These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Transport of Radioactive Material by Alpha Recoil  

SciTech Connect

The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

Icenhour, A.S.

2005-05-19

2

A Method of Measuring Hydrogen Isotopes in Surface Layers of Planetary Soils by Spectroscopy of Recoil Protons in Alpha Particle Elastic Scattering  

Microsoft Academic Search

A theoretical and experimental feasibility study of possible determination of the hydrogen and deuterium concentrations in the surface layers of planetary bodies is presented. The method under study is the recoil proton and deuteron spectrometry of forward scattering in the course of elastic interaction of alpha particles with the nuclei of hydrogen isotopes. The spectra of recoil protons and deuterons

B. N. Korchuganov; G. G. Dol'nikov; M. V. Gerasimov; O. F. Prilutskii; R. Rider; G. Waenke; T. Economou

2004-01-01

3

Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243  

E-print Network

Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

2015-01-01

4

Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243  

E-print Network

Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

U. Forsberg; D. Rudolph; L. -L. Andersson; A. Di Nitto; Ch. E. Düllmann; J. M. Gates; P. Golubev; K. E. Gregorich; C. J. Gross; R. -D. Herzberg; F. P. Hessberger; J. Khuyagbaatar; J. V. Kratz; K. Rykaczewski; L. G. Sarmiento; M. Schädel; A. Yakushev; S. Åberg; D. Ackermann; M. Block; H. Brand; B. G. Carlsson; D. Cox; X. Derkx; J. Dobaczewski; K. Eberhardt; J. Even; C. Fahlander; J. Gerl; E. Jäger; B. Kindler; J. Krier; I. Kojouharov; N. Kurz; B. Lommel; A. Mistry; C. Mokry; W. Nazarewicz; H. Nitsche; J. P. Omtvedt; P. Papadakis; I. Ragnarsson; J. Runke; H. Schaffner; B. Schausten; Y. Shi; P. Thörle-Pospiech; T. Torres; T. Traut; N. Trautmann; A. Türler; A. Ward; D. E. Ward; N. Wiehl

2015-02-10

5

Exerpts from the history of alpha recoils.  

PubMed

Any confined air volume holding radon ((222)Rn) gas bears a memory of past radon concentrations due to (210)Pb (T(1/2) = 22 y) and its progenies entrapped in all solid objects in the volume. The efforts of quantifying past radon exposures by means of the left-behind long-lived radon progenies started in 1987 with this author's unsuccessful trials of removing (214)Po from radon exposed glass objects. In this contribution the history and different techniques of assessing radon exposure to man in retrospect will be overviewed. The main focus will be on the implantation of alpha recoils into glass surfaces, but also potential traps in radon dwellings will be discussed. It is concluded that for a successful retrospective application, three crucial imperatives must be met, i.e. firstly, the object must persistently store a certain fraction of the created (210)Pb atoms, secondly, be resistant over decades towards disturbances from the outside and thirdly, all (210)Pb atoms analysed must originate from airborne radon only. For large-scale radon epidemiological studies, non-destructive and inexpensive measurement techniques are essential. Large-scale studies cannot be based on objects rarely found in dwellings or not available for measurements. PMID:21306801

Samuelsson, Christer

2011-05-01

6

Track-hole formation of alpha-particle and recoil nuclei in an LR-115 nuclear track detector exposed to neutrons  

NASA Astrophysics Data System (ADS)

The response function V(REL) of an LR-115 polymeric nuclear track detector has been used to determine the V( R) sensitivity functions for recoil nuclei which are produced by the interactions of fast neutrons with the detector material. For an external radiator placed in close contact with the LR-115 detector, the sensitivity functions have also been determined for the generated nuclei from the (n, ?) reaction of thermal neutrons with the radiator material. The REL and the range for the studied nuclei as a function of their energies were calculated by using the BASIC-E version of Henke and Benton's programme. The theory of etch-track kinetics which depends on the V( R) function is used to predict the residual thickness necessary for track-hole formation of a charged particle at different angles by normally incident neutrons. The theoretical treatments were found to be in fair agreement with the previously obtained data for other cellulose nitrate track detectors.

Hafez, A. F.; Khalil, G. I.

1994-10-01

7

Imaging alpha particle detector  

DOEpatents

A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

Anderson, D.F.

1980-10-29

8

Imaging alpha particle detector  

DOEpatents

A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

Anderson, David F. (Los Alamos, NM)

1985-01-01

9

Alpha-particle diagnostics  

SciTech Connect

This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

Young, K.M.

1991-01-01

10

Alpha-recoil damage: Relation to isotopic disequilibrium and leaching of radionuclides  

SciTech Connect

The observation by Raabe et al. (1973) of large differences between the solubilities of isotopically different plutonium dioxides, has led to the recognition of preferential etching of recoil damage as a widespread phenomenon for alpha-active radionuclides. The associated preferential solubility of the products of alpha decay, along with direct recoil ejection, are the two specific microscopic mechanisms that are documented as causes of isotopic disequilibrium in the U and Th decay series. Similarly, leaching plays a significant role in releasing {sup 222}Rn from natural substances, {sup 222}Rn being the alpha-decay product of {sup 226}Ra. The average annealing time in nature of the damage sites can be inferred from the extent of isotopic disequilibrium for different isotopic pairs in the Th and U decay chains.

Fleischer, R.L. (General Electric Research and Development Center, Schenectady, NY (USA))

1988-06-01

11

Long range alpha particle detector  

DOEpatents

An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

1993-02-02

12

Long range alpha particle detector  

DOEpatents

An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

MacArthur, Duncan W. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM); McAtee, James L. (Los Alamos, NM); Unruh, Wesley P. (Los Alamos, NM); Cucchiara, Alfred L. (Los Alamos, NM); Huchton, Roger L. (Los Alamos, NM)

1993-01-01

13

Alpha particle emitters in medicine  

SciTech Connect

Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

Fisher, D.R.

1989-09-01

14

An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)  

NASA Astrophysics Data System (ADS)

A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (<1 ns), inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

2005-12-01

15

Prospects for alpha particle studies on TFTR  

SciTech Connect

TFTR is expected to produce approximately 5 MW of alpha heating during the D/T Q approx. = 1 phase of operation in 1990. At that point the collective confinement properties and the heating effects of alpha particles become accessible for study for the first time. This paper outlines the potential performance of TFTR with respect to alpha particle production, the diagnostics which will be available for alpha particle measurements, and the physics issues which can be studied both before and during D/T operation.

Zweben, S.J.

1987-05-01

16

A nuclear diagnostic for fast alpha particles  

Microsoft Academic Search

The authors investigate the possibility of seeding a fusion plasma with nuclei that can undergo nuclear reactions with energetic alpha particles to produce product nuclei that are radioactive. If a fraction of these product nuclei can be collected and measured, one can obtain information about the presence of fast alpha particles. It appears that a feasible diagnostic could be based

L. R. Grisham; J. M. Dawson; D. E. Post

1983-01-01

17

Probing Exotic, Particle-Decay Isotopes: A New Application of the Recoil Distance Method  

NASA Astrophysics Data System (ADS)

The application of the Recoil Distance Method (RDM) with the NSCL/K"oln plunger [1] has proven useful in the study of picosecond-lifetime excited states of rare isotopes at the NSCL [2]. With precise control over target/degrader separation distances on the micrometer scale, replacing the passive degrader with an active silicon detector provides a new probe at fast beam fragmentation facilities for studies of exotic particle-decay isotopes with picosecond lifetimes along the proton drip line. A recent experiment at the NSCL utilized this resulting NSCL/K"oln ``particle plunger'' in a lifetime study of the two-proton emitter ^19Mg, produced by the one-neutron knockout of a ^20Mg secondary beam. The method and preliminary results for this commissioning particle plunger RDM investigation will be presented. [1] A. Dewald et al., GSI Scientific Report 2005, p. 38 (2006). [2] K. Starosta et al., Phys. Rev. Lett. 99, 042503 (2007).

Voss, P.; Adrich, P.; Baumann, T.; Bazin, D.; Enderich, D.; Miller, D.; Norris, R.; Progovac, S.; Ratkiewicz, A.; Spyrou, A.; Starosta, K.; Thoennessen, M.; Vaman, C.; Dewald, A.; Iwasaki, H.

2008-10-01

18

Nuclear diagnostic for fast alpha particles  

DOEpatents

This invention relates generally to high energy confined plasmas and more particularly is directed to measuring the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a confined energetic plasma.

Grisham, L.R.; Post, D.E. Jr.; Dawson, J.M.

1983-11-23

19

Radioluminescence yield of alpha particles in air  

NASA Astrophysics Data System (ADS)

Alpha particles can be detected by measuring the radioluminescence light which they induce when absorbed in air. The light is emitted in the near ultraviolet region by nitrogen molecules excited by secondary electrons. The accurate knowledge of the radioluminescence yield is of utmost importance for novel radiation detection applications utilizing this secondary effect. Here, the radioluminescence yield of an alpha particle is investigated as a function of energy loss in air for the first time. Also, the total radioluminescence yield of the particle is measured with a carefully calibrated ^{239}Pu emitter used in the experiments. The obtained results consistently indicate that alpha particles generate 19±3 photons per one MeV of energy released in air at normal pressure (temperature 22°C, relative humidity 43%) and the dependence is found to be linear in the studied energy range from 0.3 MeV to 5.1 MeV. The determined radioluminescence yield is higher than previously reported for alpha particles and similar to the radioluminescence yield of electrons at comparable energies. This strengthens the evidence that the luminescence induced by charged particles is mostly proportional to the energy loss in the media and not very sensitive to the type of primary particle.

Sand, J.; Ihantola, S.; Peräjärvi, K.; Toivonen, H.; Toivonen, J.

2014-05-01

20

Alpha-particle sensitive test SRAMs  

NASA Technical Reports Server (NTRS)

A bench-level test is being developed to evaluate memory-cell upsets in a test SRAM designed with a cell offset voltage. This offset voltage controls the critical charge needed to upset the cell. The effect is demonstrated using a specially designed 2-micron n-well CMOS 4-kb test SRAM and a Po-208 5.1-MeV 0.61-LET alpha-particle source. This test SRAM has been made sensitive to alpha particles through the use of a cell offset voltage, and this has allowed a bench-level characterization in a laboratory setting. The experimental data are linked to a alpha-particle interaction physics and to SPICE circuit simulations through the alpha-particle collection depth. The collection depth is determined by two methods and found to be about 7 micron. In addition, alpha particles that struck outside the bloated drain were able to flip the SRAM cells. This lateral charge collection was observed to be more than 6 micron.

Buehler, M. G.; Blaes, B. R.

1990-01-01

21

Alternating current long range alpha particle detector  

DOEpatents

An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

MacArthur, D.W.; McAtee, J.L.

1993-02-16

22

The status of alpha-particle diagnostics  

SciTech Connect

There is a flurry of activity to complete alpha-particle diagnostics so that they can undergo some experimental testing in DT plasmas on JET or TFTR prior to implementation on ITER. Successful measurements of escaping charged fusion products have been made in DD plasmas, and the {alpha}-particle source can be well characterized by neutron profile measurement. These methods can be extrapolated to DT plasmas. Measurement of the confined {alpha}-particles requires a new technique. Collective Thomson scattering, methods involving charge-exchange interactions and nuclear reactions with impurities will be discussed. Some assessment is given of the capabilities of these techniques, bearing in mind the potential for their use in the physics phase of the ITER program.

Young, K.M.; Johnson, D.W.

1992-01-01

23

The status of alpha-particle diagnostics  

SciTech Connect

There is a flurry of activity to complete alpha-particle diagnostics so that they can undergo some experimental testing in DT plasmas on JET or TFTR prior to implementation on ITER. Successful measurements of escaping charged fusion products have been made in DD plasmas, and the {alpha}-particle source can be well characterized by neutron profile measurement. These methods can be extrapolated to DT plasmas. Measurement of the confined {alpha}-particles requires a new technique. Collective Thomson scattering, methods involving charge-exchange interactions and nuclear reactions with impurities will be discussed. Some assessment is given of the capabilities of these techniques, bearing in mind the potential for their use in the physics phase of the ITER program.

Young, K.M.; Johnson, D.W.

1992-08-01

24

Lunar surface outgassing and alpha particle measurements  

SciTech Connect

The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.

Lawson, S. L. (Stefanie L.); Feldman, W. C. (William C.); Lawrence, David J. (David Jeffery),; Moore, K. R. (Kurt R.); Elphic, R. C. (Richard C.); Maurice, S. (Sylvestre); Belian, Richard D.; Binder, Alan B.

2002-01-01

25

Nuclear diagnostic for fast alpha particles  

DOEpatents

Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

Grisham, Larry R. (Lawrence Township, Mercer County, NJ); Post, Jr., Douglass E. (Belle Mead, NJ); Dawson, John M. (Pacific Palisades, CA)

1986-01-01

26

Alpha particle analysis using PEARLS spectrometry  

SciTech Connect

Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig.

McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

1984-01-01

27

Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor  

SciTech Connect

Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

1998-12-14

28

The effects of alpha particle irradiation on stainless steel  

E-print Network

A Monte Carlo code was developed to calculate the alpha particle emission rate from WGPu. It yielded information pertaining to the alpha particle source strength at the WGPU and stainless steel interface as well as the damage production and He...

Shipp, John Douglas

1999-01-01

29

Radioimmunotherapy with alpha-particle-emitting immunoconjugates  

SciTech Connect

Alpha particles are energetic short-range ions whose higher linear energy transfer produces extreme cytotoxicity. An ..cap alpha..-particle-emitting radioimmunoconjugate consisting of a bismuth-212-labeled monoclonal immunoglobulin M specific for the murine T cell/neuroectodermal surface antigen Thy 1.2 was prepared. Analysis in vitro showed that the radioimmunoconjugate was selectively cytotoxic to a Thy 1.2/sup +/ EL-4 murine tumor cell line. Approximately three bismuth-212-labeled immunoconjugates per target cell reduced the uptake of (/sup 3/H)thymidine by the EL-4 target cells to background levels. Mice inoculated intraperitoneally with EL-4 cells were cured of their ascites after intraperitoneal injection of 150 microcuries of the antigen-specific radioimmunoconjugate, suggesting a possible role for such conjugates in intracavitary cancer therapy. 18 references, 3 figures.

Macklis, R.M.; Kinsey, B.M.; Kassis, A.L.; Ferrara, J.L.M.; Atcher, R.W.; Hines, J.J.; Coleman, C.N.; Adelstein, S.J.; Burakoff, S.J.

1988-05-20

30

Diamond detector for alpha-particle spectrometry.  

PubMed

An artificially grown high purity diamond was used as a detector for alpha-particle spectrometry. Diamond detectors can match the performance of silicon detectors employed in standard continuous air monitoring systems. Its radiation hardness and electronic properties make them ideal to work under extreme condition such as high temperature and ambient lights. A 50 ?m thickness single-crystal diamond detector has been compared with a 300 ?m passivated implanted planar silicon detector, under ambient conditions. PMID:24768983

Dueñas, J A; de la Torre Pérez, J; Martín Sánchez, A; Martel, I

2014-08-01

31

Thermal recrystallization of alpha-recoil damaged minerals of the pyrochlore structure type  

SciTech Connect

Thermal recrystallization effects (heat of recrystallization and identification of phases formed), have been determined for naturally occurring members of the pyrochlore group which have received alpha doses of up to 4 X 10{sup 16} alphas/mg. The heats of recrystallization, E{sub t}, range from 125 to 210 J/g. Release of energy decreases as a function of crystallinity (estimated on the basis of the intensity of x-ray diffraction maxima), with the fully-metamict samples approaching 210 J/g. Lower measured values (40-125 J/g) are the result of alteration of the pyrochlores. Other metamict, complex oxides with stoichiometries of ABO{sub 4} and AB{sub 2}O{sub 6} have lower heats of recrystallization (40-85 J/g), and are easily distinguished from pyrochlore group minerals. Activation energies of recrystallization, E{sub a}, range between values of 0.29 to 0.97 eV, less than those measured for Pu-doped, synthetic zirconolites.

Lumpkin, G.R.; Ewing, R.C. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology; Foltyn, E.M. [Los Alamos National Lab., NM (United States)

1985-10-01

32

Alpha-particle-induced cancer in humans.  

PubMed

Updated information is given on alpha-particle-induced cancer in persons internally exposed to 222Rn progeny, Thorotrast, long-lived 226Ra and 228Ra, and short-lived 224Ra. The lung cancer risk to persons breathing 222Rn progeny in the indoor air of offices, schools, and homes is of increasing concern. About half of the recent deaths among the German Thorotrast patients have been from liver cancer. Animal studies indicate that the liver cancer risk from Thorotrast is mainly from its radioactivity and that the risk coefficient for the Thorotrast patients can be used provisionally for other alpha emitters in the human liver. Six skeletal cancers have occurred in persons with average skeletal doses between 0.85 and 11.8 Gy from 226Ra and 228Ra. In the low-dose German 224Ra patients, two skeletal sarcomas have occurred at about 0.7 Gy compared to about six cases predicted by results from 224Ra patients at higher doses. The minimal appearance time for radiation-induced bone sarcomas in humans is about 4 y. Following brief irradiation, the vast majority of induced bone sarcomas are expressed by about 30 y. Recent evidence against the "practical threshold" hypothesis is given. With the downward revision of neutron doses to the atomic-bomb survivors, the follow-up of persons exposed to alpha particles may be the best opportunity to evaluate directly the effects of high LET radiation on humans. PMID:2844697

Mays, C W

1988-10-01

33

Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints  

NASA Astrophysics Data System (ADS)

This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes 97Ru, 100Pd, 100Rh, and 101mRh are produced in fusion evaporation reactions induced by 12C ions in a 92Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 ?m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24° flexion angle removed (14±1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12±3) mm3/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

Warner, Jacob A.; Smith, Paul N.; Scarvell, Jennifer M.; Gladkis, Laura; Timmers, Heiko

2011-06-01

34

Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints  

SciTech Connect

This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

Warner, Jacob A.; Timmers, Heiko [School of Physical, Environmental and Mathematical Sciences, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); Smith, Paul N.; Scarvell, Jennifer M. [Trauma and Orthopaedic Research Unit, Canberra Hospital, PO BOX 11, Woden, ACT 2606 (Australia); Gladkis, Laura [School of Physical, Environmental and Mathematical Sciences, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); Trauma and Orthopaedic Research Unit, Canberra Hospital, PO BOX 11, Woden, ACT 2606 (Australia)

2011-06-01

35

Turbulent transport of alpha particles in reactor plasmas  

SciTech Connect

A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

Estrada-Mila, C.; Candy, J.; Waltz, R. E. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States); General Atomics, San Diego, California 92121 (United States)

2006-11-15

36

A High-Throughput Screen for Alpha Particle Radiation Protectants  

PubMed Central

Abstract Alpha-particle-emitting elements are of increasing importance as environmental and occupational carcinogens, toxic components of radiation dispersal devices and accidents, and potent therapeutics in oncology. Alpha particle radiation differs from radiations of lower linear energy transfer in that it predominantly damages DNA via direct action. Because of this, radical scavengers effective for other radiations have had only limited effect in mitigating alpha particle toxicity. We describe here a simple assay and a pilot screen of 3,119 compounds in a high-throughput screen (HTS), using the alpha-particle-emitting isotope, 225Ac, for the discovery of compounds that might protect mammalian cells from alpha particles through novel mechanisms. The assay, which monitored the viability of a myeloid leukemic cell line upon alpha particle exposure, was robust and reproducible, yielding a Z' factor of 0.66 and a signal-to-noise ratio of nearly 10 to 1. Surprisingly, 1 compound emerged from this screen, epoxy-4,5-?-dihydroxysantonin (EDHS), that showed considerable protective activity. While the value of EDHS remains to be determined, its discovery is a proof of concept and validation of the utility of this HTS methodology. Further application of the described assay could yield compounds useful in minimizing the toxicity and carcinogenesis associated with alpha particle exposure. PMID:20658946

Seideman, Jonathan H.; Shum, David; Djaballah, Hakim

2010-01-01

37

Measurement of alpha particles on PLT  

SciTech Connect

The radial emission profile of the d(/sup 3/He,p)..cap alpha.. fusion reaction was measured on PLT by pitch angle resolution of the escaping 3.7-MeV alphas. The d-/sup 3/He reactions were produced by /sup 3/He minority ICRF and the emission was strongly peaked at the ICRF resonance layer.

Murphy, T.J.; Strachan, J.D.

1984-12-01

38

Ionization of noble gas atoms by alpha particles and fission fragments from the decay of 252Cf1  

NASA Astrophysics Data System (ADS)

Charge state distributions of He, Ne, Ar, Kr, and Xe ions produced in single collisions with alpha particles and fission fragments from the decay of 252Cf have been measured using time of flight spectrometry. The measurements reveal that the maximum number of electrons removed in a fission fragment collision ranges from eight in the case of Ne to 20 in the case of Xe. Recoil-ion production cross sections have been determined for the resolvable ionic charge states and compared with the predictions of a model based upon the independent electron approximation.

Hill, B. M.; Watson, R. L.; Wohrer, K.; Bandong, B. B.; Sampoll, G.; Horvat, V.

1993-07-01

39

Full orbit calculation for lost alpha particle measurement on ITERa)  

NASA Astrophysics Data System (ADS)

An orbit following calculation code with full gyromotion under the ITER magnetic field configuration has been developed to investigate escaping alpha particle orbits in ITER and to determine the geometrical arrangement for alpha particle detection. The code contained the full geometrical information of the first wall panels. It was carefully investigated whether an alpha particle escaping from the plasma through the last closed flux surface does not touch or intersect the first wall boundary before reaching the detection point. Candidates of blanket module modification have been studied to achieve effective measurement geometry for escaping alpha particle detection. The calculations showed that direct orbit loss and banana diffusion can be detected with a probe head recessed from the first wall surface.

Funaki, D.; Isobe, M.; Nishiura, M.; Sato, Y.; Okamoto, A.; Kobuchi, T.; Kitajima, S.; Sasao, M.

2008-10-01

40

Alpha particle nonionizing energy loss (NIEL) for device applications  

NASA Technical Reports Server (NTRS)

A method developed for the proton NIEL calculation previously is extended to incident alpha particles in this study: ZBL screened potential for Coulomb interactions and MCNPX 'thin target approximation' for nuclear interactions.

Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

2004-01-01

41

Alpha-particle capture reactions in inverse kinematics relevant to p-process nucleosynthesis  

SciTech Connect

The first feasibility study of an {alpha}-particle capture reaction in inverse kinematics at energies relevant to the p process was performed at the Wien Filter of the LISE spectrometer at GANIL. Hereby, the {sup 4}He({sup 78}Kr,{gamma}){sup 82}Sr reaction was investigated using as target an {sup 4}He-implanted thin Al foil. The analysis of the data has shown that the determination of ({alpha},{gamma}) reaction cross sections at rather low energies around 2 MeV/u in inverse kinematics is indeed feasible regarding the high rejection rate of the primary beam, which in the present work was better than a factor of 10{sup 9}. However, the expected position of the recoils of interest was completely masked by particles of currently unknown origin that could hardly be attributed to scattering of the primary beam. The most probable explanation for the origin of these 'pollutants' could be microscopic dust particles of 10 {mu}m diameter and less, that are extremely difficult to avoid in standard experimental conditions. Hence, the use of a gas-jet target instead of a solid one is compulsory.

Ujic, P.; Oliveira Santos, F. de; Stodel, Ch.; Saint-Laurent, M.-G.; Kamalou, O.; Amthor, M. A.; Grevy, S.; Caceres, L. [GANIL, Bd. Henri Becquerel, Caen (France); Lagoyannis, A.; Mertzimekis, T. J.; Harissopulos, S.; Demetriou, P. [Institute of Nuclear Physics, NCSR 'Demokritos', Aghia Paraskevi, Athens (Greece); Perrot, L. [CNRS/IN2P3, IPN Orsay (France); Lefebvre-Schuhl, A. [CSNSM, Orsay (France); Spyrou, A. [NSCL/MSU, East Lansing, Michigan (United States); Koivisto, H.; Laitinen, M.; Uusitalo, J.; Julin, R. [Department of Physics, University of Jyvaeskylae (Finland)

2011-10-28

42

Shielding of manned space vehicles against protons and alpha particles  

NASA Technical Reports Server (NTRS)

The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

1972-01-01

43

Alpha particle radiography with the CR39 nuclear track detector  

Microsoft Academic Search

This work studies the alpha particle radiography technique, in conjunction with the CR-39 plastic track detector. The irradiations were made in the CV-28 cyclotron at IEN\\/CNEN\\/RJ, using a 7 MeV\\/nucleon alpha particle beam. All etches were performed by using a 6.25 N NaOH solution, at 70°C. The best etch time to obtain radiographs was determined. A calibration curve (Gray Levels

B. A. de Souza; S. C. Cabral; R. T. Lopes

1995-01-01

44

Actinium-225 in targeted alpha-particle therapeutic applications.  

PubMed

Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153

Scheinberg, David A; McDevitt, Michael R

2011-10-01

45

The HERMES recoil detector  

NASA Astrophysics Data System (ADS)

For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

2013-05-01

46

Analysis of radiation risk from alpha particle component of solar particle events  

NASA Technical Reports Server (NTRS)

The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

1994-01-01

47

Analysis of radiation risk from alpha particle component of soalr particle events  

NASA Technical Reports Server (NTRS)

The Solar Particle Events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and Linear Energy Transfer (LET) spectra in shielding are discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

1994-01-01

48

Alpha and recoil track detection in poly(methyl methacrylate) (PMMA)—Towards a method for in vitro assessment of radiopharmaceuticals internalized in cancer cells  

NASA Astrophysics Data System (ADS)

A method for detection and characterization of single MeV ?-particle and recoil tracks in PMMA photoresist by atomic force microscopy (AFM) analysis has been demonstrated. The energy deposition along the track is shown to lead to a latent pattern in the resist due to contrast reversal. It has been shown that the pattern, consisting of conical spikes, can be developed by conventional processing as a result of the dissolution rate of poly(methyl methacrylate) (PMMA) being greater than that for the modified material in the cylindrical volume of the track core. The spikes can be imaged and counted by routine AFM analysis. Investigations by angular-resolved near-grazing incidence reveal additional tracks that correspond to recoil tracks. The observations have been correlated with modelling, and shown to be in qualitative agreement with prevailing descriptions of collision cascades. The results may be relevant to technologies that are based on detection and characterization of single energetic ions. In particular, the direct visualization of the collision cascade may allow more accurate estimates of the actual interaction volume, which in turn will permit more precise assessment of dose distribution of ?-emitting radionuclides used for targeted radiotherapy. The results could also be relevant to other diagnostic or process technologies based on interaction of energetic ions with matter.

Myhra, S.; Falzone, N.; Chakalova, R.

2014-03-01

49

Utility of extracting {alpha}-particle energy by waves  

SciTech Connect

The utility of extracting {alpha}-particle power, and then diverting this power to fast fuel ions, is investigated. As power is diverted to fast ions and then to ions, a number of effects come into play, as the relative amounts of pressure taken up by electrons, fuel ions, and fast {alpha}-particles shift. In addition, if the {alpha}-particle power is diverted to fast fuel ions, there is an enhanced fusion reactivity because of the nonthermal component of the ion distribution. Some useful expressions for describing these effects are derived, and it is shown that fusion reactors with power density about twice what otherwise might be obtained can be contemplated, so long as a substantial amount of the {alpha}-particle power can be diverted. Interestingly, in this mode of operation, once the electron heat is sufficiently confined, further improvement in confinement is actually not desirable. A similar improvement in fusion power density can be obtained for advanced fuel mixtures such as D-He{sup 3}, where the power of both the energetic {alpha}-particles and the energetic protons might be diverted advantageously.

Fisch, N.J.; Herrmann, M.C.

1994-05-01

50

Selective flow path alpha particle detector and method of use  

DOEpatents

A method and apparatus for monitoring alpha contamination are provided in which ions generated in the air surrounding the item, by the passage of alpha particles, are moved to a distant detector location. The parts of the item from which ions are withdrawn can be controlled by restricting the air flow over different portions of the apparatus. In this way, detection of internal and external surfaces separately, for instance, can be provided. The apparatus and method are particularly suited for use in undertaking alpha contamination measurements during the commissioning operations.

Orr, Christopher Henry (Sellafield, Seascale, Cumbria, GB); Luff, Craig Janson (Sellafield, Seascale, Cumbria, GB); Dockray, Thomas (Sellafield, Seascale, Cumbria, GB); Macarthur, Duncan Whittemore (P.O. Box 1663, Los Alamos, NM 87545)

2002-01-01

51

Solar wind alpha particle capture at Mars and Venus  

NASA Astrophysics Data System (ADS)

Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30% of the alpha particles can be lost from the solar wind due to charge-exchange processes associated with the Mars/solar wind interaction. We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, Andrei; Brain, Dave

2010-05-01

52

Continuous air monitor for alpha-emitting aerosol particles  

SciTech Connect

A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

McFarland, A.R.; Ortiz, C.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. (Los Alamos National Lab., NM (USA))

1990-01-01

53

Performance comparison of scintillators for alpha particle detectors  

NASA Astrophysics Data System (ADS)

Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

2014-11-01

54

The effect of alpha particles on bacteriophage T4Br+.  

PubMed

It is generally accepted that heavy charged particles play an important part in generating the secondary flux of nuclear particles formed by the interaction of space hadrons with nuclei. It is assumed that these particles are responsible for the high biological efficiency of space hadrons in causing cellular damage by their strong interactions. To examine this assumption we investigated the effects of 5.3 MeV alpha particles on bacteriophage T4. This energy provides a LET value of 88.6 KeV/micrometer lying in the range of the highest biological efficiency. PMID:11542756

Leont'eva, G A; Akoev, I G; Grigor'ev, A E

1983-01-01

55

Experimental setup for studying the effects of alpha particles on zebrafish embryos  

E-print Network

Experimental setup for studying the effects of alpha particles on zebrafish embryos E.H.W. Yum to study effects of alpha particles on dechorionated zebrafish embryos. Thin PADC films with a thickness substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha

Yu, K.N.

56

226Ra determination in phosphogypsum by alpha-particle spectrometry  

NASA Astrophysics Data System (ADS)

A radiochemical method for226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks).

Aguado, J. L.; Bolívar, J. P.; García-Tenorio, R.

1999-01-01

57

ALPHA-PARTICLE RADIOBIOLOGICAL EXPERIMENTS USING THIN CR-39 DETECTORS  

E-print Network

, Serbia and Monte Negro The present paper studied the feasibility of applying comet assay to evaluate. Comet assay was then applied. Diffusion of DNA out of the cells could be generally observed from the images of stained DNA. The alpha-particle tracks corresponding to the comets developed on the underside

Yu, K.N.

58

Accurate Simulations of Pb Recoils in SuperCDMS  

NASA Astrophysics Data System (ADS)

SuperCDMS is a direct detection search for WIMPs, currently operating a 9 kg array of germanium detectors in the Soudan Underground Laboratory. The detectors, known as iZIPs, are cylindrical in shape and each flat surface is instrumented with both ionization and phonon sensors. Charge and phonon information is collected for each event, and comparing the energy collected in the phonon sensors to the charge sensors gives excellent discrimination power between nuclear recoil and electron recoil events. Furthermore, this technology provides excellent discrimination between surface and bulk events. In order to show the surface event rejection capability of these detectors, two Pb sources were installed facing two of the detectors currently operating in the Soudan experimental run. The Pb decays to Bi, which in turn decays to Po. The Po decays by alpha emission, yielding a recoiling Pb ion with 103 keV kinetic energy and an alpha particle with 5.4 MeV kinetic energy. We used the non-standard Screened Nuclear Recoil Physics List (Mendenhall and Weller, Nucl. Instrum. Methods Phys. Res. B 227:420-430, 2005) in Geant4 (Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506:250-303, 2003) to simulate all of the above decays and achieve excellent agreement with experiment. The focus of this paper is the simulation of the Po decay.

Redl, P.

2014-09-01

59

Alpha-particle physics in the tokamak fusion test reactor DT experiment  

NASA Astrophysics Data System (ADS)

A summary is presented of recent alpha-particle experiments on the tokamak fusion test reactor. Alpha particles are generally well confined in MHD-quiescent discharges, and alpha heating of electrons has been observed. The theoretically predicted toroidicity-induced Alfvén eigenmode has been seen in discharges of ? 1 MW of alpha power, but only in plasmas with weak magnetic shear.

Zweben, S. J.; Arunasalam, V.; Batha, S. H.; Budny, R. V.; Bush, C. E.; Cauffman, S.; Chang, C. S.; Chang, Z.; Cheng, C. Z.; Darrow, D. S.; Dendy, R. O.; Duong, H. H.; Fisch, N. J.; Fredrickson, E. D.; Fisher, R. K.; Fonck, R. J.; Fu, G. Y.; Goloborod'ko, V.; Gorelenkov, N.; Hawryluk, R. J.; Heeter, R.; Heidbrink, W. W.; Herrmann, H. W.; Herrmann, M.; Johnson, D. W.; Machuzak, J.; Majeski, R.; McGuire, K. M.; McKee, G.; Medley, S. S.; Mynick, H. E.; Nazikian, R.; Petrov, M. P.; Redi, M. H.; Reznik, S.; Rogers, J.; Schilling, G.; Spong, D. A.; Strachan, J. D.; Stratton, B. C.; Synakowski, E.; Taylor, G.; Wang, S.; White, R. B.; Wong, K. L.; Yavorski, V.; TFTR Group

1997-05-01

60

Alpha-particle physics in the tokamak fusion test reactor DT experiment  

Microsoft Academic Search

A summary is presented of recent alpha-particle experiments on the tokamak fusion test reactor. Alpha particles are generally well confined in MHD-quiescent discharges, and alpha heating of electrons has been observed. The theoretically predicted toroidicity-induced Alfvén eigenmode has been seen in discharges of <= 1 MW of alpha power, but only in plasmas with weak magnetic shear.

S. J. Zweben; V. Arunasalam; S. H. Batha; R. V. Budny; C. E. Bush; S. Cauffman; C. S. Chang; Z. Chang; C. Z. Cheng; D. S. Darrow; R. O. Dendy; H. H. Duong; N. J. Fisch; E. D. Fredrickson; R. K. Fisher; R. J. Fonck; G. Y. Fu; V. Goloborod'ko; N. Gorelenkov; R. J. Hawryluk; R. Heeter; W. W. Heidbrink; H. W. Herrmann; M. Herrmann; D. W. Johnson; J. Machuzak; R. Majeski; K. M. McGuire; G. McKee; S. S. Medley; H. E. Mynick; R. Nazikian; M. P. Petrov; M. H. Redi; S. Reznik; J. Rogers; G. Schilling; D. A. Spong; J. D. Strachan; B. C. Stratton; E. Synakowski; G. Taylor; S. Wang; R. B. White; K. L. Wong; V. Yavorski

1997-01-01

61

Control of alpha-particle transport by ion cyclotron resonance heating  

SciTech Connect

In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v{sub {alpha}} {approximately} (P{sub RF}/n{sub {alpha}}{epsilon}{sub 0}){rho}{sup p}, where R{sub RF} is the ICRF wave power density, n{sub {alpha}} is the alpha-particle density, {epsilon}{sub 0} is the alpha-particle birth energy, and {rho}{sub p} is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed.

Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P. (Princeton Univ., NJ (United States). Plasma Physics Lab.)

1990-12-01

62

Quality factors for alpha particles emitted in tissue  

NASA Technical Reports Server (NTRS)

A concept of a mean or dose averaged quality factor was defined in ICRP Publication 26 using relationships for quality factor as a function of LET. The concept of radiation weighting factors, wR, was introduced in ICRP Publication 60 in 1990. These are meant to be generalized factors that modify absorbed dose to reflect the risk of stochastic effects as a function of the quality of the radiation incident on the body or emitted by radioactivity within the body. The values of wr are equal to 20 for all alpha particles externally or internally emitted. This note compares the dose averaged quality factor for alpha particles originating in tissue using the old and revised recommendations for quality factor as a function of LET. The dose averaged quality factor never exceeds 20 using the old recommendations and is never less than 20 with the revised recommendations.

Borak, Thomas B.; Chatterjee, A. (Principal Investigator)

2002-01-01

63

Alpha-Particle Angular Distributions with Respect to Spin Direction  

Microsoft Academic Search

Angular distribution of alpha particles with respect to the spin direction of residual nuclei from fusion of 176-MeV 20Ne with 150Nd has been measured with the spin spectrometer. Below the Coulomb barrier, the ratio of the 90° to 0° yields with respect to spin direction increases with decreasing Ealpha. This effect is not shown by a statistical-model calculation using penetrabilities

F. A. Dilmanian; D. G. Sarantites; M. Jaeaeskelaeinen; H. Puchta; R. Woodward; J. R. Beene; D. C. Hensley; M. L. Halbert; R. Novotny; L. Adler; R. K. Choudhury; M. N. Namboodiri; R. P. Schmitt; J. B. Natowitz

1982-01-01

64

Fission studies with 140 MeV {alpha} particles  

SciTech Connect

Binary fission induced by 140 MeV {alpha} particles has been measured for {sup nat}Ag, {sup 139}La, {sup 165}Ho, and {sup 197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z{sup 2}/A=24 is observed.

Buttkewitz, A.; Duhm, H. H.; Strauss, W. [I. Institut fuer Experimentalphysik, Universitaet Hamburg, Hamburg (Germany); Goldenbaum, F. [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Machner, H. [Institut fuer Kernphysik, Forschungszentrum Juelich, Juelich (Germany); Fachbereich Physik, Universitaet Duisburg-Essen, Duisburg (Germany)

2009-09-15

65

A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air  

ERIC Educational Resources Information Center

A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

Andrews, D. G. H.

2008-01-01

66

Energetic alpha particle deposition in a magnetized plasma  

SciTech Connect

The problem of energetic alpha particle deposition in a dense, magnetized deuterium-tritium (DT) thermonuclear fuel has been studied numerically for the case of coulomb interactions in cylindrical geometry. This was done by following the particle trajectories initiated at various radii and in different directions through the plasma and its imposed field until they had either left the plasma or deposited all their energy. The resulting complex particle trajectories in the static magnetized fuel make a detailed treatment of the problem computationally intensive. Therefore, we have attempted to use detailed modeling to produce a data base for a neural nets algorithm for incorporation in an ignition critical profile code. While the accuracy of the neutral net in reproducing the detailed calculational results is not high, it is approximately 6000 times faster. 7 refs., 1 fig.

Smitherman, D.P.; Kirkpatrick, R.C.

1991-01-01

67

Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating  

SciTech Connect

Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order {upsilon}{sub alpha} {approximately} (P{sub RF}/n{sub {alpha}}{epsilon}{sub 0}) {rho}{sub p}, where P{sub RF} is the ICRF-wave power density, n{sub {alpha}} is the alpha density, {epsilon}{sub 0} is the alpha birth energy, and {rho}{sub p} is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs.

Chang, C.S.; Imre, K.; Weitzner, H. (New York Univ., NY (USA). Courant Inst. of Mathematical Sciences); Colestock, P. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

1990-02-01

68

Protons and alpha particles in the solar wind  

NASA Astrophysics Data System (ADS)

We investigate energetic consequences of ion kinetic instabilitities in the solar wind connected with beam and core protons and alpha particles drifting with respect to each other. We compare theoretical predictions, simulations and observation results. For theoretical prediction we assume drifting bi-Maxwellian ion populations and we calculate theoretical quasilinear heating rates (Hellinger et al., 2013b). The nonlinear evolution of beam-core protons, and alpha particles in the expanding solar wind we investigate using hybrid expanding box system (Hellinger and Travnicek, 2013). The expansion leads to many different kinetic instabilities. In the simulation the beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one in agreement with theoretical expectations. On the macroscopic level the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to a perpendicular heating and parallel cooling rates. The simulated heating rates are comparable to the heating rates estimated from the Helios observations (Hellinger et al., 2013a); furthermore, the differential velocity between core and beam protons observed by Ulysses exhibits apparent bounds which are compatible with the theoretical constaints imposed by the linear theory for the magnetosonic instability driven by beam-core differential velocity (Matteini et al., 2013). References Hellinger, P., P. M. Travnicek, S. Stverak, L. Matteini, and M. Velli (2013a), Proton thermal energetics in the solar wind: Helios reloaded, J. Geophys. Res., 118, 1351-1365, doi:10.1002/jgra.50107. Hellinger, P., T. Passot, P.-L. Sulem, and P. M. Travnicek (2013b), Quasi-linear heating and acceleration in bi-Maxwellian plasmas, Phys. Plasmas, 20, 122306. Hellinger, P., and P. M. Travnicek (2013), Protons and alpha particles in the expanding solar wind: Hybrid simulations, J. Geophys. Res., 118, 5421-5430, doi:10.1002/jgra.50540. Matteini, L., P. Hellinger, B. E. Goldstein, S. Landi, M. Velli, and M. Neugebauer (2013), Signatures of kinetic instabilities in the solar wind, J. Geophys. Res., 118, 2771-2782, doi:10.1002/jgra.50320.

Hellinger, Petr; Travnicek, Pavel M.; Passot, Thierry; Sulem, Pierre-Louis; Matteini, Lorenzo; Landi, Simone

2014-05-01

69

Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.  

PubMed

The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra. PMID:17951235

Pöllänen, R; Siiskonen, T

2008-01-01

70

Alpha particle response characterization of CdZnTe  

SciTech Connect

The coplanar-grid as well as other electron-only detection techniques are effective in overcoming some of the material problems of CdZnTe and, consequently, have led to efficient gamma-ray detectors with good energy resolution while operating at room temperature. The performance of these detectors is limited by the degree of uniformity in both electron generation and transport. Despite recent progress in the growth of CdZnTe material, small variations in these properties remain a barrier to the widespread success of such detectors. Alpha-particle response characterization of CdZnTe crystals fabricated into simple planar detectors is an effective tool to accurately study electron generation and transport. We have used a finely collimated alpha source to produce two-dimensional maps of detector response. A clear correlation has been observed between the distribution of precipitates near the entrance contact on some crystals and their alpha-response maps. Further studies are ongoing to determine the mechanism for the observed response variations and the reason for the correlation. This paper presents the results of these studies and their relationship to coplanar-grid gamma-ray detector performance.

Amman, Mark; Lee, Julie S.; Luke, Paul N.

2001-06-28

71

Preliminary results from the lunar prospector alpha particle spectrometer  

SciTech Connect

The Lunar Prospector Alpha Particle Spectrometer (LP APS) builds on Apollo heritage and maps the distribution of outgassing sites on the Moon. The APS searches for lunar surface gas release events and maps their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life) and solid polonium-210 (5.3 MeV, 138 day half-life, but remains on the surface with a 21 year half-life as lead-210), which are radioactive daughters from the decay of uranium-238. Radon is in such small quantities that it is not released directly from the lunar interior, rather it is entrained in a stream of gases and serves as a tracer for such gases. Once released, the radon spreads out by 'bouncing' across the surface on ballistic trajectories in a random-walk process. The 3.8 day half-life of radon-222 allows the gas to spread out by several 100 km before it decays and allows the APS to detect gas release events up to a few days after they occur. The long residence time (10s of years) of the lead-210 precursor to the polonium-210 allows the mapping of gas vents which have been active over the last approximately 50 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Using radioactive radon and polonium as tracers, the Apollo 15 and 16 Command Module orbital alpha particle experiments obtained evidence for the release of gases at several sites beneath the orbit tracks, especially over the Aristarchus Plateau and Mare Fecunditatis [1]. Aristarchus crater had previously been identified by ground-based observers as the site of transient optical events [2]. The Apollo 17 surface mass spectrometer showed that argon-40 is released from the lunar interior every few months, apparently in concert with some of the shallow moonquakes that are believed to be of tectonic origin [3]. The latter tectonic events could be associated with very young scarps identified in the lunar highlands [4] and are believed to indicate continued global contraction. Such quakes could open fissures leading to the release of gases that are trapped below the surface. The detection of radon-222 outgassing events at the margins of Fecunditatis basin was surprising because the observed surface distribution of uranium and thorium do not extend sufficiently eastward to cover Fecunditatis. If the Apollo detections prove sound, then those alpha particle emissions indicate substantial subsurface concentrations of uranium-238 within Fecunditatis. A primary goal of the APS was to map gas-release events, thus allowing both an appraisal of the current level of tectonic activity on the Moon and providing a probe of subsurface uranium concentrations.

Lawson, S. L. (Stefanie L.)

2001-01-01

72

INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND  

SciTech Connect

We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.

Verscharen, Daniel; Bourouaine, Sofiane [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Chandran, Benjamin D. G., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu [Also at Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

2013-08-20

73

Study of backscattering in alpha-particle sources with the new code AlfaMC  

NASA Astrophysics Data System (ADS)

The activity of alpha-particle sources with negligible thickness can be absolutely determined using 2? counting geometry detectors, requiring corrections for backscattering from the source backing. The experimental determination of these corrections is subject to large uncertainties, because the contribution of the backscattered alpha particles to the total counting is generally very low. An interesting alternative is then to use Monte Carlo methods which simulate the transport of alpha-particles into the source. The programme AlfaMC, a new Monte Carlo code developed to simulate specifically the transport of alpha particles, was here applied to the study of the backscattering in alpha-particle sources. Energy and angular distributions for the backscattered alpha particles were deeply analysed based on a multiple scattering process, as a result of a large number of weak collisions with atomic electrons. Some calculated values for the backscattering coefficient were compared with experimental values, showing a good agreement.

Vargas, M. Jurado; Timón, A. Fernández

2015-01-01

74

Ionization and scintillation of nuclear recoils in gaseous xenon  

E-print Network

Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N

2014-01-01

75

Ionization and scintillation of nuclear recoils in gaseous xenon  

E-print Network

Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

J. Renner; V. M. Gehman; A. Goldschmidt; H. S. Matis; T. Miller; Y. Nakajima; D. Nygren; C. A. B. Oliveira; D. Shuman; V. Álvarez; F. I. G. Borges; S. Cárcel; J. Castel; S. Cebrián; A. Cervera; C. A. N. Conde; T. Dafni; T. H. V. T. Dias; J. Díaz; R. Esteve; P. Evtoukhovitch; L. M. P. Fernandes; P. Ferrario; A. L. Ferreira; E. D. C. Freitas; A. Gil; H. Gómez; J. J. Gómez-Cadenas; D. González-Díaz; R. M. Gutiérrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; F. J. Iguaz; I. G. Irastorza; M. A. Jinete; L. Labarga; A. Laing; I. Liubarsky; J. A. M. Lopes; D. Lorca; M. Losada; G. Luzón; A. Marí; J. Martín-Albo; A. Martínez; A. Moiseenko; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muñoz Vidal; H. Natal da Luz; G. Navarro; M. Nebot-Guinot; R. Palma; J. Pérez; J. L. Pérez Aparicio; L. Ripoll; A. Rodríguez; J. Rodríguez; F. P. Santos; J. M. F. dos Santos; L. Seguí; L. Serra; A. Simón; C. Sofka; M. Sorel; J. F. Toledo; A. Tomás; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. C. Webb; J. White; N. Yahlali

2014-09-09

76

Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer  

Microsoft Academic Search

The Lunar Prospector Alpha Particle Spectrometer (APS) was designed to detect characteristic-energy alpha particles from the decay of Rn-222, Po-218, and Po-210 and to therefore map sites of radon release on the lunar surface. These three nuclides are radioactive daughters from the decay of U-238; hence the background level of alpha particle activity is a function of the lunar crustal

Stefanie L. Lawson; William C. Feldman; David J. Lawrence; Kurt R. Moore; Richard C. Elphic; Richard D. Belian; Sylvestre Maurice

2005-01-01

77

A bipolar mechanism for alpha-particle-induced soft errors in GaAs integrated circuits  

Microsoft Academic Search

The alpha-particle-induced collected charge in undoped LEC semi-insulating GaAs is measured in n+-i-n+ and n+-p-n+ isolation structures and is compared with the results of an analytical model based on a bipolar mechnism. In n+-i-n+ isolation structures, a collected-storage multiplication phenomenon induced by alpha-particle incidence is observed. The measured collected charge is about three times the alpha-particle-generated charge. This phenomenon can

Yasunari Umemoto; Nobutoshi Matsunaga; Kazumichi Mitsusada

1989-01-01

78

Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha-particle therapy applications  

PubMed Central

Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364

Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.

2013-01-01

79

Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications.  

PubMed

Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225 Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209 Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225 Ac to potently and specifically affect cancer. PMID:18514364

Miederer, Matthias; Scheinberg, David A; McDevitt, Michael R

2008-09-01

80

Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor  

SciTech Connect

Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

Herrmann, Hans W.

1997-06-01

81

Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating  

DOEpatents

It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

1983-11-16

82

Method for determining fast-alpha-particle confinement in tokamak plasmas using resonant nuclear reactors  

SciTech Connect

The resonant nuclear reactions D(..cap alpha..,..gamma..)/sup 6/Li, /sup 6/Li(..cap alpha..,..gamma..)/sup 10/B, and /sup 7/Li(..cap alpha..,..gamma..)/sup 11/B are examined as diagnostics of fast-alpha-particle confinement in tokamak plasmas. Gamma rays from these resonant reactions with energies from 2.1 MeV to 9.2 MeV may be used to infer the alpha-particle population between energies of 0.4 MeV and 2.6 MeV. The ratio of these alpha-burnup reactions to the reactions T(D,..gamma..)/sup 5/He and /sup 3/He(D,..gamma..)/sup 5/Li provides a technique for the measurement of alpha confinement.

Cecil, F.E.; Zweben, S.J.; Medley, S.S.

1986-03-01

83

Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor  

SciTech Connect

Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. {bold 21}, 1324 (1992)] predict 40{percent} total alpha losses and 20{percent} ripple diffusion losses. This is about double the loss rate of a comparable non-reversed magnetic shear plasma. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. {copyright} {ital 1997 American Institute of Physics.}

Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C. [Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08540 (United States)] [Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08540 (United States)

1997-11-01

84

On the approximations of the distribution function of fusion alpha particles  

SciTech Connect

The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.

Bilato, R., E-mail: roberto.bilato@ipp.mpg.de; Brambilla, M.; Poli, E. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

2014-10-15

85

The interaction of energetic alpha-particles with intense lower hybrid waves  

SciTech Connect

Lower hybrid waves are a demonstrated, continuous means of driving toroidal current in a tokamak. When these waves propagate in a tokamak fusion reactor, in which there are energetic {alpha}- particles, there are conditions under which the {alpha}-particles do not appreciably damp, and may even amplify, the wave, thereby enhancing the current-drive effect. Waves traveling in one poloidal direction, in addition to being directed in one toroidal direction, are shown to be the most efficient drivers of current in the presence of the energetic {alpha}-particles.

Fisch, N.J.; Rax, J.M.

1992-06-01

86

Cross sections relevant to gamma-ray astronomy: Alpha-particle-induced reactions  

Microsoft Academic Search

Gamma-ray production cross sections have been measured for the gamma-ray lines most strongly excited in the alpha-particle bombardments of ²°Ne, ²⁴Mg, ²⁷Al, ²⁸Si, and ⁵⁶Fe for alpha-particle energies from threshold to approximately 27 MeV. Tabulations of cross sections averaged over alpha-particle energy bins of 1 MeV are provided for calculations relevant to gamma-ray line astronomy. Examples are given of astrophysical

Alan G. Seamster; Eric B. Norman; Donald D. Leach; P. Dyer; D. Bodansky

1984-01-01

87

AlphaRad, a new integrated CMOS System-On-Chip for high efficiency alpha particle counting.  

E-print Network

; #12;2 Key words: Solid state detectors; System-on-chip; Alpha particles; Neutrons. The field for a wide range of radiation types and energies, but efficient detection of neutrons (free of gamma contamination) is still demanded, as well as flexible, efficient and cheap systems for gaseous radon monitoring

Paris-Sud XI, Université de

88

PPPL3119 Preprint: July 1995, UC426 Alfvnic Behavior of Alpha Particle Driven Ion Cyclotron  

E-print Network

PPPL­3119 ­ Preprint: July 1995, UC­426 Alfvénic Behavior of Alpha Particle Driven Ion Cyclotron, Oxfordshire, OX14 3DB UK (Euratom/UKAEA Fusion Association) ABSTRACT Ion cyclotron emission (ICE) has been the top and bottom of the vacuum vessel. Harmonics of the alpha cyclotron frequency (W a ) evaluated

89

PPPL-3119 -Preprint: July 1995, UC-426 Alfvnic Behavior of Alpha Particle Driven Ion Cyclotron  

E-print Network

PPPL-3119 - Preprint: July 1995, UC-426 Alfvénic Behavior of Alpha Particle Driven Ion Cyclotron, Oxfordshire, OX14 3DB UK (Euratom/UKAEA Fusion Association) ABSTRACT Ion cyclotron emission (ICE) has been the top and bottom of the vacuum vessel. Harmonics of the alpha cyclotron frequency ( ) evaluated

90

Direct and indirect effects of alpha-particle irradiations of human prostate tumor cells  

E-print Network

The objective of this project is to establish a model system to study the direct effect, the bystander effect and the combinational effect of alpha-particle irradiations of human prostate tumor cells, toward the goal of ...

Wang, Rong, Ph. D. Massachusetts Institute of Technology

2005-01-01

91

Microstructure damage of thin aluminum films by irradiation with alpha particles and fission fragments  

SciTech Connect

The atomic force microscopy (AFM) has been used to study the microstructure damage of thin aluminum film surfaces induced by bombardment of alpha particles and fission fragments from {sup 252}Cf source. Different types of defects (dislocations lines, loops, voids, and blisters) and their complex morphologies appeared under both the beam of alpha particles and a mix of alpha particles and fission fragments. The first surface damage became clearly visible only after 250 hr irradiation of a mix of alpha particles and fission fragments (8.65 x 10{sup 8} ff/cm{sup 2} and 1.36 x 10{sup 10} {alpha}/cm{sup 2}). The number of voids and dislocation lines created on the aluminum surface were (3.8 {+-} 0.8) x 10{sup 7} cm{sup -2} and (2.1 {+-} 0.8) x 10{sup 6} cm{sup -2}, respectively. Single blisters were observed with the mean diameter of (933 {+-} 22) nm and the mean height of (102 {+-} 15) nm. The first ellipsoidal dislocation loops appeared at the fluence of (1.03 x 10{sup 9} ff/cm{sup 2} and 1.62 x 10{sup 10} {alpha}/cm{sup 2}). However, these ellipsoidal loops were not seen with low energetic alpha particles at the same fluence. Our results suggest that the fission fragments might maximize large voids and dislocations and increase the degradation in depth resolution. (authors)

Sadi, S. [Department of Nuclear Engineering and Radiation Health Physics, 100 Radiation Center, Oregon State University, Corvallis, OR 97331-5903 (United States); Paulenova, A. [Radiation Center, 100 Radiation Center, Oregon State University, Corvallis, OR 97331-5903 (United States); Loveland, W.D.; Watson, P.R. [Department of Chemistry, 100 Radiation Center, Oregon State University, Corvallis, OR 97331-5903 (United States)

2007-07-01

92

LIMITS ON ALPHA PARTICLE TEMPERATURE ANISOTROPY AND DIFFERENTIAL FLOW FROM KINETIC INSTABILITIES: SOLAR WIND OBSERVATIONS  

SciTech Connect

Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure and anisotropy driven instabilities such as the Alfvén/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this Letter, we use a long period of in situ measurements provided by the Wind spacecraft's Faraday cups to investigate the combined constraint on the alpha proton differential flow velocity and the alpha particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of T {sub ?}/T {sub p} (T {sub ??}/T {sub ?p}) when the alpha proton differential flow velocity is small, where T {sub ?} and T {sub p} (T {sub ??} and T {sub ?p}) are the perpendicular (parallel) temperatures of alpha particles and protons. We conjecture that this observed feature might arise from preferential alpha particle heating which can drive the alpha particles beyond the instability thresholds.

Bourouaine, Sofiane; Verscharen, Daniel; Chandran, Benjamin D. G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)] [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Maruca, Bennett A. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States)] [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Kasper, Justin C., E-mail: s.bourouaine@unh.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

2013-11-01

93

Modification of alpha-particle emission spectrum in beam-injected deuterium-tritium plasmas  

SciTech Connect

The alpha ({alpha})-particle and neutron emission spectra in a deuterium-tritium plasma accompanied with neutral-beam-injection (NBI) heating are evaluated in a consistent way by solving the Boltzmann-Fokker-Planck equations for deuteron, triton, and {alpha}-particle simultaneously. It is shown that owing to the existence of non-Maxwellian tail component in fuel-ion distribution function due to NBI and/or nuclear elastic scattering, the generation rate of the energetic ({>=}4 MeV) {alpha}-particle increases significantly. When 20 MW intense deuterium beam with 1 MeV beam-injection energy is injected into an 800 m{sup 3} plasma (T{sub e}=10 keV, n{sub e}=6.2x10{sup 19} m{sup -3}), the enhancement of the fraction of the power carried by {alpha}-particles with energy above 4 (3.9) MeV to total {alpha}-particle power is almost twice (1.5 times) as much from the value for Gaussian distribution. A verification scenario for the modification of the emission spectrum by using the gamma ({gamma})-ray-generating {sup 9}Be({alpha},n{gamma}){sup 12}C reaction is also presented.

Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka, Fukuoka 819-0395 (Japan)

2009-04-15

94

Alpha particles in solar cosmic rays over the last 80,000 years.  

NASA Technical Reports Server (NTRS)

Present-day (1967 to 1969) fluxes of alpha particles from solar cosmic rays, determined from satellite measurements, were used to calculate the production rates of cobalt-57, cobalt-58, and nickel-59 in lunar surface samples. Comparisons with the activities of nickel-59 (half-life, 80,000 years) measured in lunar samples indicate that the long-term and present-day fluxes of solar alpha particles are comparable within a factor of approximately 4.

Lanzerotti, L. J.; Reedy, R. C.; Arnold, J. R.

1973-01-01

95

Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering  

SciTech Connect

It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

Ohkubo, S. [Department of Applied Science and Environment, Kochi Women's University, Kochi 780-8515 (Japan); Hirabayashi, Y. [Information Initiative Center, Hokkaido University, Sapporo 060-0810 (Japan)

2004-10-01

96

Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor  

SciTech Connect

Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

1997-03-01

97

Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron  

SciTech Connect

High-energy ..cap alpha.. particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the ..cap alpha..-particle fluence rate or the ..cap alpha..-particle energy. The antioxidants ..cap alpha..-tocopherol and butylated hydroxytoluene (BHT) suppressed the ..cap alpha..-particle-induced lipid peroxidation in the dried thin film state, and in this respect ..cap alpha..-tocopherol was found superior to BHT. It was found that ..cap alpha..-tocopherol was equally efficient in inhibiting lipid peroxidations by ..cap alpha.. particles and ultraviolet light.

Agarwal, S.; Chatterjee, S.N.

1984-11-01

98

Alpha CAM filter particle collection pattern study results  

Microsoft Academic Search

During a January 1991 Westinghouse Internal Audit of the WIPP Radiological Air Monitoring Program, an auditor observed that on an Eberline Alpha-6A CAM filter, some particulate was deposited outside the 25 mm diameter area that the filter is planned to use. Since the CAM uses a 25 mm diameter detector, this observation raised concern that the operational efficiency may be

S. G. Clayton; K. B. Steinbruegge; T. D. Merkling

1992-01-01

99

Intense alpha-particle emitting crystallites in uranium mill wastes  

USGS Publications Warehouse

Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.

Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

1994-01-01

100

Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating  

DOEpatents

Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

Post, Jr., Douglass E. (Belle Mead, NJ); Hwang, David Q. (Lawrencevill, NJ); Hovey, Jane (Plainsboro, NJ)

1986-04-22

101

Simple experimental method for alpha particle range determination in lead iodide films.  

PubMed

An experimental method for determining the range of alpha particles in films based on I-V(s) analysis has been suggested. The range of 5.5 MeV alpha particles in PbI(2) films determined by this technique is 30+/-5 microm, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 microm in PbI(2). More than 100 I-V(s) of PbI(2) films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI(2) I-V(s) curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V(s) demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI(2) films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the "surface defect" concentration ("surface refining"), was registered after successive measurements of I-V(s). PMID:17552841

Dmitriev, Yuri; Bennett, Paul R; Cirignano, Leonard J; Klugerman, Mikhail; Shah, Kanai S

2007-05-01

102

Simple experimental method for alpha particle range determination in lead iodide films  

SciTech Connect

An experimental method for determining the range of alpha particles in films based on I-V{sub s} analysis has been suggested. The range of 5.5 MeV alpha particles in PbI{sub 2} films determined by this technique is 30{+-}5 {mu}m, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 {mu}m in PbI{sub 2}. More than 100 I-V{sub s} of PbI{sub 2} films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI{sub 2} I-V{sub s} curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V{sub s} demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI{sub 2} films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the ''surface defect'' concentration (''surface refining''), was registered after successive measurements of I-V{sub s}.

Dmitriev, Yuri; Bennett, Paul R.; Cirignano, Leonard J.; Klugerman, Mikhail; Shah, Kanai S. [Radiation Monitoring Devices, Inc., Watertown, Massachusetts 02472 (United States)

2007-05-15

103

Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells  

NASA Technical Reports Server (NTRS)

We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

1995-01-01

104

Solar flare protons and alpha particles during the last three solar cycles  

Microsoft Academic Search

Event-integrated fluxes of protons and alpha particles in solar-flare-associated particle events during solar cycle 21 (1976--1986) are determined from data obtained by detectors on board the IMP-7 and IMP-8 satellites. Sixty-three solar particle events with proton fluence (E>10 MeV)>10⁷ cm⁻² were identified from October 1972 to March 1987. The average omnidirectional flux of protons with kinetic energy>10 MeV for cycle

J. N. Goswami; R. E. McGuire; R. C. Reedy; D. Lal; R. Jha

1988-01-01

105

Direct Evidence of Secondary Recoiled Nuclei From High Energy Protons  

Microsoft Academic Search

The production of secondary recoiled particles from interactions between high energy protons and microelectronics devices was investigated. By using NAND Flash memories, we were able to directly obtain analog information on recoil characteristics. While our results qualitatively confirm the role of nuclear reactions, in particular of those with tungsten, a quantitative model based on Monte Carlo and device-level simulations cannot

G. Cellere; A. Paccagnella; A. Visconti; S. Beltrami; J. Schwank; M. Shaneyfelt; D. Lambert; P. Paillet; V. Ferlet-Cavrois; J. Baggio; R. Harboe-Sorensen; E. Blackmore; A. Virtanen; P. Fuochi

2008-01-01

106

Fusion alpha-particle diagnostics for DT experiments on the joint European torus  

NASA Astrophysics Data System (ADS)

JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of ?-particles in DT operation. The direct measurements of alphas are very difficult and ?-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the ?-particle source and its evolution in space and time, ?-particle energy distribution, and ?-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for ?-particle measurements, and what options exist for keeping the essential ?-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, ?-particle diagnostics for ITER are discussed.

Kiptily, V. G.; Beaumont, P.; Belli, F.; Cecil, F. E.; Conroy, S.; Craciunescu, T.; Garcia-Munoz, M.; Curuia, M.; Darrow, D.; Ericsson, G.; Fernandes, A. M.; Giacomelli, L.; Gorini, Murari, A.; Nocente, M.; Pereira, R. C.; Von Thun, C. Perez; Popovichev, S.; Riva, M.; Santala, M.; Soare, S.; Sousa, J.; Syme, D. B.; Tardocchi, M.; Zoita, V. L.; Chugunov, I. N.; Gin, D. B.; Khilkevich, E.; Shevelev, A. E.; Goloborod'ko, V.; Sharapov, S. E.; Voitsekhovitch, I.; Yavorskij, V.; JET-EFDA contributors

2014-08-01

107

Alpha particle condensation in {sup 12}C and nuclear rainbow scattering  

SciTech Connect

It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

Ohkubo, S. [Department of Applied Science and Environment, Kochi Women's University, Kochi 780-8515 (Japan); Hirabayashi, Y. [Information Initiative Center, Hokkaido University, Sapporo 060-0811 (Japan)

2008-05-12

108

Alpha particle heating in hot diamagnetic cavities. [in solar wind near earth's bow shock  

NASA Technical Reports Server (NTRS)

Observational data from ISEE 1 are analyzed and a one-dimensional electromagnetic hybrid computer simulation is conducted for the heating of solar wind alpha particles in hot diamagnetic cavities (HDCs). In the simulation, which envisions alpha heating by ion-ion instabilities, low beam densities excite the proton/proton right-hand resonant instability that then pitch-angle scatters the beam without significantly heating the alphas. At greater beam densities, the proton/proton nonresonant instability undergoes saturation through a trapping of all three ion components. These results support the Thomsen et al. (1988) hypothesis that the nonresonant instability is the primary source of ion heating in hot diamagnetic cavities.

Galvez, Miguel; Fuselier, Stephen A.; Gary, S. Peter; Thomsen, Michelle F.; Winske, Dan

1990-01-01

109

Preferential energization of alpha particles in polar coronal holes at one solar radius above the photosphere  

E-print Network

Heating of polar coronal holes during solar minimum and acceleration of the fast solar wind issuing therefrom lack comprehensive theoretical understanding. Wave particle interactions are considered to have crucial effects on the extreme properties of heavy ions in the collision-less region of the polar coronal holes. In this article, we have presented a novel sensitivity analysis to investigate plasma heating by radio waves at lower hybrid frequencies. We have employed a three fluid Maxwell model comprising electrons, protons, and alpha particles at around two solar radius heliocentric distance in the polar coronal holes and derived a dispersion relation as a thirteenth order polynomial for the frequency. Our model provides indications of preferential heating of alpha particles in comparison with protons by means of lower hybrid instabilities. We have employed the electron velocity and spatial charge distribution as our basic study tools so as to show the effects of alpha proton differential mass and differen...

Chakravarty, Aniruddha

2015-01-01

110

On the correlation between the binding energies of the triton and the alpha-particle  

E-print Network

We consider the correlation between the binding energies of the triton and the alpha-particle which is empirically observed in calculations employing different phenomenological nucleon-nucleon interactions. Using an effective quantum mechanics approach for short-range interactions with large scattering length |a| >> l, where l is the natural low-energy length scale, we construct the effective interaction potential at leading order in l/|a|. In order to renormalize the four-nucleon system, it is sufficient to include a SU(4)-symmetric one-parameter three-nucleon interaction in addition to the S-wave nucleon-nucleon interactions. The absence of a four-nucleon force at this order explains the empirically observed correlation between the binding energies of the triton and the alpha-particle. We calculate this correlation and obtain a prediction for the alpha-particle binding energy. Corrections to our results are suppressed by l/|a|.

L. Platter; H. -W. Hammer; U. -G. Meißner

2004-11-22

111

Prediction of Lung Cells Oncogenic Transformation for Induced Radon Progeny Alpha Particles Using Sugarscape Cellular Automata  

PubMed Central

Background Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Methods Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. Results The model results have successfully validated in comparison with “in vitro oncogenic transformation data” for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. Conclusion It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ. PMID:25250147

Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

2014-01-01

112

Alpha Particles Induce Apoptosis through the Sphingomyelin Pathway  

PubMed Central

The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) ? radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET a particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with a particles emitted by the 225Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on ?-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated a particles using a planar 241Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five ?-particle traversals per cell. These data indicate that a particles can activate the sphingomyelin pathway to induce apoptosis. PMID:21631289

Seideman, Jonathan H.; Stancevic, Branka; Rotolo, Jimmy A.; McDevitt, Michael R.; Howell, Roger W.; Kolesnick, Richard N.; Scheinberg, David A.

2011-01-01

113

Study of nuclear recoils in liquid argon with monoenergetic neutrons  

NASA Astrophysics Data System (ADS)

In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

2012-07-01

114

Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes  

SciTech Connect

The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18?keV and 3.5?MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E?1?MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1?MeV, depending on the mode frequency. These results can have important implications for ash removal.

Farengo, R. [Comisión Nacional de Energía Atómica, Centro Atómico Bariloche e Instituto Balseiro, 8400 Bariloche, RN (Argentina); Ferrari, H. E. [Comisión Nacional de Energía Atómica, Centro Atómico Bariloche e Instituto Balseiro, 8400 Bariloche, RN (Argentina); CONICET, 8400 Bariloche, RN (Argentina); Garcia-Martinez, P. L. [CONICET, 8400 Bariloche, RN (Argentina); Firpo, M.-C.; Ettoumi, W. [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, 91128, Palaiseau cedex (France); Lifschitz, A. F. [Laboratoire d'Optique Appliquee, ENSTA, CNRS, Ecole Polytechnique, 91761 Palaiseau cedex (France)

2014-08-15

115

Nuclear reactions induced by high-energy alpha particles  

NASA Technical Reports Server (NTRS)

Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

Shen, B. S. P.

1974-01-01

116

Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations  

E-print Network

Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure-anisotropy-driven instabilities such as the Alfv\\'en/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this letter, we use a long period of in-situ measurements provided by the {\\em Wind} spacecraft's Faraday cups to investigate the combined constraint on the alpha-proton differential flow velocity and the alpha-particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of $T_{\\perp\\alpha}/T_{\\perp p}$ ($T_{\\parallel\\alpha}/T_{\\parallel p}$) when alpha-proton differential flow vel...

Bourouaine, Sofiane; Chandran, Benjamin D G; Maruca, Bennett A; Kasper, Justin C

2013-01-01

117

Distributions of Alpha Particles Escaping to the Wall because of Sawtooth Oscillations in TFTR  

SciTech Connect

It has been observed experimentally in deuterium-tritium shots of the Tokamak Fusion Test Reactor (TFTR) that crashes of sawtooth oscillations may result in very inhomogeneous flux of alpha particles to the wall. Namely, measurements with four detectors installed at the wall at 20°, 45°, 60°, and 90° below the midplane of the torus have shown that the alpha flux to the wall is strongly peaked at the 20° and 90° detectors and on the noise level at the 45° detector. To explain this phenomenon, both theoretical analysis and numerical simulation have been carried out. It is concluded that the "crash-induced prompt loss," i.e., the orbital loss of marginally trapped particles arising because of the crash-induced orbit transformation of circulating particles, is responsible for the flux to the 90° and 60° detectors, whereas the crash-induced stochastic diffusion of moderately trapped particles explains the large signal at the 20° detector. The calculated poloidal distributions of the integral alpha flux are in reasonable agreement with experimental data. In addition to the integral flux, the flux of particles with given energy was calculated. The energy spectrum of the escaping particles has also been calculated, which can be used for diagnostics of the crash type.

Kolesnichenko, Ya.I.; Lutsenko, V.V.; White, R.B.; Yakovenko, Yu.V., Zweben, S.J.

1998-11-01

118

Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques  

SciTech Connect

We have simulated the alpha thermalization process using a Monte-Carlo technique, in which the alpha guiding center is followed between simulated collisions and Spitzer's collision model is used for the alpha-plasma interaction. Monte-Carlo techniques are used to determine the alpha radial birth position, the alpha particle position at a collision, and the angle scatter and dispersion at a collision. The plasma is modeled as a hot reacting core, surrounded by a cold halo plasma (T approx.50 eV). Alpha orbits that intersect the halo lose 90% of their energy to the halo electrons because of the halo drag, which is ten times greater than the drag in the core. The uneven drag across the alpha orbit also produces an outward, radial, guiding center drift. This drag drift is dependent on the plasma density and temperature radial profiles. We have modeled these profiles and have specifically studied a single-scale-length model, in which the density scale length (r/sub pD/) equals the temperature scale length (r/sub pT/), and a two-scale-length model, in which r/sub pD//r/sub pT/ = 1.1.

Kerns, J.A.

1986-05-01

119

Possibilities of alpha-particle diagnostics in future tokamaks using helium and lithium beam injection  

SciTech Connect

This paper considers the possibility of using active charge-exchange (CX) diagnostics based on helium and lithium beam injection to investigate the confined alpha-particle distribution function in future fusion experiments. The required helium beam densities are determined by mathematic modeling of the physical processes (double CX, attenuation of the doping beam, and CX flow, taking into account the step process). They are found to be {approximately}1 A for a 40-keV beam for thermalized (ash) alpha-particle diagnostics and 30 to 600 MA for a 0.35 to 0.65 MeV/amu HeH{sup +} ion source for hot alpha-particle diagnostics. A {sup 3}He beam with energy of 500 keV (He{sup +} ion source) and intensity of 0.1 to 3 A is proposed for measurement of the alpha-particle distribution function in the energy range of 0.2 to 2 MeV.

Gorelenkov, N.N.; Krasilnikov, A.V. (I.V. Kurchatov Inst. of Atomic Energy, Moscow (SU))

1991-03-01

120

Alpha particle induced charge collection measurements and the effectiveness of reflecting barriers on VLSI memories  

Microsoft Academic Search

This paper presents experimental results of analog charge collection measurement of alpha particle induced carriers in memory arrays. Measurements with high intensity foils and variable angle collimated sources on various memory arrays with different reflecting structures are reported. A P-well reflecting barrier is shown to reduce charge collection by a factor 2 and SER by about two orders of magnitude.

Sai-Wai Fu; Amr M. Mohsen; Tim C. May

1982-01-01

121

Can Bose condensation of alpha particles be observed in heavy ion collisions?  

NASA Technical Reports Server (NTRS)

Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.

Tripathi, Ram K.; Townsend, Lawrence W.

1993-01-01

122

Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer  

Microsoft Academic Search

The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the

R. Gellert; R. Rieder; R. C. Anderson; J. Brückner; B. C. Clark; G. Dreibus; T. Economou; G. Klingelhöfer; G. W. Lugmair; D. W. Ming; S. W. Squyres; C. d'Uston; H. Wänke; A. Yen; J. Zipfel

2004-01-01

123

Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report  

Microsoft Academic Search

The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument

R. Gellert; R. Rieder; J. Brückner; B. C. Clark; G. Dreibus; G. Klingelhöfer; G. Lugmair; D. W. Ming; H. Wänke; A. Yen; J. Zipfel; S. W. Squyres

2006-01-01

124

RADON AND PROGENY ALPHA-PARTICLE ENERGY ANALYSIS USING NUCLEAR TRACK METHODOLOGY  

SciTech Connect

A preliminary procedure for alpha energy analysis of radon and progeny using Nuclear Track Methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alpha particle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny.

Espinosa Garcia, Guillermo [ORNL; Golzarri y Moreno, Dr. Jose Ignacio [Instituto de Fisica, Mexico; Bogard, James S [ORNL

2008-01-01

125

The internal conversion spectrum following 244Cm alpha-particle decay  

NASA Astrophysics Data System (ADS)

The internal conversion spectrum following the alpha-particle decay of 244Cm was studied using the National Physical Laboratory (NPL) ??2 beta-spectrometer. Conversion lines from the two most intense transitions were identified as consistent with the multipolarity assignment of E2. Upper intensity limits were set for a third transition which were also in accord with a multipolarity of E2.

Pearcey, J.; Woods, S. A.; Christmas, P.

1990-01-01

126

CURRENT DRIVE BY LOWER HYBRID WAVES IN THE PRESENCE OF ENERGETIC ALPHA PARTICLES  

E-print Network

CURRENT DRIVE BY LOWER HYBRID WAVES IN THE PRESENCE OF ENERGETIC ALPHA PARTICLES N.J. FISCH, J of America ABSTRACT. Many experiments have proved the effectiveness of lower hybrid waves for driving. 1. INTRODUCTION Lower hybrid waves have been found to be effective in driving toroidal current

127

A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.  

ERIC Educational Resources Information Center

Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

Digilov, M.

1991-01-01

128

TF Ripple Loss of Alpha Particles from the ITER Interim Design: Simulation and Theory  

E-print Network

conditions for the ITER Interim Design [1]: L­mode, H­mode, post­sawtooth, and reversed­shear config particles of birth energy 3.5 MeV, including collisional pitch angle scattering over one alpha slowing down

129

Hormetic Effect Induced by Alpha-Particle-Induced Stress Communicated In Vivo between Zebrafish Embryos  

E-print Network

Hormetic Effect Induced by Alpha-Particle-Induced Stress Communicated In Vivo between Zebrafish data showing that embryos of the zebrafish, Danio rerio, at 1.5 h post fertilization (hpf) subjected be communicated to unirradiated bystander zebrafish embryos sharing the same water medium to induce a hormetic

Yu, K.N.

130

Electron transport uniformity characterization of CdZnTe using alpha particles  

SciTech Connect

Novel electrode configurations, such as coplanar grids, have been successful in mitigating the effects of poor hole transport in CdZnTe gamma-ray detectors. However, poor material uniformity remains a major problem preventing the widespread application of such detectors in gamma-ray spectroscopy. Uniform electron transport is critical for achieving good gamma-ray detection performance in the coplanar-grid configuration. The authors have investigated the use of alpha-particle response as a quick and simple electron transport uniformity screening technique for material selection, and as a method to study other spectral broadening mechanisms in coplanar-grid detectors. The method consists of uniformly illuminating, with an alpha-particle source, the cathode side of the CdZnTe crystal in either a planar or a coplanar-grid detector configuration. In the planar geometry, the variation in the measured pulse heights is dictated in large part by the uniformity of the electron transport. An alpha-particle spectrum that has a single sharp peak with little background indicates uniform electron transport and, consequently, that the CdZnTe crystal should result in a coplanar-grid detector with good gamma-ray detection performance. In the coplanar geometry, the measured pulse-height variation provides information on additional sources of spectral broadening. In this paper the authors present the results of their study to measure the correlation between these simple alpha-particle measurements and the coplanar-grid gamma-ray detector response.

Amman, M.; Lee, J.S.; Luke, P.N.

1998-04-01

131

Nucleon-Alpha Particle Disequilibrium and Short-Lived r-Process Radioactivities  

NASA Technical Reports Server (NTRS)

r-Process yields can be extremely sensitive to expansion parameters when a persistent disequilibrium between free nucleons and alpha particles is present. This may provide a natural scenario for understanding the variation of heavy and light r-process isotopes in different r-process events. Additional information is contained in the original extended abstract.

Meyer, B. S.; Clayton, D. D.; Chellapilla, S.; The, L.-S.

2002-01-01

132

Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats  

SciTech Connect

The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

Burns, F.J.

1990-01-01

133

Many-particle decays of {alpha}-chain structures in {sup 24}Mg  

SciTech Connect

We have searched for evidence of exotic cluster configurations in {sup 24}Mg resembling a linear chain of {alpha} particles in various many-particle final states of the {sup 12}C+{sup 12}C system, including {sup 1}C(O{sub 2}{sup +})+{sup 12}C(O{sub 2}{sup +}) and {sup 8}Be+{sup 16}O*(4a). Such configurations are predicted to occur by a number of different theoretical models of the structure of {sup 24}Mg. An array of highly segmented Double-Sided Silicon Strip Detectors permits detailed, high resolution reconstruction of these many-charged-particle final states.

Wuosmaa, A.H.

1993-12-31

134

Lost alpha-particle diagnostics from a D-T plasma by using nuclear reactions  

SciTech Connect

Among various methods proposed for alpha-particles loss measurement, we studied on those by measuring gamma rays of three cases, from (1) nuclear reactions induced by alpha particles, (2) those from short-life-time activities and (3) those from long-life-time activities induced by alpha particles. The time evolution of local alpha flux may possibly be measured by using the {sup 9}Be (a, n) {sup 12}C reaction (1). Using the same system, but with a target set up close to the first wall, activation measurement on site right after turning-off the discharge is possible (2). Nuclear reaction, {sup 25}Mg (a, p) {sup 28}Al, that produce radioisotopes of short lifetime of 2.2 minutes in one of the best candidates. As to the activation to a long lifetime (3), it is predicted that the gamma ray yield from {sup 19}F (a, n) {sup 22}Na reaction is enough for the measurement at the reactor site.

Sasao, Mamiko [Organization for Research Initiative and Development, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Wada, Motoi [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Isobe, Mitsutaka [National Institute for Fusion Science, Toki Gifu 509-5292 (Japan)

2014-08-21

135

Exchange of Alpha Particle in the {sup 16}O+{sup 12}C Elastic Scattering  

SciTech Connect

We have analyzed twenty elastic scattering angular distributions of the {sup 16}O+{sup 12}C system, measured at Sao Paulo Pelletron Laboratory and also data from the literature. The energies cover the region around and above Coulomb barrier, ranging from 8.54 up to 75.43 MeV in the center of mass reference frame. In the {sup 16}O+{sup 12}C scattering, two different processes can occur which result in same exit channel, the elastic scattering and the exchange of an alpha particle between projectile and target. We have used the Optical Model formalism for the elastic scattering and the DWBA to describe the alpha transfer reaction contribution. Thus, by analyzing the {sup 16}O+C elastic scattering at backward angles we have obtained the {sup 16}O{sub gs} alpha spectroscopic factor.

Morais, M. C.; Filho, R. Lichtenthaeler [Departamento de Fisica Nuclear, Universidade de Sao Paulo, C.P. 66318, Sao Paulo (Brazil)

2009-06-03

136

Some electrochemical etching studies on the registration of alpha particle tracks in polycarbonate  

NASA Astrophysics Data System (ADS)

The registration of alpha particle tracks was studied in 250 ?m thick polycarbonate foils using the electrochemical etching (ECE) method. The etchant was a mixture of ethanol, potassium hydroxide, and water at 25°C and the effects of concentration and etching duration were also investigated at different alpha energies by applying a field strength of 32 kV/cm at 2 kHz frequency. The alpha tracks were registered efficiently with an upper energy threshold of about 2.1 MeV having track diameters of up to 230 ?m which are easily observable by the unaided eyes. The etching duration and the etchant concentration showed strong effects on the efficiency, track diameter, and the energy thresholds. A mixture of 15 g KOH + 40 g C 2H 5OH + 45 g H 2O was found to be an optimum mixture which is the same as commonly used in conventional etching called PEW solution. In conclusion, alpha particle tracks can be efficiently registered in polycarbonate and it is applicable to a number of health physics and radiation research applications.

Sohrabi, M.; Khajeian, E.

137

Pulsed-laser and alpha particle irradiation effects in Fe-based glassy ferromagnets  

NASA Astrophysics Data System (ADS)

A comparatively study of pulsed-laser and alpha particle irradiation effects in metallic glasses has been performed in order to understand the relationship between magnetic behavior and select variations in the structural characteristics of alloy phases. Samples of Fe78B13Si9 and Fe66Co18B15Si metallic glasses were irradiated with a pulsed excimer laser ((lambda) equals 308 nm, (tau) equals 10 ns) and alpha particle beams (W equals 2.8 MeV) using radiation doses of 1016 and 1017 cm-2. Irradiation-driven changes in the magnetic anisotropy and phase equilibrium of alloy samples were studied by Mossbauer Spectroscopy and scanning electron microscopy. The evolution of phases and microstructure during the radiation- induced amorphous-to-crystalline transformations or revitrification depend on the specific irradiation and sample composition.

Toacsan, M. I.; Barb, D.; Sorescu, M.; Constantinescu, B.; Jeloaica, L.

1998-07-01

138

Influence of Temperature Anisotropy and Alpha-Particle Parameters on Calculated Interplanetary Shock Parameters  

NASA Astrophysics Data System (ADS)

In order to determine interplanetary shock parameters, we use Wind and ACE observations of shock passages in the solar wind. Magnetic field and plasma measurements by individual spacecraft are used with the nonlinear least squares fitting technique of Szabo [1994] with an improved error analysis to calculate the local shock parameters. Further improvement of the technique includes taking into account proton temperature anisotropy and alpha-particle parameters which results in higher accuracy of the calculated shock parameters. The shock parameters calculated at the locations of both spacecraft are then compared to estimate the global shapes of the observed shocks. We present statistics of the influence of proton temperature anisotropy and alpha particle parameters on the calculated shock parameters and discuss deviation of the shock global shape from the widely used planar assumption. The improved technique can be used to analyze STEREO and near-Earth observations of interplanetary shocks.

Koval, A.; Szabo, A.

2007-12-01

139

Mutagenic effects of a single and an exact number of alpha particles in mammalian cells  

NASA Technical Reports Server (NTRS)

One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

1997-01-01

140

Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection  

Microsoft Academic Search

The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff

Hyungsoon Shin; Nak-Myeong Kim

1999-01-01

141

Alpha-particle-induced collected charge model in SOI-DRAM's  

Microsoft Academic Search

We have developed a model for collected charges induced by an alpha-particle for SOI-DRAMs which assumes that the body capacitance equals the gate capacitance and that holes do not recombine with electrons. The validity of our model was supported by three-dimensional (3-D) device simulations that considered various gate lengths, gate oxide thicknesses, and flat-band voltages. The work function difference between

Shigeo Satoh; Yoshiharu Tosaka; Kunihiro Suzuki; Toru Itakura

1999-01-01

142

Collection of charge from alpha-particle tracks in silicon devices  

Microsoft Academic Search

Experimentally and by computer simulation, the collection process of alpha-particle-generated charge in silicon devices has been investigated. The total charge collected and the transient characteristics of collection for various structures were studied. Analytic results indicate that a strong drift field extends far beyond the original depletion layer, and funnels a large number of carriers into the struck node. This field-funneling

C.-M. Hsieh; P. C. Murley; R. R. Obrien

1983-01-01

143

Cyclotron instability of trapped alpha-particles in a Tokamak with elliptic cross-section  

Microsoft Academic Search

Cyclotron excitation of fast magnetosonic waves by trapped alpha-particles produced by fusion in a Tokamak with elliptic cross-section is studied. Earlier, this phenomenon was studied for a Tokamak with circular cross-section. It is shown that ellipticity of the Tokamak cross-section considerably affects the growth rate of oscillations. General expressions for the growth rate of the oscillations are obtained and are

T. D. Kaladze; I. G. Lominadze; A. B. Mikhailovskii; O. A. Pokhotelov

1976-01-01

144

L-shell ionization studies of Pb and Bi with alpha particles  

Microsoft Academic Search

Ionization cross sections for the L subshells of Pb and Bi by alpha-particle bombardment (2.2-8.2 MeV) have been determined from the experimental data and the currently available radiative transition probabilities, fluorescence yields, and Coster-Kronig factors. The measured ionization cross sections and their ratios are compared with the results of ECPSSR calculations [ECPSSR denotes perturbed-stationary-state (PSS) theory with energy-loss (E), Coulomb

B. B. Dhal; T. Nandi; H. C. Padhi

1994-01-01

145

Fusion alpha-particle losses in a high-beta rippled tokamak  

NASA Astrophysics Data System (ADS)

In tokamak plasmas, the confinement of energetic ions depends on the magnetic field structure. If the plasma pressure is finite, the equilibrium current (i.e., the Pfirsch-Schlüter current and diamagnetic current) flows in the plasma to maintain the magnetohydrodynamic (MHD) equilibrium. These plasma currents generate poloidal and toroidal magnetic field and alter the field structure. Moreover, if we consider the non-axisymmetry of magnetic field structures such as toroidal field (TF) ripples, the non-axisymmetric component of the equilibrium current can alter TF ripples themselves. When the plasma beta becomes high, the changes in the field structure due to the equilibrium current might affect the confinement of energetic ions significantly. We intend to clarify how these currents alter the field structure and affect the confinement of alpha particles in high-beta plasma. The MHD equilibrium is calculated using VMEC and the orbits of fusion alpha particles are followed by using the fully three-dimensional magnetic field orbit-following Monte Carlo code. In relatively low-beta plasma (e.g., the volume-averaged beta value ????2%), the changes in the magnetic field component due to the plasma current negligibly affect the confinement of alpha particles except for the Shafranov shift effect. However, for ????3%, the diamagnetic effect reduces the magnetic field strength and significantly increases alpha-particle losses. In these high-beta cases, the non-axisymmetric field component generated by the equilibrium current also increases these losses, but not as effectively as compared to the diamagnetic effect.

Bunno, M.; Nakamura, Y.; Suzuki, Y.; Shinohara, K.; Matsunaga, G.; Tani, K.

2013-08-01

146

Angular Distribution of Alpha Particles Emitted by Oriented Np237 Nuclei  

Microsoft Academic Search

Np237 nuclei were aligned through the electric quadrupole and magnetic hyperfine couplings in NpO2Rbz(NO3)3, cooled to 0.2-4.2°K. A complete experiment, with rotatable monocrystalline sample, solid-state counter, thermometer, and goniometer, was enclosed in a copper container filled with He3 gas and thermally attached to 1\\/2 mole of paramagnetic salt which could be cooled magnetically. The measured temperature dependence of the alpha-particle

S. H. Hanauer; J. W. Dabbs; L. D. Roberts; G. W. Parker

1961-01-01

147

Alpha particles in coincidence with the superdeformed band in 150Tb  

Microsoft Academic Search

Alpha particle spectra in coincidence both with normal deformed (ND) and superdeformed (SD) bands of 150Tb have been measured using the reaction 120Sn(37Cl,?3n) at 187 MeV bombarding energy. A clear difference is observed between the two spectra, that in coincidence with the SD states being shifted to lower energies. This effect is understood in terms of different angular momentum regions

G. Viesti; M. Lunardon; D. Bazzacco; R. Burch; D. Fabris; S. Lunardi; N. H. Medina; G. Nebbia; C. Rossi Alvarez; G. de Angelis; M. Cinausero; E. Farnea; E. Fioretto; G. Prete; G. Vedovato

1996-01-01

148

Kinematic measurement of alpha particles accompanied by spontaneous fission of Cf-252  

NASA Astrophysics Data System (ADS)

The energies and relative angles of three particles and the specific energy loss of light particles were recorded for each of more than 100,000 measured events. The comparison of measured distributions with former results gave good agreement, with regard to the integral mean values of energy, angle and mass distribution. The comparison of binary fragments with ternary fragment mass spectra showed that the ternary process is not a binary fission with ensuing alpha emission. The fragments are less stimulated in the ternary process, than in the binary process. Deformation energy is asymmetrically distributed at the fission point.

Heeg, Peter

149

Critical temperature for {alpha}-particle condensation within a momentum-projected mean-field approach  

SciTech Connect

{alpha}-particle (quartet) condensation in homogeneous spin-isospin symmetric nuclear matter is investigated. The usual Thouless criterion for the critical temperature is extended to the quartet case. The in-medium four-body problem is strongly simplified by the use of a momentum-projected mean-field ansatz for the quartet. The self-consistent single-particle wave functions are shown and discussed for various values of the density at the critical temperature. Excellent agreement of the critical temperature with a numerical solution of the Faddeev-Yakubovsky equation is obtained.

Sogo, T.; Roepke, G. [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany); Lazauskas, R. [IPHC, IN2P3-CNRS/Universite Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay F-91406 (France); Universite Paris-Sud, Orsay F-91505 (France); Laboratoire de Physique et Modelisation des Milieux Condenses, CNRS and Universite Joseph Fourier, 25 Avenue des Martyrs, Boite Postale 166, F-38042 Grenoble Cedex 9 (France)

2009-05-15

150

First Evidence of Collective Alpha Particle Effect on Toroidal Alfvén Eigenmodes in the TFTR D-T Experiment  

NASA Astrophysics Data System (ADS)

The alpha particle effect on the excitation of toroidal Alfvén eigenmodes (TAE) was investigated in deuterium-titrium (D-T) plasmas in the Tokamak Fusion Test Reactor. rf power was used to position the plasma near the instability threshold, and the alpha particle effect was inferred from the reduction of rf power threshold for TAE instability in D-T plasmas. Initial calculations indicate that the alpha particles contribute 10%-30% of the total drive in a D-T plasma with 3 MW of peak fusion power.

Wong, K. L.; Schmidt, G. L.; Batha, S. H.; Bell, R.; Chang, Z.; Chen, L.; Darrow, D. S.; Duong, H. H.; Fu, G. Y.; Hammett, G. W.; Levinton, F.; Majeski, R.; Mazzucato, E.; Nazikian, R.; Owens, D. K.; Petrov, M.; Rogers, J. H.; Schilling, G.; Wilson, J. R.

1996-03-01

151

Scattering of 42-MeV alpha particles from Cu-65  

NASA Technical Reports Server (NTRS)

The extended particle-core coupling model was used to predict the properties of low-lying levels of Cu-65. A 42-MeV alpha particle cyclotron beam was used for the experiment. The experiment included magnetic analysis of the incident beam and particle detection by lithium-drifted silicon semiconductors. Angular distributions were measured for 10 to 50 degrees in the center of mass system. Data was reduced by fitting the peaks with a skewed Gaussian function using a least squares computer program with a linear background search. The energy calibration of each system was done by pulsar, and the excitation energies are accurate to + or - 25 keV. The simple weak coupling model cannot account for the experimentally observed quantities of the low-lying levels of Cu-65. The extended particle-core calculation showed that the coupling is not weak and that considerable configuration mixing of the low-lying states results.

Stewart, W. M.; Seth, K. K.

1972-01-01

152

Preferential energization of alpha particles in polar coronal holes at one solar radius above the photosphere  

NASA Astrophysics Data System (ADS)

Heating of polar coronal holes (PCH) during solar minimum and acceleration of the fast solar wind issuing therefrom lack comprehensive theoretical understanding. Wave-particle interactions are considered to have crucial effects on the extreme properties of heavy ions in the collisionless region of the PCH. In this paper, we have presented a novel sensitivity analysis to investigate plasma heating by radio waves at lower hybrid (LH) frequencies. We have employed a three-fluid Maxwell model comprising electrons, protons, and ?-particles at around two solar radii heliocentric distance in the PCH and derived a dispersion relation as a 13th-order polynomial for the frequency. Our model provides indications of preferential heating of ?-particles in comparison with protons by means of LH instabilities. We have employed the electron velocity and spatial charge distribution as our basic study tools so as to show the effects of alpha-proton differential mass and differential perpendicular velocity on the preferential heating of ?-particles.

Chakravarty, Aniruddha; Bose, M.

2015-04-01

153

Full orbit computations of ripple-induced fusion {alpha}-particle losses from burning tokamak plasmas  

SciTech Connect

A full orbit code is used to compute collisionless losses of fusion {alpha} particles from three proposed burning plasma tokamaks: the International Tokamak Experimental Reactor (ITER); a spherical tokamak power plant (STPP) [T. C. Hender, A. Bond, J. Edwards, P. J. Karditsas, K. G. McClements, J. Mustoe, D. V. Sherwood, G. M. Voss, and H. R. Wilson, Fusion Eng. Des. 48, 255 (2000)]; and a spherical tokamak components test facility (CTF) [H. R. Wilson, G. M. Voss, R. J. Akers, L. Appel, A. Dnestrovskij, O. Keating, T. C. Hender, M. J. Hole, G. Huysmans, A. Kirk, P. J. Knight, M. Loughlin, K. G. McClements, M. R. O'Brien, and D. Yu. Sychugov, Proceedings of the 20th IAEA Fusion Energy Conference, Invited Paper FT/3-1Ra]. It has been suggested that {alpha} particle transport could be enhanced due to cyclotron resonance with the toroidal magnetic field ripple. However, calculations for inductive operation in ITER yield a loss rate that appears to be broadly consistent with the predictions of guiding center theory, falling monotonically as the number of toroidal field coils N is increased (and hence the ripple amplitude is decreased). For STPP and CTF the loss rate does not decrease monotonically with N, but collisionless losses are generally low in absolute terms. As in the case of ITER, there is no evidence that finite Larmor radius effects would seriously degrade fusion {alpha}-particle confinement.

McClements, K.G. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

2005-07-15

154

Radioluminescence of solid neodymium-doped laser materials excited by {alpha}-particles and fission fragments  

SciTech Connect

The characteristics of radioluminescence of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses under excitation by plutonium-239 ({sup 239}Pu) {alpha}-particles, as well as by {alpha}-particles and spontaneous fission fragments of californium-252 ({sup 252}Cf), are studied. The radioluminescence branching ratios {beta}{sub ij} for the transition from the {sup 2}F2{sub 5/2} level to the {sup 2S+1}L{sub J} levels in Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals are measured. Radioluminescence from the {sup 2}P{sub 3/2} level to low-lying levels is observed. The {beta}{sub ij} ratios for transitions from the high-lying {sup 2}F2{sub 5/2}, {sup 4}D{sub 3/2}, and {sup 2}P{sub 3/2} levels are theoretically calculated. The lifetimes of metastable levels of Nd{sup 3+} excited by {sup 252}Cf fission fragments are measured. The efficiency of the conversion of energy of {alpha}-particles and fission fragments to the energy of optical radiation of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses is determined. (active media)

Seregina, E A; Seregin, A A [State Scientific Center of the Russian Federation 'A.I. Leypunsky Institute for Physics and Power Engineering', Obninsk, Kaluga Region (Russian Federation)

2013-02-28

155

Electrostatic ion-acoustic-like instabilities in the solar wind with a backstreaming alpha particle beam  

SciTech Connect

Nonlinear electrostatic instabilities have been shown to occur frequently and under very different conditions in plasma with two ion beams such as the fast solar wind. These instabilities can be triggered when the phase velocity of electrostatic ion-acoustic waves propagating forward and backward relative to the interplanetary magnetic field overlaps due to the presence of a finite amplitude of circularly polarized wave. The instabilities can be triggered by waves supported by the same ion component, or by waves supported by different ion components. By assuming a beam of alpha particles moving backward relative to the external magnetic field, as observed in some events in the fast solar wind, it is shown that a very small negative drift velocity of the alpha particle beam relative to the core plasma--a few percent of the local Alfven velocity--can trigger a very rich variety of nonlinear electrostatic acousticlike instabilities. Their growth rates can be rather large and they persist for larger negative alpha particles drift velocities and temperatures.

Gomberoff, L. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Gomberoff, K. [Department of Physics, Technion, Haifa 32000 (Israel); Deutsch, A. [Rafael, P.O. Box 2250, Haifa 31021 (Israel)

2010-06-15

156

Modeling energy deposition and cellular radiation effects in human bronchial epithelium by radon progeny alpha particles  

SciTech Connect

Energy deposition and cellular radiation effects arising from the interaction of single {sup 218}Po and {sup 214}Po alpha particles with basal and secretory cell nuclei were simulated for different target cell depths in the bronchial epithelium of human airway generations 2, 4, 6, and 10. To relate the random chord lengths of alpha particle tracks through spherical cell nuclei to the resulting biological endpoints, probabilities per unit track length for different cellular radiation effects as functions of LET were derived from in vitro experiments. The radiobiological data employed in the present study were inactivation and mutation (mutant frequency at the HPRT gen) in V70 Chinese hamster cells and inactivation and transformation in C3H 10T1/2 cells. Based on computed LET spectra and relative frequencies of target cells, probabilities for transformation, mutation, and cell killing in basal and secretory cells were computed for a lifetime exposure of 20 WLM. While predicted transformation probabilities were about two orders of magnitude higher than mutation probabilities, they were still about two orders of magnitude lower than inactivation probabilities. Furthermore, transformation probabilities for basal cells are generally higher than those for secretory cells, and {sup 214}Po alpha particles are primarily responsible for transformation in bronchial target cells.

Hofmann, W.; Menache, M.G.; Crawford-Brown, D.J.; Caswell, R.S.; Karam, L.R.

2000-04-01

157

Solar flare protons and alpha particles during the last three solar cycles  

SciTech Connect

Event-integrated fluxes of protons and alpha particles in solar-flare-associated particle events during solar cycle 21 (1976--1986) are determined from data obtained by detectors on board the IMP-7 and IMP-8 satellites. Sixty-three solar particle events with proton fluence (E>10 MeV)>10/sup 7/ cm/sup -2/ were identified from October 1972 to March 1987. The average omnidirectional flux of protons with kinetic energy>10 MeV for cycle 21, 64 cm/sup -2/ s/sup -1/, is lower than the corresponding number for cycle 20 (92 cm/sup -2/ s/sup -1/) based on satellite data and for the cycle 19 (378 cm/sup -2/ s/sup -1/) based on lunar sample data. Six large events contributed 70% of the total proton fluence during solar cycle 21. Several events in early 1981 with high proton fluences could account for much of the high /sup 56/Co radioactivities observed in the small-sized Salem meteorite. The event-averaged alpha-particle to proton ratio in the energy interval 1--10 MeV/nucleon varies from 0.006 to 0.05, with an average value of 0.02 for the whole cycle. The events during solar cycle 21 are characterized by softer spectra for both protons and alpha particles compared to those in earlier solar cycles. No definitive correlation exists between cycle-averaged solar flare proton fluxes and peak sunspot numbers. A comparison with long-term (million year) averaged data for these parameters, obtained from lunar sample data, shows that the contemporary solar flare proton spectra are characterized by softer spectra (lower R/sub 0/ values). A similar comparison cannot be made for the mean long-term averaged flux, as the contemporary average suffers from uncertainty due to statistics of single events.

Goswami, J.N.; McGuire, R.E.; Reedy, R.C.; Lal, D.; Jha, R.

1988-07-01

158

Effects of alpha particles on the angular momentum loss from the Sun  

E-print Network

The classic Weber-Davis model of the solar wind is reconsidered by incorporating alpha particles and by allowing the solar wind to flow out of the equatorial plane in an axisymmetrical configuration. In the ion momentum equations of the solar wind, the ion gyro-frequency is many orders of magnitude higher than any other frequency. This requires that the difference between proton and alpha velocity vectors be aligned with the background magnetic field. With the aid of this alignment condition, the governing equations of the multi-fluid solar wind are derived from the standard transport equations. The governing equations are numerically solved along a prescribed meridional magnetic field line located at colatitude $70^\\circ$ at 1AU and a steady state fast solar wind solution is found. A general analysis concludes, in agreement with the Weber-Davis model, that the magnetic field helps the coronal plasma to achieve an effective corotation out to the Alfv\\'enic radius, where the poloidal Alfv\\'enic Mach number $M_T$ equals unity ($M_T$ is defined by equation (\\ref{eq:mach})). The model computations show that, magnetic stresses predominate the angular momentum loss of the Sun. For the fast wind considered, the proton contribution to the angular momentum loss, which can be larger than the magnetic one, is almost completely canceled by the alpha particles that develop an azimuthal speed in the direction opposite to the solar rotation. The Poynting flux associated with the azimuthal components is negligible in the energy budget. However, the solar rotation can play some role in reducing the relative speed between alpha particles and protons for low latitude fast solar wind streams in interplanetary space.

Bo Li; Xing Li

2006-06-07

159

PPPL-3239 -Preprint: March 1997, UC-420, 427 Calculations of alpha particle loss for reversed magnetic shear  

E-print Network

ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped-monotonic q(r) achieved by deliberate modification of plasma startup conditions. Each point in a toroidal

160

PPPL3239 Preprint: March 1997, UC420, 427 Calculations of alpha particle loss for reversed magnetic shear  

E-print Network

ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped­monotonic q(r) achieved by deliberate modification of plasma startup conditions. Each point in a toroidal

161

Interaction of alpha particle beams with Fe-based and FeNi-based glassy ferromagnets  

SciTech Connect

Samples of Fe{sub 78}B{sub 13}Si{sub 9} and Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} metallic glasses were irradiated with alpha particle beams (W = 2.8 MeV) using radiation doses of 10{sup 16} and 10{sup 17} cm{sup {minus}2}. Irradiation-induced effects on the magnetic texture and phase composition of alloy samples were studied by Moessbauer spectroscopy. Related morphological changes and resultant crystalline precipitates were characterized by scanning electron microscopy. The evolution of phases and microstructure during the radiation-induced amorphous-to-crystalline transformation was found to depend on the particle flux and sample composition. The lowest radiation dose employed was found to be more effective in inducing amorphous-to-crystalline transformations in both ferromagnetic alloys studied. In addition, the FeNi-based amorphous system investigated was found to be more stale than the Fe-based metallic glass, exposed to the same particle-beam irradiation conditions. By stimulating unconventional pathways for the crystallization process, the interaction of alpha particle beams with glassy ferromagnets offers unique opportunities to understand the fundamentals of nucleation and growth in amorphous magnets.

Sorescu, M. [Duquesne Univ., Pittsburgh, PA (United States). Physics Dept.; Barb, D. [Inst. of Atomic Physics, Bucharest (Romania)

1996-12-31

162

CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES  

SciTech Connect

This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

Hudson, H. S. [SSL, UC Berkeley, CA 94720 (United States); Fletcher, L.; MacKinnon, A. L. [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Woods, T. N., E-mail: hhudson@ssl.berkeley.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Dr., Boulder, CO 80303 (United States)

2012-06-20

163

Identification of gene-based responses in human blood cells exposed to alpha particle radiation  

PubMed Central

Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (?)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving ?-particles. Methods Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of ?-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Results Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either ?-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the ?-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no ?-particle specific transcripts were identified. Conclusion Current gene panels for photon radiation may also be applicable for use in ?-particle radiation biodosimetry. PMID:25017500

2014-01-01

164

Exciton dynamics in alpha-particle tracks in organic crystals: Magnetic field study of the scintillation in tetracene crystals  

Microsoft Academic Search

The mechanisms of scintillation of organic crystals bombarded by alpha particles are discussed in terms of the current knowledge of exciton dynamics, which has been derived from a study of the photofluorescence of crystals such as anthracene and tetracene. The scintillation of tetracene excited by 4.4-MeV alpha particles incident in a direction perpendicular to the ab plane has been studied

Nicholas E. Geacintov; Michael Binder; Charles E. Swenberg; Martin Pope

1975-01-01

165

A new mechanism for DNA alterations induced by alpha particles such as those emitted by radon and radon progeny.  

PubMed Central

The mechanism(s) by which alpha (alpha) particles like those emitted from inhaled radon and radon progeny cause their carcinogenic effects in the lung remains unclear. Although direct nuclear traversals by alpha-particles may be involved in mediating these outcomes, increasing evidence indicates that a particles can cause alterations in DNA in the absence of direct hits to cell nuclei. Using the occurrence of excessive sister chromatid exchanges (SCE) as an index of DNA damage in human lung fibroblasts, we investigated the hypothesis that alpha-particles may induce DNA damage through the generation of extracellular factors. We have found that a relatively low dose of alpha-particles can result in the generation of extracellular factors, which, upon transfer to unexposed normal human cells, can cause excessive SCE to an extent equivalent to that observed when the cells are directly irradiated with the same irradiation dose. A short-lived, SCE-inducing factor(s) is generated in alpha-irradiated culture medium containing serum in the absence of cells. A more persistent SCE-inducing factor(s), which can survive freeze-thaw and is heat labile is produced by fibroblasts after exposure to the alpha-particles. These results indicate that the initiating target for alpha-particle-induced genetic changes can be larger than a cell's nucleus or even a whole cell. How transmissible factors like those observed here in vitro may extend to the in vivo condition in the context of a-particle-induced carcinogenesis in the respiratory tract remains to be determined. PMID:9400706

Lehnert, B E; Goodwin, E H

1997-01-01

166

Alpha-particle-induced charge collection in p-n junction diodes in semi-insulating GaAs substrates  

Microsoft Academic Search

The bias and angle dependences of the alpha-particle-induced charge collected by GaAs p-n junction diodes are investigated. These diodes, in which the n-layer overlays the p-layer, are fabricated in a semi-insulating GaAs substrate by Si and Mg ion implantation. 241 Am placed in a vacuum is used as an alpha-particle source with an initial energy of 4.03 MeV and a

Yasunari Umemoto; Osamu Kagaya; Yukihiro Kawata

1991-01-01

167

Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER  

NASA Astrophysics Data System (ADS)

The Fast Imaging Plasma Spectrometer (FIPS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has made the first in situ measurements of solar wind plasma in the inner heliosphere since the Helios 1 and 2 spacecraft in the 1980s. Although the core of the solar wind velocity distribution is obstructed by the spacecraft sunshade, a data analysis technique has been developed that recovers both bulk and thermal speeds to 10% accuracy and provides the first measurements of solar wind heavy ions (mass per charge >2 amu/e) at heliocentric distances within 0.5 AU. Solar wind alpha particles and heavy ions appear to have similar mean flow speeds at values greater than that of the protons by approximately 70% of the Alfvén speed. From an examination of the thermal properties of alpha particles and heavier solar wind ions, we find a ratio of the temperature of alpha particles to that of protons nearly twice that of previously reported Helios observations, though still within the limits of excessive heating of heavy ions observed spectroscopically close to the Sun. Furthermore, examination of typical magnetic power spectra at the orbits of MESSENGER and at 1 AU reveals the lack of a strong signature of local resonant ion heating, implying that a majority of heavy ion heating could occur close to the Sun. These results demonstrate that the solar wind at ˜0.3 AU is a blend of the effects of wave-particle interactions occurring in both the solar corona and the heliosphere.

Gershman, Daniel J.; Zurbuchen, Thomas H.; Fisk, Lennard A.; Gilbert, Jason A.; Raines, Jim M.; Anderson, Brian J.; Smith, Charles W.; Korth, Haje; Solomon, Sean C.

2012-09-01

168

Time and Temperature Dependent Surface Stiffness of Poly(alpha-methylstyrene)(PAMS) through Particle Embedment  

NASA Astrophysics Data System (ADS)

In the present work, we have used the particle embedment technique with sub-micron particles to study the time dependence surface modulus of poly(alpha-methylstyrene)(PAMS) at different temperature ranging from room temperature to 1.1Tg of PAMS. The surface was found softer at room temperature and at 1.02Tg compared to the bulk film while at 1.1Tg the surface was found stiffer compared to the macroscopic modulus measured for the same PAMS. The embedment of the particle is determined from atomic force microscope measurements and the modulus was determined using the elastic analysis of Johnson, Kendall and Roberts (JKR) with surface energy estimates of the work of adhesion as the driving force for embedment. REFERENCES 1. K. L. Johnson, K. Kendall and A. D. Roberts, P. Royal Society of Lonodon A, 324, 301-313 (1971). 2. J. H. Teichroeb and J. A. Forrest, Physical Review Letter, 91, 016104 (2003).

Karim, Taskin; McKenna, Gregory

2012-02-01

169

Beams of protons and alpha particles greater than approximately 30 keV/charge from the earth's bow shock  

NASA Technical Reports Server (NTRS)

Two beamlike particle events (30 keV/charge to 160 keV/charge) upstream of the earth's bow shock have been investigated with the Max-Planck-Institut/University of Maryland ultralow energy and charge analyzer on ISEE 1. These beams consist of protons as well as of alpha particles, and the spectra are generally steep and are decreasing with increasing energy. During one event the spectra of both protons and alpha particles have a maximum at approximately 65 keV/charge. During these events, the interplanetary magnetic field through the satellite position was almost tangent to the bow shock, and application of the theory of acceleration predicts acceleration of a solar wind particle up to 60 keV/nucleon in a single reflection. The observation of reflected protons as well as alpha particles has implications for the physical reflection process usually not discussed in acceleration theories.

Scholer, M.; Ipavich, F. M.; Gloeckler, G.

1981-01-01

170

Effects of MA 956 superalloy and alpha-alumina particles on some markers of human osteoblastic cells in primary culture.  

PubMed

One of the problems associated with the modern biomaterials used in prostheses is osteolysis, which, although its exact origin is unknown, has been associated with wear particles. Osteoblasts seem to participate directly in this phenomenon. This paper investigates in vitro cellular response to the wear particles from the metal substrate and ceramic covering (alpha-alumina) of a new titanium yttrium aluminum alloy, MA 956, that has been proposed as a biomaterial because of its exceptional mechanical and electrochemical properties. The effect of different sizes (10 and 80 microm) of MA 956 and alpha-alumina particles on osteoblast function was studied in primary human bone cell cultures. Cells were harvested from trabecular bone fragments obtained during knee arthroplasty. Osteoblastic cell response to the particles was measured by assaying C-terminal type I procollagen (PICP), alkaline phosphatase, and osteocalcin secretion, with and without 1.25(OH)(2)D(3) stimulation, in the cell-conditioned medium. Both sizes of MA 956 and alpha-alumina particles decreased PICP secretion in nonstimulated osteoblastic cells, but this secretion was not affected in the cultures stimulated with 1.25(OH)(2)D(3). Only the 10 microm alpha-alumina particles inhibited alkaline phosphatase activity in 1.25(OH)(2)D(3)-stimulated and nonstimulated cultures. The rise in osteocalcin levels after 1.25(OH)(2)D(3) stimulation was lower in the presence of the 10 microm MA 956 particles than in the presence of alpha-alumina particles. Although both materials seem to have directly affected in vitro osteoblastic cell function, the increase in osteocalcin levels after 1.25(OH)(2)D(3) stimulation was lower after exposure to MA 956 particles than the increase observed after exposure to alpha-alumina particles. Therefore, it does not seem that osteocalcin stimulated bone resorption, suggesting that MA 956 would be less likely to provoke osteolysis. PMID:11077400

Rodrigo, A M; Martínez, M E; Martínez, P; Escudero, M L; Ruíz, J; Saldaña, L; Gómez-García, L; Fernández, L; del Valle, I; Munuera, L

2001-01-01

171

Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.  

PubMed

Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

2014-02-01

172

AlfaMC: a fast alpha particle transport Monte Carlo code  

E-print Network

AlfaMC is a Monte Carlo simulation code for the transport of alpha particles. The code is based on the Continuous Slowing Down Approximation and uses the NIST/ASTAR stopping-power database. The code uses a powerful geometrical package allowing the coding of complex geometries. A flexible histogramming package is used which greatly easies the scoring of results. The code is tailored for microdosimetric applications where speed is a key factor. The code is open-source and released under the General Public Licence.

Peralta, Luis

2012-01-01

173

Feasibility of an alpha particle gas densimeter for stack sampling applications  

E-print Network

, for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

Johnson, Randall Mark

1983-01-01

174

L-subshell ionization studies of Au for alpha -particle and lithium-ion bombardment  

Microsoft Academic Search

L-subshell ionization of Au has been investigated for alpha -particle and lithium-ion bombardments with energies 0.54-1.74 MeV u-1 and 0.65-1.44 MeV u-1, respectively. Comparison of experimental X-ray production cross sections with the predictions of the ECPSSR and SCA theories shows reasonably good agreement for Lalpha and Lbeta X-rays, whereas for Lgamma and Lgamma 1+5 the ECPSSR theory underestimates the cross

B. B. Dhal; T. Nandi; H. C. Padhi; D. Trautmann

1995-01-01

175

Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)  

NASA Technical Reports Server (NTRS)

Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

Blake, D. F.; Sarrazin, P.; Bristow, T.

2014-01-01

176

Alpha-particle emission probabilities in the decay of 239Pu  

NASA Astrophysics Data System (ADS)

The alpha-particle emission probabilities ( P?) of 239Pu have been measured using material of highest enrichment and radiochemical purity, thin sources produced by vacuum sublimation, and high-resolution ? spectroscopy with ion-implanted Si detectors (PIPS). The results for the major emissions are P?0.07 = 0.7077±0.0014, P?13 = 0.1711 ± 0.0014 and P?51 = 0.1194±0.0007, which for the P?0.07 is about 3.6% lower than the recent evaluated value in the literature.

García-Toraño, E.; Aceña, M. L.; Bortels, G.; Mouchel, D.

1993-10-01

177

Elastic and Inelastic Scattering of 18.4MeV Alpha Particles from Na23  

Microsoft Academic Search

Absolute differential cross sections for the elastic and inelastic (0.439-MeV and 2.080-MeV states) scattering of 18.4-MeV alpha particles from 100-mug\\/cm2 sodium targets have been measured using silicon surface-barrier detectors. The targets were prepared by the vacuum evaporation of sodium metal onto Formvar backings. The elastic and inelastic (2.080-MeV state) cross sections were measured at 2.5° intervals in the laboratory angular

B. T. Lucas; S. W. Cosper; O. E. Johnson

1964-01-01

178

Status and Prospects of the HERMES Recoil Detector  

E-print Network

/Scintillator sandwich Fiber Detector (SFT) 2 barrels with 4 layers of scintillating fibers 2 parallel and 2 stereo SFT Particle Identification 8HERMES Recoil Detector A. Mussgiller, SPIN 2008, 10/10/08 SSDV /c : SSD & SFT & PDp ~0.6 GeV /c #12; Particle Identification (p > 0

179

Recoil-induced gain and collective atomic recoil laser  

NASA Astrophysics Data System (ADS)

Recoil-induced resonances have been observed in pump-probe spectroscopy with cold atoms. On the other hand, a model for collective atomic recoil laser has been developed by R. Bonifacio and co-workers. These two systems rely on the recoil effect due to the absorption or the emission of a photon by an atom and share may features. In this paper, we shall investigate the relationship between the two models and clarify the underlying physics. We'll review also the experimental results.

Verkerk, Philippe

1998-07-01

180

Micro-collimator fabricated by alpha-particle irradiation of polyallyldiglycol carbonate polymer film and subsequent chemical etching  

E-print Network

formed on a test PADC film from a particles having traveled through a 20 mm support substrate attached film and subsequent chemical etching V.W.Y Choi, E.H.W. Yum, K.N. Yu Ã? Department of Physics 25 October 2009 Keywords: Solid-state nuclear track detector SSNTD Alpha particle PADC Collimator a b

Yu, K.N.

181

The severity of alpha-particle-induced DNA damage is revealed by exposure to cell-free extracts  

SciTech Connect

The rejoining of single-strand breaks induced by {alpha}-particle and {gamma} irradiation in plasmid DNA under two scavenging conditions has been compared. At the two scavenger conditions has been compared. At the two scavenger capacities used of 1.5 {times} 10{sup 7} and 3 {times} 10{sup 8}s{sup {minus}1} using Tris-HCl as the scavenger, the ratio of single- to double-strand breaks for {alpha} particles is fivefold less than the corresponding ratios for {gamma} irradiation. The repair of such radiation-induced single-strand breaks has been examined using a cell-free system derived from human whole-cell extracts. We show that the rejoining of single-strand breaks for both {alpha}-particle- and {gamma}-irradiated plasmid is dependent upon the scavenging capacity and that the efficiency of rejoining of {alpha}-particle-induced single-strand breaks is significantly less than that observed for {gamma}-ray-induced breaks. In addition, for DNA that had been irradiated under conditions that mimic the cellular environment with respect to the radical scavenging capacity, 50 of {alpha}-particle-induced single-strand breaks are converted to double-strand breaks, in contrast with only {approximately}12% conversion of {gamma}-ray-induced single-strand breaks, indicating that the initial damage caused by {alpha} particles is more severe. These studies provide experimental evidence for increased clustering of damage which may have important implications for the induction of cancer by low-level {alpha}-particle sources such as domestic radon. 37 refs., 5 figs., 1 tab.

Hodgkins, P.S.; O`Neill, P.; Stevens, D.; Fairman, M.P. [Medical Research Council, Oxfordshire (United Kingdom)

1996-12-01

182

Efficiency estimation for detecting U. cap alpha. particles in solid-state nuclear track detectors  

SciTech Connect

The detection efficiencies of solid-state nuclear track detectors, made with cellulose nitrate materials (LR-115 II) or alkyl diglycol carbonate (CR-39) were investigated. Detection efficiency for a surface ..cap alpha.. source was experimentally obtained by changing the dimensions between the detector and the source, while ..cap alpha..-particle incident efficiency was calculated. The ratio of the detection efficiency to the incident efficiency was then determined. It was confirmed that the ratio for LR-115 II was dependent on energy, but for CR-39 the ratio showed almost no dependency. Considering the relationship between solid absorber thickness and detection efficiency of the surface ..cap alpha.. source, detection efficiencies of U in various metals were estimated. The efficiency for U contained in Al and Fe was proposed as 16% for LR-115 II and 22% for CR-39. Using these efficiencies, amounts of U in some Al and Fe ingots were determined. These agreed with concentrations obtained by neutron-activation analysis with deviations of less than 15%.

Uda, T.; Iba, H.

1985-09-01

183

Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters  

SciTech Connect

Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.

Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N. [National Institute of Standards and Technology, 325 Broadway MS 817.03, Boulder, Colorado (United States); Plionis, Alexander A.; Rabin, Michael W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2010-02-15

184

Calibration of the Mars Science Laboratory Alpha Particle X-Ray Spectrometer  

NASA Astrophysics Data System (ADS)

We have used a suite of over 60 geochemical reference standards for the calibration of the Mars Science Laboratory (MSL) Alpha Particle X-ray Spectrometer (APXS). For the elements P, S, Cl and Br we have supplemented this suite by adding various amounts of relevant chemical compounds to a powdered basalt standard. Special attention has been paid to include phyllosilicates, sulphates and a broad selection of igneous basalts as these are predicted key deposits at the MSL landing site, Gale Crater. The calibration is performed from first principles using x-ray excitation cross sections for the alpha particle and x-ray radiation source and an assumed homogeneous sample matrix. Remaining deviations indicate significant influences of mineral phases especially for light elements in basalts, ultra-mafic rocks and trachytes. Supporting x-ray diffraction work has helped to derive empirical, iterative corrections for distinct rock types, based on the first APXS analysis, assuming a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as x-ray diffraction data from ChemMin, are included in the overall analysis process.

Perrett, G. M.; Campbell, J. L.; Gellert, R.; King, P. L.; Maxwell, J. A.; Andrushenko, S. M.

2011-12-01

185

Observation of lunar radon emanation with the Apollo 15 alpha particle spectrometer.  

NASA Technical Reports Server (NTRS)

The alpha particle spectrometer, a component of the orbital Sim Bay group of 'geochemistry' experiments on Apollo 15, was designed to detect alpha particles emitted during the decay of isotopes of radon gas and her daughter products. The purpose was to measure the gross activity of radon on the lunar surface and to find possible regions of increased local activity. Results are presented from a partial analysis of Apollo 15 data. For the moon as a whole, Rn220 was not observed and the upper limit on its decay rate above the lunar surface is 0.00038 disintegrations/sq cm-sec. Rn222 was marginally observed. Possible variations of radon activity on the lunar surface are being investigated. Po210 (a daughter product of Rn222) has been detected in a broad region from west of Mare Crisium to the Van de Graaff-Orlov region. The observed count rate is (4.6 plus or minus 1.4) x 0.001 disintegrations/sq cm-sec. The observed level of Po210 activity is in excess of the amount that would be in equilibrium with Rn222 by about an order of magnitude. This implies that larger levels of radon emanation have occurred on the moon within a time scale of 10 to 100 years.

Gorenstein, P.; Bjorkholm, P.

1972-01-01

186

Results of the Alpha-Particle-X-Ray Spectrometer on Board of the Mars Exploration Rovers  

NASA Technical Reports Server (NTRS)

The Mars Exploration Rovers Spirit and Opportunity landed at Gusev crater and Meridiani Planum. The Alpha Particle X-ray Spectrometer (APXS) is part of the instrument suite on both rovers. It is equipped with six 244Cm sources which provide x-ray excitation with alpha-particles (PIXE) and x-ray radiation (XRF). This combination allows x-ray spectroscopy of elements from Na to Br in the energy range of 0.9 to 16 keV. X-ray detectors with a high energy resolution of 160 eV at Fe K allow us to separate even closely spaced energy peaks, such as Na, Mg, Al and Si. The APXS is attached to the rover s arm and provides in-situ measurements of the chemical composition of soils, surfaces of rocks and outcrops and their abraded surfaces. This abstract gives an overview of APXS results obtained during the first year of operation on both landing sites.

Geller, R.; Zipfel, J.; Brueckner, J.; Dreibus, G.; Lugmair, G.; Rieder, R.; Waenke, H.; Klingelhoefer, G.; Clark, B. C.; Ming, D. W.

2005-01-01

187

Protons and alpha particles in the expanding solar wind: Hybrid simulations  

NASA Astrophysics Data System (ADS)

We present results of a two?dimensional hybrid expanding box simulation of a plasma system with three ion populations, beam and core protons, and alpha particles (and fluid electrons), drifting with respect to each other. The expansion with a strictly radial magnetic field leads to a decrease of the ion perpendicular to parallel temperature ratios as well as to an increase of the ratio between the ion relative velocities and the local Alfvén velocity creating a free energy for many different instabilities. The system is most of the time marginally stable with respect to kinetic instabilities mainly due to the ion relative velocities; these instabilities determine the system evolution counteracting some effects of the expansion. Nonlinear evolution of these instabilities leads to large modifications of the ion velocity distribution functions. The beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one. On the macroscopic level, the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to perpendicular heating and parallel cooling rates which are comparable to the heating rates estimated from the Helios observations.

Hellinger, Petr; Trávní?ek, Pavel M.

2013-09-01

188

DYNAMICS OF A SPHERICAL ACCRETION SHOCK WITH NEUTRINO HEATING AND ALPHA-PARTICLE RECOMBINATION  

SciTech Connect

We investigate the effects of neutrino heating and alpha-particle recombination on the hydrodynamics of core-collapse supernovae. Our focus is on the nonlinear dynamics of the shock wave that forms in the collapse and the assembly of positive energy material below it. To this end, we perform time-dependent hydrodynamic simulations with FLASH2.5 in spherical and axial symmetry. These generalize our previous calculations by allowing for bulk neutrino heating and for nuclear statistical equilibrium between n, p, and alpha. The heating rate is freely tunable, as is the starting radius of the shock relative to the recombination radius of alpha-particles. An explosion in spherical symmetry involves the excitation of an overstable mode, which may be viewed as the l = 0 version of the 'Standing Accretion Shock Instability'. In two-dimensional simulations, nonspherical deformations of the shock are driven by plumes of material with positive Bernoulli parameter, which are concentrated well outside the zone of strong neutrino heating. The nonspherical modes of the shock reach a large amplitude only when the heating rate is also high enough to excite convection below the shock. The critical heating rate that causes an explosion depends sensitively on the initial position of the shock relative to the recombination radius. Weaker heating is required to drive an explosion in two dimensions than in one, but the difference also depends on the size of the shock. Forcing the infalling heavy nuclei to break up into n and p below the shock only causes a slight increase in the critical heating rate, except when the shock starts out at a large radius. This shows that heating by neutrinos (or some other mechanism) must play a significant role in pushing the shock far enough out that recombination heating takes over.

Fernandez, Rodrigo [Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario M5S 3H4 (Canada); Thompson, Christopher [CITA, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada)

2009-10-01

189

Scattering of 42 MeV alpha particles from copper-65  

NASA Technical Reports Server (NTRS)

Beams of 42-MeV alpha particles were elastically and inelastically scattered from Cu-65 in an attempt to excite states which may be described in terms of an excited core model. Angular distributions were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have results from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For Cu-65 the coupling of the particle to the core is no larger weak as in the simpler model, and configuration mixing results.

Stewart, W. M.; Seth, K. K.

1973-01-01

190

Feasibility study on the use of polyallyldiglycol-carbonate cell dishes in TUNEL assay for alpha particle radiobiological experiments  

NASA Astrophysics Data System (ADS)

In the present work, we have studied the feasibility of a method based on polyallyldiglycol-carbonate (PADC) films to investigate the effects of alpha particles on HeLa cervix cancer cells. Thin PADC films with thickness of about 20 ?m were prepared from commercially available CR-39 films by chemical etching to fabricate custom-made petri dishes for cell culture, which could accurately record alpha particle hit positions. A special method involving "base tracks" for aligning the images of cell nuclei and alpha particle hits has been proposed, so that alpha particle transversals of cell nuclei can be visually counted. Radiobiological experiments were carried out to induce DNA damages, with the TdT-mediated d UTP Nick- End Labeling (TUNEL) fluorescence method employed to detect DNA strand breaks. The staining results were investigated by flow cytometer. The preliminary results showed that more strand breaks occurred in cells hit by alpha particles with lower energies. Moreover, large TUNEL positive signals were obtained even with small percentages of cells irradiated and TUNEL signals were also obtained from non-targeted cells. These provided evidence for the bystander effect.

Chan, K. F.; Yum, E. H. W.; Wan, C. K.; Fong, W. F.; Yu, K. N.

2007-08-01

191

TEST PROCEDURE FOR GROSS ALPHA PARTICLE ACTIVITY IN DRINKING WATER: INTERLABORATORY COLLABORATIVE STUDY  

EPA Science Inventory

Gross alpha activity values were calculated with four different alpha emitting radionuclide standard counting efficiencies to see which standard was best for gross alpha activity determinations. Thorium-230, a pure alpha emitter, appeared to be the best standard for gross alpha c...

192

Complementary optical-potential analysis of {alpha}-particle elastic scattering and induced reactions at low energies  

SciTech Connect

A previously derived semi-microscopic analysis based on the Double Folding Model, for {alpha}-particle elastic scattering on A{approx}100 nuclei at energies below 32 MeV, is extended to medium mass A{approx}50-120 nuclei and energies from {approx}13 to 50 MeV. The energy-dependent phenomenological imaginary part for this semi-microscopic optical model potential was obtained including the dispersive correction to the microscopic real potential, and used within a concurrent phenomenological analysis of the same data basis. A regional parameter set for low-energy {alpha}-particles entirely based on elastic scattering data analysis was also obtained for nuclei within the above mentioned mass and energy ranges. Then, an ultimate assessment of ({alpha},{gamma}), ({alpha},n), and ({alpha},p) reaction cross sections considered target nuclei from {sup 45}Sc to {sup 118}Sn and incident energies below {approx}12 MeV. The former diffuseness of the real part of optical potential as well as the surface imaginary potential depth have been found to be responsible for the actual difficulties in the description of these data, and modified in order to obtain an optical potential which describes equally well both the low-energy elastic scattering and induced reaction data for {alpha}-particles.

Avrigeanu, M. ['Horia Hulubei' National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest (Romania)], E-mail: mavrig@ifin.nipne.ro; Obreja, A.C.; Roman, F.L.; Avrigeanu, V. ['Horia Hulubei' National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest (Romania); Oertzen, W. von [Freie Universitaet Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin (Germany); Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin (Germany)

2009-07-15

193

Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits  

NASA Technical Reports Server (NTRS)

A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

Blaes, B. R.; Soli, G. A.; Buehler, M. G.

1991-01-01

194

Design, spectrum measurements and simulations for a 238Pu alpha-particle irradiator for bystander effect and genomic instability experiments.  

PubMed

Design, spectrum measurements and simulations for an alpha-particle irradiator for bystander effect and genomic instability experiments are presented. Measured alpha-particle energy spectra were used to confirm the characteristics of the source of the irradiator specified by the manufacturer of the source. The spectra were measured in vacuum with a high-resolution spectrometer and simulated with an AASI Monte Carlo code. As a next step, we simulated alpha-particle energy spectra at the target plane of the irradiator for three different source-to-target distances. In these simulations, helium was used as the medium between the source and the exit window of the irradiator; its pressure and temperature corresponded to those of the ambient air. Mean energies and full-widths at half-maximum (FWHM) were calculated for the three different helium gas tracks. PMID:16618543

Hakanen, Arvi; Siiskonen, Teemu; Pöllänen, Roy; Kosunen, Antti; Turunen, Asko; Belyakov, Oleg

2006-08-01

195

Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak  

SciTech Connect

Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the ? particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient ?{sub ?} of LH waves due to ? particles. Results show that, the ?{sub ?} increases with the parallel refraction index n{sub ?} while deceases with increasing the frequency of LH waves ?{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of ?{sub ?} when n{sub e}?8×10{sup 19}m{sup ?3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, ? ? 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

Wang, Jianbing, E-mail: zhangxm@ecust.edu.cn; Zhang, Xianmei, E-mail: zhangxm@ecust.edu.cn; Yu, Limin, E-mail: zhangxm@ecust.edu.cn; Zhao, Xiang, E-mail: zhangxm@ecust.edu.cn [Department of Physics, East China University of Science and Technology, P.O. Box 385, Shanghai 200237 (China)

2014-02-12

196

Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil  

Microsoft Academic Search

We present a systematic derivation and discussion of the practical formulae needed to design and interpret direct searches for nuclear recoil events caused by hypothetical weakly interacting dark matter particles. Modifications to the differential energy spectrum arise from the Earth's motion, recoil detection efficiency, instrumental resolution and threshold, multiple target elements, spin-dependent and coherent factors, and nuclear form factor. We

J. D. Lewin; P. F. Smith

1996-01-01

197

Alpha-particles as probes of nuclear shape and structure effects in proton evaporation spectra  

SciTech Connect

The emission barriers and subbarrier anisotropies in the alpha-particle decay with respect to the spin direction on Sn and rare earth compound nuclei are examined in the light of recent calculations incorporating deformation effects in the decay process. For the Sn systems the spectral shapes and anisotropies can be examined without involving deformation. For the rare earth systems deformation which increases with spin is necessary to explain the data. Energy spectra and angular correlations of evaporated protons from the {sup 52}Cr ({sup 34}S, 2p2n){sup 82}Sr reaction were measured in coincidence with discrete transitions. Large shifts in proton spectra were observed when high spin states in different rotational bands are populated. These effects cannot be explained by statistical model calculations that do not include explicitly nuclear structure effects in the deexcitation process. They are interpreted as due to near-yrast stretched proton emission, which preferentially populates the yrast band by subbarrier protons.

Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M. (Washington Univ., St. Louis, MO (USA)); Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A. (Oak Ridge National Lab., TN (USA)); Griffin, H.C. (Michigan Univ., Ann Arbor, MI (USA))

1990-01-01

198

Solar flare protons and alpha particles during the last three solar cycles  

NASA Technical Reports Server (NTRS)

This paper presents solar-flare-associated proton and alpha-particle fluxes determined for major events from October 1972 through March 1987 (the period that represents the last part of solar cycle 20 and the whole of solar cycle 21), using data obtained by detectors on board the IMP-7 and IMP-8 satellites, along with earlier obtained data for cycle 20. It was found that the average omnidirectional flux of protons with kinetic energy above 10 MeV for cycle 21 (64/sq cm per sec) is lower than the corresponding number for cycle 20 (92/sq cm per sec) and for the cycle 19 (378/sq cm per sec). No definitive correlation was found to exist between cycle-averaged solar flare proton fluxes and peak sunspot numbers.

Goswami, J. N.; Mcguire, R. E.; Reedy, R. C.; Lal, D.; Jha, R.

1988-01-01

199

Gas production due to alpha particle degradation of polyethylene and polyvinylchloride  

SciTech Connect

Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

1998-07-01

200

Study of L-subshell ionization cross sections of Ho, Er, and Tm by {alpha} particles  

SciTech Connect

The L-subshell ionization cross sections induced by 1 to 6 MeV {alpha} particles were measured for three elements of the rare earth group: holmium, erbium, and thulium. Simultaneous PIXE and RBS measurements were utilized. The measured cross sections were compared with the theoretical calculations of the ECPSSR theory. The comparison shows good agreement at high bombardment energies especially for L{sub 2} subshell. When the effect of intra-shell transitions (IS) induced by the Coulomb field of the projectile was included in the ECPSSR formalism, the systematic discrepancies between the theoretical and the experimental values at low energies were reduced. The L{sub 2} and L{sub 3} subshells discrepancies have been resolved only after the united atom effect (UA) has been incorporated into the theory. However; as the discrepancies of the L{sub 1} subshell remain to be addressed only possible reasons are discussed.

Dhehadeh, B.A.; Hallak, A.W.; Garwan, M.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1994-12-31

201

[Near infrared distance sensing method for Chang'e-3 alpha particle X-ray spectrometer].  

PubMed

Alpha particle X-ray spectrometer (APXS) is one of the payloads of Chang'E-3 lunar rover, the scientific objective of which is in-situ observation and off-line analysis of lunar regolith and rock. Distance measurement is one of the important functions for APXS to perform effective detection on the moon. The present paper will first give a brief introduction to APXS, and then analyze the specific requirements and constraints to realize distance measurement, at last present a new near infrared distance sensing algorithm by using the inflection point of response curve. The theoretical analysis and the experiment results verify the feasibility of this algorithm. Although the theoretical analysis shows that this method is not sensitive to the operating temperature and reflectance of the lunar surface, the solar infrared radiant intensity may make photosensor saturation. The solutions are reducing the gain of device and avoiding direct exposure to sun light. PMID:23905352

Liang, Xiao-Hua; Wu, Ming-Ye; Wang, Huan-Yu; Peng, Wen-Xi; Zhang, Cheng-Mo; Cui, Xing-Zhu; Wang, Jin-Zhou; Zhang, Jia-Yu; Yang, Jia-Wei; Fan, Rui-Rui; Gao, Min; Liu, Ya-Qing; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya

2013-05-01

202

An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)  

SciTech Connect

An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O. [Graduate school of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shinto, K. [IFMIF R and D Center, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Wada, M. [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

2012-02-15

203

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles  

SciTech Connect

We report progress made during the period 15 September 1991--14 September 1992 on the project Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles''. In the past year we have developed reliable, narrow energy spread, high-current sources of He[sup ++] based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

Gay, T.J.; Park, J.T.

1992-01-01

204

Fission time scale from prescission neutron, proton, and {alpha} particle multiplicities in {sup 28}Si+{sup 175}Lu  

SciTech Connect

Prescission neutron, proton, and {alpha}-particle multiplicities for the reaction {sup 28}Si+{sup 175}Lu at 159 MeV were measured simultaneously. The multiplicity data were analyzed using deformation dependent particle transmission coefficients, binding energies, and level densities to extract fission time scales and the mean deformation of the saddle-to-scission emitter. The neutron and charged particle data could be explained consistently, a better fit being obtained by considering the emission of neutrons to be favored toward larger deformation as compared to charged particles. The total fission time scale is deduced as 36-41x10{sup -21}s.

Ramachandran, K.; Chatterjee, A.; Navin, A.; Mahata, K.; Shrivastava, A.; Tripathi, V.; Kailas, S.; Saxena, A.; Thomas, R.G.; Kumar, Suresh; Sahu, P.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Nanal, V.; Pillay, R.G. [Department of Nuclear and Atomic Physics, T.I.F.R, Colaba, Mumbai 400 005 (India)

2006-06-15

205

Feasibility study on the use of polyallyldiglycol-carbonate cell dishes in TUNEL assay for alpha particle radiobiological experiments  

E-print Network

rights reserved. Keywords: PADC; CR-39; Solid-state nuclear track detector; SSNTD; Radiobiology; Alpha particle 1. Introduction Ionizing radiation leads to production of reactive oxygen species in human cells. The effects of ionizing radiation can occur in irradiated (or targeted) cells or in non-irradiated (or non

Yu, K.N.

206

Lower hybrid instability driven by mono-energy {alpha}-particles with finite pitch angle spread in a plasma  

SciTech Connect

A kinetic formalism of lower hybrid wave instability, driven by mono-energy {alpha}-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of {alpha}-particles. The {alpha}-particles produced in D-T fusion reactions have huge Larmor radii ({approx}10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of {approx}10{sup 19} m{sup -3}, magnetic field {approx}4 Tesla and {alpha}-particle concentration {approx}0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K. [Department of Physics, IIT Delhi, New Delhi-110016 (India)

2013-02-15

207

Phase and structural transformations in metallic iron under the action of heavy ions and recoil nuclei.  

PubMed

By the use of various modes of Mössbauer spectroscopy after effects of irradiation of metal iron with (12)C(4+) and (14)N(5+) ions of medium energies, and alpha-particles and the (208)Tl, (208,212)Pb, and (216)Po recoil from a (228)Th-source have been studied. The experimental data obtained in the study enabled various types of external and internal radiation to be compared in regard to the damage they cause, as well as to their effect on the structure-, phase composition- and corrosion resistance properties of metallic iron. Irradiation with (12)C(4+) and (14)N(5+) ions is accompanied by both structural disordering of the ?-Fe lattice, and the appearance of ?-phase in the bulk metal. This is indicated by a single line which is 2 to 3-fold broadened (as compared to the lines of the magnetic sextet). This is a result of a strong local heating of the lattice in the thermal spike area with a subsequent instant cooling-down and recrystallization of this "molted" area. Irradiation of iron foils with (12)C(4+)- and (14)N(5+) ions and with recoil nuclei does provoke corrosion processes (the formation of ?-FeOOH) and is accompanied by an intensive oxidation of the metal. PMID:24378918

Alekseev, I; Novikov, D

2014-02-01

208

Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination  

SciTech Connect

We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

2007-10-26

209

Median recoil direction as a WIMP directional detection signal  

SciTech Connect

Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

Green, Anne M. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Morgan, Ben [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2010-03-15

210

Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field  

E-print Network

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $rwind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

2014-01-01

211

Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry  

SciTech Connect

Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

2009-01-01

212

The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors  

NASA Astrophysics Data System (ADS)

Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 °C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress.

Ruddy, Frank H.; Seidel, John G.

2007-10-01

213

Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha  

SciTech Connect

The cellular protein hypoxia-inducible factor 1 alpha (HIF-1{alpha}) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1{alpha} was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1{alpha}-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1{alpha} to occur. HIF-1{alpha} controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.

McFarlane, Steven; Nicholl, Mary Jane; Sutherland, Jane S.; Preston, Chris M., E-mail: Christopher.preston@glasgow.ac.u

2011-05-25

214

Force optimized recoil control system  

NASA Astrophysics Data System (ADS)

Reduction of the recoil force of high rate of fire automatic guns was proven effective. This system will allow consideration of more powerful guns for use in both helicopter and armored personnel carrier applications. By substituting the large shock loads of firing guns with a nearly constant force, both vibration and fatigue problems that prevent mounting of powerful automatic guns is eliminated.

Townsend, P. E.; Radkiewicz, R. J.; Gartner, R. F.

1982-05-01

215

Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer  

NASA Astrophysics Data System (ADS)

The alpha-particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) mission was calibrated for routine analysis of: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Br, Rb, Sr, and Y. The following elements were also calibrated, but may be too low to be measured (10s-100s ppm) for their usual abundance on Mars: V, Cu, Ga, As, Se and W. An extensive suite of geological reference materials, supplemented by pure chemical elements and compounds was used. Special attention was paid to include phyllosilicates, sulfates and a broad selection of basalts as these are predicted minerals and rocks at the Gale Crater landing site. The calibration approach is from first principles, using fundamental physics parameters and an assumed homogeneous sample matrix to calculate expected elemental signals for a given instrument setup and sample composition. Resulting concentrations for most elements accord with expected values. Deviations in elements of lower atomic number (Na, Mg, Al) indicate significant influences of mineral phases, especially in basalts, ultramafic rocks and trachytes. The systematics of these deviations help us to derive empirical, iterative corrections for different rock groups, based on a preliminary APXS analysis which assumes a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as the X-ray diffraction data from CheMin, are included in the overall analysis process.

Campbell, John L.; Perrett, Glynis M.; Gellert, Ralf; Andrushenko, Stefan M.; Boyd, Nicholas I.; Maxwell, John A.; King, Penelope L.; Schofield, Céleste D. M.

2012-09-01

216

The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report  

NASA Technical Reports Server (NTRS)

The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

2006-01-01

217

Linewidth measurements of the JET energetic ion and alpha particle collective Thomson scattering diagnostic gyrotron  

NASA Astrophysics Data System (ADS)

Spectral purity of the transmitter source of a collective Thomson scattering (CTS) system is vitally important to insure that measured signals only originate from the plasma and not from stray source light. A number of high power (up to 500 kW), 140 GHz gyrotron tubes used with the Joint European Torus (JET) CTS system have been found to have one or more spurious modes and many harmonics in the output spectrum. The CTS diagnostic receiver system was used to make measurements of the gyrotron spectrum. It was comprised of a homodyne part from MIT for frequency sidebands <500 MHz, and a heterodyne part constructed at JET for frequency sidebands from 0.1 to 6 GHz. One tube at high power produced a strong 25 MHz mode and its harmonics to large frequency offsets, unsuitable for CTS measurements. Only at reduced power of approximately 100 kW was this tube's spectrum sufficiently clean for CTS. Another tube at JET operated at 500 kW output power with only low level parasitic modes, indicating that higher power gyrotrons may be available for future alpha particle measurements. The main receiver was tested with a low power test setup which simulated the gyrotron stray source light, the thermal ion feature and plasma electron cyclotron emission.

Machuzak, John S.; Woskov, Paul P.; Fessey, John A.; Hoekzema, J. A.; Egedal, Jan; Bindslev, Henrik; Roberts, Peter; Stevens, Andrew; Davies, Paul; Gatcombe, Christopher; Hughes, Thomas P.

1999-01-01

218

Particle Leaking, Cross-Section Ratio 10B(n,{alpha})/238U(n,fission), and Excitation Function of the Reaction 10B(n,{alpha})7Li at MeV Energies  

SciTech Connect

The 10B(n,{alpha})7Li reaction was studied in the energy range between 1.5 MeV and 5.6 MeV at the 7-MV Van de Graaff accelerator of IRMM by using a gridded ionisation chamber, signal digitisation, and an intrinsic 238U neutron monitor. The aim was to obtain accurate data for the IAEA Coordinated Research Project (CRP) on the improvement of standard cross sections for light elements. The effect of particle leaking was discovered and its implications investigated. The determination of the cross section {sigma}({alpha}0+{alpha}1) strongly benefits from it but measurements of angular distributions, individual cross sections {sigma}({alpha}0) and {sigma}({alpha}1), and the branching ratio {alpha}0/{alpha}1 are negatively affected. The correct number of reaction events was obtained by identification of unknown particle signatures in the energy spectra as 10B(n,{alpha})7Li events in the form of quasi 7Li+{alpha} particles created by particle leaking. The cross-section ratio 10B(n,{alpha})7Li/238U(n,fission) was measured and the excitation function of 10B(n,{alpha})7Li determined by simultaneously detecting the charged particles from the boron disintegration in the forward hemisphere and the 238U fission fragments in the backward hemisphere. The IRMM cross sections are compared to experimental data of other groups and to predictions of the ENDF/B-VI.8, JENDL-3.3, and JEF-2.2 evaluations.

Giorginis, Georgios [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Khryachkov, Vitali [Institute for Physics and Power Engineering (IPPE), Bondarenko sq. 1, 249020 Obninsk, Kaluga Region (Russian Federation)

2005-05-24

219

Synchrotron-radiation experiments with recoil ions  

SciTech Connect

Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab.

Levin, J.C.

1989-01-01

220

A multi-port low-fluence alpha-particle irradiator: fabrication, testing and benchmark radiobiological studies.  

PubMed

A new multi-port irradiator, designed to facilitate the study of the effects of low fluences of alpha particles on monolayer cultures, has been developed. The irradiator consists of four individual planar (241)Am alpha-particle sources that are housed inside a helium-filled Lucite chamber. Three of the radioactive sources consist of 20 MBq of (241)Am dioxide foil. The fourth source, used to produce higher dose rates, has an activity of 500 MBq. The four sources are mounted on rotating turntables parallel to their respective 1.5-microm-thick Mylar exit windows. A stainless steel honeycomb collimator is placed between the four sources and their exit windows by a cantilever attachment to the platform of an orbital shaker that moves its table in an orbit of 2 cm. Each exit window is equipped with a beam delimiter to optimize the uniformity of the beam and with a high-precision electronic shutter. Opening and closing of the shutters is controlled with a high-precision timer. Custom-designed stainless steel Mylar-bottomed culture dishes are placed on an adapter on the shutter. The alpha particles that strike the cells have a mean energy of 2.9 MeV. The corresponding LET distribution of the particles has a mean value of 132 keV/microm. Clonogenic cell survival experiments with AG1522 human fibroblasts indicate that the RBE of the alpha particles compared to (137)Cs gamma rays is about 7.6 for this biological end point. PMID:15161346

Neti, Prasad V S V; de Toledo, Sonia M; Perumal, Venkatachalam; Azzam, Edouard I; Howell, Roger W

2004-06-01

221

MCNPX alpha particle dose estimate to the skin tissue from a low-enriched uranium fuel fragment.  

PubMed

Three alpha volume sources (low-enriched uranium-U(3)Si) were analysed using Monte Carlo modelling in order to calculate the dose delivered to the dermis from a small embedded fuel fragment (sliver). Three shapes were analysed using MCNPX 2.6.0 code: sphere, cylinder and parallelepiped. Essentially, two kinds of runs were performed: count rate run and dosimetry run. The two results were combined to estimate dose coefficients that can be used for alpha dose assessments in the field. The two results were obtained for the 1 and 0 cm counting geometries. These results are very stable and show that the actual dose delivered to the skin per unit count rate for the recovered particle is independent of the shape of the volume alpha source. PMID:22003183

Atanackovic, J

2012-06-01

222

[open quotes]Magic[close quotes] energies for detecting light elements with resonant alpha particle backscattering  

SciTech Connect

Resonant backscattering is widely used to improve the detection limit of the light elements such as B, C, N and O. One disadvantage, however, is that several incident energies are normally needed if the sample contains a number of the light elements. There are [open quotes]magic[close quotes] energies at which several light elements can be detected simultaneously with suitable sensitivities. When these energies are used along with the elastic recoil detection of hydrogen, multiple elements can be detected without changing the beam energy, and the analysis time is greatly reduced. These reactions along with examples will be discussed. [copyright] [ital 1999 American Institute of Physics.

Wetteland, C.J.; Maggiore, C.J.; Tesmer, J.R. (Center for Materials Science, Materials Science and Technology Division, Los Alamos National Laboratory (United States)); He, X.; Lee, D. (Structure/Property Relations, Materials Science and Technology Division, Los Alamos National Laboratory (United States))

1999-06-01

223

First measurement of the ionization yield of nuclear recoils in liquid argon  

SciTech Connect

Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

2014-05-01

224

Tetraethyl ammonium hydroxide (TEAH) as etchant of CR-39 for the determination of fluence of alpha particles  

NASA Astrophysics Data System (ADS)

Choice of chemical etchant and temperature are pivotal to the successful employment of organic/polymeric solid state nuclear track detectors for determining the fluence of charged particles like protons, alpha and other heavy ions. Poly(diethyleneglycol-bis-(allylcarbonate)) (CR-39) is one of the most sensitive detectors for monitoring the alpha particles but suffers from the drawback of long etching period. An attempt has been made in the present work to investigate a mixture, 20% (v/v) tetraethylammonium hydroxide (40%) - 80% NaOH (6 M) (TEAH-NaOH) at varying temperature as an alternate etchant. It was found that bulk/track etch rate increased and as a consequence etching time decreased significantly (about 10 times) when the mixture was used at 80 °C. Mechanistically, improved efficiency of TEAH-NaOH was attributed to its larger organophilicity and lower etching activation energy as compared to NaOH.

Joshirao, Pranav M.; Vyas, Chirag K.; Eappen, K. P.; Shin, Jae Won; Hong, Seung-Woo; Manchanda, Vijay K.

2014-04-01

225

Alpha-particle and proton probes of nuclear shapes in the rare earth and mass 80 regions  

Microsoft Academic Search

Low emission barriers and large subbarrier anisotropies in the alpha-particle decay with respect to the spin direction, of Sn and rare earth compound nuclei, are examined in the light of recent calculations incorporating deformation. To explore the possibility of a correlation between the proton emission barriers and nuclear deformation, we studied proton spectra from the ⁵²Cr(³⁴S,2p2n)⁸²Sr reaction. The proton spectra

D. G. Sarantites; N. G. Nicolis; V. Abenante; Z. Majka; T. M. Semkow; C. Baktash; J. R. Beene; G. Garcia-Bermudez; M. L. Halbert; D. C. Hensley; N. R. Johnson; I. Y. Lee; F. K. McGowan; M. A. Riley; A. Virtanen; H. C. Griffin

1989-01-01

226

Production of the Alpha-Particle Emitting Radionuclide Astatine-211 at the Texas A&M Cyclotron Institute  

E-print Network

) Normalized neutron energy spectrum for Bi-209(?,xn) reaction from TALYS ........... 42 Figure 19 Target geometry utilized for MCNPX shielding simulations ................... 44 Figure 20 Gamma-ray spectrum based on first experiment measurement at 35... yields for the second experiment using an alpha-particle beam (25.3 MeV, 96.13 nA) measured at a distance of 20 cm from the detector ....................................................... 50 Table 20 MCNPX contact dose rate projections...

Bhakta, Viharkumar Satish

2011-10-21

227

Micro-collimator fabricated by alpha-particle irradiation of polyallyldiglycol carbonate polymer film and subsequent chemical etching  

Microsoft Academic Search

In the present paper, we propose a method to fabricate a ``micro-collimator'' with a thickness of 15 mum. A commercially available PADC film with a thickness of 100 mum was first chemically etched with NaOH\\/ethanol solution to obtain a thin PADC film. This thin PADC film was then irradiated by 5 MeV alpha particles through a ``macro-collimator'' with a thickness

V. W. Y. Choi; E. H. W. Yum; K. N. Yu

2010-01-01

228

Interference, recoil, and uncontrollable interaction  

NASA Astrophysics Data System (ADS)

When the initial state in a collision involves indeterminate momenta, the conservation law for momentum no longer applies to the individual event with a sharpness beyond the indeterminacy. As a consequence, there are collisions that are recoilless in the sense that the state of one of the quanta is unchanged by the collision while the other quantum emerges in a superposition of momenta. Recoilless collisions that avoid entanglement are basic for experiments studying coherence effects for individual quanta involving interactions of the quantum with reflectors or diaphragms. The idea that in interference experiments there is an inevitable recoil that can be made unobservable by firmly bolting the reflector or diaphragm to a solid support is false since in interference with individual quanta there is no recoil to control. The highly quantal character of the reflector or diaphragm in the interference experiment apparently went unnoticed in the conception of complementarity.

Ulfbeck, Ole

2014-07-01

229

Gravitational Recoil and Astrophysical Impact  

NASA Astrophysics Data System (ADS)

Asymmetric emission of gravitational waves from astrophysical sources leads to a net flux of linear momentum from the source and, by momentum conservation, imparts a gravitational recoil on the emitting source. Numerical relativity simulations have revealed that this effect can lead to astonishingly large kick velocities, so-called superkicks, of several thousand km/s in the inspiral and merger of black-hole binaries. We here discuss the calculation of the recoil in black-hole spacetimes and the astrophysical repercussions of such large kicks, in particular related to the possible displacement or ejection of supermassive black holes from their host galaxies. We also discuss possible mechanisms that would make superkicks less likely to occur in astrophysical binaries and thus explain why most, if not all, galaxies observed in this context appear to harbor a black hole at their center.

Sperhake, Ulrich

230

[ital L]-shell ionization studies of Pb and Bi with [alpha] particles  

SciTech Connect

Ionization cross sections for the [ital L] subshells of Pb and Bi by [alpha]-particle bombardment (2.2--8.2 MeV) have been determined from the experimental data and the currently available radiative transition probabilities, fluorescence yields, and Coster-Kronig factors. The measured ionization cross sections and their ratios are compared with the results of ECPSSR calculations [ECPSSR denotes perturbed-stationary-state (PSS) theory with energy-loss (E), Coulomb deflection (C), and relativistic (R) corrections]. The measured individual cross sections for [ital L][sub 1] and [ital L][sub 2] subshells deviated in opposite directions from the theory, whereas their sum shows good agreement. The [ital L][sub 3] and total ionization cross sections obtained from the data also show good agreement with the ECPSSR theory. The ionization cross-section ratios [sigma][sub [ital L]1]/[sigma][sub [ital L]2] and [sigma][sub [ital L]3]/[sigma][sub [ital L]2] show large deviations from the ECPSSR theory. The experimental x-ray production cross-section ratios are found to be in better agreement with the theoretical results obtained from using ECPSSR ionization cross sections and the decay yield data of Xu and Xu [J. Phys. B 25, 695 (1992)] rather than those obtained from using the decay yield data of Krause [J. Phys. Chem. Ref. Data 8, 307 (1979)]. The x-ray production cross sections, however, are in better agreement with the theoretical results obtained from using the decay yield data of Krause. The measured centroid energy of the [ital L][gamma] lines of Pb shows large deviations at high projectile energy, whereas for Bi large deviations are found at the low-energy region.

Dhal, B.B.; Nandi, T.; Padhi, H.C. (Institute of Physics, Bhubaneswar 751005 (India))

1994-01-01

231

Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.  

PubMed

A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW. PMID:21806176

Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

2011-07-01

232

Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles  

NASA Astrophysics Data System (ADS)

A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

Freeman, C. G.; Fiksel, G.; Stoeckl, C.; Sinenian, N.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J.; Mileham, C.; Sangster, T. C.; Frenje, J. A.

2011-07-01

233

Designing experimental setup and procedures for studying alpha-particle-induced adaptive response in zebrafish embryos in vivo  

NASA Astrophysics Data System (ADS)

The present work was devoted to designing the experimental setup and the associated procedures for alpha-particle-induced adaptive response in zebrafish embryos in vivo. Thin PADC films with a thickness of 16 ?m were fabricated and employed as support substrates for holding dechorionated zebrafish embryos for alpha-particle irradiation from the bottom through the films. Embryos were collected within 15 min when the light photoperiod began, which were then incubated and dechorionated at 4 h post fertilization (hpf). They were then irradiated at 5 hpf by alpha particles using a planar 241Am source with an activity of 0.1151 ?Ci for 24 s (priming dose), and subsequently at 10 hpf using the same source for 240 s (challenging dose). The levels of apoptosis in irradiated zebrafish embryos at 24 hpf were quantified through staining with the vital dye acridine orange, followed by counting the stained cells under a florescent microscope. The results revealed the presence of the adaptive response in zebrafish embryos in vivo, and demonstrated the feasibility of the adopted experimental setup and procedures.

Choi, V. W. Y.; Lam, R. K. K.; Chong, E. Y. W.; Cheng, S. H.; Yu, K. N.

2010-03-01

234

Improvements of the DRAGON recoil separator at ISAC  

NASA Astrophysics Data System (ADS)

The DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) is used to measure radiative proton and alpha capture reaction rates involving both stable and radioactive, heavy-ion reactants at the TRIUMF-ISAC high intensity radioactive beam facility. Completed in 2001 it has been used for several challenging studies for nuclear astrophysics, e.g. 12C(?, ?) 16O, 21Na(p, ?) 22Mg, 26gAl(p, ?) 27Si and 40Ca(?, ?) 44Ti. Since initial operation, a number of improvements have been incorporated which are described here. These include a beam centering monitor based on a CCD camera, a mechanical iris to skim of beam halo, a solid state stripper acting as a charge state booster for beams with A ? 30, beta and gamma detectors to monitor beam intensity and to determine beam contamination in experiments with radioactive beam and the ionization chamber for both recoil identification and isobar separation.

Vockenhuber, C.; Buchmann, L.; Caggiano, J.; Chen, A. A.; D'Auria, J. M.; Davis, C. A.; Greife, U.; Hussein, A.; Hutcheon, D. A.; Ottewell, D.; Ouellet, C. O.; Parikh, A.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Zylberberg, J.

2008-10-01

235

RADIATION DECOMPOSITION OF SODIUM CHLORATE COMPARISON OF YIELDS AND THE POST-IRRADIATION ANNEALING BEHAVIOR FOR IRRADIATION BY $gamma$-RAYS AND $alpha$PARTICLES  

Microsoft Academic Search

The production of chloride as a function of gamma and alpha radiation ; doses was compared. The yield for decomposition by alpha particles at 25 deg C ; was found to be about the same as the yield for samples irradiated with gamma ; rays at 25 deg C and then annealed at approximates 200 deg C, or for samples

Hochanadel

1963-01-01

236

Improve the catalytic activity of {alpha}-Fe{sub 2}O{sub 3} particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface  

SciTech Connect

Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value of the designed synthetic system, respectively. The sphere-like {alpha}-Fe{sub 2}O{sub 3} particles with diameter about 25 nm on average were encapsulated into carbon shells to fabricate a novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C) through the coating experiments. The catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermal gravimetric analyzer (TG) and differential thermal analysis (DTA). The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which show that {alpha}-Fe{sub 2}O{sub 3}-C core-shell composites have higher catalytic activity than that of {alpha}-Fe{sub 2}O{sub 3}. -- Graphical abstract: The catalytic performance of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C on the thermal decomposition of ammonium perchlorate (AP). Display Omitted Research highlights: {yields} Sphere- and pod-like {alpha}-Fe{sub 2}O{sub 3} particles have been selectively synthesized using NH{sub 3}.H{sub 2}O and NaOH solution to adjust the pH value. {yields} A novel core-shell composite ({alpha}-Fe{sub 2}O{sub 3}-C core-shell structured composite) has been successfully synthesized using sphere-like {alpha}-Fe{sub 2}O{sub 3} particles as the cores and glucose as the source of carbon. {yields} The thermal decomposition temperatures of AP in the presence of pod-like {alpha}-Fe{sub 2}O{sub 3}, sphere-like {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Fe{sub 2}O{sub 3}-C are reduced by 72, 81 and 109 {sup o}C, respectively, which shows that these materials have high catalytic activity.

Zhang Yifu [Engineering Research Center of Organosilicon Compound and Material, Ministry of Education of China, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu Xinghai, E-mail: liuxh@whu.edu.c [School of Printing and Packaging, Wuhan University, Wuhan 430079 (China); Nie Jiaorong [Jianghe Chemical Factory of CSSG, Yuan'an 444200 (China); Yu Lei; Zhong Yalan [Engineering Research Center of Organosilicon Compound and Material, Ministry of Education of China, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Huang Chi, E-mail: chihuang@whu.edu.c [Engineering Research Center of Organosilicon Compound and Material, Ministry of Education of China, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

2011-02-15

237

Studying {sup 12}B via {sup 8}Li-{alpha} resonant scattering  

SciTech Connect

The inverse kinematics thick target scattering method (TTIK) has been used to study the {sup 8}Li elastic scattering on {sup 4}He in order to investigate {sup 8}Li-{alpha} cluster configurations in excited states of {sup 12}B. A {sup 8}Li beam, provided by the radioactive beam facility EXCYT, at E{sub beam} = 30.6 MeV, passing through helium thick target, continuously decreases its energy inducing elastic scattering starting from the initial energy down to zero. Four {Delta}E-E double stage silicon detector telescopes were used to detect the recoil {alpha}-particles coming from the scattering. Event by event time measurement between beam particles passing through a MCP detector and {alpha}-particles impinging on {Delta}E stage allows elastic from inelastic events discrimination, thus representing an improvement of the TTIK method. In this paper the used experimental technique and some preliminary results will be briefly described.

Torresi, D.; Lattuada, M.; Pellegriti, M. G.; Strano, E. [INFN Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); Cosentino, L.; Di Pietro, A.; Figuera, P.; Maiolino, C.; Santonocito, D.; Scalia, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Ducoin, C.; Papa, M. [INFN Sezione di Catania, Catania (Italy); Fisichella, M. [INFN Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica, Universita di Messina, Messina (Italy); Lonnroth, T. [Aabo Academy, Turku (Finland); Musumarra, A. [INFN Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania (Italy); Rovituso, M. [Dipartimento di Fisica ed Astronomia, Universita di Catania, Catania (Italy); Scuderi, V. [INFN Laboratori Nazionali del Sud, Catania (Italy); CSFNSM, Catania (Italy); Zadro, M. [Ruder Boskovic Institute, Zagreb (Croatia)

2011-10-28

238

ALPHA PARTICLE ENERGY RESPONSE OF 1-MM-THICK POLYCARBONATE TRACK DETECTORS BY 50 HZ-HV ELECTROCHEMICAL ETCHING METHOD.  

PubMed

The electrochemical etching (ECE) method enlarges charged particle tracks to enhance its applications in particular in health physics and radiation dosimetry. The ECE method is usually based on using a high frequency-high voltage (HF-HV) generator with 250-µm-thick polycarbonate track detectors (PCTDs). The authors' recent studies on nitrogen and helium ions and alpha tracks in 1-mm-thick large-size PCTDs under a 50 Hz-HV ECE process provided promising results. In this study, alpha track efficiency and mean track diameter versus energy responses and registration energy range as well as alpha and background track shapes under three sets of 50 Hz-4, 5 and 6 kV applied field conditions have been studied and are reported. The efficiency versus alpha energy has a Bragg-type response from ?15 keV to ?4.5 MeV for the field conditions applied with an efficiency value of 40-50 % at the Bragg peak. The results are presented and discussed. PMID:25301970

Sohrabi, M; Ramezani, V

2014-10-01

239

Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy.  

PubMed Central

Anti-Tac, a monoclonal antibody directed to the human interleukin 2 (IL-2) receptor, has been successfully conjugated to the alpha-particle-emitting radionuclide bismuth-212 by use of a bifunctional ligand, the isobutylcarboxycarbonic anhydride of diethylenetriaminepentaacetic acid. The physical properties of 212Bi are appropriate for radioimmunotherapy in that it has a short half-life, deposits its high energy over a short distance, and can be obtained in large quantities from a radium generator. Antibody specific activities of 1-40 microCi/microgram (1 Ci = 37 GBq) were achieved. Specificity of the 212Bi-labeled anti-Tac was demonstrated for the IL-2 receptor-positive adult T-cell leukemia line HUT-102B2 by protein synthesis inhibition and clonogenic assays. Activity levels of 0.5 microCi or the equivalent of 12 rad/ml of alpha radiation targeted by anti-Tac eliminated greater than 98% the proliferative capabilities of HUT-102B2 cells with more modest effects on IL-2 receptor-negative cell lines. Specific cytotoxicity was blocked by excess unlabeled anti-Tac but not by human IgG. In addition, an irrelevant control monoclonal antibody of the same isotype labeled with 212Bi was unable to target alpha radiation to cell lines. Therefore, 212Bi-labeled anti-Tac is a potentially effective and specific immunocytotoxic reagent for the elimination of IL-2 receptor-positive cells. These experiments thus provide the scientific basis for use of alpha-particle-emitting radionuclides in immunotherapy. PMID:3079913

Kozak, R W; Atcher, R W; Gansow, O A; Friedman, A M; Hines, J J; Waldmann, T A

1986-01-01

240

Final Report (1994 to 1996) Diagnostic of the Spatial and Velocity Distribution of Alpha Particles in Tokamak Fusion Reactor using Beat-wave Generated Lower Hybrid Wave  

SciTech Connect

The alpha particles in a fusion reactor play a key role in the sustaining the fusion reaction. It is the heating provided by the alpha particles that help a fusion reactor operating in the ignition regime. It is, therefore, essential to understand the behavior of the alpha population both in real space and velocity space in order to design the optimal confinement device for fusion application. Moreover, the alphas represent a strong source of free energy that may generate plasma instabilities. Theoretical studies has identified the Toroidal Alfven Eigenmode (TAE) as an instability that can be excited by the alpha population in a toroidal device. Since the alpha has an energy of 3.5 MeV, a good confinement device will retain it in the interior of the plasma. Therefore, alpha measurement system need to probe the interior of a high density plasma. Due to the conducting nature of a plasma, wave with frequencies below the plasma frequency can not penetrate into the interior of the plasma where the alphas reside. This project uses a wave that can interact with the perpendicular motion of the alphas to probe its characteristics. However, this wave (the lower hybrid wave) is below the plasma frequency and can not be directly launched from the plasma edge. This project was designed to non-linearly excite the lower hybrid in the interior of a magnetized plasma and measure its interaction with a fast ion population.

Hwang, D.Q.; Horton, R.D.; Evans, R.W.

1999-06-03

241

Effects of Complex Symmetry-Breakings on Alpha Particle Power Loads on First Wall Structures and Equilibrium in ITER  

SciTech Connect

Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Kurki-Suonio, T. [Aalto University, Finland; Spong, Donald A [ORNL; Asunta, O. [Aalto University, Finland; Tani, K. [Japan Atomic Energy Agency (JAEA), Naka; Strumberger, E. [Max Planck Institute for Plasma Physics, Garching, Germany; Briguglio, S. [EURATOM / ENEA, Italy; Koskela, T. [Aalto University, Finland; Vlad, G. [EURATOM / ENEA, Italy; Günter, S. [Max-Planck Institute, Garching, Germany; Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Putvinski, S. [ITER Organization, Cadarache, France; Hamamatsu, K. [Japan Atomic Energy Agency (JAEA), Naka

2011-01-01

242

Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier  

NASA Astrophysics Data System (ADS)

A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile can be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.

Ye, Lei; Guo, Wenfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie

2014-12-01

243

Plasma Phys. Control. Fusion 39 (1997) A275A283. Printed in the UK PII: S0741-3335(97)81172-4 Alpha-particle physics in the tokamak fusion test reactor  

E-print Network

Plasma Phys. Control. Fusion 39 (1997) A275­A283. Printed in the UK PII: S0741-3335(97)81172-4 Alpha-particle physics in the tokamak fusion test reactor DT experiment S J Zwebena , V Arunasalama fusion test reactor. Alpha particles are generally well confined in MHD-quiescent discharges, and alpha

244

FISSION OF {sup 238}U INDUCED BY INELASTIC SCATTERING OF 120 MeV {alpha}-PARTICLES  

SciTech Connect

The fission decay of {sup 238}U has been measured as function of excitation energy in inelastic scattering of 120 MeV {alpha}-particles. Total kinetic energies and masses of fission fragments were measured by the double energy method. It is observed that the total kinetic energy E{sub K} decreases and that the valley in the mass distribution is reduced when the excitation energy of the system is increased. No indication of anomalous total kinetic energy release in the region of the giant quadrupole resonance has been found. A qualitative interpretation of the data is given on the basis of a static scission point model.

Back, B.B.; Shotter, A.C.; Symons, T.J.M.; Bice, A.; Gelbke, C.K.; Awes, T.C.; Scott, D.K.

1980-09-01

245

Alpha-Cluster Model, Charge Symmetry of Nuclear Force and Single Particle Bound State Potential in Symmetrical Nuclei  

E-print Network

A phenomenological alpha-cluster model based on the charge symmetry of nuclear force allows one to estimate the last proton position radius (LPPR) in a symmetrical nucleus. The values of LPPR obtained for the symmetrical nuclei with 5=15 it is inappropriate to represent a single particle bound state by the Woods-Saxon potential. For the nuclei with 5<=Z<=14 the error of the spectroscopic factor obtained with standard parameters in DWBA analysis of pure peripheral one nucleon transfer reactions is estimated. It is shown that for some nuclei using the standard parameters brings an error more than 20%.

G. K. Nie

2011-06-21

246

Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles  

PubMed Central

Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

2012-01-01

247

Energy loss straggling of 5.486 MeV alpha-particles in PP, PET and KAPTON polymeric foils.  

PubMed

The energy loss straggling for 5.486 MeV alpha-particles, from (241)Am source, in PP (C(3)H(6)), PET (C(10)H(8)O(4)) and KAPTON (C(22)H(10)O(5)N(2)) polymeric foils was measured. These measured values were compared with the most commonly used Bohr, Lindhard & Scharff and Bethe-Livingston formulations with the aim to check the reliability of these formulations. Further, Bethe-Livingston formulation has been suitably modified to make it applicable for thicker targets. PMID:20510624

Neetu; Sharma, K; Gulati, Pratibha K; Diwan, P K; Kumar, S

2010-12-01

248

Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas  

E-print Network

Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.

Yuehuan Wei; Liang Guan; Zhiyong Zhang; Qing Lin; Xiaolian Wang; Kaixuan Ni; Tianchi Zhao

2013-08-09

249

1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I  

SciTech Connect

We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.

K. Ghantous, N.N. Gorelenkov, C. Kessel, F. Poli

2013-01-30

250

Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments  

NASA Technical Reports Server (NTRS)

A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

2004-01-01

251

Nickel-59 in Surface Layers of Lunar Basalt 74275: Implications for the Solar Alpha Particle Flux  

NASA Technical Reports Server (NTRS)

By using AMS we have profiled 59 Ni/Ni ratios in lunar basalt 74275. Activities (dpm 59 Ni/[kg Fe]) range from 120 to 10 at depths (mg/cm 2) from about 30 to 650. Modeling results hint at higher solar alpha fluxes during the last about 0.5 My than during the last approximately 1 My.

Schnabel, C.; Xue, S.; Ma, P.; Herzog, G. F.; Fifield, K.; Cresswell, R. G.; diTada, M. L.; Hausladen, Paul; Reedy, R. C.

2000-01-01

252

Advances in the CO2 laser collective Thomson scattering fast ion\\/alpha particle diagnostic (abstract)  

Microsoft Academic Search

A collective Thomson scattering diagnostic is being developed for the measurement of confined fast ions in hot, dense plasmas. This includes such measurements as the ion tail in JT-60U and the alphas produced in a burning reactor or the upgraded Joint European Torus device. The diagnostic also has the capability of measuring the isotopic ratio of the core ions such

R. K. Richards; D. P. Hutchinson

2001-01-01

253

Technical NoteFEASIBILITY STUDIES OF ALPHA-PARTICLE CHANNELING IN MIRROR MACHINES  

E-print Network

or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactiv- ity. To identify the effective fusion reactivity by a fac- tor of 2.8. In this paper we discuss and reformulate the results Note: Some figures in this paper are in color only in the electronic version. I. INTRODUCTION Alpha

254

Scintillation Response of Liquid Xenon to Low Energy Nuclear Recoils  

E-print Network

Liquid Xenon (LXe) is expected to be an excellent target and detector medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Knowledge of LXe ionization and scintillation response to low energy nuclear recoils expected from the scattering of WIMPs by Xe nuclei is important for determining the sensitivity of LXe direct detection experiments. Here we report on new measurements of the scintillation yield of Xe recoils with kinetic energy as low as 10 keV. The dependence of the scintillation yield on applied electric field was also measured in the range of 0 to 4 kV/cm. Results are in good agreement with recent theoretical predictions that take into account the effect of biexcitonic collisions in addition to the nuclear quenching effect.

E. Aprile; K. L. Giboni; P. Majewski; K. Ni; M. Yamashita; R. Hasty; A. Manzur; D. N. McKinsey

2005-03-29

255

The measurement and modeling of alpha-particle-induced charge collection in dynamic memories  

Microsoft Academic Search

This thesis addresses the problem of α-particle-induced charge collection in high-density dynamic random access memories. A novel technique for the measurement of charge collection in high-density memory cells and bit lines due to α-particle strikes was developed. The technique involves D.C. tests on simple test structures with an α-particle source on the device package as a lid. The advantages of

Oldiges

1989-01-01

256

Non-gyrotropic proton and alpha-particle velocity distributions in the solar wind: TAUS observations and stability analysis  

NASA Technical Reports Server (NTRS)

Ion velocity distribution functions have been measured with high time resolution by the TAUS plasma instrument on the PHOBOS mission to Mars in 1989. The unambiguous separation of protons and alpha-particles by TAUS enabled us to study the nonthermal features of their distributions separately and to analyze the stability of the distributions against excitation of waves in the cyclotron-frequency domain. Typical nonthermal features include temperature anisotropies, with T(sub perpendicular) larger than T(sub parallel), and ion beam populations drifting along the local magnetic field direction. Also, distinctly non-gyrotropic alpha-particle velocity distributions were sometimes found. Non-gyrotropy strongly changes the wave dispersion and gives rise to new growing modes, related to the coupling of the standard wave modes existing in gyrotropic plasma. It is found that for the measured non-gyrotropic ion distributions the right-hand polarized wave can also be excited by a temperature anistropy instead of the usual beam drift.

Astudillo, H. F.; Marsch, E.; Livi, S.; Rosenbauer, H.

1995-01-01

257

Preliminary calculations of expected signal levels of a thin Faraday foil lost alpha particle diagnostic for International Thermonuclear Experimental Reactor  

SciTech Connect

Thin Faraday collectors are being considered as a diagnostic of lost alpha particles on International Thermonuclear Experimental Reactor (ITER). In an effort to evaluate the viability of this diagnostic, we are undertaking a series of calculations of the signal levels (A/cm{sup 2}) for such devices. Preliminary results assuming a model high yield ITER plasma have been obtained for locations near the outer wall assuming a toroidally symmetric vacuum vessel. We find signal levels to be a strong function of foil location and orientation. Specifically the signal level will be optimized at a vertical location 0.5 m above the machine midplane and with the normal to the foil directed in the lower, radially outward, toroidally counterclockwise octant. A foil thus oriented at a radial distance of 15 cm from the vessel wall at a height of 0.583 m above the machine midplane will have an efficiency of 3.5x10{sup -8}/cm{sup 2} for alpha particles which undergo classic loss during the first ten revolutions around the torus during this model plasma. For the assumed D-T fusion power of this model plasma of 410 MW, this calculated efficiency will correspond to a measured current in the Faraday foil of 1.7 {mu}A/cm{sup 2}. Future, more realistic calculations must incorporate the effects of an asymmetrical vessel and of toroidal field ripple.

Cecil, F.E.; Darrow, D.S.; Budny, R.V. [Department of Physics, Colorado School of Mines, Golden, Colorado (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States)

2004-10-01

258

Characterisation of a setup for mixed beam exposures of cells to 241Am alpha particles and X-rays.  

PubMed

Exposure of humans to mixed fields of high- and low-linear energy transfer (LET) radiation occurs in many situations-for example, in urban areas with high levels of indoor radon as well as background gamma radiation, during airplane flights or certain forms of radiation therapy. From the perspective of health risk associated with exposure to mixed fields, it is important to understand the interactions between different radiation types. In most cellular investigations on mixed beams, two types of irradiations have been applied sequentially. Simultaneous irradiation is the desirable scenario but requires a dedicated irradiation facility. The authors have constructed a facility where cells can be simultaneously exposed to (241)Am alpha particles and 190-kV X-rays at 37°C. This study presents the technical details and the dosimetry of the setup, as well as validates the performance of the setup for clonogenic survival in AA8 Chinese hamster ovary cells. No significant synergistic effect was observed. The relative biological effectiveness of the alpha particles was 2.56 for 37 % and 1.90 for 10 % clonogenic survival. PMID:22434924

Staaf, Elina; Brehwens, Karl; Haghdoost, Siamak; Pachnerová-Brabcová, Katerina; Czub, Joanna; Braziewicz, Janusz; Nievaart, Sander; Wojcik, Andrzej

2012-09-01

259

Screening materials with the XIA UltraLo alpha particle counter at Southern Methodist University  

SciTech Connect

Southern Methodist University houses one of five existing commercially available UltraLo 1800 production model alpha counters made by XIA LLC. The instrument has an electron drift chamber with a 707 cm{sup 2} or 1800 cm{sup 2} counting region which is determined by selecting the inner electrode size. The SMU team operating this device is part of the SuperCDMS screening working group, and uses the alpha counter to study the background rates from the decay of radon in materials used to construct the SuperCDMS experiment. We have studied four acrylic samples obtained from the MiniCLEAN direct dark matter search with the XIA instrument demonstrating its utility in low background experiments by investigating the plate-out of {sup 210}Pb and comparing the effectiveness of cleaning procedures in removing {sup 222}Rn progenies from the samples.

Nakib, M. Z.; Cooley, J.; Kara, B.; Qiu, H.; Scorza, S. [Department of Physics, Southern Methodist University, Dallas, TX (United States)] [Department of Physics, Southern Methodist University, Dallas, TX (United States); Guiseppe, V. E. [Department of Physics, University of South Dakota, Vermillion, SD (United States)] [Department of Physics, University of South Dakota, Vermillion, SD (United States); Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States)] [Los Alamos National Laboratory, Los Alamos, NM (United States); Schnee, R. W. [Department of Physics, Syracuse University, Syracuse, NY (United States)] [Department of Physics, Syracuse University, Syracuse, NY (United States)

2013-08-08

260

Development of a CO2 Laser Collective Thomson Scattering Fast Ion\\/Alpha Particle Diagnostic  

Microsoft Academic Search

A collective Thomson scattering diagnostic is being developed for the measurement of confined fast ions in hot, dense plasmas such as the ion tail in JT-60U and the alphas produced in a burning reactor or the upgraded JET device. A CO2 laser scattering system has been installed on JT-60U for this purpose. The diagnostic also has the capability of measuring

Roger K. Richards; Donald P. Hutchinson

2000-01-01

261

Alpha track analysis and fission track analysis for localizing actinide-bearing micro-particles in the Yenisey River bottom sediments  

Microsoft Academic Search

Distribution of actinides in bottom sediment and flood land soil cores collected from the Yenisey River near the Krasnoyarsk Mining and Chemical Combine (MCC) were analyzed. Actinide-bearing micro-particles were localized using alpha track analysis (ATA) and fission track analysis (FTA). Different types of radioactive micro-particles were found by analysis of the ratios of fission tracks to ?-tracks from single particles.

I. E. Vlasova; St. N. Kalmykov; Yu. V. Konevnik; S. G. Simakin; I. S. Simakin; A. Yu. Anokhin; Yu. A. Sapozhnikov

2008-01-01

262

Low-level measurement of alpha-particle emitting nuclei in ceramics and lead  

Microsoft Academic Search

Nearly all natural materials contain trace quantities of uranium (U) and thorium (Th) and their daughter nuclides, many of\\u000a which emit ?-particles in their decay. Lead, at the end of the U-decay chain, typically contains some radioactive210Pb which is chemically inseparable from the other Pb isotopes. ?-particle emission from these decays can affect sensitive\\u000a electronic components, such as memory chips

R. J. McDonald; A. R. Smith; D. L. Hurley; E. B. Norman

1998-01-01

263

Cross-sections for Balmer-alpha excitation in heavy-particle collisions  

SciTech Connect

Doppler shifted and unshifted Balmer-alpha radiation has been observed in the absolute sense for energetic H/sup +/, H/sub 2//sup +/ and H/sub 3//sup +/ ions incident on molecular hydrogen by the method of decay inside the target within the energy range of 20 keV to 150 keV. Most of the measurements were based on single-collision conditions, but a simple thick-target experiment has been tried for the case of dissociative excitation of the target molecules by H atoms.

Bae, Y.K.

1982-08-01

264

Gas powered fluid gun with recoil mitigation  

DOEpatents

A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

Grubelich, Mark C; Yonas, Gerold

2013-11-12

265

Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy  

PubMed Central

Alpha-particle radiopharmaceutical therapy (?RPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, ?RPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of ?-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by ?-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or ?-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(?/?), has recently been proposed by the ICRU. In concert with EQD2(?/?), we introduce a new, redefined RBE quantity, named RBE2(?/?), as the ratio of the two linear coefficients that characterize the ? particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either ? particles or a single fraction of low-LET 137Cs ? rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(?/?) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82–6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(?/?) and EQD2(?/?) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, ? particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(?/?) is independent of absorbed dose for ?-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an ?-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop ?RPT as a single modality as well as for combination therapies. PMID:24502376

Hobbs, Robert F.; Howell, Roger W.; Song, Hong; Baechler, Sébastien; Sgouros, George

2014-01-01

266

Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.  

PubMed

Alpha-particle radiopharmaceutical therapy (?RPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, ?RPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of ?-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by ?-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or ?-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(?/?), has recently been proposed by the ICRU. In concert with EQD2(?/?), we introduce a new, redefined RBE quantity, named RBE2(?/?), as the ratio of the two linear coefficients that characterize the ? particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either ? particles or a single fraction of low-LET (137)Cs ? rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(?/?) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(?/?) and EQD2(?/?) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, ? particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(?/?) is independent of absorbed dose for ?-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an ?-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop ?RPT as a single modality as well as for combination therapies. PMID:24502376

Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

2014-01-01

267

Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy.  

PubMed

Alpha-particle radiopharmaceutical therapy (?RPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, ?RPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of ?-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by ?-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or ?-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(?/?), has recently been proposed by the ICRU. In concert with EQD2(?/?), we introduce a new, redefined RBE quantity, named RBE2(?/?), as the ratio of the two linear coefficients that characterize the ? particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either ? particles or a single fraction of low-LET (137)Cs ? rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(?/?) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(?/?) and EQD2(?/?) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, ? particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(?/?) is independent of absorbed dose for ?-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an ?-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop ?RPT as a single modality as well as for combination therapies. PMID:24377718

Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

2013-12-30

268

Use of neutralized knock-on ion fluxes for alpha-particle confinement studies  

NASA Astrophysics Data System (ADS)

One of the objectives of neutral particle diagnostics on large tokamaks exploring DT plasma is to measure the distribution functions of fast deuterium (D) and tritium (T) ions in a suprathermal energy range. High energy tails in D,T-ion energy distributions (so-called knock-on ions) appear as a result of close elastic collisions between thermal fuel ions and fusion ?-particles. The knock-on ion density depends directly on the density and energy distribution of the ?-particles. Therefore measurements of the neutralized knock-on D,T-ion fluxes escaping from the plasma volume can provide information on the ?-particle confinement in DT plasma. This paper presents the results of a numerical simulation for the neutralized fast D,T-ion fluxes in the case of ITER fusion plasma. Feasible experimental measurements of the fluxes are considered with respect to the neutral particle diagnostics. We will show that the diagnostics can provide information on the confinement properties of fast ions in DT fusion plasma.

Nesenevich, V. G.; Afanasyev, V. I.; Goncharov, P. R.; Mironov, M. I.; Petrov, M. P.; Petrov, S. Ya

2014-12-01

269

[Effect of titanium particles and TNF-alpha on the gene expression and activity of MMP-1, 2, 3 in human knee joint synovial cells].  

PubMed

This paper is aimed to investigate the effect of titanium (Ti) particles and tumor necrosis factor alpha (TNF-alpha) on the expressions of MMP-1, 2, 3 in human synovial cells, so as to explore the possible mechanism of osteolysis post-operation of metal-on-metal total joint arthroplasty in human synovial cells induced by Ti particles. In vitro cell cultures, human synovial cells were treated by Ti particles and/or TNF-alpha. The total RNA was isolated at 2 hours after the treatment. The gene expression of MMP-1, 2, 3 was analyzed by Semi-quantitative Reverse-transcriptional PCR and quantitative real-time PCR. Cell supernatant was collected at 12, 24, 48 hours after the treatment and Gelatin zymography was performed to detect the activity of MMP-2. Compared to those in the control group (untreated), Ti particles and TNF-alpha increased the gene expression of MMP-1, 2, 3 respectively (P < 0.05), and the effect of combination of the two was even more significant (P < 0.01). The trend of activities of MMP-2 is similar with gene expression. Ti particles and TNF-alpha increased MMP-2 activities by 1.3 times and 1.5 times respectively (P < 0.05), and the combination of the two increased by 1.7 times (P < 0.01). Ti particles and TNF-alpha-induced the stimulation of MMP-1, 2, 3 expressions and MMP-2 activities in human knee joint synovial cells may be involved in aseptic loosening after metal-on-metal arthroplasty through increasing the degradation of bone matrix and declining of osseous support structure mechanics. PMID:24459964

Fu, Chunfeng; Xie, Jing; Chen, Rongfu; Wang, Chunli; Xu, Chunming; Chen, Cheng; Wang, Zhiqiang; Lin, Liangbo; Huang, Wei; Liang, Xi; Sung, K L Paul

2013-10-01

270

Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks  

SciTech Connect

In tokamaks, fusion generated ? particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient ?{sub ?} of LH waves due to ? particles changing with some typical parameters is calculated in this paper. Results show that ?{sub ?} increases with the parallel refraction index n{sub ?}, while decreases with the frequency of LH waves ? over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient ?{sub ?} increases with n{sub e} when n{sub e} ? 8 × 10{sup 19} m{sup ?3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of ?{sub ?} when n{sub e} ? 8 × 10{sup 19} m{sup ?1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of ?{sub ?} with n{sub ?} being 2.5 is almost two times larger than that with n{sub ?} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

Wang, J.; Zhang, X., E-mail: zhangxm@ecust.edu.cn; Yu, L.; Zhao, X. [East China University of Science and Technology, Department of Physics (China)

2014-12-15

271

Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks  

NASA Astrophysics Data System (ADS)

In tokamaks, fusion generated ? particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient ?? of LH waves due to ? particles changing with some typical parameters is calculated in this paper. Results show that ?? increases with the parallel refraction index n ?, while decreases with the frequency of LH waves ? over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient ?? increases with n e when n e ? 8 × 1019 m-3, while decreases with n e when n e becomes larger, and there is a peak value of ?? when n e ? 8 × 1019 m-1 for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of ?? with n ? being 2.5 is almost two times larger than that with n ? being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

Wang, J.; Zhang, X.; Yu, L.; Zhao, X.

2014-12-01

272

Comparative in vitro microdosimetric study of murine- and human-derived cancer cells exposed to alpha particles.  

PubMed

Diffusing alpha-emitter radiation therapy (DaRT) is a proposed new form of brachytherapy using ? particles to treat solid tumors. The method relies on implantable ²²?Ra-loaded sources that continually release short-lived ?-particle-emitting atoms that spread inside the tumor over a few millimeters. This treatment was demonstrated to have a significant effect on tumor growth in murine and human-derived models, but the degree of tumor response varied across cell lines. Tumor response was found to correlate with the degree of radionuclide spread inside the tumor. In this work we examined the radiosensitivity of individual cells to determine its relationship to tumor response. Cells were irradiated in vitro by ? particles using a ²²?Th irradiator, with the mean lethal dose, D?, estimated from survival curves generated by standard methods. The results were further analyzed by microdosimetric tools to calculate z?, the specific energy resulting in a survival probability of 1/e for a single cell, which is considered to better represent the intrinsic radiosensitivity of individual cells. The results of the study demonstrate that, as a rule, tumors that respond more favorably to the DaRT treatment are also characterized by higher intrinsic cellular radiosensitivities, with D? ranging from 0.7 Gy to 1.5 Gy for the extreme cases and z? following the same trend. PMID:22077335

Lazarov, E; Arazi, L; Efrati, M; Cooks, T; Schmidt, M; Keisari, Y; Kelson, I

2012-03-01

273

Imprints of recoiling massive black holes on the hot gas of early-type galaxies  

NASA Astrophysics Data System (ADS)

Anisotropic gravitational radiation from a coalescing black hole (BH) binary is known to impart recoil velocities of up to ~1000kms-1 to the remnant BH. In this context, we study the motion of a recoiling BH inside a galaxy modelled as a Hernquist sphere, and the signature that the hole imprints on the hot gas, using N-body/smoothed particle hydrodynamics simulations. Ejection of the BH results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the BH is initially released along its trail. As the BH moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ~108 years. If the recoil velocity exceeds the sound speed initially, the BH shocks the gas in the form of a Mach cone in density near each supersonic pericentric passage. We find that the X-ray fingerprint of a recoiling BH can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive BHs, the Mach cone and the wakes can be observed out to a few hundred of milliparsec. The detection of the Mach cone is of twofold importance as it can be a probe of high-velocity recoils, and an assessment of the scatter of the MBH - Mbulge relation at large BH masses.

Devecchi, B.; Rasia, E.; Dotti, M.; Volonteri, M.; Colpi, M.

2009-04-01

274

Elastic and Inelastic-Scattering of Alpha-Particles from Ba-138  

E-print Network

PHYSI CA L R EVI EW C VOLUME 6, NUMBER 5 NOVEMB ER 1972 138Elastic and Inelastic Scattering of n Particles from Ba J. H. Barker* and J. C. Hiebert Texas A & M University, College Station, Texas 77843 (Received 8 June 1972) Differential cross... and an opti- cal-model calculation based on an optical potential of the form, II. DESCRIPTION OF EXPERIMENT Most of the experimental techniques have been described in the earlier paper. ' A beam of 49.6 +0.3-MeV u particles was scattered from "Ba U...

Barker, J. H.; Hiebert, John C.

1972-01-01

275

Nuclear techniques for determining the spatial and energy distribution of fast-confined alpha particles in ignited D--T plasma  

SciTech Connect

There are several nuclear reactions between fast-confined ..cap alpha.. particles and low-z ions in ignited D--T plasma. Some of them produce unique and highly penetrating neutron or ..gamma.. radiation. A study has begun to evaluate the feasibility of using these reactions to determine the spatial profile of fast-confined reaction product ..cap alpha.. particles, and to determine a crude envelope of their speed distribution as they thermalize. Particular attention is paid to the means of detecting these radiations, measuring their spectra, and most important of all, reducing and discriminating against the very much larger background of interfering radiation.

Slaughter, D.R.

1985-05-01

276

Coincidence measurements between alpha particles and gamma rays in reactions induced by 85 and 155 MeV ¹²C on ¹??Sm  

E-print Network

COINCIDENCE MEASUREMENTS BETWEEN ALPHA PARTICLES AND GAMMA RAYS 12 154 IN REACTIONS INDUCED BY 85 AND 155 MEV C ON Sm A Thesis by STEVEN EDWARD CALA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1978 Major Subject: Chemistry COINCIDENCE MEASUREMENTS BETWEEN ALPHA PARTICLES AND GAMMA RAYS 12 154 IN REACTIONS INDUCED BY 85 AND 155 MEV C ON Sm A Thesis by STEVEN EDWARD CALA Approved...

Cala, Steven Edward

1978-01-01

277

Quantum design using a multiple internal reflections method in a study of fusion processes in the capture of alpha-particles by nuclei  

E-print Network

A high precision method to determine fusion in the capture of $\\alpha$-particles by nuclei is presented. For $\\alpha$-capture by $^{40}{\\rm Ca}$ and $^{44}{\\rm Ca}$, such an approach gives (1) the parameters of the $\\alpha$--nucleus potential and (2) fusion probabilities. This method found new parametrization and fusion probabilities and decreased the error by $41.72$ times for $\\alpha + ^{40}{\\rm Ca}$ and $34.06$ times for $\\alpha + ^{44}{\\rm Ca}$ in a description of experimental data in comparison with existing results. We show that the sharp angular momentum cutoff proposed by Glas and Mosel is a rough approximation, Wong's formula and the Hill-Wheeler approach determine the penetrability of the barrier without a correct consideration of the barrier shape, and the WKB approach gives reduced fusion probabilities. Based on our fusion probability formula, we explain the difference between experimental cross-sections for $\\alpha + ^{40}{\\rm Ca}$ and $\\alpha + ^{44}{\\rm Ca}$, which is connected with the theory of coexistence of the spherical and deformed shapes in the ground state for nuclei near the neutron magic shell $N=20$. To provide deeper insight into the physics of nuclei with the new magic number $N=26$, the cross-section for $\\alpha + ^{46}{\\rm Ca}$ is predicted for future experimental tests. The role of nuclear deformations in calculations of the fusion probabilities is analyzed.

Sergei P. Maydanyuk; Peng-Ming Zhang; Sergei V. Belchikov

2015-04-02

278

Channel coupling and exchange of an alpha-particle cluster in deuteron scattering on {sup 6}Li nuclei  

SciTech Connect

Existing experimental data on elastic and inelastic deuteron scattering on {sup 6}Li nuclei in the energy range from 8 to 50 MeV were analyzed within the approach of coupled reaction channels. The coupling of elastic scattering and inelastic scattering accompanied by the transition to the 3{sup +} state at E{sub x} 2.186 MeV and the mechanism involving the exchange of an alpha-particle cluster were taken into account in respective calculations. The phenomenological potentials obtained from the present analysis describe well experimental angular distributions at all energies and in full angular ranges. The depths of the real and imaginary parts of the potentials in question depend smoothly on energy at fixed values of the remaining parameters. The energy dependence of relevant volume integrals agrees well with similar data for the p + {sup 6}Li, {alpha} + {sup 6}Li, and {sup 12}C + {sup 12}C systems and with the predictions of a microscopic theory.

Sakuta, S. B., E-mail: sakuta@dni.polyn.kiae.su [Russian Research Centre Kurchatov Institute (Russian Federation); Burtebaev, N. [National Nuclear Center of the Republic Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Artemov, S. V.; Yarmukhamedov, R. [National Nuclear Center of the Republic Uzbekistan, Institute of Nuclear Physics (Uzbekistan)

2012-07-15

279

The {alpha}-particle excited scintillation response of the liquid phase epitaxy grown LuAG:Ce thin films  

SciTech Connect

Liquid phase epitaxy grown Lu{sub 3}Al{sub 5}O{sub 12}:Ce (LuAG:Ce) 20 {mu}m thick films and plate cut from the bulk Czochralski-grown LuAG:Ce crystal were prepared for comparison of photoelectron yield (PhY) and PhY dependence on shaping time (0.5-10 {mu}s). {sup 241}Am ({alpha} particles) was used for excitation. At the 0.5 {mu}s shaping time, the best film shows comparable PhY with the bulk sample. PhY of bulk material increases noticeably more with shaping time than that of the films. Energy resolution of films is better. Influence of Pb{sup 2+} contamination in the films (from the flux) and antisite Lu{sub Al} defect in bulk material is discussed.

Prusa, P.; Cechak, T.; Mares, J. A.; Nikl, M.; Beitlerova, A.; Solovieva, N.; Zorenko, Yu. V.; Gorbenko, V. I.; Tous, J.; Blazek, K. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 11519 Prague (Czech Republic); Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Laboratory of Optoelectronic Materials, Ivan Franko National University of Lviv, 107 Gen. Tarnavskyj Str., 79017 Lviv (Ukraine); Crytur Ltd., Palackeho 175, 51101 Turnov (Czech Republic)

2008-01-28

280

Development of a strongly focusing high-intensity He(+) ion source for a confined alpha particle measurement at ITER.  

PubMed

A strongly focusing high-intensity He(+) ion source has been designed and constructed as a beam source for a high-energy He(0) beam probe system for diagnosis of fusion produced alpha particles in the thermonuclear fusion plasmas. The He(+) beam was extracted from the ion source at an acceleration voltage of 18-35 kV. Temperature distributions of the beam target were observed with an IR camera. The 1/e-holding beam profile half-width was about 15 mm at optimum perveance (Perv) of 0.03 (I(beam)=2.4 A). A beam current about 3 A was achieved at an acceleration voltage of 26.7 kV with an arc power of 10 kW (Perv=0.023). PMID:18315239

Kisaki, M; Shinto, K; Kobuchi, T; Okamoto, A; Kitajima, S; Sasao, M; Tsumori, K; Nishiura, M; Kaneko, O; Matsuda, Y; Wada, M; Sakakita, H; Kiyama, S; Hirano, Y

2008-02-01

281

Determination of oxygen in silicon and carbide by activation with 27.2 meV alpha particles  

NASA Technical Reports Server (NTRS)

The Si sample was polished on one side, and on the other side Ni was applied chemically and soldered with Pb to a water cooled Cu substrate. Optical quartz standard was fixed from the other side. Si carbide samples were soldered to a substrated with In. The prepared samples were irradiated in a cyclotron with a 27.2 MeV alpha particle beam. The layers were removed from the Si and Si carbide samples by grinding and the positron activity of F-18(t sub 1/2 110 min) was measured by using a gamma, gamma coincidence spectrometer with two NaI(TI) crystals. For analysis of Si carbide, the activity decay curve of the samples was recorded to find the contribution of the positron activity of Cu-65(t sub 1/2 12.9 hr) which formed from Ni impurity on irradiation.

Dolgolenko, A. P.; Kornienko, N. D.; Lithovchenko, P. G.

1978-01-01

282

Emission of alpha particles during the spontaneous fission of {sup 244}Pu  

SciTech Connect

We have measured the light charged particle (LCP) emission probabililty for the spontaneous fission of {sup 244}Pu. For the LCP emission to binary fission probability ratio a value of (2.96{plus_minus}0.31){times}10{sup {minus}3} was found. This result is in agreement with the previously observed trends concerning the LCP emission probability.

Verboven, M.; Jacobs, E.; De Frenne, D.; Thierens, H.; D`hondt, P. [Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent (Belgium)] [Nuclear Physics Laboratory, Proeftuinstraat 86, B-9000 Gent (Belgium)

1994-03-01

283

Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages  

Microsoft Academic Search

Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)?, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-?B pathway plays a role in the

Imad Nadra; Aldo R. Boccaccini; Pandelis Philippidis; Linda C. Whelan; Geraldine M. McCarthy; Dorian O. Haskard; R. Clive Landis

2008-01-01

284

Double-electron capture in collision of fast alpha particles with helium atoms  

NASA Astrophysics Data System (ADS)

A four-body boundary-corrected first-order Jackson-Schiff approximation (JS1-4B) is developed to calculate the differential and integral cross-sections (DCSs) for double-electron exchange in collision of fast alpha ions with helium atoms in their ground states. The influence of the static electron correlations on cross-sections is taken into account through choosing the different wave functions to describe the initial and final bound states of the electrons. The quantum-mechanical post and prior transition amplitudes for double charge exchange are derived in terms of two-dimensional real integrals which can be calculated numerically. The validity and utility of the applied approach is critically assessed in comparison with the available experimental data for differential and integral cross-sections. The present calculations are also compared with the results obtained from the other theories.

Ghanbari-Adivi, Ebrahim; Ghavaminia, Hoda

2014-11-01

285

Ramsey type Sub-Recoil Cooling  

E-print Network

We experimentally study the motion of atoms interacting with a periodically pulsed near resonant standing wave. For discrete pulse frequencies we observe a comb-like momentum distribution. The peaks have widths of 0.3 recoil momenta and a spacing which is an integer multiple of the recoil momentum. The atomic population is trapped in ground states which periodically evolve to dark states each time the standing wave is switched on.

Sander, F; Esslinger, T; Hänsch, T W; Sander, Frank; Devolder, Thibaut; Esslinger, Tilman; Hansch, Theodor W.

1996-01-01

286

Self-similar recoil of inviscid drops  

NASA Astrophysics Data System (ADS)

After capillary pinchoff of a fluid thread or drop, the newly created drop tips recoil due to the large local curvature. Similarity solutions for the postpinchoff recoil of an axisymmetric inviscid fluid of density ?1 and surface tension ? immersed in a surrounding fluid of density ?2 are obtained over a range of the density ratio D=?2/?1. The far-field shape of the two new drops and the far-field dipole potentials are prescribed from known prepinching solutions [D. Leppinen and J. R. Lister, Phys. Fluids 15, 568 (2003)] and the positions and self-similar shape of the two recoiling tips are calculated. The momentum of the prepinching flow makes a significant difference to the recoiling shapes. Capillary waves are observed, in agreement with previous two-dimensional studies and analytical calculations, and the wave frequency is found to increase with D. The recoil of a single axisymmetric drop (with a conical far-field shape) under surface tension is also studied as a function of D and the far-field cone angle ?0. Capillary waves are again observed, and the results for small values of ?0 are shown to agree well with previous asymptotic predictions. The related problem of violent jet emission, following the formation of a near-conical structure with very high curvature at its tip, is also discussed and its similarity with the recoiling cone problem investigated.

Sierou, Asimina; Lister, John R.

2004-05-01

287

Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity.  

PubMed Central

An abnormal isoform of the prion protein (PrP) designated PrPSc is the major, or possibly the only, component of infectious prions. Structural studies of PrPSc have been impeded by its lack of solubility under conditions in which infectivity is retained. Among the many detergents examined, only treatment with the ionic detergent sodium dodecyl sulfate (SDS) or Sarkosyl followed by sonication dispersed prion rods which are composed of PrP 27-30, an N-terminally truncated form of PrPSc. After ultracentrifugation at 100,000 x g for 1 h, approximately 30% of the PrP 27-30 and scrapie infectivity were found in the supernatant, which was fractionated by sedimentation through 5 to 20% sucrose gradients. Near the top of the gradient, spherical particles with an observed sedimentation coefficient of approximately 6S, approximately 10 mm in diameter and composed of four to six PrP 27-30 molecules, were found. The spheres could be digested with proteinase K and exhibited little, if any, scrapie infectivity. When the prion rods were disrupted in SDS and the entire sample was fractionated by sucrose gradient centrifugation, a lipid-rich fraction at the meniscus composed of fragments of rods and heterogeneous particles containing high levels of prion infectivity was found. Fractions adjacent to the meniscus also contained spherical particles. Circular dichroism of the spheres revealed 60% alpha-helical content; addition of 25% acetonitrile induced aggregates high in beta sheet but remaining devoid of infectivity. Although the highly purified spherical oligomers of PrP 27-30 lack infectivity, they may provide an excellent substrate for determining conditions of renaturation under which prion particles regain infectivity. PMID:8627692

Riesner, D; Kellings, K; Post, K; Wille, H; Serban, H; Groth, D; Baldwin, M A; Prusiner, S B

1996-01-01

288

GROSS ALPHA RADIUM REGULATION  

EPA Science Inventory

The determination of concentrations of natural radioactivity in public water supplies begins with the measurement of the gross alpha particle activity. The gross alpha activity measurement is used as a screening technique. The gross alpha particle activity measurement may be su...

289

Measurement of scintillation efficiency for nuclear recoils in liquid argon  

E-print Network

The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 \\pm 0.01 + 0.01(correlated) above 20 keVr.

D. Gastler; E. Kearns; A. Hime; L. C. Stonehill; S. Seibert; J. Klein; W. H. Lippincott; D. N. McKinsey; J. A. Nikkel

2012-05-08

290

Study of an alpha track analysis and a fission track analysis for determining the hot particles contaminated with Pu and U isotopes.  

PubMed

A fission track analysis and alpha track analysis were developed to detect fissile particles such as uranium and plutonium isotopes as well as to identify particle-bound plutonium in contaminated soil or sediment. To record a reference point, a locator SEM grid electroplated with boron was used to obtain a recorded grid image on the Lexan or CR-39 detector. With the fission track technique, the track images of the grid coated with boron and the fissile nuclides on the CR-39 detector were clearly recorded so that the location of the fissile particles could be easily identified in the radio-contaminated soil matrix. With the alpha track technique, many of the hot particles in the BOMARC soil turned out to be contaminated with plutonium isotopes rather than uranium isotopes. PMID:16934476

Lee, M H; Park, Y J; Jee, K Y; Kim, W H; Clark, Sue B

2007-01-01

291

Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability  

SciTech Connect

Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ``explosion`` occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.

Berk, H.L.; Breizman, B.N.; Ye, Huanchun

1992-03-01

292

Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability  

SciTech Connect

Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles.

Berk, H.L.; Breizman, B.N.; Ye, Huanchun.

1992-03-01

293

First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment  

E-print Network

The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the beta-neutrino angular correlation via the measurement of the recoil energy spectrum after beta decay. As a first step the recoil ions from the beta-minus decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.

M. Beck; S. Coeck; V. Yu. Kozlov; M. Breitenfeld; P. Delahaye; P. Friedag; M. Herbane; A. Herlert; I. S. Kraev; J. Mader; M. Tandecki; S. Van Gorp; F. Wauters; Ch. Weinheimer; F. Wenander; N. Severijns

2010-08-01

294

First measurement of the Head-Tail directional nuclear recoil signature at energies relevant to WIMP dark matter searches  

E-print Network

We present first evidence for the so-called Head-Tail asymmetry signature of neutron-induced nuclear recoil tracks at energies down to 1.5 keV/amu using the 1m^3 DRIFT-IIc dark matter detector. This regime is appropriate for recoils induced by Weakly Interacting Massive Particle (WIMPs) but one where the differential ionization is poorly understood. We show that the distribution of recoil energies and directions induced here by Cf-252 neutrons matches well that expected from massive WIMPs. The results open a powerful new means of searching for a galactic signature from WIMPs.

S. Burgos; E. Daw; J. Forbes; C. Ghag; M. Gold; C. Hagemann; V. A. Kudryavtsev; T. B. Lawson; D. Loomba; P. Majewski; D. Muna; A. StJ. Murphy; G. G. Nicklin; S. M. Paling; A. Petkov; S. J. S. Plank; M. Robinson; N. Sanghi; D. P. Snowden-Ifft; N. J. C. Spooner; J. Turk; E. Tziaferi

2008-09-10

295

Targeting Aberrant DNA double strand break repair in triple negative breast cancer with alpha particle emitter radiolabeled anti-EGFR antibody  

PubMed Central

The higher potential efficacy of alpha-particle radiopharmaceutical therapy lies in the 3 to 8-fold greater biological effectiveness (RBE) of alpha particles relative to photon or beta-particle radiation. This greater RBE, however, also applies to normal tissue, thereby reducing the potential advantage of high RBE. Since alpha particles typically cause DNA double strand breaks (DSBs), targeting tumors that are defective in DSB repair effectively increases the RBE, yielding a secondary, RBE-based differentiation between tumor and normal tissue that is complementary to conventional, receptor-mediated tumor targeting. In some triple negative breast cancers (TNBC, ER?/PR?/HER-2?), germline mutation in BRCA-1, a key gene in homologous recombination (HR) DSB repair, predisposes patients to early onset of breast cancer. These patients have few treatment options once the cancer has metastasized. In this study, we investigated the efficacy of alpha particle emitter, 213Bi labeled anti-EGFR antibody, Cetuximab, in BRCA-1 defective TNBC. 213Bi-Cetuximab was found to be significantly more effective in the BRCA-1 mutated TNBC cell line HCC1937 than BRCA-1 competent TNBC cell MDA-MB-231. siRNA knockdown of BRCA-1 or DNA-PKcs, a key gene in non-homologous end joining (NHEJ) DSB repair pathway, also sensitized TNBC cells to 213Bi-Cetuximab. Furthermore, the small molecule inhibitor of DNA-PKcs, NU7441, sensitized BRCA-1 competent TNBC cells to alpha particle radiation. Immunofluorescent staining of ?H2AX foci and comet assay confirmed that enhanced RBE is caused by impaired DSB repair. These data offer a novel strategy for enhancing conventional receptor-mediated targeting with an additional, potentially synergistic radiobiological targeting that could be applied to TNBC. PMID:23873849

Song, Hong; Hedayati, Mohammad; Hobbs, Robert F.; Shao, Chunbo; Bruchertseifer, Frank; Morgenstern, Alfred; DeWeese, Theodore L.; Sgouros, George

2013-01-01

296

Radioactive Positron Emitter Production by Energetic Alpha Particles in Solar Flares  

NASA Astrophysics Data System (ADS)

Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon-1) to a GeV nucleon-1, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for ?-particle reactions where only crude estimates were possible. Here we re-evaluate the ?-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but ?-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-3He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

Murphy, R. J.; Kozlovsky, B.; Share, G. H.

2014-12-01

297

Quantum design using a multiple internal reflections method in a study of fusion processes in the capture of alpha-particles by nuclei  

E-print Network

A high precision method to determine fusion in the capture of $\\alpha$-particles by nuclei is presented. For $\\alpha$-capture by $^{40}{\\rm Ca}$ and $^{44}{\\rm Ca}$, such an approach gives (1) the parameters of the $\\alpha$--nucleus potential and (2) fusion probabilities. This method found new parametrization and fusion probabilities and decreased the error by $41.72$ times for $\\alpha + ^{40}{\\rm Ca}$ and $34.06$ times for $\\alpha + ^{44}{\\rm Ca}$ in a description of experimental data in comparison with existing results. We show that the sharp angular momentum cutoff proposed by Glas and Mosel is a rough approximation, Wong's formula and the Hill-Wheeler approach determine the penetrability of the barrier without a correct consideration of the barrier shape, and the WKB approach gives reduced fusion probabilities. Based on our fusion probability formula, we explain the difference between experimental cross-sections for $\\alpha + ^{40}{\\rm Ca}$ and $\\alpha + ^{44}{\\rm Ca}$, which is connected with the theory ...

Maydanyuk, Sergei P; Belchikov, Sergei V

2015-01-01

298

Elastic and Inelastic Scattering of Alpha-Particles and Protons from Sm-144  

E-print Network

of both spin and parity to the strongly excited levels we observed. All lev- els observed in the o.-particle work mere also ob- served in the proton work, and no new levels were observed. The spin and parity assignments from the proton study... of the level at 2.45 MeV. A level near this energy has already been the subject of some controversy. ""From our data it would appear that there are two levels near this energy. A lev- el with J"= 0+ and E*= 2.481 MeV has been report- d ' ' as being...

Barker, J. H.; Hiebert, John C.

1971-01-01

299

Determination of plutonium isotopes in bilberry using liquid scintillation spectrometry and alpha-particle spectrometry.  

PubMed

This paper presents ?-particle spectrometry and liquid scintillation spectrometry methods to determine plutonium isotopes in bilberry. The analytical procedure involves sample preparation steps for ashing, digestion of bilberry samples, radiochemical separation of plutonium radioisotopes and their measurement. The validity of the method was checked for coherence using the ? test, z-test, relative bias and relative uncertainty outlier tests. The results indicated that the recommended procedures for both measurement systems could be successfully applied for the accurate determination of plutonium activities in bilberry samples. PMID:24359792

Seferino?lu, Meryem; Aslan, Nazife; Kurt, Aylin; Erden, P?nar Esra; Mert, Hülya

2014-05-01

300

Detectors for alpha particles and X-rays operating in ambient air in pulse counting mode or/and with gas amplification  

NASA Astrophysics Data System (ADS)

Ionization chambers working in ambient air in current detection mode are attractive due to their simplicity and low cost and are widely used in several applications such as smoke detection, dosimetry, therapeutic beam monitoring and so on. The aim of this work was to investigate if gaseous detectors can operate in ambient air in pulse counting mode as well as with gas amplification which potentially offers the highest possible sensitivity in applications like alpha particle detection or high energy X-ray photon or electron detection. To investigate the feasibility of this method two types of open- end gaseous detectors were build and successfully tested. The first one was a single wire or multiwire cylindrical geometry detector operating in pulse mode at a gas gain of one (pulse ionization chamber). This detector was readout by a custom made wide -band charge sensitive amplifier able to deal with slow induced signals generated by slow motion of negative and positive ions. The multiwire detector was able to detect alpha particles with an efficiency close to 22%. The second type of an alpha detector was an innovative GEM-like detector with resistive electrodes operating in air in avalanche mode at high gas gains (up to 104). This detector can also operate in a cascaded mode or being combined with other detectors, for example with MICROMEGAS. This detector was readout by a conventional charge -sensitive amplifier and was able to detect alpha particles with 100% efficiency. This detector could also detect X-ray photons or fast electrons. A detailed comparison between these two detectors is given as well as a comparison with commercially available alpha detectors. The main advantages of gaseous detectors operating in air in a pulse detection mode are their simplicity, low cost and high sensitivity. One of the possible applications of these new detectors is alpha particle background monitors which, due to their low cost can find wide application not only in houses, but in public areas: airports, railway station and so on.

Charpak, G.; Benaben, P.; Breuil, P.; Peskov, V.

2008-02-01

301

Applications of 211At and 223Ra in Targeted Alpha-Particle Radiotherapy  

PubMed Central

Targeted radiotherapy using agents tagged with ?-emitting radionuclides is gaining traction with several clinical trials already undertaken or ongoing, and others in the advanced planning stage. The most commonly used ?-emitting radionuclides are 213Bi, 211At, 223Ra and 225Ac. While each one of these has pros and cons, it can be argued that 211At probably is the most versatile based on its half life, decay scheme and chemistry. On the other hand, for targeting bone metastases, 223Ra is the ideal radionuclide because simple cationic radium can be used for this purpose. In this review, we will discuss the recent developments taken place in the application of 211At-labeled radiopharmaceuticals and give an overview of the current status of 223Ra for targeted ?-particle radiotherapy. PMID:22202151

Vaidyanathan, Ganesan; Zalutsky, Michael R.

2012-01-01

302

{alpha}-decay properties of the new neutron deficient isotope {sup 212}Pa  

SciTech Connect

The new neutron deficient isotope {sup 212}Pa has been produced in the {sup 182}W({sup 35}Cl,5n) reaction at a beam energy of 182.5 MeV. Evaporation residues have been separated with the JAERI recoil mass separator and identified on the basis of time- and position-correlated {alpha}-decay chains. The {alpha} decay from the ground state of {sup 212}Pa has been observed with an {alpha}-particle energy of 8.270(30) MeV and a half-life of 5.1{sub {minus}1.9}{sup +6.1} ms. {copyright} {ital 1997} {ital The American Physical Society}

Mitsuoka, S.; Ikezoe, H.; Ikuta, T.; Nagame, Y.; Tsukada, K.; Nishinaka, I.; Oura, Y. [Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-11 (Japan)] [Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-11 (Japan); Zhao, Y.L. [Tokyo Metropolitan University, Hachioji, Tokyo, 192-03 (Japan)] [Tokyo Metropolitan University, Hachioji, Tokyo, 192-03 (Japan)

1997-03-01

303

Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles  

NASA Astrophysics Data System (ADS)

The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

2015-04-01

304

Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy  

SciTech Connect

Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo generators such as 225Ac, which emits four particles in its decay chain, can significantly amplify the radiation dose delivered to the target site. However, renal dose from unbound 213Bi escaping during the decay process limits the dose of 225Ac that can be administered. Traditional chelating moieties are unable to sequester the radioactive daughters because of the high recoil energy from alpha particle emission. To counter this, we demonstrate that an engineered multilayered nanoparticle-antibody conjugate can both deliver radiation and contain the decay daughters of the in vivo -generator 225Ac while targeting biologically relevant receptors. These multi-shell nanoparticles combine the radiation resistance of crystalline lanthanide phosphate to encapsulate and contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established surface chemistry of gold for attachment of nanoparticles to targeting antibodies.

McLaughlin, Mark F [ORNL; Woodward, Jonathan [ORNL; Boll, Rose Ann [ORNL; Wall, Jonathan [University of Tennessee, Knoxville (UTK); Rondinone, Adam Justin [ORNL; Kennel, Steve J [ORNL; Mirzadeh, Saed [ORNL; Robertson, David J. [University of Missouri

2013-01-01

305

Recoil corrections in antikaon-deuteron scattering  

NASA Astrophysics Data System (ADS)

The recoil retardation effect in the K-d scattering length is studied. Using the nonrelativistic effective field theory approach, it is demonstrated that a systematic perturbative expansion of the recoil corrections in the parameter ? =MK/mN is possible in spite of the fact that K-d scattering at low energies is inherently nonperturbative due to the large values of the K ¯ N scattering lengths. The first-order correction to the K-d scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated. The recoil effect turns out to be reasonably small even at the physical value of MK/mN?0.5 .

Mai, Maxim; Baru, Vadim; Epelbaum, Evgeny; Rusetsky, Akaki

2015-03-01

306

The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector  

NASA Astrophysics Data System (ADS)

Fast detection of alpha particles in CR-39 detectors was investigated using a new chemical etchant. 252Cf and 241Am sources were used for irradiating samples of CR-39 SSNTDs with fission fragments and alpha particles in air at normal temperature and pressure. A series of experimental chemical etching are carried out using new etching solution (8 ml of 10N NaOH+1 ml CH3OH) at 60 °C to detect alpha particle in short time in CR-39 detectors. Suitable analyzing software has been used to analyze experimental data. From fission and alpha track diameters, the value of bulk etching rate is equal to 2.73 ?m/h. Both the sensitivity and etching efficiency were found to vary with the amount of methanol in the etching solution. Pure NaOH was used as a control to compare with the result from etching in NaOH with different concentrations of CH3OH. The etching efficiency is determined and compared with conventional aqueous solution of 6.25N NaOH at 70 °C for etching time equals 5 h. In this study, the obtained etching efficiency shows a considerable agreement with the previous work.

Ashry, A. H.; Abdalla, A. M.; Rammah, Y. S.; Eisa, M.; Ashraf, O.

2014-08-01

307

Calculation of extracted ion beam particle distribution including within-extractor collisions from H-alpha Doppler shift measurements  

SciTech Connect

Prototype long pulse ion sources are being developed and tested toward the goal of a deuterium beam extraction of 120 keV/65 A. The latest prototype source consists of a magnetic bucket plasma generator and a four-grid copper accelerator system with multicircular apertures of 568 holes. To measure the angular divergence and the ion species of the ion beam, an optical multichannel analyzer (OMA) system for a Doppler-shifted H-alpha lights was set up at the end of a gas-cell neutralizer. But the OMA data are very difficult to analyze due to a large background level on the top of the three energy peaks (coming from H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}). These background spectra in the OMA signals seem to result from partially accelerated ion beams in the accelerator. Extracted ions could undergo a premature charge exchange as the accelerator column tends to have a high hydrogen partial pressure from the unused gas from the plasma generator, resulting in a continuous background of partially accelerated beam particles at the accelerator exit. This effect is calculated by accounting for all the possible atomic collision processes and numerically summing up three ion species across the accelerator column. The collection of all the atomic reaction cross sections and the numerical summing up will be presented. The result considerably depends on the background pressure and the ion beam species ratio (H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}). This effect constitutes more than 20% of the whole particle distribution. And the energy distribution of those suffering from collisions is broad and shows a broad maximum in the vicinity of the half and the third energy region.

Kim, Tae-Seong; Kim, Jinchoon; In, Sang Ryul; Jeong, Seung Ho [University of Science and Technology, Daejeon 305-353 (Korea, Republic of); ProScience, San Diego, California 92129 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

2008-02-15

308

Alpha-particle and proton probes of nuclear shapes in the rare earth and mass 80 regions  

SciTech Connect

Low emission barriers and large subbarrier anisotropies in the alpha-particle decay with respect to the spin direction, of Sn and rare earth compound nuclei, are examined in the light of recent calculations incorporating deformation. To explore the possibility of a correlation between the proton emission barriers and nuclear deformation, we studied proton spectra from the {sup 52}Cr({sup 34}S,2p2n){sup 82}Sr reaction. The proton spectra were observed with the Dwarf-Ball 4{pi} CsI(Tl) array, in coincidence with 18 Compton suppressed Ge detectors operated in conjunction with the Spin Spectrometer, a 4{pi} NaI(Tl) array. We found significant changes and shifts in the proton energy spectra as we selected gating transitions from bands of different moments of inertia or transitions from states of different spin in the same band. Substantial differences were also seen as a function of the {gamma}-ray multiplicity. These results are discussed in terms of statistical model calculations incorporating deformation and structure effects of the emitting system. 20 refs., 9 figs.

Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M.; Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A.; Griffin, H.C. (Washington Univ., St. Louis, MO (USA); Oak Ridge National Lab., TN (USA); Michigan Univ., Ann Arbor, MI (USA))

1989-01-01

309

Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles  

NASA Astrophysics Data System (ADS)

A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

2010-11-01

310

Characteristics and mechanisms of the bystander response in monolayer cell cultures exposed to very low fluences of alpha particles  

NASA Astrophysics Data System (ADS)

When confluent cultures of mammalian cells are irradiated with very low fluences of alpha particles whereby only occasional cells receive any radiation exposure, genetic changes are observed in the non-irradiated ("bystander") cells. Upregulation of the p53 damage-response pathway as well as activation of proteins in the MAPK family occurred in bystander cells; p53 was phosphorylated on the serine 15 residue suggesting that the upregulation of p53 was a consequence of DNA damage. Damage signals were transmitted to bystander cells through gap junctions, as confirmed by the use of genetically manipulated cells including connexin43 knockouts. Expression of connexin43 was markedly enhanced by irradiation. A moderate bystander effect was observed for specific gene mutations and chromosomal aberrations. This effect was markedly enhanced in cells defective in the non-homologous end joining DNA repair pathway. Finally, an upregulation of oxidative metabolism occurred in bystander cells; the increased levels of reactive oxygen species appeared to be derived from flavine-containing oxidase enzymes. We hypothesize that genetic effects observed in non-irradiated bystander cells are a consequence of oxidative base damage; >90% of mutations in bystander cells were point mutations. When bystander cells cannot repair DNA double strand breaks, they become much more sensitive to the induction of chromosomal aberrations and mutations, the latter consisting primarily of deletion mutants. While we propose that the genetic effects occurring in bystander cells are a consequence of oxidative stress, the nature of the signal that initiates this process remains to be determined.

Little, John B.; Azzam, Edouard I.; de Toledo, Sonia M.; Nagasawa, Hatsumi

2005-02-01

311

Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.  

PubMed

The effect of average particle sizes on basic macroscopic properties and heat transfer performance of alpha-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients were measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested. PMID:20431197

Timofeeva, Elena V; Smith, David S; Yu, Wenhua; France, David M; Singh, Dileep; Routbort, Jules L

2010-05-28

312

Open Problems in $?$ Particle Condensation  

E-print Network

$\\alpha$ particle condensation is a novel state in nuclear systems. We briefly review the present status on the study of $\\alpha$ particle condensation and address the open problems in this research field: $\\alpha$ particle condensation in heavier systems other than the Hoyle state, linear chain and $\\alpha$ particle rings, Hoyle-analogue states with extra neutrons, $\\alpha$ particle condensation related to astrophysics, etc.

Y. Funaki; M. Girod; H. Horiuchi; G. Roepke; P. Schuck; A. Tohsaki; T. Yamada

2010-03-05

313

HERMES Recoil Detector Roberto Francisco Prez Benito  

E-print Network

Design Requirement Recoil Detector (RD) Silicon Strip Detector (SSD) Scintillating Fiber Tracker (SFT cell inside beam pipe #12;11 Silicon Strip Detector (SSD)Silicon Strip Detector (SSD)Silicon Strip Detector (SSD) 2 layers of double sided TIGRE sensors 16 TIGRE sensors operate in beam vacuum few cm close

314

Proton recoil scintillator neutron rem meter  

DOEpatents

A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

2003-01-01

315

Helium burning and the death of massive stars from the beta-delayed alpha-particle emission of {sup 16}N  

SciTech Connect

Helium burning in massive stars and red giants (at {approximately}200 MK) allows for the nucleo-synthesis of {sup 12}C and {sup 16}O via the {sup 8}Be({alpha},{gamma}){sup 12}C triple alpha capture reaction and the {sup 12}C({alpha},{gamma}) {sup 16}O capture reaction. At 300 keV, the most efficient energy for burning of helium, the resonant triple alpha-capture reaction is well understood but the {sup 12}C({alpha},{gamma}){sup 16}O reaction is poorly understood, due to the fact that it is a non-resonant reaction governed by the bound 1{sup {minus}} and 2{sup +} states of {sup 16}O. The results of helium burning--the {sup 12}C/{sup 16}O ratio, determines the abundance of heavy elements and the dynamics of a massive star at its last stages before a supernova. Attempts to measure the cross section of the {sup 12}C({alpha},{gamma}){sup 16}O reaction lead to values of the E1 S-factor ranging from 0-500 keV-b. The author has measured the astrophysical p-wave S(300)-factor of the {sup 12}C({alpha},{gamma}){sup 16}O reaction by measuring the inverse process of the beta-delayed alpha-particle emission of {sup 16}N, with an increased sensitivity to the (virtual) reduced alpha-particle width of the bound 1{sup {minus}} state at 7.12 MeV in {sup 16}O. The enhanced sensitivity is due to a kinematical factor and matrix elements of the beta decay of {sup 16}N. An experiment performed at Yale University and at the MSU radioactive beam facility with a sensitivity for {sup 16}N beta-decay branching ratio on the order of 10{sup {minus}9} to 10{sup {minus}10} will be discussed. These data (together with other data) were used to extract the S-factor from an R-matrix theory and the author quotes S{sub E1}(300) = 95 {+-} 6(stat){+-}28(syst) keV-b, in agreement with a concurrent experiment at TRIUMF and the one deduced from stellar models of 12 to 40 solar masses stars.

Gai, M.

1993-04-01

316

Study on the evolution and nature of interstitial-type defects following proton and alpha particle implantation during low-dose proximity gettering of platinum  

Microsoft Academic Search

Platinum has been diffused into epitaxial n-type silicon at 600°C, 650°C and 700°C for 30 min following implantation with 3.3 MeV alpha particles. The doses employed were between 1×1011 and 1×1014 He+ cm?2. Also an implantation involving protons at 850 keV with doses of 5×1013 and 5×1014 H+ cm?2 has been performed followed by an annealing at 600°C or 700°C.

D. C Schmidt; B. G Svensson; J. F Barbot; C Blanchard

1999-01-01

317

L-shell ionisation of medium and heavy elements by 1.2-3.0 MeV incident alpha particles  

Microsoft Academic Search

Thin targets of Yb, W, Au, Pb and Bi were bombarded by 1.2-03.0 MeV alpha particles. From the resulting L X-rays, experimental Li-subshell ionization cross sections were deduced. The measured cross sections are compared with the predictions of the ECPSSR theory by expressing the data in terms of ratios of experimental to theoretical values as a function of the corrected

R. S. Sokhi; D. Crumpton

1985-01-01

318

L-subshell ionisation of 71Lu, 73Ta and 79Au by 1.5-4.5 MeV alpha particles  

Microsoft Academic Search

The L X-rays of 71Lu, 73Ta and 79Au were produced by 1.5-4.5 MeV alpha particle bombardment. The emitted Lalpha, Lgamma1 and Lgamma2,3 lines were selected to convert X-ray production cross sections into ionisation cross sections. The ionisation cross sections obtained were compared with the predictions of the ECPSSR theory. A reasonable agreement of L3-subshell ionisation cross sections between the present

X. Cai; Z. Y. Liu; X. M. Chen; S. X. Ma; Z. C. Chen; Q. Xu; H. P. Liu; X. W. Ma

1992-01-01

319

Systematic study of the L-subshell ionization cross sections of Ho, Er, and Tm by MeV alpha-particle bombardments  

Microsoft Academic Search

The experimental L-subshell ionization cross sections, induced by MeV alpha particle bombardments, of Ho, Er, and Tm are compared with the ECPSSR theory. The general tendencies show systematic discrepancies for the three subshells. To account for the effects of induced intrashell transitions, the coupled state model is incorporated within the ECPSSR calculations, thus yielding the ECPSSR-IS. Systematic discrepancies between the

B. A. Shehadeh; A. B. Hallak

1999-01-01

320

Cumulative genetic damage in hematopoietic stem cells in a patient with a 40-year exposure to alpha particles emitted by thorium dioxide.  

PubMed

Thorotrast, a colloidal suspension of the long-lived radionuclide, thorium-232, was widely used as a radiographic contrast medium for several decades. Due to the poor excretion of the sol, however, Thorotrast would deposit in the liver, bone marrow and other tissue, and patients would receive alpha-particle irradiation for life. To gauge the cumulative genetic damage to hematopoietic stem cells due to chronic exposure to alpha particles, we conducted a multi-end-point evaluation in a 72-year-old man who had been administered a 32-ml bolus of Thorotrast during cerebral angiography performed over 40 years ago in 1950. Peripheral T lymphocytes were cultured to quantify the frequencies and cellular distributions of asymmetrical and symmetrical types of chromosome aberrations in first-division metaphases and micronuclei in cytokinesis-arrested interphase II cells. Aberrations were scored using classical chromosome group analysis methods and chromosome painting techniques. Assays of glycophorin-A (GPA) mutations in red blood cells were also performed to obtain a relative measurement of damage sustained by the erythroid stem cell population. Results revealed that approximately 30% of the lymphocytes in this patient contained one or more chromosome aberrations, the majority of which were of the "stable" type. About one-third of the lymphocytes with chromosome damage carried multiple aberrations, suggesting that significant numbers of stem cells survive exposures to alpha-particle radiation that induce complex genomic alterations. Increased frequencies of GPA mutations were observed, demonstrating that genomic damage is also induced in erythroid progenitors. The numbers of micronuclei in lymphocytes were only moderately increased compared to expected values for persons of comparable age, and thus this end point was not useful for quantifying exposure level. Despite the relatively severe burden of somatic cell damage induced by 40 years of internal alpha-particle irradiation, the patient remains surprisingly free of any serious illness. PMID:9254732

Littlefield, L G; Travis, L B; Sayer, A M; Voelz, G L; Jensen, R H; Boice, J D

1997-08-01

321

Determining the transmission efficiency for 3He(alpha,gamma) 7Be in DRAGON  

NASA Astrophysics Data System (ADS)

The cross section of the 3He(alpha,gamma)7 Be reaction is an important quantity in several areas of nuclear astrophysics. However, the cross section is not well known at centre of mass energies above Erel = 1.5 MeV where only two discrepant data sets currently exist. In September of 2011, four 3He(alpha,gamma) 7Be cross section measurements above Erel = 1.5 MeV were made using the direct 7Be recoil detection method with the DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) recoil mass separator at TRIUMF. Since 100% recoil detection efficiency is not possible with DRAGON, a two stage Monte Carlo simulation has been completed to determine the recoil transmission efficiency for each 3He(alpha,gamma) 7Be cross section measurement. This thesis describes the simulation, discusses its results, and draws conclusions relevant to future experiments.

Reeve, Sarah

322

The Benefits of B ---> K* l+ l- Decays at Low Recoil  

E-print Network

Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise form factor relations correlate the B -> K* l+ l- transversity amplitudes, which simplifies the description of the various decay observables and provides opportunities for the extraction of the electroweak short distance couplings. We propose new angular observables which have very small hadronic uncertainties. We exploit existing data on B -> K* l+ l- distributions and show that the low recoil region provides powerful additional information to the large recoil one. We find disjoi...

Bobeth, Christoph; van Dyk, Danny

2010-01-01

323

The Benefits of B ---> K* l+ l- Decays at Low Recoil  

E-print Network

Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise form factor relations correlate the B -> K* l+ l- transversity amplitudes, which simplifies the description of the various decay observables and provides opportunities for the extraction of the electroweak short distance couplings. We propose new angular observables which have very small hadronic uncertainties. We exploit existing data on B -> K* l+ l- distributions and show that the low recoil region provides powerful additional information to the large recoil one. We find disjoint best-fit solutions, which include the Standard Model, but also beyond-the-Standard Model ones. This ambiguity can be accessed with future precision measurements.

Christoph Bobeth; Gudrun Hiller; Danny van Dyk

2010-07-08

324

Einstein–Bohr recoiling double-slit gedanken experiment performed at the molecular level  

NASA Astrophysics Data System (ADS)

Double-slit experiments illustrate the quintessential proof for wave–particle complementarity. If information is missing about which slit the particle has traversed, the particle, behaving as a wave, passes simultaneously through both slits. This wave-like behaviour and corresponding interference is absent if ‘which-slit’ information exists. The essence of Einstein–Bohr's debate about wave–particle duality was whether the momentum transfer between a particle and a recoiling slit could mark the path, thus destroying the interference. To measure the recoil of a slit, the slits should move independently. We showcase a materialization of this recoiling double-slit gedanken experiment by resonant X-ray photoemission from molecular oxygen for geometries near equilibrium (coupled slits) and in a dissociative state far away from equilibrium (decoupled slits). Interference is observed in the former case, while the electron momentum transfer quenches the interference in the latter case owing to Doppler labelling of the counter-propagating atomic slits, in full agreement with Bohr's complementarity.

Liu, Xiao-Jing; Miao, Quan; Gel'Mukhanov, Faris; Patanen, Minna; Travnikova, Oksana; Nicolas, Christophe; Ågren, Hans; Ueda, Kiyoshi; Miron, Catalin

2015-02-01

325

The scintillation and ionization yield of liquid xenon for nuclear recoils  

E-print Network

XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield \\leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of \\leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our \\leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield \\Qy is necessary to establish the trigger threshold of the experiment. The ionization yield \\Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.

P. Sorensen; A. Manzur; C. E. Dahl; J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; P. Brusov; L. C. C. Coelho; L. DeViveiros; A. D. Ferella; L. M. P. Fernandes; S. Fiorucci; R. J. Gaitskell; K. L. Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; D. N. McKinsey; M. E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli; J. M. F. dos Santos; P. Shagin; T. Shutt; S. Schulte; C. Winant; M. Yamashita; for the XENON10 Collaboration

2008-12-31

326

Benchmarking the Geant4 full system simulation of an associated alpha-particle detector for use in a D-T neutron generator.  

PubMed

The position-sensitive alpha-particle detector used to provide the starting time and initial direction of D-T neutrons in a fast-neutron imaging system was simulated with a Geant4-based Monte Carlo program. The whole detector system, which consists of a YAP:Ce scintillator, a fiber-optic faceplate, a light guide, and a position-sensitive photo-multiplier tube (PSPMT), was modeled, starting with incident D-T alphas. The scintillation photons, whose starting time follows the distribution of a scintillation decay curve, were produced and emitted uniformly into a solid angle of 4? along the track segments of the alpha and its secondaries. Through tracking all photons and taking into account the quantum efficiency of the photocathode, the number of photoelectrons and their time and position distributions were obtained. Using a four-corner data reconstruction formula, the flood images of the alpha detector with and without optical grease between the YAP scintillator and the fiber-optic faceplate were obtained, which show agreement with the experimental results. The reconstructed position uncertainties of incident alpha particles for both cases are 1.198 mm and 0.998 mm respectively across the sensitive area of the detector. Simulation results also show that comparing with other faceplates composed of 500 ?m, 300 ?m, and 100 ?m fibers, the 10-?m-fiber faceplate is the best choice to build the detector for better position performance. In addition, the study of the background originating inside the D-T generator suggests that for 500-?m-thick YAP:Ce coated with 1-?m-thick aluminum, and very good signal-to-noise ratio can be expected through application of a simple threshold. PMID:22728838

Zhang, Xiaodong; Hayward, Jason P; Cates, Joshua W; Hausladen, Paul A; Laubach, Mitchell A; Sparger, Johnathan E; Donnald, Samuel B

2012-08-01

327

A Recoil Mass Spectrometer for the HHIRF facility  

SciTech Connect

A Recoil Mass Spectrometer (RMS) is to be built that will carry out a broad research program in heavy-ion science. The RMS will make possible the study of otherwise inaccessible exotic nuclei. Careful attention has been given to match the RMS to all the beams available from the HHIRF accelerators, including those beams with the highest energy, as well as massive particles for use in inverse reactions. The RMS is to be a momentum achromat followed by a split electric-dipole mass spectrometer of the type operating at NSRL at the University of Rochester. The RMS is essential for many of the proposed experiments on short-lived and/or low cross-section products. The spectrometer design is discussed, with examples and comparisons with other spectrometers given. Detector arrays to be used with the RMS are also discussed. 21 refs., 4 figs., 1 tab.

Cole, J.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Cormier, T.M. (Texas A and M Univ., College Station, TX (USA)); Hamilton, J.H. (Vanderbilt Univ., Nashville, TN (USA). Dept. of Physics and Astronomy)

1989-01-01

328

RELATIVISTIC SUPPRESSION OF BLACK HOLE RECOILS  

SciTech Connect

Numerical-relativity simulations indicate that the black hole produced in a binary merger can recoil with a velocity up to v {sub max} {approx_equal} 4000 km s{sup -1} with respect to the center of mass of the initial binary. This challenges the paradigm that most galaxies form through hierarchical mergers, yet retain supermassive black holes (SBHs) at their centers despite having escape velocities much less than v {sub max}. Interaction with a circumbinary disk can align the binary black hole spins with their orbital angular momentum, reducing the recoil velocity of the final black hole produced in the subsequent merger. However, the effectiveness of this alignment depends on highly uncertain accretion flows near the binary black holes. In this paper, we show that if the spin S {sub 1} of the more massive binary black hole is even partially aligned with the orbital angular momentum L, relativistic spin precession on sub-parsec scales can align the binary black hole spins with each other. This alignment significantly reduces the recoil velocity even in the absence of gas. For example, if the angle between S {sub 1} and L at large separations is 10{sup 0} while the second spin S {sub 2} is isotropically distributed, the spin alignment discussed in this paper reduces the median recoil from 864 km s{sup -1} to 273 km s{sup -1} for maximally spinning black holes with a mass ratio of 9/11. This reduction will greatly increase the fraction of galaxies retaining their SBHs.

Kesden, Michael; Sperhake, Ulrich; Berti, Emanuele [California Institute of Technology, MC 350-17, 1216 E. California Blvd., Pasadena, CA 91125 (United States)

2010-06-01

329

NEW APPROACHES TO CONFINED ALPHA DIAGNOSTICS  

SciTech Connect

Three new approaches to obtain information on the confined fast alphas in International Thermonuclear Experimental Reactor (ITER) are proposed. The first technique measures the energetic charge exchange (CX) neutrals that result from the alpha collision-induced knock-on fuel ion tails undergoing electron capture on the MeV D neutral beams planned for heating and current drive. The second technique measures the energetic knock-on neutron tail due to alphas using the lengths of the proton recoil tracks produced by neutron collisions in nuclear emulsions. The range of the 14 to 20 MeV recoil protons increases by {approx}140 microns per MeV. The third approach would measure the CX helium neutrals resulting from confined alphas capturing two electrons in the ablation cloud surrounding a dense gas jet that has been proposed for disruption mitigation in ITER.

FISHER,R.K

2004-04-01

330

Approaches to confined alpha diagnostics on ITER  

SciTech Connect

Three approaches to obtain information on the confined fast alphas in the International Thermonuclear Experimental Reactor (ITER) are proposed. The first technique measures the energetic charge exchange (CX) neutrals that result from the alpha collision-induced knock-on fuel ion tails undergoing electron capture on the MeV D neutral beams planned for heating and current drive. The second technique measures the energetic knock-on neutron tail due to alphas using the lengths of the proton recoil tracks produced by neutron collisions in nuclear emulsions. The range of the 14 to 20 MeV recoil protons increases by {approx}140 {mu}m per MeV. The third approach would measure the CX helium neutrals resulting from confined alphas capturing two electrons in the ablation cloud surrounding a dense gas jet that has been proposed for disruption mitigation in ITER.

Fisher, R.K. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

2004-10-01

331

Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.  

PubMed

The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields. PMID:23059817

Pesnya, Dmitry S; Romanovsky, Anton V

2013-01-20

332

Stopping powers of Al, Ti, Cu, Zr, Rh, Ag, Ta and Au for 26 MeV alpha particles and Z3 1 correction  

NASA Astrophysics Data System (ADS)

Stopping powers of Al, Ti, Cu, Zr, Rh, Ag, Ta and Au for 26 MeV alpha particles have been measured using a surface barrier silicon detector with an accuracy of 0.35%. The stopping powers for alpha particles divided by 4 have been compared with the stopping powers for 6.500 MeV protons of the same velocity. Experimental magnitudes of the Z 3 1 correction which is contained in the Bethe-Bloch stopping formula were extracted using the alpha-proton difference. Using the experimental Z 3 1 corrections thus obtained and the experimental Z 3 1 corrections of the previous paper, parameters of ? and b which appear in the theory of Ashley, Ritchie and Brandt for the Z 3 1 correction have been determined with exactly the same method as the previous paper as ? = 1.336 and b = 1.32. The magnitude of the Z 3 1 correction calculated by the theory of Ashley, Ritchie and Brandt using these parameters have been compared with those obtained by other authors.

Shiomi-Tsuda, N.; Sakamoto, N.; Ogawa, H.; Ishiwari, R.

1991-09-01

333

Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone  

PubMed Central

Background Hormone-refractory breast cancer metastatic to bone is a clinically challenging disease associated with high morbidity, poor prognosis, and impaired quality of life owing to pain and skeletal-related events. In a preclinical study using a mouse model of breast cancer and bone metastases, Ra-223 dichloride was incorporated into bone matrix and inhibited proliferation of breast cancer cells and differentiation of osteoblasts and osteoclasts (all P values?alpha-particle therapy for the treatment of symptomatic bone metastases in patients with castration-resistant prostate cancer. On the basis of a strong preclinical rationale, we used Ra-223 dichloride to treat bone metastases in a patient with breast cancer. Results A 44-year-old white woman with metastatic breast cancer who was estrogen receptor–positive, BRCA1-negative, BRCA2-negative, PIK3CA mutation (p.His1047Arg) positive presented with diffuse bony metastases and bone pain. She had hormone refractory and chemotherapy refractory breast cancer. After Ra-223 therapy initiation her bone pain improved, with corresponding decrease in tumor markers and mixed response in 18F-FDG PET/CT and 18F-NaF bone PET/CT. The patient derived clinical benefit from therapy. Conclusion We have shown that Ra-223 dichloride can be safely administered in a patient with hormone-refractory bone metastasis from breast cancer at the US FDA–approved dose for prostate cancer. Furthermore, because the treatment did not cause any drop in hematologic parameters, it has the potential to be combined with other radiosensitizing therapies, which may include chemotherapy or targeted therapies. Given that Ra-223 dichloride is already commercially available, this case report may help future patients and provide a rationale for initiating clinical research in the use of Ra-223 dichloride to treat bone metastasis from breast cancer. A randomized clinical trial is needed to provide evidence of efficacy, safety, and good outcomes. PMID:25243101

2014-01-01

334

Light charged and neutral particle production in proton and alpha reactions on natSi at energies between 20 and 65 MeV  

SciTech Connect

Measurements have been performed to determine inclusive cross sections ((d{sup 2}{sigma}/d{omega}dE), (d{sigma}/dE), (d{sigma}/d{omega}) and {sigma}tot) for the production of neutral and light charged particles (LCP) induced by beams of protons of 26.5, 48.5 and 62.9 MeV and alpha's of 25.4, 45.5 and 57.8 MeV incident energies on natSi targets. The secondary LCPs (p, d, t, 3He, {alpha}, 6Li, 7Li and 7Be) were detected at angles from 10 deg. to 165 deg. in steps of {+-}10 deg. Neutrons emitted in these reactions were only recorded in coincidence with, at least, one detected LCP. Some comparisons between theoretical calculations based on the GNASH and TALYS nuclear reaction codes and the experimental results are presented and discussed.

Dufauquez, C.; El Masri, Y.; Roberfroid, V.; Cabrera, J.; Keutgen, Th.; Mol, J. van [FNRS, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Institut de Physique Nucleaire, Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Demetriou, P. [Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, 1050 Brussels (Belgium); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands)

2005-05-24

335

Semiconductor polycrystalline alpha detectors  

Microsoft Academic Search

In order to check possible novel neutron detectors based on composite semiconductor detectors containing nuclides with large cross sections for neutron, we tested their response to alpha particles. In the present paper we describe results obtained with composite samples made of hexagonal Boron Nitride particles bound with Polystyrene or Nylon-6. The samples were tested under 5.5 MeV alpha particle radiation

M. Schieber; M. Roth; A. Zuck; G. Marom; O. Khakhan; Z. B. Alfassi

2006-01-01

336

Relativistic nuclear recoil corrections to the energy levels of hydrogen-like and high $Z$ lithium like atoms in all orders in $?Z$  

E-print Network

The relativistic nuclear recoil corrections to the energy levels of low-laying states of hydrogen-like and high $Z$ lithium-like atoms in all orders in $\\alpha Z$ are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low $Z$ the results of the calculation are in good agreement with the $\\alpha Z$ -expansion results. It is found that the nuclear recoil contribution, additional to the Salpeter's one, to the Lamb shift ($n=2$) of hydrogen is $-1.32(6)\\,kHz$. The total nuclear recoil correction to the energy of the $(1s)^{2}2p_{\\frac{1}{2}}-(1s)^{2}2s$ transition in lithium-like uranium constitutes $-0.07\\,eV$ and is largely made up of QED contributions.

A. N. Artemyev; V. M. Shabaev; V. A. Yerokhin

1995-06-14

337

Scintillation of liquid neon from electronic and nuclear recoils  

E-print Network

We have measured the time dependence of scintillation light from electronic and nuclear recoils in liquid neon, finding a slow time constant of 15.4+-0.2 us. Pulse shape discrimination is investigated as a means of identifying event type in liquid neon. Finally, the nuclear recoil scintillation efficiency is measured to be 0.26+-0.03 for 387 keV nuclear recoils.

J. A. Nikkel; R. Hasty; W. H. Lippincott; D. N. McKinsey

2006-12-04

338

Study on the evolution and nature of interstitial-type defects following proton and alpha particle implantation during low-dose proximity gettering of platinum  

Microsoft Academic Search

Platinum has been diffused into epitaxial n-type silicon at 600 degC, 650 degC and 700 degC for 30min following implantation with 3.3MeV alpha particles. The doses employed were between 1x1011 and 1x1014He+cm-2. Also an implantation involving protons at 850keV with doses of 5x1013 and 5x1014H+cm-2 has been performed followed by an annealing at 600 degC or 700 degC. Thereafter the

D. C. Schmidt; B. G. Svensson; J. F. Barbot; C. Blanchard

1999-01-01

339

High-density lipoprotein (HDL3)-associated alpha-tocopherol is taken up by HepG2 cells via the selective uptake pathway and resecreted with endogenously synthesized apo-lipoprotein B-rich lipoprotein particles.  

PubMed Central

alpha-Tocopherol (alphaTocH) is transported in association with lipoproteins in the aqueous milieu of the plasma. Although up to 50% of circulating alphaTocH is transported by high-density lipoproteins (HDLs), little is known about the mechanisms of uptake of HDL-associated alphaTocH. During the current study, human apolipoprotein (apo)E-free HDL subclass 3 (HDL3) labelled with [14C]alphaTocH was used to investigate uptake mechanisms of HDL3-associated alphaTocH by a permanent hepatoblastoma cell line (HepG2). HDL3-associated alphaTocH was taken up independently of HDL3 holoparticles in excess of apoA-I comparable with the non-endocytotic delivery of cholesteryl esters to cells termed the 'selective' cholesteryl ester uptake pathway. Experiments with unlabelled HDL3 demonstrated net mass transfer of alphaTocH to HepG2 cells. Time-dependent studies with [14C]alphaTocH-labelled HDL3 revealed tracer uptake in 80-fold excess of apoA-I and in 4-fold excess of cholesteryl linoleate. In addition to HLDs, low-density lipoprotein (LDL)-associated alphaTocH was also taken up in excess of holoparticles, although to a lesser extent. These findings were confirmed with unlabelled lipoprotein preparations, in which HDL3 displayed a 2- to 3-fold higher alphaTocH donor efficiency than LDLs (lipoproteins adjusted for equal amounts of alphaTocH). An important factor affecting particle-independent uptake of alphaTocH was the cellular cholesterol content (a 2-fold increase in cellular cholesterol levels resulted in a 2.3-fold decrease in uptake). Pulse-chase studies demonstrated that some of the HDL3-associated alphaTocH taken up independently of holoparticle uptake was resecreted along with a newly synthesized apoB-containing lipoprotein fraction. PMID:9576851

Goti, D; Reicher, H; Malle, E; Kostner, G M; Panzenboeck, U; Sattler, W

1998-01-01

340

Neutron electric form factor via recoil polarimetry  

SciTech Connect

The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

2003-05-01

341

Studying effects of Magnolol on alpha-particle induced bystander effects using PADC-film based dishes  

E-print Network

the bark of Magnolia officinalis which is used as a traditional Chinese medicine, were studied on alpha the associated elevated risks. Various traditional Chinese medicines (TCMs) had been found effective to cure been used as a traditional Chinese medicine for many years. Our current research aims at understanding

Yu, K.N.

342

Elementary Analysis of a Cometary Surface - the Alpha Particle X-Ray Spectrometer APXS on the Rosetta Mission to Comet 67P/CHURYUMOV-GERASIMENKO  

NASA Astrophysics Data System (ADS)

After a 10 years cruise the Rosetta probe will reach its final target in the middle of this year, the comet 67P/Churyumov-Gerasimenko. The main objectives of the mission are to gain more knowledge of the composition, the origin and formation of comets and the solar system. After extensive remote examination of the comet the lander Philae will be separated to land on the comet surface. It will start immediately examining the landing site with its scientific payload. A part of this payload is the APXS (Alpha Particle X-Ray Spectrometer), it will measure in situ the chemical composition of the comet's surface and its changes during the journey of the comet towards the sun. APXS is a combination of two spectrometers in one single instrument, being low in mass and power consumption. It will irradiate the cometary surface with Curium 244 sources, which are emitting alpha-particle and X-rays. In the alpha-mode the instrument uses alpha backscattering spectroscopy to detect lower Z elements like C, N and O and groups of elements with higher Z. In the X-ray mode alpha particle/X-ray induced X-ray spectroscopy (XRF) will allow the detection of most of the higher Z elements from Na up to Ni and above. Both modes will be always run in parallel allowing to determine lower and higher Z elements simultaneously. During the long duration travel to the comet checkouts and software updates of the Rosetta probe and its payload were performed at regular intervals. In recent 3 years the solar powered Rosetta probe had to pass a hibernation phase because of a long passage far away from the sun. After the successful wakeup in January 2014 an extensive test phase of all instruments and subsystems has to be performed, including the APXS. After the landing on the comet an intense long measurement phase of all instruments is planned, the First Science Sequence (FSS). It will be followed by a long term science phase (LTS), determined by periodical changes between measurements and forced breaks to recharge the lander batteries. During these operations the Rosetta probe will escort the comet and the lander along the comets trajectory around the sun. As long as possible APXS and the other instruments will continue to repeat their measurements to monitor the changes and rising activity of the comet. This will shed light on state, composition, evolution and the origin of comets and the solar system. Acknowledgements: This project is funded by the German Space Agency DLR under contracts 50 QP 0404 and 50 QP 0902. References: G. Klingelhöfer, J. Brückner, C. d'Uston, R. Gellert, and R. Rieder, The Rosetta Alpha Particle X-ray Spectrometer (APXS), Space Science Reviews, Vol.128 (2007) 383-396; doi:10.1007/s11214-006-9137-3

Schmanke, Dirk; Economou, Thanasis; Brueckner, Johannes; Gellert, Ralf; Rodionov, Daniel; Klingelhoefer, Goestar; Girones Lopez, Jordi; Uston, Lionel D.

343

{gamma}-ray production by proton and {alpha}-particle induced reactions on {sup 12}C, {sup 16}O, {sup 24}Mg, and Fe  

SciTech Connect

{gamma}-ray production cross sections for proton and {alpha}-particle interactions with {sup 12}C, {sup 16}O, {sup 24}Mg, and Fe have been measured in the energy range 5-25 MeV with proton beams and 5-40 MeV with {alpha}-particle beams. Isotopically pure foils of {sup 24}Mg and foils of natural isotopical composition of C, MgO, and Fe have been used. {gamma}-ray angular distributions were obtained with five high-purity Ge detectors with bismuth germanate Compton shields placed at angles of 45 deg. to 157.5 deg. Cross sections for more than 50 different {gamma}-ray transitions were extracted, and for many of them no data have been published before. Comparison of present data with data available in the literature shows mostly good to excellent agreement. In addition to the production cross sections, high-statistics, low-background line shapes of the 4.438 MeV {sup 12}C {gamma} ray from inelastic scattering off {sup 12}C and spallation of {sup 16}O were obtained. Comparison with nuclear reaction calculations shows that these data place interesting constraints on nuclear reaction models.

Belhout, A.; Kiener, J.; Coc, A.; Duprat, J.; Engrand, C.; Fitoussi, C.; Gounelle, M.; Lefebvre-Schuhl, A.; Sereville, N. de; Tatischeff, V.; Thibaud, J.-P.; Chabot, M.; Hammache, F.; Benhabiles-Mezhoud, H. [USTHB, Faculte de Physique, BP 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), CNRS-IN2P3 et Universite Paris-Sud, F-91405 Orsay Campus (France); Institut de Physique Nucleaire (IPN), CNRS-IN2P3 et Universite Paris-Sud, F-91400 Orsay (France); Departement de Physique, Universite de Boumerdes, Avenue de l'Independance, 35000 Boumerdes (Algeria)

2007-09-15

344

Features of the gas discharge in the narrow gap micro-pattern gas detectors (MPGD) at a high level of alpha-particles background  

E-print Network

In given article preliminary results of the research of the electron multiplication in MPGD are presented at a high level of alpha-particles background. This work has expanded borders of understanding of the streamer mode nature. It is seen as a complex from electrostatic and electromagnetic interactions which begin with appearance of the precursor in plasma state. In an inter-electrode gap the plasma oscillations occur, accompanied by longitudinal elastic waves of ionization, which can reach the cathode surface with induced negative charge. With the release of this charge due to previously established conducting channel there is a strong current pulse, accompanied by the emission due to recombination of positive and negative ions and a thin cord or streamer derive. In the aim of the MPGD protection from the spark breakdown at a high level of the alpha-particle background the next gas composition from a buffer, cooling and electronegative components are offered: 70% He +28% CF4 +2% SF6.

V. I. Razin; A. I. Reshetin

2010-09-15

345

Do the various radiations present in BNCT act synergistically? Cell survival experiments in mixed alpha-particle and gamma-ray fields.  

PubMed

In many radiotherapy situations patients are exposed to mixed field radiation. In particular in BNCT, as with all neutron beam exposures, a significant fraction of the dose is contributed by low LET gamma ray photons. The components of such a mixed field may show a synergistic interaction and produce a greater cell kill effect than would be anticipated from the independent action of the different radiation types. Such a synergy would have important implications for treatment planning and in the interpretation of clinical results. An irradiation setup has been created at the Medical Research Council in Harwell to allow simultaneous irradiation of cells by cobalt-60 gamma rays and plutonium-238 alpha-particles. The setup allows for variation of dose and dose rates for both sources along with variation of the alpha particle energy. A series of cell survival assays for this mixed field have been carried out using V79-4 cells and compared to exposures to the individual components of the field under identical conditions. In the experimental setup described no significant synergistic effect was observed. PMID:19376715

Phoenix, Ben; Green, Stuart; Hill, Mark A; Jones, Bleddyn; Mill, Andrew; Stevens, David L

2009-07-01

346

New Measurement of the Scintillation Efficiency of Low-Energy Nuclear Recoils in Liquid Xenon  

E-print Network

Particle detectors that use liquid xenon (LXe) as detection medium are among the leading technologies in the search for dark matter weakly interacting massive particles (WIMPs). A key enabling element has been the low-energy detection threshold for recoiling nuclei produced by the interaction of WIMPs in LXe targets. In these detectors, the nuclear recoil energy scale is based on the LXe scintillation signal and thus requires knowledge of the relative scintillation efficiency of nuclear recoils, Leff. The uncertainty in Leff at low energies is the largest systematic uncertainty in the reported results from LXe WIMP searches at low masses. In the context of the XENON Dark Matter project, a new LXe scintillation detector has been designed and built specifically for the measurement of Leff at low energies, with an emphasis on maximizing the scintillation light detection efficiency to obtain the lowest possible energy threshold. We report new measurements of Leff at low energies performed with this detector. Our results suggest a Leff which slowly decreases with energy, from 0.144 +/- 0.009 at 15 keV down to 0.088 +0.014 -0.015 at 3 keV.

G. Plante; E. Aprile; R. Budnik; B. Choi; K. -L. Giboni; L. W. Goetzke; R. F. Lang; K. E. Lim; A. J. Melgarejo Fernandez

2011-04-13

347

Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols.  

PubMed

Smog chamber experiments were conducted to investigate the hygroscopicity of particles generated from photooxidation of alpha-pinene/NO(x) with different sulfate seed aerosols or oxidation conditions. Hygroscopicity of particles was measured by a tandem differential mobility analyzer (TDMA) in terms of hygroscopic growth factor (Gf), with a relative humidity of 85%. With sulfate seed aerosols present, Gf of the aerosols decreased very fast before notable secondary organic aerosols (SOA) formation was observed, indicating a heterogeneous process between inorganic seeds and organic products might take place as soon as oxidation begins, rather than only happening after gas-aerosol partition of organic products starts. The final SOA-coated sulfate particles had similar or lower Gf than seed-free SOA. The hygroscopicity of the final particles was not dependent on the thickness but on the hygroscopicity properties of the SOA, which were influenced by the initial sulfate seed particles. In the two designed aging processes, Gf of the particles increased more significantly with introduction of OH radical than with ozone. However, the hygroscopicity of SOA was very low even after a long time of aging, implying that either SOA aging in the chamber was very slow or the Gf of SOA did not change significantly in aging. Using an aerosol composition speciation monitor (ACSM) and matrix factorization (PMF) method, two factors for the components of SOA were identified, but the correlation between SOA hygroscopicity and the proportion of the more highly oxidized factor could be either positive or negative depending on the speciation of seed aerosols present. PMID:24649698

Chu, Biwu; Wang, Kun; Takekawa, Hideto; Li, Junhua; Zhou, Wei; Jiang, Jingkun; Ma, Qinxing; He, Hong; Hao, Jiming

2014-01-01

348

Nuclear astrophysics and the Daresbury Recoil Separator at the Holifield Radioactive Ion Beam Facility  

SciTech Connect

The Daresbury Recoil Separator (DRS) has been installed for nuclear astrophysics research at Oak Ridge National Laboratory`s Holifield Radioactive Ion Beam Facility. It will be used for direct measurements of capture reactions on radioactive ions which occur in stellar explosions such as novae, supernovae and X-ray bursts. These measurements will be made in inverse kinematics with radioactive heavy ion beams incident on hydrogen and helium targets, and the DRS will separate the capture reaction recoils from the intense flux of beam particles. Details of the new DRS experimental equipment and preliminary results from the first commissioning experiments with stable beams are described, along with the plans for the first measurements with radioactive beams. Other astrophysics research efforts at ORNL--in theoretical astrophysics, nuclear astrophysics data evaluation, heavy element nucleosynthesis, theoretical atomic astrophysics, and atomic astrophysics data--are also briefly described.

Smith, M.S.

1997-12-01

349

A coherent understanding of low-energy nuclear recoils in liquid xenon  

SciTech Connect

Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (?<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

Sorensen, Peter, E-mail: pfs@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

2010-09-01

350

A Multi-port Low-Fluence Alpha-Particle Irradiator: Fabrication, Testing and Benchmark Radiobiological Studies  

PubMed Central

A new multi-port irradiator, designed to facilitate the study of the effects of low fluences of ? particles on monolayer cultures, has been developed. The irradiator consists of four individual planar 241Am ?-particle sources that are housed inside a helium-filled Lucite chamber. Three of the radioactive sources consist of 20 MBq of 241Am dioxide foil. The fourth source, used to produce higher dose rates, has an activity of 500 MBq. The four sources are mounted on rotating turntables parallel to their respective 1.5-?m-thick Mylar exit windows. A stainless steel honeycomb collimator is placed between the four sources and their exit windows by a cantilever attachment to the platform of an orbital shaker that moves its table in an orbit of 2 cm. Each exit window is equipped with a beam delimiter to optimize the uniformity of the beam and with a high-precision electronic shutter. Opening and closing of the shutters is controlled with a high-precision timer. Custom-designed stainless steel Mylar-bottomed culture dishes are placed on an adapter on the shutter. The ? particles that strike the cells have a mean energy of 2.9 MeV. The corresponding LET distribution of the particles has a mean value of 132 keV/?m. Clonogenic cell survival experiments with AG1522 human fibroblasts indicate that the RBE of the ? particles compared to 137Cs ? rays is about 7.6 for this biological end point. PMID:15161346

Neti, Prasad V. S. V.; de Toledo, Sonia M.; Perumal, Venkatachalam; Azzam, Edouard I.; Howell, Roger W.

2011-01-01

351

I. Excluded volume effects in Ising cluster distributions and nuclear multifragmentation. II. Multiple-chance effects in alpha-particle evaporation  

NASA Astrophysics Data System (ADS)

In Part I, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In Part II, an explanation is offered for the recently observed oscillations in the energy spectra of alpha-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of alpha-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental alpha-spectra as having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto's single-chance evaporation theory is augmented to include multiple-chance emission and tested on experimental data to yield positive results.

Breus, Dimitry Eugene

352

I. Excluded Volume Effects in Ising Cluster Distributions and Nuclear Multifragmentation II. Multiple-Chance Effects in Alpha-Particle Evaporation  

SciTech Connect

In Part 1, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In part 2, an explanation is offered for the recently observed oscillations in the energy spectra of {alpha}-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of {alpha}-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental {alpha}-spectra has having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto's single-chance evaporation theory is augmented to include multiple-chance emission and tested on experimental data to yield positive results.

Breus, Dimitry E.

2005-05-16

353

Alpha-particles as probes of nuclear shape in the rare earths and structure effects on proton emission in the mass 80 region  

SciTech Connect

Low emission barriers and large subbarrier anisotropies in the alpha-particle decay with respect to the spin direction, of Sn and rare earth compound nuclei, are examined in the light of recent calculations incorporating deformation. For the rare earth systems deformation which increases with spin is necessary to explain the data. Energy spectra and angular correlations of evaporated protons from the {sup 52}Cr({sup 34}S, 2p2n){sup 82}Sr reaction were measured in coincidence with discrete transition. Large changes in the shape of the proton spectra were observed when high spin states in different rotation al bands are populated. These effects cannot be explained by phase space arguments in the deexcitation process. They are interpreted as due to near-yrast to near-yrast stretched proton emission, which preferentially populates the yrast band by subbarrier protons. 20 refs., 8 figs.

Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M. (Washington Univ., St. Louis, MO (USA). Dept. of Internal Medicine); Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A. (Oak Ridge National Lab., TN (USA)); Griffin, H.C. (Michigan Univ., Ann Arbor, MI (USA))

1989-01-01

354

Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity  

NASA Technical Reports Server (NTRS)

For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; Ming, D.W.; Squyres, S.W.; Yen, A.; Zipfel, J.

2006-01-01

355

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles. Annual progress report, 15 September 1991--14 September 1992  

SciTech Connect

We report progress made during the period 15 September 1991--14 September 1992 on the project ``Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles``. In the past year we have developed reliable, narrow energy spread, high-current sources of He{sup ++} based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

Gay, T.J.; Park, J.T.

1992-11-01

356

Modeling the Observability of Recoiling Black Holes as Offset Quasars  

NASA Astrophysics Data System (ADS)

The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH. In extreme cases these kicks may be thousands of km/s -- enough to easily eject them from their host galaxies. Moderate recoil kicks may also cause substantial displacements of the SMBH, however. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable, where they are most likely to be found, and whether BH spin alignment prior to merger is efficient at suppressing large recoils. Motivated by this, we have developed a model for the observable population of recoiling quasars in a cosmological framework, utilizing detailed information about the progenitor galaxies from state-of-the-art cosmological hydrodynamic simulations (the Illustris Project). The model for offset quasar lifetimes includes a physically-motivated, time-dependent model for accretion onto kicked SMBHs, and results are analyzed for a range of possible BH spin alignment models. We find that the observability of offset quasars depends strongly on the efficiency of pre-merger spin alignment, with promising indications that observations of recoils could distinguish between at least the extreme limits of spin alignment models. Our results also suggest that observable offset quasars should inhabit preferred types of host galaxies, where again these populations depend on the degree of pre-merger spin alignment. These findings will be valuable for planned and future dedicated searches for recoiling quasars, and they indicate that such objects might be used to place indirect constraints on SMBH spins.

Blecha, Laura; Torrey, Paul Adam; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Greg; Bird, Simeon; Nelson, Dylan R.; Xu, Dandan; Hernquist, Lars E.

2015-01-01

357

Alpha-particle emission as a probe of nuclear shapes and structure effects in proton evaporation spectra  

SciTech Connect

Emission barriers and subbarrier anisotropies from {alpha} decay of Sn* and Yb* compound nuclei are examined in the light of calculations incorporating deformation effects in the decay process. For the Yb* systems deformation which increases with spin is necessary to explain the data. For the Sn* systems the spectral shapes and anisotropies can be explained without deformation. For systems lighter than Sn this probe is not sensitive to the deformation. Energy spectra and angular correlations of evaporated protons from the {sup 52}Cr({sup 34}S, 2n2p){sup 82}Sr reaction were measured in coincidence with discrete transitions. Large shifts in proton spectra were observed when high spin states in different rotational bands are populated. They are interpreted as due to near-yrast stretched proton emission preferentially populating the yrast band by subbarrier protons. Simulations show that channel selected proton spectra cannot be used as probes of deformation.

Nicolis, N.G.; Sarantites, D.G.; Abenante, V.; Adler, L.A.; Dilmanian, F.A.; Majka, Z.; Semkow, T.M.; Stracener, D.W. (Washington Univ., St. Louis, MO (USA). Dept. of Chemistry); Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A. (Oak Ridge National Lab., TN (USA)); Griffin, H.C. (Michigan Univ., Ann Arbor, MI (USA). Dep

1990-01-01

358

Alpha-particle transfer from 6Li to 28Si leading to high excitation of 32S  

NASA Astrophysics Data System (ADS)

The excitation of 32S to energies from 24 to 37 MeV followed by its decay to 28Si has been brought about by the two-step alpha transfer reaction 28Si(6Li,d)32S*??+28Si. A sudden perishing of the decay to the 28Si ground state occurs at 31 MeV of excitation. At about the same energy an increase in the decay to the first excited 2+ state is observed. The yields of 28Si in its ground state or excited to the 21+ and 41+ state prohibit strong fluctuations. This supports the assumption of the existence of states at high excitation in 32S. The results are based on d-? coincidences, which were found to exhibit a strong forward-backward correlation.

Brenner, M.; Lattuada, M.; Gulino, M.; Khlebnikov, S. V.; Chengbo, Li; Prete, G.; Trzaska, W. H.; Zadro, M.; Belov, S. E.

2006-12-01

359

Evaluation of internal alpha-particle radiation exposure and subsequent fertility among a cohort of women formerly employed in the radium dial industry  

SciTech Connect

This study examined the effect of internal exposure to {alpha}-particle radiation on subsequent fertility among women employed in radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n = 603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of {alpha} particles emitted, fraction of energy absorbed within the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of {gamma}-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility. 42 refs., 5 tabs.

Schieve, L.A.; Davis, F.; Freels, S. [Univ. of Illinois, Chicago, IL (United States)] [and others

1997-02-01

360

Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator  

E-print Network

Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Monte Carlo simulations, incorporating light collection efficiency and energy resolution effects, are used to generate neutron scattering spectra which are matched to observed distributions of scintillation signals to parameterise the energy-dependent quenching factor. At energies above 300 keV the dependence is reasonably described using the semi-empirical formulation of Birks and a kB factor of (0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured quenching factor falls more steeply than predicted by the Birks formalism.

L. Reichhart; D. Yu. Akimov; H. M. Araujo; E. J. Barnes; V. A. Belov; A. A. Burenkov; V. Chepel; A. Currie; L. DeViveiros; B. Edwards; V. Francis; C. Ghag; A. Hollingsworth; M. Horn; G. E. Kalmus; A. S. Kobyakin; A. G. Kovalenko; V. N. Lebedenko; A. Lindote; M. I. Lopes; R. Luscher; P. Majewski; A. St J. Murphy; F. Neves; S. M. Paling; J. Pinto da Cunha; R. Preece; J. J. Quenby; P. R. Scovell; C. Silva; V. N. Solovov; N. J. T. Smith; P. F. Smith; V. N. Stekhanov; T. J. Sumner; C. Thorne; R. J. Walker

2011-11-09

361

Micro-collimator fabricated by alpha-particle irradiation of polyallyldiglycol carbonate polymer film and subsequent chemical etching  

Microsoft Academic Search

In the present paper, we propose a method to fabricate a “micro-collimator” with a thickness of 15?m. A commercially available PADC film with a thickness of 100?m was first chemically etched with NaOH\\/ethanol solution to obtain a thin PADC film. This thin PADC film was then irradiated by 5MeV ? particles through a “macro-collimator” with a thickness of 5mm and

V. W. Y. Choi; E. H. W. Yum; K. N. Yu

2010-01-01

362

Designing experimental setup and procedures for studying alpha-particle-induced adaptive response in zebrafish embryos in vivo  

E-print Network

in zebrafish embryos in vivo V.W.Y. Choi a , R.K.K. Lam a , E.Y.W. Chong a , S.H. Cheng b , K.N. Yu a track detector PADC Biological effects Adaptive response Zebrafish embryos a b s t r a c t The present-particle-induced adaptive response in zebrafish embryos in vivo. Thin PADC films with a thickness of 16 lm were fabricated

Yu, K.N.

363

Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis.  

PubMed

Most chemical transport models assume instantaneous equilibrium to represent gas-particle partitioning of semivolatile organic aerosol. This approach has been challenged by recent studies suggesting that secondary organic aerosol (SOA) cannot reach equilibrium within atmospheric time scales. The emergent hypothesis is that gas-particle partitioning rates are limited by diffusion within the condensed phase, which is thought to be "glassy." Here, we investigate the equilibration time scales of SOA formed from ?-pinene ozonolysis by measuring the dynamic response to a modest step-change in temperature. Upon heating, equilibrium is disturbed, and the particles evaporate to restore equilibrium at the new temperature, which is attained when evaporation ceases. The SOA was formed at 10 °C and then heated to near room temperature (30 °C) so that the phase state (viscosity) of the condensed-phase after heating is similar to how it would be in the atmosphere. Experiments were performed in both a thermodenuder, with SOA loading of 350 ?g/m(3), and in a smog chamber, with SOA loading of 2-12 ?g/m(3). Both experiments show, contrary to previous findings, that the SOA achieves equilibrium with dynamic responses consistent with a mass accommodation coefficient of order 0.1. For typical atmospheric conditions, this translates into equilibration time scales on the order of minutes to tens of minutes, supporting the use of equilibrium partitioning in chemical transport models. PMID:23647198

Saleh, Rawad; Donahue, Neil M; Robinson, Allen L

2013-06-01

364

Alpha Thalassemia  

MedlinePLUS

Alpha Thalassemia ? Physicians often mistake alpha thalassemia trait for iron deficiency anemia and incorrectly prescribe iron supplements that have no effect on the anemia. Normal alpha globin genes found on ...

365

Comparison of recoil-induced resonances and the collective atomic recoil laser  

NASA Astrophysics Data System (ADS)

The theories of recoil-induced resonances (RIR) [J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg, Phys. Rev. A 46, 1426 (1992)] and the collective atomic recoil laser (CARL) [R. Bonifacio and L. De Salvo, Nucl. Instrum. Methods Phys. Res. A 341, 360 (1994)] are compared. Both theories can be used to derive expressions for the gain experienced by a probe field interacting with an ensemble of two-level atoms that are simultaneously driven by a pump field. It is shown that the underlying formalisms of the RIR and CARL are equivalent. Differences between the RIR and CARL arise because the theories are typically applied for different ranges of the parameters appearing in the theory. The RIR limit is one in which the time derivative of the probe field amplitude, dE2/dt, depends locally on E2(t) and the gain depends linearly on the atomic density, while the CARL limit is one in which dE2/dt=?t0f(t,t')E2(t')dt', where f is a kernel, and the gain has a nonlinear dependence on the atomic density. Validity conditions for the RIR or CARL limits are established in terms of the various parameters characterizing the atom-field interaction. The probe gain for a probe-pump detuning equal to zero is analyzed in some detail, in order to understand how gain arises in a system which, at first glance, appears to have a symmetry that would preclude the possibility for gain. Moreover, it is shown that these calculations, carried out in perturbation theory, have a range of applicability beyond the recoil problem. Experimental possibilities for observing CARL are discussed.

Berman, P. R.

1999-01-01

366

Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations  

NASA Astrophysics Data System (ADS)

Solar wind "in situ" measurements from the Helios spacecraft in regions of the Heliosphere close to the Sun (˜0.3 AU), at which typical values of the proton plasma beta are observed to be lower than unity, show that the alpha particle distribution functions depart from the equilibrium Maxwellian configuration, displaying significant elongations in the direction perpendicular to the background magnetic field. In the present work, we made use of multi-ion hybrid Vlasov-Maxwell simulations to provide theoretical support and interpretation to the empirical evidences above. Our numerical results show that, at variance with the case of ?p?1 discussed in Perrone et al. (2011), for ?p=0.1 the turbulent cascade in the direction parallel to the ambient magnetic field is not efficient in transferring energy toward scales shorter than the proton inertial length. Moreover, our numerical analysis provides new insights for the theoretical interpretation of the empirical evidences obtained from the Helios spacecraft, concerning the generation of temperature anisotropy in the particle velocity distributions.

Perrone, D.; Bourouaine, S.; Valentini, F.; Marsch, E.; Veltri, P.

2014-04-01

367

DNA Double Strand Breaks as Predictor of Efficacy of the Alpha-Particle Emitter Ac-225 and the Electron Emitter Lu-177 for Somatostatin Receptor Targeted Radiotherapy  

PubMed Central

Rationale Key biologic effects of the alpha-particle emitter Actinium-225 in comparison to the beta-particle emitter Lutetium-177 labeled somatostatin-analogue DOTATOC in vitro and in vivo were studied to evaluate the significance of ?H2AX-foci formation. Methods To determine the relative biological effectiveness (RBE) between the two isotopes (as - biological consequence of different ionisation-densities along a particle-track), somatostatin expressing AR42J cells were incubated with Ac-225-DOTATOC and Lu-177-DOTATOC up to 48 h and viability was analyzed using the MTT assay. DNA double strand breaks (DSB) were quantified by immunofluorescence staining of ?H2AX-foci. Cell cycle was analyzed by flow cytometry. In vivo uptake of both radiolabeled somatostatin-analogues into subcutaneously growing AR42J tumors and the number of cells displaying ?H2AX-foci were measured. Therapeutic efficacy was assayed by monitoring tumor growth after treatment with activities estimated from in vitro cytotoxicity. Results Ac-225-DOTATOC resulted in ED50 values of 14 kBq/ml after 48 h, whereas Lu-177-DOTATOC displayed ED50 values of 10 MBq/ml. The number of DSB grew with increasing concentration of Ac-225-DOTATOC and similarly with Lu-177-DOTATOC when applying a factor of 700-fold higher activity compared to Ac-225. Already 24 h after incubation with 2.5–10 kBq/ml, Ac-225-DOTATOC cell-cycle studies showed up to a 60% increase in the percentage of tumor cells in G2/M phase. After 72 h an apoptotic subG1 peak was also detectable. Tumor uptake for both radio peptides at 48 h was identical (7.5%ID/g), though the overall number of cells with ?H2AX-foci was higher in tumors treated with 48 kBq Ac-225-DOTATOC compared to tumors treated with 30 MBq Lu-177-DOTATOC (35% vs. 21%). Tumors with a volume of 0.34 ml reached delayed exponential tumor growth after 25 days (44 kBq Ac-225-DOTATOC) and after 21 days (34 MBq Lu-177-DOTATOC). Conclusion ?H2AX-foci formation, triggered by beta- and alpha-irradiation, is an early key parameter in predicting response to internal radiotherapy. PMID:24516620

Graf, Franziska; Fahrer, Jörg; Maus, Stephan; Morgenstern, Alfred; Bruchertseifer, Frank; Venkatachalam, Senthil; Fottner, Christian; Weber, Matthias M.; Huelsenbeck, Johannes; Schreckenberger, Mathias; Kaina, Bernd; Miederer, Matthias

2014-01-01

368

RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES  

SciTech Connect

Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

Liu, F. K.; Wang Dong [Department of Astronomy, Peking University, 100871 Beijing (China); Chen Xian, E-mail: fkliu@pku.edu.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, 100871 Beijing (China)

2012-02-20

369

Alpha-lipoic acid reduces LDL-particle number and PCSK9 concentrations in high-fat fed obese Zucker rats.  

PubMed

We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n?=?8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (-21%), non-HDL-C (-25%), LDL-C (-16%), and total LDL particle number (-46%) and an increase in total HDL particles (?22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (-70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (-46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase I? expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1? protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W; Li, Zhuyun; Patel, Mulchand S; Williamson, David L; Rideout, Todd C

2014-01-01

370

Alpha-Lipoic Acid Reduces LDL-Particle Number and PCSK9 Concentrations in High-Fat Fed Obese Zucker Rats  

PubMed Central

We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n?=?8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (?21%), non-HDL-C (?25%), LDL-C (?16%), and total LDL particle number (?46%) and an increase in total HDL particles (?22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (?70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (?46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase I? expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1? protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W.; Li, Zhuyun; Patel, Mulchand S.; Williamson, David L.; Rideout, Todd C.

2014-01-01

371

First limits on WIMP nuclear recoil signals in ZEPLIN-II: a two phase xenon detector for dark matter detection  

E-print Network

Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and Co-60 gamma-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kgxdays. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acce...

Alner, G J; Bewick, A; Bungau, C; Camanzi, B; Carson, M J; Cashmore, R J; Chagani, H; Chepel, V; Cline, D; Davidge, D; Davies, J C; Daw, E; Dawson, J; Durkin, T; Edwards, B; Gamble, T; Gao, J; Ghag, C; Howard, A S; Jones, W G; Joshi, M; Korolkova, E V; Kudryavtsev, V A; Lawson, T; Lebedenko, V N; Lewin, J D; Lightfoot, P; Lindote, A; Liubarsky, I; Lopes, M I; Lüscher, R; Majewski, P; Mavrokoridis, K; McMillan, J E; Morgan, B; Muna, D; Murphy, A S J; Neves, F; Nicklin, G G; Ooi, W; Paling, S M; Cunha, J P; Plank, S J S; Preece, R M; Quenby, J J; Robinson, M; Sergiampietri, F; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Spooner, N J C; Sumner, T J; Thorne, C; Tovey, D R; Tziaferi, E; Walker, R J; Wang, H; White, J; Wolfs, F L H

2007-01-01

372

Alpha voltaic batteries and methods thereof  

NASA Technical Reports Server (NTRS)

An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.

Raffaelle, Ryne P. (Inventor); Jenkins, Phillip (Inventor); Wilt, David (Inventor); Scheiman, David (Inventor); Chubb, Donald (Inventor); Castro, Stephanie (Inventor)

2011-01-01

373

Event counting alpha detector  

DOEpatents

An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

Bolton, R.D.; MacArthur, D.W.

1996-08-27

374

Recoils from unequal-mass, precessing black-hole binaries: The Intermediate Mass Ratio Regime  

E-print Network

We revisit the modeling of the properties of the black-hole remnant resulting the merger of a black-hole binary as a function of the parameters of the binary. We provide a set of empirical formulas for the final mass, spin and recoil velocity of the final black hole as a function of the mass ratio and individual spins of the progenitor. In order to determine the fitting coefficients for these formulas, we perform a set of 126 new numerical evolutions of precessing, unequal-mass black-hole binaries, and fit to the resulting remnant mass, spin, and recoil. In order to reduce the complexity of the analysis, we chose configurations that have one of the black holes spinning, with dimensionless spin alpha=0.8, at different angles with respect to the orbital angular momentum, and the other non-spinning. In addition to evolving families of binaries with different spin-inclination angles, we also evolved binaries with mass ratios as small as q=1/6. We use the resulting empirical formulas to predict the probabilities o...

Zlochower, Yosef

2015-01-01

375

Sequential Cytarabine and Alpha-Particle Immunotherapy with Bismuth-213-Lintuzumab (HuM195) for Acute Myeloid Leukemia  

PubMed Central

Purpose Lintuzumab (HuM195), a humanized anti-CD33 antibody, targets myeloid leukemia cells and has modest single-agent activity against acute myeloid leukemia (AML). To increase the antibody’s potency without the nonspecific cytotoxicity associated with ?-emitters, the ? particle-emitting radionuclide bismuth-213 (213Bi) was conjugated to lintuzumab. This phase I/II trial was conducted to determine the maximum tolerated dose (MTD) and antileukemic effects of 213Bi-lintuzumab, the first targeted ?-emitter, after partially cytoreductive chemotherapy. Experimental Design Thirty-one patients with newly diagnosed (n = 13) or relapsed/refractory (n = 18) AML (median age, 67 years; range, 37–80) were treated with cytarabine 200 mg/m2/day for 5 days followed by 213Bi-lintuzumab 18.5–46.25 MBq/kg. Results The MTD of 213Bi-lintuzumab was 37 MB/kg; myelosuppression lasting > 35 days was dose-limiting. Extramedullary toxicities were primarily limited to ? grade 2 events, including infusion-related reactions. Transient grade 3/4 liver function abnormalities were seen in 5 patients (16%). Treatment-related deaths occurred in 2 of 21 patients (10%) who received the MTD. Significant reductions in marrow blasts were seen at all dose levels. The median response duration was 6 months (range, 2–12). Biodistribution and pharmacokinetic studies suggested that saturation of available CD33 sites by 213Bi-lintuzumab was achieved after partial cytoreduction with cytarabine. Conclusions Sequential administration of cytarabine and 213Bi-lintuzumab is tolerable and can produce remissions in patients with AML. PMID:20858843

Rosenblat, Todd L.; McDevitt, Michael R.; Mulford, Deborah A.; Pandit-Taskar, Neeta; Divgi, Chaitanya R.; Panageas, Katherine S.; Heaney, Mark L.; Chanel, Suzanne; Morgenstern, Alfred; Sgouros, George; Larson, Steven M.; Scheinberg, David A.; Jurcic, Joseph G.

2010-01-01

376

DEVELOPMENT OF PHONON-MEDIATED CRYOGENIC PARTICLE DETECTORS WITH  

E-print Network

DEVELOPMENT OF PHONON-MEDIATED CRYOGENIC PARTICLE DETECTORS WITH ELECTRON AND NUCLEAR RECOIL (background radiation) and nuclear recoil events (dark matter events). These detec- tors with built detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class

California at Berkeley, University of

377

Calculation of recoil implantation profiles using known range statistics  

NASA Technical Reports Server (NTRS)

A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

Fung, C. D.; Avila, R. E.

1985-01-01

378

First limits on WIMP nuclear recoil signals in ZEPLIN-II: a two phase xenon detector for dark matter detection  

E-print Network

Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and Co-60 gamma-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kgxdays. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acceptance between 5 keVee and 20 keVee, had an observed count of 29 events, with a summed expectation of 28.6+/-4.3 gamma-ray and radon progeny induced background events. These figures provide a 90% c.l. upper limit to the number of nuclear recoils of 10.4 events in this acceptance window, which converts to a WIMP-nucleon spin-independent cross-section with a minimum of 6.6x10^-7 pb following the inclusion of an energy dependent, calibrated, efficiency. A second run is currently underway in which the radon progeny will be eliminated, thereby removing the background population, with a projected sensitivity of 2x10^-7 pb for similar exposures as the first run.

G. J. Alner; H. M. Araujo; A. Bewick; C. Bungau; B. Camanzi; M. J. Carson; R. J. Cashmore; H. Chagani; V. Chepel; D. Cline; D. Davidge; J. C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; J. Gao; C. Ghag; A. S. Howard; W. G. Jones; M. Joshi; E. V. Korolkova; V. A. Kudryavtsev; T. Lawson; V. N. Lebedenko; J. D. Lewin; P. Lightfoot; A. Lindote; I. Liubarsky; M. I. Lopes; R. Luscher; P. Majewski; K Mavrokoridis; J. E. McMillan; B. Morgan; D. Muna; A. St. J. Murphy; F. Neves; G. G. Nicklin; W. Ooi; S. M. Paling; J. Pinto da Cunha; S. J. S. Plank; R. M. Preece; J. J. Quenby; M. Robinson; F. Sergiampietri; C. Silva; V. N. Solovov; N. J. T. Smith; P. F. Smith; N. J. C. Spooner; T. J. Sumner; C. Thorne; D. R. Tovey; E. Tziaferi; R. J. Walker; H. Wang; J. White; F. L. H. Wolfs

2007-01-31

379

Alpha particle transfer reaction [sup 12]C([sup 11]B,[sup 7]Li)[sup 16]O and lack of evidence for a tetrahedral shape of the [sup 16]O nucleus  

SciTech Connect

Angular distributions of the alpha particle transfer reaction [sup 12]C([sup 11]B,[sup 7]Li)[sup 16]O were measured for 28, 35, 40, 50, 56, 60, and 80 MeV beam energies. Exact finite range distorted-wave Born approximation (DWBA) analysis was performed for eight states of [sup 16]O: ground state, 6.13 MeV (3[sup [minus

Barna, R.; D'Amico, V.; De Pasquale, D.; Italiano, A.; Lamberto, A. (Dipartimento di Fisica, Universita di Messina and Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Gruppo collegato di Messina, I-98166 Messina (Italy)); Jarczyk, L.; Kamys, B.; Kistryn, M.; Kozela, A.; Magiera, A.; Rudy, Z.; Strzalkowski, A. (Institute of Physics, Jagellonian University, PL-30059 Cracow (Poland)); Albergo, S.; Potenza, R.; Romanski, J. (Dipartimento di Fisica, Universita di Catania and Istituto Nazionale di Fisica Nucleare, Sezione di Catania, I-95129 Catania (Italy))

1994-07-01

380

Efficient one-step radiolabeling of monoclonal antibodies to high specific activity with Actinium-225 for alpha-particle radioimmunotherapy of cancer  

PubMed Central

Targeted alpha-particle radiation using the radioisotope 225Actinium (225Ac) is a promising form of therapy for various types of cancer. Historical obstacles to the use of 225Ac have been the difficulty in finding suitable chelators to stably attach it to targeting vehicles such as peptides and monoclonal antibodies, the low specific activities of the products, and the lack of cost-effective radiolabeling procedures. We initially solved the first problem with a procedure involving two chemical steps that has been used as a standard in preclinical and clinical studies. However, this procedure involves the loss of 90% of the input 225Ac. A more efficient, economical process is needed to facilitate the more widespread use of 225Ac. Methods We conjugated representative antibodies with two forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), as well as other chelators as controls. We developed conditions to radiolabel these constructs in one chemical step and characterized their stability, immunoreactivity, biodistribution, and therapeutic efficacy in healthy and tumor-bearing mice. Results DOTA- antibody constructs were labeled to a wide range of specific activities in one chemical step at 37 °C. Radiochemical yields were approximately 10-fold higher and specific activities were up to 30-fold higher than with the previous approach. The products retained immunoreactivity and were stable to serum challenge in vitro and in mice. Labeling kinetics of DOTA- antibody constructs linked through a benzyl isothiocyanate linkage were more favorable than those linked through a N-hydroxysuccinimide linkage. Tissue distribution was similar but not identical between the constructs. The constructs produced specific therapeutic responses in a mouse model of acute myeloid leukemia. Conclusion We have characterized an efficient, one-step radiolabeling method that produces stable, therapeutically active conjugates of antibodies with 225Ac at high specific activity. We propose that this technology greatly expands the possible clinical applications of 225Ac -monoclonal antibodies. PMID:24982438

Maguire, William F.; McDevitt, Michael R.; Smith-Jones, Peter M.; Scheinberg, David A.

2015-01-01

381

Treatment of HER2-Expressing Breast Cancer and Ovarian Cancer Cells With Alpha Particle-Emitting {sup 227}Th-Trastuzumab  

SciTech Connect

Purpose: To evaluate the cytotoxic effects of low-dose-rate alpha particle-emitting radioimmunoconjugate {sup 227}Th-p-isothiocyanato-benzyl-DOTA-trastuzumab ({sup 227}Th-trastuzumab [where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]) internalized by breast and ovarian cancer cell lines in order to assess the potential of {sup 227}Th-trastuzumab as a therapeutic agent against metastatic cancers that overexpress the HER2 oncogene. Methods and Materials: Clonogenic survival and cell growth rates of breast cancer cells treated with {sup 227}Th-trastuzumab were compared with rates of cells treated with nonbinding {sup 227}Th-rituximab, cold trastuzumab, and X-radiation. Cell growth experiments were also performed with ovarian cancer cells. Cell-associated radioactivity was measured at several time points, and the mean radiation dose to cells was calculated. Results: SKBR-3 cells got 50% of the mean absorbed radiation dose from internalized activity and 50% from cell surface-bound activity, while BT-474 and SKOV-3 cells got 75% radiation dose from internalized activity and 25% from cell surface-bound activity. Incubation of breast cancer cells with 2.5 kBq/ml {sup 227}Th-trastuzumab for 1 h at 4{sup o}C, followed by washing, resulted in mean absorbed radiation doses of 2 to 2.5 Gy. A dose-dependent inhibition of cell growth and an increase in apoptosis were induced in all cell lines. Conclusions: Clinically relevant activity concentrations of {sup 227}Th-trastuzumab induced a specific cytotoxic effect in three HER2-expressing cell lines. The cytotoxic effect of {sup 227}Th-trastuzumab was higher than that of single-dose X-radiation (relative biological effectiveness = 1.2). These results warrant further studies of treatment of breast cancer and ovarian cancer with {sup 227}Th-trastuzumab.

Heyerdahl, Helen; Krogh, Cecilie [Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo (Norway); Borrebaek, Jorgen [Algeta ASA, Kjelsas, Oslo (Norway); Larsen, Asmund [Algeta ASA, Kjelsas, Oslo (Norway); Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo (Norway); Dahle, Jostein, E-mail: jostein.dahle@rr-research.n [Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo (Norway)

2011-02-01

382

Nuclear recoil effects in antiprotonic and muonic atoms  

SciTech Connect

Relativistic nuclear recoil effects are studied for antiprotonic and muonic atoms. The generalization of the Breit-Pauli Hamiltonian including vacuum polarization is presented. Previous treatments are corrected, and the result for the 2S{sub 12}-2P{sub 12} splitting in muonic hydrogen is updated.

Veitia, Andrzej; Pachucki, Krzysztof [Institute of Theoretical Physics, Warsaw University, Hoz-dota 69, 00-681 Warsaw (Poland)

2004-04-01

383

THE NEW HRIBF RECOIL MASS SPECTROMETER | PERFORMANCE AND FIRST RESULTS  

E-print Network

THE NEW HRIBF RECOIL MASS SPECTROMETER | PERFORMANCE AND FIRST RESULTS By Thomas Nelson Ginter: Date: #12;c Copyright by Thomas Nelson Ginter 1999 All Rights Reserved #12;ACKNOWLEDGMENTS I am pleased NELSON GINTER Dissertation under the direction of Professors J. H. Hamilton and A. V. Ramayya For more

384

The Performance of the HRIBF Recoil Mass Spectrometry  

SciTech Connect

The Recoil Mass Spectrometer (RMS) is a mass separator located at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. This paper describes the RMS, its performance, its detector systems, and discusses some experiments to illustrate its capabilities.

Ginter, T.N.

1998-11-13

385

A Candidate Recoiling Black Hole in a Nearby Dwarf Galaxy  

NASA Astrophysics Data System (ADS)

We have discovered a BH recoil candidate offset by 800 pc from a nearby dwarf galaxy. The object, SDSS1133, shows offset broad lines and strong variability. While originally classified as a supernova because of its non-detection in 2005, we detect it in recent and past observations over 63 years. Using high-resolution adaptive optics observations, we constrain the source emission region to be <12 pc. Overall these properties are consistent with theoretical predictions for a runaway BH ejected from its host by gravitational-wave recoil following a merger. We propose a small, 4 orbit HST observation using the COS spectrograph in the FUV, to test for broad C IV emission and other high ionization emission lines which would decisively favor the recoiling BH interpretation. The unique UV spectroscopic capability of HST is critical to decide whether this is a recoiling black hole or an unprecedented 50 year outbursting LBV star (e.g. Eta Carina) followed by a unique long duration SN IIn with rebrightening. Either discovery would be extremely exciting. Finally, SDSS1133 has recently undergone a 1.3 mag rebrightening in PanSTARRS imaging suggesting that the coming year is a critical time to observe the source at maximum.

Koss, Michael

2014-10-01

386

Detection of alpha radiation in a beta radiation field  

DOEpatents

An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

Mohagheghi, Amir H. (Albuquerque, NM); Reese, Robert P. (Edgewood, NM)

2001-01-01

387

Long-range alpha detection  

SciTech Connect

The detection and measurement of alpha contamination is not an easy task. An alpha particle`s characteristic high charge and large mass make it highly interactive with surrounding matter. The particle is often absorbed before its presence can be sensed with a detector. Los Alamos National Laboratory has studied this problem and has developed an improved process to detect alpha-emitting contaminants. The process is called long-range alpha detection (LRAD). The LRAD process focuses on the collection and measurement of ions created as a result of an alpha particle`s interaction with air. With only about 35 eV necessary to create an ion pair, a typical 5-MeV alpha particle, upon emission from its maternal nucleus, creates about 150,000 pairs of charged particles. In air these charged particles take several seconds to locate a mate and become electrically neutral. During this time, ions can be pulled away from the source, collected, and measured. Ions can be motivated to a collection device by using an electric field or by moving the air mass in which the ions are located. The collected charges create a small but discrete current that can give some useful information about the alpha-emitting source. In this article, two commercially available applications of the LRADS technology will be discussed. One of these, a device used primarily for pipe monitoring, is from BNFL Instruments, Inc. The other is a monitoring box of sorts from Eberline that will produce an alpha measurement on anything that is placed in the box.

Kasper, K.

1998-12-01

388

Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal  

E-print Network

We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV $\\gamma$-rays from a $^{137}$Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg$\\cdot$year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

Lee, H S; Adhikari, P; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, H O; Kim, K W; Kim, N Y; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, M H; Leonard, D S; Li, J; Oh, S Y; Olsen, S L; Park, H K; Park, H S; Park, K S; Shim, J H; So, J H

2015-01-01

389

A Chimeric 18L1-45RG1 Virus-Like Particle Vaccine Cross-Protects against Oncogenic Alpha-7 Human Papillomavirus Types  

PubMed Central

Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (?7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr ?7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related ?9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV. PMID:25790098

Huber, Bettina; Schellenbacher, Christina; Jindra, Christoph; Fink, Dieter; Shafti-Keramat, Saeed; Kirnbauer, Reinhard

2015-01-01

390

A Chimeric 18L1-45RG1 Virus-Like Particle Vaccine Cross-Protects against Oncogenic Alpha-7 Human Papillomavirus Types.  

PubMed

Persistent infection with oncogenic human papillomaviruses (HPV) types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr) mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC), a subset of cervical cancer (CxC). Although the incidence of cervical squamous cell carcinoma (SCC) has dramatically decreased following introduction of Papanicolaou (PAP) screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent) HPV vaccines comprise virus-like particles (VLP) of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (?7) includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18) targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1) of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1). Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr ?7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related ?9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV. PMID:25790098

Huber, Bettina; Schellenbacher, Christina; Jindra, Christoph; Fink, Dieter; Shafti-Keramat, Saeed; Kirnbauer, Reinhard

2015-01-01

391

A recoil resilient lumen support, design, fabrication and mechanical evaluation  

NASA Astrophysics Data System (ADS)

Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11× smaller than the recoil reported for commercial stents. These experimental results demonstrate the effectiveness of the device design for the targeted luminal support and stenting applications.

Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

2013-06-01

392

Semiconductor polycrystalline alpha detectors  

NASA Astrophysics Data System (ADS)

In order to check possible novel neutron detectors based on composite semiconductor detectors containing nuclides with large cross sections for neutron, we tested their response to alpha particles. In the present paper we describe results obtained with composite samples made of hexagonal Boron Nitride particles bound with Polystyrene or Nylon-6. The samples were tested under 5.5 MeV alpha particle radiation emitted from 241Am source and 4.8MeV alpha particle of 226Ra source. Some of the responses of these composite detectors to thermal neutrons were already reported and here we shall show some newer results obtained with thermal neutrons, from a low intensity 241Am - 9Be and also from a medium intensity 252Cf source, which were thermalized using 10 cm thick paraffin. The Alpha detection experiments show that all the tested samples, regardless of the binder, show a well-defined peak around the 270 energy channel. There was very little polarization of the alpha radiation, since the amplitude of the alpha peak is reduced after ~ 2min from start of the irradiation, from 100% to 95% and it stayed stable at this level for another 10 minutes. The alpha spectrum detected from a PbI II single crystal is also shown for comparison. The neutron spectrum obtained by the composite BN samples showed an apparent peak around the 150 energy channel. The Signal to noise ratio for neutron detection from radionuclide shown here is about 2 only, whereas recent results to be published later, obtained with our composite BN detectors from a neutron beam of about 10 7 sec -1cm -2 is ~2 5. The 1.4 and 1.7 MeV alpha peaks resulting from the nuclear reaction of thermal neutrons with 10B of the boron nitride detector are not buried in the noise range. The capacitance noise requires small contact areas, therefore for large area detectors it is necessary to produce an electronic read-out device which can add up a multitude of small (less than 10sq.mm) pixilated contacts.

Schieber, M.; Roth, M.; Zuck, A.; Marom, G.; Khakhan, O.; Alfassi, Z. B.

2006-08-01

393

Diesel exhaust particles induce the over expression of tumor necrosis factor-alpha (TNF-alpha) gene in alvelor machrophage and failed to induce apoptosis through activation of nuclear factor-kappaB (NF-kappaB)  

EPA Science Inventory

Exposure to particulate matter (PM2.5-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease. Alveolar macrophages play a major role in the lung's response to inhaled particles and...

394

A recoil proton detector using cylindrical multiwire proportional chambers with delay-line cathode readouts  

NASA Astrophysics Data System (ADS)

We have built and operated a set of two low-mass cylindrical multiwire proportional chambers to detect recoil protons emerging from a liquid hydrogen target. The chambers were 20 and 40 cm in diameter and ˜ 50 cm long, with axes and anode wires parallel to the beam direction. "Magic gas" was used to ensure that avalanches measured the points of closest approach for particle trajectories, which were often at small angles to the anode wires. Azimuthal coordinates were provided by the 2 mm-spaced anode wires (at positive high voltage); longitudinal coordinates were obtained from 4 mm-wide circular cathode strips perpendicular to the anode wires, read out by 12 nsec/cm delay lines. For single-track events, resolutions better than 1 mm rms were obtained for both coordinates.

Ambats, I.; Arenton, M. W.; Ayres, D. S.; Dawson, J.; Diebold, R.; May, E. N.; Sauer, J. R.; Walschon, E.; Wicklund, A. B.; Swallow, E. C.

1980-08-01

395

A single accelerator RIB facility using the recoil mass spectrometer HIRA at NSC, New Delhi  

NASA Astrophysics Data System (ADS)

An on-line Radioactive Ion Beam (RIB) facility is being developed at NSC, New Delhi utilizing the existing 15 UD Pelletron accelerator and the recoil mass separator, HIRA in a new ion-optical mode. The primary beams from the accelerator will be used in inverse kinematics for the production of light RIB species such as 7Be, 8Li, 13N, 17F, 18Ne, etc. These products are separated and transported by HIRA which will be operated in a new ion-optical mode specially tuned for excellent beam rejection and better transportation efficiency. The RIB particles are collected and focussed at the secondary target site with better intensity and optimal beam qualities (an intensity of about 104-106 pps and size ˜ 3 mm dia.). The facility is expected to be operational by the end of 1998.

Das, J. J.; Sugathan, P.; Madhavan, N.; Varughese, T.; Kumar, B.; Rao, P. V. Madhusudhana; Sinha, A. K.

1999-04-01

396

Response of the XENON100 dark matter detector to nuclear recoils  

NASA Astrophysics Data System (ADS)

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmBe241 neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Qy and relative scintillation efficiency Leff. A very good level of absolute spectral matching is achieved in both observable signal channels—scintillation S1 and ionization S2—along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.

Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Balan, C.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Cardoso, J. M. R.; Chen, W.-T.; Choi, B.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fulgione, W.; Gao, F.; Garbini, M.; Geis, C.; Ghag, C.; Giboni, K.-L.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Le Calloch, M.; Levy, C.; Lim, K. E.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lung, K.; Marrodán Undagoitia, T.; Massoli, F. V.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Molinario, A.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pantic, E.; Persiani, R.; Plante, G.; Priel, N.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Scovell, P. R.; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Vitells, O.; Wang, H.; Weber, M.; Weinheimer, C.; Schuhmacher, H.; Wiegel, B.

2013-07-01

397

Precision spectroscopy by photon-recoil signal amplification  

NASA Astrophysics Data System (ADS)

Precision spectroscopy of atomic and molecular ions offers a window to new physics, but is typically limited to species with a cycling transition for laser cooling and detection. Quantum logic spectroscopy has overcome this limitation for species with long-lived excited states. Here we extend quantum logic spectroscopy to fast, dipole-allowed transitions and apply it to perform an absolute frequency measurement. We detect the absorption of photons by the spectroscopically investigated ion through the photon recoil imparted on a co-trapped ion of a different species, on which we can perform efficient quantum logic detection techniques. This amplifies the recoil signal from a few absorbed photons to thousands of fluorescence photons. We resolve the line centre of a dipole-allowed transition in 40Ca+ to 1/300 of its observed linewidth, rendering this measurement one of the most accurate of a broad transition. The simplicity and versatility of this approach enables spectroscopy of many previously inaccessible species.

Wan, Yong; Gebert, Florian; Wübbena, Jannes B.; Scharnhorst, Nils; Amairi, Sana; Leroux, Ian D.; Hemmerling, Börge; Lörch, Niels; Hammerer, Klemens; Schmidt, Piet O.

2014-01-01

398

Spontaneous recoil effects of optical pumping on trapped atoms  

E-print Network

The recoil effects of spontaneous photon emissions during optical pumping of a trapped three-level atom are exactly calculated. Without resort to the Lamb-Dicke approximation, and considering arbitrary detuning and saturation of the pump laser, the density of recoil shifts in phase space is derived. It is shown that this density is not of Gaussian shape, and that it becomes isotropic in phase space only for a branching ratio corresponding to fluorescence scattering but unfavorable for optical pumping. The dependence of its anisotropy on the laser saturation is discussed in the resonant case, and the mapping of moments of the atom's center-of-mass motion due to the pumping is presented. Moreover, it is shown how optimum parameters for protecting the center-of-mass quantum state from pump-induced disturbance depend on the specific property to be protected.

S. Wallentowitz; P. E. Toschek

2008-08-08

399

Recoiling Supermassive Black Holes: A Search in the Nearby Universe  

NASA Astrophysics Data System (ADS)

The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (lsim 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

Lena, D.; Robinson, A.; Marconi, A.; Axon, D. J.; Capetti, A.; Merritt, D.; Batcheldor, D.

2014-11-01

400

Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis  

NASA Technical Reports Server (NTRS)

We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

2007-01-01

401

Recoiling from a Kick in the Head-On Case  

NASA Technical Reports Server (NTRS)

Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

2007-01-01

402

Nuclear recoil energy spectrum of finite-sized dark matter  

NASA Astrophysics Data System (ADS)

Research has shown that direct dark matter detection experiments can distinguish between pointlike and finite-sized dark-matter candidates, both of which are of theoretical interests. In particular, there is an additional form factor in the typical cross section of finite-sized dark matter, causing the nuclear recoil energy spectrum of finite-sized dark matter to decrease more rapidly with the recoil energy than that of pointlike dark matter. Since the spectrum of finite-sized dark matter peaks below 1 keV, which is the common experimental threshold, and falls off rapidly at higher energies, detector with sub-keV threshold is necessary. The current goal of TEXONO-CDEX research program, on the studies of low energy neutrino and dark matter physics at Kuo-Sheng Reactor Neutrino Laboratory and China Jin-Ping Underground Laboratory, is to open the sub-keV detector window with germanium detectors. This work derives a model-independent, theoretical prediction of the nuclear recoil energy spectrum of finite-sized dark matter and is working toward using the predicted spectrum to analyze the experimental data of TEXONO-CDEX, in hope to substantiate or rule out dark matter candidates.

Chen, Anffany

2012-10-01

403

On alpha heating in toroidal devices  

Microsoft Academic Search

Studies of the alpha particle losses and heating profiles for an alpha-heated TFTR-sized tokamak and a small field-reversed mirror reactor (FRM) are presented. The slowing-down and drift of high-energy alpha particles, including detailed orbital effects, is approximated for tokamak geometry using the SYMALF multi-energy-angle code. Results of the calculation for a beam-driven TFTR-type plasma indicate that, except for the center

G. H. Miley

1979-01-01

404

Helium burning and the death of massive stars from the beta-delayed alpha-particle emission of ¹⁶N  

Microsoft Academic Search

Helium burning in massive stars and red giants (at â¼200 MK) allows for the nucleo-synthesis of ¹²C and ¹⁶O via the ⁸Be(α,γ)¹²C triple alpha capture reaction and the ¹²C(α,γ) ¹⁶O capture reaction. At 300 keV, the most efficient energy for burning of helium, the resonant triple alpha-capture reaction is well understood but the ¹²C(α,γ)¹⁶O reaction is poorly understood, due to

Gai

1993-01-01

405

Quantum three-body calculation of nonresonant triple-alpha reaction rate at low temperatures  

Microsoft Academic Search

Triple-alpha reaction rate is re-evaluated by directly solving the three-body Schrödinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the alpha-alpha nonresonant states significantly quenches the Coulomb barrier between the first two alpha-particles and the third alpha-particle. Consequently, the alpha-alpha nonresonant continuum states give

Kazuyuki Ogata; Masataka Kan; Masayasu Kamimura

2010-01-01

406

Quantum Three-Body Calculation of the Nonresonant Triple-alpha Reaction Rate at Low Temperatures  

Microsoft Academic Search

Triple-alpha reaction rate is re-evaluated by directly solving the three-body Schrödinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the alpha-alpha nonresonant states significantly quenches the Coulomb barrier between the first two alpha-particles and the third alpha-particle. Consequently, the alpha-alpha nonresonant continuum states below

Kazuyuki Ogata; Masataka Kan; Masayasu Kamimura

2009-01-01

407

Scintillation efficiency and ionization yield of liquid xenon for mono-energetic nuclear recoils down to 4 keV  

E-print Network

Liquid Xenon (LXe) is an excellent material for experiments designed to detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs). A low energy detection threshold is essential for a sensitive WIMP search. The understanding of the relative scintillation efficiency (Leff) and ionization yield of low energy nuclear recoils in LXe is limited for energies below 10 keV. In this paper, we present new measurements that extend the energy down to 4 keV, finding that Leff decreases with decreasing energy. We also measure the quenching of scintillation efficiency due to the electric field in LXe, finding no significant field dependence.

A. Manzur; A. Curioni; L. Kastens; D. N. McKinsey; K. Ni; T. Wongjirad

2010-01-18

408

Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium  

E-print Network

Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

Koch, William Lawrence

2013-01-01

409

Ionization yield from nuclear recoils in liquid-xenon dark matter detection  

NASA Astrophysics Data System (ADS)

The ionization yield in a two-phase liquid xenon dark-matter detector has been studied in keV nuclear recoil energy region. The newly obtained nuclear quenching as well as the average energy required to produce an electron-ion pair from the measurement in Seguinot (1992) are used to calculate the total electric charges produced. To estimate the fraction of the electron charges collected, the Thomas-Imel model is generalized to describe the field dependence for nuclear recoils in liquid xenon. With free parameters fitted to experimentally measured 56.5 keV nuclear recoils, the energy dependence of ionization yield for nuclear recoils is predicted, which increases as recoil energy decreases and reaches the maximum value at 2?3 keV. This prediction agrees well with existing data and may help to lower the energy detection threshold for nuclear recoils to ?1 keV.

Mu, Wei; Ji, Xiangdong

2015-03-01

410

Nuclear recoil detection in liquid argon using a two-phase CRAD and DD neutron generator  

NASA Astrophysics Data System (ADS)

The detection of nuclear recoils in noble liquids using neutron elastic scattering off nuclei is relevant in the field of calibration of rare-event detectors for dark matter search and coherent neutrino-nucleus scattering experiments. We present here the first results on nuclear recoil detection in liquid Ar, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The technique to select the nuclear recoils for backward neutron scattering has been demonstrated.

Bondar, A.; Buzulutskov, A.; Dolgov, A.; Grishnyaev, E.; Polosatkin, S.; Shemyakina, E.; Sokolov, A.

2014-08-01

411

Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na  

SciTech Connect

The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

2003-01-03

412

Nuclear recoil corrections to the $2p_\\frac{3}{2}$ state energy of hydrogen-like and high $Z$ lithium like atoms in all orders in $?Z$  

E-print Network

The relativistic nuclear recoil corrections to the energy of the $2p_{\\frac{3}{2}}$ state of hydrogen-like and the $(1s)^{2}2p_{\\frac{3}{2}}$ state of high $Z$ lithium-like atoms in all orders in $\\alpha Z$ are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low $Z$ the results of the calculation are in good agreement with the $\\alpha Z$ -expansion results. It is found that the total nuclear recoil contribution to the energy of the $(1s)^{2}2p_{\\frac{3}{2}}- (1s)^{2}2s$ transition in lithium-like uranium constitutes $-0.09\\,eV$.

A. N. Artemyev; V. M. Shabaev; V. A. Yerokhin

1995-10-16

413

Is CHF triggered by the vapor recoil effect?  

E-print Network

This paper deals with the triggering mechanism of the boiling crisis, a transition from nucleate to film boiling. We observe the boiling crisis in pool saturated boiling experimentally at nearly critical pressure to take advantage of the slowness of the bubble growth and of the smallness of the Critical Heat Flux (CHF) that defines the transition point. Such experiments require the reduced gravity conditions. Close to the CHF, the slow growth of the individual dry spots and their subsequent fusion on the transparent heater are observed through the latter. As discussed in the paper, these observations are consistent with numerical results obtained with the vapor recoil model of the boiling crisis.

Nikolayev, Vadim S; Chatain, D

2007-01-01

414

Recoil proton distribution in high energy photoproduction processes  

E-print Network

For high energy linearly polarized photon--proton scattering we have calculated the azimuthal and polar angle distributions in inclusive on recoil proton experimental setup. We have taken into account the production of lepton and pseudoscalar meson charged pairs. The typical values of cross sections are of order of hundreds of picobarn. The size of polarization effects are of order of several percents. The results are generalized for the case of electroproduction processes on the proton at rest and for high energy proton production process on resting proton.

E. Bartos; E. A. Kuraev; Yu. P. Peresunko; E. A. Vinokurov

2006-11-22

415

Elastic Recoil Detection of Depletion Layer Formation During Anodic Bonding  

SciTech Connect

Conventional elastic recoil detection (ERD) techniques have been employed in an attempt to elucidate the effects time, temperature and alkali ion content have on depletion layer formation during anodic bonding. Hydrogen and/or lithium ion concentration profiles were evaluated for both untreated and lithium-treated sodium borosilicate glass. From in situ ERD, depletion layer formation is highly dependent on temperature and alkali ion content. Lithium-treated sodium borosilicate glass improves depletion layer formation at low temperatures and at high temperatures increased ion mobility results in rapid depletion layer formation.

Hirschfeld, Deidre A. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Walsh, David S.; Watson, Chad S. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States)

2003-08-26

416

Contribution of recoil atoms to irradiation damage in absorber materials  

NASA Astrophysics Data System (ADS)

Absorbing materials are used to control the reactivity of nuclear reactors by taking advantage of nuclear reactions (e.g., 10B(n,?) 7Li) where neutrons are absorbed. During such reactions, energetic recoils are produced. As a result, radiation damage in absorbing materials originates both from these nuclear reactions and from elastic collisions between neutrons and atoms. This damage eventually leads to a partial destruction of the materials, and this is the main limitation on their lifetime in nuclear reactors. Using a formalism developed to calculate displacements per atoms (dpa) in a multi atomic target, we have calculated damages in terms of displacements per atom in a (n,?) absorbing material taking into account geometrical effects of 10 boron self shielding and transmutation reactions induced by neutrons inside the absorber. Radiation damage is calculated for boron carbide and hafnium diboride ceramics in a Pressurized Water Reactor environment. It is shown that recoils produced by nuclear reactions account for the main part of the radiation damage created in these ceramics. Damages are calculated as a function of the distance from the center of an absorber pellet. Due to the self-shielding effect, these damage curves exhibit sharp maxima, the position of which changes in time.

Simeone, D.; Hablot, O.; Micalet, V.; Bellon, P.; Serruys, Y.

1997-08-01

417

The WITCH experiment: Acquiring the first recoil ion spectrum  

E-print Network

The standard model of the electroweak interaction describes beta-decay in the well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay includes also other possible interaction types, e.g. scalar (S) and tensor (T) contributions, which are not fully ruled out yet experimentally. The WITCH experiment aims to study a possible admixture of these exotic interaction types in nuclear beta-decay by a precise measurement of the shape of the recoil ion energy spectrum. The experimental set-up couples a double Penning trap system and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was recently shown to be fully operational. The current status of the experiment is presented together with the data acquired during the 2006 campaign, showing the first recoil ion energy spectrum obtained. The data taking procedure and corresponding data acquisition system are described in more detail. Several further technical improvements are briefly reviewed.

V. Yu. Kozlov; M. Beck; S. Coeck; P. Delahaye; P. Friedag; M. Herbane; A. Herlert; I. S. Kraev; M. Tandecki; S. Van Gorp; F. Wauters; Ch. Weinheimer; F. Wenander; D. Zakoucky; N. Severijns

2008-07-22

418

Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection  

NASA Astrophysics Data System (ADS)

The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of 7Li, 16O, 32S and 35Cl to study the mass region of interest for its application to measurements fusion cross sections in the 6,7Li+27Al systems at energies around and above the Coulomb barrier (0.8VB<=E<=2.0VB). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

de Barbará, E.; Negri, A. E.; Martí, G. V.; Arazi, A.; Capurro, O. A.; Fernández Niello, J. O.; Figueira, J. M.; Pacheco, A. J.; Fimiani, L.; Mingolla, M. G.; Martinez Heimann, D.; Carnelli, P. F. F.

2010-08-01

419

Quantum three-body calculation of nonresonant triple-alpha reaction rate at low temperatures  

Microsoft Academic Search

Triple-alpha reaction rate is re-evaluated by directly solving the three-body Schrödinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. An accurate description of the alpha-alpha nonresonant states significantly quenches the Coulomb barrier between the first two alpha-particles and the third alpha-particle. Consequently, thealpha-alpha nonresonant continuum states give a

Kazuyuki Ogata; Masataka Kan; Masayasu Kamimura

2010-01-01

420

Recoil Effects in Positronium Energy Levels to Order ff 6 Krzysztof Pachucki  

E-print Network

Recoil Effects in Positronium Energy Levels to Order ff 6 Krzysztof Pachucki Institute levels of order ff 6 due to photon exchanges are calculated in the effective Hamil­ tonian approach a different approach to bound state QED and calculated a recoil correction of order ff 6 to the HFS of n

Pachucki, Krzysztof

421

Optimal control of gun recoil in direct fire using magnetorheological absorbers  

NASA Astrophysics Data System (ADS)

Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

Singh, Harinder J.; Wereley, Norman M.

2014-05-01

422

Beam suppression of the DRAGON recoil separator for 3He(?,?)7Be  

NASA Astrophysics Data System (ADS)

Preliminary studies in preparation for an absolute cross-section measurement of the radiative capture reaction 3He(?,?)7Be with the DRAGON recoil separator have demonstrated beam suppression >1014 at the 90% confidence level. A measurement of this cross section by observation of 7Be recoils at the focal plane of the separator should be virtually background free.

Sjue, S. K. L.; Nara Singh, B. S.; Adsley, P.; Buchmann, L.; Carmona-Gallardo, M.; Davids, B.; Fallis, J.; Fulton, B. R.; Galinski, N.; Hager, U.; Hass, M.; Howell, D.; Hutcheon, D. A.; Laird, A. M.; Martin, L.; Ottewell, D.; Reeve, S.; Ruiz, C.; Ruprecht, G.; Triambak, S.

2013-02-01

423

Serial intravascular ultrasound studies fail to show evidence of chronic Palmaz-Schatz stent recoil  

Microsoft Academic Search

Serial IVUS analysis after intervention and at follow-up showed that late recoil of the Palmaz-Schatz stent rarely occurred, and when it did occur, late stent recoil was minimal. The dominant mechanism of late lumen loss in this setting was neointimal hyperplasia.

Jack A. Painter; Gary S. Mintz; S. Chiu Wong; Jeffrey J. Popma; Augusto D. Pichard; Kenneth M. Kent; Lowell F. Satler; Martin B. Leon

1995-01-01

424

Particle-induced amorphization complex ceramic  

SciTech Connect

The presently funded three-year research program, supported by the Division of Materials Sciences of the Office of Basic Energy Sciences, was initiated on August 1, 1993; during the period in which the grant will have been active, $249,561 of support have been provided to date with an additional $79,723 to be spent during the third, final year (ending July 30, 1996). The primary purpose of the program is to develop an understanding of heavy-particle radiation effects -- {alpha}-recoil nuclei, fission fragments, ion-irradiations -- on ceramic materials and the thermal annealing mechanisms by which crystallinity might be restored. During the past two years, we have completed major studies on zircon (ZrSiO{sub 4}), olivine (Mg{sub 2}SiO{sub 4} and ten other compositions), spinel (MgAl{sub 2}O{sub 4} and four other compositions), and silica polymorphs (quartz, coesite and stishovite), as well as berlinite (AlPO{sub 4}) which is isomorphous with quartz. In addition, based on the above research, we propose the use of zircon as a host phase for the immobilization of plutonium resulting from weapons dismantlement.

Ewing, R.C.; Wang, Lu-Min

1996-02-16

425

Long-range alpha detector (LRAD)  

SciTech Connect

Historically, alpha detectors have been limited by the very short range of alpha particles in air and by relatively poor sensitivity, even if the particles are intercepted. Of necessity, these detectors are operated in a vacuum or in close proximity to the source if reasonable efficiency is desired. In our new long-range alpha detector (LRAD), alpha particles interact with the ambient air, producing ionization in the air at the rate of about 30,000 ion pairs per MeV of alpha energy. These charges can be transported over significant distances (several meters) in a moving current of air generated by a small fan. An ion chamber located in front of the fan measures the current carried by the moving ions. The LRAD-based monitor is more sensitive and more thorough than conventional monitors. We present current LRAD sensitivity limits and results, practical monitor designs, and proposed uses for LRAD monitors. 4 refs., 7 figs.

MacArthur, D.W.; McAtee, J.L.

1991-01-01

426

Reviews Book: Marie Curie and Her Daughters Resource: Cumulus Equipment: Alpha Particle Scattering Apparatus Equipment: 3D Magnetic Tube Equipment: National Grid Transmission Model Book: Einstein's Physics Equipment: Barton's Pendulums Equipment: Weather Station Web Watch  

NASA Astrophysics Data System (ADS)

WE RECOMMEND Marie Curie and Her Daughters An insightful study of a resilient and ingenious family and their achievements Cumulus Simple to install and operate and with obvious teaching applications, this weather station 'donationware' is as easy to recommend as it is to use Alpha Particle Scattering Apparatus Good design and construction make for good results National Grid Transmission Model Despite its expense, this resource offers excellent value Einstein's Physics A vivid, accurate, compelling and rigorous treatment, but requiring an investment of time and thought WORTH A LOOK 3D Magnetic Tube Magnetic fields in three dimensions at a low cost Barton's Pendulums A neat, well-made and handy variant, but not a replacement for the more traditional version Weather Station Though not as robust or substantial as hoped for, this can be put to good use with the right software WEB WATCH An online experiment and worksheet are useful for teaching motor efficiency, a glance at CERN, and NASA's interesting information on the alpha-magnetic spectrometer and climate change

2013-09-01

427

Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)  

SciTech Connect

This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

Little, John B.

2013-09-17

428

Cluster Expansion of Cold Alpha Matter Energy  

Microsoft Academic Search

In the cluster expansion framework of Bose liquids we calculate analytical expressions of the two-body, three-body and four-body diagrams contributing to the g.s. energy of an infinite system of neutral alpha-particles at zero-temperature, interacting via the strong nuclear forces exclusively. This is analytically tractable by assuming a density dependent two-body correlation function of Gaussian type. For the alpha-alpha potential we

F. Carstoiu; S Misicu; V. Balanica; M. Lassaut

2010-01-01

429

Molecular Dynamics Simulation of Energetic Uranium Recoil Damage in Zircon  

SciTech Connect

Defect production and amorphization due to energetic uranium recoils in zircon (ZrSiO4), which is a promising ceramic nuclear waste form, is studied using molecular dynamics simulations with a partial charge model. An algorithm that distinguishes between undamaged crystal, crystalline defects and amorphous regions is used to develop a fundamental understanding of the primary damage state. The amorphous cascade core is separated from the surrounding crystal by a defect-rich region. Small, chemically inhomogeneous amorphous clusters are also produced around the core. The amorphous regions consist of under-coordinated Zr and polymerized Si leading to amorphization and phase separation on a nanometer scale into Zr- and Si-rich regions. This separation could play an important role in the experimentally observed formation of nanoscale ZrO2 in ZrSiO4 irradiated at elevated temperatures.

Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

2006-10-11

430

Measurement of the neutron electric form factor via recoil polarimetry  

SciTech Connect

The ratio G{sub c}{sup n}/G{sub m}{sup n} of the electric to the magnetic form factor of the neutron has been measured by analyzing the polarization of the recoiling neutron in quasi-elastic scattering of longitudinally polarized electrons from deuterium at the Q{sup 2} values of 0.45, 1.15, and 1.47 (GeV/c){sup 2}. The experiment has been performed in Hall C of the Thomas Jefferson National Accelerator Facility. With G{sub m}{sup n} being known G can be deduced. The preliminary results show that the lowest Q{sup 2} points follow the Galster parameterization and that the 1.47 (GeV/c){sup 2} point rises above this parameterization.

T. Reichelt; R. Madey; A.Yu. Semenov; S. Taylor; A. Aghalarian; E. Crouse; G. MacLachlan; B. Plaster; S. Tajima; W. Tireman; C.Y. Yan; A. Ahmidouch; B.D. Anderson; R. Asaturian; O. Baker; A.R. Baldwin; H. Breuer; R. Carlini; E. Christy; S. Churchwell; L. Cole; S. Danagulian; D. Day; M. Elaasar; R. Ent; M. Farkhondeh; H. Fenker; J.M. Finn; L. Gan; K. Garrow; P. Gueye; C. Howell; B. Hu; M.K. Jones; J.J. Kelly; C. Keppel; M. Khandaker; W.Y. Kim; S. Kowalski; A. Lung; D. Mack; D.M. Manley; P. Markowitz; J. Mitchell; H. Mkrtchian; A.K. Opper; C. Perdrisat; V. Punjabi; B. Raue; J. Reinhold; J. Roche; Y. Sato; W. Seo; N. Simicevic; G. Smith; S. Stepanian; V. Tadevosian; L. Tang; P. Ulmer; W. Vulcan; J.W. Watson; S. Wells; F. Wesselmann; S. Wood; C. Yan; S. Yang; L. Yuan; W.M. Zhang; H. Zhu; X. Zhu; H. Arenhovel

2003-10-22

431

Bursts of Radiation and Recoil Effects in Electromagnetism and Gravitation  

E-print Network

The Maxwell field of a charge e which experiences an impulsive acceleration or deceleration is constructed explicitly by subdividing Minkowskian space-time into two halves bounded by a future null-cone and then glueing the halves back together with appropriate matching conditions. The resulting retarded radiation can be viewed as instantaneous electromagnetic bremsstrahlung. If we similarly consider a spherically symmetric, moving gravitating mass, to experience an impulsive deceleration, as viewed by a distant observer, then this is accompanied by the emission of a light-like shell whose total energy measured by this observer is the same as the kinetic energy of the source before it stops. This phenomenon is a recoil effect which may be thought of as a limiting case of a Kinnersley rocket.

C. Barrabès; P. A. Hogan

2000-12-06

432

Time of flight elastic recoil detection for thin film analysis  

SciTech Connect

Time-of-flight elastic recoil detection (TOF-ERD) is a powerful and complimentary technique to Rutherford Backscattering Spectrometry (RBS) for elemental analysis in surfaces and thin films. Its main advantages lie in its capability of not only simultaneously depth profiling light elements (3{lt}Z{lt}9) but also with a superb depth resolution (