS)

    Mollema, Pauline N.; Antonellini, Marco

    2013-06-01

    Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

  10. Relation between grain size and modal composition in deep-sea gravity-flow deposits. Example from the Voirons Flysch (Gurnigel nappe, Chablais Prealps, France)

    NASA Astrophysics Data System (ADS)

    Ragusa, Jérémy; Kindler, Pascal

    2016-04-01

    A coupled analysis of modal composition, grain size and sedimentary features of gravity-flow deposits in the Gurnigel nappe shows that the transition from coarse proximal to fine distal deposits is accompanied by a change in composition from siliciclastic to calcareous. Such compositional variation should be taken into account when interpretating deep-sea deposits if sampling is restricted to a single part of the fan. The Chablais Prealps (Haute-Savoie, France) represent a well-preserved accretionary wedge in the Western Alps. They comprise a stack of northward-thrusted sedimentary cover nappes originating from the Ultrahelvetic realm (distal part of the European margin) to the southern part of the Piemont Ocean. The present study focuses on the Voirons Flysch, belonging to the Gurnigel nappe, which includes four formations consisting of gravity-flow deposits (from bottom to top): (1) the Voirons Sandstone Fm., composed of channel to lobe deposits; (2) the Vouan Conglomerate Fm., represented by the proximal part of a channel system; (3) the Boëge Marls Fm., constituted by distal lobe deposits; finally, (4) the Bruant Sandstone Fm., which consists in channel to lobe deposits. Recent biostratigraphic results using planktonic foraminifers attributed a Middle to Late Eocene age to the Voirons Flysch, which was formerly believed to range from the Paleocene to the Middle Eocene (based on calcareous nannofossils). A total of 270 thin sections with stained feldspars were prepared, representing the four formations of the Voirons Flysch. Circa 300 extrabasinal grains were counted per thin section using the classic Indiana method. In addition, the quantity of intrabasinal grains (i.e. bioclasts, glauconite), cement and porosity was analysed. Cement was stained with alizarine and potassium ferrocyanide. 200 grain-size measurements on ca. 100 samples were performed using 3D conversion and statistical moment analysis. Sedimentary observations for each sampled bed were

  11. Estimated Infiltration, Percolation, and Recharge Rates at the Rillito Creek Focused Recharge Investigation Site, Pima County, Arizona

    USGS Publications Warehouse

    Hoffmann, John P.; Blasch, Kyle W.; Pool, Don R.; Bailey, Matthew A.; Callegary, James B.

    2007-01-01

    A large fraction of ground water stored in the alluvial aquifers in the Southwest is recharged by water that percolates through ephemeral stream-channel deposits. The amount of water currently recharging many of these aquifers is insufficient to meet current and future demands. Improving the understanding of streambed infiltration and the subsequent redistribution of water within the unsaturated zone is fundamental to quantifying and forming an accurate description of streambed recharge. In addition, improved estimates of recharge from ephemeral-stream channels will reduce uncertainties in water-budget components used in current ground-water models. This chapter presents a summary of findings related to a focused recharge investigation along Rillito Creek in Tucson, Arizona. A variety of approaches used to estimate infiltration, percolation, and recharge fluxes are presented that provide a wide range of temporal- and spatial-scale measurements of recharge beneath Rillito Creek. The approaches discussed include analyses of (1) cores and cuttings for hydraulic and textural properties, (2) environmental tracers from the water extracted from the cores and cuttings, (3) seepage measurements made during sustained streamflow, (4) heat as a tracer and numerical simulations of the movement of heat through the streambed sediments, (5) water-content variations, (6) water-level responses to streamflow in piezometers within the stream channel, and (7) gravity changes in response to recharge events. Hydraulic properties of the materials underlying Rillito Creek were used to estimate long-term potential recharge rates. Seepage measurements and analyses of temperature and water content were used to estimate infiltration rates, and environmental tracers were used to estimate percolation rates through the thick unsaturated zone. The presence or lack of tritium in the water was used to determine whether or not water in the unsaturated zone infiltrated within the past 40 years

  12. Remnants of a hyperextended passive margin in a Caledonian mélange unit below the Jotun nappe, B\\overdalen, Central-south Norway

    NASA Astrophysics Data System (ADS)

    Alsaif, Manar; Jakob, Johannes; Andersen, Torgeir; Corfu, Fernando

    2015-04-01

    The Scandinavian Caledonides have been long studied, yet their ever unfolding complexity renders them far from being fully understood. It has been recognized that the Caledonian Allochthons have neither a linear nor straightforward along-strike relationship (Corfu et al. 2014). A mélange unit has been recently identified as a separate tectonic unit (Andersen et al. 2012). This unit is structurally positioned below crystalline nappes previously assigned to the Middle Allochthon. The mélange comprises meta-sediments and minor meta-basalt/gabbro, but most intriguingly, numerous solitary meta-peridotites. These occur as 'Alpine type' meta-peridotites, serpentinites, soapstones and detrital serpentinites. We present results of a field study of the mélange in the B\\overdalen area, structurally below the Jotun nappe, and suggest that this provides further evidence that the regional mélange unit was formed in a hyperextended passive margin. The meta-peridotites represent exhumed serpentinized mantle and are intimately associated with meta-sediments. The sediments are garnetiferous chlorite-muscovite schists, graphitic schists, phyllites, amphibolites, meta-sandstones as well as quartzite-pebble dominated conglomerates. It is suggested that this highly heterogeneous unit formed during the early stages of rifting and hyperextension along the Baltican passive margin. Characteristics of the detrital peridotites suggests that serpentinite-talc protrusions may have formed islands. The processes involved are observed on modern margins where the best-studied example is the Iberia-Newfoundland passive margin. Work in present-day margins (mostly seismic reflection data) elucidate the large-scale structure of hyperextended margins, while studies of ancient exposed examples in mountain belts provide insight into the lithology, geochemistry and details of these margins. The widespread distribution of hyperextended margins in modern margins and the increasing number of recognizable

  13. What controls the reactivation or preservation of distal ocean-continent transitions: the example of the Err-Platta nappes, SE Switzerland

    NASA Astrophysics Data System (ADS)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic

    2016-04-01

    Studies in the Alps suggest that remnants of former Ocean-Continent Transitions (OCT) can be preserved, even in internal parts of mountain belts. In the past, these units have been erroneously interpreted as either mélanges related to subduction channels or polyphase penetrative Alpine deformation. Good examples have been described from the eclogitic Piemonte units in the Western Alps and in Corsica [Beltrando et al., 2014], leading to the question of what may have controlled the preservation of these structures. In our study we used the example of the Err-Platta nappes that expose remnants of the OCT of the former Alpine Tethys. The aim of our presentation is to: 1) define the characteristic features of an OCT across a fossil magma-poor rifted margin, and 2) show the control of the rift-inherited structures during the subsequent reactivation of the OCT. The characteristics of OCTs at magma-poor rifted margins are the juxtaposition of serpentinized mantle and crustal rocks and pre-rift sediments limited by brittle extensional detachment faults sealed by syn- and post-tectonic sediments locally associated with magmatic rocks. Thus, in contrast to proximal margins, where lithologies are continuous layer cakes, OCTs are characterized by non-continuous layers and isolated blocks. To identify extensional detachment faults in mountain belts, different fingerprints can be found such as fault rocks (gouges and cataclasites) that bear a mantle derived fluid signature, or the occurrence of massive breccias that contain clasts of the underlying exhumed basement. Using field examples, we will show how Alpine structures selectively reactivated some inherited structures of the OCT, while others remained undeformed and were preserved in the nappe stack. How far the complex morphology, fault architecture and rheology of OCTs control the reactivation is still unclear, however, it appears that serpentinization fronts, or former extensional detachment faults may have played a key

  14. Arsenic release during managed aquifer recharge (MAR)

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  15. Design and simulation of lithium rechargeable batteries

    SciTech Connect

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  16. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  17. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  18. Thermal Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  19. A new approach to model the variability of karstic recharge

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Lange, J.; Weiler, M.; Arbel, Y.; Greenbaum, N.

    2012-02-01

    In karst systems, surface near dissolution carbonate rock results in a high spatial and temporal variability of groundwater recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scare regions. In this study, we developed a recharge model that is based on a perceptual model of the epikarst. It represents epikarst heterogeneity as a set of system property distributions to produce not only a single recharge time series, but a variety of time series representing the spatial recharge variability. We tested the new model with a unique set of spatially distributed flow and tracer observations in a karstic cave at Mt. Carmel, Israel. We transformed the spatial variability into statistical variables and apply an iterative calibration strategy in which more and more data was added to the calibration. Thereby, we could show that the model is only able to produce realistic results when the information about the spatial variability of the observations was included into the model calibration. We could also show that tracer information improves the model performance if data about the variability is not included.

  20. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect

    Isiorho, S.A.; Beeching, F.M. . Geosciences Dept.); Whitman, R.L.; Stewart, P.M. . Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  1. Fate of human viruses in groundwater recharge systems

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  2. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    PubMed

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-01

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration. PMID:26057865

  3. A new model for the formation of a spaced crenulation (shear band) cleavage in the Dalradian rocks of the Tay Nappe, SW Highlands, Scotland

    NASA Astrophysics Data System (ADS)

    Geoff Tanner, P. W.

    2016-03-01

    The main conclusion of this study is that non-coaxial strain acting parallel to a flat-lying D1 spaced cleavage was responsible for the formation of the D2 spaced crenulation (shear band) cleavage in Dalradian rocks of Neoproterozoic-Lower Ordovician age in the SW Highlands, Scotland. The cm-dm-scale D2 microlithons are asymmetric; have a geometrically distinctive nose and tail; and show a thickened central portion resulting from back-rotation of the constituent D1 microlithons. The current terminology used to describe crenulation cleavages is reviewed and updated. Aided by exceptional 3D exposures, it is shown how embryonic D2 flexural-slip folds developed into a spaced cleavage comprising fold-pair domains wrapped by anastomosing cleavage seams. The bulk strain was partitioned into low-strain domains separated by zones of high non-coaxial strain. This new model provides a template for determining the sense of shear in both low-strain situations and in ductile, higher strain zones where other indicators, such as shear folds, give ambiguous results. Analogous structures include tectonic lozenges in shear zones, and flexural-slip duplexes. Disputes over the sense and direction of shear during emplacement of the Tay Nappe, and the apparently intractable conflict between minor fold asymmetry and shear sense, appear to be resolved.

  4. Artificial-Recharge Experiments and Operations on the Southern High Plains of Texas and New Mexico

    USGS Publications Warehouse

    Brown, Richmond F.; Signor, Donald C.

    1973-01-01

    Experiments using highly turbid water from playa lakes for injection into the Ogallala Formation have resulted in greatly decreased yield of the recharge wells, Recharge of ground or surface water of good quality has indicated, however, that injection through wells is an effective method of recharging the aquifer. Water that is slightly turbid can be successfully injected for a period of time, but generally results in constantly declining yields and capacity for recharge. Redevelopment through pumping and surging significantly prolongs the life of recharge wells under some conditions. Surface spreading is little practiced on the High Plains, but locally may be a feasible means of artificial recharge.

  5. Artificial-recharge experiments and operations on the Southern High Plains of Texas and New Mexico

    USGS Publications Warehouse

    Brown, Richmond F.; Signor, Donald C.

    1973-01-01

    Experiments using highly turbid water from playa lakes for injection into the Ogallala Formation have resulted in greatly decreased yield of the recharge wells, Recharge of ground or surface water of good quality has indicated, however, that injection through wells is an effective method of recharging the aquifer. Water that is slightly turbid can be successfully injected for a period of time, but generally results in constantly declining yields and capacity for recharge. Redevelopment through pumping and surging significantly prolongs the life of recharge wells under some conditions. Surface spreading is little practiced on the High Plains, but locally may be a feasible means of artificial recharge.

  6. Using environmental isotopes in the study of the recharge-discharge mechanisms of the Yarmouk catchment area in Jordan

    NASA Astrophysics Data System (ADS)

    Salameh, Elias

    groundwater, which, from the highlands towards the Jordan Valley, shows increasing enrichment in isotopes. The highlands aquifer, with its groundwater depleted in isotopes, becomes confined towards the Jordan Valley; and, due to its confining pressure, leaks water upwards into the overlying aquifers causing their water to become less enriched in isotopes. Water depleted in its isotopic composition also seeps upward to the ground surface at the mountain foothills through faults and fissures. Les zones de recharge, les mécanismes d'écoulement et les zones de décharges des différentes masses d'eau souterraine sous le bassin versant de la rivière Yarmouk en Jordanie, étaient expliquées de manière ambiguë par les seuls outils isotopiques. Le long de la parti Jordanienne du bassin versant de la rivière Yarmouk l'eau souterraine provient de différents aquifères et se distinguent par leur type et leur composition chimique, selon que l'eau provient du même ou des différents aquifères. Les mécanismes conventionnels de recharge et de décharge, bilan hydrologique ne donnaient pas d'explications satisfaisantes concernant les variations chimiques et les différents types d'eau. En appliquant les isotopes environnementaux combinés aux effets de l'altitude sur les variations des teneurs isotopiques (l'altitude varie de 250 à 1,300 m sur une distance de 20 km.) et en prenant en considération les effets de ré-évaporation sur l'appauvrissement et l'enrichissement isotopique des eaux pluviales ont fortement contribués à une meilleure compréhension des mécanismes de recharge des différents aquifères. Les précipitations annuelles sont comprises entre 600 mm dans les zones en altitude et 350 mm dans la vallée de la Jordanie. Les écoulements de l'eau souterraine sont dirigés des zones en altitude vers la vallée de la Jordanie. Les eaux souterraines des zones en altitude sont isotopiquement appauvries (δO18 = -6, δD = -30), les eaux souterraines des zones de moyenne

  7. Amputation des quatre membres

    PubMed Central

    Feruzi, Maruis Kitembo; Milindi, Cédrick Sangwa; Zabibu, Mireille Kakinga; Mulefu, Jules Panda; Katombe, Francois Tshilombo

    2014-01-01

    Les auteurs présentent les cas d'amputation des quatre membres réalisée chez trois patients différents. Ce sont des amputations réalisées pour chaque patient au cours d'une seule hospitalisation et en un seul temps opératoire. Deux patients pour gangrène sèche infectée et un pour amputation traumatique des quatre membres. L'amputation d'urgence a été pratiquée en premier temps suivie de remodelage des moignons d'amputation en second temps. L’évolution de tous les patients a été bonne. PMID:25469177

  8. Heat transport in the vicinity of an artificial recharge site

    NASA Astrophysics Data System (ADS)

    Vandenbohede, Alexander; van Houtte, Emmanuel; Lebbe, Luc

    2010-05-01

    Since July 2002, the Intermunicipal Water Company of the Veurne region (IWVA) artificially recharges fresh water in the dunes of the western Belgian coastal plain by means of two recharge ponds. This recharge water is produced from secondary treated waste water effluent by the combination of ultra filtration and reverse osmosis. Extraction wells (112) are located north and south of the ponds. The artificial recharge project loops the water cycle: extracted water goes to the users and their waste water is purified and re-used. Therefore, it is an example of sustainable water management in coastal aquifers. Groundwater flow of this recharge site has been examined in the past by the use of a tracer test, hydrochemistry (environmental isotopes, conservative tracers) and groundwater flow modelling. Temperature, however, forms a relatively easy measurement which can add to or confirm the knowledge of the groundwater flow. Temperature time series (temperature as function of time) were measured at different levels in a number of wells located between the recharge ponds and the extraction wells, and in one well south of the recharge and extraction area. Secondly, temperature logs (temperature as function of depth) were measured in these wells at different times over the course of 2 years. Finally, the temperature of the recharged and extracted water is constantly monitored by the water company. The temperature of the recharge water shows a yearly fluctuation, ranging from 25 °C during summer to slightly above 0 °C during the winter. The temperature of the extracted water (combination of water extracted in all the wells) ranges between 17 °C during summer and 10 °C during winter. Minima and maxima in the extracted water are observed between 76 and 110 days (mean of 90 days and standard deviation of 13.5 days) later in the extracted water with respect to the recharged water. Measurements show that the difference in time when maxima and minima are observed in an

  9. Crab Burrows are Important Conduits for Groundwater Recharge in Bangladesh

    NASA Astrophysics Data System (ADS)

    Stahl, M.; Tarek, M. H.; Yeo, D. C.; Badruzzaman, A.; Harvey, C. F.

    2013-12-01

    Recent research suggests that recharge from man-made ponds may stimulate arsenic mobilization within Bangladeshi aquifers. Man-made ponds are widespread throughout Bangladesh and are generally underlain by low permeability clays that could potentially limit flow to the sandy aquifer below if they are not compromised by preferential flow paths. Animal borrows are one common type of preferential flow path through surface clays. Across the Ganges Delta, terrestrial crabs dig borrows, sometimes as long as 10 meters. In our study pond in Munshiganj, Bangladesh we found crab burrows extending through the surficial clays and down into the shallow aquifer spaced approximately every meter. We use these field observations along with a novel, coupled isotope and water balance model to quantify the fluxes into and out of the pond. We show that nearly all of the aquifer recharge from the pond is through crab burrows which have enhanced the hydraulic conductivity of the surficial sediments by several orders of magnitude. In addition we show that the recharging pond water is shifting the solute composition of water beneath the pond. We suggest that, as a result of crab burrows, young ponds may contribute large fluxes of recharge water whereas older ponds may contribute little recharge to the aquifer. All terrestrial crabs have gills that must remain moist to allow for respiration. So, to ensure an uninterrupted water source, their borrows must reach the maximum depth that the water table drops to seasonally after irrigation ceases and before the onset of the monsoon. Once a pond is installed crabs living within the sediments that now make up the new pond bottom would no longer need to construct burrows to ensure a constant supply of water. Over time, burrows that existed prior to pond construction can clog. Water balance data for an old pond at our study site indicates that this pond contributes less recharge than our newly constructed pond.

  10. Rechargeable Zn-MnO sub 2 alkaline batteries

    SciTech Connect

    Wruck, W.J.; Reichman, B.; Bullock, K.R.; Kao, W.H. )

    1991-12-01

    In this paper progress in the development of rechargeable alkaline zinc-manganese dioxide cells is described. The advantages and limitations of the system are evaluated. Laboratory tests run on commercial primary alkaline cells as well as model simulations of a bipolar MnO{sub 2} electrode show that the rechargeable alkaline battery may be able to compete with lead-acid, nickel-cadmium, and secondary lithium cells for low- to moderate-rate applications. However, because of this poor performance at high rates and low temperatures, the alkaline MnO{sub 2} battery is not suitable for present automotive starting applications.

  11. Focused Ground-Water Recharge in the Amargosa Desert Basin

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Walvoord, Michelle A.; Abraham, Jared D.; Stewart-Deaker, Amy E.; Glancy, Patrick A.; Constantz, Jim; Laczniak, Randell J.; Andraski, Brian J.

    2007-01-01

    The Amargosa River is an approximately 300-kilometer long regional drainage connecting the northern highlands on the Nevada Test Site in Nye County, Nev., to the floor of Death Valley in Inyo County, Calif. Streamflow analysis indicates that the Amargosa Desert portion of the river is dry more than 98 percent of the time. Infiltration losses during ephemeral flows of the Amargosa River and Fortymile Wash provide the main sources of ground-water recharge on the desert-basin floor. The primary use of ground water is for irrigated agriculture. The current study examined ground-water recharge from ephemeral flows in the Amargosa River by using streamflow data and environmental tracers. The USGS streamflow-gaging station at Beatty, Nev., provided high-frequency data on base flow and storm runoff entering the basin during water years 1998?2001. Discharge into the basin during the four-year period totaled 3.03 million cubic meters, three quarters of which was base flow. Streambed temperature anomalies indicated the distribution of ephemeral flows and infiltration losses within the basin. Major storms that produced regional flow during the four-year period occurred in February 1998, during a strong El Ni?o that more than doubled annual precipitation, and in July 1999. The study also quantified recharge beneath undisturbed native vegetation and irrigation return flow beneath irrigated fields. Vertical profiles of water potential and environmental tracers in the unsaturated zone provided estimates of recharge beneath the river channel (0.04?0.09 meter per year) and irrigated fields (0.1?0.5 meter per year). Chloride mass-balance estimates indicate that 12?15 percent of channel infiltration becomes ground-water recharge, together with 9?22 percent of infiltrated irrigation. Profiles of potential and chloride beneath the dominant desert-shrub vegetation suggest that ground-water recharge has been negligible throughout most of the basin since at least the early Holocene

  12. Thin Rechargeable Batteries for CMOS SRAM Memory Protection

    NASA Technical Reports Server (NTRS)

    Crouse, Dennis N.

    1993-01-01

    New rechargeable battery technology is described and compared with classical primary battery back-up of SRAM PC cards. Thin solid polymer electrolyte cells with the thickness of TSOP memory components (1 mm nominal, 1.1 mm max) and capacities of 14 mAh/sq cm can replace coin cells. The SRAM PC cards with permanently installed rechargeable cells and optional electrochromic low battery voltage indicators will free the periodic PC card user from having to 'feed' their PC cards with coin cells and will allow a quick visual check of stored cards for their battery voltage status.

  13. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Federal Aviation Administration Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  14. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Federal Aviation Administration Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  15. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... Federal Aviation Administration First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  16. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Federal Aviation Administration Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  17. Recharge areas and hydrochemistry of carbonate springs issuing from Semmering Massif, Austria, based on long-term oxygen-18 and hydrochemical data evidence

    NASA Astrophysics Data System (ADS)

    Yehdegho, Beyene; Reichl, Peter

    2002-10-01

    Résumé. Les teneurs en oxygène-18 et l'hydrochimie des sources émergeant du massif de Semmering ont été suivies de manière intensive dans le but de caractériser les zones de recharge et l'évolution hydrochimique. L'effet d'altitude sur le δ18O a été déterminé grâce aux données isotopiques et hydrogéologiques de petites sources de référence, principalement en terrains cristallins; cet effet est d'environ -0,27 et -0,21‰ par 100 m pour les versants respectivement nord et sud du massif. En appliquant ces valeurs, l'altitude moyenne de recharge des sources a été calculée. Pour les sources à fort débit issues des carbonates, elle est comprise entre 1,100 et 1,400 m, compatible avec le cadre topographique et hydrogéologique des calcaires et des dolomies de l'Austro-alpin inférieur alimentant ces sources. La composition chimique des sources des carbonates est dominée par les ions Ca2+, Mg2+, HCO3- et SO42-. Les sources sont presque toutes proches de la saturation par rapport à la calcite, mais sont sous-saturées en dolomite (sauf quelques sources proches de la saturation). Comme cela est habituel en ce qui concerne le dioxyde de carbone fourni par les sols en régions montagneuses, la pCO2 équilibrante moyenne est faible, comprise entre 10-3.0 et 10-2.5 atm (0,1 à 0,3% en volume). En ce qui concerne les variations à long terme, le pH, SIc, Sid et la pCO2 équilibrante sont soumis à des variations saisonnières, alors que les concentrations en Ca2+, Mg2+ et HCO3- ne varient pratiquement pas. En intégrant les résultats de δ18O et les données hydrochimiques, la variabilité altitudinale du chimisme des eaux souterraines des carbonates est démontrée. Reflétant les variations d'activité biologique et des conditions de recharge dans les zones d'alimentation, une covariation négative résulte de l'altitude de recharge et de la pCO2 et la concentration en HCO3- n'est pas modifiée par aucun des termes source ou puits, ce qui fait varier

  18. Recharge areas and hydrochemistry of carbonate springs issuing from Semmering Massif, Austria, based on long-term oxygen-18 and hydrochemical data evidence

    NASA Astrophysics Data System (ADS)

    Yehdegho, Beyene; Reichl, Peter

    2002-10-01

    Résumé. Les teneurs en oxygène-18 et l'hydrochimie des sources émergeant du massif de Semmering ont été suivies de manière intensive dans le but de caractériser les zones de recharge et l'évolution hydrochimique. L'effet d'altitude sur le δ18O a été déterminé grâce aux données isotopiques et hydrogéologiques de petites sources de référence, principalement en terrains cristallins; cet effet est d'environ -0,27 et -0,21‰ par 100 m pour les versants respectivement nord et sud du massif. En appliquant ces valeurs, l'altitude moyenne de recharge des sources a été calculée. Pour les sources à fort débit issues des carbonates, elle est comprise entre 1,100 et 1,400 m, compatible avec le cadre topographique et hydrogéologique des calcaires et des dolomies de l'Austro-alpin inférieur alimentant ces sources. La composition chimique des sources des carbonates est dominée par les ions Ca2+, Mg2+, HCO3- et SO42-. Les sources sont presque toutes proches de la saturation par rapport à la calcite, mais sont sous-saturées en dolomite (sauf quelques sources proches de la saturation). Comme cela est habituel en ce qui concerne le dioxyde de carbone fourni par les sols en régions montagneuses, la pCO2 équilibrante moyenne est faible, comprise entre 10-3.0 et 10-2.5 atm (0,1 à 0,3% en volume). En ce qui concerne les variations à long terme, le pH, SIc, Sid et la pCO2 équilibrante sont soumis à des variations saisonnières, alors que les concentrations en Ca2+, Mg2+ et HCO3- ne varient pratiquement pas. En intégrant les résultats de δ18O et les données hydrochimiques, la variabilité altitudinale du chimisme des eaux souterraines des carbonates est démontrée. Reflétant les variations d'activité biologique et des conditions de recharge dans les zones d'alimentation, une covariation négative résulte de l'altitude de recharge et de la pCO2 et la concentration en HCO3- n'est pas modifiée par aucun des termes source ou puits, ce qui fait varier

  19. The UHP metamorphic Seve Nappe Complex of the Swedish Caledonides - a new occurrence of the microdiamond-bearing gneisses and their exhumation

    NASA Astrophysics Data System (ADS)

    Klonowska, Iwona; Janák, Marian; Majka, Jarosław; ‎ Froitzheim, Nikolaus; Gee, David G.

    2015-04-01

    The ultra-high pressure metamorphism (UHPM) in the Seve Nappe Complex of the Swedish Caledonides has been recently recognized within several lithologies including gneisses, eclogites and garnet pyroxenites (e.g. Janák et al. 2013, Klonowska et al. 2014a, Majka et al. 2014). Thermodynamic modelling and thermobarometric calculations indicate peak pressure conditions of >3GPa at c. 800-900°C (reaching the diamond stability field) for eclogites and garnet pyroxenites from northern Jämtland (e.g. Klonowska et al. 2014b). In addition to this, the first microdiamonds were found in paragneisses from the Snasahögarna Mt. in central Jämtland (Majka et al. 2014). Here we report a new discovery of microdiamond together with moissanite (SiC) from one of the world's most famous localities for thrusting, Mount Åreskutan, where long transport distances were recognized already in the 19th century (Törnebohm 1888). Garnet porphyroblasts in gneisses from the Åreskutan Mt. contain abundant mineral inclusions, mainly graphite, carbonates and quartz, together with fluid inclusions of CO2 concentrated in swarms. Among these inclusions three microdiamonds were found in two gneiss samples. In one of the samples moissanite was also discovered. Both minerals were identified by micro-Raman spectroscopy. In addition to these 'swarm' inclusions, biotite, kyanite, rutile, feldspars, zircon, monazite, ±phengite, ±muscovite, ±spinel, ±ilmenite, ±apatite occur in garnets. Phase equilibrium modelling for the phengite-bearing gneiss confirms its UHP history at temperatures of c. 800°C. Recent discoveries of UHP metamorphism within the Seve Nappe Complex derived from the Baltican outer margin (part of the Middle Allochthon) challenged us to present a new tectonic model incorporating exhumation of the deeply subducted continental rocks together with mantle lithosphere peridotites. Majka et al. (2014) introduced a new "under-pressure"-driven exhumation mechanism of rocks buried in

  20. Seismic source study of the Racha-Dzhava (Georgia) earthquake from aftershocks and broad-band teleseismic body-wave records: An example of active nappe tectonics

    USGS Publications Warehouse

    Fuenzalida, H.; Rivera, L.; Haessler, H.; Legrand, D.; Philip, H.; Dorbath, L.; McCormack, D.; Arefiev, S.; Langer, C.; Cisternas, A.

    1997-01-01

    -S oriented plane. Nappe tectonics has been identified as an important feature in the Caucasus, and the source mechanism is consistent with this observation. A hidden fault is present below the nappe, and no large surface breaks were observed due to the main shock. The epicentral region is characterized by sediments that are trapped between two crystalline basements: the Dzirula Massif, which crops out south of Chiatoura, and the Caucasus Main Range north of Oni. Most, if not all, of the rupture is controlled by the thrusting of overlapping, deformed and folded sediments over the Dzirula Massif. This event is another example of blind active faults, with the distinctive feature that the fault plane dips at a gentle angle. The Racha Range is one of the surface expressions of this blind thrust, and its growth is the consequence and evidence of similar earthquakes in the past.

  1. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden

    NASA Astrophysics Data System (ADS)

    Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.

    2014-04-01

    Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress

  2. Possible silica gel in the Olive Fault, Naukluft Nappe Complex, Namibia: A geologic record of dynamic weakening in faults during continental orogenesis

    NASA Astrophysics Data System (ADS)

    Faber, C.; Rowe, C. D.; Miller, J. A.; Backeberg, N.; Sylvester, F.

    2009-12-01

    The apparently low frictional strength of faults during earthquake slip is not sufficiently well explained. Dynamic weakening has been observed in recent laboratory experiments at seismic slip rates, even if materials are strong at slow slip rates. Di Toro et al. (2004) performed experiments on crystalline rocks at slip rates of 1m/s and observed frictional strength drops to near zero. Examination of the slip surface revealed an amorophous silica had formed during fast slip and interpreted this as a solidified silica gel. If similar silica gel forms during earthquakes, and solidifies to amorphous silica, it would be expected to slowly crystallize over time. Ujiie et al (2007) reported a microcrystalline silica fault vein from the Shimanto Complex (Japan) which contains colloidal microspheres of silica, consistent with its origin as a silica gel. This vein may have been created during seismic slip, although other explanations are possible. No other natural examples of this potentially important coseismic weakening mechanism have been reported. To investigate whether silica gel actually forms during seismic slip, it will be necessary to discover and fully characterize additional natural examples. The Naukluft Nappe Complex in central Namibia is a foreland thrust stack at the distal southern margin of the Pan-African Damara Orogen (active at ~ 550Ma). A fault vein of microcrystalline silica has been found in an intra-nappe thrust fault . The vein occurs as a mostly continuous, planar, 0.1-1.0cm-thick fault vein within dolomite breccias of the Olive Fault. There are no other veins of silica associated with the fault. The hanging wall and footwall are dolomite and calcareous shales, respectively. The layer is petrographically similar to the microcrystalline silica described by Ujiie et al. (2007). The silica layer is purple-blue to white in color cathodoluminescence, in contrast to the bright turquoise typical of quartz. Although X-ray diffraction spectra show only

  3. Syn- to post-orogenic exhumation of metamorphic nappes: Structure and thermobarometry of the western Attic-Cycladic metamorphic complex (Lavrion, Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Vanderhaeghe, Olivier; Lanari, Pierre; Tarantola, Alexandre; Ponthus, Léandre; Photiades, Adonis; France, Lydéric

    2016-05-01

    The Lavrion peninsula is located along the western boundary of the Attic-Cycladic metamorphic complex in the internal zone of the Hellenic orogenic belt. The nappe stack is well exposed and made, from top to bottom, of (i) a non-metamorphic upper unit composed of an ophiolitic melange, (ii) a middle unit mainly composed of the Lavrion schists in blueschist facies, (iii) and a basal unit mainly composed of the Kamariza schists affected by pervasive retrogression of the blueschist facies metamorphism in greenschist facies. The middle unit is characterized by a relatively steep-dipping foliation associated with isoclinal folds of weakly organized axial orientation. This foliation is transposed into a shallow-dipping foliation bearing a N-S trending lineation. The degree of transposition increases with structural depth and is particularly marked at the transition from the middle to the basal unit across a low-angle mylonitic to cataclastic detachment. The blueschist facies foliation of the Lavrion schists (middle unit) is underlined by high pressure phengite intergrown with chlorite. The Kamariza schists (basal unit) contains relics of the blueschist mineral paragenesis but is dominated by intermediate pressure phengite also intergrown with chlorite and locally with biotite. Electron probe micro-analyzer chemical mapping combined with inverse thermodynamic modeling (local multi-equilibrium) reveals distinct pressure-temperature conditions of crystallization of phengite and chlorite assemblages as a function of their structural, microstructural and microtextural positions. The middle unit is characterized by two metamorphic conditions grading from high pressure (M1, 9-13 kbar) to lower pressure (M2, 6-9 kbar) at a constant temperature of ca. 315 °C. The basal unit has preserved a first set of HP/LT conditions (M1-2, 8-11 kbar, 300 °C) partially to totally transposed-retrogressed into a lower pressure mineral assemblage (M3, 5-8.5 kbar) associated with a slight but

  4. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478...; Rechargeable Lithium Batteries and Rechargeable Lithium- Battery Systems AGENCY: Federal Aviation... batteries and rechargeable lithium-battery systems. The applicable airworthiness regulations do not...

  5. Repeated slip along a major decoupling horizon between crustal-scale nappes of the Central Western Carpathians documented in the Ochtiná tectonic mélange

    NASA Astrophysics Data System (ADS)

    Novotná, N.; Jeřábek, P.; Pitra, P.; Lexa, O.; Racek, M.

    2015-04-01

    The Ochtiná Unit is situated in the ENE-WSW-trending contact zone between two crustal-scale nappes, the upper Gemer Unit and the lower Vepor Unit, in the Central Western Carpathians, Slovakia. The Ochtiná Unit consists mainly of Carboniferous phyllitic schists and sandstones enclosing lenses of diverse lithological nature and contrasting metamorphic history. Peak PT conditions obtained by means of phase equilibrium modelling from lenses of amphibolite and chloritoid schist in this unit indicate 500-600 °C and 4-6.5 kbar and 500-520 °C and 9-11 kbar, respectively. These PT conditions contrast not only with the greenschist-facies metamorphism of dominant phyllite but also with each other documenting two distinct metamorphic field gradients related to Variscan and Alpine metamorphic events. Geochemical data reveal an affinity of the amphibolite lenses similar to Variscan rocks in the basement of the upper Gemer Unit and of the chloritoid schist similar to Alpine rocks in the cover of the lower Vepor Unit. Such heterogeneous lithological and metamorphic record is consistent with a block-in-matrix rock arrangement and the Ochtiná Unit is interpreted as deep seated tectonic mélange. The mélange evolved via repeated slip along the rheologically weak sediments of the Ochtiná Unit during the building and collapse of the Eo-Alpine orogenic wedge of the Central Western Carpathians. Deformation record indicates that the mélange separates two distinct structural domains marked by a decoupled behaviour, i.e. the orogenic suprastructure represented by the Gemer Unit and the infrastructure represented by the Vepor Unit. With this respect, the Ochtiná Unit represents an unusual example of a suprastructure-infrastructure transition zone with its position being controlled by the mechanical weakness of this sedimentary horizon and not by the temperature-dependent rheological transition.

  6. Drain discharge monitoring to estimate plot scale groundwater recharge

    NASA Astrophysics Data System (ADS)

    Di Ciacca, Antoine; Leterme, Bertrand; Jacques, Diederik; Vanderborght, Jan

    2016-04-01

    Spatially and temporally distributed representation of groundwater recharge is known as an important issue in hydrogeological modelling. Therefore, monitored groundwater recharge data are crucial to parameterize and/or validate groundwater flow models. Generally, river base flow measurements are used for this purpose with the assumption that these catchment-scale spatially aggregated measurements are suitable to assess the internal catchment behaviour. However, the signal of different soil and vegetation types is lost and this limits our ability to validate mechanistic, process-based models used at the plot scale. A suitable alternative in lowland drained areas could lie in monitoring drain discharge. The present poster describes the set-up of such a monitoring device in a ditch drain located in the Kleine Nete catchment (Belgium). To calculate groundwater recharge rate from drain discharge monitoring, some intermediate steps are required. The contributing area has to be delimited and the contribution of recharge water from this area has to be separated from other possible sources (e.g. deeper groundwater flow, run-off). To handle this, some assumptions regarding the features of the plot and some additional measurements have been used.

  7. Effects of recharge wells and flow barriers on seawater intrusion.

    PubMed

    Luyun, Roger; Momii, Kazuro; Nakagawa, Kei

    2011-01-01

    The installation of recharge wells and subsurface flow barriers are among several strategies proposed to control seawater intrusion on coastal groundwater systems. In this study, we performed laboratory-scale experiments and numerical simulations to determine the effects of the location and application of recharge wells, and of the location and penetration depth of flow barriers, on controlling seawater intrusion in unconfined coastal aquifers. We also compared the experimental results with existing analytical solutions. Our results showed that more effective saltwater repulsion is achieved when the recharge water is injected at the toe of the saltwater wedge. Point injection yields about the same repulsion compared with line injection from a screened well for the same recharge rate. Results for flow barriers showed that more effective saltwater repulsion is achieved with deeper barrier penetration and with barriers located closer to the coast. When the flow barrier is installed inland from the original toe position however, saltwater intrusion increases with deeper barrier penetration. Saltwater repulsion due to flow barrier installation was found to be linearly related to horizontal barrier location and a polynomial function of the barrier penetration depth. PMID:20533955

  8. WASTEWATER CONTAMINATE REMOVAL FOR GROUNDWATER RECHARGE AT WATER FACTORY 21

    EPA Science Inventory

    This is the second report in a series which describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a g...

  9. PRINCIPALS OF ORGANIC CONTAMINANT BEHAVIOR DURING ARTIFICIAL RECHARGE

    EPA Science Inventory

    The behavior of a variety of organic contaminants having low molecular weight has been observed during groundwater recharge with reclaimed water. The evidence is site-specific, but is believed to have broader implications regarding the general behavior of organic contaminants in ...

  10. Preferred water flow and localised recharge in a variable regolith

    NASA Astrophysics Data System (ADS)

    Johnston, Colin D.

    1987-10-01

    The mechanisms of water flow and recharge to groundwater were investigated in a deep clayey regolith in southwest Western Australia. A 700 m 2 area was intensively studied for a period of two years. Vertical distributions of natural chloride in thirteen profiles up to 31 m deep were used to estimate the distribution of vertical soil-water flux density in the 16 m unsaturated zone and rates of recharge to groundwater. Groundwater dynamics were monitored using ten single and four multilevel piezometers. The regolith showed marked heterogeneity over horizontal and vertical distances of only a few metres. This resulted in complex patterns of water and solute movement through the profiles. Over most of the experimental area, vertical water flux density below 5 m in the unsaturated zone was from 2.2 to 7.2 mm yr -1. However, within a relatively small portion of the site, vertical soil-water flux density was 50-100 mm yr -1 throughout the unsaturated zone. This flux more closely matched the apparent rate of recharge to groundwater. The area of preferred flow is apparently due to a discontinuity within the regolith. A groundwater mound was seen to develop below the localised recharge area within 12-14 h of intense rainstorms, and then dissipated over a period of 2-4 days.

  11. A device for recharging evaporation sources in ultrahigh vacuum systems

    NASA Astrophysics Data System (ADS)

    Fuenzalida, V. M.; Grahmann, C. R.; Herrera, C.

    1998-08-01

    We describe a device capable of recharging the evaporation sources of ultrahigh vacuum systems without breaking the vacuum. The device is operated through the same load lock used for the introduction of the substrates and is able to place grains of materials on resistively heated boats.

  12. DELINEATING KARST RECHARGE AREAS AT ONONDAGA CAVE STATE PARK

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onondaga Cave State Park is located in the north central portion of the Ozarks near Leasburg, Missouri. The park is known for two extensive cave systems, Onondaga Cave and Cathedral Cave. Both of these cave systems have active streams (1-2 cfs at baseflow) which have unknown recharge areas. As a man...

  13. Estimating High Plains Aquifer Recharge Using Temperature Probes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of recharge through playa wetlands in the High Plains Region of the United States has been debated, but rarely quantified. The ephemeral nature of water in playas makes it difficult and expensive to observe filling and drying/draining cycles. Inexpensive tools are needed to quantify ...

  14. PRIORITY POLLUTANTS IN THE CEDAR CREEK WASTEWATER RECLAMATION - RECHARGE FACILITIES

    EPA Science Inventory

    The Cedar Creek Wastewater Reclamation Plant (CCWRP) located in Nassau County, NY is a 0.24 cu m/s (5.5 mgd) advanced wastewater treatment (AWT) plant designed to produce a high quality effluent suitable for groundwater recharge. The CCWRP was constructed as a demonstration proje...

  15. Managed Aquifer Recharge in Italy: present and prospects.

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  16. LOCALIZED RECHARGE INFLUENCES ON MTBE TRANSPORT AND WELL PLACEMENT CONSIDERATIONS

    EPA Science Inventory

    Vertical characterization of a gasoline release site at East Patchogue, New York showed that methyl tert-butyl ether (MTBE) and aromatic plumes "dived" as they passed beneath a sand pit. That this behavior was caused by aquifer recharge was shown by two pieces of evidence. Fir...

  17. Effects of variations in recharge on groundwater quality

    USGS Publications Warehouse

    Whittemore, D.O.; McGregor, K.M.; Marotz, G.A.

    1989-01-01

    The predominant regional effect of recharge on municipal groundwater quality in Kansas is the dilution of mineralized water in aquifers with relatively shallow water tables. The individual dissolved constituents contributing most to the water-quality variations are sulfate and chloride, and the calcium and sodium accompanying them, which are derived from the dissolution of evaporite minerals within the aquifer or from saline formation water in bedrock underlying the aquifer. The relationship between recharge and groundwater-quality variation can be quantified by associating certain climatic indices, especially the Palmer Drought Index, with quality observations. The response time of the maximum water-quality change relative to the occurrence of drought or substantial recharge ranges from a month to 3 years depending on the aquifer characteristics, and is generally proportional to the saturated thickness and specific yield. The response time is also affected by discharge to and recharge from nearby streams and by the well construction, particularly the placement of the screened interval, and pumping stress. ?? 1989.

  18. Electrolytes for rechargeable lithium batteries. Research and development technical report

    SciTech Connect

    Hunger, H.F.

    1981-09-01

    Theoretical considerations predict increased stability of cyclic ethers and diethers against reductive cleavage by lithium if the ethers have 2 methyl substitution. Diethers are solvents with low viscosity which are desirable for high rate rechargeable lithium batteries. Synergistic, mixed solvent effects increase electrolyte conductance and rate capability of lithium intercalating cathodes.

  19. Implantable wireless battery recharging system for bladder pressure chronic monitoring.

    PubMed

    Young, Darrin J; Cong, Peng; Suster, Michael A; Damaser, Margot

    2015-11-21

    This paper presents an implantable wireless battery recharging system design for bladder pressure chronic monitoring. The wireless recharging system consists of an external 15 cm-diameter 6-turn powering coil and a silicone-encapsulated implantable rectangular coil with a dimension of 7 mm × 17 mm × 2.5 mm and 18 turns, which further encloses a 3 mm-diameter and 12 mm-long rechargeable battery, two ferrite rods, an ASIC, and a tuning capacitor. For a constant recharging current of 100 μA, an RF power of 700 μW needs to be coupled into the implantable module through the tuned coils. Analyses and experiments confirm that with the two coils aligned coaxially or with a 6 cm axial offset and a tilting angle of 30°, an external power of 3.5 W or 10 W is required, respectively, at an optimal frequency of 3 MHz to cover a large implant depth of 20 cm. PMID:26419677

  20. Oxygen electrodes for rechargeable alkaline fuel cells. II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1990-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  1. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  2. Oxygen electrodes for rechargeable alkaline fuel cells-II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  3. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell. PMID:20177608

  4. Moderate temperature rechargeable NaNiS2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

  5. 24. APPERATUS FOR RECHARGING MINERS' HEADLAMPS, LOCATED AGAINST THE NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. APPERATUS FOR RECHARGING MINERS' HEADLAMPS, LOCATED AGAINST THE NORTH WALL OF THE LOWER LEVEL OF THE CHIPPY HOIST HOUSE, LOOKING NORTHWEST. SOME OF THE BATTERY PACKS ARE STILL IN PLACE, AND ONE HAS A LAMP HANGING AT THE END - Butte Mineyards, Anselmo Mine, Butte, Silver Bow County, MT

  6. Quantifying Groundwater Recharge During Dynamic Seasonality in Cold Climates

    NASA Astrophysics Data System (ADS)

    Pasha, E.; Rudolph, D. L.

    2015-12-01

    Estimating groundwater recharge in cold climates, during periods of dynamic seasonality such as winter and spring freshets is challenging due to subsurface heterogeneities and the complexity of vadose zone processes under partially frozen conditions. In order to obtain robust recharge estimates, numerical models simulating these complex processes need to be based on reliable parameter estimates and closely calibrated to field observations. This study focuses on quantifying recharge under an ephemeral stream that develops in the vicinity of a municipal well field during spring and winter freshets at a site in Southern Ontario. Temperature and moisture content profiles in the vadose zone were obtained during the 2015 spring melt at three different locations, using a variety of hydrogeological instruments. Temperature thermisters and Tid-Bit transducers were both installed at 15-30 cm spacings to the depth of the water table in order to compare and calibrate the results. Similarly, Time Domain Reflectometry probes were placed to the depth of the water table and the results were calibrated to daily moisture content readings taken with a Neutron Probe. Water table fluctuations were monitored and regular water samples were taken for analysis of geochemistry and isotope fractionation. This data provided the boundary conditions for the numerical model (Hydrus 1D) and allowed for its calibration and validation. Regions of rapid infiltration were observed at the site, as well as steep temperature gradients that could be used as a tracer for estimating recharge in cold climates. The geochemistry and isotope fractionation results provided support of surface water groundwater interaction within event based time periods predicted by the numerical models. Furthermore, the surface water samples were found to have high concentrations of microbial indicator species, and therefore the intense recharge phenomena observed at the site has significant implications to groundwater

  7. Defining Flood Recharge Processes: Lower Bill Williams River, Western Arizona

    NASA Astrophysics Data System (ADS)

    Simpson, S. C.; Meixner, T.; Hogan, J.

    2008-12-01

    River networks provide hydrologic connections between upland and headwater catchments and downstream reaches. In arid and semi-arid regions, full connectivity of a river system is rare and moments of connection may only occur during large flood events. Here we investigate the Bill Williams River, among the most arid river basins in the United States. The aridity of this system-and the associated lack of complicating hillslope processes adjacent to the river-provides a unique opportunity to study flood recharge processes in relative isolation. During all but the highest flows, the river infiltrates completely at the east end of Planet Valley and reemerges at the west end where it enters the Bill Williams River National Wildlife Refuge (NWR). Determining the source of baseflow in the lower Bill Williams/NWR, and the residence time of this water in the Planet Valley aquifer, will provide insight into the dependence of streamflow on earlier recharge-inducing floods. Defining this dependence more clearly is the next step toward a detailed knowledge of the long-term, basin-scale impacts of floods on water quality and quantity. To determine the impact of floods and the recharge they induce, surface and groundwater samples were collected during high and low flows throughout the basin from April 2007 through the present. Isotopic (δ18OH2O, δ2HH2O) and chemical differences (most notably SO4) in streamflow and groundwater along the system indicate the importance of older groundwater in NWR baseflow-either in the form of prior flood recharge or influxes from local springs. Sulfate isotope analysis (δ34SSO4, δ18OSO4) is pending for samples throughout the lower basin and this information should allow streamflow sources to be defined and quantified. This study provides a better characterization of the hydrologic and hydrochemical behavior of a Basin and Range river, and allows the effects of flood recharge processes to be more clearly defined at the basin scale.

  8. Groundwater suitability recharge zones modelling - A GIS application

    NASA Astrophysics Data System (ADS)

    Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

    2014-11-01

    Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

  9. Enhanced recharge and karst, Edwards aquifer, south central Texas

    SciTech Connect

    Hammond, W.W. Jr. . Center for Water Research)

    1993-02-01

    Enhanced recharge is a water management strategy which can add significant quantities of ground water to the available water resources of the San Antonio region by utilizing the immense storage capacity of the unconfined zone of the Edwards aquifer. The Edwards aquifer presently is the sole source of water for a population of over 1,200,000, meeting public supply, industrial, and irrigation demands over a wide area of south central Texas. Valdina Farms Sinkhole is located adjacent to Seco Creek in Medina County and is in the recharge zone of the aquifer. Initial studies indicated that the sinkholes was capable of taking flood flows from Seco Creek and functioning as a recharge structure. Stream channels in the cavern system associated with Valdina Farms Sinkhole were incised into cave deposits and flood debris was present in the caverns at some distance from the sinkhole. Chemical analyses of samples of water from the cave and from nearby wells showed nitrate concentrations that decreased with distance from the cavern. Gradient of the potentiometric surface in the vicinity of the cave was very low, indicating high values of hydraulic conductivity for the aquifer. Based on evidence from these field studies a dam was constructed in 1982 on Seco Creek and a flood diversion channel was excavated to the sinkhole. Reservoir capacity is 2 acre-feet and design recharge rate is 3.8-6.7 m[sup 3]/sec. Annual recharge at the sinkhole has varied from 0 during periods of low runoff to 12,915 acre-feet.

  10. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  11. Global transpiration, recharge and runoff tracked with stable isotopes

    NASA Astrophysics Data System (ADS)

    Jasechko, S.

    2015-12-01

    The transformations of precipitation into soil-, ground- or stream-water constitute fundamental components of the hydrologic cycle. Hydrometric data are well suited to track propagations of pressures through the landscape, but tell us little about the transport of water itself. Conversely, isotopic data track movements of molecules, providing quantitative insights into subsurface processes. This presentation reviews recent uses of isotopic data to quantify the velocity, storage and mixing of precipitation as it flushes into plants (1. transpiration), aquifers (2. recharge) and streams (3. runoff). (1) Plant transpiration comprises the largest flux of fresh water from the continents, exceeding global river flows by a factor of ~1.5. Mounting evidence suggests that water used by plants is poorly connected to water flowing into streams and aquifers, contrasting most earth system model parameterizations. (2) This partitioning of precipitation into "blue" (recharge, runoff) and "green" (transpiration) water storages is further evidenced by relating precipitation and groundwater isotope contents. Global precipitation-groundwater isotope data show that snowmelt pulses (extratropics) and intensive rainfall (tropics) lead to disproportionately large groundwater recharge fluxes—that is, recharge/precipitation ratios exceeding the local annual average. Across the low latitudes, these results mean that the ongoing intensification of precipitation brought on by global warming may serve to promote groundwater recharge in the tropics, where, by 2050, half of the world's population is projected to live. (3) This presentation concludes by relating precipitation and streamflow isotope contents to show that ~1/3 of global river discharges are generated by precipitation that reaches the stream in less than 3 months (i.e., "young water" in rivers). Substantial and pervasive young, month(s)-old water in global rivers means that biogeochemical processes taking place in the critical

  12. Classification of ground-water recharge potential in three parts of Santa Cruz County, California

    USGS Publications Warehouse

    Muir, K.S.; Johnson, Michael J.

    1979-01-01

    Ground-water recharge potential was classified in the Santa Cruz coastal area, North-central area, and Soquel-Aptos area in Santa Cruz County, Calif., for three data elements that affect recharge; slope, soils, and geology. Separate numerical maps for each element were composited into a single numerical map using a classification system that ranked the numbers into areas of good , fair, and poor recharge potential. Most of the Santa Cruz coastal area and the Norht-central area have a poor recharge potential, and much of the Soquel-Aptos area has a good to fair recharge potential. (Kosco-USGS)

  13. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  14. Transient, spatially-varied recharge for groundwater modeling

    NASA Astrophysics Data System (ADS)

    Assefa, K.; Woodbury, A. D.

    2012-12-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  15. Transient,spatially-varied recharge for groundwater modeling

    NASA Astrophysics Data System (ADS)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  16. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  17. A new method for estimating recharge to unconfined aquifers using differential river gauging.

    PubMed

    McCallum, Andrew M; Andersen, Martin S; Acworth, R Ian

    2014-01-01

    In semiarid and arid environments, leakage from rivers is a major source of recharge to underlying unconfined aquifers. Differential river gauging is widely used to estimate the recharge. However, the methods commonly applied are limited in that the temporal resolution is event-scale or longer. In this paper, a novel method is presented for quantifying both the total recharge volume for an event, and variation in recharge rate during an event from hydrographs recorded at the upstream and downstream ends of a river reach. The proposed method is applied to river hydrographs to illustrate the method steps and investigate recharge processes occurring in a sub-catchment of the Murray Darling Basin (Australia). Interestingly, although it is the large flood events which are commonly assumed to be the main source of recharge to an aquifer, our analysis revealed that the smaller flow events were more important in providing recharge. PMID:23550897

  18. Des Vents et des Jets Astrophysiques

    NASA Astrophysics Data System (ADS)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  19. Modelling perched river recharge to the Wairau aquifer, New Zealand

    NASA Astrophysics Data System (ADS)

    Wöhling, Thomas; Gosses, Moritz; Wilson, Scott; Davidson, Peter

    2015-04-01

    The Wairau Aquifer in Marlborough, New Zealand, consists of coarse, high-conductive alluvial gravels and is almost exclusively recharged by surface water from the braided Wairau River. Recent experimental evidence suggests that the river is perched in the upstream recharge region of the aquifer. The aquifer serves as the major drinking water resource for the city of Blenheim and the surrounding settlements on the Wairau Plain and thus is a key natural resource for the region. To ensure the sustainable management of the resource, it is essential to better understand the limits and the mechanics of the recharge mechanism. One efficient way to test hypotheses of the mechanisms for river-groundwater exchange fluxes between the Wairau river and aquifer is by data integration into numerical models that mimic the flow regime of the coupled hydrological system. For that purpose, a Modflow model for the Wairau Aquifer was to set up and calibrated under summer conditions when the flow in the river is low and the aquifer is most vulnerable to over-allocation. The model is constrained by knowledge about the hydrogeological settings as well as observations of groundwater levels, river and spring flow gaugings, and analysis of aquifer pumping tests. Both historic and more recent concurrent river flow measurements under low flow conditions suggest that approximately 7-8 m³/s is recharged into the aquifer along the upper and middle reaches, at least partly under perched conditions. At the eastern side of the aquifer, a small proportion of that water flows back into the river, whereas a greater proportion emerges in springs. Spring creek is the largest spring with an estimated mean flow of 4.0 m³/s. This flow rate is vulnerable to an excessive decline in groundwater levels. The simulations with the calibrated flow model fit well to the observations of current mean groundwater heads as well as to mean Wairau river and Spring creek flows. Modeling results suggest a large spatial

  20. Recharge Estimation Using Water, Chloride and Isotope Mass Balances

    NASA Astrophysics Data System (ADS)

    Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P. F.

    2014-12-01

    Discharge of surplus mine water into ephemeral streams may elevate groundwater levels and alter the exchange rate between streams and underlying aquifers but it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid subtropical Hamersley Basin that has received continuous mine discharge for more than five years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 74 to 120 mg/L across this length, while δ18O increased from -8.24‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ~ 65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ~35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the creek has not extended beyond 27 km from the discharge point. Our approach using a combination of hydrochemical and isotope methods coupled with classical surface flow hydraulic modelling allowed evaluation of components of water budget otherwise not possible in a highly dynamic system that is mainly driven by infrequent but large episodic

  1. Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Cunningham, Erin E. B.; Long, Austin; Eastoe, Chris; Bassett, R. L.

    Aquifers in the arid alluvial basins of the southwestern U.S. are recharged predominantly by infiltration from streams and playas within the basins and by water entering along the margins of the basins. The Tucson basin of southeastern Arizona is such a basin. The Santa Catalina Mountains form the northern boundary of this basin and receive more than twice as much precipitation (ca. 700mm/year) as does the basin itself (ca. 300mm/year). In this study environmental isotopes were employed to investigate the migration of precipitation basinward through shallow joints and fractures. Water samples were obtained from springs and runoff in the Santa Catalina Mountains and from wells in the foothills of the Santa Catalina Mountains. Stable isotopes (δD and δ18O) and thermonuclear-bomb-produced tritium enabled qualitative characterization of flow paths and flow velocities. Stable-isotope measurements show no direct altitude effect. Tritium values indicate that although a few springs and wells discharge pre-bomb water, most springs discharge waters from the 1960s or later. Résumé La recharge des aquifères des bassins alluviaux arides du sud-ouest des États-Unis est assurée surtout à partir des lits des cours d'eau et des playas dans les bassins, ainsi que par l'eau entrant à la bordure de ces bassins. Le bassin du Tucson, dans le sud-est de l'Arizona, est l'un de ceux-ci. La chaîne montagneuse de Santa Catalina constitue la limite nord de ce bassin et reçoit plus de deux fois plus de précipitations (environ 700mm/an) que le bassin (environ 300mm/an). Dans cette étude, les isotopes du milieu ont été utilisés pour analyser le déplacement de l'eau de pluie vers le bassin au travers des fissures et des fractures proches de la surface. Des échantillons d'eau ont été prélevés dans les sources et dans l'écoulement de surface de la chaîne montagneuse et dans des puits au pied de la chaîne. Les isotopes stables (δD et δ18O) et le tritium d

  2. Managed Aquifer Recharge in Italy: present and prospects.

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  3. Tectonic evolution of forearc nappes of the active Banda arc-continent collision: Origin, age, metamorphic history and structure of the Lolotoi Complex, East Timor

    NASA Astrophysics Data System (ADS)

    Standley, Carl E.; Harris, Ron

    2009-12-01

    An integrated multidisciplinary investigation of the Lolotoi Complex of East Timor (Timor Leste) indicates that it is part of the Banda forearc that was metamorphosed and rapidly exhumed during the Eocene and accreted to the NW Australian continental margin during Late Miocene to present arc-continent collision. Greenschist, graphitic phyllite, quartz-mica schist, amphibolite and pelitic schist dominate metamorphic rock types. Mineral, whole rock, and trace element geochemical analyses of metabasites indicate protolith compositions consistent with tholeiitic basalt and basaltic andesite with mixed MORB and oceanic arc affinities. Metapelite schist is mostly composed of metasedimentary units derived from mafic to intermediate rocks with oceanic to continental volcanic arc provenance. Thermobarometric calculations show peak metamorphic conditions of 530 °C to 680 °C for garnet-biotite pairs and amphibole, and peak pressures of 5 to 10 kbar for garnet-aluminosilicate-quartz-plagioclase assemblages. Peak metamorphism occurred at 45.36 ± 0.63 Ma, as indicated by Lu-Hf analyses of garnet. Detrital zircon grains have a U/Pb age distribution with spikes at 663, 120 and 87 Ma, which is typical of detrital zircon ages throughout the Great Indonesian Arc of Asia, but is distinct from Australian affinity units. These data indicate deposition and later metamorphism occurred after 87 Ma. Structural analyses of the metamorphic rocks and their sedimentary and volcanic cover units reveals 5-6 deformational phases of alternating shortening and extension. There is little to no evidence of strike-slip deformation. Phases 1-4 are inferred as pre-Oligocene from age determinations. Phases 5 and 6 are most likely related to latest Miocene to Pliocene nappe emplacement and Pliocene to present collisional deformation. Kinematic indicators show mostly top to the SE directed shortening and top to the south and SE extension. Structural mapping indicates that the Lolotoi Complex and some of

  4. Borehole logging at the COSC-1 drill hole: a new dataset of in-situ geophysical properties through the lower Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Berthet, Théo; Alm, Per-Gunnar; Wenning, Quinn; Almqvist, Bjarne; Kück, Jochem; Hedin, Peter

    2015-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) drilling project supported by the International Continental Drilling Program was designed to study mountain building processes in a deeply eroded Paleozoic orogen. The first half of this project, COSC-1, targeted the lower part of the high grade Seve Nappe Complex and its basal thrust zone near Åre in the Jämtland county, Sweden. From May to August 2014, the COSC drilling crew drilled to a depth of 2496 m from the surface with an almost fully recovered core sample. During this drilling period, four borehole-logging runs have been conducted by Lund University with a low impact on drilling schedule and two supplementary ones once the drilling was completed. Three-Arm Caliper, Electrical Logging, Sidewall Density, Flowing Fluid Electric Conductivity, High Resolution Acoustic Televiewer and Full Waveform Sonic sondes have been used to investigate in-situ physical properties of the borehole. In addition, the ICDP operational support group has conducted two continuous borehole-logging runs from the surface to the bottom of the COSC-1 borehole in September and October. Due to technical problems, some of the planned logging have not been completed, however natural gamma, rock resistivity, magnetic susceptibility, K/Th/U concentration, temperature and fluid conductivity have been measured all along the borehole. We used the continuous natural gamma log from the ICDP logging group as the depth reference to depth-match and stack the composite borehole logging done during the drilling. These borehole logging operations result in reliable continuous data of resistivity, density, velocity, magnetic susceptibility, K/Th/U concentration, temperature, fluid conductivity, pressure, diameter as well as an image (amplitude and travel time of reflected ultrasounds) of the borehole till its bottom. Only the density, velocity and image datasets stop at 1600 m depth due to instrumentation limits. Preliminary conclusions from

  5. Geophysical interpretation of mantle magmatism in the Seiland province and adjacent Barents Sea: Implications for tectonic emplacement of the Kalak Nappe Complex

    NASA Astrophysics Data System (ADS)

    Pastore, Z.; McEnroe, S. A.; Fichler, C.

    2015-12-01

    The Seiland Igneous Province (SIP) has an exposed area of more than 5500 km2 and is the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The SIP had a massive plumbing system with deep-seated magmatic conduits that generated more than 25000 km3of igneous melts from the mantle through the continental lithosphere to the surface, at ca 560-570 Ma. The SIP is located within the Kalak Nappe Complex, a part of the Middle Allochthon of the North Norwegian Caledonides. The tectonic development, and movement from its original emplacement onto the Baltica craton is a matter of current debate. The SIP exhibits one of the most pronounced positive Bouguer gravity anomalies in northern Fennoscandia (approximately 100 mGal above background) and a clear magnetic signature. We have identified more than 10 distinct magnetic anomalies related to the Seiland Igneous Province. Here, a 3D gravity and magnetic model of the SIP integrating petrophysical data with gravity and aeromagnetic data is presented. The selected densities for the intrusive range from 2800 to 3400 kg m3, with an average density contrast to the host complex of approximately 400 kg m3. Magnetic susceptibility values, ranging from 0.004 SI to 0.2 SI, show a good correlation with the mapped ultramafic intrusions with few exceptions on the Øksfjord peninsula. A multi-profile based 3D model (IGMAS+) shows the deeper structure of the SIP. Our model suggests an irregular shape with its lower boundary varying in depth from North to South from less than 3 km to 10 Km. Two deep roots have been identified located below Seiland and Sørøya islands, the first root slightly dipping southward with two branches in the upper part. The second root is approximately vertical and T- shaped. This model contributes to the understanding of the tectonic, magmatic and the paleogeographic evolution of the SIP and adds new insights to the study of the rich hydrocarbon basins of the Southern Barents Sea.

  6. Evaluation of slurry characteristics for rechargeable lithium-ion batteries

    SciTech Connect

    Cho, Ki Yeon; Kwon, Young Il; Youn, Jae Ryoun; Song, Young Seok

    2013-08-01

    Graphical abstract: - Highlights: • Lithium-ion battery slurries are prepared for rechargeable batteries. • The dispersion state of slurry constituents is identified. • Thermal, morphological, rheological, and electrical properties of slurries are analyzed. - Abstract: A multi-component slurry for rechargeable batteries is prepared by dispersing LiCoO{sub 2}, conductive additives, and polymeric binders in a solvent. The physical properties, including rheological, morphological, electrical, and spectroscopic features of battery slurries are investigated. The relationship between the measured physical properties and the internal structure of the slurry is analyzed. It is found that the rheological behavior of the slurry is determined by the interaction of active materials and binding materials (e.g., network structure) and that the dispersion state of conductive additives (e.g., agglomeration) also depends on the binder–carbon interaction.

  7. Hybrid system for rechargeable magnesium battery with high energy density.

    PubMed

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624

  8. Intrinsically safe 5-V, 4-A rechargeable power supply

    NASA Astrophysics Data System (ADS)

    Sammarco, John J.

    The U.S. Bureau of Mines has developed a regulated, intrinsically safe, rechargeable power supply for portable electronic equipment for underground use. The regulated output is ideal for microprocessor power requirements and is suited for operation in hazardous environments. Two rechargeable, sealed batteries are contained within the power supply. Provisions are made to use an external source of power if these batteries fail. Provisions are also made to charge these internal batteries when needed. The circuit is composed of three main circuits: the main regulator circuit, the input protection circuit, and the output protection circuit. The main regulator circuit provides remote voltage sensing, current sensing, fault monitoring, and internal thermal protection. The input protection circuit checks for excessive input current and low battery conditions. The output protection circuit contains two overvoltage detection devices. Schematics, a parts list, and a calibration procedure are provided in the report to enable readers to fabricate the power supply.

  9. Intrinsically safe 5-V, 4-A rechargeable power supply

    SciTech Connect

    Sammarco, J.J.

    1989-01-01

    The author reports on a regulated, intrinsically safe, rechargeable power supply for portable electronic equipment for underground use. The regulated output is ideal for microprocessor power requirements and is suited for operation in hazardous environments. Two rechargeable, sealed batteries are contained within the power supply. Provisions are made to use an external source of power if these batteries fail. Provisions are also made to charge these internal batteries when needed. The circuit is composed of three main circuits: the main regulator circuit, the input protection circuit, and the output protection circuit. The main regulator circuit provides remote voltage sensing, current sensing, fault monitoring, and internal thermal protection. The input protection circuit checks for excessive input current and low battery conditions. The output protection circuit contains two overvoltage detection devices. Schematics, a parts list, and a calibration procedure are provided.

  10. Recharging behavior of nitrogen-centers in ZnO

    SciTech Connect

    Philipps, Jan M. Meyer, Bruno K.; Hofmann, Detlev M.; Stehr, Jan E.; Buyanova, Irina; Tarun, Marianne C.; McCluskey, Matthew D.

    2014-08-14

    Electron Paramagnetic Resonance was used to study N{sub 2}-centers in ZnO, which show a 5-line spectrum described by the hyperfine interaction of two nitrogen nuclei (nuclear spin I = 1, 99.6% abundance). The recharging of this center exhibits two steps, a weak onset at about 1.4 eV and a strongly increasing signal for photon energies above 1.9 eV. The latter energy coincides with the recharging energy of N{sub O} centers (substitutional nitrogen atoms on oxygen sites). The results indicate that the N{sub 2}-centers are deep level defects and therefore not suitable to cause significant hole-conductivity at room temperature.

  11. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  12. Hybrid system for rechargeable magnesium battery with high energy density

    PubMed Central

    Chang, Zheng; Yang, Yaqiong; Wang, Xiaowei; Li, Minxia; Fu, Zhengwen; Wu, Yuping; Holze, Rudolf

    2015-01-01

    One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since their output voltage is below 2.0 V. Here, we report a magnesium battery using Mg in Grignard reagent-based electrolyte as the negative electrode, a lithium intercalation compound in aqueous solution as the positive electrode, and a solid electrolyte as a separator. Its average discharge voltage is 2.1 V with stable discharge platform and good cycling life. The calculated energy density based on the two electrodes is high. These findings open another door to rechargeable magnesium batteries. PMID:26173624

  13. Novel electrolyte chemistries for Mg-Ni rechargeable batteries.

    SciTech Connect

    Garcia-Diaz, Brenda; Kane, Marie; Au, Ming

    2010-10-01

    Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measured by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.

  14. Using Managed Aquifer Recharge to Remove Contaminants from Water

    NASA Astrophysics Data System (ADS)

    Toze, Imon

    Managed aquifer recharge (MAR) is a mechanism that has strong potential to aid in the capture and reuse of water where there is a need for additional resources. It has been employed around the world to improve water resources for local communities and has also been demonstrated to have the potential to improve the quality of recharged water. Information is still lacking, however, on many of the processes impacting the fate and behavior of contaminants such as microbial pathogens, trace organics, and nutrients on anything larger than a local scale. Government regulators, conservation groups, and local communities remain concerned about the applicability of transferring research findings on MAR from one region and nation to another. This paper will examine the current knowledge base and research relating to the fate of pathogens, trace organics, and nutrients during MAR, and discuss the applicability to transfer these findings between regions.

  15. Managed aquifer recharge: rediscovering nature as a leading edge technology.

    PubMed

    Dillon, P; Toze, S; Page, D; Vanderzalm, J; Bekele, E; Sidhu, J; Rinck-Pfeiffer, S

    2010-01-01

    Use of Managed Aquifer Recharge (MAR) has rapidly increased in Australia, USA, and Europe in recent years as an efficient means of recycling stormwater or treated sewage effluent for non-potable and indirect potable reuse in urban and rural areas. Yet aquifers have been relied on knowingly for water storage and unwittingly for water treatment for millennia. Hence if 'leading edge' is defined as 'the foremost part of a trend; a vanguard', it would be misleading to claim managed aquifer recharge as a leading edge technology. However it has taken a significant investment in scientific research in recent years to demonstrate the effectiveness of aquifers as sustainable treatment systems to enable managed aquifer recharge to be recognised along side engineered treatment systems in water recycling. It is a 'cross-over' technology that is applicable to water and wastewater treatment and makes use of passive low energy processes to spectacularly reduce the energy requirements for water supply. It is robust within limits, has low cost, is suitable from village to city scale supplies, and offers as yet almost untapped opportunities for producing safe drinking water supplies where they do not yet exist. It will have an increasingly valued role in securing water supplies to sustain cities affected by climate change and population growth. However it is not a universal panacea and relies on the presence of suitable aquifers and sources of water together with effective governance to ensure human health and environment protection and water resources planning and management. This paper describes managed aquifer recharge, illustrates its use in Australia, outlining economics, guidelines and policies, and presents some of the knowledge about aquifer treatment processes that are revealing the latent value of aquifers as urban water infrastructure and provide a driver to improving our understanding of urban hydrogeology. PMID:21076220

  16. Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries

    SciTech Connect

    Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

    2014-01-01

    Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

  17. The MOLICEL(R) rechargeable lithium system: Multicell battery aspects

    NASA Technical Reports Server (NTRS)

    Fouchard, D.; Taylor, J. B.

    1987-01-01

    MOLICEL rechargeable lithium cells were cycled in batteries using series, parallel, and series/parallel connections. The individual cell voltages and branch currents were measured to understand the cell interactions. The observations were interpreted in terms of the inherent characteristics of the Li/MoS2 system and in terms of a singular cell failure mode. The results confirm that correctly configured multicell batteries using MOLICELs have performance characteristics comparable to those of single cells.

  18. NiF2 Cathodes For Rechargeable Na Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Halpert, Gerald

    1992-01-01

    Use of NiF2 cathodes in medium-to-high-temperature rechargeable sodium batteries increases energy and power densities by 25 to 30 percent without detracting from potential advantage of safety this type of sodium battery offers over sodium batteries having sulfur cathodes. High-energy-density sodium batteries with metal fluoride cathodes used in electric vehicles and for leveling loads on powerlines.

  19. Focused Recharge in a Semi-arid Riparian Zone

    NASA Astrophysics Data System (ADS)

    Cook, A.; Geyer, T.; Shook, G.; Butler, J. J.; Whittemore, D.; Kluitenberg, G.

    2006-12-01

    Precipitation-induced recharge can be an important component of the water balance of semi-arid riparian zones. Recharge mechanisms were assessed as part of an ecohydrologic investigation at a site in a vegetated riparian zone along the Arkansas River in south-central Kansas (Larned Research Site). This site contains a network of shallow wells for water-table monitoring, neutron-probe access tubes for vadose-zone water content observations, a stream-gage station, and a weather station. Over the last four years, the Arkansas River has flowed at the site for less than four months, so the usual state of the channel is a dry, 20-30 m swath of coarse sand and gravel bounded by riparian-zone vegetation. An evaluation of water-table responses to precipitation at wells located at different distances from the channel found that recharge appears to be primarily occurring through the channel deposits. In the absence of rainfall, the general trend of ground water flow is from west to east. During and shortly after rain events, however, the hydraulic gradient changes and ground water flows outward from a mound underneath the channel. The peaks in the water-table hydrographs produced by precipitation events are lagged and attenuated with distance from the river channel in a manner very similar to what is observed when a flow event occurs in the river channel. These changes with distance from the channel appear to be independent of the depth to the water table. In addition, vadose-zone water content data show little evidence of vertical flow through the vadose zone in the vegetated riparian area in response to the precipitation. Variations in the dissolved solids content of ground water across the riparian area are consistent with recharge primarily occurring through the channel deposits.

  20. Improved soil moisture balance methodology for recharge estimation

    NASA Astrophysics Data System (ADS)

    Rushton, K. R.; Eilers, V. H. M.; Carter, R. C.

    2006-03-01

    Estimation of recharge in a variety of climatic conditions is possible using a daily soil moisture balance based on a single soil store. Both transpiration from crops and evaporation from bare soil are included in the conceptual and computational models. The actual evapotranspiration is less than the potential value when the soil is under stress; the stress factor is estimated in terms of the readily and total available water, parameters which depend on soil properties and the effective depth of the roots. Runoff is estimated as a function of the daily rainfall intensity and the current soil moisture deficit. A new concept, near surface soil storage, is introduced to account for continuing evapotranspiration on days following heavy rainfall even though a large soil moisture deficit exists. Algorithms for the computational model are provided. The data required for the soil moisture balance calculations are widely available or they can be deduced from published data. This methodology for recharge estimation using a soil moisture balance is applied to two contrasting case studies. The first case study refers to a rainfed crop in semi-arid northeast Nigeria; recharge occurs during the period of main crop growth. For the second case study in England, a location is selected where the long-term average rainfall and potential evapotranspiration are of similar magnitudes. For each case study, detailed information is presented about the selection of soil, crop and other parameters. The plausibility of the model outputs is examined using a variety of independent information and data. Uncertainties and variations in parameter values are explored using sensitivity analyses. These two case studies indicate that the improved single-store soil moisture balance model is a reliable approach for potential recharge estimation in a wide variety of situations.

  1. Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Kwicklis, Edward M.; Fabryka-Martin, June T.; Bodvarsson, Gudmundur S.

    2002-02-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  2. Development of Carbon Anode for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Surampudi, S.; Halpert, G.

    1994-01-01

    Conventionally, rechargeable lithium cells employ a pure lithium anode. To overcome problems associated with the pure lithium electrode, it has been proposed to replace the conventional electrode with an alternative material having a greater stability with respect to the cell electrolytes. For this reason, several graphitic and coke based carbonaceous materials were evaluated as candidate anode materials...In this paper, we summarize the results of the studies on Li-ion cell development.

  3. Assimilating ambiguous observations to jointly estimate groundwater recharge and conductivity

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Cirpka, Olaf A.

    2016-04-01

    In coupled modelling of catchments, the groundwater compartment can be an important water storage as well as having influence on both rivers and evapotranspirational fluxes. It is therefore important to parameterize the groundwater model as correctly as possible. Primarily important to regional groundwater flow is the spatially variable hydraulic conductivity. However, also the groundwater recharge, in a coupled system coming from the unsaturated zone but in a stand-alone groundwater model a boundary condition, is also of high importance. As with all subsurface systems, groundwater properties are difficult to observe in reality and their estimation is an ongoing topic in groundwater research and practice. Commonly, we have to rely on time series of groundwater head observations as base for any parameter estimation. Heads, however, have the drawback that they can be ambiguous and may not uniquely define the inverse problem, especially if both recharge and conductivity are seen as unknown. In the presented work we use a 2D virtual groundwater test case to investigate how the prior knowledge of recharge and conductivity influence their respective and joint estimation as spatially variable fields using head data. Using the Ensemble Kalman filter, it is shown that the joint estimation is possible if the prior knowledge is good enough. If the prior is erroneous the a-priori sampled fields cannot be corrected by the data. However, it is also shown that if the prior knowledge is directly wrong the estimated recharge field can resemble the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  4. Estimation of groundwater recharge parameters by time series analysis.

    USGS Publications Warehouse

    Naff, R.L.; Gutjahr, A.L.

    1983-01-01

    A model is proposed that relates water level fluctuations in a Dupuit aquifer to effective precipitation at the top of the unsaturated zone. Effective precipitation, defined herein as that portion of precipitation which becomes recharge, is related to precipitation measured in a nearby gage by a two-parameter function. A second-order stationary assumption is used to connect the spectra of effective precipitation and water level fluctuations.-from Authors

  5. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    USGS Publications Warehouse

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  6. Estimating recharge at yucca mountain, nevada, usa: comparison of methods

    SciTech Connect

    Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

    2001-11-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

  7. Estimating recharge at Yucca Mountain, Nevada: A case study

    SciTech Connect

    Flint, A.; Flint, L.; Kwicklis, E.; Fabryka-Martin, J.; Bodvarsson, G.S.

    2001-05-13

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  8. Changes in vegetation diversity caused by artificial recharge

    USGS Publications Warehouse

    Van Hylckama, T. E. A.

    1979-01-01

    Efforst to increase the rate of artificial recharge through basins often necessitates scrapping and ditching before and during operations. Such operations can result in more or less drastic changes in vegetation (depending on what was there before), characterized by diminisched numbers of species and lowered diversity. Two examples, one from Texas and one from the Netherlands are presented showing how similar treatments cause similar changes in two completely difference plant communities. ?? 1979 Dr. W. Junk b.v. - Publishers.

  9. Natural recharge and localization of fresh ground water in Kuwait

    USGS Publications Warehouse

    Bergstrom, R.E.; Aten, R.E.

    1965-01-01

    Fresh ground water (200 parts per million total dissolved solids and upwards) occurs in portions of Pleistocene sandstone aquifers beneath basins and wadis in north Kuwait where the mean rainfall is about five inches per year. The fresh water is surrounded and underlain by brackish water (> 4000 ppm TDS). Drilling and testing show that fresh water saturation is restricted to wadis and basin areas; in Rawdatain basin it attains a maximum thickness of about 110 feet and a lateral extent of about seven miles. The fresh ground water represents recharge localized, during infrequent, torrential rain storms, in areas of concentrated runoff where sediments in the vadose zone are moderately permeable and depth to the water table is generally less than a hundred feet. Concentration of runoff appears to be the primary control in the localization of recharge. The fresh water percolates downward to the ground-water reservoir following rare storms, then flows in the direction of hydraulic gradient and gradually becomes brackish. Theoretical delineation of the recharge area and ground-water flow pattern in Rawdatain was confirmed by tritium and C14 dating of the water. Brackish ground-water conditions prevail from water table downward in areas where rainfall infiltrates essentially where it falls, permeability of sediments in the vadose zone is low, or the water table is several hundred feet below land surface. In these areas, rainfall is retained and lost within the soil zone or becomes mineralized during deep percolation. ?? 1964.

  10. Trace organic chemicals contamination in ground water recharge.

    PubMed

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed. PMID:18378277

  11. Issue and challenges facing rechargeable thin film lithium batteries

    SciTech Connect

    Patil, Arun; Patil, Vaishali; Shin, Dong Wook; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin

    2008-08-04

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development.

  12. Wastewater reclamation and recharge: A water management strategy for Albuquerque

    SciTech Connect

    Gorder, P.J.; Brunswick, R.J.; Bockemeier, S.W.

    1995-12-31

    Approximately 61,000 acre-feet of the pumped water is annually discharged to the Rio Grande as treated wastewater. Albuquerque`s Southside Water Reclamation Plant (SWRP) is the primary wastewater treatment facility for most of the Albuquerque area. Its current design capacity is 76 million gallons per day (mgd), which is expected to be adequate until about 2004. A master plan currently is being prepared (discussed here in Wastewater Master Planning and the Zero Discharge Concept section) to provide guidelines for future expansions of the plant and wastewater infrastructure. Construction documents presently are being prepared to add ammonia and nitrogen removal capability to the plant, as required by its new discharge permit. The paper discusses water management strategies, indirect potable reuse for Albuquerque, water quality considerations for indirect potable reuse, treatment for potable reuse, geohydrological aspects of a recharge program, layout and estimated costs for a conceptual reclamation and recharge system, and work to be accomplished under phase 2 of the reclamation and recharge program.

  13. A new analytical method for groundwater recharge and discharge estimation

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhang, You-Kuan

    2012-07-01

    SummaryA new analytical method was proposed for groundwater recharge and discharge estimation in an unconfined aquifer. The method is based on an analytical solution to the Boussinesq equation linearized in terms of h2, where h is the water table elevation, with a time-dependent source term. The solution derived was validated with numerical simulation and was shown to be a better approximation than an existing solution to the Boussinesq equation linearized in terms of h. By calibrating against the observed water levels in a monitoring well during a period of 100 days, we shown that the method proposed in this study can be used to estimate daily recharge (R) and evapotranspiration (ET) as well as the lateral drainage. It was shown that the total R was reasonably estimated with a water-table fluctuation (WTF) method if the water table measurements away from a fixed-head boundary were used, but the total ET was overestimated and the total net recharge was underestimated because of the lack of consideration of lateral drainage and aquifer storage in the WTF method.

  14. Multiple batch recharging for industrial CZ silicon growth

    NASA Astrophysics Data System (ADS)

    Fickett, B.; Mihalik, G.

    2001-05-01

    The Czochralski (CZ) crystal growth process used in the Siemens Solar Industries’ (SSI) Vancouver, WA facility was non-continuous. Each furnace run's production was limited by the size of the starting charge. Once the charge was depleted, the furnace was shut down, cooled, and set back up for the next run. A recharge system was developed which transforms standard CZ growth into a semi-continuous process. Now when the charge is depleted, the crucible can be refilled in situ as the grown ingot is being removed from the furnace. SSI has demonstrated up to 14 recharge cycles in a single run. The resulting benefits included: significant cost reduction, increased yield, increased throughput, reduced energy consumption, improved process capability, reduced material handling requirements, and reduced labor. The recharge system also enables the use of granular silicon, which requires less than 30% of the energy required when manufacturing silicon-starting materials. This significantly reduces the energy “pay-back” time associated with SSI's finished product, photovoltaic panels.

  15. Rechargeable Room-Temperature Na-CO2 Batteries.

    PubMed

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage <3.7 V. The porous structure, high electro-conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2 . PMID:27089434

  16. Ground-Water Recharge from Small Intermittent Streams in the Western Mojave Desert, California

    USGS Publications Warehouse

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven

    2007-01-01

    Population growth has impacted ground-water resources in the western Mojave Desert, where declining water levels suggest that recharge rates have not kept pace with withdrawals. Recharge from the Mojave River, the largest hydrographic feature in the study area, is relatively well characterized. In contrast, recharge from numerous smaller streams that convey runoff from the bounding mountains is poorly characterized. The current study examined four representative streams to assess recharge from these intermittent sources. Hydraulic, thermal, geomorphic, chemical, and isotopic data were used to study recharge processes, from streamflow generation and infiltration to percolation through the unsaturated zone. Ground-water movement away from recharge areas was also assessed. Infiltration in amounts sufficient to have a measurable effect on subsurface temperature profiles did not occur in every year in instrumented study reaches. In addition to streamflow availability, results showed the importance of sediment texture in controlling infiltration and eventual recharge. Infiltration amounts of about 0.7 meters per year were an approximate threshold for the occurrence of ground-water recharge. Estimated travel times through the thick unsaturated zones underlying channels reached several hundred years. Recharging fluxes were influenced by stratigraphic complexity and depositional dynamics. Because of channel meandering, not all water that penetrates beneath the root zone can be assumed to become recharge on active alluvial fans. Away from study washes, elevated chloride concentrations and highly negative water potentials beneath the root zone indicated negligible recharge from direct infiltration of precipitation under current climatic conditions. In upstream portions of washes, generally low subsurface chloride concentrations and near-zero water potentials indicated downward movement of water toward the water table, driven primarily by gravity. Recharging conditions did not

  17. Evaluating storm-scale groundwater recharge dynamics with coupled weather radar data and unsaturated zone modeling

    NASA Astrophysics Data System (ADS)

    Nasta, P.; Gates, J. B.; Lock, N.; Houston, A. L.

    2013-12-01

    Groundwater recharge rates through the unsaturated zone emerge from complex interactions within the soil-vegetation-atmosphere system that derive from nonlinear relationships amongst atmospheric boundary conditions, plant water use and soil hydraulic properties. While it is widely recognized that hydrologic models must capture soil water dynamics in order to provide reliable recharge estimates, information on episodic recharge generation remains uncommon, and links between storm-scale weather patterns and their influence on recharge is largely unexplored. In this study, the water balance of a heterogeneous one-dimensional soil domain (3 m deep) beneath a typical rainfed corn agro-ecosystem in eastern Nebraska was numerically simulated in HYDRUS-1D for 12 years (2001-2012) on hourly time steps in order to assess the relationships between weather events and episodic recharge generation. WSR-88D weather radar reflectivity data provided both rainfall forcing data (after estimating rain rates using the z/r ratio method) and a means of storm classification on a scale from convective to stratiform using storm boundary characteristics. Individual storm event importance to cumulative recharge generation was assessed through iterative scenario modeling (773 total simulations). Annual cumulative recharge had a mean value of 9.19 cm/yr (about 12 % of cumulative rainfall) with coefficient of variation of 73%. Simulated recharge generation events occurred only in late winter and spring, with a peak in May (about 35% of total annual recharge). Recharge generation is observed primarily in late spring and early summer because of the combination of high residual soil moisture following a winter replenishment period, heavy convective storms, and low to moderate potential evapotranspiration rates. During the growing season, high rates of root water uptake cause rapid soil water depletion, and the concurrent high potential evapotranspiration and low soil moisture prevented recharge

  18. Investigation of recharge dynamics and flow paths in a fractured crystalline aquifer in semi-arid India using borehole logs: implications for managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Alazard, M.; Boisson, A.; Maréchal, J.-C.; Perrin, J.; Dewandel, B.; Schwarz, T.; Pettenati, M.; Picot-Colbeaux, G.; Kloppman, W.; Ahmed, S.

    2016-02-01

    The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.

  19. Groundwater recharge in different physiognomies of the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Oliveira, P. T. S.; Leite, M.; Mattos, T.; Wendland, E.; Nearing, M. A.

    2015-12-01

    Since 2014, several cities of southeastern Brazil have grappled with their worst drought in nearly 80 years. To improve water availability in this region, the Brazilian government has studied the possibility of increasing groundwater use, mainly in the Guarani Aquifer System (GAS), the largest (~1.2 million km2) transnational boundary groundwater reservoir in South America. Approximately one half of the outcrop areas of the GAS are located in the Cerrado biome, the main agricultural expansion region in Brazil. Large areas of Cerrado vegetation have been converted into farmland in recent years; however, little attention has been paid to the consequences of this land cover and land use change on groundwater recharge. In this study we assessed groundwater recharge in different physiognomies of the Cerrado located in an outcrop area of the GAS. Water table fluctuations were measured from October 2011 through August 2013, by 64 monitoring wells distributed on five physiognomies of the undisturbed Cerrado. We used 20 (2.2±0.3 m), 20 (4.3±1.4 m), 14 (4.7±1.9 m), 9 (6.2±0.7 m), and 1 (42 m) monitoring wells (and average depth of wells) for "campo limpo" (cerrado grassland), "campo sujo" (shrub cerrado), "campo cerrado" (shrub cerrado), "cerrado sensu stricto" (wooded cerrado), and "cerrado sensu stricto denso" (cerrado woodland), respectively. Recharge was computed for each well using the Water Table Fluctuation method. The measured precipitation for hydrological years 2011-12 and 2012-13 were 1247 mm and 1194 mm, respectively. We found values of average annual recharge of 363 mm, 354 mm, 324 mm, and 315 mm for "campo limpo", "campo sujo","campo cerrado", and "cerrado sensu stricto", respectively. We did not find changes in the water table level in the one well located in the "cerrado sensu stricto denso". The water table in this well was 35 m deep; therefore, the amount of water that eventually reached the saturated zone was not enough to cause a rapid change in the

  20. Implications of projected climate change for groundwater recharge in the western United States

    NASA Astrophysics Data System (ADS)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  1. Simulated artificial recharge in the Big Sioux Aquifer in Minnehaha County, South Dakota

    USGS Publications Warehouse

    Koch, N.C.

    1984-01-01

    The Big Sioux aquifer in Minnehaha County is a water-table aquifer hydraulically connected to the Big Sioux River. A digital-computer model previously developed by the U.S. Geological Survey was used to simulate potential effects of artificial recharge on the aquifer. A simulation was made by recharging water at the rate of 870 gallons per minute for four 30-day periods. Total water recharged to the aquifer during the 120 days was 150.3 million gallons. About 24.4 million gallons of water discharged from the aquifer to the river during the 120-day recharge period and about 30 million gallons discharged from the aquifer to the river during three 30-day recovery periods, both as a result of the artificial recharge, therefore, a total of 54.4 million gallons or 36 percent of the 150.3 million gallons that was artificially recharged from the aquifer to the river. (USGS)

  2. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    NASA Astrophysics Data System (ADS)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  3. Ground-water recharge through active sand dunes in northwestern Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1992-01-01

    Most water-resource investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature to determine energy and moisture balance, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.

  4. Ponds and Rice Fields: The Hydrology and Chemistry of Aquifer Recharge in Bangladesh

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Harvey, C. F.

    2007-12-01

    The shallow aquifer in Bangladesh, which provides drinking water for millions and irrigation water for innumerable rice fields, is severely contaminated with naturally occurring arsenic. Water balance calculations show that surface ponds and irrigated rice fields are the primary sources of recharge to this contaminated aquifer. Recharge from an individual rice field is both temporally and spatially heterogeneous, whereas flow from a pond is more constant and uniform through the pond sediments. Rice field recharge is focused through bunds (the berms surrounding the field), and depends on irrigation intervals. Field flow patterns are controlled by cracks and the development of an unsaturated zone. The water chemistry of these two recharge sources is distinctly different. Compared to the rice fields, ponds contribute recharge with a higher organic carbon load and increased concentrations of solutes associated with anoxic microbial respiration. The differences in the recharge behavior and solute loads of these two sources may explain the spatial patterns of groundwater chemistry that control arsenic concentrations.

  5. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  6. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    SciTech Connect

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  7. Multi-component transport and transformation in deep confined aquifer during groundwater artificial recharge.

    PubMed

    Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Liu, Dan; Zhou, Jingjing

    2015-04-01

    Taking an artificial groundwater recharge site in Shanghai, China as an example, this study employed a combination of laboratory experiment and numerical modeling to investigate the transport and transformation of major solutes, as well as the mechanism of associated water-rock interactions in groundwater during artificial groundwater recharge. The results revealed that: (1) Major ions in groundwater were mainly affected by mixing, ion exchanging (Ca(2+), Mg(2+), Na(+), K(+)), as well as dissolution of Calcite, Dolomite. Dissolution of carbonate minerals was not entirely dependent on the pattern of groundwater recharge, the reactivity of the source water itself as indicated by the sub-saturation with respect to the carbonate minerals is the primary factor. (2) Elemental dissolution of As, Cr and Fe occurred in aquifer was due to the transformation of subsurface environment from anaerobic to aerobic systems. Different to bank filtration recharge or pond recharge, the concentration of Fe near the recharge point was mainly controlled by oxidation dissolution of Siderite, which was followed by a release of As, Cr into groundwater. (3) Field modeling results revealed that the hydro chemical type of groundwater gradually changed from the initial Cl-HCO3-Na type to the Cl-HCO3-Na-Ca type during the recharge process, and its impact radius would reach roughly 800 m in one year. It indicated that the recharge pressure (approx. 0.45 Mpa) would enlarge the impact radius under deep well recharge conditions. According to different recharge modes, longer groundwater resident time will associate with minerals' fully reactions. Although the concentrations of major ions were changing during the artificial recharge process, it did not pose a negative impact on the environmental quality of groundwater. The result of trace elements indicated that controlling the environment factors (especially Eh, DO, flow rate) during the recharge was effective to reduce the potential threats to

  8. Shallow groundwater recharge mechanism and apparent age in the Ndop plain, northwest Cameroon

    NASA Astrophysics Data System (ADS)

    Wirmvem, Mengnjo Jude; Mimba, Mumbfu Ernestine; Kamtchueng, Brice Tchakam; Wotany, Engome Regina; Bafon, Tasin Godlove; Asaah, Asobo Nkengmatia Elvis; Fantong, Wilson Yetoh; Ayonghe, Samuel Ndonwi; Ohba, Takeshi

    2015-02-01

    Knowledge of groundwater recharge and apparent age constitutes a valuable tool for its sustainable management. Accordingly, shallow groundwater (n = 72) in the Ndop plain has been investigated using the stable isotopes of oxygen (18O) and hydrogen (2H or D) and tritium (3H) to determine the recharge process, timing and rate of recharge, and residence time. The shallow groundwater showed low variability in δ18O values (-2.7 to -4.1 ‰) and 3H content (2.4-3.1 TU). The low variability suggests a similar origin, homogenous aquifer, good water mixing and storage capacity of the groundwater reservoir. Like surface water, a cluster of groundwater along the Ndop Meteoric Water Line (NMWL) and Global Meteoric Water Line indicates meteoric origin/recharge. The rainfall recharge occurs under low relative humidity conditions and negligible evaporation effect. About 80 % of the recharge is from direct heterogeneous/diffuse local precipitation at low altitude (<1,260 m) within the Ndop plain. Approximately 20 % is from high altitude precipitation (localised recharge) or is recharged by the numerous inflowing streams and rivers from high elevations. A homogenous cluster of δ-values in groundwater (and surface water) between May and June monsoon rains on the NMWL suggests dominant recharge during these months. The recharge represents at least 16 % (>251 mm) of the annual rainfall (1,540 mm) indicating high annual recharge; high enough for development of the groundwater resource for agriculture. The 3H content (>2.4 TU) in groundwater indicates post-1952 recharged water with an estimated residence time <30 years, suggesting short subsurface circulation, and subsequently a renewable aquifer.

  9. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  10. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  11. Role of brittle deformation during the initiation of ductile HP-LT shear zone in a metarhyolite (Suretta nappe, Eastern Central Alps).

    NASA Astrophysics Data System (ADS)

    Poilvet, Jean-Charles; Goncalves, Philippe; Oliot, Emilien; Marquer, Didier

    2014-05-01

    Although ductile shear zones are common deformation structures in the middle to deep continental lithosphere, the initiation of such structures among homogeneous and isotropic protolith (e.g. granitoid bodies) is still a matter of debate. Indeed, the lack of consensus concerns the presence and the nature of a preexisting heterogeneity (structural or compositional, such as dykes, joints or cracks). This is mainly due to the lack of observation of preserved precursors, which, if they were present initially, are generally obliterated by subsequent intense deformation. Different conceptual models require a structural precursor, which enables fluids to flow and promotes metamorphic and metasomatic reactions via fluid-rock interactions. Those fluid-rock interactions are commonly presented as a key factor controlling strain localization or lateral propagation. The main goal of this contribution is to present the first observations, to our knowledge, of a preserved brittle precursor of a millimeter scale shear zone under blueschist facies metamorphic conditions. This work provides new evidences into how ductile shear zones occurring within homogeneous and isotropic protolith nucleate and develop. The present study exposes shear zones from the Roffna metarhyolite, a subvolcanic intrusion representing most of the northern part of the Suretta nappe (Penninic domain, Eastern Central Alps). This early Permian massif intruded an older basement and was affected only by Tertiary Alpine tectonics. The heterogeneous strain pattern consists, at all scales of anastomosing shear zones surrounding lenses of nearly undeformed rocks The investigated outcrop is characterized by the presence of a shear zone network from millimetric to plurimetric scale developed under blueschist facies conditions related to continental subduction of the European plate. A combined study including field observations, EBSD analysis, SEM-CL and conventional imaging together with thermodynamic modeling of phase

  12. Pyrite framboid diameter distribution in the Lower Oligocene black shales of the Vrancea Nappe as an indicator of changes in redox conditions, Eastern Outer Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Wendorff, Małgorzata; Marynowski, Leszek; Rospondek, Mariusz

    2016-04-01

    Studies of recent and ancient sediments revealed that the diameter distribution of pyrite framboids may be reliably used to characterise oxygen-restricted environments and distinguish ancient euxinic conditions (water column hydrogen sulphide bearing thus oxygen-free) from anoxic, non-sulfidic or dysoxic (oxygen-poor) conditions. Such diagnoses are of great importance when reconstructing palaeoenvironments in ancient basins and the processes of source rocks formation. During Oligocene to early Miocene time an extensive accumulation of organic matter (OM)-rich sediments occurred in the entire Paratethys including the Carpathian Foredeep, which was closed forming fold-thrust belt of the Outer Carpathians. These OM-rich black shales are represented by so-called Menilite shales, widely considered as hydrocarbon source rocks, which constitute as well a detailed archive for palaeoenvironmental changes. The purpose of this preliminary study is to characterise the depositional environment of the Lower Oligocene black shales basing on the pyrite framboid diameter distribution. Five samples of finely laminated black shales were selected from the Nechit section outcropping in the Bistrica half-window of the Vrancea Nappe in the Eastern Outer Carpathians, E Romania. At least 100 framboid diameters were measured on polished blocks using scanning electron microscope in a back-scattered electron mode. Framboids from four samples starting from the lowermost part of the section exhibit a narrow range of diameters from 1.0 to 11.5 μm; mean value ranges from 3.65 to 4.85 μm. Small-sized framboids (< 6 μm) account for 70% up to 91% of all framboids, while large framboids (>10 μm) are absent or rare (max. 2%). Within the sample from the uppermost part of the section framboids reveal more variable sizes, 2 - 25 μm, with mean value of 6.63 μm. Small framboids are still numerous (54%), however the amount of framboids >10 μm increases to 15%. The domination of small framboids with

  13. The ophiolite of the Eohellenic nappe in the island of Skyros, Greece: Geotectonic environment of formation and metamorphic conditions inferred by mineralogical and geochemical data

    NASA Astrophysics Data System (ADS)

    Karkalis, Christos; Magganas, Andreas; Koutsovitis, Petros

    2014-05-01

    The island of Skyros is located in the Sporades-Aegean region. It includes an ophiolitic mélange sequence consisting of serpentinites, gabbroic and doleritic rocks, and also lavas which mostly appear in massive form, but in rare cases as deformed pillows. The ophiolitic mélange sequence also includes rodingites, ophicalcites, as well as radiolarites. This formation belongs to the Eohellenic tectonic nappe, which encompasses marbles, sandstones and schists and was emplaced onto the Pelagonian Zone during Early Cretaceous [1, 2]. Serpentinites were most likely formed after serpentinization of harzburgitic protoliths and consist of serpentine, bastite, spinel and magnetite. The chemistry of spinels (TiO2=0.14-0.25 wt.%, Al2O3=35.1-35.21 wt.%, Cr#=37.38-38.87), shows that the harzburgitic protoliths plausibly resemble back-arc basin peridotites [3]. Gabbros and dolerites present mostly subophitic textures, between the hornblende/clinopyroxene and plagioclase grains. Based upon their petrography and on their mineral chemistry hornblendes have been distinguished into magmatic and metamorphic hornblendes, with the first occurring mostly in gabbroic rocks. Magmatic hornblendes exhibit relatively high TiO2 (1.42-1.62 wt.%), Al2O3 (5.11-5.86 wt.%) and Na2O (1.01-1.09 wt.%) contents, with their presence implying that the magma was at least to some degree hydrous. Lavas are tholeiitic basalts with relatively high FeOt≡12 wt.% and low K2O and Th contents, consisting mostly albite, altered clinopyroxene and devitrified glass. Tectonomagmatic discrimination diagrams [4, 5] illustrate that the studied gabbros and lavas of Skyros are most likely associated with SSZ processes. Gabbroic rocks, subvolcanic dolerites and lavas have been subjected to greenschist/subgreenschist metamorphic processes, as confirmed by the presence of secondary amphiboles (metamorphic hornblende, actinolite/tremolite), epidote, pumpellyite and chlorite in all of the studied samples. On the other hand

  14. ~100 Ma Lu-Hf eclogite ages from Koralpe and Saualpe (Austroalpine nappes, Austria): New constraints for the kinematics of Eoalpine subduction

    NASA Astrophysics Data System (ADS)

    Miladinova, Irena; Froitzheim, Nikolaus; Nagel, Thorsten; Janák, Marian; Münker, Carsten

    2016-04-01

    The Koralpe and Saualpe complexes are part of the Austroalpine basement nappe system. They represent the largest region in the Eastern Alps exposing high-pressure metamorphic rocks from the Cretaceous Eoalpine orogenic event and also contain the type locality for eclogite. The grade of the Cretaceous metamorphism in the Eastern Alps increases to the southeast, with maximum pressures and temperatures reaching up to 3.5 GPa and 850 °C in the Pohorje Mountains (Janak et al., 2015). The estimated P-T-conditions for the eclogites from Saualpe and Koralpe are 2-2.2 GPa and 600-740 °C (Miller & Thöni 1997, Thöni et al. 2008). Here we present a new Lu-Hf isotopic study of the eclogites from the Hohl locality in the southern Koralpe, and from the Grünburgerbach and Wolfsberger Hütte localities in the southern Saualpe. Two-point isochrones from samples of Hohl and Wolfsberger Hütte based on one whole rock and one garnet separate yield ages of 99.2 ± 1.1 Ma and 101.7 ± 2 Ma, respectively. Two eclogite samples from Grünburgerbach give garnet-omphacite-whole rock ages of 100.3 ± 1 Ma and 101.79 ± 0.92 Ma, identical within error. The garnets in the eclogite from Hohl display a homogenous composition with no zoning of major elements, whereas the garnets of the samples from Grünburgerbach show an enrichment of Mn in the cores and lower contents towards the rims, which indicates prograde garnet growth during increasing P and T. The ages are therefore related to burial during subduction. These new Lu-Hf garnet ages are slightly older than the Lu-Hf garnet age data from Pohorje (~95 Ma; Sandmann et al. 2011, Thöni et al. 2008), which also date burial. If Koralpe/Saualpe and Pohorje would belong to one continuous crustal unit subducted and exhumed "en bloc" in a southeast-dipping subduction zone, the opposite age difference would be expected. Our results show that this is not the case and represent important constraints for a more realistic kinematic model. Janak, M

  15. The Continent-Ocean Transition in the Mid-Norwegian Margin: Insight From Seismic Data and the Onshore Caledonian Analogue in the Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Mansour M.; Planke, Sverre; Andersen, Torgeir B.; Faleide, Jan Inge; Corfu, Fernando; Tegner, Christian; Myklebust, Reidun

    2015-04-01

    The continental breakup and initial seafloor spreading in the NE Atlantic was accompanied by widespread intrusive and extrusive magmatism and the formation of conjugate volcanic passive margins. These margins are characterized by the presence of seaward dipping reflectors (SDR), an intense network of mafic sheet intrusions of the continental crust and adjacent sedimentary basins and a high-velocity lower crustal body. Nevertheless many issues remain unclear regarding the structure of volcanic passive margins; in particular the transitional crust located beneath the SDR.New and reprocessed seismic reflection data on the Mid-Norwegian margin allow a better sub-basalt imaging of the transitional crust located beneath the SDR. Different high-amplitude reflections with abrupt termination and saucer shaped geometries are identified and interpreted as sill intrusions. Other near vertical and inclined reflections are interpreted as dykes or dyke swarms. We have mapped the extent of the dyke reflections along the volcanic margin. The mapping suggests that the dykes represent the main feeder system for the SDR. The identification of saucer shaped sills implies the presence of sediments in the transitional zone beneath the volcanic sequences. Onshore exposures of Precambrian basement of the eroded volcanic margin in East Greenland show that, locally, the transitional crust is highly intruded by dykes and intrusive complexes with an increasing intensity of the plumbing and dilatation of the continental crust ocean-ward. Another well exposed analogue for a continent-ocean transitional crust is located within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides. The best-preserved parts of SNC in the Pårte, Sarek, Kebnekaise, Abisko, and Indre Troms mountains are composed mainly of meta-sandstones and shales (now hornfelses) truncated typically by mafic dykes. At Sarek and Pårte, the dykes intrude the sedimentary rocks of the Favoritkammen Group, with a dyke density up

  16. Potential for, and possible effects of, artificial recharge in Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.; Peltz, Lorri A.

    1994-01-01

    Rapid population growth in Carson Valley, west- central Nevada, requires a dependable municipal water source. Artificial recharge of aquifers using available flow of the Carson River is one way to increase the amount of water in underground storage and maintain a dependable ground-water supply. Ground water can be artificially recharged by routing excess surface water or, after proper treatment, routing wastewater to infiltration basins or injection wells. Withdrawal wells would remove stored water when needed. As a first step, maps showing areas in Carson Valley with high, low, moderate and unknown potential for artificial recharge were developed on the basis of the distribution of geologic units, depth to water, specific yield, infiltration rate, and location of natural recharge and discharge. For recharge by means of infiltration, areas totaling 5,700 acres have high potential, 23,900 acres have moderate potential, and 6,200 acres have low potential. For recharge through injection, areas totaling 7,800 acres have high potential and 43,500 acres have moderate potential; 23,000 acres have unknown potential because data are lacking on subsurface conditions. A ground-water-flow model was used to assess the possible results of artificial recharge. Simulations with no accompanying ground-water withdrawal show that, when recharge by injection is simulated near the valley floor, heads in the semiconfined aquifer increase over much of the valley, floor; only about 20 percent of the recharged water is stored in the aquifer after 5 years and as much as 80 percent is lost to streamflow and evapotranspiration. When recharge is simulated on the eastern side of the valley, 80 percent of the recharged water remains in storage after 5 years. When recharge is simulated near the valley floor, more water is lost to discharge than when recharge is on the eastern side of the valley. When recharge is applied for long periods without accompanying withdrawal, recharged water moves

  17. Seasonality of groundwater recharge in the Basin and Range Province, western North America

    NASA Astrophysics Data System (ADS)

    Neff, Kirstin Lynn

    Alluvial groundwater systems are an important source of water for communities and biodiverse riparian corridors throughout the arid and semi-arid Basin and Range Geological Province of western North America. These aquifers and their attendant desert streams have been depleted to support a growing population, while projected climate change could lead to more extreme episodes of drought and precipitation in the future. The only source of replenishment to these aquifers is recharge. This dissertation builds upon previous work to characterize and quantify recharge in arid and semi-arid basins by characterizing the intra-annual seasonality of recharge across the Basin and Range Province, and considering how climate change might impact recharge seasonality and volume, as well as fragile riparian corridors that depend on these hydrologic processes. First, the seasonality of recharge in a basin in the sparsely-studied southern extent of the Basin and Range Province is determined using stable water isotopes of seasonal precipitation and groundwater, and geochemical signatures of groundwater and surface water. In northwestern Mexico in the southern reaches of the Basin and Range, recharge is dominated by winter precipitation (69% +/- 42%) and occurs primarily in the uplands. Second, isotopically-based estimates of seasonal recharge fractions in basins across the region are compared to identify patterns in recharge seasonality, and used to evaluate a simple water budget-based model for estimating recharge seasonality, the normalized seasonal wetness index (NSWI). Winter precipitation makes up the majority of annual recharge throughout the region, and North American Monsoon (NAM) precipitation has a disproportionately weak impact on recharge. The NSWI does well in estimating recharge seasonality for basins in the northern Basin and Range, but less so in basins that experience NAM precipitation. Third, the seasonal variation in riparian and non-riparian vegetation greenness

  18. Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998-2000

    USGS Publications Warehouse

    Scholl, Martha; Christenson, Scott; Cozzarelli, Isabelle; Ferree, Dale; Jaeshke, Jeanne

    2005-01-01

    Analyses of stable isotope profiles (d2H and d18O) in the saturated zone, combined with water-table fluctuations, gave a comprehensive picture of recharge processes in an alluvial aquifer riparian zone. At the Norman Landfill U.S. Geological Survey Toxic Substances Hydrology research site in Norman, Oklahoma, recharge to the aquifer appears to drive biodegradation, contributing fresh supplies of electron acceptors for the attenuation of leachate compounds from the landfill. Quantifying recharge is a first step in studying this process in detail. Both chemical and physical methods were used to estimate recharge. Chemical methods included measuring the increase in recharge water in the saturated zone, as defined by isotopic signature, specific conductance or chloride measurements; and infiltration rate estimates using storm event isotopic signatures. Physical methods included measurement of water-table rise after individual rain events and on an approximately monthly time scale. Evapotranspiration rates were estimated using diurnal watertable fluctuations; outflux of water from the alluvial aquifer during the growing season had a large effect on net recharge at the site. Evaporation and methanogenesis gave unique isotopic signatures to different sources of water at the site, allowing the distinction of recharge using the offset of the isotopic signature from the local meteoric water line. The downward movement of water from large, isotopically depleted rain events in the saturated zone yielded recharge rate estimates (2.2 - 3.3 mm/day), and rates also were determined by observing changes in thickness of the layer of infiltrated recharge water at the top of the saturated zone (1.5 - 1.6 mm/day). Recharge measured over 2 years (1998-2000) in two locations at the site averaged 37 percent of rainfall, however, part of this water had only a short residence time in the aquifer. Isotopes showed recharge water entering the ground-water system in winter and spring, then being

  19. Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico

    NASA Astrophysics Data System (ADS)

    Carrera-Hernández, J. J.; Gaskin, S. J.

    2008-05-01

    SummaryRegional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin's aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975-1986, obtaining an annually-lumped potential recharge flow of 10.9-23.8 m 3/s (35.9-78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m 3/s (0.3 mm) in December to 87.9 m 3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.

  20. Artificial-recharge investigation near Aurora, Nebraska: 2-year progress report

    USGS Publications Warehouse

    Lichtler, William F.; Stannard, David I.; Kouma, Edwin

    1979-01-01

    This report presents the results of the first 2 years of a 4-year investigation of potential for artificial recharge and recharge methods that might be used to mitigate excessive aquifer depletion in Nebraska. A Quaternary sand-and-gravel aquifer near Aurora, Nebr., was recharged by injecting water through a well at a rate of approximately 730 gallons per minute for nearly 6 months. Total recharge was 530 acre-feet. Recharge was intermittent during the first 2 months, but was virtually continuous during the last 4 months. Buildup of the water level in the recharge well was 17 feet. The rate of buildup indicates that the well could have accepted water by gravity flow at more than 3,000 gallons per minute for at least 1 year. The cause of a continuing slow rise in water levels in the recharge well in contrast to nearly stable water levels in observation wells as close as 10 feet from the recharge well is as yet uncertain. The recharge water and the native ground water appeared to be chemically compatible. Infiltration rates from 24-foot-diameter surface impoundments ranged from 0.04 to 0.66 feet per day. The higher rates may have resulted in part from leakage down incompletely sealed holes that were drilled to install monitoring equipment. The investigation, including a report on the entire project, is scheduled for completion by 1980.

  1. A numerical analysis on the applicability of the water level fluctuation method for quantifying groundwater recharge

    NASA Astrophysics Data System (ADS)

    Koo, M.; Lee, D.

    2002-12-01

    The water table fluctuation(WTF) method is a conventional method for quantifying groundwater recharge by multiplying the specific yield to the water level rise. Based on the van Genuchten model, an analytical relationship between groundwater recharge and the water level rise is derived. The equation is used to analyze the effects of the depth to water level and the soil properties on the recharge estimate using the WTF method. The results show that the WTF method is reliable when applied to the aquifers of the fluvial sand provided the water table is below 1m depth. However, if it is applied to the silt loam having the water table depth ranging 4~10m, the recharge is overestimated by 30~80%, and the error increases drastically as the water table is getting shallower. A 2-D unconfined flow model with a time series of the recharge rate is developed. It is used for elucidating the errors of the WTF method, which is implicitly based on the tank model where the horizontal flow in the saturated zone is ignored. Simulations show that the recharge estimated by the WTF method is underestimated for the observation well near the discharge boundary. This is due to the fact that the hydraulic stress resulting from the recharge is rapidly dissipating by the horizontal flow near the discharge boundary. Simulations also reveal that the recharge is significantly underestimated with increase in the hydraulic conductivity and the recharge duration, and decrease in the specific yield.

  2. Estimation of groundwater recharge from water storage structures in a semi-arid climate of India

    NASA Astrophysics Data System (ADS)

    Sharda, V. N.; Kurothe, R. S.; Sena, D. R.; Pande, V. C.; Tiwari, S. P.

    2006-09-01

    SummaryGroundwater recharge from water storage structures under semi-arid conditions of western India has been estimated by employing water table fluctuation (WTF) and chloride mass balance (CMB) methods. Groundwater recharge was estimated as 7.3% and 9.7% of the annual rainfall by WTF method for the years 2003 and 2004, respectively while the two years average recharge was estimated as 7.5% using CMB method. A Recharge function depicting the relationship between potential recharge from storage structures and successive day averaged storage depths was better exhibited by a power function. A diagnostic relationship correlating the rainfall to the potential recharge from water storage structures has been developed to explain the characteristics of the storage structures for a given geographical location. The study has revealed that a minimum of 104.3 mm cumulative rainfall is required to generate 1 mm of recharge from the water storage structures. It was also inferred that the storage structures have limited capacity to induce maximum recharge irrespective of the amount of rainfall and maximum recharge to rainfall ratio is achieved at a lower rainfall than the average annual rainfall of the area. An empirical linear relationship was found to reasonably correlate the changes in chloride concentration with water table rise or fall in the study area.

  3. Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Mudarra, Matías; Andreo, Bartolomé; Marín, Ana; Wagener, Thorsten; Lange, Jens

    2014-08-01

    Karst aquifers provide large parts of the water supply for Mediterranean countries, though climate change is expected to have a significant negative impact on water availability. Recharge is therefore a key variable that has to be known for sustainable groundwater use. In this study, we present a new approach that combines two independent methods for karst recharge estimation. The first method derives spatially distributed information of mean annual recharge patterns through GIS analysis. The second is a process-based karst model that provides spatially lumped but temporally distributed information about recharge. By combining both methods, we add a spatial reference to the lumped simulations of the process-based model. In this way, we are able to provide spatiotemporal information of recharge and subsurface flow dynamics also during varying hydroclimatic conditions. We find that there is a nonlinear relationship between precipitation and recharge rates resulting in strong decreases of recharge following even moderate decreases of precipitation. This is primarily due to almost constant actual evapotranspiration amounts despite varying hydroclimatic conditions. During the driest year in the record, almost the entire precipitation was consumed as actual evapotranspiration and only little diffuse recharge took place at the high altitudes of our study site. During wettest year, recharge constituted a much larger fraction of precipitation and occurred at the entire study site. Our new method and our findings are significant for decision makers in similar regions that want to prepare for possible changes of hydroclimatic conditions in the future.

  4. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  5. Groundwater recharge at five representative sites in the Hebei Plain, China.

    PubMed

    Lu, Xiaohui; Jin, Menggui; van Genuchten, Martinus Th; Wang, Bingguo

    2011-01-01

    Accurate estimates of groundwater recharge are essential for effective management of groundwater, especially when supplies are limited such as in many arid and semiarid areas. In the Hebei Plain, China, water shortage is increasingly restricting socioeconomic development, especially for agriculture, which heavily relies on groundwater. Human activities have greatly changed groundwater recharge there during the past several decades. To obtain better estimates of recharge in the plain, five representative sites were selected to investigate the effects of irrigation and water table depth on groundwater recharge. At each site, a one-dimensional unsaturated flow model (Hydrus-1D) was calibrated using field data of climate, soil moisture, and groundwater levels. A sensitivity analysis of evapotranspirative fluxes and various soil hydraulic parameters confirmed that fine-textured surface soils generally generate less recharge. Model calculations showed that recharge on average is about 175 mm/year in the piedmont plain to the west, and 133 mm/year in both the central alluvial and lacustrine plains and the coastal plain to the east. Temporal and spatial variations in the recharge processes were significant in response to rainfall and irrigation. Peak time-lags between infiltration (rainfall plus irrigation) and recharge were 18 to 35 days in the piedmont plain and 3 to 5 days in the central alluvial and lacustrine plains, but only 1 or 2 days in the coastal plain. This implies that different time-lags corresponding to different water table depths must be considered when estimating or modeling groundwater recharge. PMID:20100294

  6. A generalized estimate of ground-water-recharge rates in the Lower Peninsula of Michigan

    USGS Publications Warehouse

    Holtschlag, David J.

    1997-01-01

    Ground-water recharge rates were estimated by analysis of streamflow, precipitation, and basin-characteristics data. Streamflow data were partitioned into ground-water-discharge and surface-water-runoff components. Regression equations relate ground-water discharge to precipitation at each basin. Basin-characteristics and long-term precipitation data were used to aid in the interpolation of recharge characteristics within gaged and ungaged areas. A multiple regression equation was developed to estimate spatial variation of recharge. The generalized estimate provides a consistent method for approximating recharge rates in the Lower Peninsula of Michigan.

  7. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    SciTech Connect

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  8. Simulation of runoff and recharge and estimation of constituent loads in runoff, Edwards aquifer recharge zone (outcrop) and catchment area, Bexar County, Texas, 1997-2000

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2002-01-01

    The U.S. Geological Survey developed a watershed model (Hydrological Simulation Program?FORTRAN) to simulate runoff and recharge and to estimate constituent loads in surface-water runoff in the Edwards aquifer recharge zone (outcrop) and catchment area in Bexar County, Texas. Rainfall and runoff data collected during 1970?98 from four gaged basins in the outcrop and catchment area were used to calibrate and test the model. The calibration parameters were applied in simulations of the four calibration basins and six ungaged basins that compose the study area to obtain runoff and recharge volumes for 4 years, 1997?2000. In 1997, simulated runoff from the study area was 5.62 inches. Simulated recharge in the study area was 7.85 inches (20 percent of rainfall). In 1998, simulated runoff was 11.05 inches; simulated recharge was 10.99 inches (25 percent of rainfall). In 1999, simulated runoff was 0.66 inch; simulated recharge was 3.03 inches (19 percent of rainfall). In 2000, simulated runoff was 5.29 inches; simulated recharge was 7.19 inches (21 percent of rainfall). During 1997?2000, direct infiltration of rainfall accounted for about 56 percent of the total Edwards aquifer recharge in Bexar County. Streamflow losses contributed about 37 percent of the recharge; flood impoundment contributed 7 percent. The simulated runoff volumes were used with event-mean-concentration data from basins in the study area and from other Bexar County basins to compute constituent loads and yields for various land uses. Annual loads for suspended solids, dissolved solids, dissolved nitrite plus nitrate nitrogen, and total lead were consistently largest from undeveloped land and smallest from commercial land or transportation corridors. Annual loads and yields varied with rainfall, with the maximum loads produced in the wettest year (1998) and the minimum loads produced in the driest year (1999).

  9. Representative recharge rates in a complex unsaturated hydrogeology

    SciTech Connect

    Vold, E.; Newman, B.; Birdsell, K.

    1997-02-01

    This study summarizes analyses used for the determination of representative recharge rates in a semi-arid terrain of complex topography for the purpose of modeling the performance assessment of a mesa top disposal facility. Four recharge rates are identified based on different terrains. The terrain is first broadly grouped into canyon bottoms and mesa tops, with each covering about half the topography. The canyon bottoms are considered wet or dry depending on the local infiltration conditions and the influence of mans` activities. The mesa tops are separated into locations which are undisturbed and disturbed by laboratory operations. Disturbed locations at the disposal facility include the disposal pits utilized for shallow land burial of low-level radioactive waste, covering approximately half the mesa top area. Several sources of data and analyses have been synthesized to estimate the resulting recharge rates. Data and analyses include: (1) detailed surface water balance calculations with site-specific parameter values as input; (2) chloride ion profiles and analysis of implied flux at several borehole locations; (3) analyses of liquid and vapor phase vertical flux from moisture profiles with stratigraphic unit averaged unsaturated hydrologic properties; (4) comparison of moisture content field data with values implied from Darcy flux calculations for assumed unit gradient conditions and for stratigraphic unit averaged unsaturated hydrologic properties; (5) liquid flux calculated under self-consistent gradients from field observed moisture profiles and analytic determinations of in-situ moisture potential and conductivity at limited locations; (6) distributions in near surface soil moisture contents expressed as an equivalent vertical flux under unit gradient assumptions; and (7) limited comparisons to tracers available from past disposal operations.

  10. Artificial recharge through a thick, heterogeneous unsaturated zone.

    PubMed

    Izbicki, John A; Flint, Alan L; Stamos, Christina L

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 x 10(6) m(3) of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 x 10(6) m(3) of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area. PMID:18194322

  11. Artificial recharge through a thick, heterogeneous unsaturated zone

    USGS Publications Warehouse

    Izbicki, J.A.; Flint, A.L.; Stamos, C.L.

    2008-01-01

    Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.

  12. Electrode performance of romanechite for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Tsuda, Masayuki; Arai, Hajime; Nemoto, Yasue; Sakurai, Yoji

    We studied romanechite, (2×3) tunnel type manganese dioxide, as a positive electrode material for rechargeable lithium batteries. We synthesized the sample by soft chemical techniques, and its chemical composition was Ba 0.18MnO 2.10·0.42H 2O. We obtained a first discharge capacity of 120 mAh g -1 (energy density 264 mWh g -1). The capacity decreased with cycling. We examined the thermal behavior of this material, revealing its high thermal stability.

  13. Tracers in recharge — Effects of partitioning in soils

    NASA Astrophysics Data System (ADS)

    Gerritse, Robert G.; Adeney, John A.

    1992-02-01

    Partitioning among mobile and stationary water phases in a soil measurably reduces movement of a tracer relative to the mobile water phase. The quantity of water infiltrating the soil, however, still follows from the product of the distance travelled by the tracer and average moisture content of the soil over that distance. Partitioning between surface and water phases in a soil by proton and protium exchange has only a small effect on the retention of isotopically labelled water. Partitioning between surface, water and gas phases in a soil, however, strongly decreases diffusive movement of isotopically labelled water in the gas phase. In sandy soils with moisture contents less than 5%, the effective diffusion coefficient in the gas phase can be reduced by a factor between 50 and 5000. As a soil dries out, diffusive movement of 18O labelled water will become larger than of HDO and HTO. Negative charges on soil surfaces repel chloride and bromide. The effect of charge exclusion on movement of Cl - and Br - relative to HDO was measured in small columns for a number of soils from the southwest of Western Australia. Data from these experiments show that in the unsaturated zone of sandy soils, charge exclusion can reduce the pore volume available to Cl - and Br - in the water phase at field capacity by > 20%. Recharge to ground water, if calculated from the position of Cl - or Br - tracers and average moisture in the soil profile, must then be reduced by the same percentage. The effect of charge exclusion in soils on the calculation of recharge from profile data, was evaluated for a practical situation. Significant amounts of bromide from car exhaust gases accumulate in soils in urban areas and can be used to trace water movement. A site was chosen in metropolitan Perth on a sparsely vegetated calcareous sand near the junction of two busy roads. A seasonal effect on bromide accumulation in the soil profile at this site was clearly visible from data on the soil solution

  14. High pressure water electrolysis for space station EMU recharge

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  15. Rechargeable battery which combats shape change of the zinc anode

    NASA Technical Reports Server (NTRS)

    Cohn, E. M. (Inventor)

    1976-01-01

    A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes. The ion flow is greatest at the edges of the electrodes and least at the centers, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed in which the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile.

  16. Rechargeable thin film battery and method for making the same

    DOEpatents

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  17. A 65 Ah rechargeable lithium molybdenum disulfide battery

    NASA Technical Reports Server (NTRS)

    Brandt, K.

    1986-01-01

    A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.

  18. Modeled impacts of predicted climate change on recharge and groundwater levels

    NASA Astrophysics Data System (ADS)

    Scibek, J.; Allen, D. M.

    2006-11-01

    A methodology is developed for linking climate models and groundwater models to investigate future impacts of climate change on groundwater resources. An unconfined aquifer, situated near Grand Forks in south central British Columbia, Canada, is used to test the methodology. Climate change scenarios from the Canadian Global Coupled Model 1 (CGCM1) model runs are downscaled to local conditions using Statistical Downscaling Model (SDSM), and the change factors are extracted and applied in LARS-WG stochastic weather generator and then input to the recharge model. The recharge model simulated the direct recharge to the aquifer from infiltration of precipitation and consisted of spatially distributed recharge zones, represented in the Hydrologic Evaluation of Landfill Performance (HELP) hydrologic model linked to a geographic information system (GIS). A three-dimensional transient groundwater flow model, implemented in MODFLOW, is then used to simulate four climate scenarios in 1-year runs (1961-1999 present, 2010-2039, 2040-2069, and 2070-2099) and compare groundwater levels to present. The effect of spatial distribution of recharge on groundwater levels, compared to that of a single uniform recharge zone, is much larger than that of temporal variation in recharge, compared to a mean annual recharge representation. The predicted future climate for the Grand Forks area from the downscaled CGCM1 model will result in more recharge to the unconfined aquifer from spring to the summer season. However, the overall effect of recharge on the water balance is small because of dominant river-aquifer interactions and river water recharge.

  19. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-06-01

    Knowledge of groundwater residence times and recharge locations are vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge and recharge from the Gellibrand River. To determine recharge patterns and groundwater flowpaths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. Despite the water table fluctuating by 0.9-3.7 m annually producing estimated recharge rates of 90 and 372 mm yr-1, residence times of shallow (11-29 m) groundwater determined by 14C ages are between 100 and 10 000 years. 3H activities are negligible in most of the groundwater and groundwater electrical conductivity in individual areas remains constant over the period of study. Although diffuse local recharge is evident, the depth to which it penetrates is limited to the upper 10 m of the aquifer. Rather, groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High, and acts as a regional discharge zone where upward head gradients are maintained annually, limiting local recharge. Additionally, the Gellibrand River does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

  20. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  1. Sensitivity of ground - water recharge estimates to climate variability and change, Columbia Plateau, Washington

    USGS Publications Warehouse

    Vaccaro, John J.

    1992-01-01

    The sensitivity of groundwater recharge estimates was investigated for the semiarid Ellensburg basin, located on the Columbia Plateau, Washington, to historic and projected climatic regimes. Recharge was estimated for predevelopment and current (1980s) land use conditions using a daily energy-soil-water balance model. A synthetic daily weather generator was used to simulate lengthy sequences with parameters estimated from subsets of the historical record that were unusually wet and unusually dry. Comparison of recharge estimates corresponding to relatively wet and dry periods showed that recharge for predevelopment land use varies considerably within the range of climatic conditions observed in the 87-year historical observation period. Recharge variations for present land use conditions were less sensitive to the same range of historical climatic conditions because of irrigation. The estimated recharge based on the 87-year historical climatology was compared with adjustments to the historical precipitation and temperature records for the same record to reflect CO2-doubling climates as projected by general circulation models (GCMs). Two GCM scenarios were considered: an average of conditions for three different GCMs with CO2 doubling, and a most severe “maximum” case. For the average GCM scenario, predevelopment recharge increased, and current recharge decreased. Also considered was the sensitivity of recharge to the variability of climate within the historical and adjusted historical records. Predevelopment and current recharge were less and more sensitive, respectively, to the climate variability for the average GCM scenario as compared to the variability within the historical record. For the maximum GCM scenario, recharge for both predevelopment and current land use decreased, and the sensitivity to the CO2-related climate change was larger than sensitivity to the variability in the historical and adjusted historical climate records.

  2. Present-day groundwater recharge estimation in parts of the Indian Sub-Continent

    NASA Astrophysics Data System (ADS)

    Bhanja, S. N.; Mukherjee, A.; Wada, Y.; Scanlon, B. R.; Taylor, R. G.; Rodell, M.; Malakar, P.

    2015-12-01

    Large part of global population has been dependent on groundwater as a source of fresh water. The demand would further increase with increasing population and stress associated with climate change. We tried to provide regional-scale groundwater recharge estimates in a large part of Indian Sub-Continent. A combination of ground-based, satellite-based and numerical model simulated recharge estimates were presented in the densely populated region. Three different methods: an intense network of observational wells (n>13,000 wells), a satellite (TRMM) and global land-surface model (CLM) outputs, and a global-scale hydrological model (PCR GLOBWB) were employed to calculate recharge estimates. Groundwater recharge values exhibit large spatial variations over the entire region on the basis of aquifer hydrogeology, precipitation and groundwater withdrawal patterns. Groundwater recharge estimates from all three estimation techniques were found to be higher (>300 mm/year) in fertile planes of Indus-Ganges-Brahmaputra (IGB) river basins. A combination of favorable hydrogeologic conditions (porosity, permeability etc.), comparatively higher rates of precipitation, and return flow from rapidly withdrawn irrigation water might influence occurrence of high recharge rates. However, central and southern study area experiences lower recharge rates (<200 mm/year), might be associated with unfavorable hydrogeologic conditions associated with cratonic provinces. Statistical analysis of inter-comparison between the three different recharge estimates show good matches in some of the areas. Recharge estimates indicate dynamic nature of groundwater recharge as a function of precipitation, land use pattern, and hydrogeologic parameters. On a first hand basis, the estimates will help policy makers to understand groundwater recharge process over the densely populated region and finally would facilitate to implement sustainable policy for securing water security.

  3. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  4. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.

    PubMed

    Wu, Min; Cui, Yi; Bhargav, Amruth; Losovyj, Yaroslav; Siegel, Amanda; Agarwal, Mangilal; Ma, Ying; Fu, Yongzhu

    2016-08-16

    An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries. PMID:27411083

  5. Clogging in Managed Aquifer Recharge: Hydrodynamics and Geochemistry

    NASA Astrophysics Data System (ADS)

    Mays, D. C.

    2013-12-01

    Managed aquifer recharge (MAR) is the engineered process by which water is delivered into an aquifer for storage, transmission, or treatment. Perhaps the most significant technical challenge in MAR is clogging, a detrimental reduction of permeability in the aquifer porous media. This presentation describes research from the allied fields of water treatment, soil science, and petrology, each of which sheds light on the mechanisms by which hydrodynamics and geochemistry influence clogging in MAR. The primary focus is clogging by suspended solids, especially clay colloids, which are ubiquitous in natural porous media. When colloids deposit in aquifers, they reduce the effective porosity and alter the pore space geometry, both of which can inhibit the flow of groundwater. Management of clogging is complicated by the complexity inherent in this system, in which hydrodynamics, geochemistry, clay mineralogy, and colloidal effects each play a role. This presentation will briefly review colloid filtration, mobilization, and clogging models, then highlight the key physical and chemical variables that control clogging. It will be argued that clogging in managed aquifer recharge is analogous to clogging in soils or hydrocarbon reservoirs, rather than to clogging in granular media filters used for water treatment. Based on this analogy, the presentation will conclude with several recommendations to prevent or manage clogging in MAR.

  6. Extracellular enzyme activities and nutrient availability during artificial groundwater recharge.

    PubMed

    Kolehmainen, Reija E; Korpela, Jaana P; Münster, Uwe; Puhakka, Jaakko A; Tuovinen, Olli H

    2009-02-01

    Natural organic matter (NOM) removal is the main objective of artificial groundwater recharge (AGR) for drinking water production and biodegradation plays a substantial role in this process. This study focused on the biodegradation of NOM and nutrient availability for microorganisms in AGR by the determination of extracellular enzyme activities (EEAs) and nutrient concentrations along a flow path in an AGR aquifer (Tuusula Water Works, Finland). Natural groundwater in the same area but outside the influence of recharge was used as a reference. Determination of the specific alpha-d-glucosidase (alpha-Glu), beta-d-glucosidase (beta-Glu), phosphomonoesterase (PME), leucine aminopeptidase (LAP) and acetate esterase (AEST) activities by fluorogenic model substrates revealed major increases in the enzymatic hydrolysis rates in the aquifer within a 10m distance from the basin. The changes in the EEAs along the flow path occurred simultaneously with decreases in nutrient concentrations. The results support the assumption that the synthesis of extracellular enzymes in aquatic environments is up and down regulated by nutrient availability. The EEAs in the basin sediment and pore water samples (down to 10cm) were in the same order of magnitude as in the basin water, suggesting similar nutritional conditions. Phosphorus was likely to be the limiting nutrient at this particular AGR site. Furthermore, the extracellular enzymes functioned in a synergistic and cooperative way. PMID:19028394

  7. Rational material design for ultrafast rechargeable lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong

    2015-10-01

    Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future. PMID:25857819

  8. Tritium tracer test to estimate aquifer recharge under irrigated conditions

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Tamoh, K.; Candela, L.

    2009-12-01

    Environmental tracers, as tritium, have been generally used to estimate aquifer recharge under natural conditions. A tritium tracer test to estimate recharge under semi-arid and irrigated conditions is presented. The test was carried out in an experimental plot under drip irrigation, located in SE Spain, with annual row crops (rotation lettuce and melon), following common agricultural practices in open air. Tritiated water was applied as an irrigation pulse, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure the concentration of tritium in soil samples. Transport of tritium was simulated with SOLVEG code, a one-dimensional numerical model for simulating transport of heat, water and tritiated water in liquid and gas phase, which has been modified and adapted for this experience, including ground cover, root growth and root water uptake. One crop has been used to calibrate the modeling approach and other three crops to validate it. Results of flow and transport modelling show a good agreement between observed and estimated tritium concentration profile. For the period October 2007-September 2008, total drainage obtained value was 441 mm.

  9. Recharge and sustainability of a coastal aquifer in northern Albania

    NASA Astrophysics Data System (ADS)

    Kumanova, X.; Marku, S.; Fröjdö, S.; Jacks, G.

    2014-06-01

    The River Mati in Albania has formed a coastal plain with Holocene and Pleistocene sediments. The outer portion of the plain is clay, with three underlying aquifers that are connected to an alluvial fan at the entry of the river into the plain. The aquifers supply water for 240,000 people. Close to the sea the aquifers are brackish. The brackish water is often artesian and found to be thousands of years old. Furthermore, the salinity, supported by δ18O results, does not seem to be due to mixing with old seawater but due to diffusion from intercalated clay layers. Heavy metals from mines in the upstream section of River Mati are not an immediate threat, as the pH buffering of the river water is good. Moreover, the heavy metals are predominantly found in suspended and colloidal phases. Two sulphur isotope signatures, one mirroring seawater sulphate in the brackish groundwater (δ34S >21 ‰) and one showing the influence of sulphide in the river and the fresh groundwater (δ34S <10 ‰), indicate that the groundwater in the largest well field is recharged from the river. The most serious threat is gravel extraction in the alluvial fan, decreasing the hydraulic head necessary for recharge and causing clogging of sediments.

  10. Natural water purification and water management by artificial groundwater recharge

    PubMed Central

    Balke, Klaus-Dieter; Zhu, Yan

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624

  11. Feasibility of groundwater recharge dam projects in arid environments

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.

    2014-05-01

    A new method for determining feasibility and prioritizing investments for agricultural and domestic recharge dams in arid regions is developed and presented. The method is based on identifying the factors affecting the decision making process and evaluating these factors, followed by determining the indices in a GIS-aided environment. Evaluated parameters include results from field surveys and site visits, land cover and soils data, precipitation data, runoff data and modeling, number of beneficiaries, domestic irrigation demand, reservoir objectives, demography, reservoirs yield and reliability, dam structures, construction costs, and operation and maintenance costs. Results of a case study on more than eighty proposed dams indicate that assessment of reliability, annualized cost/demand satisfied and yield is crucial prior to investment decision making in arid areas. Irrigation demand is the major influencing parameter on yield and reliability of recharge dams, even when only 3 months of the demand were included. Reliability of the proposed reservoirs as related to their standardized size and net inflow was found to increase with increasing yield. High priority dams were less than 4% of the total, and less priority dams amounted to 23%, with the remaining found to be not feasible. The results of this methodology and its application has proved effective in guiding stakeholders for defining most favorable sites for preliminary and detailed design studies and commissioning.

  12. Characterization of ether electrolytes for rechargeable lithium cells

    SciTech Connect

    Abraham, K.M.; Goldman, J.L.; Natwig, D.L.

    1982-11-01

    2Methyl-tetrahydrofuran(2Me-THF)/LiAsF/sub 6/ and several diethyl ether (DEE)/LiAsF/sub 6/-based electrolytes have been characterized for their usefulness in rechargeable Li/TiS/sub 2/ cells. This characterization has involved extended room temperature cell cycling at various depths of discharge, evaluation of rate/capacity behavior of cells at 25/sup 0/ and -10/sup 0/C, and storage of cells at 50/sup 0/C for up to one month with subsequent cycling. The thermal stability of the electrolytes at 71/sup 0/C was evaluated by storage experiments in sealed tubes, followed by product analysis. The performance of 2Me-THF/LiAsF/sub 6/ cells far surpassed the others. The present data further substantiate previous reports from this laboratory of the superior behavior of 2MeTHF/LiAsF/sub 6/ solutions in rechargeable Li cells. The DEE/LiAsF/sub 6/-based electrolytes are too unstable thermally to be of practical use.

  13. Characterization of ether electrolytes for rechargeable lithium cells. Technical report

    SciTech Connect

    Abraham, K.M.; Goldman, J.L.; Natwig, D.L.

    1982-03-01

    2Methyl-tetrahydrofuran (2Me-THF)/LiAsF/sub 6/ and several diethyl ether (DEE)/LiAsF/sub 6/-based electrolytes have been characterized for their usefulness in rechargeable Li/TiS/sub 2/ cells. This characterization has involved extended room temperature cell cycling at various depths of discharge, evaluation of rate/capacity behavior of cells at 25C and -10C, and storage of cells at 50C for up to one month with subsequent cycling. The thermal stability of the electrolytes at 71C was evaluated by storage experiments in sealed-tubes, followed by product analysis. The performance of 2Me-THF/LiAsF/sub 6/ cells far surpassed the others. The present data further substantiate previous reports from this laboratory of the superior behavior of 2Me-THF/LiAsF/sub 6/ solutions in rechargeable Li cells. The DEE/LiAsF/sub 6/ based electrolytes are too unstable thermally to be practically useful.

  14. Reconnaissance Estimates of Recharge Based on an Elevation-dependent Chloride Mass-balance Approach

    SciTech Connect

    Charles E. Russell; Tim Minor

    2002-08-31

    Significant uncertainty is associated with efforts to quantity recharge in arid regions such as southern Nevada. However, accurate estimates of groundwater recharge are necessary to understanding the long-term sustainability of groundwater resources and predictions of groundwater flow rates and directions. Currently, the most widely accepted method for estimating recharge in southern Nevada is the Maxey and Eakin method. This method has been applied to most basins within Nevada and has been independently verified as a reconnaissance-level estimate of recharge through several studies. Recharge estimates derived from the Maxey and Eakin and other recharge methodologies ultimately based upon measures or estimates of groundwater discharge (outflow methods) should be augmented by a tracer-based aquifer-response method. The objective of this study was to improve an existing aquifer-response method that was based on the chloride mass-balance approach. Improvements were designed to incorporate spatial variability within recharge areas (rather than recharge as a lumped parameter), develop a more defendable lower limit of recharge, and differentiate local recharge from recharge emanating as interbasin flux. Seventeen springs, located in the Sheep Range, Spring Mountains, and on the Nevada Test Site were sampled during the course of this study and their discharge was measured. The chloride and bromide concentrations of the springs were determined. Discharge and chloride concentrations from these springs were compared to estimates provided by previously published reports. A literature search yielded previously published estimates of chloride flux to the land surface. {sup 36}Cl/Cl ratios and discharge rates of the three largest springs in the Amargosa Springs discharge area were compiled from various sources. This information was utilized to determine an effective chloride concentration for recharging precipitation and its associated uncertainty via Monte Carlo simulations

  15. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  16. MODIS-aided statewide net groundwater-recharge estimation in Nebraska.

    PubMed

    Szilagyi, Jozsef; Jozsa, Janos

    2013-01-01

    Monthly evapotranspiration (ET) rates (2000 to 2009) across Nebraska at about 1-km resolution were obtained by linear transformations of the MODIS (MODerate resolution Imaging Spectroradiometer) daytime surface temperature values with the help of the Priestley-Taylor equation and the complementary relationship of evaporation. For positive values of the mean annual precipitation and ET differences, the mean annual net recharge was found by an additional multiplication of the power-function-transformed groundwater vulnerability DRASTIC-code values. Statewide mean annual net recharge became about 29 mm (i.e., 5% of mean annual precipitation) with the largest recharge rates (in excess of 100 mm/year) found in the eastern Sand Hills and eastern Nebraska. Areas with the largest negative net recharge rates caused by declining groundwater levels due to large-scale irrigation are found in the south-western region of the state. Error bounds of the estimated values are within 10% to 15% of the corresponding precipitation rates and the estimated net recharge rates are sensitive to errors in the precipitation and ET values. This study largely confirms earlier base-flow analysis-based statewide groundwater recharge estimates when considerations are made for differences in the recharge definitions. The current approach not only provides better spatial resolution than available earlier studies for the region but also quantifies negative net recharge rates that become especially important in numerical modeling of shallow groundwater systems. PMID:23216050

  17. Recharge characteristics of a phreatic aquifer as determined by storage accumulation

    NASA Astrophysics Data System (ADS)

    Ketchum, Neil J.; Donovan, Joseph J.; Avery, William H.

    2000-12-01

    The cumulative storage accumulation curve (CSAC) is a tool for saturated-volume fluctuation (SVF) analysis of transient recharge to shallow phreatic aquifers discharging only to springs. The method assumes that little underflow or phreatic evapotranspiration occurs. The CSAC is a modified water-table hydrograph that distinguishes storage increase caused by recharge from loss due to springflow-induced recession. Required for the analysis are water-table fluctuations at a single representative location within the catchment of a single spring and either direct measurements or robust interpolations of springflows at different aquifer stages. The method employs empirical manipulation of head observations, varying spring catchment area to minimize CSAC water-level changes in late portions of long recessions. Results include volumetric estimates of recharge integrated over individual events and instantaneous rates of recharge to the water table, at the temporal resolution of the water-level sampling interval. The analysis may also yield physically realistic information on spring catchment and recharge focusing. In a test case in West Virginia, USA, recharge estimates by this technique were consistent with integrated springflow time series but greater than estimates based on potential evapotranspiration. Results give insight into dynamic recharge behavior over time as well as an indication of recharge catchment size.

  18. Estimating recharge through Playa Lakes to the Southern High Plains Aquifer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southern High Plains of Texas, it is accepted that focused recharge to the High Plains Aquifer (locally known as the Ogallala) occurs through over 20,000 playa lakes, which are local depressions that collect storm runoff. The amount and rate of recharge is not precisely known, and the impact ...

  19. Estimation of recharge from irrigation flows; Analysis of field and laboratory data and modeling.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work is aimed at quantifying aquifer recharge due to irrigation in the Campo de Cartagena (SE Spain). A study of recharge was conducted on an experiment plot cropped in lettuce and irrigated with a drip system. The physico-chemical and hydraulic properties of the vadose zone were characterized ...

  20. Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability

    SciTech Connect

    Lin, Zhenhong; Greene, David L

    2012-01-01

    Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

  1. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  2. Setting up a groundwater recharge model for an arid karst system using time lapse camera data

    NASA Astrophysics Data System (ADS)

    Schulz, Stephan; de Rooij, Gerrit H.; Michelsen, Nils; Rausch, Randolf; Siebert, Christian; Schüth, Christoph; Merz, Ralf

    2015-04-01

    Groundwater is the principal water resource in most dryland areas. Therefore, its replenishment rate is of great importance for water management. The amount of groundwater recharge depends on the climatic conditions, but also on the geological conditions, soil properties and vegetation. In dryland areas, outcrops of karst aquifers often receive enhanced recharge rates compared to other geological settings. Especially in areas with exposed karst features like sinkholes or open shafts rainfall accumulates in channels and discharges directly into the aquifer. Using the example of the As Sulb plateau in Saudi Arabia this study introduces a cost-effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a small catchment (4.0 x 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time lapse camera observing a v-notch weir. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014) four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. This model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge-precipitation-ratios, which underlines the nonlinearity between recharge and precipitation in dryland areas. Besides the amount of precipitation this ratio is strongly influenced by the interannual distribution of rainfall events.

  3. PROSPECTS FOR ENHANCED GROUNDWATER RECHARGE VIA INFILTRATION OF URBAN STORMWATER RUNOFF: A CASE STUDY

    EPA Science Inventory

    The rain garden is an urban storm water best management practice that is used to infiltrate runoff close to its source, thereby disconnecting impervious area while providing an avenue for groundwater recharge. Groundwater recharge may provide additional benefits to aquatic ecosys...

  4. DISTRIBUTION OF AREAL RECHARGE TO A DISCRETE FRACTURE NETWORK (FRACNET) MODEL USING THE ANALYTIC ELEMENT METHOD

    EPA Science Inventory

    Rain water filtering down through the soil will provide recharge of the saturated fractured rock aquifer. he computer model FRACNET has been designed to distribute areal recharge into linear fracture zones in order to complete the regional water balance. n this presentation, a te...

  5. Hydropedologic Analysis of Ground-Water Recharge at the Field Scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating ground-water recharge is an important element in water resources characterization, vulnerability assessment, and utilization. Contaminant sources often occur in the unsaturated zone where ground-water recharge may mobilize it to migrate into a water table aquifer. Cumulative soil water...

  6. Discrete-storm water-table fluctuation method to estimate episodic recharge.

    USGS Publications Warehouse

    Nimmo, John R.; Horowittz, Charles; Mitchell, Lara

    2015-01-01

    We have developed a method to identify and quantify recharge episodes, along with their associated infiltration-related inputs, by a consistent, systematic procedure. Our algorithm partitions a time series of water levels into discrete recharge episodes and intervals of no episodic recharge. It correlates each recharge episode with a specific interval of rainfall, so storm characteristics such as intensity and duration can be associated with the amount of recharge that results. To be useful in humid climates, the algorithm evaluates the separability of events, so that those whose recharge cannot be associated with a single storm can be appropriately lumped together. Elements of this method that are subject to subjectivity in the application of hydrologic judgment are values of lag time, fluctuation tolerance, and master recession parameters. Because these are determined once for a given site, they do not contribute subjective influences affecting episode-to-episode comparisons. By centralizing the elements requiring scientific judgment, our method facilitates such comparisons by keeping the most subjective elements openly apparent, making it easy to maintain consistency. If applied to a period of data long enough to include recharge episodes with broadly diverse characteristics, the method has value for predicting how climatic alterations in the distribution of storm intensities and seasonal duration may affect recharge.

  7. A ROOT ZONE MODELLING APPROACH TO ESTIMATING GROUNDWATER RECHARGE FROM IRRIGATED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge....

  8. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    NASA Astrophysics Data System (ADS)

    Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.

    2015-12-01

    For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.

  9. Climate Impact on Groundwater Recharge in Southeastern Louisiana and Southwestern Mississippi

    NASA Astrophysics Data System (ADS)

    Beigi, E.; Tsai, F. T.

    2012-12-01

    Increases of concentrations of CO2 and other greenhouse gases have a significant effect on global climate, precipitation and hydrology, which in turn influences recharge to aquifers. Groundwater recharge study is imperative to the sole source aquifer, for example the Southern Hills aquifer system in southeastern Louisiana and southwestern Mississippi, which provides more than 50 percent of the drinking water consumed in the area overlying the aquifer and has no substitute drinking water source(s). To trace the climate impact and its consequent groundwater availability, this study developed a GIS-based integrated framework to connect climate models to a high-resolution hydrologic model to quantify long-term groundwater recharge. We employed the Hydrologic Evaluation of Landfill Performance (HELP3) model as our hydrologic model to estimate spatial-temporal distribution of potential recharge for a regional scale. HELP3 model was especially suitable for our recharge study due to Louisiana humid climate and the use of a regional-scale water budget approach. Detailed surficial soil property and land cover were obtained from the NRCS and the USGS to derive maps of curve number for the HELP3 model. Wireline well logs and drillers logs were analyzed to determine stratigraphic lithology and the first major sand encountered beneath the soil layer. For a regional scale, we used global circulation model (GCM) downscaled daily precipitation and temperature obtained from USGS CASCaDE Project Climate Data as the forcing input to the HELP3 model. The emission scenarios considered in this study were A2, B1 and A1FI from Parallel Climate Model 1 (PCM) and from the NOAA Geophysical Fluid Dynamics Lab's GFDL CM2.1 model. We used the computed runoff from USGS WaterWatch along with the HELP3 model to calculate the recharge index (RI) and delineate the recharge index map for individual hydrologic units in terms of Hydrologic Unit Codes (HUCs). The recharge index was defined as the

  10. Spatio-temporal recharge patterns in a semi-arid alluvial basin with irrigated crops

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Harter, T.; Naugle, A. W.

    2001-12-01

    Recharge in semi-arid regions with irrigated crops is predominantly driven by irrigation technology and cropping patterns, but also by the seasonal distribution of rainfall and the availability of irrigation water. A significant amount of basin recharge occurs from ephemeral streams and unlined irrigation canals. A spatially distributed, GIS-based hydrologic model of water application and water use at the land-atmosphere interface was developed to estimate transient recharge to the deep vadose zone and into the unconfined alluvial aquifer. The spatial basis for the hydrologic model are individual landuse units (diffuse recharge) and a network of streams and canals with water seepage (lineal recharge). The land-atmosphere interface and unsaturated zone model component (LAIUZ) is coupled to a surface water supply model component (SWSM) that provides surface water deliveries by district or sub-district, depending on available information. Using LAIUZ and SWSM, we investigate the regional behavior and spatio-temporal variability of deep vadose zone recharge in the 3,800 square kilometer Tule groundwater basin of the San Joaquin Valley, California. Surface water management in the topographically flat basin is divided between two dozen irrigation and water districts. All surface water is imported or is natural discharge into the basin. Groundwater extractions are managed by landowners on a field-by-field basis. Monthly varying recharge and groundwater pumping rates are computed for the hydrologic years 1970 through 2000. The average size of the GIS landuse units is 0.4 sq. kilometers. The GIS coverage distinguishes over 60 landuse types. Applied and consumptive water use are computed based on actual evapotranspiration and known irrigation or water use efficiencies for each landuse unit. Seepage from streams is computed by mass balance. The resulting model estimates of groundwater recharge and pumping are in good agreement with measured groundwater level changes for the

  11. Modeling Integrated Cave Drip Recharge Data using DReAM (Daily Recharge Assessment Model) in a Dry Eastern Mediterranean Area, Sif Cave - Israel

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Sheffer, N. A.; Scanlon, B. R.; Gimburg, A.; Morin, E.

    2010-12-01

    Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. To better understand this mechanism, a cave in the recharge area of the karstic Western Mountain Aquifer (WMA) of Israel was equipped to measure precipitation infiltration (2006-2008) by collecting integrated water drips from three areas in the cave (14, 46, and 52 m2 areas). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas and enable estimation of recharge. A water budget model - DReAM (Daily Recharge Assessment Model) was used to quantify and predict infiltration behavior at the cave. DReAM includes calculations of all water cycle components - precipitation, evapotranspiration, runoff and recharge. The model was calibrated and validated using two independent sets of values, providing good agreement between calculated and observed data. Modeling results agree with previous studies that show: 1) three distinct flow paths (slow, intermediate, and fast flows) of water infiltrating at the cave; 2) a threshold of ~100 mm rain at the beginning of the rainy season for infiltration to begin; and 3) a decrease in lag time between rain events and infiltration response throughout the rainy season. This modeling tool and analysis approach can translate precipitation to groundwater recharge which will be very important for projecting future water resources in response to climate variability.

  12. 3H and 14C as tracers of ground-water recharge

    USGS Publications Warehouse

    Izbicki, John A.; Michel, Robert L.; Martin, Peter

    1992-01-01

    Surface spreading of water from the Santa Clara River is used to recharge aquifers underlying the Oxnard Plain. These aquifers are divided into an upper system about 400 feet thick, and a lower system more than 1,000 feet thick. In previous studies, it has been reported that surface spreading recharged aquifers in both the upper and lower systems. Water from most wells perforated in the upper system has tritium levels consistent with decay-corrected concentrations found in water recharged after 1952 when tritium levels increased as a result of atmospheric testing of nuclear weapons. Water from most wells in the lower system does not contain measurable tritium and must have been recharged prior to 1952. Carbon-14 ages estimated for water from wells in the lower system range from recent to about 25,000 years before present. These data show that the lower system is not effectively recharged by surface spreading.

  13. Groundwater recharge to the Gulf Coast aquifer system in Montgomery and Adjacent Counties, Texas

    USGS Publications Warehouse

    Oden, Timothy D.; Delin, Geoffrey N.

    2013-01-01

    Simply stated, groundwater recharge is the addition of water to the groundwater system. Most of the water that is potentially available for recharging the groundwater system in Montgomery and adjacent counties in southeast Texas moves relatively rapidly from land surface to surface-water bodies and sustains streamflow, lake levels, and wetlands. Recharge in southeast Texas is generally balanced by evapotranspiration, discharge to surface waters, and the downward movement of water into deeper parts of the groundwater system; however, this balance can be altered locally by groundwater withdrawals, impervious surfaces, land use, precipitation variability, or climate, resulting in increased or decreased rates of recharge. Recharge rates were compared to the 1971–2000 normal annual precipitation measured Cooperative Weather Station 411956, Conroe, Tex.

  14. Identification of potential artificial groundwater recharge zones in Northwestern Saudi Arabia using GIS and Boolean logic

    NASA Astrophysics Data System (ADS)

    Zaidi, Faisal K.; Nazzal, Yousef; Ahmed, Izrar; Naeem, Muhammad; Jafri, Muhammad Kamran

    2015-11-01

    Identifying potential groundwater recharge zones is a pre-requisite for any artificial recharge project. The present study focuses on identifying the potential zones of Artificial Groundwater Recharge (AGR) in Northwestern Saudi Arabia. Parameters including slope, soil texture, vadose zone thickness, groundwater quality (TDS) and type of water bearing formation were integrated in a GIS environment using Boolean logic. The results showed that 17.90% of the total studied area is suitable for AGR. The identified zones were integrated with the land use/land cover map to avoid agricultural and inhabited lands which reduced the total potential area to 14.24%. Geomorphologically the wadi beds are the most suitable sites for recharge. On the basis of the potential AGR zones closeness to the available recharge water supply (rain water, desalinated sea water and treated waste water) the potential zones were classified as Category A (high priority) and Category B (low priority).

  15. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region

    NASA Astrophysics Data System (ADS)

    Sánchez-Murillo, Ricardo; Birkel, Christian

    2016-05-01

    Stable isotope variations and groundwater recharge mechanisms remain poorly understood across the tropics, particularly in Central America. Here stable isotopes (δ18O and δ2H) in groundwater, surface water, and rainfall are used to produce high-resolution (100 m2 grid) isoscapes for Costa Rica, from which an isotope ratio of precipitation to groundwater (P/GW) is estimated to elucidate the dominant groundwater recharge processes. Spatially, groundwater and surface water isotope ratios depict the strong orographic separation into the Caribbean and Pacific slopes induced by moisture transport directly from the Caribbean Sea and the eastern tropical Pacific Ocean. P/GW isotope ratios reveal that groundwater recharge is biased toward intensive and more depleted monthly rainfall across the Pacific slope with clear evidence of secondary evaporation indicating slower soil matrix recharge processes. On the other hand, P/GW isotope ratios indicate a weak influence of secondary evaporation across the Caribbean slope suggesting rapid recharge via preferential flow paths.

  16. Pathogen Decay during Managed Aquifer Recharge at Four Sites with Different Geochemical Characteristics and Recharge Water Sources.

    PubMed

    Sidhu, J P S; Toze, S; Hodgers, L; Barry, K; Page, D; Li, Y; Dillon, P

    2015-09-01

    Recycling of stormwater water and treated effluent via managed aquifer recharge (MAR) has often been hampered because of perceptions of low microbiological quality of recovered water and associated health risks. The goal of this study was to assess the removal of selected pathogens in four large-scale MAR schemes and to determine the influence of aquifer characteristics, geochemistry, and type of recharge water on the pathogen survival times. Bacterial pathogens tested in this study had the shortest one log removal time (, <3 d), followed by oocysts (, <120 d), with enteric viruses having the biggest variability in removal times (, 18 to >200 d). Human adenovirus and rotavirus were relatively persistent under anaerobic conditions (, >200 d). Human adenovirus survived longer than all the other enteric virus tested in the study and hence could be used as a conservative indicator for virus removal in groundwater during MAR. The results suggest that site-specific subsurface conditions such as groundwater chemistry can have considerable influence on the decay rates of enteric pathogens and that viruses are likely to be the critical pathogens from a public health perspective. PMID:26436258

  17. Médecine des voyages

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  18. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA

    USGS Publications Warehouse

    Delin, G.N.; Healy, R.W.; Lorenz, D.L.; Nimmo, J.R.

    2007-01-01

    Regional ground-water recharge estimates for Minnesota were compared to estimates made on the basis of four local- and basin-scale methods. Three local-scale methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three approaches, and age dating of ground water) yielded point estimates of recharge that represent spatial scales from about 1 to about 1000 m2. A fourth method (RORA, a basin-scale analysis of streamflow records using a recession-curve-displacement technique) yielded recharge estimates at a scale of 10–1000s of km2. The RORA basin-scale recharge estimates were regionalized to estimate recharge for the entire State of Minnesota on the basis of a regional regression recharge (RRR) model that also incorporated soil and climate data. Recharge rates estimated by the RRR model compared favorably to the local and basin-scale recharge estimates. RRR estimates at study locations were about 41% less on average than the unsaturated-zone water-balance estimates, ranged from 44% greater to 12% less than estimates that were based on the three WTF approaches, were about 4% less than the age dating of ground-water estimates, and were about 5% greater than the RORA estimates. Of the methods used in this study, the WTF method is the simplest and easiest to apply. Recharge estimates made on the basis of the UZWB method were inconsistent with the results from the other methods. Recharge estimates using the RRR model could be a good source of input for regional ground-water flow models; RRR model results currently are being applied for this purpose in USGS studies elsewhere.

  19. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Delin, Geoffrey N.; Healy, Richard W.; Lorenz, David L.; Nimmo, John R.

    2007-02-01

    SummaryRegional ground-water recharge estimates for Minnesota were compared to estimates made on the basis of four local- and basin-scale methods. Three local-scale methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three approaches, and age dating of ground water) yielded point estimates of recharge that represent spatial scales from about 1 to about 1000 m 2. A fourth method (RORA, a basin-scale analysis of streamflow records using a recession-curve-displacement technique) yielded recharge estimates at a scale of 10-1000s of km 2. The RORA basin-scale recharge estimates were regionalized to estimate recharge for the entire State of Minnesota on the basis of a regional regression recharge (RRR) model that also incorporated soil and climate data. Recharge rates estimated by the RRR model compared favorably to the local and basin-scale recharge estimates. RRR estimates at study locations were about 41% less on average than the unsaturated-zone water-balance estimates, ranged from 44% greater to 12% less than estimates that were based on the three WTF approaches, were about 4% less than the age dating of ground-water estimates, and were about 5% greater than the RORA estimates. Of the methods used in this study, the WTF method is the simplest and easiest to apply. Recharge estimates made on the basis of the UZWB method were inconsistent with the results from the other methods. Recharge estimates using the RRR model could be a good source of input for regional ground-water flow models; RRR model results currently are being applied for this purpose in USGS studies elsewhere.

  20. Quantification of groundwater recharge in a hard rock terrain of Orissa: a case study.

    PubMed

    Sethi, Ranu Rani; Kumar, A; Sharma, S P

    2009-01-01

    A study was carried out to select the best method to estimate groundwater recharge in a hard rock terrain. Various standard empirical methods, soil-moisture balance method, water table fluctuation (WTF) method and commonly adopted norms set by Groundwater Estimation Committee (GEC), Govt of India were used to estimate recharge for the Munijhara watershed in the Nayagarh block of Orissa (India). The empirical formulae gave recharge rates ranging from 13 cm to 32 cm/year with average of 22.4 cm and standard deviation of 5.34, independent of other influencing factors like soil, topography and geology. The soil-moisture balance study indicated that recharge is more dependent on the continuous heavy rainfall total annual volume of rainfall. Recharge was limited at up to 10 mm per day, possibly due to presence of hard rock below the soil surface. The rise in water table depth was 3.45 m to 5.35 m with a mean rise of 4.5 m during the year 2006-2007. Annual groundwater recharge based on the WTF approach varied from 10.3 to 16.85 cm with a mean of 13.5 cm, standard deviation of 1.57 cm and coefficient of variation 11.57%. This recharge accounted for 8 to 14% of rainfall received. With a water budget approach based on GEC norms, recharge was calculated as 17 cm per year. The study showed that the magnitudes of annual groundwater recharge as estimated by the WST method and GEC norms are in conformity with other recent findings in India under the same climate conditions. Based on the results recharge structures could be planned in suitable locations to reduce fallow areas under the watershed. PMID:19717920

  1. Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Scanlon, Bridget R.; Han, Dongmei; Zheng, Chunmiao

    2016-06-01

    Unsustainable groundwater development shown by rapid groundwater depletion in the North China Plain (NCP) underscores the need to quantify spatiotemporal variability in groundwater recharge for improved management of the resource. The objective of this study was to assess spatiotemporal variability in recharge in response to thickening of the unsaturated zone in the NCP. Recharge was estimated by linking a soil water balance (SWB) model, on the basis of monthly meteorological data, irrigation applications, and soil moisture monitoring data (1993-2008), to the water table using a deep unsaturated zone flow model. The dynamic bottom boundary (water table) position was provided by the saturated zone flow component, which simulates regional pumping. The model results clearly indicate the effects of unsaturated zone thickening on both temporal distribution and magnitude of recharge: smoothing temporal variability in recharge, and increasing unsaturated storage and lag time between percolation and recharge. The thickening unsaturated zone can result in average recharge reduction of up to ∼70% in loam soils with water table declines ⩾30 m. Declining groundwater levels with irrigation sourced by groundwater converts percolation to unsaturated zone storage, averaging 14 mm equivalent water depth per year in mostly loam soil over the study period, accounting for ∼30% of the saturated groundwater storage depletion. This study demonstrates that, in thickening unsaturated zones, modeling approaches that directly equate deep drainage with recharge will overestimate the amount and underestimate the time lag between percolation and recharge, emphasizing the importance of more realistic simulation of the continuity of unsaturated and saturated storage to provide more reliable estimates of spatiotemporal variability in recharge.

  2. Chloride-mass-balance for predicting increased recharge after land-use change

    SciTech Connect

    Gee, G.W.; Zhang, Z.F.; Tyler, S.W.; Albright, W.H.; Singleton, M.J.

    2004-02-23

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6-m-deep lysimeter at a simulated waste-burial ground, located on the Department of Energy s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20 percent of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  3. Temporal and spatial variability of groundwater recharge on Jeju Island, Korea

    USGS Publications Warehouse

    Mair, Alan; Hagedorn, Benjamin; Tillery, Suzanne; El-Kadi, Aly I.; Westenbroek, Stephen; Ha, Kyoochul; Koh, Gi-Won

    2013-01-01

    Estimates of groundwater recharge spatial and temporal variability are essential inputs to groundwater flow models that are used to test groundwater availability under different management and climate conditions. In this study, a soil water balance analysis was conducted to estimate groundwater recharge on the island of Jeju, Korea, for baseline, drought, and climate-land use change scenarios. The Soil Water Balance (SWB) computer code was used to compute groundwater recharge and other water balance components at a daily time step using a 100 m grid cell size for an 18-year baseline scenario (1992–2009). A 10-year drought scenario was selected from historical precipitation trends (1961–2009), while the climate-land use change scenario was developed using late 21st century climate projections and a change in urban land use. Mean annual recharge under the baseline, drought, and climate-land use scenarios was estimated at 884, 591, and 788 mm, respectively. Under the baseline scenario, mean annual recharge was within the range of previous estimates (825–959 mm) and only slightly lower than the mean of 902 mm. As a fraction of mean annual rainfall, mean annual recharge was computed as only 42% and less than previous estimates of 44–48%. The maximum historical reported annual pumping rate of 241 × 106 m3 equates to 15% of baseline recharge, which is within the range of 14–16% computed from earlier studies. The model does not include a mechanism to account for additional sources of groundwater recharge, such as fog drip, irrigation, and artificial recharge, and may also overestimate evapotranspiration losses. Consequently, the results presented in this study represent a conservative estimate of total recharge.

  4. Use of Constructed Wetlands for Polishing Recharge Wastewater

    NASA Astrophysics Data System (ADS)

    Cardwell, W.

    2009-12-01

    The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter

  5. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite

  6. Towards a Dynamic DES model

    NASA Astrophysics Data System (ADS)

    Subbareddy, Pramod; Candler, Graham

    2009-11-01

    Hybrid RANS/LES methods are being increasingly used for turbulent flow simulations in complex geometries. Spalart's detached eddy simulation (DES) model is one of the more popular ones. We are interested in examining the behavior of the Spalart-Allmaras (S-A) Detached Eddy Simulation (DES) model in its ``LES mode.'' The role of the near-wall functions present in the equations is analyzed and an explicit analogy between the S-A and a one-equation LES model based on the sub-grid kinetic energy is presented. A dynamic version of the S-A DES model is proposed based on this connection. Validation studies and results from DES and LES applications will be presented and the effect of the proposed modification will be discussed.

  7. Response to recharge variation of thin rainwater lenses and their mixing zone with underlying saline groundwater

    NASA Astrophysics Data System (ADS)

    Eeman, S.; van der Zee, S. E. A. T. M.; Leijnse, A.; de Louw, P. G. B.; Maas, C.

    2012-10-01

    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens characteristics using

  8. Response to recharge variation of thin lenses and their mixing zone with underlying saline groundwater

    NASA Astrophysics Data System (ADS)

    Eeman, S.; van der Zee, S. E. A. T. M.; Leijnse, A.; de Louw, P. G. B.; Maas, C.

    2012-01-01

    In coastal zones with saline groundwater, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. In this paper, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens characteristics by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominantly influence the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalized lens volume and the main lens and recharge characteristics, enabling an analytical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase, and increase of recharge frequency causes decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the center of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens characteristics using basic

  9. Spatial Variability of Ground-Water Recharge Estimates in the Glassboro Area, New Jersey

    NASA Astrophysics Data System (ADS)

    Nolan, B. T.; Baehr, A. L.

    2001-12-01

    The spatial variability of ground-water recharge estimates in the Glassboro area, NJ, was evaluated using geostatistical methods as a preliminarily assessment of aquifer vulnerability. Recharge was estimated using Darcy's law, based on parameters obtained from pedotransfer functions applied to measured soil texture values. The recharge estimates correspond to sediments overlying the Kirkwood-Cohansey aquifer, which comprises highly permeable unconsolidated sands and gravels. Knowing which areas receive greater recharge would indicate areas of greater vulnerability, depending on overlying land use. Recharge varied from -7.3 to 722 in/yr in the study area and the median was 12.1 in/yr. Experimental variograms of untransformed recharge data were erratic and related kriged maps were dominated by extreme values (250-722 in/yr) in the data set. An indicator transform stabilized the variograms. Indicator kriging (IK) reduced the influence of extreme values in the data set and yielded maps showing the probability of exceeding threshold values of recharge in the study area. The probability of exceeding the median recharge rate of 12.1 in/yr was 0.9 in the southern portion of the study area and might represent an area of focused recharge. As a check of model fit, probabilities predicted with IK were compared with the original recharge estimates and found to be strongly related. IK predictions corresponding to quintiles of recharge were used to estimate cumulative distribution functions (cdfs) for specific locations in the study area. The cdfs indicate the probability of exceeding any recharge rate at a particular location, and are shaped differently depending on location in the study area. The IK technique estimates cdfs with a single sampling realization (i.e., without a mean and variance at a given location). Additional variables were analyzed with regression to add a deterministic aspect to the analysis and to improve predictions. These variables included land slope

  10. DOM in recharge waters of the Santa Ana River Basin

    USGS Publications Warehouse

    Leenheer, J.A.; Aiken, G.R.; Woodside, G.; O'Connor-Patel, K.

    2007-01-01

    The urban Santa Ana River in California is the primary source of recharge water for Orange County's groundwater basin, which provides water to more than two million residents. This study was undertaken to determine the unidentified portion of dissolved organic matter (DOM) in various natural surface and reclaimed waters of the Santa Ana River Basin and to assess the potential health risk of this material. The most abundant organic contaminants were anionic detergent degradation products (constituting about 12% of the DOM), which have no known adverse health effects. In addition, high percentages of dissolved colloids from bacterial cell walls were found during storm flows; these colloids foul membranes used in water treatment. Although no significant health risks were ascribed to the newly characterized DOM, the authors note that even the small amounts of humic substances deposited during storm flow periods were responsible for significant increases in disinfection by_product formation potential in these waters.

  11. Solid polymer electrolytes for rechargeable batteries. Final report

    SciTech Connect

    Narang, S.C.; Ventura, S.C.

    1992-02-01

    SRI International has synthesized and tested new, dimensionally stable polymer electrolytes for high energy density rechargeable lithium batteries. We have prepared semi-interpenetrating networks of sulfur-substituted polyethyleneoxide with tetmethylorthosilicate (TEOS). The in situ hydrolysis of TEOS produces a mechanically stable three-dimensional network that entangles the polymer electrolytes and makes the film dimensionally flexible and stable. With this approach, the best dimensionally stable polymer electrolyte of this type produced so far, has a room temperature lithium ion conductivity of 7.5 {times} 10{sup {minus}4} S cm{sup {minus}1}. Another type of solid polymer electrolytes, polydiacetylene-based single-ion conductors with high room temperature proton conductivity were also developed. The best conductivity of these polymers is two orders of magnitude higher than that of Nafion under comparable experimental conditions. With further appropriate chemical modification, the new polymers could be used in fuel cells.

  12. Status of the development of rechargeable lithium cells

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.; Shen, D.; Huang, C-K.; Narayanan, S.; Vamos, E.; Perrone, D.

    1993-01-01

    The progress in the development of the ambient temperature lithium - titanium disulfide rechargeable cell under development at the Jet Propulsion Laboratory is described in this paper. Originally aimed at achieving a specific energy of 100 Wh/kg, 'AA' cells have demonstrated 125 Wh/kg at the C/3 discharge rate. The results of evaluating cell design parameters are discussed and cycling test data are also included in the paper. Safety tests results at various over-charge and over discharge conditions and rates proved to be uneventful. The test results of cell with built-in overcharge mechanism proved the concept was feasible. Replacing the lithium foil electrode with a Li(x)C resulted in a capacity at 1mA/cm(exp 2) of 200 mAh/gm and 235 mAh/gm at 0.167 mA.

  13. Alternative separation evaluations in model rechargeable silver-zinc cells

    NASA Astrophysics Data System (ADS)

    Lewis, Harlan L.; Danko, Thomas; Himy, Albert; Johnson, William

    Several varieties of standard and reinforced, cellulose-based, sausage casing films derived from wood pulp have been evaluated in model (nominal 28 A h) rechargeable silver-zinc cells. The cell performance data for both cycle life and wet stand life have been compared with cells equipped with conventional 1 mil (0.025 mm) cellophane. Although shorting was the most common failure mode in the cells with sausage casing separation, remarkably good cycle and wet life were obtained when the separation wrap also included PVA film. This paper reports the cycle and wet life comparison data for these substitute separators, with respect to conventional cellophane separation, as well as separation physical property data and silver migration rates in the cells as a function of cell life.

  14. Conceptualisation of groundwater recharge from the Wairau River, New Zealand

    NASA Astrophysics Data System (ADS)

    Wilson, Scott; Wöhling, Thomas; Davidson, Peter

    2016-04-01

    The braided Wairau River is the main source of recharge to the Wairau gravel aquifer in Marlborough, New Zealand. Flow measurements indicate a 6 to 15 m3/s loss as the river traverses the Wairau alluvial fan, a distance of 15 km. The hydrological processes regulating this flow loss are not well understood. Theoretically, the relationship between a river and groundwater can be considered as being hydraulically connected (gaining or losing), disconnected, or transitional (Brunner et al. 2011). A disconnected river is distinguished from a hydraulically connected river by a partially saturated zone between the river bed and the aquifer. The aim of this study is to improve our conceptual understanding of how flow losses occur, and to test a new hypothesis that much of the river is hydraulic disconnected from the aquifer. It is practically difficult to make direct observations of the saturation status beneath a river bed. However, indirect observations can be employed to characterize the nature of the river-aquifer exchange, and we have used a variety of data sources (stratigraphy, piezometric surfaces including LiDAR, temperature and radon tracers). Several lines of evidence from these data sources indicate that the dominant recharge reach of the river is hydraulically disconnected, or at least transitional in nature. This simplifies the prediction of transient flow losses, which only requires knowledge of near-surface Kz and wetted river area values. The hydraulic mechanism for a disconnected river condition is the anisotropy of the sandy gravel sequence. The braided river depositional process has formed a finely layered sequence of silt, sand and gravel lenses. This stratification, combined with clast and particle imbrication, has formed a highly anisotropic hydrogeology. Results from aquifer tests analyzed for leakage have typical Kx values of 500 m/d and Kz values of around 0.5 m/d. The large Kx/Kz ratio enables the aquifer to potentially discharge more rapidly in a

  15. Layered cathode materials for lithium ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  16. Using HDR (Hot Dry Rock) technology to recharge The Geysers

    SciTech Connect

    Brown, D.W.; Robinson, B.A.

    1990-01-01

    The main reason for the productivity decline at The Geysers geothermal field is obvious: more fluid is being withdrawn from the reservoir than is being returned by reinjection and natural recharge. However, there is another factor that may be contributing to this decline --- the method of reinjection. By reinjecting cold condensate directly into the steam dome as is the current practice, the very large pressure difference between the injected condensate and the underpressured reservoir guarantees that the reinjected fluid will fall rapidly to the bottom of the reservoir, with very little residence time for heat transfer. This point is very important since the vast majority of the heat contained in The Geysers geothermal field is stored in the hot rock comprising the reservoir. 10 refs., 4 figs.

  17. Overcharge protection for rechargeable lithium polymer electrolyte batteries

    SciTech Connect

    Richardson, T.J.; Ross, P.N. Jr.

    1996-12-01

    Overcharge protection for rechargeable lithium polymer electrolyte cells by addition of redox shuttle additives to the polymer electrolyte was examined. Shuttle onset potentials and effective diffusion coefficients were determined for 12 redox shuttle species in polyethylene oxide-based electrolytes at 85 C. The four most promising additives were tested in Li/PEO-LiN(SO{sub 2}CF{sub 3}){sub 2}/Li{sub 2+x}Mn{sub 4}O{sub 9} cells under normal and severe overcharging conditions. In addition to tricyanobenzene and tetracyanoquinodimethane, two anionic redox shuttle additives, salts of 1,2,4-triazole and imidazole, demonstrated effectiveness in extending cycle life and good compatibility with cell components.

  18. A rechargeable hydrogen battery based on Ru catalysis.

    PubMed

    Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp; Muller, Keven; Klemm, Elias; Thiel, Werner R; Plietker, Bernd

    2014-07-01

    Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru-catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru-catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure-free conditions (discharging process). Up to five charging-discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel-cell technology. PMID:24803414

  19. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  20. Using isotopes for design and monitoring of artificial recharge systems

    USGS Publications Warehouse

    Contributors: Hendriksson, N.; Kulongoski, J.T.; Massmann, G.; Newman, B.

    2013-01-01

    Over the past years, the IAEA has provided support to a number of Member States engaged in the implementation of hydrological projects dealing with the design and monitoring of artificial recharge ( A R ) systems, primarily situated in arid and semiarid regions. AR is defined as any engineered system designed to introduce water to, and store water in, underlying aquifers. Aquifer storage and recovery (ASR) is a specific type of AR used with the purpose of increasing groundwater resources. Different water management strategies have been tested under various geographical, hydrological and climatic regimes. However, the success of such schemes cannot easily be predicted, since many variables need to be taken into account in the early stages of every AR project.

  1. Vecteurs Singuliers des Theories des Champs Conformes Minimales

    NASA Astrophysics Data System (ADS)

    Benoit, Louis

    En 1984 Belavin, Polyakov et Zamolodchikov revolutionnent la theorie des champs en explicitant une nouvelle gamme de theories, les theories quantiques des champs bidimensionnelles invariantes sous les transformations conformes. L'algebre des transformations conformes de l'espace-temps presente une caracteristique remarquable: en deux dimensions elle possede un nombre infini de generateurs. Cette propriete impose de telles conditions aux fonctions de correlations qu'il est possible de les evaluer sans aucune approximation. Les champs des theories conformes appartiennent a des representations de plus haut poids de l'algebre de Virasoro, une extension centrale de l'algebre conforme du plan. Ces representations sont etiquetees par h, le poids conforme de leur vecteur de plus haut poids, et par la charge centrale c, le facteur de l'extension centrale, commune a toutes les representations d'une meme theorie. Les theories conformes minimales sont constituees d'un nombre fini de representations. Parmi celles-ci se trouvent des theories unitaires dont les representation forment la serie discrete de l'algebre de Virasoro; leur poids h a la forme h_{p,q}(m)=[ (p(m+1) -qm)^2-1] (4m(m+1)), ou p,q et m sont des entiers positifs et p+q<= m+1. L'entier m parametrise la charge centrale: c(m)=1 -{6over m(m+1)} avec n>= 2. Ces representations possedent un sous-espace invariant engendre par deux sous-representations avec h_1=h_{p,q} + pq et h_2=h_{p,q} + (m-p)(m+1-q) dont chacun des vecteurs de plus haut poids portent le nom de vecteur singulier et sont notes respectivement |Psi _{p,q}> et |Psi_{m-p,m+1-q}>. . Les theories super-conformes sont une version super-symetrique des theories conformes. Leurs champs appartiennent a des representation de plus haut poids de l'algebre de Neveu-Schwarz, une des deux extensions super -symetriques de l'algebre de Virasoro. Les theories super -conformes minimales possedent la meme structure que les theories conformes minimales. Les representations

  2. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  3. Bubble plumes generated during recharge of basaltic magma reservoirs

    NASA Astrophysics Data System (ADS)

    Phillips, Jeremy C.; Woods, Andrew W.

    2001-03-01

    CO 2 is relatively insoluble in basaltic magma at low crustal pressures. It therefore exists as a gas phase in the form of bubbles in shallow crustal reservoirs. Over time these bubbles may separate gravitationally from the magma in the chamber. As a result, any new magma which recharges the chamber from deeper in the crust may be more bubble-rich and hence of lower density than the magma in the chamber. Using scaling arguments, we show that for typical recharge fluxes, such a source of low-viscosity, bubble-rich basalt may generate a turbulent bubble plume within the chamber. We also show that the bubbles are typically sufficiently small to have a low Reynolds number and to remain in the flow. We then present a series of analogue laboratory experiments which identify that the motion of such a turbulent bubble-driven line plume is well described by the classical theory of buoyant plumes. Using the classical plume theory we then examine the effect of the return flow associated with such bubble plumes on the mixing and redistribution of bubbles within the chamber. Using this model, we show that a relatively deep bubbly layer of magma may form below a thin foam layer at the roof. If, as an eruption proceeds, there is a continuing influx at the base of the chamber, then our model suggests that the bubble content of the bubbly layer may gradually increase. This may lead to a transition from lava flow activity to more explosive fire-fountaining activity. The foam layer at the top of the chamber may provide a flux for the continual outgassing from the flanks of the volcano [Ryan, Am. Geophys. Union Geophys. Monogr. 91 (1990)] and if it deepens sufficiently it may contribute to the eruptive activity [Vergniolle and Jaupart, J. Geophys. Res. 95 (1990) 2793-3001].

  4. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    NASA Astrophysics Data System (ADS)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-08-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  5. Identification of processes affecting excess air formation during natural bank filtration and managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Massmann, Gudrun; Sültenfuß, Jürgen

    2008-09-01

    SummaryManaged aquifer recharge is gaining importance as a practice to bank and treat surface water for drinking water production. Neon (Ne) concentrations were analysed at four different recharge sites in and near Berlin, where groundwater is recharged directly from surface water courses, either by near-natural bank filtration, induced bank filtration or engineered basin recharge. Neon concentrations in excess of saturation (ΔNe) were used to identify excess air in the infiltrates. Excess air concentrations were around saturation at the near-natural bank filtration site, where river water infiltrates through a permeable river bed into a confined aquifer under completely saturated conditions. At two induced unconfined bank filtration sites, samples generally contained excess air (up to 60% ΔNe). Highest excess air concentrations (up to 81% ΔNe) were encountered at the engineered basin recharge site. The degree of water table fluctuations, the water saturation of the sediments in the infiltration zone and the presence of a confining layer affect the formation of excess air. Excess air can only be used to trace bank filtrate or artificially recharged water in a setting where the ambient groundwater in the near vicinity of production wells is not affected by large water-table fluctuations. Nevertheless, excess air concentrations provide valuable additional information on the type of recharge (saturated or unsaturated, degree of water table fluctuations).

  6. Artificial recharge experiments on the Ship Creek alluvial fan, Anchorage, Alaska

    USGS Publications Warehouse

    Anderson, Gary S.

    1977-01-01

    During the summers of 1973 and 174, water from Ship Creek, Alaska, was diverted at an average rate of approximately 6 cfs (cubic feet per second) to an 11-acre recharge basin. Maximum sustained unit recharge for the basin was approximately 1.4 feet per day. During 1975 a second basin of 8 acres was also used for recharge, and the total diversion rate was increased to as much as 30 cfs. The second basin was never completely filled, but the unit recharge rate was at least four times as great as that in the first basin. During 1973 and 1974, when only one recharge basin was in operation, a maximum rise of 18 feet was observed in the ground-water table near the basin. In 1975, when both basins were being used, the maximum rise was 30 feet in the same area. During 1973 and 1974, the water-level rise was 12 and 8 feet in the unconfined and confined systems, respectively, at a point 4,400 feet downgradient from the basins; in 1975 the rise at the same point was 31 and 16 feet, respectively. The potentiometric rise that was achieved in the confined aquifer during summer operation of the recharge basins was quickly dissipated when diversion stopped and the basins drained. Thus the benefits of recharge would not persist into late winter, the critical period for water availability in Anchorage, unless diversion to the basins could be continued until January or February. (Woodard-USGS)

  7. A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Gleeson, T.; Rosolem, R.; Pianosi, F.; Wada, Y.; Wagener, T.

    2015-06-01

    Karst develops through the dissolution of carbonate rock and is a major source of groundwater contributing up to half of the total drinking water supply in some European countries. Previous approaches to model future water availability in Europe are either too-small scale or do not incorporate karst processes, i.e. preferential flow paths. This study presents the first simulations of groundwater recharge in all karst regions in Europe with a parsimonious karst hydrology model. A novel parameter confinement strategy combines a priori information with recharge-related observations (actual evapotranspiration and soil moisture) at locations across Europe while explicitly identifying uncertainty in the model parameters. Europe's karst regions are divided into four typical karst landscapes (humid, mountain, Mediterranean and desert) by cluster analysis and recharge is simulated from 2002 to 2012 for each karst landscape. Mean annual recharge ranges from negligible in deserts to > 1 m a-1 in humid regions. The majority of recharge rates range from 20 to 50% of precipitation and are sensitive to subannual climate variability. Simulation results are consistent with independent observations of mean annual recharge and significantly better than other global hydrology models that do not consider karst processes (PCR-GLOBWB, WaterGAP). Global hydrology models systematically under-estimate karst recharge implying that they over-estimate actual evapotranspiration and surface runoff. Karst water budgets and thus information to support management decisions regarding drinking water supply and flood risk are significantly improved by our model.

  8. An innovative artificial recharge system to enhance groundwater storage in basaltic terrain: example from Maharashtra, India

    NASA Astrophysics Data System (ADS)

    Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep

    2016-03-01

    The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.

  9. Comparison of recharge estimates at a small watershed in east-central Pennsylvania, USA

    USGS Publications Warehouse

    Risser, D.W.; Gburek, W.J.; Folmar, G.J.

    2009-01-01

    The common recommendation that recharge should be estimated from multiple methods is sound, but the inherent differences of the methods make it difficult to assess the accuracy of differing results. In this study, four methods for estimating groundwater recharge and two methods for estimating base flow (as a proxy for recharge) are compared at two hydrologic research sites in east-central Pennsylvania, USA. Results from the multiple methods all provided reasonable estimates of groundwater recharge that differed considerably. The estimates of mean annual recharge for the period 1994-2001 ranged from 22.9 to 35.7 cm - about 45% of the mean of all estimates. For individual years, recharge estimates from the multiple methods ranged from 30 to 42% of the mean value during the dry years and 64 to 76% of the mean value during wet years. Comparison of multiple methods was found to be useful for determining the range of plausible recharge rates and highlighting the uncertainty of the estimates. ?? US Government 2008.

  10. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  11. Responses of groundwater recharge to land-cover changes and climate variability

    NASA Astrophysics Data System (ADS)

    Guan, Huade; Xu, Xiang; Ding, Zhenyu; Deng, Zijuan; Simmons, Craig; Hutson, John; Love, Andy; Ajami, Hoori

    2014-05-01

    It is estimated that groundwater directly provides drinking water for 1.5 billion people in the world. Anthropogenic activities during the past 200 years have led to the conversion of large areas of natural forest and grassland to cropland and pasture. Understanding and quantification of changes in groundwater recharge after surface vegetation alteration are important not only for water resource management, but also for land-use and land-cover management. On the other hand, groundwater recharge also responds to climate variability and changes. In this paper, we discuss two groundwater recharge estimation methods of different temporal resolution: chloride mass balance (CMB), and storage-discharge relationship (S-Q). Application of the CMB method over areas of historical forest clearance, or recent plantation, suffers from two difficulties: pre-clearance (or pre-plantation) recharge may have been contaminated by recharge that occurred after forest clearance (or plantation); and the post-clearance (or post-plantation) recharge may not yet have reached new chloride equilibrium. In coastal areas, strong spatial variability in chloride deposition leads to an additional difficulty in appropriately applying the CMB method. This presentation will discuss some recent development to address these difficulties. Meanwhile, an improved conceptual framework of the S-Q method for estimating seasonal and inter-annual variability of groundwater recharge is presented as well. Both are shown with case studies based at the Mount Lofty Ranges of South Australia.

  12. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  13. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Beigi, Ehsan; Tsai, Frank T.-C.

    2015-02-01

    A geographic information system (GIS)-based water-budget framework has been developed to study the climate-change impact on regional groundwater recharge, and it was applied to the Southern Hills aquifer system of southwestern Mississippi and southeastern Louisiana, USA. The framework links historical climate variables and future emission scenarios of climate models to a hydrologic model, HELP3, to quantify spatiotemporal potential recharge variations from 1950 to 2099. The framework includes parallel programming to divide a large amount of HELP3 simulations among multiple cores of a supercomputer, to expedite computation. The results show that a wide range of projected potential recharge for the Southern Hills aquifer system resulted from the divergent projections of precipitation, temperature and solar radiation using three scenarios (B1, A2 and A1FI) of the National Center for Atmospheric Research's Parallel Climate Model 1 (PCM) and the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab's (GFDL) model. The PCM model projects recharge change ranging from -33.7 to +19.1 % for the 21st century. The GFDL model projects less recharge than the PCM, with recharge change ranging from -58.1 to +7.1 %. Potential recharge is likely to increase in 2010-2039, but likely to decrease in 2070-2099. Projected recharge is more sensitive to the changes in the projected precipitation than the projected solar radiation and temperature. Uncertainty analysis confirms that the uncertainty in projected precipitation yields more changes in the potential recharge than in the projected temperature for the study area.

  14. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    PubMed

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources. PMID:23775493

  15. Land cover controls on depression-focused recharge: an example from southern Ontario

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Greenwood, W. J.

    2015-12-01

    The Oak Ridges Moraine (ORM) is a critical hydrogeologic feature in southern Ontario. Although previous research has highlighted the implications of spatially-focused recharge in closed topographic depressions for regional groundwater resources, such depression-focused recharge (DFR) has not been empirically demonstrated on the ORM. Permeable surficial sands and gravels mantling much of the ORM imply that water fluxes will largely be vertical recharge rather than lateral downslope transfer into depressions. Nevertheless, lateral fluxes may occur in winter and spring, when concrete frost development encourages surface runoff of rainfall and snowmelt. The potential for DFR was examined under forest and agricultural land cover with similar soils and surficial geology. Soil water contents, soil temperatures and ground frost thickness were measured at the crest and base of closed depressions in two agricultural fields and two forest stands on permeable ORM outcrops. Recharge from late-fall to the end of spring snowmelt was estimated via 1-d water balances and surface-applied bromide tracing. Both forest and agricultural sites experienced soil freezing; however, greater soil water contents prior to freeze-up at the latter led to concrete soil frost development. This resulted in lateral movement of snowmelt and rainfall into topographic depressions and surface ponding, which did not occur in forest depressions. Water balance recharge exceeded estimates from the bromide tracer approach at all locations; nevertheless, both methods indicated DRF exceeded recharge at the depression crest in agricultural areas with little difference in forest areas. Water balance estimates suggest winter-spring DFR (1300 - 2000 mm) is 3-5× recharge on level agricultural sites. Differences in the potential for DFR between agricultural and forest land covers have important implications for the spatial variability of recharge fluxes and the quality of recharging water on the ORM.

  16. Multi-scale experimental programs for estimating groundwater recharge in hydrologically changing basins

    NASA Astrophysics Data System (ADS)

    McIntyre, Neil; Larsen, Josh; Reading, Lucy; Bulovic, Nevenka; Jarihani, Abdollah; Finch, Warren

    2015-04-01

    Groundwater recharge estimates are required to evaluate sustainable groundwater abstractions and to support groundwater impacts assessments associated with minerals and energy extraction. Increasingly, recharge estimates are also needed for regional and global scale water cycle modelling. This is especially the case in the great arid and semi-arid basins of the world due to increased water scarcity and dependence of ecosystems and livelihoods on their water supplies, and the considerable potential influence of groundwater on the hydrological cycle. Groundwater resources in the semi-arid Surat Basin of south-east Queensland, Australia, support extensive groundwater-dependent ecosystems and have historically been utilised for regional agriculture and urban water-use. Large volumes of water are currently being produced and will continue to do so as a part of coal seam gas extraction. There is considerable uncertainty about the impacts of gas extraction on water resources and the hydrological cycle, and much of this uncertainty stems from our limited knowledge about recharge processes and how to upscale them. Particular questions are about the role of storm events in controlling annual recharge, the relative contributions of local 'recharge zones' versus diffuse recharge and the translation of (relatively easily quantified) shallow drainage estimates to groundwater recharge. A multi-scale recharge research program is addressing these questions, using multiple approaches in estimating groundwater recharge, including plot and catchment scale monitoring, use of remote sensed data and simulation models. Results during the first year of the program have resulted in development of process hypotheses and experimental designs at three field sites representing key gaps in knowledge. The presentation will overview the process of designing the experimental program; how the results from these sites will be integrated with existing knowledge; and how results will be used to advance

  17. Comparison of different estimation techniques to quantify groundwater recharge in Pirna, Germany

    NASA Astrophysics Data System (ADS)

    Ringleb, Jana; Sallwey, Jana; Stefan, Catalin

    2015-04-01

    Water scarcity in combination with groundwater exploitation is a major concern worldwide because of climate change, population growth and rising water demand. To be able to sustainably manage and protect groundwater resources, it is necessary to quantify the amount of water which leaks through the unsaturated zone and recharges the aquifer naturally. However, quantifying the spatial and temporal distribution of recharge is difficult because of soil heterogeneity and the influence of vegetation. For that reason and because field measurements of recharge are difficult to obtain, models are valuable tools to quantify recharge. Numerical models need a lot of parameters which are hard to measure and hence can only be estimated. Therefore analytical models or empirical equations which use less and / or easier obtainable parameters could estimate groundwater recharge as well as numerical models because of the underlying uncertainty in parameter estimation. Recharge estimation methods which use different model approaches and have varying complexity were compared at Pirna test field site, Germany to select suitable methods which will later be integrated into a web-based Decision Support System (DSS) developed for the sustainable management of groundwater. The complexity of the used methods covers numerical models, analytical models as well as empirical equations. Different model approaches were used to estimate groundwater recharge including amongst others a groundwater flow model, an unsaturated zone model and a watershed model. The resulting groundwater recharge estimates received from the numerical and analytical models and from empirical equations were compared to evaluate whether the methods are suitable to estimate groundwater recharge considering the complexity, data requirements and time-consumption of each method.

  18. Artificial Groundwater Recharge Zones Mapping Using Remote Sensing and GIS: A Case Study in Indian Punjab

    NASA Astrophysics Data System (ADS)

    Singh, Amanpreet; Panda, S. N.; Kumar, K. S.; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  19. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.

    USGS Publications Warehouse

    Heilweil, V.M.; Solomon, D.K.; Ortiz, G.

    2009-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.

  20. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    NASA Astrophysics Data System (ADS)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.

  1. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  2. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc

    NASA Astrophysics Data System (ADS)

    Lu, Ke; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-07-01

    Rechargeable aqueous batteries are very attractive as a promising alternative energy storage system, although their reversible capacity is typically limited. A new rechargeable Na-Zn hybrid aqueous battery with nickel hexacyanoferrate (NiHCF) cathode and the nanostructured zinc anode is fabricated. The rational combination of two materials with mild aqueous electrolyte renders the devices with an average operating voltage close to 1.5 V, higher specific capacity of 76.2 mAh g-1, and a good cycling stability with 81% capacity retention for 1000 cycles. These remarkable features can provide guidance for the development of rechargeable batteries from the naturally abundant electrode materials with neutral aqueous electrolytes.

  3. Evaluation of recharge to the Skunk Creek Aquifer from a constructed wetland near Lyons, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2002-01-01

    A wetland was constructed in the Skunk Creek flood plain near Lyons in southeast South Dakota to mitigate for wetland areas that were filled during construction of a municipal golf course for the city of Sioux Falls. A water-rights permit was obtained to allow the city to pump water from Skunk Creek into the wetland during times when the wetland would be dry. The amount of water seeping through the wetland and recharging the underlying Skunk Creek aquifer was not known. The U.S. Geological Survey, in cooperation with the city of Sioux Falls, conducted a study during 1997-2000 to evaluate recharge to the Skunk Creek aquifer from the constructed wetland. Three methods were used to estimate recharge from the wetland to the aquifer: (1) analysis of the rate of water-level decline during periods of no inflow; (2) flow-net analysis; and (3) analysis of the hydrologic budget. The hydrologic budget also was used to evaluate the efficiency of recharge from the wetland to the aquifer. Recharge rates estimated by analysis of shut-off events ranged from 0.21 to 0.82 foot per day, but these estimates may be influenced by possible errors in volume calculations. Recharge rates determined by flow-net analysis were calculated using selected values of hydraulic conductivity and ranged from 566,000 gallons per day using a hydraulic conductivity of 0.5 foot per day to 1,684,000 gallons per day using a hydraulic conductivity of 1.0 foot per day. Recharge rates from the hydrologic budget varied from 0.74 to 0.85 foot per day, and averaged 0.79 foot per day. The amount of water lost to evapotranspiration at the study wetland is very small compared to the amount of water seeping from the wetland into the aquifer. Based on the hydrologic budget, the average recharge efficiency was estimated as 97.9 percent, which indicates that recharging the Skunk Creek aquifer by pumping water into the study wetland is highly efficient. Because the Skunk Creek aquifer is composed of sand and gravel, the

  4. Groundwater recharge by channel infiltration in El Barbon basin, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Ponce, V. M.; Pandey, R. P.; Kumar, S.

    1999-01-01

    The amount of groundwater recharge by channel infiltration is estimated for El Barbon basin, in Baja California, Mexico. The basin's lower portion includes the valleys of Ojos Negros and Real del Castillo Viejo, which are crossed by several ephemeral washes, including the mainstem El Barbon Wash. A distributed catchment model with the capability for nonlinear channel routing and channel abstraction is used to calculate groundwater recharge by channel infiltration for storm events of 2-, 5-, 10-, 25-, 50-, and 100-yr return period. The results confirm that event channel infiltration can be a substantial component of the vertical recharge.

  5. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge

    NASA Astrophysics Data System (ADS)

    Moon, Sang-Ki; Woo, Nam C.; Lee, Kwang S.

    2004-06-01

    Using water-table monitoring data from the National Groundwater Monitoring Network in Korea, groundwater hydrographs were classified into five typical groups. Then, to estimate groundwater recharge, a modified water-table fluctuation (WTF) method was developed from the relation between the cumulative WTF and corresponding precipitation records. Applying this method to different types of hydrographs, the spatial variability of recharge in river basins was evaluated. Each estimated recharge can be considered the maximum value, and therefore, could be used as a cut-off guideline (an upper limit) for groundwater development in river basins.

  6. Delineation of recharge rate from a hybrid water table fluctuation method

    NASA Astrophysics Data System (ADS)

    Park, Eungyu

    2012-07-01

    The concept of the hybrid water table fluctuation (WTF) method for recharge rate estimation was revisited. To estimate the recharge rate, a physically based WTF equation was established. The concept of transient fillable porosity was proposed and computed with unsaturated hydraulics models. The developed model is tested by applying to the water table fluctuation data from Hongcheon, Korea. In the applications, the recharge and fillable porosity estimates were found to be most sensitive to nonlinearity in the unsaturated water content profile and permeability. Also, the water table level drift, which does not originate from precipitation, serves as a major source of estimation error.

  7. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  8. Difficulties in determining factors that influence effective groundwater recharge in Ohio

    USGS Publications Warehouse

    Ashooh, J.; Liu, J.; Mueller, E.; Sherer, S.; Woggon, N.; Dumouchelle, D.H.; Eberle, M.

    2003-01-01

    As part of a COSI Academy research project, data from a recent statewide analysis of effective groundwater recharge were reexamined by students to further discern relations between recharge and selected environmental characteristics of individual drainage basins: 1) location of the main stem of a river relative to coarse and fine surficial sediments and 2) influence of land use. Lack of sufficiently detailed data was the principal difficulty in most phases of the examination. Other than a potential relation between recharge and the percentages of agricultural and forested land, no relations were found in visual comparisons of mapped and tabulated data.

  9. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    SciTech Connect

    Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  10. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    PubMed

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-01-01

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors. PMID:27626422

  11. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    USGS Publications Warehouse

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    On an annual basis, however, potential recharge rates were as high as 27.2 inches per year. The highest annual mean recharge estimate across the State was for 2010, and the lowest mean recharge estimate was for 2003. Although precipitation variability partially explained the annual differences in potential recharge estimates, precipitation alone did not account for these differences, and other factors such as antecedent moisture conditions likely were important. Also, because precipitation gradients across the State can vary from year to year, the dominant land-cover class and hydrologic soil group combinations for a particular region had a large effect on the resulting potential recharge value. During 1996–2010, April had the greatest monthly mean potential recharge compared to all other months, accounting for a mean of 30 percent of annual potential recharge in this single month.

  12. Comparison of spatially and temporally distributed recharge simulated using coupled and decoupled watershed hydrology models

    NASA Astrophysics Data System (ADS)

    Hevesi, J. A.; Woolfenden, L. R.; Niswonger, R. G.; Nishikawa, T.

    2011-12-01

    Estimation of the temporal and spatial distribution of watershed-scale recharge is often required for the development of transient groundwater-flow models and for quantifying water budgets. The temporal distribution of recharge has often been empirically estimated by scaling precipitation distributions. For larger watersheds, however, temporal change in the spatial distribution of recharge is affected by spatial and temporal variability in precipitation and air temperature, combined with the effects of heterogeneity in the physical characteristics of the watershed; these factors make it difficult to represent transient recharge using empirical scaling methods. Precipitation-runoff models, calibrated to available streamflow records, have been used to simulate the changing distribution and magnitude of recharge, but the uncertainty in simulated recharge estimates usually is high due to the uncertainty in input data and other components of the water balance. In this study, GSFLOW, an integrated hydrologic model, was used to evaluate differences in simulated water balances and the magnitude and distribution of transient recharge using decoupled and coupled simulations of surface-water and groundwater flow in the Santa Rosa Plain watershed (SRPW), California, USA. GSFLOW is an integration of the precipitation-runoff model PRMS and the groundwater flow model MODFLOW. GSFLOW was run as a decoupled (PRMS-only) precipitation-runoff model, independent of the MODFLOW, to develop a preliminary ensemble of estimated water balances and recharge simulations. The ensemble consisted of a set of 60-year (water years 1950 through 2010) daily simulation results, all of which provided satisfactory calibration results to available daily streamflow records at 12 gaging sites within the SRPW. The PRMs parameter files developed for the calibrated PRMS-only simulations were used as input for the coupled GSFLOW simulations that were calibrated to available well hydrographs for water years

  13. Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Wu, Yuanbin; Zhang, Xingsheng; Liu, Yan; Yang, Tianliang; Feng, Bo

    2012-09-01

    SummaryShanghai is one of the cities suffering from land subsidence in China. Land subsidence has caused serious financial losses. Thus, artificial recharge measures have been adopted to compensate the drawdown in shallow, confined aquifers and thereby control land subsidence. In this study, a multi-cycle recharge-recovery field experiment was performed to investigate the response of a shallow, confined aquifer to artificial recharge through a well. In the experiment, a series of recharge-recovery cycles with different recharge volumes and durations, with and without artificial pressure, were performed. The water levels monitored in the recharge and observation wells indicated the response of the aquifer to the multi-cycle recharge-recovery process. Meanwhile, a finite-difference method (FDM) numerical model was established, and its parameters were obtained via a reversed numerical analysis on the experimental data. The responses of the shallow, confined aquifer to the multi-cycle recharge-recovery process were simulated in detail using the model. The calculation results showed that the water level dropped significantly when the recharge ended. Moreover, the efficiency of a multi-cycle recharge was found to be higher than that of a concentrated one under the same recharge volume and time. The relationship between recharge frequency and efficiency, expressed as H = 0.29498 f0.40163 and R2 = 0.97264, respectively, was obtained through the FDM numerical simulation. In the recharge intervals, the optimal recharge efficiency was achieved when the water level rose to 40% of the peak.

  14. Can we quantify local groundwater recharge using electrical resistivity tomography?

    NASA Astrophysics Data System (ADS)

    Noell, U.; Günther, T.; Ganz, C.; Lamparter, A.

    2012-04-01

    petrophysical function that relates the resistivity changes to water content changes is doubtful. This relationship was constructed by two ways; firstly by comparing in situ measured water contents and the ERT inversion results, secondly by laboratory measurements of soil samples taken at different depth. The results of these both methods vary; moreover, heterogeneity in the subsurface may cause an even greater variability of this relationship. For the calculation an "average" function was applied. The third obstacle: The pore water conductivity may change during the infiltration due to exchange of pore water. This effect is neglected for this experiment on account of the very similar resistivity of original pore water and infiltrated water. This effect, however, is of great importance if saline water is used for infiltration experiments. It will also hamper the quantitative interpretation if solution and precipitation processes within the soil during the infiltration are expected. The fourth obstacle: The disadvantageous shape of the function relating resistivity and water content. Unfortunately at high water contents only very little change in resistivity is observed if the water content increases or decreases, the function is steep only at small and medium water contents but very flat at high water contents. We conclude from the combination of these four obstacles that quantitative interpretation of recharge with ERT is possible only in fortunate cases. ERT can enable us to actually measure recharge processes. However, if the conditions are not fortunate, the interpretation of the ERT data will permit the conclusion whether there is recharge. The quantitative value will remain doubtful if no additional measurements are taken that narrow the uncertainties. Particularly TDR/resistivity measurements with the same probe are helpful to get the information about the mixing of the pore water.

  15. Peste des petits ruminants

    PubMed Central

    Parida, S.; Muniraju, M.; Mahapatra, M.; Muthuchelvan, D.; Buczkowski, H.; Banyard, A.C.

    2015-01-01

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  16. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Evetts, David M.

    2004-01-01

    Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth

  17. The role of compressional tectonics, sedimentary transport and mineral composition on AMS and AARM fabrics. A case study of the flysch from the Dukla nappe, Outer Western Carpatians, Poland

    NASA Astrophysics Data System (ADS)

    Kiss, Dániel; Márton, Emő; Tokarski, Antek K.

    2015-04-01

    The Carpathians belong to the European Alpine system. The Polish segment of the Western Outer Carpathians is a north-verging thrust-and-fold belt composed largely of Lower Cretaceous to Lower Miocene flysch. The belt comprises the Skole, Subsilesian, Silesian, Dukla and Magura rootless nappes. Anisotropy studies were carried out both in Oligocene turbidite sequences of the Dukla nappe and in the olistostrome of the Lipowica quarry. For the study 102 individually oriented cores were drilled at nine geographically distributed localities. At each locality mudstones/claystones were sampled, except Lipowica quarry, where silt and sandstone were also drilled. Because of the relatively low susceptibilities (1-3*10-4 SI), paramagnetic minerals can be important contributors to the AMS fabric. AMS and AARM measurements were carried out and the fabrics were compared. Despite of the weak AMS lineations, the mean lineation direction is well defined in all cases on site/locality level. With one exception where the lineation is perpendicular to the bedding plane (due to the presence of siderite), the AMS lineations can be interpreted as due to compressional tectonics. Concerning the AARM lineations they are highly scattered in the sandstone, show a tendency for alignment in the silt and some of the mudstone/claystone sites, and are well clustered in the other cases. The AARM lineations for four localities correlate to the AMS, and the local strike. The AARM lineation of the siderite bearing rock is also sub-parallel to the local strike. In the remaining cases the AARM linations are suspected to be related to sedimentary transport. Due to the lack of solemarks at most localities this will be investigated systematically with photo-statistical grain shape analysis in oriented thin sections. X-ray diffraction measurements also will be carried out to identify the paramagnetic contributors to the AMS. Acknowledgments: This work was partly financed by the Hungarian Research Fund (OTKA

  18. Characterization of depositional age and structure of sedimentary successions by U-Pb TIMS and LA-ICP-MS dating of volcanic horizons and detrital zircons: an example from the western Trondheim Nappe Complex, Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Grenne, Tor; Corfu, Fernando; Eivind Augland, Lars

    2016-04-01

    Revealing the absolute depositional age of non-fossiliferous sedimentary successions represents a long-lasting challenge in Earth Sciences. Lacking age control hampers the correct interpretation of the temporal evolution of depositional systems, and, if deformed, of the architecture of fold-and-thrust belts. Dating of detrital zircons within clastic sedimentary successions has over the past decades become a popular method to approximate the absolute depositional age and to characterize the source areas of such rocks. If combined with other geochronological information, such as dating of contemporaneous volcanic horizons, a much better resolution of the stratigraphy and structure of non-fossiliferous sedimentary successions can be achieved. The western Trondheim nappe complex in the central Scandinavian Caledonides is a classical area in this respect. On top of Late Cambrian to Early Ordovician ophiolitic fragments, various volcanic, volcano-clastic and clastic successions tell a complex story of island-arc formation, ocean closure and continent collision. Several famous fossil horizons indicate deposition during the Middle to Upper Ordovician (ca. 470-445 Ma), but large areas lack an absolute age control and several contrasting stratigraphic schemes and structural interpretations have been presented in the past. In this contribution we present the results of LA-ICP-MS detrital U-Pb zircon dating of clastic horizons as well as U-Pb TIMS zircon dating of volcanic horizons and magmatic clasts in conglomerates in order to characterize the depositional age and structure of the western Trondheim nappe complex in more detail. Together with field observations, including way up criteria, the zircon data enable significant revisions of existing stratigraphic and structural models. At least four (volcano-)sedimentary successions can be distinguished above the ca. 480-485 Ma greenstones: (1) ca. 470-463 Ma shales, limestones and andesitic porphyrites (Hølonda and Fanabekken

  19. Removal of organic micropollutants in an artificial recharge system

    NASA Astrophysics Data System (ADS)

    Valhondo, C.; Nödler, K.; Köck-Schulmeyer, M.; Hernandez, M.; Licha, T.; Ayora, C.; Carrera, J.

    2012-04-01

    Emerging contaminants including pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides are increasingly being identified in the environment. Emerging pollutants and their transformation products show low concentration in the environment (ng/L), but the effects of the mixtures and lifelong exposure to humans are currently unknown. Many of these contaminants are removed under aerobic conditions in water treatment plants. However, several pharmaceuticals and metabolites present in wastewater are not eliminated by conventional treatment processes. Several lab studies, however, show that the behaviour of many of these micropollutants is affected by the dominant redox conditions. However, data from field experiments are limited and sometimes contradictory. Artificial recharge is a widespread technology to increase the groundwater resources. In this study we propose a design to enhance the natural remediation potential of the aquifer with the installation of a reactive layer at the bottom of the infiltration pond. This layer is a mixture of compost, aquifer material, clay and iron oxide. This layer is intended to provide an extra amount of DOC to the recharge water and to promote biodegradation by means of the development of different redox zones along the travel path through the unsaturated zone and within the aquifer. Moreover, compost, clay and iron oxide of the layer are assumed to increase sorption surfaces for neutral, cationic and anionic compounds, respectively. The infiltration system is sited in Sant Vicenç dels Horts (Barcelona, Spain). It consists of a decantation pond, receiving raw water from the Llobregat River (highly affected from treatment plant effluents), and an infiltration pond (5600 m2). The infiltration rate is around 1 m3/m2/day. The system is equipped with a network of piezometers, suction cups and tensiometers. Infiltration periods have been performed before and after the installation of the reactive layer

  20. Feasibility and potential effects of the proposed Amargosa Creek Recharge Project, Palmdale, California

    USGS Publications Warehouse

    Christensen, Allen H.; Siade, Adam J.; Martin, Peter; Langenheim, V.E.; Catchings, Rufus D.; Burgess, Matthew K.

    2015-01-01

    The hydraulic conductivities of faults were estimated on the basis of water-level data and an estimate of natural recharge along Amargosa Creek. With assumed horizontal hydraulic conductivities of 10 and 100 feet per day in the upper 150 feet, the simulated maximum artificial recharge rates to the regional flow system at the ACRP were 3,400 and 9,400 acre-feet per year, respectively. These maximum recharge rates were limited primarily by the horizontal hydraulic conductivity in the upper 150 feet and by the liquefaction constraint. Future monitoring of water-level and soil-water content changes during the proposed project would allow improved estimation of aquifer hydraulic properties, the effect of the faults on groundwater movement, and the overall recharge capacity of the ACRP.

  1. Simulation of the Recharging Method of Implantable Biosensors Based on a Wearable Incoherent Light Source

    PubMed Central

    Song, Yong; Hao, Qun; Kong, Xianyue; Hu, Lanxin; Cao, Jie; Gao, Tianxin

    2014-01-01

    Recharging implantable electronics from the outside of the human body is very important for applications such as implantable biosensors and other implantable electronics. In this paper, a recharging method for implantable biosensors based on a wearable incoherent light source has been proposed and simulated. Firstly, we develop a model of the incoherent light source and a multi-layer model of skin tissue. Secondly, the recharging processes of the proposed method have been simulated and tested experimentally, whereby some important conclusions have been reached. Our results indicate that the proposed method will offer a convenient, safe and low-cost recharging method for implantable biosensors, which should promote the application of implantable electronics. PMID:25372616

  2. Electrically recharged battery employing a packed/spouted bed metal particle electrode

    SciTech Connect

    Siu, Stanley C.; Evans, James W.; Salas-Morales, Juan

    1995-01-01

    A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

  3. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    NASA Astrophysics Data System (ADS)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Hernández, P. A.; Mazot, A.; Viveiros, F.; Werner, C.

    2015-09-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  4. A water-budget model and estimates of groundwater recharge for Guam

    USGS Publications Warehouse

    Johnson, Adam G.

    2012-01-01

    On Guam, demand for groundwater tripled from the early 1970s to 2010. The demand for groundwater is anticipated to further increase in the near future because of population growth and a proposed military relocation to Guam. Uncertainty regarding the availability of groundwater resources to support the increased demand has prompted an investigation of groundwater recharge on Guam using the most current data and accepted methods. For this investigation, a daily water-budget model was developed and used to estimate mean recharge for various land-cover and rainfall conditions. Recharge was also estimated for part of the island using the chloride mass-balance method. Using the daily water-budget model, estimated mean annual recharge on Guam is 394.1 million gallons per day, which is 39 percent of mean annual rainfall (999.0 million gallons per day). Although minor in comparison to rainfall on the island, water inflows from water-main leakage, septic-system leachate, and stormwater runoff may be several times greater than rainfall at areas that receive these inflows. Recharge is highest in areas that are underlain by limestone, where recharge is typically between 40 and 60 percent of total water inflow. Recharge is relatively high in areas that receive stormwater runoff from storm-drain systems, but is relatively low in urbanized areas where stormwater runoff is routed to the ocean or to other areas. In most of the volcanic uplands in southern Guam where runoff is substantial, recharge is less than 30 percent of total water inflow. The water-budget model in this study differs from all previous water-budget investigations on Guam by directly accounting for canopy evaporation in forested areas, quantifying the evapotranspiration rate of each land-cover type, and accounting for evaporation from impervious areas. For the northern groundwater subbasins defined in Camp, Dresser & McKee Inc. (1982), mean annual baseline recharge computed in this study is 159.1 million gallons

  5. The Morgan Recharger: a new horn fly (Diptera: Muscidae) control device for beef cattle.

    PubMed

    Barton, W E; Gray, E W; Noblet, R; Thompson, C E

    1990-08-01

    A 20% diazinon formulation was evaluated for control efficacy against the horn fly, Haematobia irritans (L.), in the Morgan Recharger (Morgan International Products, College Grove, Tenn.). The Morgan Recharger releases insecticide with a wicking system from an insecticide reservoir and can be attached to an animal's ear or tail. This device was most effective against the horn fly when used as an ear tag with two per head; horn fly counts did not exceed five flies per side through 8 wk. The diazinon formulation tested was released from the Morgan Recharger at a decreasing rate. The problems and potential of the Morgan Recharger as an effective horn fly control device are discussed. PMID:2212237

  6. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    SciTech Connect

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  7. Arsenic mobilization and attenuation by mineral–water interactions: implications for managed aquifer recharge

    EPA Science Inventory

    Managed aquifer recharge (MAR) has a potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows among many beneficial environmental application...

  8. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.

    PubMed

    Wang, Faxing; Yu, Feng; Wang, Xiaowei; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wen, Zubiao; Wu, Yuping; Huang, Wei

    2016-04-13

    Developing rechargeable batteries with low cost is critically needed for the application in large-scale stationary energy storage systems. Here, an aqueous rechargeable zinc//aluminum ion battery is reported on the basis of zinc as the negative electrode and ultrathin graphite nanosheets as the positive electrode in an aqueous Al2(SO4)3/Zn(CHCOO)2 electrolyte. The positive electrode material was prepared through a simple electrochemically expanded method in aqueous solution. The cost for the aqueous electrolyte together with the Zn negative electrode is low, and their raw materials are abundant. The average working voltage of this aqueous rechargeable battery is 1.0 V, which is higher than those of most rechargeable Al ion batteries in an ionic liquid electrolyte. It could also be rapidly charged within 2 min while maintaining a high capacity. Moreover, its cycling behavior is also very good, with capacity retention of nearly 94% after 200 cycles. PMID:26716878

  9. Experimental study of artificial recharge alternatives in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Sinclair, William C.

    1977-01-01

    Extensive water withdrawal from the Floridan aquifer in the urban Tampa Bay area has induced leakage from the overlying surficial aquifer adversely effecting the water table and lake levels. Artificial recharge could reduce the impact of these effects. Four experiments were conducted to investigate possible recharge alternatives; sinkhole recharge, water-spreading, connector wells, and subsurface-tile drainage to a deep well. Experiments indicate that all four methods can be effective. However, the sink-hole recharge experiment moved the greatest volume of water into the Floridan aquifer. The drain-tile experiment indicated greatest potential for draining the surficial aquifer. Combinations of the four methods could be used where potential exists for downward movement of water and sufficient unsaturated aquifer for water storage. (Woodard-USGS)

  10. Rainfall recharge estimation on a nation-wide scale using satellite information in New Zealand

    NASA Astrophysics Data System (ADS)

    Westerhoff, Rogier; White, Paul; Moore, Catherine

    2015-04-01

    Models of rainfall recharge to groundwater are challenged by the need to combine uncertain estimates of rainfall, evapotranspiration, terrain slope, and unsaturated zone parameters (e.g., soil drainage and hydraulic conductivity of the subsurface). Therefore, rainfall recharge is easiest to estimate on a local scale in well-drained plains, where it is known that rainfall directly recharges groundwater. In New Zealand, this simplified approach works in the policy framework of regional councils, who manage water allocation at the aquifer and sub-catchment scales. However, a consistent overview of rainfall recharge is difficult to obtain at catchment and national scale: in addition to data uncertainties, data formats are inconsistent between catchments; the density of ground observations, where these exist, differs across regions; each region typically uses different local models for estimating recharge components; and different methods and ground observations are used for calibration and validation of these models. The research described in this paper therefore presents a nation-wide approach to estimate rainfall recharge in New Zealand. The method used is a soil water balance approach, with input data from national rainfall and soil and geology databases. Satellite data (i.e., evapotranspiration, soil moisture, and terrain) aid in the improved calculation of rainfall recharge, especially in data-sparse areas. A first version of the model has been implemented on a 1 km x 1 km and monthly scale between 2000 and 2013. A further version will include a quantification of recharge estimate uncertainty: with both "top down" input error propagation methods and catchment-wide "bottom up" assessments of integrated uncertainty being adopted. Using one nation-wide methodology opens up new possibilities: it can, for example, help in more consistent estimation of water budgets, groundwater fluxes, or other hydrological parameters. Since recharge is estimated for the entire land

  11. Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia

    NASA Astrophysics Data System (ADS)

    Vanderzalm, J. L.; Jeuken, B. M.; Wischusen, J. D. H.; Pavelic, P.; Le Gal La Salle, C.; Knapton, A.; Dillon, P. J.

    2011-01-01

    SummaryIt is necessary to define the role of various sources of recharge in the surficial alluvial aquifer system in arid Alice Springs in central Australia, for future management of water resources in the region. Multiple sources of natural recharge include infiltration from ephemeral stream flow in the Todd River; groundwater throughflow between connected alluvial basins; regional groundwater flow from the underlying Tertiary aquifer; and diffuse recharge. In addition treatment, storage and irrigation reuse of Alice Springs' waste water has resulted in additional recharge of effluent, via infiltration. Water resource management plans for the region include effluent reuse through Soil Aquifer Treatment (SAT) within one of the connected alluvial basins, with the purpose of managing the excess waste water overflows while also supplementing groundwater resources for irrigation and protecting their quality. Hydrogeochemical tracers, chloride and the stable isotopes of water, were used in a three-member mixing model to define and quantify the major recharge sources. The mixing model was not sensitive enough to quantify minor contributions from effluent in groundwater that were identified only by an evaporated isotopic signature. The contribution of the multiple recharge sources varied spatially with proximity to the recharge source; with Todd River, effluent and Town Basin throughflow contributing to the Inner Farm Basin groundwater. The Outer Farm Basin was largely influenced by the Todd River, the Inner Farm Basin throughflow and the older Tertiary aquifer. While Inner Farm groundwater throughflow contains an effluent component, only Outer Farm Basin groundwater near the interface between the two basins clearly illustrated an effluent signature. Aside from this, effluent recharge was not evident in the Outer Farm Basin, indicating that past unmanaged recharge practices will not mask signs of Managed Aquifer Recharge through the Soil Aquifer Treatment (SAT) operation

  12. Groundwater Recharge Evaluation in Semi-Arid Northeast Mexico in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Wolaver, B.