Science.gov

Sample records for recombinant human albumin

  1. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-01

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer. PMID:25584860

  2. Data set for mass spectrometric analysis of recombinant human serum albumin from various expression systems.

    PubMed

    Smith, Daryl G S; Frahm, Grant E; Kane, Anita; Lorbetskie, Barry; Girard, Michel; Johnston, Michael J W; Cyr, Terry D

    2015-09-01

    Human serum albumin (HSA) is a versatile and important protein for the pharmaceutical industry (Fanali et al., Mol. Aspects Med. 33(3) (2012) 209-290). Due to the potential transmission of pathogens from plasma sourced albumin, numerous expression systems have been developed to produce recombinant HSA (rHSA) (Chen et al., Biochim. Biophys. Acta (BBA)-Gen. Subj. 1830(12) (2013) 5515-5525; Kobayashi, Biologicals 34(1) (2006) 55-59). Based on our previous study showing increased glycation of rHSA expressed in Asian rice (Frahm et al., J. Phys. Chem. B 116(15) (2012) 4661-4670), both supplier-to-supplier and lot-to-lot variability of rHSAs from a number of expression systems were evaluated using reversed phase liquid chromatography linked with MS and MS/MS analyses. The data are associated with the research article 'Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa' where further analysis of rHSA samples with additional biophysical methods can be found (Frahm et al., PLoS ONE 10(9) (2014) e109893). We determined that all rHSA samples expressed in rice showed elevated levels of arginine and lysine hexose glycation compared to rHSA expressed in yeast, suggesting that the extensive glycation of the recombinant proteins is a by-product of either the expression system or purification process and not a random occurrence. PMID:26322323

  3. Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy.

    PubMed

    Liu, Yu-Kuo; Li, Yu-Teng; Lu, Ching-Fan; Huang, Li-Fen

    2015-05-25

    Fusion of the sugar-starvation-induced αAmy3 promoter with its signal peptide has enabled secretion of recombinant human serum albumin (rHSA) into the culture medium. To simplify the production process and increase the rHSA yield in rice suspension cells, a one-step strategem without medium change was adopted. The yield of rHSA was increased sixfold by this one-step approach compared with the two-step recombinant protein process, in which a change of the culture medium to sugar-free medium is required. The one-step strategem was applied to check repeated cycle of rHSA production, and the production of rHSA was also higher in each cycle in the one-step, as opposed to the two-step, production process. The use of the one-step process resulted in fewer damaged cells during the cell sugar starvation phase for recombinant protein production. Furthermore, we scaled up the rHSA production in a 2-L airlift and a 2-L stirred tank bioreactor by the one-step approach, and concluded that rHSA can be enriched to 45 mg L(-1) in plant culture commonly used MS medium by the airlift-type bioreactor. Our results suggest that rHSA production can be enriched by this optimized cultivation strategem. PMID:25765580

  4. Recombinant albumin monolayers on latex particles.

    PubMed

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed. PMID:24354916

  5. Conformational stability and warfarin-binding properties of human serum albumin studied by recombinant mutants.

    PubMed Central

    Watanabe, H; Kragh-Hansen, U; Tanase, S; Nakajou, K; Mitarai, M; Iwao, Y; Maruyama, T; Otagiri, M

    2001-01-01

    Correctly folded recombinant wild-type human serum albumin and the single-residue mutants K199A, W214A, R218H and H242Q were produced with the use of a yeast expression system. The changes in R218H resulted in a pronounced decrease in intrinsic fluorescence. Thermodynamic parameters for thermal denaturation of the present mutants and of five additional mutants have been determined, showing small increases in stability for two mutants (R218H and H242Q) and a larger decrease in stability for one (W214A). In the last of these, denaturation was a heterogeneous process starting at physiological temperature. The high-affinity binding constant for warfarin at pH 7.4 was determined by fluorescence spectroscopy: there was a significant increase in affinity for binding of warfarin to H242Q and K199A and a smaller decrease in affinity for W214A and R218H. The findings show that Trp-214 is not as essential for the high-affinity binding of warfarin as has previously been thought. PMID:11415459

  6. Disruption of the Saccharomyces cerevisiae YAP3 gene reduces the proteolytic degradation of secreted recombinant human albumin.

    PubMed

    Kerry-Williams, S M; Gilbert, S C; Evans, L R; Ballance, D J

    1998-01-30

    Expression of recombinant human albumin (rHA) in Saccharomyces cerevisiae resulted in secretion of both mature albumin and a 45 kDa degradation product, comprising an N-terminal fragment of rHA with heterogeneous C-termini between residues 403 and 409 (Geisow et al., 1991). Site-directed mutagenesis of the human albumin gene (HA) to change Arg410 to Ala (R410A) caused a significant reduction in the amount of fragment produced. Mutation of the adjacent dibasic site Lys413 Lys414 had little effect in isolation, but in combination with the R410A mutation resulted in a further reduction in the amount of rHA fragment produced. This reduction could be duplicated with nature-identical rHA by disruption of the gene for an aspartyl protease (YAP3), alone or in conjunction with disruption of the KEX2 gene. Disruption of KEX2 alone did not result in any improvement in the degree of degradation of the rHA. Reduced degradation was also observed when an rHA-human growth hormone fusion protein was secreted from a yap3 strain, suggesting that such strains may have a general utility for heterologous protein secretion. PMID:9483804

  7. Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site.

    PubMed Central

    Dockal, M.; Chang, M.; Carter, D. C.; Rüker, F.

    2000-01-01

    Human serum albumin (HSA) interacts with a vast array of chemically diverse ligands at specific binding sites. To pinpoint the essential structural elements for the formation of the warfarin binding site on human serum albumin, a defined set of five recombinant proteins comprising combinations of domains and/or subdomains of the N-terminal part were prepared and characterized by biochemical standard procedures, tryptophanyl fluorescence, and circular dichroic measurements, indicating well-preserved secondary and tertiary structures. Affinity constants for binding to warfarin were estimated by fluorescence titration experiments and found to be highest for HSA-DOM I-II and HSA, followed by HSA-DOM IB-II, HSA-DOM II, and HSA-DOM I-IIA. In addition, ultraviolet difference spectroscopy and induced circular dichroism experiments were carried out to get an in depth understanding of the binding mechanism of warfarin to the fragments as stand-alone proteins. This systematic study indicates that the primary warfarin binding site is centered in subdomain IIA with indispensable structural contributions of subdomain IIB and domain I, while domain III is not involved in this binding site, underlining the great potential that lies in the use of combinations of recombinant fragments for the study and accurate localization of ligand binding sites on HSA. PMID:10975567

  8. The induction of prolonged myelopoietic effects in monkeys by GW003, a recombinant human granulocyte colony-stimulating factor genetically fused to recombinant human albumin.

    PubMed

    Xu, Xianxing; Yang, Jingwen; Liu, Yunlong; Shan, Chengqi; Wang, Qiushi; Chen, Zhihang; Cheng, Yuanguo

    2015-02-01

    GW003, a genetic fusion protein of human serum albumin and granulocyte colony-stimulating factor (G-CSF), was developed based on a novel strategy for producing long-acting proteins. The purpose of this study was to evaluate the hematologic, pharmacokinetic, and toxicokinetic effects of GW003 on cynomolgus monkeys. We show that following a single subcutaneous administration of GW003, the absolute neutrophil count increased significantly compared with monkeys that received only the vehicle, and the magnitude of the neutrophilic response to GW003 was dose dependent. After an injection at equal molar dose, the clearance of GW003 in the monkeys was approximately fourfold slower, and the terminal half-life (T1/2 ) was fivefold longer than the corresponding values for recombinant methionyl human G-CSF. Interestingly, both the clearance and T1/2 decreased with increasing doses of GW003, and much faster elimination was observed after multidose exposure. In toxicokinetic studies, the serum concentration of GW003 after the eighth injection was much lower than it was after the first injection, and a neutralizing antibody against G-CSF was found to have a dose-dependent effect upon the treatment groups. Overall, the favorable pharmacokinetic and pharmacodynamic properties supported the selection and development of GW003 as a promising candidate for neutropenia therapy. PMID:25174614

  9. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses.

    PubMed Central

    Ballay, A; Levrero, M; Buendia, M A; Tiollais, P; Perricaudet, M

    1985-01-01

    We have developed an adenovirus vector to express foreign proteins under the control of the adenovirus E1a promoter. Two recombinant plasmids, harbouring either the S gene or the pre-S2 region and the S gene of hepatitis B virus under the control of the E1a promoter, were used to construct two recombinant adenoviruses. These two viruses direct the synthesis of hepatitis B virus surface antigen (HBsAg) particles during the time course of an infectious cycle. When the pre-S2 region is present in the constructed virus, the synthesis of particles carrying the receptor for polymerized human serum albumin (pHSA) is observed. Moreover, the inoculation of rabbits with this latter purified recombinant adenovirus elicits the production of antibodies that react with both HBsAg and pHSA receptor. Images Fig. 4. PMID:3004975

  10. Expression and bioactivity of recombinant human serum albumin and dTMP fusion proteins in CHO cells.

    PubMed

    Ru, Yi; Zhi, Dejuan; Guo, Dingding; Wang, Yong; Li, Yang; Wang, Meizhu; Wei, Suzhen; Wang, Haiqing; Wang, Na; Che, Jingmin; Li, Hongyu

    2016-09-01

    The 14-amino acid (IEGPTLRQWLAARA) thrombopoietin mimetic peptide (TMP) shares no sequence homology with native thrombopoietin (TPO). When dimerized, it displays a high-binding affinity for the TPO receptor and has equipotent bioactivity with recombinant human TPO (rhTPO) in stimulating proliferation and maturation of megakaryocytes in vitro. However, TMP is limited for clinical usage because of its short half-life in vivo. In this study, fusion proteins that composed of tandem dimer of TMP (dTMP) genetically fused at the C- or N-terminus of human serum albumin (HSA) were separately expressed in Chinese hamster ovary (CHO) cells. In vitro bioactivity assays showed that purified fusion proteins promoted the proliferation of megakaryocytes in a dose-dependent manner and activated signal transducer and activator of transcription (STAT) pathway in TPO receptor-dependent manner. Following subcutaneous administration, both HSA-dTMP and dTMP-HSA significantly elevated peripheral platelet counts in normal mice in a dose-dependent manner. In addition, fusion with HSA successfully prolonged dTMP half-life in mice. However, when HSA was fused at the C-terminus of dTMP, the bioactivity of dTMP-HSA was about half of that of HSA-dTMP. In conclusion, these results suggested that HSA/dTMP fusion proteins might be potential drugs for thrombocytopenia and, when HSA was fused at the N-terminus of dTMP, the fusion protein had a higher activity. PMID:27115755

  11. Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa

    PubMed Central

    Frahm, Grant E.; Smith, Daryl G. S.; Kane, Anita; Lorbetskie, Barry; Cyr, Terry D.; Girard, Michel; Johnston, Michael J. W.

    2014-01-01

    The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs) leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA) produced in Oryza sativa (Asian rice) (OsrHSA) from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA) and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae). The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC), reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE). Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS). The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD) and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which correlated well

  12. A Humanized Mouse Model to Study Human Albumin and Albumin Conjugates Pharmacokinetics.

    PubMed

    Low, Benjamin E; Wiles, Michael V

    2016-01-01

    Albumin is a large, highly abundant protein circulating in the blood stream which is regulated and actively recycled via the neonatal Fc receptor (FcRn). In humans this results in serum albumin having an exceptional long half-life of ~21 days. Some time ago it was realized that these intrinsic properties could be harnessed and albumin could be used as a privileged drug delivery vehicle. However, active development of albumin based therapeutics has been hampered by the lack of economic, relevant experimental models which can accurately recapitulate human albumin metabolism and pharmacokinetics. In mice for example, introduced human albumin is not recycled and is catabolized rapidly. This is mainly due to the failure of mouse FcRn to bind human albumin consequently, human albumin has a half-life of only 2-3 days in mice. To overcome this we developed and characterized a humanized mouse model which is null for mouse FcRn and mouse albumin, but is transgenic for, and expressing functional human FcRn. Published data clearly demonstrate that upon injection of human albumin into this model animal that it accurately recapitulates human albumin FcRn dependent serum recycling, with human albumin now having a half-life ~24 days, closely mimicking that observed in humans. In this practical review we briefly review this model and outline its use for pharmacokinetic studies of human albumin. PMID:27150087

  13. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  14. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  15. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  16. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  17. 21 CFR 640.80 - Albumin (Human).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a sterile solution of the albumin derived from human plasma. (b) Source material. The source material of Albumin (Human) shall be plasma recovered from Whole Blood prepared as prescribed in §§ 640.1 through 640.5, or Source Plasma prepared as prescribed in §§ 640.60 through 640.76. (c) Additives...

  18. Production of recombinant albumin by a herd of cloned transgenic cattle.

    PubMed

    Echelard, Yann; Williams, Jennifer L; Destrempes, Margaret M; Koster, Julie A; Overton, Susan A; Pollock, Daniel P; Rapiejko, Karen T; Behboodi, Esmail; Masiello, Nicholas C; Gavin, William G; Pommer, Jerry; Van Patten, Scott M; Faber, David C; Cibelli, Jose B; Meade, Harry M

    2009-06-01

    Purified plasma derived human albumin has been available as a therapeutic product since World War II. However, cost effective recombinant production of albumin has been challenging due to the amount needed and the complex folding pattern of the protein. In an effort to provide an abundant source of recombinant albumin, a herd of transgenic cows expressing high levels of rhA in their milk was generated. Expression cassettes efficiently targeting the secretion of human albumin to the lactating mammary gland were obtained and tested in transgenic mice. A high expressing transgene was transfected in primary bovine cell lines to produce karyoplasts for use in a somatic cell nuclear transfer program. Founder transgenic cows were produced from four independent cell lines. Expression levels varying from 1-2 g/l to more than 40 g/l of correctly folded albumin were observed. The animals expressing the highest levels of rhA exhibited shortened lactation whereas cows yielding 1-2 g/l had normal milk production. This herd of transgenic cattle is an easily scalable and well characterized source of rhA for biomedical uses. PMID:19031005

  19. Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs

    PubMed Central

    Roopenian, Derry C; Low, Benjamin E; Christianson, Gregory J; Proetzel, Gabriele; Sproule, Thomas J; Wiles, Michael V

    2015-01-01

    Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrttm1Dcr Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb-/-) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its non-transgenic background control, C57BL/6J (B6). The resulting Alb-/- strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb-/- mFcRn-/- hFcRnTg/Tg) mice results in a remarkably extended human albumin serum half-life of ∼24 days, comparable to that found in humans, and in contrast to half-lives of 2.6–5.8 d observed in B6, B6-Alb-/- and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds. PMID:25654695

  20. Polymerized soluble venom--human serum albumin

    SciTech Connect

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  1. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    PubMed

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests. PMID:25679491

  2. Interaction of Citrinin with Human Serum Albumin

    PubMed Central

    Poór, Miklós; Lemli, Beáta; Bálint, Mónika; Hetényi, Csaba; Sali, Nikolett; Kőszegi, Tamás; Kunsági-Máté, Sándor

    2015-01-01

    Citrinin (CIT) is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA) is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3) and its primary binding site is located in subdomain IIA (Sudlow’s Site I). In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions. PMID:26633504

  3. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  4. Human podocytes perform polarized, caveolae-dependent albumin endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Okamura, Kayo; Kopp, Jeffrey B.; Doctor, R. Brian

    2014-01-01

    The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes. PMID:24573386

  5. Recombinant Human Erythropoietin

    PubMed Central

    Bartels, Claudia; Späte, Kira; Krampe, Henning

    2008-01-01

    Treatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment. PMID:21180577

  6. Induced Long-Range Attractive Potentials of Human Serum Albumin by Ligand Binding

    SciTech Connect

    Sato, Takaaki; Komatsu, Teruyuki; Nakagawa, Akito; Tsuchida, Eishun

    2007-05-18

    Small-angle x-ray scattering and dielectric spectroscopy investigation on the solutions of recombinant human serum albumin and its heme hybrid revealed that heme incorporation induces a specific long-range attractive potential between protein molecules. This is evidenced by the enhanced forward intensity upon heme binding, despite no hindrance to rotatory Brownian motion, unbiased colloid osmotic pressure, and discontiguous nearest-neighbor distance, confirming monodispersity of the proteins. The heme-induced potential may play a trigger role in recognition of the ligand-filled human serum albumins in the circulatory system.

  7. Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes.

    PubMed

    Peng, Jin; Wang, Yong; Jiang, Junyi; Zhou, Xiaoyang; Song, Lei; Wang, Lulu; Ding, Chen; Qin, Jun; Liu, Liping; Wang, Weihua; Liu, Jianqiao; Huang, Xingxu; Wei, Hong; Zhang, Pumin

    2015-01-01

    Precise genome modification in large domesticated animals is desirable under many circumstances. In the past it is only possible through lengthy and burdensome cloning procedures. Here we attempted to achieve that goal through the use of the newest genome-modifying tool CRISPR/Cas9. We set out to knockin human albumin cDNA into pig Alb locus for the production of recombinant human serum albumin (rHSA). HSA is a widely used human blood product and is in high demand. We show that homologous recombination can occur highly efficiently in swine zygotes. All 16 piglets born from the manipulated zygotes carry the expected knockin allele and we demonstrated the presence of human albumin in the blood of these piglets. Furthermore, the knockin allele was successfully transmitted through germline. This success in precision genomic engineering is expected to spur exploration of pigs and other large domesticated animals to be used as bioreactors for the production of biomedical products or creation of livestock strains with more desirable traits. PMID:26560187

  8. Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes

    PubMed Central

    Peng, Jin; Wang, Yong; Jiang, Junyi; Zhou, Xiaoyang; Song, Lei; Wang, Lulu; Ding, Chen; Qin, Jun; Liu, Liping; Wang, Weihua; Liu, Jianqiao; Huang, Xingxu; Wei, Hong; Zhang, Pumin

    2015-01-01

    Precise genome modification in large domesticated animals is desirable under many circumstances. In the past it is only possible through lengthy and burdensome cloning procedures. Here we attempted to achieve that goal through the use of the newest genome-modifying tool CRISPR/Cas9. We set out to knockin human albumin cDNA into pig Alb locus for the production of recombinant human serum albumin (rHSA). HSA is a widely used human blood product and is in high demand. We show that homologous recombination can occur highly efficiently in swine zygotes. All 16 piglets born from the manipulated zygotes carry the expected knockin allele and we demonstrated the presence of human albumin in the blood of these piglets. Furthermore, the knockin allele was successfully transmitted through germline. This success in precision genomic engineering is expected to spur exploration of pigs and other large domesticated animals to be used as bioreactors for the production of biomedical products or creation of livestock strains with more desirable traits. PMID:26560187

  9. Binding and hydrolysis of soman by human serum albumin.

    PubMed

    Li, Bin; Nachon, Florian; Froment, Marie-Thérèse; Verdier, Laurent; Debouzy, Jean-Claude; Brasme, Bernardo; Gillon, Emilie; Schopfer, Lawrence M; Lockridge, Oksana; Masson, Patrick

    2008-02-01

    Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25 degrees C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31P NMR, and mass spectrometry. Inhibition (phosphonylation) was slow with a bimolecular rate constant of 15 +/- 3 M(-1) min (-1). MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. No secondary dealkylation of the adduct (aging) occurred. Covalent docking simulations and 31P NMR experiments showed that albumin has no enantiomeric preference for the four stereoisomers of soman. Spontaneous reactivation at pH 8.0 and 25 degrees C, measured as regaining of aryl acylamidase activity and decrease of covalent adduct (pinacolyl methylphosphonylated albumin) by NMR, occurred at a rate of 0.0044 h (-1), indicating that the adduct is quite stable ( t1/2 = 6.5 days). At pH 7.4 and 22 degrees C, the covalent soman-albumin adduct, measured by MALDI-TOF mass spectrometry, was more stable ( t1/2 = 20 days). Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. Increasing the bimolecular rate constant of albumin for organophosphates is a protein engineering challenge that could lead to a new class of bioscavengers to be used against poisoning by nerve agents. Soman-albumin adducts detected by mass spectrometry could be useful for the diagnosis of soman exposure. PMID:18163544

  10. Human serum albumin and its relation with oxidative stress.

    PubMed

    Sitar, Mustafa Erinç; Aydin, Seval; Cakatay, Ufuk

    2013-01-01

    Human serum albumin, a negative acute phase reactant and marker of nutritive status, presents at high concentrations in plasma. Albumin has always been used in many clinical states especially to improve circulatory failure. It has been showed that albumin is involved in many bioactive functions such as regulation of plasma osmotic pressure, binding and transport of various endogenous or exogenous compounds, and finally extracellular antioxidant defenses. Molecules like transferrin, caeruloplasmin, haptoglobin, uric acid, bilirubin, alpha-tocopherol, glucose, and albumin constitute extracellular antioxidant defenses in blood plasma but albumin is the most potent one. Most of the antioxidant properties of albumin can be attributed to its unique biochemical structure. The protein possesses antioxidant properties such as binding copper tightly and iron weakly, scavenging free radicals, e.g., hypochlorous acid (HOCl) and Peroxynitrite (ONOOH) and providing thiol group (-SH). Whether it is chronic or acute, during many pathological conditions, biomarkers of oxidative protein damage increase and this observation continues with considerable oxidation of human serum albumin. There is an important necessity to specify its interactions with Reactive Oxygen Species. Generally, it may lower the availability of pro-oxidants and be preferentially oxidized to protect other macromolecules but all these findings make it necessary that researchers give a more detailed explanation of albumin and its relations with oxidative stress. PMID:24273915

  11. Atomic structure and chemistry of human serum albumin

    NASA Technical Reports Server (NTRS)

    He, Xiao M.; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

  12. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical

    DOEpatents

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1977-05-17

    A reagent comprising macroaggregated human serum albumin having dispersed therein particles of stannous tin and a method for instantly making a labeled pharmaceutical therefrom, are disclosed. The labeled pharmaceutical is utilized in organ imaging.

  13. Effects of glycation on meloxicam binding to human serum albumin

    NASA Astrophysics Data System (ADS)

    Trynda-Lemiesz, Lilianna; Wiglusz, Katarzyna

    2011-05-01

    The current study reports a binding of meloxicam a pharmacologically important new generation, non-steroidal anti-inflammatory drug to glycated form of the human serum albumin (HSA). The interaction of the meloxicam with nonglycated and glycated albumin has been studied at pH 7.4 in 0.05 M sodium phosphate buffer with 0.1 M NaCl, using fluorescence quenching technique and circular dichroism spectroscopy. Results of the present study have shown that the meloxicam could bind both forms of albumin glycated and nonglycated at a site, which was close to the tryptophan residues. Similarly, how for native albumin glycated form has had one high affinity site for the drug with association constants of the order of 10 5 M -1. The glycation process of the HSA significantly has affected the impact of the meloxicam on the binding of other ligands such as warfarin and bilirubin. The affinity of the glycated albumin for bilirubin as for native albumin has been reduced by meloxicam but observed effect was weaker by half (about 20%) compared with nonglycated albumin. In contrast to the native albumin meloxicam binding to glycated form of the protein only slightly affected the binding of warfarin. It seemed possible that the effects on warfarin binding might be entirely attributable to the Lys 199 modification which was in site I.

  14. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  15. Binding of dapsone and its analogues to human serum albumin.

    PubMed

    Karp, W B; Subramanyam, S B; Robertson, A F

    1985-06-01

    The binding of dapsone, 4,4'-sulfonylbis(aniline)(1), and its diacetylated derivative, 4,4"'-sulfonylbis(acetanilide)(2), to human serum albumin is reported. To assess the ability of these compounds to displace 4'-[(4-aminophenyl)sulfonyl]acetanilide (3) from albumin, a dialysis rate technique was used. Competition for the bilirubin binding site on albumin was measured with the peroxidase assay. Compounds 1 and 2 strongly displaced both 3 and bilirubin from human serum albumin. The association constants for 1 and 2 with respect to bilirubin binding were 1.29 X 10(3) and 1.15 X 10(4) M-1, respectively. These results suggest that the binding site for 3 and the bilirubin binding site are similar with respect to 1 and 2 and that the binding of dapsone and its derivatives probably does not involve the amino function. PMID:4020658

  16. Neonatal Fc Receptor Binding Tolerance toward the Covalent Conjugation of Payloads to Cysteine 34 of Human Albumin Variants.

    PubMed

    Petersen, Steffan S; Kläning, Eva; Ebbesen, Morten F; Andersen, Birgitte; Cameron, Jason; Sørensen, Esben S; Howard, Kenneth A

    2016-02-01

    The long circulatory half-life of albumin facilitated by the interaction with the cellular recycling neonatal Fc receptor (FcRn) is utilized for drug half-life extension. FcRn engagement effects following covalent attachment of cargo to cysteine 34, however, have not been investigated. Poly(ethylene glycol) polymers were used to study the influence of cargo molecular weight on human FcRn engagement of recombinant wild type (WT) albumin and an albumin variant engineered for increased FcRn binding. Decreased affinity was observed for all conjugates; however, the engineered albumin maintained an affinity above that of unmodified wild type albumin that promotes it as an attractive drug delivery platform. PMID:26654692

  17. A high-capacity hydrophobic adsorbent for human serum albumin.

    PubMed

    Belew, M; Peterson, E A; Porath, J

    1985-12-01

    A simple method, based on salting out hydrophobic interaction chromatography, for the efficient removal of trace amounts of serum albumin from partially purified protein preparations is described. The method is also successfully applied for the purification of albumin from Cohn fraction IV, a by-product obtained from the commercial fractionation of human serum proteins by the ethanol precipitation procedure. About 70% of the adsorbed albumin can be eluted by buffer of low ionic strength and can thus be lyophilized directly, if required. The adsorbent can be used for several cycles of adsorption and desorption without affecting its selectivity or capacity. Its adsorption properties and capacity for serum albumin are compared with those of the commercially available adsorbent Blue Sepharose CL-6B. PMID:3879424

  18. Selection of Recombinant Human Antibodies.

    PubMed

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies. PMID:27236551

  19. A Homogeneous Fluorescent Sensor for Human Serum Albumin

    PubMed Central

    Wang, Rongsheng E.; Tian, Ling; Chang, Yie-Hwa

    2012-01-01

    Human serum albumin is the most abundant protein in the body and is an important biomarker used for disease-related diagnosis. Although the traditional enzyme-linked immunosorbent assay (ELISA) approach can precisely measure the concentration of human serum albumin, the multi-step procedure and time-consuming preparations of ELISA limit its diagnostic applications, preventing accurate point-of-care testing, for example. Herein, we report the recent development of an antibody-based albumin sensor that allows for a homogeneous measurement of albumin concentrations in saliva, urine and serum, in which this type of sensor is validated for the first time. The assay only requires simple mixing, and relies on time-resolved (TR) fluorescence resonance energy transfer (FRET) to produce robust, sensitive signals. The whole process, from sample preparation to final read-out, is expected to take less than one hour and requires only a standard plate-reader, thus making the sensor a convenient and cost-effective tool for albumin analysis. PMID:22326845

  20. Biocompatibility of electrospun human albumin: a pilot study.

    PubMed

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-01-01

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures. PMID:25727172

  1. Transforming the treatment for hemophilia B patients: update on the clinical development of recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP).

    PubMed

    Santagostino, Elena

    2016-05-01

    Recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP; Idelvion®(†)) is an innovative new treatment designed to extend the half-life of factor IX (FIX) and ease the burden of care for hemophilia B patients. The rIX-FP clinical development program - PROLONG-9FP - is in its advanced phases, with pivotal studies in previously treated adults, adolescents, and pediatrics now completed. Across all age groups studied, rIX-FP has demonstrated a markedly improved pharmacokinetic profile compared with plasma-derived and recombinant FIX treatments, with a 30-40% higher incremental recovery, an approximately 5-fold longer half-life, a lower clearance, and a greater area under the curve. rIX-FP has been very well tolerated with an excellent safety profile. In the pivotal studies, there have been no reports of FIX inhibitors or antidrug antibodies, and few treatment-related adverse events have been observed. Prophylactic regimens of rIX-FP administered once weekly to once every 14 days have been highly effective. When used for surgical prophylaxis, a single infusion of rIX-FP has been sufficient to maintain hemostasis, even during major orthopedic surgery. An ongoing study is now enrolling previously untreated patients and evaluating the possibility of extending the dosing interval to every 21 days. There is little doubt that rIX-FP will transform the treatment of hemophilia B. PMID:27288064

  2. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit.

    PubMed

    Zadravec, Petra; Marečková, Lucie; Petroková, Hana; Hodnik, Vesna; Perišić Nanut, Milica; Anderluh, Gregor; Štrukelj, Borut; Malý, Petr; Berlec, Aleš

    2016-01-01

    Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine. PMID:27606705

  3. Conjugation of Organoruthenium(II) 3-(1H-Benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and Indolo[3,2-d]benzazepines to Recombinant Human Serum Albumin: a Strategy To Enhance Cytotoxicity in Cancer Cells

    PubMed Central

    2011-01-01

    Following our strategy of coupling cyclin-dependent kinase (Cdk) inhibitors with organometallic moieties to improve their physicochemical properties and bioavailability, five organoruthenium complexes (1c–5c) of the general formula [RuCl(η6-arene)(L)]Cl have been synthesized in which the arene is 4-formylphenoxyacetyl-η6-benzylamide and L is a Cdk inhibitor [3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1–L3) and indolo[3,2-d]benzazepines (L4 and L5)]. All of the compounds were characterized by spectroscopic and analytical methods. Upon prolonged standing (2–3 months) at room temperature, the dimethyl sulfoxide (DMSO) solutions of 1c and 2c–HCl afforded residues, which after recrystallization from EtOH and EtOH/H2O, respectively, were shown by X-ray diffraction to be cis,cis-[RuIICl2(DMSO)2(L1)]·H2O and mer-[RuIICl(DMSO)3(L2–H)]·H2O. Compound 5c, with a coordinated amidine unit, undergoes E/Z isomerization in solution. The antiproliferative activities and effects on the cell cycle of the new compounds were evaluated. Complexes 1c–5c are moderately cytotoxic to cancer cells (CH1, SW480, A549, A2780, and A2780cisR cell lines). Therefore, in order to improve their antiproliferative effects, as well as their drug targeting and delivery to cancer cells, 1c–5c were conjugated to recombinant human serum albumin, potentially exploiting the so-called “enhanced permeability and retention” effect that results in the accumulation of macromolecules in tumors. Notably, a marked increase in cytotoxicity of the albumin conjugates was observed in all cases. PMID:22111668

  4. Conjugation of organoruthenium(II) 3-(1H-benzimidazol-2-yl)pyrazolo[3,4-b]pyridines and indolo[3,2-d]benzazepines to recombinant human serum albumin: a strategy to enhance cytotoxicity in cancer cells.

    PubMed

    Stepanenko, Iryna N; Casini, Angela; Edafe, Fabio; Novak, Maria S; Arion, Vladimir B; Dyson, Paul J; Jakupec, Michael A; Keppler, Bernhard K

    2011-12-19

    Following our strategy of coupling cyclin-dependent kinase (Cdk) inhibitors with organometallic moieties to improve their physicochemical properties and bioavailability, five organoruthenium complexes (1c-5c) of the general formula [RuCl(η(6)-arene)(L)]Cl have been synthesized in which the arene is 4-formylphenoxyacetyl-η(6)-benzylamide and L is a Cdk inhibitor [3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines (L1-L3) and indolo[3,2-d]benzazepines (L4 and L5)]. All of the compounds were characterized by spectroscopic and analytical methods. Upon prolonged standing (2-3 months) at room temperature, the dimethyl sulfoxide (DMSO) solutions of 1c and 2c(-HCl) afforded residues, which after recrystallization from EtOH and EtOH/H(2)O, respectively, were shown by X-ray diffraction to be cis,cis-[Ru(II)Cl(2)(DMSO)(2)(L1)]·H(2)O and mer-[Ru(II)Cl(DMSO)(3)(L2-H)]·H(2)O. Compound 5c, with a coordinated amidine unit, undergoes E/Z isomerization in solution. The antiproliferative activities and effects on the cell cycle of the new compounds were evaluated. Complexes 1c-5c are moderately cytotoxic to cancer cells (CH1, SW480, A549, A2780, and A2780cisR cell lines). Therefore, in order to improve their antiproliferative effects, as well as their drug targeting and delivery to cancer cells, 1c-5c were conjugated to recombinant human serum albumin, potentially exploiting the so-called "enhanced permeability and retention" effect that results in the accumulation of macromolecules in tumors. Notably, a marked increase in cytotoxicity of the albumin conjugates was observed in all cases. PMID:22111668

  5. Applications of recombinant DNA technology in the production of glycosylated recombinant human granulocyte colony stimulating factor.

    PubMed

    Holloway, C J

    1994-01-01

    Lenograstim has been developed by recombinant DNA technology and is expressed in large-scale mammalian cell culture. It has been shown that lenograstim is indistinguishable in its physicochemical, structural and biological properties with respect to native granulocyte colony stimulating factor isolated from a human cell line. In particular, both the recombinant and natural proteins have identical amino acid sequences, contain the same intra-polypeptide chain disulphide bridges and exhibit the same posttranslational carbohydrate structures. Lenograstim is manufactured by expanding inoculum from vials of the Manufacturer's Working Cell Bank (from molecular cloning) followed by culture in a large bioreactor. Purification of lenograstim involves a four-step chromatographic process. The active ingredient is monitored by in-process controls at all stages of manufacture and routinely as purified bulk. The finished product is formulated into excipients reflecting conditions close to the natural environment of the protein with respect to pH, osmolarity and the presence of human serum albumin. PMID:7535067

  6. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  7. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis.

    PubMed

    Cheng, Zhengjun

    2012-10-01

    This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88 μM and the concentration of proteins was fixed at 5.0 μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to Föster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A). PMID:22733490

  8. Sequences Of Amino Acids For Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.

    1992-01-01

    Sequences of amino acids defined for use in making polypeptides one-third to one-sixth as large as parent human serum albumin molecule. Smaller, chemically stable peptides have diverse applications including service as artificial human serum and as active components of biosensors and chromatographic matrices. In applications involving production of artificial sera from new sequences, little or no concern about viral contaminants. Smaller genetically engineered polypeptides more easily expressed and produced in large quantities, making commercial isolation and production more feasible and profitable.

  9. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure.

    PubMed

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2016-05-16

    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans. PMID:27028147

  10. Albumin synthesis and bone collagen formation in human immunodeficiency virus-positive subjects: differential effects of growth hormone administration.

    PubMed

    McNurlan, M A; Garlick, P J; Frost, R A; Decristofaro, K A; Lang, C H; Steigbigel, R T; Fuhrer, J; Gelato, M

    1998-09-01

    Loss of lean tissue often accompanies human immunodeficiency virus (HIV) infection. Exogenous human recombinant GH (hrGH) has been shown to be beneficial in reversing this wasting. However, catabolic effects of hrGH on muscle protein metabolism have also been reported. Therefore, the responsiveness of other GH-sensitive tissues, including bone formation and albumin synthesis, has been examined. Anabolic activity in bone, from serum levels of carboxy-terminal propeptide of type I collagen, was stimulated by 2 weeks of hrGH in controls (56 +/- 15%, P = 0.002), patients with asymptomatic HIV (24 +/- 10%, not significant), patients with AIDS (47 +/- 7%, P < 0.001), and patients with AIDS and > 10% weight loss (21 +/- 12%, P = 0.02). Albumin synthesis, determined from the incorporation of L-[2H5]phenylalanine, was increased in response to hrGH in controls (23 +/- 7%, P < 0.05), HIV+ subjects (39 +/- 16%, P < 0.05), and patients with AIDS (25 +/- 7%, P < 0.01). Patients with AIDS and weight loss, however, did not increase albumin synthesis (-0.6 +/- 12%) in response to hrGH. The results indicate variable anabolic responses to hrGH. Bone collagen synthesis remained sensitive to hrGH, whereas, the anabolic action of hrGH on the synthesis of albumin diminished with severity of disease. However unlike muscle protein synthesis, albumin synthesis was not depressed below basal levels by hrGH. PMID:9745402

  11. Review: modifications of human serum albumin and their binding effect.

    PubMed

    Lee, Philbert; Wu, Xiaoyang

    2015-01-01

    Human serum albumin (HSA) regulates the transport and availability of numerous chemical compounds and molecules in the blood vascular system. While previous HSA research has found that HSA interacts with specific varieties of ligands, new research efforts aim to expand HSA's ability to interact with more different drugs in order to improve the delivery of various pharmacological drugs. This review will cover fatty acid chain and posttranslational modifications of HSA that potentially modulate how HSA interacts with various pharmacological drugs, including glycation, cysteinylation, S-nitrosylation, S-transnitrosation and S-guanylation. PMID:25732553

  12. Review: Modifications of Human Serum Albumin and Their Binding Effect

    PubMed Central

    Lee, Philbert; Wu, Xiaoyang

    2015-01-01

    Human serum albumin (HSA) regulates the transport and availability of numerous chemical compounds and molecules in the blood vascular system. While previous HSA research has found that HSA interacts with specific varieties of ligands, new research efforts aim to expand HSA’s ability to interact with more different drugs in order to improve the delivery of various pharmacological drugs. This review will cover fatty acid chain and post-translational modifications of HSA that potentially modulate how HSA interacts with various pharmacological drugs, including glycation, cysteinylation, S-nitrosylation, S-transnitrosation and S-guanylation. PMID:25732553

  13. Three-dimensional structure of human serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Munson, Sibyl H.; Twigg, Pamela D.; Gernert, Kim M.; Broom, M. Beth; Miller, Teresa Y.

    1989-01-01

    The three-dimensional structure of human serum albumin has been solved at 6.0 A resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 and diffracted X-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.

  14. Preliminary crystallographic studies of four crystal forms of serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, D. C.; Chang, B.; Ho, J. X.; Keeling, K.; Krishnasami, Z.

    1994-01-01

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure.

  15. Preliminary crystallographic studies of four crystal forms of serum albumin.

    PubMed

    Carter, D C; Chang, B; Ho, J X; Keeling, K; Krishnasami, Z

    1994-12-15

    Several crystal forms of serum albumin suitable for three-dimensional structure determination have been grown. These forms include crystals of recombinant and wild-type human serum albumin, baboon serum albumin, and canine serum albumin. The intrinsic limits of X-ray diffraction for these crystals are in the range 0.28-0.22 nm. Two of the crystal forms produced from human and canine albumin include incorporated long-chain fatty acids. Molecular replacement experiments have been successfully conducted on each crystal form using the previously determined atomic coordinates of human serum albumin illustrating the conserved tertiary structure. PMID:7813459

  16. Effect of processing methods on colouration of human serum albumin preparations.

    PubMed

    McCann, Karl B; Vucica, Yvonne; Famulari, Sandy; Bertolini, Joseph

    2009-01-01

    Human serum albumin is a well tolerated therapeutic for the treatment of hypovolemia. Despite all commercial human albumin preparations being derived from plasma, these products can have a highly variable colour. Albumin samples derived from ethanol precipitation and chromatographic fractionation procedures were evaluated for bilirubin and biliverdin levels and by spectrophotometry. It was shown that albumin derived from a chromatographic process, which had a bilirubin:albumin ratio similar to that observed in plasma, had a vibrant yellow appearance. The albumin derived from ethanol precipitation had undetectable levels of bilirubin, and the amber colour of this product was attributed mainly to residual haem. The presence of bilirubin during pasteurisation led to oxidation to biliverdin, with a resultant colour change from yellow to yellow/green. Given that the antioxidant properties of bilirubin are well established, it is possible that bilirubin helps protect albumin from oxidation during the pasteurisation step. PMID:18948018

  17. Fructosylation generates neo-epitopes on human serum albumin.

    PubMed

    Allarakha, Shaziya; Ahmad, Parvez; Ishtikhar, Mohd; Zaheer, Mohammad Shoaib; Siddiqi, Sheelu Shafiq; Moinuddin; Ali, Asif

    2015-05-01

    Hyperglycemia is the defining feature of diabetes mellitus. The persistently high levels of reducing sugars like glucose and fructose cause glycation of various macromolecules in the body. Human serum albumin (HSA), the most abundant serum protein with a myriad of functions, is prone to glycation and consequent alteration in its structural and biological properties. This study aimed to assess the role of fructose-modified human serum albumin as a marker of diabetic pathophysiology. We carried out modification of HSA with fructose and the changes induced were studied by various physicochemical studies. Fructose modified-HSA showed hyperchromicity in UV spectrum and increased AGE-specific fluorescence as well as quenching of tryptophan fluorescence. In SDS-PAGE protein aggregation was seen. Amadori products were detected by NBT. The fructose modified HSA had higher content of carbonyls along with perturbations in secondary structure as revealed by CD and FT-IR. A greater hydrodynamic radius of fructose-modified HSA was evident by DLS measurement. The fructose-modified HSA induced high titre antibodies in experimental animals exhibiting high specificity towards the immunogen. PMID:25914162

  18. Imatinib binding to human serum albumin modulates heme association and reactivity.

    PubMed

    Di Muzio, Elena; Polticelli, Fabio; Trezza, Viviana; Fanali, Gabriella; Fasano, Mauro; Ascenzi, Paolo

    2014-10-15

    Imatinib, an inhibitor of the Bcr-Abl tyrosine kinase, is approximately 95% bound to plasma proteins, α1-acid glycoprotein (AGP) being the primary carrier. However, human serum albumin (HSA) may represent the secondary carrier of imatinib in pathological states characterized by low AGP levels, such as pancreatic cancer, hepatic cirrhosis, hepatitis, hyperthyroidism, nephrotic syndrome, malnutrition, and cachexia. Here, thermodynamics of imatinib binding to full-length HSA and its recombinant Asp1-Glu382 truncated form (containing only the FA1, FA2, FA6, and FA7 binding sites; trHSA), in the absence and presence of ferric heme (heme-Fe(III)), and the thermodynamics of heme-Fe(III) binding to HSA and trHSA, in the absence and presence of imatinib, has been investigated. Moreover, the effect of imatinib on kinetics of peroxynitrite detoxification by ferric human serum heme-albumin (HSA-heme-Fe(III)) and ferric truncated human serum heme-albumin (trHSA-heme-Fe(III)) has been explored. All data were obtained at pH 7.0, and 20.0 °C and 37.0 °C. Imatinib binding to the FA7 site of HSA and trHSA inhibits allosterically heme-Fe(III) association to the FA1 site and vice versa, according to linked functions. Moreover, imatinib binding to the secondary FA2 site of HSA-heme-Fe(III) inhibits allosterically peroxynitrite detoxification. Docking simulations and local structural comparison with other imatinib-binding proteins support functional data indicating the preferential binding of imatinib to the FA1 and FA7 sites of HSA, and to the FA2 and FA7 sites of HSA-heme-Fe(III). Present results highlight the allosteric coupling of the FA1, FA2, and FA7 sites of HSA, and may be relevant in modulating ligand binding and reactivity properties of HSA in vivo. PMID:25057771

  19. A Monoclonal IgM Protein with Antibody-like Activity for Human Albumin

    PubMed Central

    Hauptman, Stephen; Tomasi, Thomas B.

    1974-01-01

    The serum of a patient (L'ec) with an IgM lambda monoclonal protein was noted to bind albumin on immunoelectrophoresis. Analytical ultracentrifugation of the L'ec serum demonstrated 23S and 12S peaks, but no 4S (albumin) boundary. Immunologically identical 20S and 9S IgM proteins were isolated from the serum and the addition in vitro of either the patient's albumin or albumin isolated from normal serum was shown to reconstitute the 23S and 12S boundaries. The binding of high molecular weight IgM to albumin was demonstated by Sephadex G200 chromatography with 125I-labeled albumin and isolated IgM. Immunoelectrophoresis of the L'ec IgM developed with aggregated albumin (reverse immunoelectrophoresis) also demonstrated the binding of albumin to IgM. That all of the patient's IgM complexed with albumin was shown by affinity chromatography employing an aggregated albumin-immunoadsorbent column. Binding was shown to be of the noncovalent type by polyacrylamide gel electrophoresis in 8 M urea. With hot trypsin proteolysis, Fabμ and Fcμ5 fragments were isolated, and monomer albumin was shown to complex only with the Fabμ fragment by both analytical ultracentrifugation and molecular sieve chromatogaphy employing 125I-labeled Fab fragments. 1 mol of Fabμ fragment bound 1 mol of monomer albumin. Polymers of human albumin, produced by heat aggregation, precipitated with the isolated L'ec protein on gel diffusion analysis and, when coated on sheep red blood cells, gave a hemagglutination titer greater than 1 million with the whole L'ec serum. 50 additional monoclonal IgM, 33 IgA, and 80 IgG sera failed to show precipitation or hemagglutination with aggregated albumin. Native monomer albumin inhibited precipitation only at high concentrations (> 50 mg/ml); dimer albumin or fragments of albumin produced by trypsin digestion inhibited at low concentrations (0.4 mg/ml). No reactivity occurred with the albumin of five other mammalian species, including bovine. The L'ec protein

  20. Human Insulin from Recombinant DNA Technology

    NASA Astrophysics Data System (ADS)

    Johnson, Irving S.

    1983-02-01

    Human insulin produced by recombinant DNA technology is the first commercial health care product derived from this technology. Work on this product was initiated before there were federal guidelines for large-scale recombinant DNA work or commercial development of recombinant DNA products. The steps taken to facilitate acceptance of large-scale work and proof of the identity and safety of such a product are described. While basic studies in recombinant DNA technology will continue to have a profound impact on research in the life sciences, commercial applications may well be controlled by economic conditions and the availability of investment capital.

  1. Hydrophobic conjugated microporous polymers for sorption of human serum albumin

    NASA Astrophysics Data System (ADS)

    Zheng, Chunli; Du, Miaomiao; Feng, Shanshan; Sun, Hanxue; Li, An; He, Chi; Zhang, TianCheng; Wang, Qiaorui; Wei, Wei

    2016-02-01

    This paper investigated the sorption of human serum albumin (HSA) from water by three kinds of conjugated microporous polymers (CMPs) with surface hydrophobicity and intrinsic porosity. It was found that the three CMPs captured HSA with fast sorption kinetics and good working capacity. Equilibrium was obtained at 80 min for all the tests, and the maximum sorption quantity (qm) ranged from 0.07 to 0.14 mg/mg. With the increase in the particle external surface area of the CMPs, a greater extent of HSA sorption was achieved. Moreover, promoting the dispersion of CMPs in HSA aqueous solution was also beneficial to the extraction. Attenuated Total Reflection Fourier Transform Infrared spectroscopy verified the interactions between the CMPs and the Nsbnd H, Cdbnd O, and Csbnd N groups of HSA. This paper might provide fundamental guidance for the practical application of CMPs to proteins separation and recovery.

  2. Human serum albumin crystals and method of preparation

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1989-01-01

    Human serum albumin (HSA) crystals are provided in the form of tetragonal plates having the space groups P42(sub 1)2, the crystals being grown to sizes in excess of 0.5 mm in two dimensions and a thickness of 0.1 mm. Growth of the crystals is carried out by a hanging drop method wherein a precipitant solution containing polyethylene glycol (PEG) and a phosphate buffer is mixed with an HSA solution, and a droplet of mixed solution is suspended over a well of precipitant solution. Crystals grow to the desired size in 3 to 7 days. Concentration of reagents, pH and other parameters are controlled within prescribed limits. The resulting crystals exhibit a size and quality such as to allow performance of x ray diffraction studies and enable the conduct of drug binding studies as well as genetic engineering studies.

  3. Heme-based catalytic properties of human serum albumin

    PubMed Central

    Ascenzi, P; di Masi, A; Fanali, G; Fasano, M

    2015-01-01

    Human serum albumin (HSA): (i) controls the plasma oncotic pressure, (ii) modulates fluid distribution between the body compartments, (iii) represents the depot and carrier of endogenous and exogenous compounds, (iv) increases the apparent solubility and lifetime of hydrophobic compounds, (v) affects pharmacokinetics of many drugs, (vi) inactivates toxic compounds, (vii) induces chemical modifications of some ligands, (viii) displays antioxidant properties, and (ix) shows enzymatic properties. Under physiological and pathological conditions, HSA has a pivotal role in heme scavenging transferring the metal-macrocycle from high- and low-density lipoproteins to hemopexin, thus acquiring globin-like reactivity. Here, the heme-based catalytic properties of HSA are reviewed and the structural bases of drug-dependent allosteric regulation are highlighted.

  4. Three-dimensional structure of human serum albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; He, Xiao-Min; Twigg, Pamela D.; Casale, Elena

    1991-01-01

    The binding locations to human serum albumin (HSA) of several drug molecules were determined at low resolution using crystallographic methods. The principal binding sites are located within subdomains IIA and IIIA. Preliminary studies suggest that an approach to increasing the in vivo efficacy of drugs which are rendered less effective or ineffective by virtue of their interaction with HSA, would be the use of competitive displacement in drug therapies and/or the development of a general inhibitor to the site within subdomain IIIA. These findings also suggest that the facilitated transfer of various ligands across organ/circulatory interfaces such as liver, kidney, and brain may be associated with binding to the IIIA subdomain.

  5. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  6. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  7. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  8. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  9. Human serum albumin-polyethylenimine nanoparticles for gene delivery.

    PubMed

    Rhaese, Stephanie; von Briesen, Hagen; Rübsamen-Waigmann, Helga; Kreuter, Jörg; Langer, Klaus

    2003-09-19

    Nanoparticles consisting of DNA, human serum albumin (HSA) and polyethylenimine (PEI) were formed and tested for transfection efficiency in vitro with the aim of generating a nonviral gene delivery vehicle. HSA-PEI-DNA nanoparticles containing the pGL3 vector coding for luciferase as reporter gene were formed by charge neutralization. The particles were characterized by gel retardation assay, dynamic light scattering (size) and electrophoretic mobility measurements (charge). Stability was determined by spectrophotometric analysis and transfection efficiency was evaluated in cell culture using human embryonic epithelial kidney 293 cells. HSA-PEI-DNA nanoparticles were prepared by co-encapsulation of PEI as a lysosomotropic agent at varying nitrogen to phosphate (N/P) ratios. An optimum transfection efficiency was achieved when the particles were prepared at N/P ratios between 4.8 and 8.4. Furthermore, they displayed a low cytotoxicity when tested in cell culture. Our results show that HSA-PEI-DNA nanoparticles are a versatile carrier for DNA that may be suitable for i.v. administration. PMID:14499197

  10. Human Serum Albumin Complexed with Myristate and AZT

    SciTech Connect

    Zhu, Lili; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Huang, Mingdong

    2008-06-16

    3'-Azido-3'-deoxythymidine (AZT) is the first clinically effective drug for the treatment of human immunodeficiency virus infection. The drug interaction with human serum albumin (HSA) has been an important component in understanding its mechanism of action, especially in drug distribution and in drug-drug interaction on HSA in the case of multi-drug therapy. We present here crystal structures of a ternary HSA-Myr-AZT complex and a quaternary HSA-Myr-AZT-SAL complex (Myr, myristate; SAL, salicylic acid). From this study, a new drug binding subsite on HSA Sudlow site 1 was identified. The presence of fatty acid is needed for the creation of this subsite due to fatty acid induced conformational changes of HSA. Thus, the Sudlow site 1 of HSA can be divided into three non-overlapped subsites: a SAL subsite, an indomethacin subsite and an AZT subsite. Binding of a drug to HSA often influences simultaneous binding of other drugs. From the HSA-Myr-AZT-SAL complex structure, we observed the coexistence of two drugs (AZT and SAL) in Sudlow site 1 and the competition between these two drugs in subdomain IB. These results provide new structural information on HSA-drug interaction and drug-drug interaction on HSA.

  11. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis

    PubMed Central

    Horowitz, Farrah B.; Read, Robyn L.; Powell, Lisa L.

    2015-01-01

    This study describes the influence of 25% human serum albumin (HSA) supplementation on serum albumin level, total protein (TP), colloid osmotic pressure (COP), hospital stay, and survival in dogs with septic peritonitis. Records of 39 dogs with septic peritonitis were evaluated. In the HSA group, initial and post-transfusion TP, albumin, COP, and HSA dose were recorded. In the non-supplemented group, repeated values of TP, albumin, and COP were recorded over their hospitalization. Eighteen dogs survived (53.8% mortality). Repeat albumin values were higher in survivors (mean 23.9 g/L) and elevated repeat albumin values were associated with HSA supplementation. Repeat albumin and TP were higher in the HSA supplemented group (mean 24 g/L and 51.9 g/L, respectively) and their COP increased by 5.8 mmHg. Length of hospitalization was not affected. Twenty-five percent HSA increases albumin, TP, and COP in canine patients with septic peritonitis. Higher postoperative albumin levels are associated with survival. PMID:26028681

  12. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements.

    PubMed

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  13. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    PubMed Central

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  14. High-efficiency secretory expression of human neutrophil gelatinase-associated lipocalin from mammalian cell lines with human serum albumin signal peptide.

    PubMed

    Chen, Wei; Zhao, Xiaozhi; Zhang, Mingxin; Yuan, Yimin; Ge, Liyuan; Tang, Bo; Xu, Xiaoyu; Cao, Lin; Guo, Hongqian

    2016-02-01

    Human neutrophil gelatinase associated lipocalin (NGAL) is a secretory glycoprotein initially isolated from neutrophils. It is thought to be involved in the incidence and development of immunological diseases and cancers. Urinary and serum levels of NGAL have been investigated as a new biomarker of acute kidney injury (AKI), for an earlier and more accurate detection method than with creatinine level. However, expressing high-quality recombinant NGAL is difficult both in Escherichia coli and mammalian cells for the low yield. Here, we cloned and fused NGAL to the C-terminus of signal peptides of human NGAL, human interleukin-2 (IL2), gaussia luciferase (Gluc), human serum albumin preproprotein (HSA) or an hidden Markov model-generated signal sequence (HMM38) respectively for transient expression in Expi293F suspension cells to screen for their ability to improve the secretory expression of recombinant NGAL. The best results were obtained with signal peptide derived from HSA. The secretory recombinant protein could react specifically with NGAL antibody. For scaled production, we used HSA signal peptide to establish stable Chinese hamster ovary cell lines. Then we developed a convenient colony-selection system to select high-expression, stable cell lines. Moreover, we purified the NGAL with Ni-Sepharose column. The recombinant human NGAL displayed full biological activity. We provide a method to enhance the secretory expression of recombinant human NGAL by using the HSA signal peptide and produce the glycoprotein in mammalian cells. PMID:26518367

  15. Binding of amifostine to human serum albumin: a biophysical study.

    PubMed

    Sun, Yifu; Wu, Han; Zhao, Guoqing; Shi, Ying

    2015-02-01

    The aim of this present work is to investigate the interaction between amifostine and human serum albumin (HSA) in simulated physiological conditions by spectroscopic methods to reveal potential toxic effects of the drug. The results reflected that amifostine caused fluorescence quenching of HSA through a static quenching process, which was further confirmed by the electrochemical experiments. The binding constants at 290, 297 and 304 K were obtained as 2.53 × 10(5) /M, 8.13 × 10(4) /M and 3.59 × 10(4) /M, respectively. There may be one binding site of amifostine on HSA. The thermodynamic parameters indicated that the interaction between amifostine and HSA was driven mainly by hydrogen bonding and electrostatic forces. Synchronous fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy results showed amifostine binding slightly changed the conformation of HSA with secondary structural content changes. Förster resonance energy transfer study revealed high possibility of energy transfer with amifostine-Trp-214 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of amifostine in vivo. PMID:24962599

  16. Superhydrophobic Effect on the Adsorption of Human Serum Albumin

    PubMed Central

    Leibner, Evan S.; Barnthip, Naris; Chen, Weinan; Baumrucker, Craig R.; Badding, John V.; Pishko, Michael; Vogler, Erwin A.

    2009-01-01

    Analytical protocol greatly influences measurement of human-serum albumin (HSA) adsorption to commercial expanded polytetrafluororethylene (ePTFE) exhibiting superhydrophobic wetting properties. Degassing of buffer solutions and evacuation of ePTFE adsorbent to remove trapped air immediately prior to contact with protein solutions are shown to be essential. Results obtained with ePTFE as a prototypical superhydrophobic test material suggest that vacuum degassing should be applied in the measurement of protein adsorption to any surface exhibiting superhydrophobicity. Solution depletion quantified using radiometry (I-125 labeled HSA) or electrophoresis yield different measures of adsorption, with nearly four-fold higher surface concentrations of unlabeled HSA measured by the electrophoresis method. This outcome is attributed to the influence of the radiolabel on HSA hydrophilicity which decreases radiolabeled-HSA affinity for a hydrophobic adsorbent in comparison to unlabeled HSA. These results indicate that radiometry underestimates the actual amount of protein adsorbed to a particular material. Removal of radiolabeled HSA adsorbed to ePTFE by 3X serial buffer rinses also shows that the remaining “bound fraction” was about 35% lower than the amount measured by radiometric depletion. This observation implies that measurement of protein bound after surface rinsing significantly underestimates the actual amount of protein concentrated by adsorption into the surface region of a protein-contacting material. PMID:19135420

  17. Interaction of Human Serum Albumin with Metal Protoporphyrins

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Brancaleon, Lorenzo

    2015-03-01

    Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.

  18. Spectroscopic study on binding of rutin to human serum albumin

    NASA Astrophysics Data System (ADS)

    Pastukhov, Alexander V.; Levchenko, Lidiya A.; Sadkov, Anatoli P.

    2007-10-01

    Steady-state and time-resolved fluorescence spectroscopy techniques were used to study the interaction of the flavonoid rutin with human serum albumin (HSA) as well as spectral properties of the protein-bound flavonoid. Both quenching of the intrinsic fluorescence of the protein (Trp214) and the ligand fluorescence, appearing upon complexation with HSA, were used to determine binding parameters. The binding constant determined from the quenching of the Trp214 fluorescence by rutin is equal to 6.87 ± 0.22 × 10 4 M -1 and that obtained from the fluorescence of HSA-bound rutin is 3.8 ± 0.4 × 10 4 M -1. Based on the Job plot analysis, the 1:1 binding stoichiometry for the HSA-rutin complex was determined. The efficient quenching of the Trp214 fluorescence by rutin, fluorescence resonance energy transfer from excited Trp214 to rutin, and competitive binding of warfarin indicate that the binding site for the flavonoid is situated within subdomain IIA of HSA. The presence of the sugar moiety in the flavonoid molecule reduces affinity of rutin for binding to HSA but does not affect the binding stoichiometry and location of the binding site compared with aglycone analogues.

  19. Cooperative binding of drugs on human serum albumin

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Pérez-Rodríguez, M.; García, M.

    In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.

  20. Thermodynamic analysis of hydration in human serum heme-albumin

    SciTech Connect

    Baroni, Simona; Pariani, Giorgio; Fanali, Gabriella; Longo, Dario; Ascenzi, Paolo; Aime, Silvio; Fasano, Mauro

    2009-07-31

    Ferric human serum heme-albumin (heme-HSA) shows a peculiar nuclear magnetic relaxation dispersion (NMRD) behavior that allows to investigate structural and functional properties. Here, we report a thermodynamic analysis of NMRD profiles of heme-HSA between 20 and 60 {sup o}C to characterize its hydration. NMRD profiles, all showing two Lorentzian dispersions at 0.3 and 60 MHz, were analyzed in terms of modulation of the zero field splitting tensor for the S = {sup 5}/{sub 2} manifold. Values of correlation times for tensor fluctuation ({tau}{sub v}) and chemical exchange of water molecules ({tau}{sub M}) show the expected temperature dependence, with activation enthalpies of -1.94 and -2.46 {+-} 0.2 kJ mol{sup -1}, respectively. The cluster of water molecules located in the close proximity of the heme is progressively reduced in size by increasing the temperature, with {Delta}H = 68 {+-} 28 kJ mol{sup -1} and {Delta}S = 200 {+-} 80 J mol{sup -1} K{sup -1}. These results highlight the role of the water solvent in heme-HSA structure-function relationships.

  1. Investigation of the interaction between naringin and human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Yaheng; Li, Ying; Dong, Lijun; Li, Jiazhong; He, Wenying; Chen, Xingguo; Hu, Zhide

    2008-03-01

    The interaction between naringin and human serum albumin (HSA) has been thoroughly studied by fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling method. Under the simulative physiological conditions, fluorescence data revealed the presence of the binding site on HSA and its binding constants ( K) are 1.62 × 10 4, 1.68 × 10 4, 1.72 × 10 4, and 1.79 × 10 4 M -1 at 289, 296, 303, and 310 K, respectively. The alterations of protein secondary structure in the presence of naringin aqueous solution were qualitative and quantitative calculated by the evidence from CD and FT-IR spectroscopes. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (Δ H0) and standard entropy (Δ S0) for the reaction were calculated to be 3.45 kJ mol -1 and 92.52 J mol -1 K -1. These results indicated that naringin binds to HSA mainly by a hydrophobic interaction. Furthermore, the displacement experiments confirmed that naringin could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.

  2. Human Recombinant ACE2 Reduces the Progression of Diabetic Nephropathy

    PubMed Central

    Oudit, Gavin Y.; Liu, George C.; Zhong, JiuChang; Basu, Ratnadeep; Chow, Fung L.; Zhou, Joyce; Loibner, Hans; Janzek, Evelyne; Schuster, Manfred; Penninger, Josef M.; Herzenberg, Andrew M.; Kassiri, Zamaneh; Scholey, James W.

    2010-01-01

    OBJECTIVE Diabetic nephropathy is one of the most common causes of end-stage renal failure. Inhibition of ACE2 function accelerates diabetic kidney injury, whereas renal ACE2 is downregulated in diabetic nephropathy. We examined the ability of human recombinant ACE2 (hrACE2) to slow the progression of diabetic kidney injury. RESEARCH DESIGN AND METHODS Male 12-week-old diabetic Akita mice (Ins2WT/C96Y) and control C57BL/6J mice (Ins2WT/WT) were injected daily with placebo or with rhACE2 (2 mg/kg, i.p.) for 4 weeks. Albumin excretion, gene expression, histomorphometry, NADPH oxidase activity, and peptide levels were examined. The effect of hrACE2 on high glucose and angiotensin II (ANG II)–induced changes was also examined in cultured mesangial cells. RESULTS Treatment with hrACE2 increased plasma ACE2 activity, normalized blood pressure, and reduced the urinary albumin excretion in Akita Ins2WT/C96Y mice in association with a decreased glomerular mesangial matrix expansion and normalization of increased α-smooth muscle actin and collagen III expression. Human recombinant ACE2 increased ANG 1–7 levels, lowered ANG II levels, and reduced NADPH oxidase activity. mRNA levels for p47phox and NOX2 and protein levels for protein kinase Cα (PKCα) and PKCβ1 were also normalized by treatment with hrACE2. In vitro, hrACE2 attenuated both high glucose and ANG II–induced oxidative stress and NADPH oxidase activity. CONCLUSIONS Treatment with hrACE2 attenuates diabetic kidney injury in the Akita mouse in association with a reduction in blood pressure and a decrease in NADPH oxidase activity. In vitro studies show that the protective effect of hrACE2 is due to reduction in ANG II and an increase in ANG 1–7 signaling. PMID:19934006

  3. Iron absorption in humans: bovine serum albumin compared with beef muscle and egg white

    SciTech Connect

    Hurrell, R.F.; Lynch, S.R.; Trinidad, T.P.; Dassenko, S.A.; Cook, J.D.

    1988-01-01

    We studied the influence of bovine serum albumin and beef meat on nonheme iron absorption in humans and on dialyzable iron in vitro. The addition of serum albumin to a maize gruel had no significant effect on nonheme Fe absorption whereas the addition of beef meat caused a threefold increase. When added to a bread meal, serum albumin caused a modest 60% increase in nonheme Fe absorption and beef meat had no effect. When added to a protein-free meal, serum albumin reduced Fe absorption by 47% compared with a 72% reduction on addition of egg white. The bioavailability of nonheme Fe from meals containing serum albumin was consistently overestimated by the in vitro technique. We conclude that the facilitation of nonheme Fe absorption by meat is not a general property of all animal protein but is better explained by the action of one or more specific animal tissues.

  4. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

    PubMed

    Baraka-Vidot, Jennifer; Planesse, Cynthia; Meilhac, Olivier; Militello, Valeria; van den Elsen, Jean; Bourdon, Emmanuel; Rondeau, Philippe

    2015-05-19

    Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-like activity were evaluated using fluorescence spectroscopy and p-nitrophenyl acetate hydrolysis assays, respectively. With the exception of oxidative parameters, significant dose-dependent alterations in biochemical and functional properties of in vitro glycated albumin were observed. We also found that the dose-dependent increase in levels of glycation and protein aggregation and average molecular mass changes correlated with a gradual decrease in the affinity of albumin for ketoprofen and its esterase-like property. In parallel, significant alterations in both pharmacological properties were also evidenced in albumin purified from diabetic patients. Partial least-squares regression analyses established a significant correlation between glycation-mediated changes in biochemical and pharmacological properties of albumin, highlighting the important role for glycation in the variability of the drug response in a diabetic situation. PMID:25915793

  5. Optimization of a colorimetric assay for glycosylated human serum albumin

    SciTech Connect

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  6. Structural basis of transport of lysophospholipids by human serum albumin

    SciTech Connect

    Guo, Shihui; Shi, Xiaoli; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Bian, Chuanbing; Huang, Mingdong

    2010-10-08

    Lysophospholipids play important roles in cellular signal transduction and are implicated in many biological processes, including tumorigenesis, angiogenesis, immunity, atherosclerosis, arteriosclerosis, cancer and neuronal survival. The intracellular transport of lysophospholipids is through FA (fatty acid)-binding protein. Lysophospholipids are also found in the extracellular space. However, the transport mechanism of lysophospholipids in the extracellular space is unknown. HSA (human serum albumin) is the most abundant carrier protein in blood plasma and plays an important role in determining the absorption, distribution, metabolism and excretion of drugs. In the present study, LPE (lysophosphatidylethanolamine) was used as the ligand to analyse the interaction of lysophospholipids with HSA by fluorescence quenching and crystallography. Fluorescence measurement showed that LPE binds to HSA with a K{sub d} (dissociation constant) of 5.6 {micro}M. The presence of FA (myristate) decreases this binding affinity (K{sub d} of 12.9 {micro}M). Moreover, we determined the crystal structure of HSA in complex with both myristate and LPE and showed that LPE binds at Sudlow site I located in subdomain IIA. LPE occupies two of the three subsites in Sudlow site I, with the LPE acyl chain occupying the hydrophobic bottom of Sudlow site I and the polar head group located at Sudlow site I entrance region pointing to the solvent. This orientation of LPE in HSA suggests that HSA is capable of accommodating other lysophospholipids and phospholipids. The study provides structural information on HSA-lysophospholipid interaction and may facilitate our understanding of the transport and distribution of lysophospholipids.

  7. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  8. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  9. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. PMID:26071627

  10. Geometry of the human erythrocyte. I. Effect of albumin on cell geometry.

    PubMed Central

    Jay, A W

    1975-01-01

    The effects of albumin on the geometry of human erythrocytes have been studied. Individual red cells, hanging on edge from coverslips were photographed. Enlarged cell profiles were digitized using a Gradicon digitizer (Instronics Ltd., Stittsville, Ontario). Geometric parameters including diameter, area, volume, minimum cylindrical diameter, sphericity index, swelling index, maximum and minimum cell thickness, were calculated for each cell using a CDC 6400 computer. Maximum effect of human serum albumin was reached at about 1 g/liter. Studies of cell populations showed decreases in mean cell diameter of up to 6%, area 6%, and volume 15%, varying from sample to sample. The thickness of the rim was increased while that at the dimple was decreased. Studies of single cells showed that area and volume changes do not occur equally in all cells. Cells with lower sphericity indices showed larger effects. In the presence of albumin, up to 50% of the cells assumed cup-shapes (stomatocytes). These cells had smaller volumes but the same area as biconcave cells. Mechanical agitation could reversibly induce biconcave cells to assume cup shapes without area or volume changes. Experiments with de-fatted human albumins showed that the presence of bound fatty acids in varying concentrations does not alter the observed effects. Bovine serum albumin has similar effects on human erythrocytes as human serum albumin. Images FIGURE 2 FIGURE 6 FIGURE 9 PMID:1122337

  11. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  12. Depletion of the highly abundant protein albumin from human plasma using the Gradiflow.

    PubMed

    Rothemund, Deborah L; Locke, Vicki L; Liew, Audrey; Thomas, Theresa M; Wasinger, Valerie; Rylatt, Dennis B

    2003-03-01

    Analysis of complex protein samples by two-dimensional electrophoresis (2-DE) is often more difficult in the presence of a few predominant proteins. In plasma, proteins such as albumin mask proteins of lower abundance, as well as significantly limiting the amount of protein that can be loaded onto the immobilized pH gradient strip. In this paper the Gradiflow, a preparative electrophoresis system, has been used to deplete human plasma of the highly abundant protein albumin under native and denatured conditions. A three step protocol incorporating a charge separation to collect proteins with an isoelectric point greater than albumin and two size separations to isolate proteins larger and smaller than albumin, was used. When the albumin depleted fractions were analysed on pH 3-10 2-DE gels, proteins that were masked by albumin were revealed and proteins not seen in the unfractionated plasma sample were visualised. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry analysis confirmed the identification of the protein that lies beneath albumin to be C4B-binding protein alpha chain. The liquid fractions from the Gradiflow separations were also analysed by liquid chromatography-tandem mass spectrometry to confirm the proteins were separated according to their size and charge mobility in an electric field. PMID:12627381

  13. Vapor conjugation of toluene diisocyanate to specific lysines of human albumin

    PubMed Central

    Hettick, Justin M.; Siegel, Paul D.; Green, Brett J.; Liu, Jian; Wisnewski, Adam V.

    2012-01-01

    Exposure to toluene diisocyanate (TDI), an industrially important crosslinking agent used in the production of polyurethane products, can cause asthma in sensitive workers. Albumin has been identified as a major reaction target for TDI in vivo, and TDI–albumin reaction products have been proposed to serve as exposure biomarkers and to act as asthmagens, yet they remain incompletely characterized. In the current study, we used a multiplexed tandem mass spectrometry (MS/MS) approach to identify the sites of albumin conjugation by TDI vapors, modeling the air/liquid interface of the lung. Vapor phase TDI was found to react with human albumin in a dose-dependent manner, with up to 18 potential sites of conjugation, the most susceptible being Lys351 and the dilysine site Lys413–414. Sites of vapor TDI conjugation to albumin were quantitatively limited compared with those recently described for liquid phase TDI, especially in domains IIA and IIIB of albumin. We hypothesize that the orientation of albumin at the air/liquid interface plays an important role in vapor TDI conjugation and, thus, could influence biological responses to exposure and the development of in vitro assays for exposure and immune sensitivity. PMID:22206939

  14. Fusion to an albumin-binding domain with a high affinity for albumin extends the circulatory half-life and enhances the in vivo antitumor effects of human TRAIL.

    PubMed

    Li, Rui; Yang, Hao; Jia, Dianlong; Nie, Qianxue; Cai, Huawei; Fan, Qing; Wan, Lin; Li, Lin; Lu, Xiaofeng

    2016-04-28

    Clinical applications of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL) have been limited by their poor pharmacokinetics. Using endogenous albumin as a carrier is an attractive approach for circulatory half-life extension. Here, we produced ABD-hTRAIL and hTRAIL-ABD by fusing the albumin-binding domain (ABD) from protein G to the N- or C-terminus of hTRAIL. We found that ABD-hTRAIL bound human serum albumin (HSA) with a high affinity (0.4±0.18nM) and formed nanoparticles with an average diameter (~12nm) above the threshold (~7nm) of renal filtration. ABD-hTRAIL also bound mouse serum albumin (MSA); thus, its half-life was 40-50-fold greater than that of hTRAIL (14.1±0.87h vs 0.32±0.14h). Tumor uptake of ABD-hTRAIL 8-48h post-injection was 6-16-fold that of hTRAIL. Consequently, the tumor suppression of ABD-hTRAIL in mice bearing subcutaneous xenografts was 3-4 times greater than that of hTRAIL. Additionally, the time period during which ABD-hTRAIL could kill circulating tumor cells was approximately 8 times longer than that of hTRAIL. These results demonstrate that ABD fused to the N-terminus endows hTRAIL with albumin binding ability; once it enters the vasculature, ABD mediates binding with endogenous albumin, thus prolonging the half-life and enhancing the antitumor effect of hTRAIL. However, hTRAIL-ABD did not show a high affinity for albumin and therefore did not display the prolonged circulatory half-life and enhanced antitumor effects. These results demonstrate that N-terminal, but not C-terminal, ABD-fusion is an efficient technique for enhancing the antitumor effects of hTRAIL by using endogenous albumin as a carrier. PMID:26951928

  15. Cutaneous allergy to human (recombinant DNA) insulin.

    PubMed

    Grammer, L C; Metzger, B E; Patterson, R

    1984-03-16

    p6 report two cases of cutaneous allergy to human (recombinant DNA) insulin. Each patient had a history of systemic allergic reactions to porcine insulin and was at least as reactive to human as to porcine insulin by end-point cutaneous titration. Both patients' insulin allergy was managed with animal insulins and both have done well. Our experience with these two patients indicates that human insulin (rDNA) should not be expected to be efficacious in all patients with systemic allergy to insulin. PMID:6366262

  16. Comparative binding character of two general anaesthetics for sites on human serum albumin.

    PubMed Central

    Liu, Renyu; Meng, Qingcheng; Xi, Jin; Yang, Jinsheng; Ha, Chung-Eun; Bhagavan, Nadhipuram V; Eckenhoff, Roderic G

    2004-01-01

    Propofol and halothane are clinically used general anaesthetics, which are transported primarily by HSA (human serum albumin) in the blood. Binding characteristics are therefore of interest for both the pharmacokinetics and pharmacodynamics of these drugs. We characterized anaesthetic-HSA interactions in solution using elution chromatography, ITC (isothermal titration calorimetry), hydrogen-exchange experiments and geometric analyses of high-resolution structures. Binding affinity of propofol to HSA was determined to have a K(d) of 65 microM and a stoichiometry of approx. 2, whereas the binding of halothane to HSA showed a K(d) of 1.6 mM and a stoichiometry of approx. 7. Anaesthetic-HSA interactions are exothermic, with propofol having a larger negative enthalpy change relative to halothane. Hydrogen-exchange studies in isolated recombinant domains of HSA showed that propofol-binding sites are primarily found in domain III, whereas halothane sites are more widely distributed. Both location and stoichiometry from these solution studies agree with data derived from X-ray crystal-structure studies, and further analyses of the architecture of sites from these structures suggested that greater hydrophobic contacts, van der Waals interactions and hydrogen-bond formation account for the stronger binding of propofol as compared with the less potent anaesthetic, halothane. PMID:14759223

  17. Octanoate in Human Albumin Preparations Is Detrimental to Mesenchymal Stromal Cell Culture

    PubMed Central

    Wong, Way-Wua; MacKenzie, Andrew D.; Nelson, Vicky J.; Faed, James M.; Turner, Paul R.

    2015-01-01

    Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na+/K+ ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior. PMID:26074972

  18. Experimental and theoretical investigation on the interaction between cyclovirobuxine D and human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Liu, Ren; Liu, Jianming; Dong, Qiao; Fan, Jing

    2014-07-01

    Cyclovirobuxine D is an active compound extracted from the plant Buxux microphylla, and widely available as medications; however, its abuse may casts potential detrimental effects on human health. By using multispectroscopic techniques and molecular modeling, the interaction of cyclovirobuxine D with human serum albumin was investigated. The fluorescence results manifested that static type was the operative mechanism for the interaction with human serum albumin. The structural investigation of the complexed HSA through CD, three-dimensional, FT-IR and synchronous fluorescence shown the polypeptide chain of HSA partially destabilizing. Docking studies revealed the molecule to be bound in the subdomain IIA. Finally, we investigated the distance between the bound ligand and Trp-214 of human serum albumin.

  19. Interactions Between Sirolimus and Anti-Inflammatory Drugs: Competitive Binding for Human Serum Albumin

    PubMed Central

    Khodaei, Arash; Bolandnazar, Soheila; Valizadeh, Hadi; Hasani, Leila; Zakeri-Milani, Parvin

    2016-01-01

    Purpose: The aim of the present study was investigating the effects of three anti-inflammatory drugs, on Sirolimus protein biding. The binding site of Sirolimus on human serum albumin (HSA) was also determined. Methods: Six different concentrations of Sirolimus were separately exposed to HSA at pH 7.4 and 37°C. Ultrafiltration method was used for separating free drug; then free drug concentrations were measured by HPLC. Finally, Sirolimus protein binding parameters was calculated using Scatchard plots. The same processes were conducted in the presence of NSAIDs at lower concentration of albumin and different pH conditions. To characterize the binding site of Sirolimus on albumin, the free concentration of warfarin sodium and Diazepam, site I and II specific probes, bound to albumin were measured upon the addition of increasing Sirolimus concentrations. Results: Based on the obtained results presence of Diclofenac, Piroxicam and Naproxen, could significantly decrease the percentage of Sirolimus protein binding. The Binding reduction was the most in the presence of Piroxicam. Sirolimus-NSAIDs interactions were increased in higher pH values and also in lower albumin concentrations. Probe displacement study showed that Sirolimus may mainly bind to site I on albumin molecule. Conclusion: More considerations in co-administration of NSAIDs and Sirolimus is recommended. PMID:27478785

  20. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study.

    PubMed

    Szkudlarek, A; Maciążek-Jurczyk, M; Chudzik, M; Równicka-Zubik, J; Sułkowska, A

    2016-01-15

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by (1)H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation. PMID:26433342

  1. Alteration of human serum albumin tertiary structure induced by glycation. Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.; Sułkowska, A.

    2016-01-01

    The modification of human serum albumin (HSA) structure by non-enzymatic glycation is one of the underlying factors that contribute to the development of complications of diabetes and neurodegenerative diseases. The aim of the present work was to estimate how glycation of HSA altered its tertiary structure. Changes of albumin conformation were investigated by comparison of glycated (gHSA) and non-glycated human serum albumin (HSA) absorption spectra, red edge excitation shift (REES) and synchronous spectra. Effect of glycation on human serum albumin tertiary structure was also investigated by 1H NMR spectroscopy. Formation of gHSA Advanced Glycation End-products (AGEs) caused absorption of UV-VIS light between 310 nm and 400 nm while for non-glycated HSA in this region no absorbance has been registered. Analysis of red edge excitation shift effect allowed for observation of structural changes of gHSA in the hydrophobic pocket containing the tryptophanyl residue. Moreover changes in the microenvironment of tryptophanyl and tyrosyl residues brought about AGEs on the basis of synchronous fluorescence spectroscopy have been confirmed. The influence of glycation process on serum albumin binding to 5-dimethylaminonaphthalene-1-sulfonamide (DNSA), 2-(p-toluidino) naphthalene-6-sulfonic acid (TNS), has been studied. Fluorescence analysis showed that environment of both binding site I and II is modified by galactose glycation.

  2. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis.

    PubMed

    Szkudlarek, A; Sułkowska, A; Maciążek-Jurczyk, M; Chudzik, M; Równicka-Zubik, J

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors --glycation of HSA--occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSA(GLC)) with HSA glycated by fructose (gHSA(FRC)). We focused on presenting the differences between gHSA(FRC) and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335nm and λem 420nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSA(FRC) is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSA(FRC) becomes less accessible for the negatively charged quencher (I(-)), KSV value is smaller for gHSA(FRC) than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the

  3. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum

  4. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma.

    PubMed

    Gökay, Öznur; Karakoç, Veyis; Andaç, Müge; Türkmen, Deniz; Denizli, Adil

    2015-02-01

    The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored. PMID:24093765

  5. Preventing Aggregation of Recombinant Interferon beta-1b in Solution by Additives: Approach to an Albumin-Free Formulation

    PubMed Central

    Mahjoubi, Najmeh; Fazeli, Mohammad Reza; Dinarvand, Rassoul; Khoshayand, Mohammad Reza; Fazeli, Ahmad; Taghavian, Mohammad; Rastegar, Hossein

    2015-01-01

    Purpose: Aggregation suppressing additives have been used to stabilize proteins during manufacturing and storage. Interferonβ-1b is prone to aggregation because of being non-glycosylated. Aggregation behavior of albumin-free formulations of recombinant IFNβ-1b was explored using additives such as n-dodecyl-β-D-maltoside, Tween 20, arginine, glycine, trehalose and sucrose at different pH. Methods: Fractional factorial design was applied to select major factors affecting aggregation in solutions. Box-Behnken technique was used to optimize the best concentration of additives and protein. Results: Quadratic model was the best fitted model for particle size, OD350 and OD280/OD260. The optimal conditions of 0.2% n-Dodecyl-β-D-maltoside, 70 mM arginine, 189 mM trehalose and protein concentration of 0.50 mg/ml at pH 4 were achieved. A potency value of 91% ± 5% was obtained for the optimized formulation. Conclusion: This study shows that the combination of n-Dodecyl-β-D-maltoside, arginine and trehalose would demonstrate a significant stabilizing and anti-aggregating effect on the liquid formulation of interferonβ-1b. It can not only reduce the manufacturing costs but will also ease patient compliance. PMID:26819922

  6. Randomised Trials or the Test of Time? The Story of Human Albumin Administration.

    ERIC Educational Resources Information Center

    Roberts, Ian

    2000-01-01

    Conducted a systematic review of randomized controlled trials of the administration of human albumin in critically ill patients. Findings raised serious concerns about the safety of an intervention that has been widely used in health care around the world. Findings illustrate the importance of systematic reviews in health care and other areas of…

  7. Nanoencapsulation of ultra-small superparamagnetic particles of iron oxide into human serum albumin nanoparticles

    PubMed Central

    Altinok, Mahmut; Urfels, Stephan; Bauer, Johann

    2014-01-01

    Summary Human serum albumin nanoparticles have been utilized as drug delivery systems for a variety of medical applications. Since ultra-small superparamagnetic particles of iron oxide (USPIO) are used as contrast agents in magnetic resonance imaging, their encapsulation into the protein matrix enables the synthesis of diagnostic and theranostic agents by surface modification and co-encapsulation of active pharmaceutical ingredients. The present investigation deals with the surface modification and nanoencapsulation of USPIO into an albumin matrix by using ethanolic desolvation. Particles of narrow size distribution and with a defined particle structure have been achieved. PMID:25551054

  8. A mixed-mode resin with tryptamine ligand for human serum albumin separation.

    PubMed

    Wu, Qi-Ci; Lin, Dong-Qiang; Shi, Wei; Zhang, Qi-Lei; Yao, Shan-Jing

    2016-01-29

    Mixed-mode chromatography (MMC) is a new technology that uses specially-designed ligands to improve the adsorption selectivity with multimodal protein-ligand interactions for protein separation. A new MMC resin TA-B-6FF with tryptamine as the functional ligand was prepared and used for human serum albumin (HSA) separation. Adsorption equilibria of plasma-derived HSA (pHSA) were investigated and compared with a commercial tryptophan-based resin (MX-Trp-650m), and the influence of pH and salt addition was studied. The results showed that weak acidic conditions (pH 5.0-7.0) were favorable for HSA adsorption. The maximum adsorption capacity of TA-B-6FF was 141.33mg/g at pH 5.0, which was two times higher than that of MX-Trp-650m. TA-B-6FF also showed better salt-tolerance than MX-Trp-650m. Moreover, TA-B-6FF was used to separate recombinant HSA (rHSA) from Pichia pastoris culture broth. The results indicated that rHSA could be directly captured by TA-B-6FF without dilution or pH adjustment. High purity (87.75%) of rHSA monomer could be obtained with a recovery of 98.53% through two-step elution process. Total content of rHSA monomer and degraded fragment was 99.75%, the removal of host cell proteins reached about 90%. The results demonstrate that new TA-B-6FF resin has a great potential for rHSA purification directly from the complex fermentation broth. PMID:26772961

  9. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans.

    PubMed

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-In; Won, Moo-Ho; Kim, Seung U; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration. PMID:25140518

  10. Cigarette smoke induces alterations in the drug-binding properties of human serum albumin.

    PubMed

    Clerici, Marco; Colombo, Graziano; Secundo, Francesco; Gagliano, Nicoletta; Colombo, Roberto; Portinaro, Nicola; Giustarini, Daniela; Milzani, Aldo; Rossi, Ranieri; Dalle-Donne, Isabella

    2014-04-01

    Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers. PMID:24388826

  11. Patterns of recombination on human chromosome 22

    SciTech Connect

    Schlumpf, K.S.; Kim, D.; Haines, J.L.

    1994-09-01

    Virtually all genetic linkage maps generated to date are gross averages across individuals, ages, and (often) sexes. In addition, although some level of positive interference has been assumed, until recently little evidence to support this in humans has been available. The major stumbling block has been the quality of the data available, since even a few genotypic errors can have drastic effects on both the map length and the number of apparent recombinants. In addition, variation in recombination by factors other than sex have pretty much been ignored. To explore recombination in more detail, we have generated a microsatellite marker map of human chromosome 22. This map includes 32 markers genotyped through 46 sibships of the Venezuelan Reference Pedigree (VRP). Extensive error checking and regenotyping was performed to remove as many genotypic errors as possible, but no genotypes were removed simply because they created unlikely events. The following 1000:1 odds map has been obtained: cen--F8VWFP1--11--S264--3-S311--4--S257--2--TOP1P2--3--S156--1--CRYB2--1--S258--2--S310--6--S193--1--S275--3--S268--1--S280--4--S304--3--S283--2--LiR1--3--IL2RB--3--S299--1--S302--1--S537--2--S270--4--PDGF--8--S274--qter. The female map (91 cM) is twice as long as the male map (46 cM) and the log-likelihood difference in the maps (22.3) is highly significant (P=0.001, df=22) and appears constant across the chromosome. Analysis of recombination with age showed no particular trends for either males or females when chromosomes were grouped into three categories (20, 20-30, 30+) by parental age at birth of child. Positive interference was found in maternally derived chromosomes ({chi}{sup 2}=30.5 (4), p<0.005), but not in paternally derived chromosomes ({chi}{sup 2}=6.24 (3), P=0.10). This contrasts to data from chromosomes 9 and 21 where positive interference was found for both sexes. More detailed analyses are in progress.

  12. Albumin leak across human pulmonary microvascular vs. umbilical vein endothelial cells under septic conditions.

    PubMed

    Shelton, Jennifer L; Wang, Lefeng; Cepinskas, Gediminas; Sandig, Martin; Inculet, Richard; McCormack, David G; Mehta, Sanjay

    2006-01-01

    Human pulmonary microvascular endothelial cell (HPMVEC) injury is central to the pathophysiology of human lung injury. However, septic HPMVEC barrier dysfunction and the contribution of neutrophils have not been directly addressed in vitro. Instead, human EC responses are often extrapolated from studies of human umbilical vein EC (HUVEC). We hypothesized that HUVEC was not a good model for investigating HPMVEC barrier function under septic conditions. HPMVEC was isolated from lung tissue resected from lung cancer patients using magnetic bead-bound anti-PECAM-1 antibody. In confluent monolayers in 3-mum cell-culture inserts, we assessed trans-EC Evans-Blue (EB)-conjugated albumin leak under basal, unstimulated conditions and following stimulation with either lipopolysaccharide or a mixture of equal concentrations of TNF-alpha, IL-1beta and IFN-gamma (cytomix). Basal EB-albumin leak was significantly lower across HPMVEC than HUVEC (0.64 +/- 0.06% vs. 1.13 +/- 0.10%, respectively, P < 0.001). Lipopolysaccharide and cytomix increased leak across both HPMVEC and HUVEC in a dose-dependent manner, with a similar increase relative to basal leak in both cell types. The presence of neutrophils markedly and dose-dependently enhanced cytomix-induced EB-albumin leak across HPMVEC (P < 0.01), but had no effect on EB-albumin leak across HUVEC. Both cytomix and lipopolysaccharide-induced albumin leak was not associated with a loss of cell viability. In conclusion, HPMVEC barrier dysfunction under septic conditions is dramatically enhanced by neutrophil presence, and HUVEC is not a suitable model for studying HPMVEC septic barrier responses. The direct study of HPMVEC septic responses will lead to a better understanding of human lung injury. PMID:16376951

  13. Binding study of tetracyclines to human serum albumin using difference spectrophotometry.

    PubMed

    Zia, H; Price, J C

    1976-02-01

    The binding of several tetracyclines to human serum albumin was studied using difference spectrophotometry and a spectrophotometric probe, 2-(4'-hydroxybenzeneazo)benzoic acid. Difference spectra observed for the interaction between the probe and human serum albumin were similar to probe-bovine serum albumin spectra but were less intense for a given concentration of probe and did not reach saturation as quickly. Difference spectra for the tetracyclines were dependent on the characteristics of the ring substituents. More hydrophobic substituents on the D and C rings tended to give more intense difference spectra, but charge-transfer complexing may also have been involved since methacycline with a methylene group in the 6-position showed the most intense spectra of the compounds studied. Solvent perturbation, pH, and urea studies tended to confirm that something other than hydrophobic binding of the tetracyclines was involved. Drug-probe displacement studies showed that methacycline gave the greatest probe displacement followed by doxycycline, chlortetracycline, oxytetracycline, and tetracycline. This order of displacement of the anionic probe indicates that both hydrophobic and charge-transfer binding are involved. Experiments with calcium ion and ethylenediaminetetraacetic acid showed that the difference spectra obtained with the tetracyclines and human serum albumin were not the result of metallic bridge-chelate formation. PMID:3641

  14. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    PubMed Central

    Zhao, Shuqiang; Zhang, Yu; Tian, Hong; Chen, Xiaofei; Cai, Di; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF), the domain III of human serum albumin (3DHSA) was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC) counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF. PMID:24151579

  15. Monitoring recombinant human erythropoietin abuse among athletes.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Chen, Yeng; Lakshmipriya, Thangavel; Tang, Thean-Hock

    2015-01-15

    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection. PMID:25058943

  16. Luminescent probe in the study of surfactant-induced structural changes in serum albumin in human blood plasma

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Pravdin, A. B.; Kochubey, V. I.; Melnikov, G. V.

    2005-06-01

    The luminescence-kinetic technique of the monitoring of structural changes in albumins of human blood plasma that uses a luminescent probe-eosin is proposed. Phosphorescence of eosin bound to the globular proteins of blood plasma-albumins was recorded at room temperature. It is found that under the action of sodium dodecylsulfate on the albumins the rate constant of eosin phosphorescence decay grows and the intensity of eosin phosphorescence decreases. It is assumed that these changes are connected with the denaturing of blood plasma albumins by sodium dodecylsulfate.

  17. Albumin infusion in humans does not model exercise induced hypervolaemia after 24 hours

    NASA Technical Reports Server (NTRS)

    Haskell, A.; Gillen, C. M.; Mack, G. W.; Nadel, E. R.

    1998-01-01

    We rapidly infused 234 +/- 3 mL of 5% human serum albumin in eight men while measuring haematocrit, haemoglobin concentration, plasma volume (PV), albumin concentration, total protein concentration, osmolality, sodium concentration, renin activity, aldosterone concentration, and atrial natriuretic peptide concentration to test the hypotheses that plasma volume expansion and plasma albumin content expansion will not persist for 24 h. Plasma volume and albumin content were expanded for the first 6 h after infusion (44.3 +/- 1.9-47.2 +/- 2.0 mL kg-1 and 1.9 +/- 0.1-2.1 +/- 0.1 g kg-1 at pre-infusion and 1 h, respectively, P < 0.05), but by 24 h plasma volume and albumin content decreased significantly from 1 h post-infusion and were not different from pre-infusion (44.8 +/- 1.9 mL kg-1 and 1.9 +/- 0.1 g kg-1, respectively). Plasma aldosterone concentration showed a significant effect of time over the 24 h after infusion (P < 0.05), and showed a trend to decrease at 2 h after infusion (167.6 +/- 32.5(-1) 06.2 +/- 13.4 pg mL-1, P = 0.07). These data demonstrate that a 6.8% expansion of plasma volume and 10.5% expansion of plasma albumin content by infusion does not remain in the vascular space for 24 h and suggest a redistribution occurs between the intravascular space and interstitial fluid space.

  18. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin.

    PubMed

    Saldanha, Juliana F; Yi, Dan; Stockler-Pinto, Milena B; Soula, Hédi A; Chambert, Stéphane; Fouque, Denis; Mafra, Denise; Soulage, Christophe O

    2016-06-01

    Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid. PMID:26945842

  19. The thiol pool in human plasma: The central contribution of albumin to redox processes

    PubMed Central

    Turell, Lucía; Radi, Rafael; Alvarez, Beatriz

    2013-01-01

    The plasma compartment has particular features regarding the nature and concentration of low and high molecular weight thiols and oxidized derivatives. Plasma is relatively poor in thiol-based antioxidants; thiols are in lower concentrations than in cells and mostly oxidized. The different thiol-disulfide pairs are not in equilibrium and the steady-state concentrations of total thiols as well as reduced versus oxidized ratios are maintained by kinetic barriers, including the rates of reactions and transport processes. The single thiol of human serum albumin (HSA-SH) is the most abundant plasma thiol. It is an important target for oxidants and electrophiles due to its reactivity with a wide variety of species and its relatively high concentration. A relatively stable sulfenic (HSA-SO3H) acid can be formed in albumin exposed to oxidants. Plasma increases in mixed disulfides (HSA-SSR) or in sulfinic (HSA-SO2H) and sulfonic (HSA-SO3H) acids are associated with different pathologies and may constitute biomarkers of the antioxidant role of the albumin thiol. In this work we provide a critical review of the plasma thiol pool with a focus on human serum albumin. PMID:23747983

  20. Recombinant Human Elastase Treatment of Cephalic Veins

    PubMed Central

    Wong, Marco D; Bingham, Karen; Moss, Emma; Warn, J Donald; Smirnov, Igor; Bland, Kimberly S; Starcher, Barry; Franano, F Nicholas; Burke, Steven K

    2016-01-01

    Background Vessel injury at the time of Arteriovenous Fistula (AVF) creation may lead to neointimal hyperplasia that impairs AVF maturation. Vonapanitase, a recombinant human chymotrypsin-like elastase family member 1, is an investigational drug under development to improve AVF maturation and patency. The current studies were designed to document vonapanitase effects in human cephalic veins that are used in AVF creation. Methods Human cephalic veins were mounted on a perfusion myograph. Vonapanitase 1.2, 4, 13.2, and 40 μg/ml or saline was applied drop wise on the vein followed by saline rinse. Vein segments were cut into rings for elastin content determination by desmosine radioimmunoassay and histology. Fluorescently-labelled vonapanitase was applied to veins and adventitial imaging was performed using laser scanning confocal microscopy. In vivo time course experiments were performed by treating rabbit jugular veins and harvesting 1 h and 4 h after vonapanitase treatment. Results / Conclusion Vonapanitase reduced desmosine content in a dose-related manner. Histology also confirmed a dose-related reduction in elastic fiber staining. Fluorescently-labelled vonapanitase persistently localized to elastic fibers in the vein adventitia. In vivo experiments showed a reduction in desmosine content in jugular veins from 1 h to 4 h following treatment. These data suggest that vonapanitase targets elastin in elastic fibers in a dose related manner and that elastase remains in the vessel wall and has catalytic activity for at least 1 h.

  1. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans.

    PubMed Central

    De Feo, P; Gaisano, M G; Haymond, M W

    1991-01-01

    Insulin deficiency decreases tissue protein synthesis, albumin mRNA concentration, and albumin synthesis in rats. In contrast, insulin deficiency does not change, or, paradoxically, increases estimates of whole body protein synthesis in humans. To determine if such estimates of whole body protein synthesis could obscure potential differential effects of insulin on the synthetic rates of individual proteins, we determined whole body protein synthesis and albumin and fibrinogen fractional synthetic rates using 5-h simultaneous infusions of [14C]leucine and [13C]bicarbonate, in six type 1 diabetics during a continuous i.v. insulin infusion (to maintain euglycemia) and after short-term insulin withdrawal (12 +/- 2 h). Insulin withdrawal increased (P less than 0.03) whole body proteolysis by approximately 35% and leucine oxidation by approximately 100%, but did not change 13CO2 recovery from NaH13CO3 or estimates of whole body protein synthesis (P = 0.21). Insulin deficiency was associated with a 29% decrease (P less than 0.03) in the albumin fractional synthetic rate but a 50% increase (P less than 0.03) in that of fibrinogen. These data provide strong evidence that albumin synthesis in humans is an insulin-sensitive process, a conclusion consistent with observations in rats. The increase in fibrinogen synthesis during insulin deficiency most likely reflects an acute phase protein response due to metabolic stress. These data suggest that the absence of changes in whole body protein synthesis after insulin withdrawal is the result of the summation of differential effects of insulin deficiency on the synthesis of specific body proteins. PMID:1909352

  2. Allosteric Sensing of Fatty Acid Binding by NMR: Application to Human Serum Albumin.

    PubMed

    Jafari, Naeimeh; Ahmed, Rashik; Gloyd, Melanie; Bloomfield, Jonathon; Britz-McKibbin, Philip; Melacini, Giuseppe

    2016-08-25

    Human serum albumin (HSA) serves not only as a physiological oncotic pressure regulator and a ligand carrier but also as a biomarker for pathologies ranging from ischemia to diabetes. Moreover, HSA is a biopharmaceutical with a growing repertoire of putative clinical applications from hypovolemia to Alzheimer's disease. A key determinant of the physiological, diagnostic, and therapeutic functions of HSA is the amount of long chain fatty acids (LCFAs) bound to HSA. Here, we propose to utilize (13)C-oleic acid for the NMR-based assessment of albumin-bound LCFA concentration (CONFA). (13)C-Oleic acid primes HSA for a LCFA-dependent allosteric transition that modulates the frequency separation between the two main (13)C NMR peaks of HSA-bound oleic acid (ΔνAB). On the basis of ΔνAB, the overall [(12)C-LCFA]Tot/[HSA]Tot ratio is reproducibly estimated in a manner that is only minimally sensitive to glycation, albumin concentration, or redox potential, unlike other methods to quantify HSA-bound LCFAs such as the albumin-cobalt binding assay. PMID:27429126

  3. Spectral Fluorescence Properties of an Anionic Oxacarbocyanine Dye in Complexes with Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2015-07-01

    The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.

  4. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  5. Water-soluble noncovalent adducts of the heterometallic copper subgroup complexes and human serum albumin with remarkable luminescent properties.

    PubMed

    Chelushkin, P S; Krupenya, D V; Tseng, Yu-Jui; Kuo, Ting-Yi; Chou, Pi-Tai; Koshevoy, I O; Burov, S V; Tunik, S P

    2014-01-25

    Novel water-soluble noncovalent adducts of the heterometallic copper subgroup complexes and human serum albumin (HSA) display strong phosphorescence, internalize into HeLa cells and can be used in time-resolved fluorescent imaging. PMID:24296768

  6. Surface-enhanced Raman spectroscopy study of the interaction of antitumoral drug Paclitaxel with human serum albumin

    NASA Astrophysics Data System (ADS)

    Yan, Tianxiu; Gu, Huaimin; Yuan, Xiaojuan; Wu, Jiwei; Wei, Huajiang

    2008-12-01

    SERS spectroscopy was employed to study the interaction of the antitumoral drug paclitaxel with human serum albumin. The normal Raman spectrum of the paclitaxel was shown in this study for the first time. There were some differences existing in the surface-enhanced Raman scattering (SERS) spectrum of paclitaxel and its human serum albumin (HSA), which demonstrated that there was high bioaffinity of paclitaxel to human serum albumin. And it was also found that there existed some differences in the SERS of the paclitaxel/HSA complexes at different pH values, which may indicated some significant information on the binding site, by which paclitaxel binds to human serum albumin. It can provide significant instruction in the synthesis of the drug and in improving the therapeutic efficacy of this drug.

  7. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.

    PubMed Central

    Watanabe, H; Tanase, S; Nakajou, K; Maruyama, T; Kragh-Hansen, U; Otagiri, M

    2000-01-01

    Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411. PMID:10903143

  8. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.

    PubMed

    Watanabe, H; Tanase, S; Nakajou, K; Maruyama, T; Kragh-Hansen, U; Otagiri, M

    2000-08-01

    Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411. PMID:10903143

  9. Dependence of the solubility of natural flavonoids in water on the concentration of miramistin, polyvinylpyrrolidone, and human serum albumin

    NASA Astrophysics Data System (ADS)

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.

    2014-05-01

    In organized media of the cationic surfactant miramistin and the polymers polyvinylpyrrolidone and human serum albumin, the solubility of natural flavonoids quercetin and rutin increased by one or two orders of magnitude. The increase was more significant for hydrophobic quercetin than for hydrophilic rutin. The solubility also depended on the structure and self-organization of molecules in organized media and the site of flavonoids in them. The calculated binding constants increased in the series polyvinylpyrrolidone < miramistin < human serum albumin.

  10. Therapeutic use of recombinant methionyl human leptin.

    PubMed

    Vatier, Camille; Gautier, Jean-François; Vigouroux, Corinne

    2012-10-01

    Recombinant methionyl human leptin (r-metHuLeptin) was first used as a replacement therapy in patients bearing inactivating mutations in the leptin gene. In this indication, it was shown since 1999 to be very efficient in inducing a dramatic weight loss in rare children and adults with severe obesity due to the lack of leptin. These first clinical trials clearly showed that r-metHuLeptin acted centrally to reduce food intake, inducing loss of fat mass, and to correct metabolic alterations, immune and neuroendocrine defects. A few years later, r-metHuLeptin was also shown to reverse the metabolic complications associated with lipodystrophic syndromes, due to primary defects in fat storage, which induce leptin deficiency. The beneficial effects, which could be mediated by central and/or peripheral mechanisms, are thought to mainly involve the lowering effects of leptin on ectopic lipid storage, in particular in liver and muscles, reducing insulin resistance. Interestingly, r-metHuLeptin therapy also reversed the hypothalamic-pituitary-gonadal axis dysfunctions associated with hypothalamic amenorrhea. However, if r-metHuLeptin treatment has been shown to be dramatically efficient in leptin-deficient states, its very limited effect in inducing weight loss in common obese patients revealed that, in patients with adequate leptin secretion, mechanisms of leptin resistance and leptin tolerance prevent r-metHuLeptin from inducing any additional effects. This review will present the current data about the effects of r-metHuLeptin therapy in humans, and discuss the recent perspectives of this therapy in new indications. PMID:22464954

  11. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.

    2016-01-01

    Changes of oxidative modified albumin conformation by comparison of non-modified (HSA) and modified (oHSA) human serum albumin absorption spectra, Red Edge Excitation Shift (REES) effect and fluorescence synchronous spectra were investigated. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region from 200 to 250 nm involve structural alterations related to variations in peptide backbone conformation. Analysis of the REES effect allowed for the observation of changes caused by oxidation in the region of the hydrophobic pocket containing the tryptophanyl residue. Synchronous fluorescence spectroscopy confirmed changes of the position of the tryptophanyl and tyrosil residues fluorescent band. Effect of oxidative stress on binding of methotrexate (MTX) was investigated by spectrofluorescence, UV-VIS and 1HNMR spectroscopy. MTX caused the fluorescence quenching of non-modified (HSA) and modified (oHSA) human serum albumin molecule. The values of binding constants, Hill's coefficients and a number of binding sites in the protein molecule in the high affinity binding site were calculated for the binary MTX-HSA and MTX-oHSA systems. For these systems, qualitative analysis in the low affinity binding sites was performed with the use of the 1HNMR technique.

  12. Chromatographic removal and heat inactivation of hepatitis B virus during the manufacture of human albumin.

    PubMed

    Adcock, W L; MacGregor, A; Davies, J R; Hattarki, M; Anderson, D A; Goss, N H

    1998-10-01

    The purpose of the present study was to examine the efficacy of the chromatographic and pasteurization steps, employed in the manufacture of human albumin, in the removal and/or inactivation of hepatitis B virus (HBV). Most human albumins manufactured today are prepared from donor plasma by fractionation methods that use precipitation with cold ethanol. CSL Limited, an Australian biopharmaceutical company, has recently converted its method of manufacture for albumin from a traditional Cohn fractionation method to a method employing chromatographic techniques. A step-by-step validation of virus removal and inactivation was performed on this manufacturing process, which includes a DEAE-Sepharose(R) and CM-Sepharose(R) Fast Flow ion-exchange step, a Sephacryl(R) S200 High-Resolution gel-filtration step and a bulk pasteurization step where product is held at 60 degreesC for 10 h. HBV partitioning experiments were conducted on scaled-down chromatographic columns with hepatitis B surface antigen (HBsAg) as a marker, whereas the HBV model virus, duck HBV, was used to study the inactivation kinetics during pasteurization. Reductions for HBsAg through the three chromatographic steps resulted in a total log10 decrease of 1.5 log10, whereas more than 6.5 log10 decrease in duck HBV in Albumex(R)5 was achieved during pasteurization. PMID:9756468

  13. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    PubMed

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. PMID:27460503

  14. Maintenance of Hepatic Functions in Primary Human Hepatocytes Cultured on Xeno-Free and Chemical Defined Human Recombinant Laminins.

    PubMed

    Watanabe, Masaaki; Zemack, Helen; Johansson, Helene; Hagbard, Louise; Jorns, Carl; Li, Meng; Ellis, Ewa

    2016-01-01

    Refined methods for maintaining specific functions of isolated hepatocytes under xeno-free and chemical defined conditions is of great importance for the development of hepatocyte research and regenerative therapy. Laminins, a large family of heterotrimeric basement membrane adhesion proteins, are highly cell and tissue type specific components of the extracellular matrix and strongly influence the behavior and function of associated cells and/or tissues. However, detailed biological functions of many laminin isoforms are still to be evaluated. In this study, we determined the distribution of laminin isoforms in human liver tissue and isolated primary human hepatocytes by western blot analysis, and investigated the efficacy of different human recombinant laminin isoforms on hepatic functions during culture. Protein expressions of laminin-chain α2, α3, α4, β1, β3, γ1, and γ2 were detected in both isolated human hepatocytes and liver tissue. No α1 and α5 expression could be detected in liver tissue or hepatocytes. Hepatocytes were isolated from five different individual livers, and cultured on human recombinant laminin isoforms -111, -211, -221, -332, -411, -421, -511, and -521 (Biolamina AB), matrigel (extracted from Engelbreth-Holm-Swarm sarcoma), or collagen type IV (Collagen). Hepatocytes cultured on laminin showed characteristic hexagonal shape in a flat cell monolayer. Viability, double stranded DNA concentration, and Ki67 expression for hepatocytes cultured for six days on laminin were comparable to those cultured on EHS and Collagen. Hepatocytes cultured on laminin also displayed production of human albumin, alpha-1-antitrypsin, bile acids, and gene expression of liver-enriched factors, such as hepatocyte nuclear factor 4 alpha, glucose-6-phosphate, cytochrome P450 3A4, and multidrug resistance-associated protein 2. We conclude that all forms of human recombinant laminin tested maintain cell viability and liver-specific functions of primary human

  15. Recombinant human bone morphogenetic protein induces bone formation.

    PubMed Central

    Wang, E A; Rosen, V; D'Alessandro, J S; Bauduy, M; Cordes, P; Harada, T; Israel, D I; Hewick, R M; Kerns, K M; LaPan, P

    1990-01-01

    We have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 micrograms of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans. Images PMID:2315314

  16. Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes.

    PubMed

    Jyoti; Mir, Abdul Rouf; Habib, Safia; Siddiqui, Sheelu Shafiq; Ali, Asif; Moinuddin

    2016-05-01

    Glyco-oxidation of proteins has implications in the progression of diabetes type 2. Human serum albumin is prone to glyco-oxidative attack by sugars and methylglyoxal being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. This study has probed the methylglyoxal mediated modifications of HSA, the alterations in its immunological characteristics and possible role in autoantibody induction. We observed an exposure of chromophoric groups, loss in the fluorescence intensity, generation of AGEs, formation of cross-linked products, decrease in α-helical content, increase in hydrophobic clusters, FTIR band shift, attachment of methylglyoxal to HSA and the formation of N(ε)-(carboxyethyl) lysine in the modified HSA, when compared to the native albumin. MG-HSA was found to be highly immunogenic with additional immunogenicity invoking a highly specific immune response than its native counterpart. The binding characteristics of circulating autoantibodies in type 2 diabetes mellitus (DM) patients showed the generation of anti-MG-HSA auto-antibodies in the these patients, that are preferentially recognized by the modified albumin. We propose that MG induced structural perturbations in HSA, result in the generation of neo-epitopes leading to an aggressive auto-immune response and may contribute to the immunopathogenesis of diabetes type 2 associated complications. PMID:26861824

  17. Binding of a liver-specific factor to the human albumin gene promoter and enhancer

    SciTech Connect

    Frain, M.; Hardon, E.; Ciliberto, G. ); Sala-Trepat, J.M. )

    1990-03-01

    A segment of 1,022 base pairs (bp) of the 5{prime}-flanking region of the human albumin gene, fused to a reporter gene, directs hepatoma-specific transcription. Three functionally distinct regions have been defined by deletion analysis: a negative element located between bp {minus}673 and {minus}486, an enhancer essential for efficient albumin transcription located between bp {minus}486 and {minus}221, and a promoter spanning a region highly conserved throughout evolution. Protein-binding studies have demonstrated that a liver {ital trans}-acting factor which interacts with the enhancer region is the well-characterized transcription factor LF-B1, which binds to promoters of several liver-specific genes. A synthetic oligodeoxynucleotide containing the LF-B1-binding site is sufficient to act as a tissue-specific transcriptional enhancer when placed in front of the albumin promoter. The fact that the same binding site functions in both an enhancer and a promoter suggests that these two elements influence the initiation of transcription through similar mechanisms.

  18. Radioactive excretion in human milk following administration of /sup 99m/Tc macroaggregated albumin

    SciTech Connect

    Pittard, W.B.; Merkatz, R.; Fletcher, B.D.

    1982-08-01

    Albumin-tagged sodium pertechnetate (technetium) is routinely used in nuclear medicine for scanning procedures of the lung. The rate of excretion of this radionuclide into breast milk and the resultant potential radiation hazard to the nursing infant have received little attention. Therefore the milk from a nursing mother who required a lung scan because of suspected pulmonary emboli using an intravenous injection of 4 mCi of /sup 99m/Tc macroaggregated human serum albumin was monitored. Albumin tagging severely limited the entrance of technetium into her milk and the radioactivity of the milk returned to base line by 24 hours. A total of 2.02 muCi of technetium was measured in the 24-hour milk collection after technetium injection and 94% of this amount was excreted by 15.5 hours. This amount of technetium administered orally to a newborn would deliver a total body radiation dose of .3 mrad. Therefore, an infant would receive trivial doses of radiation if breast-feeding were resumed 15.5 hours after administration of the radionuclide to the mother and nursing can clearly be resumed safely 24 hours after injection.

  19. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.

    PubMed

    Sinisi, Valentina; Forzato, Cristina; Cefarin, Nicola; Navarini, Luciano; Berti, Federico

    2015-02-01

    Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated. PMID:25172718

  20. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology*

    PubMed Central

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-01-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4′-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692. PMID:26385339

  1. Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin.

    PubMed

    Yang, Lijun; Lv, Junna; Wang, Xin; Zhang, Jing; Li, Qi; Zhang, Tingting; Zhang, Zhenzhen; Zhang, Lei

    2015-08-01

    Bisphenol AF (BPAF) was used as a model compound to investigate the binding mechanism between the endocrine disrupting compound and human serum albumin (HSA) using multispectroscopic techniques and molecular modeling method at the protein level. The results indicated that BPAF was indeed bound to HSA and located in the hydrophobic pocket of HSA on subdomain IIA through hydrogen bond and van der Waals interactions. The fluorescence quenching data showed that the binding of BPAF and HSA quenched the intrinsic fluorescence of HSA, and the static quenching constants were acquired. PMID:25694370

  2. Nanoparticle Albumin Bound Paclitaxel in the Treatment of Human Cancer: Nanodelivery Reaches Prime-Time?

    PubMed Central

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  3. Nanoparticle albumin bound Paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time?

    PubMed

    Cucinotto, Iole; Fiorillo, Lucia; Gualtieri, Simona; Arbitrio, Mariamena; Ciliberto, Domenico; Staropoli, Nicoletta; Grimaldi, Anna; Luce, Amalia; Tassone, Pierfrancesco; Caraglia, Michele; Tagliaferri, Pierosandro

    2013-01-01

    Nanoparticle albumin bound paclitaxel (nab-paclitaxel) represents the first nanotechnology-based drug in cancer treatment. We discuss the development of this innovative compound and report the recent changing-practice results in breast and pancreatic cancer. A ground-breaking finding is the demonstration that nab-paclitaxel can not only enhance the activity and reduce the toxicity of chromophore-diluted compound, but also exert activity in diseases considered refractory to taxane-based treatment. This is the first clinical demonstration of major activity of nanotechnologically modified drugs in the treatment of human neoplasms. PMID:23738077

  4. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands

    PubMed Central

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  5. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  6. Impact of albumin on drug delivery--new applications on the horizon.

    PubMed

    Elsadek, Bakheet; Kratz, Felix

    2012-01-10

    Over the past decades, albumin has emerged as a versatile carrier for therapeutic and diagnostic agents, primarily for diagnosing and treating diabetes, cancer, rheumatoid arthritis and infectious diseases. Market approved products include fatty acid derivatives of human insulin or the glucagon-like-1 peptide (Levemir(®) and Victoza(®)) for treating diabetes, the taxol albumin nanoparticle Abraxane(®) for treating metastatic breast cancer which is also under clinical investigation in further tumor indications, and (99m)Tc-aggregated albumin (Nanocoll(®) and Albures(®)) for diagnosing cancer and rheumatoid arthritis as well as for lymphoscintigraphy. In addition, an increasing number of albumin-based or albumin-binding drugs are in clinical trials such as antibody fusion proteins (MM-111) for treating HER2/neu positive breast cancer (phase I), a camelid albumin-binding nanobody anti-HSA-anti-TNF-α (ATN-103) in phase II studies for treating rheumatoid arthritis, an antidiabetic Exendin-4 analog bound to recombinant human albumin (phase I/II), a fluorescein-labeled albumin conjugate (AFL)-human serum albumin for visualizing the malignant borders of brain tumors for improved surgical resection, and finally an albumin-binding prodrug of doxorubicin (INNO-206) entering phase II studies against sarcoma and gastric cancer. In the preclinical setting, novel approaches include attaching peptides with high-affinity for albumin to antibody fragments, the exploitation of albumin-binding gadolinium contrast agents for magnetic resonance imaging, and physical or covalent attachment of antiviral, antibacterial, and anticancer drugs to albumin that are permanently or transiently attached to human serum albumin (HSA) or act as albumin-binding prodrugs. This review gives an overview of the expanding field of preclinical and clinical drug applications and developments that use albumin as a protein carrier to improve the pharmacokinetic profile of the drug or to target the drug

  7. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

    PubMed Central

    2013-01-01

    Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may

  8. Preparation and analysis of peptide fragments produced by pepsin hydrolysis of human plasma albumin and their relationship to its structure

    PubMed Central

    Franglen, G.; Swaniker, G. R. E.

    1968-01-01

    Human plasma albumin was prepared and subjected to proteolysis by pepsin at pH2·45 at 25° for 10min. with albumin/pepsin ratio 3000:1. Five peptide fragments were detected in the proteolysate by means of zone electrophoresis and gel filtration; these were separated and purified. Molecular weights, amino acid composition and disulphide bond content of the purified fragments were determined. The results show that a high proportion of the polypeptide chain of albumin appears to have a low cystine content, and at low pH values the molecule would be expected to have a considerable degree of freedom in its structure in these regions of the chain. A tripartite model for the structure of plasma albumin is proposed. PMID:4876098

  9. Assessment of Binding Affinity between Drugs and Human Serum Albumin Using Nanoporous Anodic Alumina Photonic Crystals.

    PubMed

    Nemati, Mahdieh; Santos, Abel; Law, Cheryl Suwen; Losic, Dusan

    2016-06-01

    In this study, we report an innovative approach aiming to assess the binding affinity between drug molecules and human serum albumin by combining nanoporous anodic alumina rugate filters (NAA-RFs) modified with human serum albumin (HSA) and reflectometric interference spectroscopy (RIfS). NAA-RFs are photonic crystal structures produced by sinusoidal pulse anodization of aluminum that present two characteristic optical parameters, the characteristic reflection peak (λPeak), and the effective optical thickness of the film (OTeff), which can be readily used as sensing parameters. A design of experiments strategy and an ANOVA analysis are used to establish the effect of the anodization parameters (i.e., anodization period and anodization offset) on the sensitivity of HSA-modified NAA-RFs toward indomethacin, a model drug. To this end, two sensing parameters are used, that is, shifts in the characteristic reflection peak (ΔλPeak) and changes in the effective optical thickness of the film (ΔOTeff). Subsequently, optimized NAA-RFs are used as sensing platforms to determine the binding affinity between a set of drugs (i.e., indomethacin, coumarin, sulfadymethoxine, warfarin, and salicylic acid) and HSA molecules. Our results verify that the combination of HSA-modified NAA-RFs with RIfS can be used as a portable, low-cost, and simple system for establishing the binding affinity between drugs and plasma proteins, which is a critical factor to develop efficient medicines for treating a broad range of diseases and medical conditions. PMID:27128744

  10. A study on human serum albumin influence on glycation of fibrinogen

    SciTech Connect

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  11. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin.

    PubMed

    Yuan, Zhi-xiang; Wu, Xiao-juan; Mo, Jingxin; Wang, Yan-li; Xu, Chao-qun; Lim, Lee Yong

    2015-08-01

    We have previously demonstrated that peptide fragments (PFs) of the human serum albumin could be developed as potential renal targeting carriers, in particular, the peptide fragment, PF-A299-585 (A299-585 representing the amino acid sequence of the human serum albumin). In this paper, we conjugated triptolide (TP), the anti-inflammatory Chinese traditional medicine, to PF-A299-585 via a succinic acid spacer to give TPS-PF-A299-585 (TP loading 2.2% w/w). Compared with the free TP, TPS-PF-A299-585 exhibited comparable anti-inflammatory activity in the lipopolysaccharide stimulated MDCK cells, but was significantly less cytotoxic than the free drug. Accumulation of TPS-PF-A299-585 in the MDCK cells in vitro and in rodent kidneys in vivo was demonstrated using FITC-labeled TPS-PF-A299-585. Renal targeting was confirmed in vivo in a membranous nephropathic (MN) rodent model, where optical imaging and analyses of biochemical markers were combined to show that TPS-PF-A299-585 was capable of alleviating the characteristic symptoms of MN. The collective data affirm PF-A299-585 to be a useful carrier for targeting TP to the kidney. PMID:26117184

  12. The influence of recombination on human genetic diversity.

    PubMed

    Spencer, Chris C A; Deloukas, Panos; Hunt, Sarah; Mullikin, Jim; Myers, Simon; Silverman, Bernard; Donnelly, Peter; Bentley, David; McVean, Gil

    2006-09-22

    In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution. PMID:17044736

  13. Chromatographic removal and heat inactivation of hepatitis A virus during manufacture of human albumin.

    PubMed

    Adcock, W L; MacGregor, A; Davies, J R; Hattarki, M; Anderson, D A; Goss, N H

    1998-08-01

    CSL Limited, an Australian biopharmaceutical company, has recently converted its method of manufacture for human albumin from a traditional Cohn-ethanol fractionation method to a method employing chromatographic techniques. Studies were undertaken to determine the efficiency of the chromatographic and pasteurization steps used in the manufacture of Albumex(R) (CSL's trade name for albumin) in removing and inactivating the potential viral contaminant, hepatitis A virus (HAV). The manufacturing process for Albumex(R) includes three chromatographic steps, two of which are ion-exchange steps (DEAE-Sepharose(R) Fast Flow and CM-Sepharose(R) Fast Flow) and the third is a gel-filtration step (Sephacryl(R) S200 HR). The final stage of the Albumex(R) process involves a bulk pasteurization step where product is held at 60 degrees C for 10 h. HAV partitioning experiments on the DEAE-Sepharose(R) FF and CM-Sepharose(R) FF ion-exchange and Sephacryl(R) S200 HR gel-filtration columns were performed with scaled-down models of the production-scale chromatographic Albumex(R) process. Production samples collected before each of the chromatographic steps were spiked with HAV and processed through each of the scaled-down chromatographic columns. Samples collected during processing were assayed and the log10 reduction factors calculated. Inactivation kinetics of HAV were examined during the pasteurization of Albumex(R) 5 and 20 [5% and 20% (w/v) albumin solutions] held at 60 degrees C for 10 h. Log10 reductions for HAV through the DEAE-Sepharose(R) FF, CM-Sepharose(R) FF and Sephacryl(R) S200 HR chromatographic columns were 5.3, 1.5 and 4.2 respectively, whereas a 4.4 and a greater than 3.9 log10 reduction in HAV in Albumex(R) 5 and 20 respectively were achieved during pasteurization. PMID:9693093

  14. Hexamethylene diisocyanate (HDI) vapor reactivity with glutathione and subsequent transfer to human albumin

    PubMed Central

    Wisnewski, Adam V.; Mhike, Morgen; Hettick, Justin M.; Liu, Jian; Siegel, Paul D.

    2012-01-01

    INTRODUCTION Airway fluid glutathione (GSH) reactivity with inhaled vapors of diisocyanate, a common occupational allergen, is postulated to be a key step in exposure-induced asthma pathogenesis. METHODS A mixed (vapor/liquid) phase exposure system was used to model the in vivo reactivity of inhaled HDI vapor with GSH in the airway fluid. HDI-GSH reaction products, and their capacity to transfer HDI to human albumin, were characterized through mass spectrometry and serologic assays, using HDI-specific polyclonal rabbit serum. RESULTS HDI vapor exposure of 10 mM GSH solutions resulted in primarily S-linked, bis(GSH)-HDI reaction products. In contrast, lower GSH concentrations (100 μM) resulted in mainly mono(GSH)-HDI conjugates, with varying degrees of HDI hydrolysis, dimerization and/or intra-molecular cyclization, depending upon the presence/absence of H2PO4-/HPO42- and Na+/Cl- ions. The ion composition and GSH concentration of the fluid phase, during HDI vapor exposure, strongly influenced the transfer of HDI from GSH to albumin, as did the pH and duration of the carbamoylating reaction. When carbamoylation was performed overnight at pH 7, twenty-five of albumin's lysines were identified as potential sites of conjugation with partially hydrolyzed HDI. When carbamoylation was performed at pH 9, more rapid (within 3 hours) and extensive modification was observed, including additional lysine sites, intra-molecular cross-linkage with HDI, and novel HDI-GSH conjugation. CONCLUSIONS The data define potential mechanisms by which the levels of GSH, H2PO4-4/HPO42-, and/or other ions (e.g. H+/OH-, Na+, Cl-) affect the reactivity of HDI vapor with self-molecules in solution (e.g. airway fluid), and thus, might influence the clinical response to HDI respiratory tract exposure. PMID:23178851

  15. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin

    PubMed Central

    2014-01-01

    Background Many biologically active compounds bind to plasma transport proteins, and this binding can be either advantageous or disadvantageous from a drug design perspective. Human serum albumin (HSA) is one of the most important transport proteins in the cardiovascular system due to its great binding capacity and high physiological concentration. HSA has a preference for accommodating neutral lipophilic and acidic drug-like ligands, but is also surprisingly able to bind positively charged peptides. Understanding of how short cationic antimicrobial peptides interact with human serum albumin is of importance for developing such compounds into the clinics. Results The binding of a selection of short synthetic cationic antimicrobial peptides (CAPs) to human albumin with binding affinities in the μM range is described. Competitive isothermal titration calorimetry (ITC) and NMR WaterLOGSY experiments mapped the binding site of the CAPs to the well-known drug site II within subdomain IIIA of HSA. Thermodynamic and structural analysis revealed that the binding is exclusively driven by interactions with the hydrophobic moieties of the peptides, and is independent of the cationic residues that are vital for antimicrobial activity. Both of the hydrophobic moieties comprising the peptides were detected to interact with drug site II by NMR saturation transfer difference (STD) group epitope mapping (GEM) and INPHARMA experiments. Molecular models of the complexes between the peptides and albumin were constructed using docking experiments, and support the binding hypothesis and confirm the overall binding affinities of the CAPs. Conclusions The biophysical and structural characterizations of albumin-peptide complexes reported here provide detailed insight into how albumin can bind short cationic peptides. The hydrophobic elements of the peptides studied here are responsible for the main interaction with HSA. We suggest that albumin binding should be taken into careful

  16. Interaction of cucurbitacins with human serum albumin: Thermodynamic characteristics and influence on the binding of site specific ligands.

    PubMed

    Abou-Khalil, Rony; Jraij, Alia; Magdalou, Jacques; Ouaini, Naïm; Tome, Daniel; Greige-Gerges, Hélène

    2009-06-01

    Cucurbitacins (Cuc) are cytotoxic oxygenated triterpenes. Their binding to albumin may control their diffusion and consequently their biological effects. The specific binding site of Cuc to albumin is important to be defined as it could determine some of the drug interactions of the compounds. This paper deals with the interaction between human serum albumin and a series of four cucurbitacins (B, D, E and I) measured by fluorescence and circular dichroism spectroscopies. Cuc B and E at C25, are the acetylated forms of Cuc D and I. The binding parameters (K(a) and n) of Cuc B, D and E to albumin were determined at 288, 293, 298 and 303K. Cuc B possesses the higher binding constant (K(a)) values followed by Cuc E and D. The thermodynamic parameters DeltaH, DeltaG and DeltaS were calculated. They indicated hydrophobic and electrostatic interactions for Cuc B, hydrophobic interaction for Cuc E, hydrophobic and hydrogen bond interactions for Cuc D. In addition to bilirubin, Cuc B, D, and E increased the binding constant values for warfarin to albumin, whereas they did not affect the binding of other ligands of site I such as chloroform and salicylate. The increase of the K(a) values of warfarin and bilirubin was associated with an increase of the binding constant value of cucurbitacin to albumin. Cuc I did not bind to albumin and could be considered less capable to affect the interaction of ligands to albumin than Cuc B, D and E. CD spectra indicated that Cuc binding to HSA was not associated with substantial structural changes of the protein. PMID:19380237

  17. Binding of Citreoviridin to Human Serum Albumin: Multispectroscopic and Molecular Docking

    PubMed Central

    Hou, Haifeng; Qu, Xiaolan; Li, Yuqin; Kong, Yueyue; Jia, Baoxiu; Yao, Xiaojun; Jiang, Baofa

    2015-01-01

    Citreoviridin (CIT), a mycotoxin produced by Penicillium citreonigrum, is a common contaminant of wide range of agriproducts and detrimental to human and animal health. In this study, the interaction of CIT with human serum albumin (HSA) is researched by steady-state fluorescence, ultraviolet-visible (UV-Vis) absorption, circular dichroism (CD) methods, and molecular modeling. The association constants, binding site numbers, and corresponding thermodynamic parameters are used to investigate the quenching mechanism. The alternations of HSA secondary structure in the presence of CIT are demonstrated with UV-Vis, synchronous fluorescence, and CD spectra. The molecular modeling results reveal that CIT can bind with hydrophobic pocket of HSA with hydrophobic and hydrogen bond force. Moreover, an apparent distance of 3.25 nm between Trp214 and CIT is obtained via fluorescence resonance energy transfer method. PMID:25977915

  18. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    SciTech Connect

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  19. A Fluorescence Quenching Study of the Interaction of Nebivolol Hydrochloride with Bovine and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, L.; Abdel-Fattah, L.; El-Kosasy, A.; Gaied, M.

    2015-09-01

    The interaction of nebivolol hydrochloride (NH), a β1-blocker, with bovine serum albumin (BSA) has been investigated at different pH values using the fluorescence quenching technique. The effect of different temperatures was studied at physiological pH 7.4. The binding constants of NH with BSA at 288, 298, and 309 K were found to be 2.691 × 1011, 1.38 × 1010, and 6.27 × 108 M-1, respectively. From the Arrhenius plot, the thermodynamic parameters, ΔH0 and ΔS0, were estimated to be -204.48 kJ/mol and -491.42 J/mol × K, respectively. This indicates that Van der Waals interactions and hydrogen bonds play a major role in the reaction. The effect of some inorganic divalent cations (Cu2+, Ni2+, and Zn2+) on binding of NH to BSA was also studied at physiological pH 7.4. Conformational investigation of BSA was done using synchronous fluorescence, showing the change in the microenvironment of the tryptophan residues. Fluorescence quenching reactions of NH to human serum albumin (HSA) and to γ-globulins were investigated and the binding parameters were obtained.

  20. Research of the interaction between kangai injection and human serum albumin by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Changbin; Lin, Xiaogang; Zhu, Hao; Li, Wenchao; Wu, Jie

    2015-10-01

    The interaction between drugs and serum albumin is the theoretical basis of pharmacology research. Kangai injection with invigorating Qi, enhancing the immune function, is widely used for a variety of malignant tumor treatment. Fluorescence spectroscopy was adopted due to its high sensitivity and other advantages. The interaction between kangai injection and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence spectroscopy and UV-Vis absorption spectroscopy. The results of fluorescence spectrum at three temperature (296K, 303K and 310K) showed the degree of binding at 310K is the highest. Also, the maximum emission peak has a slight blue shift, which indicates that the interaction between kangai injection and HSA has an effect on the conformation of HSA. That is, the microenvironment of tryptophan increase hydrophobic due to the increase of the concentration of kangai injection. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that kangai injection has a strong ability to quench the intrinsic fluorescence of HSA. And according to the Stern-Volume equation, the quenching mechanism is static quenching, which is further proved by the UV-Vis absorption spectroscopy.

  1. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes.

    PubMed

    Rondeau, Philippe; Singh, Nihar Ranjan; Caillens, Henri; Tallet, Frank; Bourdon, Emmanuel

    2008-09-15

    Oxidative stress and protein modifications are frequently observed in numerous disease states. Albumin, the major circulating protein in blood, can undergo increased glycoxidation in diabetes. Protein glycoxidation can lead to the formation of advanced glycoxidation end products, which induce various deleterious effects on cells. Herein, we report the effect of glucose or methylglyoxal-induced oxidative modifications on BSA or HSA protein structures and on THP1 monocyte physiology. The occurrence of oxidative modifications was found to be enhanced in glycoxidized BSA and HSA, after determination of their free thiol group content, relative electrophoretic migration, carbonyl content, and antioxidant activities. Cells treated with glycoxidized albumin exhibited an overgeneration of intracellular reactive oxygen species, impairments in proteasomal activities, enhancements in RAGE expression, and an accumulation of carbonylated proteins. These novel observations made in the presence of a range of modified BSA and HSA facilitate the comparison of the glycoxidation extent of albumin with the oxidative stress induced in cultured monocytes. Finally, this study reconfirms the influence of experimental conditions in which AGEs are generated and the concentration levels in experiments designed to mimic pathological conditions. PMID:18616999

  2. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae.

    PubMed

    Ward, P P; Lo, J Y; Duke, M; May, G S; Headon, D R; Conneely, O M

    1992-07-01

    We report the production of recombinant human lactoferrin in Aspergillus oryzae. Expression of human lactoferrin (hLF), a 78 kD glycoprotein, was achieved by placing the cDNA under the control of the A. oryzae alpha-amylase promoter and the 3' flanking region of the A. niger glucoamylase gene. Using this system, hLF is expressed and secreted into the growth medium at levels up to 25 mg/l. The recombinant lactoferrin is indistinguishable from human milk lactoferrin with respect to its size, immunoreactivity, and iron-binding capacity. The recombinant protein appears to be appropriately N-linked glycosylated and correctly processed at the N-terminus by the A. oryzae secretory apparatus. Lactoferrin is the largest heterologous protein and the first mammalian glycoprotein expressed in the Aspergillus system to date. Hence, this expression system appears suitable for the large-scale production and secretion of biologically active mammalian glycoproteins. PMID:1368268

  3. Antigen presentation of detergent free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein

    PubMed Central

    Steed, Jordan; Gilliam, Lisa K.; Harris, Robert A.; Lernmark, Åke; Hampe, Christiane S.

    2008-01-01

    1. Summary The smaller isoform of glutamate decarboxylase (GAD65) is a major autoantigen in type 1 diabetes (TID). Its hydrophobic character requires detergent to keep the protein in solution, which complicates studies of antigen processing and presentation. In this study an attempt was made to replace detergent with human serum albumin (HSA) for in vitro antigen presentation. Different preparations of recombinant human GAD65 complexed with HSA were incubated with Priess B cells (HLA DRB1*0401) and antigen presentation was tested with HLA DRB1*0401-restricted and epitope-specific T33.1 (GAD65 epitope 274-286) and T35 (GAD65 epitope 115-127) T cell hybridomas. Specific epitope recognition by T33.1 (274-286) and T35 (115-127) cells varied between the different GAD65/HSA preparations, and a reverse pattern of antigen presentation were detected by the two hybridoma. The HSA-specific T-cell hybridoma 17.9 response to the different GAD65/HSA preparations followed the same pattern as that observed for the T33.1 cells. The content of immunoreactive GAD65 measured with four GAD65 antibodies indicated that the lowest GAD65 concentration resulted in the highest 274-286, but the lowest 115-127 presentation. This suggests that HSA-GAD65 complexes qualitatively affect the epitope specificity of GAD65 presentation. HSA may enhance the 274-286 epitope presentation, while suppressing the 115-127 epitope. PMID:18353353

  4. Reciprocal Allosteric Modulation of Carbon Monoxide and Warfarin Binding to Ferrous Human Serum Heme-Albumin

    PubMed Central

    Bocedi, Alessio; De Sanctis, Giampiero; Ciaccio, Chiara; Tundo, Grazia R.; Di Masi, Alessandra; Fanali, Gabriella; Nicoletti, Francesco P.; Fasano, Mauro; Smulevich, Giulietta; Ascenzi, Paolo; Coletta, Massimo

    2013-01-01

    Human serum albumin (HSA), the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s). As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i) of carbon monoxide (CO) binding to ferrous human serum heme-albumin (HSA-heme-Fe(II)) by warfarin (WF), and (ii) of WF binding to HSA-heme-Fe(II) by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II), respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands). This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II). The HSA-heme-Fe(II) populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i) upon CO binding a conformational change of HSA-heme-Fe(II) takes place (likely reflecting the displacement of an endogenous ligand by CO), and (ii) CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II) population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II). PMID:23555601

  5. Human islet purification: a prospective comparison of Euro-Ficoll and bovine serum albumin density gradients.

    PubMed

    Chadwick, D R; Robertson, G S; Contractor, H; Swift, S; Rose, S; Thirdborough, S T; Chamberlain, R; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll (EF) and bovine serum albumin (BSA) are the two most commonly used media for the density gradient purification of human pancreatic islets. The aim of this study was to compare these two media with respect to the efficiency of human islet isolation. Ten human pancreata were collagenase-digested, and samples of digest were separated on either a continuous linear density gradient of BSA or a discontinuous gradient of EF (1.108/1.096/1.037/Euro-Collins). Efficiency of islet purification was assessed by insulin and amylase assay of aliquots aspirated from the BSA gradients, and from the interfaces of the EF gradients. Islets were obtained from two interfaces in the EF gradients. Islet yield from the upper interface was generally poor (median 28% of total insulin; range 2-71%), but purity was better than for an equivalent yield using BSA [1% (0-3%) amylase contamination for EF versus 6% (0-37%) for BSA; P = 0.013]. Pooling both EF interfaces increased yield to 66% (17-81%) but markedly reduced purity [46% (0-50%) amylase for EF versus 31% (0-52%) for BSA]. In conclusion, the efficiency of human islet purification is similar, though disappointingly low, with BSA and with EF. Considerable scope exists, therefore, for improvement in the density gradient purification of human islets. PMID:8329732

  6. Interaction of human serum albumin with novel imidazole derivatives studied by spectroscopy and molecular docking.

    PubMed

    Yue, Yuanyuan; Sun, Yangyang; Dong, Qiao; Liu, Ren; Yan, Xuyang; Zhang, Yajie; Liu, Jianming

    2016-05-01

    This study was a detailed characterization of the interaction of a series of imidazole derivatives with a model transport protein, human serum albumin (HSA). Fluorescence and time-resolved fluorescence results showed the existence of a static quenching mode for the HSA-imidazole derivative interaction. The binding constant at 296 K was in the order of 10(4) M(-1) , showing high affinity between the imidazole derivatives and HSA. A site marker competition study combined with molecular docking revealed that the imidazole derivatives bound to subdomain IIA of HSA (Sudlow's site I). Furthermore, the results of synchronous, 3D, Fourier transform infrared, circular dichroism and UV-vis spectroscopy demonstrated that the secondary structure of HSA was altered in the presence of the imidazole derivatives. The specific binding distance, r, between the donor and acceptor was obtained according to fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26364804

  7. Enantioselective separation of chiral arylcarboxylic acids on an immobilized human serum albumin chiral stationary phase.

    PubMed

    Andrisano, V; Booth, T D; Cavrini, V; Wainer, I W

    1997-01-01

    A series of 12 chiral arylcarboxylic acids were chromatographed on an immobilized human serum albumin chiral stationary phase (HSA-CSP). The effects of solute structure on chromatographic retentions and enantioselective separations were examined by linear regression analysis and the construction of quantitative structure-enantioselective retention relationships. Competitive displacement studies were also conducted using R-ibuprofen as the displacing agent. The results indicate that the enantioselective retention of the solutes takes place at the indole-benzodiazepine site (site II) on the HSA molecule and that chiral recognition is affected by the hydrophobicity and steric volume of the solutes. The displacement studies also identified a cooperative allosteric interaction induced by the binding of R-ibuprofen to site II. PMID:9134695

  8. Fluorescence study on the interaction of human serum albumin with Butein in liposomes

    NASA Astrophysics Data System (ADS)

    Toprak, Mahmut

    2016-02-01

    The interaction of Butein with human serum albumin in L-egg lecithin phosphatidycholine (PC) liposome has been investigated by fluorescence and absorption spectroscopy. The results of the fluorescence measurement indicated that Butein effectively quenched the intrinsic fluorescence of HSA via static quenching. The Stern-Volmer plots in all the liposome solutions showed a positive deviation from the linearity. According to the thermodynamic parameters, the hydrophobic interactions appeared be the major interaction forces between Butein and HSA. The effect of Butein on the conformation of HSA was also investigated by the synchronous fluorescence under the same experimental conditions. In addition, the partition coefficient of the Butein in the PC liposomes was also determined by using the fluorescence quenching process. The obtained results can be of biological significance in pharmacology and clinical medicine.

  9. New insights into in vitro amyloidogenic properties of human serum albumin suggest considerations for therapeutic precautions.

    PubMed

    Sharma, Neetu; Sivalingam, Vishwanath; Maurya, Sonalika; Prasad, Archana; Khandelwal, Puneet; Yadav, Subhash Chandra; Patel, Basant K

    2015-12-21

    Amyloid aggregates display striking features of detergent stability and self-seeding. Human serum albumin (HSA), a preferred drug-carrier molecule, can also aggregate in vitro. So far, key amyloid properties of stability against ionic detergents and self-seeding, are unclear for HSA aggregates. Precautions against amyloid contamination would be required if HSA aggregates were self-seeding. Here, we show that HSA aggregates display detergent sarkosyl stability and have self-seeding potential. HSA dimer is preferable for clinical applications due to its longer retention in circulation and lesser oedema owing to its larger molecular size. Here, HSA was homodimerized via free cysteine-34, without any potentially immunogenic cross-linkers that are usually pre-requisite for homodimerization. Alike the monomer, HSA dimers also aggregated as amyloid, necessitating precautions while using for therapeutics. PMID:26554815

  10. A calorimetric study on interactions of colchicine with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Xu, Xiang-Yu; Sun, Xiang-Jun; Liu, Min; Sun, De-Zhi; Li, Lin-Wei

    2009-08-01

    Interaction of colchicine (COL) with human serum albumin (HSA) in buffer solutions (pH 7.2) has been investigated by isothermal titration calorimetry (ITC) combined with circular dichroism (CD) and UV-vis spectra. Heats of the interactions have been determined at 298.15 K. Based on the calorimetric data and reasonable suppositions for the bio-macromolecule - ligand binding process, the equilibrium constants, standard changes of enthalpy, entropy and Gibbs free energy of the processes are obtained. The results show that there are two classes of ligand binding sites. The first-class binding is mainly driven by entropy, while the second-class binding is synergistically driven by entropy and enthalpy. Circular dichroism (CD) and UV-vis spectra show that COL can change the secondary structure of HSA molecule.

  11. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-02-01

    Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. The interaction between RA and human serum albumin (HSA) was investigated by multi-spectroscopic, electrochemistry, molecular docking and molecular dynamics simulation methods. The fluorescence emission of HSA was quenched by RA through a combined static and dynamic quenching mechanism, but the static quenching was the major constituent. Fluorescence experiments suggested that RA was bound to HSA with moderately strong binding affinity through hydrophobic interaction. The probable binding location of RA was located near site I of HSA. Additionally, as shown by the Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra, RA can result in conformational and structural alterations of HSA. Furthermore, the molecular dynamics studies were used to investigate the stability of the HSA and HSA-RA system. Altogether, the results can provide an important insight for the applications of RA in the food industry. PMID:26304336

  12. Binding properties of drospirenone with human serum albumin and lysozyme in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ma, Xiangling; He, Jiawei; Sun, Qiaomei; Li, Yuanzhi; Li, Hui

    2016-01-01

    The interaction of drospirenone (DP) with human serum albumin (HSA)/lysozyme (LYZ) was investigated using different optical techniques and molecular models. Results from the emission and time resolved fluorescence studies revealed that HSA/LYZ emission quenching with DP was initiated by static quenching mechanism. The LYZ-DP system was more easily influenced by temperature than the HSA-DP system. Displacement experiments demonstrated that the DP binding site was mainly located in site 1 of HSA. Based on the docking methods, DP was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located. Conformation study showed that DP had different effects on the local conformation of HSA and LYZ molecules.

  13. Evaluation of the enantioselective binding of imazalil to human serum albumin by capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Martín-Biosca, Yolanda; Escuder-Gilabert, Laura; Sagrado, Salvador; Medina-Hernández, María José

    2015-11-01

    In this work, a methodology for the evaluation of enantioselective binding of imazalil (IMA) enantiomers to human serum albumin (HSA) that does not require the separation of free and bound to HSA fractions is developed. This methodology comprises the incubation of IMA-HSA designed mixtures for 30 min directly in the capillary electrophoresis system and the subsequent direct injection and chiral separation of IMA employing highly sulfated β-cyclodextrin as chiral selector and the complete filling technique. Two mathematical approaches were used to estimate apparent affinity constants (K1), protein binding and enantioselectivity (ES) for both enantiomers of IMA. Moderate enantioselective binding of IMA enantiomers to HSA (ES = 2.0) was shown by the 1:1 stoichiometry and log K1 values of 3.4 ± 0.4 and 3.1 ± 0.3 for the first and second eluted enantiomers, respectively. PMID:25857268

  14. Interaction of diuron to human serum albumin: Insights from spectroscopic and molecular docking studies.

    PubMed

    Chen, Huilun; Rao, Honghao; Yang, Jian; Qiao, Yongxiang; Wang, Fei; Yao, Jun

    2016-01-01

    This investigation was undertaken to determine the interaction of diuron with human serum albumin (HSA) was studied by monitoring the spectral behavior of diuron-HSA system. The fluorescence of HSA at 340 nm excited at 230 nm was obviously quenched by diuron due to dynamic collision and the quenching constant was of the order of 10(4) L mol(-1) at 310 K. However, no fluorescence quenching was observed when excited at 280 nm. Thermodynamic investigations revealed that the combination between diuron and HSA was entropy driven by predominantly hydrophobic interactions. The binding of diuron induced the drastic reduction in α-helix conformation and the significant enhancement in β-turn conformation of HSA. In addition, both sites marker competition study and molecular modeling simulation evidenced the binding of diuron to HSA primarily took place in subdomain IIIA (Sudlow's site II). PMID:26671830

  15. Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System

    PubMed Central

    Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke

    2015-01-01

    We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step. PMID:25607476

  16. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling.

    PubMed

    Samari, Fayezeh; Shamsipur, Mojtaba; Hemmateenejad, Bahram; Khayamian, Taghi; Gharaghani, Sajjad

    2012-08-01

    The interaction of amodiaquine (AQ) with human serum albumin (HSA) has been studied by fluorescence spectroscopy. Based on the sign and magnitude of the enthalpy and entropy changes (ΔH(0) = -43.27 kJ mol(-1) and ΔS(0) = -50.03 J mol(-1) K(-1)), hydrogen bond and van der Waals forces were suggested as the main interacting forces. Moreover, the efficiency of energy transfer and distance between HSA and acceptor AQ was calculated. Finally, the binding of AQ to HSA was modeled by molecular docking and molecular dynamic simulation methods. Excellent agreement was found between the experimental and theoretical results. Both experimental results and modeling methods suggested that AQ binds mainly to the sub-domain IIA of HSA. PMID:22658498

  17. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  18. [Interaction between ambroxol hydrochloride and human serum albumin studied by spectroscopic and molecular modeling methods].

    PubMed

    Liang, Jing; Feng, Su-Ling

    2011-04-01

    In the present paper, the interaction between ambroxol hydrochloride (ABX) and human serum albumin (HSA) was studied under simulative physiological condition by spectroscopy and molecular modeling method. Stern-Volmer curvers at different temperatures and UV-Vis absorption spectroscopy showed that ABX quenched the fluorescence of HSA mainly through dynamic quenching mode. On the basis of the thermodynamic data, the main binding force between them is hydrophobic interaction. According to the theory of Forster non-radiation energy transfer, the binding distance between the donor and the acceptor was 3.01 nm. The effect of ABX on the conformation of HSA was analyzed by the synchronous and three-dimensional fluorescence spectroscopy. Furthermore, using the molecular modeling method, the interaction between them was predicted from molecular angle: ABX might locate in the subdomain III A of HSA. PMID:21714251

  19. Sentinel lymph nodes fluorescence detection and imaging using Patent Blue V bound to human serum albumin

    PubMed Central

    Tellier, Franklin; Steibel, Jérôme; Chabrier, Renée; Blé, François Xavier; Tubaldo, Hervé; Rasata, Ravelo; Chambron, Jacques; Duportail, Guy; Simon, Hervé; Rodier, Jean-François; Poulet, Patrick

    2012-01-01

    Patent Blue V (PBV), a dye used clinically for sentinel lymph node detection, was mixed with human serum albumin (HSA). After binding to HSA, the fluorescence quantum yield increased from 5 × 10−4 to 1.7 × 10−2, which was enough to allow fluorescence detection and imaging of its distribution. A detection threshold, evaluated in scattering test objects, lower than 2.5 nmol × L−1 was obtained, using a single-probe setup with a 5-mW incident light power. The detection sensitivity using a fluorescence imaging device was in the µmol × L−1 range, with a noncooled CCD camera. Preclinical evaluation was performed on a rat model and permitted to observe inflamed nodes on all animals. PMID:23024922

  20. Synthesis of imidazole derivatives and the spectral characterization of the binding properties towards human serum albumin

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Dong, Qiao; Zhang, Yajie; Li, Xiaoge; Yan, Xuyang; Sun, Yahui; Liu, Jianming

    2016-01-01

    Small molecular drugs that can combine with target proteins specifically, and then block relative signal pathway, finally obtain the purpose of treatment. For this reason, the synthesis of novel imidazole derivatives was described and this study explored the details of imidazole derivatives binding to human serum albumin (HSA). The data of steady-state and time-resolved fluorescence showed that the conjugation of imidazole derivatives with HSA yielded quenching by a static mechanism. Meanwhile, the number of binding sites, the binding constants, and the thermodynamic parameters were also measured; the raw data indicated that imidazole derivatives could spontaneously bind with HSA through hydrophobic interactions and hydrogen bonds which agreed well with the results from the molecular modeling study. Competitive binding experiments confirmed the location of binding. Furthermore, alteration of the secondary structure of HSA in the presence of the imidazole derivatives was tested.

  1. Comparison of low molecular weight hydroxyethyl starch and human albumin as priming solutions in children undergoing cardiac surgery.

    PubMed

    Miao, Na; Yang, Jing; Du, Zhongtao; Liu, Wei; Ni, Hong; Xing, Jialin; Yang, Xiaofang; Xu, Bo; Hou, Xiaotong

    2014-09-01

    Human albumin is the conventional cardiopulmonary bypass circuit primer. However, it has high manufacturing costs. Crystalloid and colloid solutions have been developed as alternatives, including a new generation of non-ionic hydroxyethyl starch (HES). The efficacy of hydroxyethyl starch with a 130 molecular weight and substitution degree of 0.4 (hydroxyethyl starch 130/0.4) was compared with human albumin for use in cardiopulmonary bypass surgery in American Society of Anesthesiologists' grade I-II pediatric congenital heart disease patients. Efficacy was evaluated by comparing perioperative hemodynamic parameters, including plasma colloid osmotic pressure, renal function, blood loss, allogeneic blood volumes and plasma volume substitution. The hydroxyethyl starch group exhibited significantly higher preoperative colloid osmotic pressure (p<0.01) and significantly lower operative renal function and postoperative allogeneic blood volumes than the human albumin group. No significant differences were observed in serum creatinine, glucose, hematocrit or lactic acid levels (p>0.05). Our results indicate that hydroxyethyl starch may be a viable alternative to human albumin in pediatric patients undergoing relatively simple cardiopulmonary bypass surgeries. PMID:24658707

  2. epi-Fluorescence imaging at the air-water interface of fibrillization of bovine serum albumin and human insulin.

    PubMed

    Sessions, Kristen; Sacks, Stuart; Li, Shanghao; Leblanc, Roger M

    2014-08-18

    Protein fibrillization is associated with many devastating neurodegenerative diseases. This process has been studied using spectroscopic and microscopic methods. In this study, epi-fluorescence at the air-water interface was developed as an innovative technique for observing fibrillization of bovine serum albumin and human insulin. PMID:24976597

  3. Recombination in the Human Pseudoautosomal Region PAR1

    PubMed Central

    Hinch, Anjali G.; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R.

    2014-01-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  4. Recombination in the human Pseudoautosomal region PAR1.

    PubMed

    Hinch, Anjali G; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R

    2014-07-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  5. Genetically encoded optical activation of DNA recombination in human cells.

    PubMed

    Luo, J; Arbely, E; Zhang, J; Chou, C; Uprety, R; Chin, J W; Deiters, A

    2016-06-30

    We developed two tightly regulated, light-activated Cre recombinase enzymes through site-specific incorporation of two genetically-encoded photocaged amino acids in human cells. Excellent optical off to on switching of DNA recombination was achieved. Furthermore, we demonstrated precise spatial control of Cre recombinase through patterned illumination. PMID:27277957

  6. Efficiency of recombinant human TNF in human cancer therapy.

    PubMed

    Lejeune, Ferdy J; Liénard, Danielle; Matter, Maurice; Rüegg, Curzio

    2006-01-01

    Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death. PMID:16551058

  7. Luminescent spectral characteristics of eosin in solutions of human serum albumin when denatured by treatment with sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zemlyanskii, A. Yu.; Saletskii, A. M.

    2006-09-01

    From analysis of the fluorescence spectra of eosin molecules in a solution with human serum albumin (HSA), we have obtained information about the dynamics of protein conformational rearrangements during denaturing of the protein when treated with sodium dodecyl sulfate (SDS) for different pH values of the solution. We hypothesize that HSA denaturing in the presence of SDS occurs in two stages: the first stage is loosening of the protein globules, and the second stage is complete unfolding of the protein molecules. We have shown that denaturating of the protein in the presence of SDS passes through both stages for a solution pH below the isoelectric point of the albumin, while the denaturing stops in the first stage for a solution pH above the isoelectric point of the albumin.

  8. Insulin allergy treated with human insulin (recombinant DNA).

    PubMed

    De Leeuw, I; Delvigne, C; Bekaert, J

    1982-01-01

    Two insulin-dependent diabetic subjects treated with pork and beef insulin during a period of 6 mo developed severe local reactions. Both patients had an important allergic history (asthma, urticaria, drug reactions, rhinitis). Skin-testing revealed type I allergy to beef and pork insulin. Specific IgE-insulin binding was demonstrated with both insulins. After negative skin testing with NPH Lilly human insulin (recombinant DNA), treatment was started with this compound and remained successful during a period of 6-9 mo. In one patient a local reaction occurred when regular human insulin (recombinant DNA) was added to NPH in order to obtain better control. Skin testing with regular human insulin was positive, but not with NPH human insulin alone. The mechanism of this phenomenon remains unsolved. PMID:6765530

  9. Limited human infection due to recombinant raccoon pox virus

    USGS Publications Warehouse

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  10. Characterization of methylene diphenyl diisocyanate haptenated human serum albumin and hemoglobin

    PubMed Central

    Mhike, Morgen; Chipinda, Itai; Hettick, Justin M.; Simoyi, Reuben H.; Lemons, Angela; Green, Brett J.; Siegel, Paul D.

    2013-01-01

    Protein haptenation by polyurethane industrial intermediate methylene diphenyl diisocyanate (MDI) is thought to be an important step in the development of diisocyanate (dNCO)-specific allergic sensitization; however, MDI haptenated albumins used to screen specific antibody are often poorly characterized. Recently, the need to develop standardized immunoassays using a consistent, well characterized dNCO-haptenated protein to screen for the presence of MDI-specific IgE and IgG from workers’ sera has been emphasized and recognized. This has been challenging to achieve due to the bivalent, electrophilic nature of dNCO leading to the capability to produce multiple cross-linked protein species and polymeric additions to proteins. In the present study, MDI was reacted with human serum albumin (HSA) and hemoglobin (Hb) at molar ratios ranging from 1:1 to 40:1 MDI: protein. Adducts were characterized by (1) loss of available trinitrobenzene sulfonic acid (TNBS) binding to primary amines, (2) electrophoretic migration in polyacrylamide gels, (3) quantification of methylene diphenyl diamine following acid hydrolysis and (4) immunoassay. Concentration dependent changes in all the above noted parameters were observed demonstrating increase in both number and complexity of conjugates formed with increasing MDI concentration. In conclusion, a series of bio-analytical assays should be performed to standardize MDI-antigen preparations across lots and laboratories for measurement of specific antibody in exposed workers which in total indicate degree of intra- and inter-molecular cross-linking, number of dNCO bound, number of different specific binding sites on the protein and degree of immuno-reactivity. PMID:23743149

  11. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin.

    PubMed

    Chaves, Otávio Augusto; Amorim, Ana Paula de O; Castro, Larissa H E; Sant'Anna, Carlos Mauricio R; de Oliveira, Márcia C C; Cesarin-Sobrinho, Dari; Netto-Ferreira, José Carlos; Ferreira, Aurélio B B

    2015-01-01

    In the North of Brazil (Pará and Amazonas states) the leaves of the plant Talinum triangulare (popular: cariru) replace spinach as food. From a phytochemical point of view, they are rich in compounds of the group of pheophytins. These substances, related to chlorophyll, have photophysical properties that give them potential application in photodynamic therapy. Human serum albumin (HSA) is one of the main endogenous vehicles for biodistribution of molecules by blood plasma. Association constants and thermodynamic parameters for the interaction of HSA with pheophytin from Talinum triangulare were studied by UV-Vis absorption, fluorescence techniques, and molecular modeling (docking). Fluorescence quenching of the HSA's internal fluorophore (tryptophan) at temperatures 296 K, 303 K, and 310 K, resulted in values for the association constants of the order of 10⁴ L∙mol(-1), indicating a moderate interaction between the compound and the albumin. The negative values of ΔG° indicate a spontaneous process; ΔH° = 15.5 kJ∙mol(-1) indicates an endothermic process of association and ΔS° = 0.145 kJ∙mol(-1)∙K(-1) shows that the interaction between HSA and pheophytin occurs mainly by hydrophobic factors. The observed Trp fluorescence quenching is static: there is initial non-fluorescent association, in the ground state, HSA:Pheophytin. Possible solution obtained by a molecular docking study suggests that pheophytin is able to interact with HSA by means of hydrogen bonds with three lysine and one arginine residues, whereas the phytyl group is inserted in a hydrophobic pocket, close to Trp-214. PMID:26516829

  12. Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis.

    PubMed

    Byeon, Hyeong Jun; Min, Sun Young; Kim, Insoo; Lee, Eun Seong; Oh, Kyung Taek; Shin, Beom Soo; Lee, Kang Choon; Youn, Yu Seok

    2014-12-17

    Albumin conjugation is viewed as an effective means of protracting short in vivo lifespans of proteins and targeting rheumatoid arthritis (RA). In this study, we present a human serum albumin (HSA) conjugate linked with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a bifunctional PEG derivative (HSA-TRAIL). Prepared HSA-TRAIL was found to have a larger molecular size (∼240 kDa, 15.4 nm) than TRAIL (∼66 kDa, 6.2 nm), and its bioactivity (apoptosis, cytotoxicity, and antiproliferation) was well preserved in Mia Paca-2 cells and mouse splenocytes. The enhanced therapeutic efficacy of HSA-TRAIL was demonstrated in collagen-induced arthritis (CIA) mice. The incidence and clinical scores, expressed as degree of erythema and swelling in HSA-TRAIL-treated mice, were remarkably lower than those of TRAIL-treated mice. The serum levels of pro-inflammatory cytokines IFN-γ, TNF-α, IL-1β, and IL-2 in HSA-TRAIL-treated mice were significantly lower than those of TRAIL-treated mice. Furthermore, HSA-TRAIL accumulated in the hind paws of CIA mice, not in naïve TRAIL mice. Pharmacokinetic profiles of HSA-TRAIL were greatly improved in comparison to those of TRAIL (AUCinf: 844.1 ± 130.0 vs 36.0 ± 1.2 ng·h/mL; t1/2: 6.20 ± 0.72 vs 0.23 ± 0.01 h, respectively). The HSA-TRAIL conjugate, which presents clear advantages of targeting RA and long systemic circulation by HSA and unique anti-inflammatory efficacy by TRAIL, has potential as a novel treatment for rheumatoid arthritis. PMID:25387356

  13. Oxidation of Arg-410 promotes the elimination of human serum albumin.

    PubMed

    Iwao, Yasunori; Anraku, Makoto; Yamasaki, Keishi; Kragh-Hansen, Ulrich; Kawai, Keiichi; Maruyama, Toru; Otagiri, Masaki

    2006-04-01

    The effect of the oxidation of amino acid residues on albumin on its in vivo elimination was investigated using mutants and oxidized HSAs. The single-residue mutants (H146A, K199A, W214A, R218H, R410A, Y411A) and oxidized HSAs were produced by the recombinant DNA techniques and incubation with a metal ion-catalyzed oxidation (MCO) system for 12, 24, 48 or 72 h. Pharmacokinetics were evaluated in mice after labeling with 111In. Structural and functional properties were examined by several spectroscopic techniques. Time-dependent increase in carbonyl group content resulted in increase in the liver clearance of oxidized HSAs. Slight decreases in alpha-helical content as the result of oxidation was induced by the increases in accessible hydrophobic areas and the net negative charge on the HSA molecule. No significant change in the pharmacokinetics and structural properties was observed for the W214A, R218H and Y411A mutants, but the properties for the H146A, K199A and R410A mutants were affected (extent of effect: R410A > K199A > H146A). The liver clearance of these proteins is closely correlated to hydrophobicity (r = 0.929, P < 0.01) and the net charge of the proteins (r=0.930, P < 0.01). The rate of elimination of HSA is closely related to the hydrophobicity and net charge of the molecule. Further, the R410A mutants had a short half-life and structure similar to oxidized HSA after oxidation. Therefore, the modification of Arg-410 via oxidative stress may promote the elimination of HSA. PMID:16497569

  14. Chemical Polysialylation of Recombinant Human Proteins.

    PubMed

    Smirnov, Ivan V; Vorobiev, Ivan I; Belogurov, Alexey A; Genkin, Dmitry D; Deyev, Sergey M; Gabibov, Alexander G

    2015-01-01

    Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anion-exchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein-PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity. PMID:26082236

  15. Multiple biological activities of human recombinant interleukin 1.

    PubMed Central

    Dinarello, C A; Cannon, J G; Mier, J W; Bernheim, H A; LoPreste, G; Lynn, D L; Love, R N; Webb, A C; Auron, P E; Reuben, R C

    1986-01-01

    Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, whereas no effect was observed with hrIL-1 alone. At concentrations of 0.05 ng/ml, hrIL-1 doubled the response to mitogen (5 X 10(6) half maximal units/mg). Human peripheral blood T cells depleted of adherent cells underwent a blastogenic response and released interleukin 2 in the presence of hrIL-1 and mitogen. hrIL-1 was a potent inflammatory agent by its ability to induce human dermal fibroblast prostaglandin E2 production in vitro and to produce monophasic (endogenous pyrogen) fever when injected into rabbits or endotoxin-resistant mice. These studies establish that the dominant pI 7 form of recombinant human IL-1 possesses immunological and inflammatory properties and acts on the central nervous system to produce fever. Images PMID:3519678

  16. Human Serum Versus Human Serum Albumin Supplementation in Human Islet Pretransplantation Culture: In Vitro and In Vivo Assessment.

    PubMed

    Nacher, Montserrat; Estil Les, Elisabet; Garcia, Ainhoa; Nadal, Belen; Pairó, Mar; Garcia, Cristofer; Secanella, Lluís; Novials, Anna; Montanya, Eduard

    2016-01-01

    There is conflicting evidence favoring both the use of human serum (HS) and of human serum albumin (HSA) in human islet culture. We evaluated the effects of HS versus HSA supplementation on 1) in vitro β-cell viability and function and 2) in vivo islet graft revascularization, islet viability, β-cell death, and metabolic outcome after transplantation. Islets isolated from 14 cadaveric organ donors were cultured for 3 days in CMRL 1066 medium supplemented with HS or HSA. After 3 days in culture, β-cell apoptosis was lower in HS group (1.41 ± 0.27 vs. 2.38 ± 0.39%, p = 0.029), and the recovery of islets was 77 ± 11% and 54 ± 1% in HS- and HSA-cultured groups, respectively. Glucose-stimulated insulin secretion (GSIS) was higher in HS group (29.4, range 10.4-99.9, vs. 22.3, range 8.7-70.6, p = 0.031). In vivo viability and revascularization was determined in HS- and HSA-cultured islets transplanted into the anterior chamber of the eye of Balb/c mice (n = 14), and β-cell apoptosis in paraffin-embedded mouse eyes. Islet viability and β-cell apoptosis were similar in both groups. Revascularization was observed in one graft (HS group) on day 10 after transplantation. Islet function was determined in streptozotocin (STZ)-diabetic nude mice (n = 33) transplanted with 2,000 IEQs cultured with HS or HSA that showed similar blood glucose levels and percentage of normoglycemic animals over time. In conclusion, human islets cultured in medium supplemented with HS showed higher survival in vitro, as well as islet viability and function. The higher in vitro survival increased the number of islets available for transplantation. However, the beneficial effect on viability and function did not translate into an improved metabolic evolution when a similar number of HSA- and HS-cultured islets was transplanted. PMID:25955150

  17. Recombinant human erythrocyte cytochrome b5.

    PubMed

    Lloyd, E; Ferrer, J C; Funk, W D; Mauk, M R; Mauk, A G

    1994-09-27

    The gene encoding the human erythrocyte form of cytochrome b5 (97 residues in length) has been prepared by mutagenesis of an expression vector encoding lipase-solubilized bovine liver microsomal cytochrome b5 (93 residues in length) (Funk et al., 1990). Efficient expression of this gene in Escherichia coli has provided the first opportunity to obtain this protein in quantities sufficient for physical and functional characterization. Comparison of the erythrocytic cytochrome with the trypsin-solubilized bovine liver cytochrome b5 by potentiometric titration indicates that the principal electrostatic difference between the two proteins results from two additional His residues present in the human erythrocytic protein. The midpoint reduction potential of this protein determined by direct electrochemistry is -9 +/- 2 mV vs SHE at pH 7.0 (mu = 0.10 M, 25.0 degrees C), and this value varies with pH in a fashion that is consistent with the presence of a single ionizable group that changes pKa from 6.0 +/- 0.1 in the ferricytochrome to 6.3 +/- 0.1 in the ferrocytochrome with delta H degrees = -3.2 +/- 0.1 kcal/mol and delta S degrees = -11.5 +/- 0.3 eu (pH 7.0, mu = 0.10). The 1D 1H NMR spectrum of the erythrocytic ferricytochrome indicates that 90% of the protein binds heme in the "major" orientation and 10% of the protein binds heme in the "minor" orientation (pH 7.0, 25 degrees C) with delta H degrees = -2.9 +/- 0.3 kcal/mol and delta S degrees = -5.4 +/- 0.9 eu for this equilibrium. PMID:7918357

  18. Interaction of oridonin with human serum albumin by isothermal titration calorimetry and spectroscopic techniques.

    PubMed

    Li, Xiangrong; Yang, Zhenhua

    2015-05-01

    Oridonin has been traditionally and widely used for treatment of various human diseases due to its uniquely biological, pharmacological and physiological functions. In this study, the interaction between oridonin and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy and UV-vis absorption spectroscopy. We found that the hydrogen bond and van der Waals force are the major binding forces in the binding of oridonin to HSA. The binding of oridonin to HSA is driven by favorable enthalpy and unfavorable entropy. Oridonin can quench the fluorescence of HSA through a static quenching mechanism. The binding constant between oridonin and HSA is moderate and the equilibrium fraction of unbound oridonin f(u) > 60%. Binding site I is found to be the primary binding site for oridonin. Additionally, oridonin may induce conformational changes of HSA and affect its biological function as the carrier protein. The results of the current study suggest that oridonin can be stored and transported from the circulatory system to reach its target organ to provide its therapeutic effects. But its side-effect in the clinics cannot be overlook. The study provides an accurate and full basic data for clarifying the binding mechanism of oridonin with HSA and is helpful for understanding its effect on protein function during the blood transportation process and its biological activity in vivo. PMID:25816984

  19. HPLC separation of human serum albumin isoforms based on their isoelectric points.

    PubMed

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA. PMID:24316526

  20. Interaction between Z-ligustilide from Radix Angelica sinensis and human serum albumin.

    PubMed

    Chen, Tingting; Zhu, Xiting; Chen, Qi; Ge, Ming; Jia, Xueping; Wang, Xiang; Ge, Cunwang

    2015-11-01

    Z-ligustilide (LIG), an essential oil extract from Radix Angelica sinensis, has broad pharmaceutical applications in treating cardiovascular and cerebrovascular diseases. Interaction of LIG with the major transport protein of human blood circulation, human serum albumin (HSA) has been investigated by steady-state, UV-vis and circular dichroism (CD) spectroscopic methods, as well as the effect of metal ions (e.g. Zn(2+), Cu(2+), Fe(3+), Co(2+), Ni(2+)) on the LIG-HSA system. Fluorescence results revealed that a moderate binding affinity (1.59 × 10(4) M(-1) at 298 K) between LIG and HSA with a 1:1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +12.96 J mol(-1) K(-1) and ΔH =- 20.11 kJ mol(-1)) suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. The specific binding distance r (3.75 nm) between donor (Trp-214) and acceptor (LIG) was obtained according to fluorescence resonance energy transfer. CD results showed that slight conformational changes occurred in the protein upon complexation with LIG. PMID:25976824

  1. Studies on the interaction between vincamine and human serum albumin: a spectroscopic approach.

    PubMed

    Pu, Hanlin; Jiang, Hua; Chen, Rongrong; Wang, Hongcui

    2014-08-01

    The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were -4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non-radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na(+), K(+), Li(+), Ni(2+), Ca(2+), Zn(2+) and Al(3+) were found to influence binding of the drug to protein. The 3D fluorescence, FT-IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. PMID:24039032

  2. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  3. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  4. Crystallization of recombinant human interleukin 1β

    NASA Astrophysics Data System (ADS)

    Einspahr, Howard; Clancy, L. L.; Muchmore, S. W.; Watenpaugh, K. D.; Harris, P. K. W.; Carter, D. B.; Curry, K. A.; Tomich, C.-S. C.; Yem, A. W.; Deibel, M. R.; Tracey, D. E.; Paslay, J. W.; Staite, N. D.; Carter, J. B.; Theriault, N. Y.; Reardon, I. M.; Zurcher-Neely, H. A.; Heinrikson, R. L.

    1988-07-01

    The gene for the fully processed form of human interleukin 1β was cloned from SK-hep-1 hepatoma cellular RNA and expressed at high levels in E. coli. The protein produced in E. coli. was purified to homogeneity by standard chromatographic methods, including adsorption and desorption from Procion Red Sepharose, sizing on a Superose 12 FPLC column, and anion exchange chromatography on QAE Sepharose. The result is a biologically active protein, rIL-1β, that migrates on two-dimensional gels as a single spot with a pI of 6.5 ± 0.2 and a molecular mass of 17, 500 daltons. Crystals of rIL-1β have been produced from concentrated solutions of the protein by ammonium sulfate precipitation. The crystals are tetragonal, have space group P41 or its enantiomer, have lattice constants of a = 58.46(1) Å and c = 77.02(3) Å, and scatter to at least 2 Å resolution. A structure determination ba these crystals is underway.

  5. Human Recombinant Insulin 1g - ug

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Proteins are the building blocks of our bodies and the living world around us. Within our bodies proteins make it possible for red blood cells to carry oxygen throughout the body. Others help transmit nerve impulses so we can hear, smell and feel the world around us. While others play a crucial role in preventing or causing disease. If the structure of a protein is known, then companies can develop new or improved drugs to fight the disease of which the protein is a part. To determine protein structure, researchers must grow near-perfect crystals of the protein. On Earth convection currents, sedimentation and other gravity-induced phenomena hamper crystal growth efforts. In microgravity researchers can grow near-perfect crystals in an environment free of these effects. Because of the enormous potential for new pharmaceutical products the Center for Macromolecular Crystallography--the NASA Commercial Space Center responsible for commercial protein crystal growth efforts has more than fifty major industry and academic partners. Research on crystals of human insulin could lead to improved treatments for diabetes.

  6. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  7. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    PubMed

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs. PMID:27156142

  8. Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin*

    PubMed Central

    Ascenzi, Paolo; di Masi, Alessandra; Coletta, Massimo; Ciaccio, Chiara; Fanali, Gabriella; Nicoletti, Francesco P.; Smulevich, Giulietta; Fasano, Mauro

    2009-01-01

    Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO3− catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 °C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO2; the values of the second order catalytic rate constant (kon) are 4.1 × 105 and 4.5 × 105 m−1 s−1, respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of kon (pKa = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO2. The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO2, ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 × 10−4 and 9.7 × 10−4 m. Under conditions where [ibuprofen] is ≫L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role

  9. Plant-based biopharming of recombinant human lactoferrin.

    PubMed

    Yemets, Alla I; Tanasienko, Iryna V; Krasylenko, Yuliya A; Blume, Yaroslav B

    2014-09-01

    Recombinant proteins are currently recognized as pharmaceuticals, enzymes, food constituents, nutritional additives, antibodies and other valuable products for industry, healthcare, research, and everyday life. Lactoferrin (Lf), one of the promising human milk proteins, occupies the expanding biotechnological food market niche due to its important versatile properties. Lf shows antiviral, antimicrobial, antiprotozoal and antioxidant activities, modulates cell growth rate, binds glycosaminoglycans and lipopolysaccharides, and also inputs into the innate/specific immune responses. Development of highly efficient human recombinant Lf expression systems employing yeasts, filamentous fungi and undoubtedly higher plants as bioreactors for the large-scale Lf production is a biotechnological challenge. This review highlights the advantages and disadvantages of the existing non-animal Lf expression systems from the standpoint of protein yield and its biological activity. Special emphasis is put on the benefits of monocot plant system for Lf expression and the biosafety aspects of the transgenic Lf-expressing plants. PMID:24803187

  10. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    PubMed

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L; Arzola, Lucas; Lebrilla, Carlito B; Dandekar, Abhaya M; Falk, Bryce W; Nandi, Somen; Rodriguez, Raymond L; McDonald, Karen A

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  11. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M.; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L.; Arzola, Lucas; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Falk, Bryce W.; Nandi, Somen; Rodriguez, Raymond L.; McDonald, Karen A.

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  12. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.

    PubMed

    Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-07-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection. PMID:27160295

  13. Human recombinant type I collagen produced in plants.

    PubMed

    Shoseyov, Oded; Posen, Yehudit; Grynspan, Frida

    2013-07-01

    As a central element of the extracellular matrix, collagen is intimately involved in tissue development, remodeling, and repair and confers high tensile strength to tissues. Numerous medical applications, particularly, wound healing, cell therapy, bone reconstruction, and cosmetic technologies, rely on its supportive and healing qualities. Its synthesis and assembly require a multitude of genes and post-translational modifications, where even minor deviations can be deleterious or even fatal. Historically, collagen was always extracted from animal and human cadaver sources, but bare risk of contamination and allergenicity and was subjected to harsh purification conditions resulting in irreversible modifications impeding its biofunctionality. In parallel, the highly complex and stringent post-translational processing of collagen, prerequisite of its viability and proper functioning, sets significant limitations on recombinant expression systems. A tobacco plant expression platform has been recruited to effectively express human collagen, along with three modifying enzymes, critical to collagen maturation. The plant extracted recombinant human collagen type I forms thermally stable helical structures, fibrillates, and demonstrates bioactivity resembling that of native collagen. Deployment of the highly versatile plant-based biofactory can be leveraged toward mass, rapid, and low-cost production of a wide variety of recombinant proteins. As in the case of collagen, proper planning can bypass plant-related limitations, to yield products structurally and functionally identical to their native counterparts. PMID:23252967

  14. Structural changes and metal binding by proalbumins and other amino-terminal genetic variants of human serum albumin.

    PubMed Central

    Takahashi, N; Takahashi, Y; Putnam, F W

    1987-01-01

    Proalbumins are rare genetic variants of human serum albumin containing a basic propeptide that is not removed during post-transcriptional processing because of a mutation in the site of excision, an Arg-Arg sequence. We have identified the amino acid substitutions in three different types of proalbumins designated Gainesville, Taipei, and Takefu. The first two proalbumins are identical to previously described proalbumins of the Christchurch and Lille types, respectively, and exhibit the characteristic properties of susceptibility to tryptic cleavage and of lower metal-binding affinity. Takefu is a third type of proalbumin and resists tryptic cleavage because of the substitution Arg-1----Pro. Each of the first two types of proalbumins has been identified in geographically separate, ethnically diverse populations and therefore must have arisen by independent mutations. There is some tendency for mutations in albumin to cluster in the propeptide sequence. Although the substitution His3----Gln in the genetic variant albumin Nagasaki-3 decreases metal-binding affinity, mutations further down the polypeptide chain have no such effect, nor is there any reduction of copper-binding affinity in albumin from patients with Wilson disease. Images PMID:3478700

  15. Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy and computational approach

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Yue, Yuanyuan; Wang, Jing; Yan, Xuyang; Liu, Ren; Sun, Yangyang; Li, Xiaoge

    2015-06-01

    Over the past decades, phenanthridine derivatives have captured the imagination of many chemists due to their wide applications. In the present work, the interaction between phenanthridine derivatives benzo [4,5]imidazo[1,2-a]thieno[2,3-c]quinoline (BTQ), benzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (BFQ), 5,6-dimethylbenzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (DFQ) and human serum albumin (HSA) were investigated by molecular modeling techniques and spectroscopic methods. The results of molecular modeling simulations revealed that the phenanthridine derivatives could bind on both site I in HSA. Fluorescence data revealed that the fluorescence quenching of HSA by phenanthridine derivatives were the result of the formation of phenanthridine derivatives-HSA complex, and the binding intensity between three phenanthridine derivatives and HSA was BTQ > BFQ > DFQ. Thermodynamics confirmed that the interaction were entropy driven with predominantly hydrophobic forces. The effects of some biological metal ions and toxic ions on the binding affinity between phenanthridine derivatives and HSA were further examined.

  16. Comparison of interactions between human serum albumin and silver nanoparticles of different sizes using spectroscopic methods.

    PubMed

    Zhang, Wanju; Zhang, Qingbo; Wang, Fang; Yuan, Lian; Xu, Ziqiang; Jiang, Fenglei; Liu, Yi

    2015-06-01

    Three different sizes (15.9 ± 2.1 nm, 26.4 ± 3.2 nm and 39.8 ± 4.0 nm, respectively) of citrate-coated silver nanoparticles (SNPs) have been synthesized and characterized. The interactions of the synthesized SNPs with human serum albumin (HSA) at physiological pH have been systematically studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The results indicate that the SNPs can bind to HSA with high affinity and quench the intrinsic fluorescence of HSA. The binding constants and quenching rate constants were calculated. The apparent association constants (Kapp ) values are 2.14 × 10(4) M(-1) for 15.9 nm SNP, 1.65 × 10(4) M(-1) for 26.4 nm SNP and 1.37 × 10(4) M(-1) for 39.8 nm SNP, respectively. The values of binding constant obtained from the fluorescence quenching data match well with that determined from the absorption spectral changes. These results suggest that the smaller SNPs have stronger interactions to HSA than the larger ones at the same concentrations. Synchronous fluorescence, three-dimensional fluorescence and CD spectroscopy studies show that the synthesized SNPs can induce slight conformational changes in HSA. PMID:25103628

  17. Oxidation Enhances Human Serum Albumin Thermal Stability and Changes the Routes of Amyloid Fibril Formation

    PubMed Central

    Sancataldo, Giuseppe; Vetri, Valeria; Foderà, Vito; Di Cara, Gianluca; Militello, Valeria; Leone, Maurizio

    2014-01-01

    Oxidative damages are linked to several aging-related diseases and are among the chemical pathways determining protein degradation. Specifically, interplay of oxidative stress and protein aggregation is recognized to have a link to the loss of cellular function in pathologies like Alzheimer's and Parkinson's diseases. Interaction between protein and reactive oxygen species may indeed induce small changes in protein structure and lead to the inhibition/modification of protein aggregation process, potentially determining the formation of species with different inherent toxicity. Understanding the temperate relationship between these events can be of utmost importance in unraveling the molecular basis of neurodegeneration. In this work, we investigated the effect of hydrogen peroxide oxidation on Human Serum Albumin (HSA) structure, thermal stability and aggregation properties. In the selected conditions, HSA forms fibrillar aggregates, while the oxidized protein undergoes aggregation via new routes involving, in different extents, specific domains of the molecule. Minute variations due to oxidation of single residues affect HSA tertiary structure leading to protein compaction, increased thermal stability, and reduced association propensity. PMID:24416244

  18. Binding of the bioactive component Aloe dihydroisocoumarin with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Tang, Ya-Lin

    2008-11-01

    Aloe dihydroisocoumarin, one of new components isolated from Aloe vera, can scavenge reactive oxygen species. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydroisocoumarin with human serum albumin (HSA) has been investigated by using fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydroisocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. An isoemissive point at 414 nm is seen, indicating that the quenching of HSA fluorescence depends on the formation of Aloe dihydroisocoumarin-HSA complex, which is further confirmed by fluorescence dynamic result. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydroisocoumarin with HSA causes a conformational change of the protein, with the gain of α-helix, β-sheet and random coil stability and the loss of β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FTIR experiments along with the docking studies suggest that Aloe dihydroisocoumarin binds to residues located in subdomain IIA of HSA.

  19. Cys34-PEGylated Human Serum Albumin for Drug Binding and Delivery

    PubMed Central

    Mehtala, Jonathan G.; Kulczar, Chris; Lavan, Monika; Knipp, Gregory; Wei, Alexander

    2015-01-01

    Polyethylene glycol (PEG) derivatives were conjugated onto the Cys-34 residue of human serum albumin (HSA) to determine their effects on the solubilization, permeation, and cytotoxic activity of hydrophobic drugs such as paclitaxel (PTX). PEG(C34)HSA conjugates were prepared on a multigram scale by treating native HSA (n-HSA) with 5- or 20-kDa mPEG-maleimide, resulting in up to 77% conversion of the mono-PEGylated adduct. Nanoparticle tracking analysis of PEG(C34)HSA formulations in phosphate buffer revealed an increase in nanosized aggregates relative to n-HSA, both in the absence and presence of PTX. Cell viability studies conducted with MCF-7 breast cancer cells indicated that PTX cytotoxicity was enhanced by PEG(C34)HSA when mixed at 10:1 mole ratios, up to a two-fold increase in potency relative to n-HSA. The PEG(C34)HSA conjugates were also evaluated as PTX carriers across monolayers of HUVEC and hCMEC/D3 cells, and found to have nearly identical permeation profiles as n-HSA. PMID:25918947

  20. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Li, Lin; Tang, Ya-Lin

    2008-10-01

    Aloe dihydrocoumarin is an antioxidant and a candidate of immunomodulatory drug on the immune system and can balance physiological reactive oxygen species (ROS) levels which may be useful to maintain homeostasis. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydrocoumarin with human serum albumin (HSA) has been investigated by fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydrocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. A Förster type fluorescence resonance energy transfer mechanism is involved in this quenching of Trp fluorescence by Aloe dihydrocoumarin. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydrocoumarin with HSA causes a conformational change of the protein, with the loss of α-helix stability and the gain of β-sheet and β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FT-IR experiments along with the docking studies suggest that Aloe dihydrocoumarin binds to residues located in subdomain IIA of HSA.

  1. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  2. Influence of post-emulsification drying processes on the microencapsulation of human serum albumin.

    PubMed

    Lane, Majella E; Brennan, Fiona S; Corrigan, Owen I

    2006-01-01

    In the present work, methods used to microencapsulate Human Serum Albumin (HSA) in a biodegradable polymer were compared for their effects on the physicochemical characteristics of HSA-loaded microparticles and on the release and integrity of encapsulated HSA. The polymer used was poly(D,L-lactide-co-glycolide) (75:25) (PLGA) (Boehringer Ingelheim, Resomer RG 752, MW 20,900). Microparticles were formulated by (i) w/o/w emulsification and freeze-drying (EFD) or (ii) w/o/w emulsification and spray-drying (ESD). Particle morphology and size were evaluated by scanning electron microscopy and by laser diffraction analysis. Loading, encapsulation efficiency and protein release were determined using a commercial protein assay kit. Protein integrity was evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Particles produced by emulsification/spray-drying exhibited greater diversity in shape than those produced by emulsification/freeze-drying. Additionally, protein loading values were significantly higher for particles produced by emulsification/spray-drying rather than particles produced by emulsification/freeze-drying. The structural integrity of encapsulated protein was confirmed for particles produced by both processes. The fraction of HSA released was similar for both formulations. The emulsification/spray-drying technique described appears to be a rapid and efficient method for the preparation of PLGA microparticles loaded with a model protein. PMID:16274944

  3. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation.

    PubMed

    Li, M; Hagerman, A E

    2015-01-01

    (-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10-100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  4. Glycation of human serum albumin in diabetes: impacts on the structure and function.

    PubMed

    Cao, Hui; Chen, Tingting; Shi, Yujun

    2015-01-01

    Diabetes mellitus is one of the most serious diseases in the world. The levels of glycated proteins in the blood of diabetics are higher than that of non-diabetic subjects. The glycation of proteins is believed to link to the occurrence of diabetic complications and related diseases. This review focuses on the influence of glycation of human serum albumin (HSA) on its structure and function. The glycation leads to change the HSA conformation, which will further influence its ligand binding properties. The levels of glycated HSA in hyperglycemic conditions showed a significant relationship to the germination of serious complications for diabetics, especially by affecting various cells functions. The conclusion from individual report is contradictory to each other; therefore, it is very difficult to give an univocal comment on the impact of glycation on the binding behaviors of HSA for small molecules. The influence of glycation of HSA on the binding affinities for small molecules is decided by the assay, the structures of small molecules, as well as the degree of glycation. However, the glycation of HSA is believed to reduce the binding affinities for acidic drugs such as polyphenols and phenolic acids. PMID:25245514

  5. (99m)Tc-human serum albumin nanocolloids: particle sizing and radioactivity distribution.

    PubMed

    Persico, Marco G; Lodola, Lorenzo; Buroni, Federica E; Morandotti, Marco; Pallavicini, Piersandro; Aprile, Carlo

    2015-07-01

    Several parameters affect the biodistribution of administered nanocolloids (NC) for Sentinel Lymph Node (SLN) detection: particle size distribution, number of Tc atoms per particle and specific activity (SA). Relatively few data are available with frequently conflicting results. (99m)Tc-NC-human serum albumin (HSA) Nanocoll®, Nanoalbumon® and Nanotop® were analysed for particles' dimensional and radioactivity distribution, and a mathematical model was elaborated to estimate the number of particles involved. Commercially available kits were reconstituted at maximal SA of 11 MBq/µg HSA. Particles size distribution was evaluated by Dynamic Light Scattering. These data were related to the radioactivity distribution analysis passing labelled NC through three polycarbonate filters (15-30-50-nm pore size) under vacuum. Highest radioactivity was carried by 30-50 nm particles. The smallest ones, even though most numerous, carried only the 10% of (99m)Tc atoms. Nanocoll and Nanotop are not significantly different, while Nanoalbumon is characterized by largest particles (>30 nm) that carried the most of radioactivity (80%). Smallest particles could saturate the clearing capacity of macrophages; therefore, if the tracer is used for SLN detection, more node tiers could be visualized, reducing accuracy of SLN mapping. Manufacturers could implement technical leaflets with particle size distribution and could improve the labelling protocol to provide clinicians useful information. PMID:26198778

  6. Insights into the binding of thiosemicarbazone derivatives with human serum albumin: spectroscopy and molecular modelling studies.

    PubMed

    Karthikeyan, Subramani; Bharanidharan, Ganesan; Kesherwani, Manish; Mani, Karthik Ananth; Srinivasan, Narasimhan; Velmurugan, Devadasan; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-06-01

    4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl acetate [Ace semi],4-[(1Z)-1-(2-carbamothioylhydrazinylidene)ethyl]phenyl propanoate [Pro semi] from the family of thiosemicarbazones derivative has been newly synthesized. It has good anticancer activity as well as antibacterial and it is also less toxic in nature, its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of thiosemicarbazone derivative to human serum albumin (HSA) has been investigated by studying its quenching mechanism, binding kinetics and the molecular distance (r) between donor (HSA) and acceptor (thiosemicarbazone derivative) was estimated according to Forster's theory of non-radiative energy transfer using fluorescence spectroscopy. The binding dynamics has been elaborated using synchronous fluorescence spectroscopy, and the feature of thiosemicarbazone derivative induced structural changes of HSA has been studied by circular dichorism, Fourier transform infrared spectroscopy. Molecular modelling simulations explore the hydrophobic interaction and hydrogen bonding which stabilizes the interaction. PMID:26368536

  7. Binding and relaxometric properties of heme complexes with cyanogen bromide fragments of human serum albumin.

    PubMed Central

    Monzani, Enrico; Curto, Maria; Galliano, Monica; Minchiotti, Lorenzo; Aime, Silvio; Baroni, Simona; Fasano, Mauro; Amoresano, Angela; Salzano, Anna Maria; Pucci, Piero; Casella, Luigi

    2002-01-01

    The spectroscopic and reactivity properties of hemin complexes formed with cyanogen bromide fragments B (residues 1-123), C (124-298), A (299-585), and D (1-298) of human serum albumin (HSA) have been investigated. The complex hemin-D exhibits binding, spectral, circular dichroism, and reactivity characteristics very similar to those of hemin-HSA, indicating that fragment D contains the entire HSA domain involved in heme binding. The characteristics of the other hemin complexes are different, and a detailed investigation of the properties of hemin-C has been carried out because this fragment contains the HSA binding region of several important drugs. Hemin-C contains a low-spin Fe(III) center, with two imidazole ligands, but the complex undergoes a reversible structural transition at basic pH leading to a high-spin, five-coordinated Fe(III) species. This change determines a marked increase in the relaxation rate of water protons. Limited proteolysis experiments and mass spectral analysis carried out on fragment C and hemin-C show that the region encompassing residues Glu-208 to Trp-214 is protected from activity of proteases in the complex and, therefore, is involved in the interaction with hemin. A structural model of fragment C enables us to propose that His-242 and His-288 are the axial ligands for the Fe(III) center. PMID:12324442

  8. Mechanistic investigation of domain specific unfolding of human serum albumin and the effect of sucrose

    PubMed Central

    Yadav, Rajeev; Sen, Pratik

    2013-01-01

    This study is devoted to understand the unfolding mechanism of a multidomain protein, human serum albumin (HSA), in absence and presence of the sucrose by steady-state and time-resolved fluorescence spectroscopy with domain specific marker molecules and is further being substantiated by molecular dynamics (MD) simulation. In water, the domain III of HSA found to unfold first followed by domains I and II as the concentration of GnHCl is increased in the medium. The sequential unfolding behavior of different domains of HSA remains same in presence of sucrose; however, a higher GnHCl concentration is required for unfolding, suggesting stabilizing effect of sucrose on HSA. Domain I is found to be most stabilized by sucrose. The stabilization of domain II is somewhat similar to domain I, but the effect of sucrose on domain III is found to be very small. MD simulation also predicted a similar behavior of sucrose on HSA. The stabilizing effect of sucrose is explained in terms of the entrapment of water molecules in between HSA surface and sucrose layer as well as direct interaction between HSA and sucrose. PMID:24038622

  9. Temperature induced morphological transitions from native to unfolded aggregated States of human serum albumin.

    PubMed

    Das, Nirmal Kumar; Ghosh, Narayani; Kale, Ajit Prabhakar; Mondal, Ramakanta; Anand, Uttam; Ghosh, Subhadip; Tiwari, Virendra Kumar; Kapur, Manmohan; Mukherjee, Saptarshi

    2014-07-01

    The circulatory protein, human serum albumin (HSA), is known to have two melting point temperatures, 56 and 62 °C. In this present manuscript, we investigate the interaction of HSA with a synthesized bioactive molecule 3-pyrazolyl 2-pyrazoline (PZ). The sole tryptophan amino acid residue (Trp214) of HSA and PZ forms an excellent FRET pair and has been used to monitor the conformational dynamics in HSA as a function of temperature. Molecular docking studies reveal that the PZ binds to a site which is in the immediate vicinity of Trp214, and such data are also supported by time-resolved FRET studies. Steady-state and time-resolved anisotropy of PZ conclusively proved that the structural and morphological changes in HSA mainly occur beyond its first melting temperature. Although the protein undergoes thermal denaturation at elevated temperatures, the Trp214 gets buried inside the protein scaffolds; this fact has been substantiated by acrylamide quenching studies. Finally, we have used atomic force microscopy to establish that at around 70 °C, HSA undergoes self-assembly to form fibrillar structures. Such an observation may be attributed to the loss of α-helical content of the protein and a subsequent rise in β-sheet structure. PMID:24915234

  10. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study.

    PubMed

    Islam, Mullah Muhaiminul; Sonu, Vikash K; Gashnga, Pynsakhiat Miki; Moyon, N Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0×10(4)M(-1)) in comparison with CAF (∼9.3×10(2)M(-1)) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure. PMID:26186394

  11. Enhanced Gene Silencing through Human Serum Albumin-Mediated Delivery of Polyethylenimine-siRNA Polyplexes

    PubMed Central

    Nicolì, Elena; Syga, Marie Isabel; Bosetti, Michela; Shastri, V. Prasad

    2015-01-01

    Small interfering RNA (siRNA) targeted therapeutics (STT) offers a compelling alternative to tradition medications for treatment of genetic diseases by providing a means to silence the expression of specific aberrant proteins, through interference at the expression level. The perceived advantage of siRNA therapy is its ability to target, through synthetic antisense oligonucleotides, any part of the genome. Although STT provides a high level of specificity, it is also hindered by poor intracellular uptake, limited blood stability, high degradability and non-specific immune stimulation. Since serum proteins has been considered as useful vehicles for targeting tumors, in this study we investigated the effect of incorporation of human serum albumin (HSA) in branched polyethylenimine (bPEI)-siRNA polyplexes in their internalization in epithelial and endothelial cells. We observed that introduction of HSA preserves the capacity of bPEI to complex with siRNA and protect it against extracellular endonucleases, while affording significantly improved internalization and silencing efficiency, compared to bPEI-siRNA polyplexes in endothelial and metastatic breast cancer epithelial cells. Furthermore, the uptake of the HSA-bPEI-siRNA ternary polyplexes occurred primarily through a caveolae-mediated endocytosis, thus providing evidence for a clear role for HSA in polyplex internalization. These results provide further impetus to explore the role of serum proteins in delivery of siRNA. PMID:25856158

  12. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes.

    PubMed

    Leonis, Georgios; Avramopoulos, Aggelos; Papavasileiou, Konstantinos D; Reis, Heribert; Steinbrecher, Thomas; Papadopoulos, Manthos G

    2015-12-01

    Human serum albumin (HSA) is the most abundant blood plasma protein, which transports fatty acids, hormones, and drugs. We consider nanoparticle-HSA interactions by investigating the binding of HSA with three fullerene analogs. Long MD simulations, quantum mechanical (fragment molecular orbital, energy decomposition analysis, atoms-in-molecules), and free energy methods elucidated the binding mechanism in these complexes. Such a systematic study is valuable due to the lack of comprehensive theoretical approaches to date. The main elements of the mechanism include the following: binding to IIA site results in allosteric modulation of the IIIA and heme binding sites with an increase in α-helical structure of IIIA. Fullerenes displayed high binding affinities for HSA; therefore, HSA can be used as a fullerene carrier, facilitating any toxic function the fullerene may exert. Complex formation is driven by hydrogen bonding, van der Waals, nonpolar, charge transfer, and dispersion energy contributions. Proper functionalization of C60 has enhanced its binding to HSA by more than an order of magnitude. This feature may be important for biological applications (e.g., photodynamic therapy of cancer). Satisfactory agreement with relevant experimental and theoretical data has been obtained. PMID:26523956

  13. Structural aspects of a protein-surfactant assembly: native and reduced States of human serum albumin.

    PubMed

    Anand, Uttam; Ray, Sutapa; Ghosh, Subhadip; Banerjee, Rajat; Mukherjee, Saptarshi

    2015-04-01

    The inherently present seventeen disulfide bonds of the circulatory protein, human serum albumin (HSA) provide the necessary structural stability. Various spectroscopic approaches were used to investigate the effect of reduction of these disulfide bonds and its binding with the anionic surfactant, sodium dodecyl sulfate (SDS). Based on several spectroscopic analyses, our investigations highlight the following interesting aspects: (1) HSA on reduction loses not only its tertiary structure but also a significant amount of secondary structure as well. However, the reduced state of the protein is not like the molten-globule, (2) this structural loss of the protein due to reduction is more prominent than that caused by higher SDS concentrations alone and can certainly be attributed to the role of disulfide bonds, (3) lower surfactant concentrations provide marginal structural rigidity to the native state of the protein, whereas, higher concentrations of SDS induces secondary structure to the reduced state of HSA, (4) the binding of SDS with both the native and reduced states of HSA, occurred in three distinct stages which was followed by a saturation stage. However, the nature of such binding is different for both the states as investigated by using the Stern-Volmer equations and estimating the thermodynamic parameters. Besides, in contrast to the native state, the reduced state of HSA shows that the lone tryptophan residue gets more buried. However, there occurs a sudden decrement in the lifetime of the tryptophan and the hydrodynamic diameter increases by twofold. PMID:25821118

  14. Replica exchange Monte Carlo simulation of human serum albumin-catechin complexes.

    PubMed

    Li, Yunqi; An, Lijia; Huang, Qingrong

    2014-09-01

    Replica exchange Monte Carlo simulation equipped with an orientation-enhanced hydrophobic interaction was utilized to study the impacts of molar ratio and ionic strength on the complex formation of human serum albumin (HSA) and catechin. Only a small amount of catechins was found to act as bridges in the formation of HSA-catechin complexes. Selective binding behavior was observed at low catechin to HSA molar ratio (R). Increase of catechin amount can suppress HSA self-aggregation and diminish the selectivity of protein binding sites. Strong saturation binding with short-range interactions was found to level off at around 4.6 catechins per HSA on average, while this number slowly increased with R when long-range interactions were taken into account. Meanwhile, among the three rings of catechin, the 3,4-dihydroxyphenyl (B-ring) shows the strongest preference to bind HSA. Neither the aggregation nor the binding sites of the HSA-catechin complex was sensitive to ionic strength, suggesting that the electrostatic interaction is not a dominant force in such complexes. These results provide a further molecular level understanding of protein-polyphenol binding, and the strategy employed in this work shows a way to bridge phase behaviors at macroscale and the distribution of binding sites at residue level. PMID:25111890

  15. Probing the binding of procyanidin B3 to human serum albumin by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Yan, Yunhui

    2015-02-01

    Proanthocyanidins are a mixture of monomers, oligomers, and polymers of flavan-3-ols that are widely distributed in the plant kingdom. One of the most widely studied proanthocyanidins is procyanidin B3. In this study, the interaction between procyanidin B3 and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC). Thermodynamic investigations reveal that the hydrogen bond and van der Waals force are the major binding forces in the binding of procyanidin B3 to HSA. The binding of procyanidin B3 to HSA is driven by favorable enthalpy and unfavorable entropy. The obtained binding constant for procyanidin B3 with HSA is in the intermediate range and the equilibrium fraction of unbound procyanidin B3 fu > 90% at the physiological concentration of HSA shows that procyanidin B3 can be stored and transported from the circulatory system to reach its target site. The stoichiometric binding number n approximately equals to 1, suggesting that one molecule of procyanidin B3 combines with one molecule of HSA and no more procyanidin B3 binding to HSA occurs at the concentration used in this study.

  16. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts

    PubMed Central

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid. PMID:24623977

  17. Human serum albumin reduces the potency of acetylcholinesterase inhibitor based drugs for Alzheimer's disease.

    PubMed

    Islam, Mullah Muhaiminul; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-04-01

    Human serum albumin (HSA) induced modulation of acetylcholinesterase (AChE) inhibition activity of four well-known cholinergic inhibitors like tacrine hydrochloride (TAC), donepezil hydrochloride monohydrate (DON), (-) Huperzine A (HuPA), eserine (ESE) was monitored quantitatively by Ellman's method. Kinetic analysis of enzyme hydrolysis reaction revealed that while the mechanism of inhibition does not change significantly, the inhibition efficiency changes drastically in presence of HSA, particularly for DON and TAC. However, interestingly, no notable difference was observed in the cases of HuPA and/or ESE. For example, the IC50 value of AChE inhibition increases by almost 135% in presence of ∼250 μM HSA (IC50 = 159 ± 8 nM) while comparing with aqueous buffer solution of pH 8.0 (IC50 = 68 ± 4 nM) in DON. On the other hand, the change is almost insignificant (<10%) in case of HuPA under the similar condition. The experimentally observed difference in the extent of modulatory effect was correlated with the sequestration ability of HSA towards different drugs predicted from molecular docking calculations. The result in this study demonstrates the importance to consider the plasma protein binding tendency of a newly synthesized AD drug before claiming its potency over the existing one. Further, development of new and intelligent delivery medium that shields the administered drugs from serum adsorption may reduce the optimal drug dose requirement. PMID:26902639

  18. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies.

    PubMed

    Shahlaei, Mohsen; Rahimi, Behnoosh; Nowroozi, Amin; Ashrafi-Kooshk, Mohammad Reza; Sadrjavadi, Komail; Khodarahmi, Reza

    2015-12-01

    Human serum albumin (HSA)-drug binding is an important factor to determine half life and bioavailability of drugs. In the present research, the interaction of sertraline (SER) to HSA was investigated using combination of spectroscopic and molecular modeling techniques. Changes in the UV-Vis, CD and FT-IR spectra as well as a significant degree of tryptophan fluorescence quenching were observed upon SER-HSA interaction. Data obtained by spectroscopic methods along with the computational studies suggest that SER binds to residues located in subdomain IIA of HSA. Analysis of spectroscopic data represented the formation of 1:1 complex, significant binding affinity, negative values of entropy and enthalpy changes and the essential role of hydrophobic interactions in binding of SER to HSA. The binding models were demonstrated in the aspects of SER's conformation, active site interactions, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of SER confirmed that the ligand to be bound in a large hydrophobic cavity of HSA. In accordance with experimental data, computational analyses indicated that SER binding does not alter the secondary structure of the protein. The results not only lead to a better understanding of interaction between SER and HSA but also provide useful data about the influence of SER on the protein conformation. PMID:26471709

  19. Spread Films of Human Serum Albumin at the Air-Water Interface: Optimization, Morphology, and Durability.

    PubMed

    Campbell, Richard A; Ang, Joo Chuan; Sebastiani, Federica; Tummino, Andrea; White, John W

    2015-12-22

    It has been known for almost one hundred years that a lower surface tension can be achieved at the air-water interface by spreading protein from a concentrated solution than by adsorption from an equivalent total bulk concentration. Nevertheless, the factors that control this nonequilibrium process have not been fully understood. In the present work, we apply ellipsometry, neutron reflectometry, X-ray reflectometry, and Brewster angle microscopy to elaborate the surface loading of human serum albumin in terms of both the macroscopic film morphology and the spreading dynamics. We show that the dominant contribution to the surface loading mechanism is the Marangoni spreading of protein from the bulk of the droplets rather than the direct transfer of their surface films. The films can be spread on a dilute subphase if the concentration of the spreading solution is sufficient; if not, dissolution of the protein occurs, and only a textured adsorbed layer slowly forms. The morphology of the spread protein films comprises an extended network with regions of less textured material or gaps. Further, mechanical cycling of the surface area of the spread films anneals the network into a membrane that approach constant compressibility and has increased durability. Our work provides a new perspective on an old problem in colloid and interface science. The scope for optimization of the surface loading mechanism in a range of systems leading to its exploitation in deposition-based technologies in the future is discussed. PMID:26607026

  20. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    PubMed Central

    Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng

    2016-01-01

    Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767

  1. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  2. Spectroscopy and Molecular Modeling Study on Binding of Nickel Phthalocyanine to Human Serum Albumin.

    PubMed

    Dezhampanah, Hamid; Firouzi, Roghaye; Hasani, Leila

    2016-01-01

    The interaction of nickel tetra sulfunated phthalocyanine( NiTSPc) with human serum albumin (HSA), in 20 mM phosphate buffer pH 7.4 was investigated using advanced techniques including fluorescence, synchronous fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopy and molecular docking. The fluorescence quenching measurements showed a single binding site on HSA for NiTSPc with the binding constant (Kb) value equals to 1.26×106 at 25°C. The results showed that quenching mechanism of HSA by NiTSPc was of dynamic type. The results from FTIR and CD spectroscopies demonstrated that NiTSPc binds to amino acid residues of the main polypeptide chain in protein destroying the hydrogen bonding network. The corresponding thermodynamic parameters were then calculated by analysis of fluorescence data using van't Hoff plot. These data indicated that driving force for interaction was mainly hydrophobic in nature and the process was entropy driven. The information obtained from CD, FT-IR and synchronous fluorescence spectroscopies revealed that both microenvironment and conformation of HSA was changed. Molecular docking study confirmed the binding mode obtained by experimental data. PMID:27449940

  3. The effect of Berberine on the secondary structure of human serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  4. Investigation of interaction of nuclear fast red with human serum albumin by experimental and computational approaches.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C; Omidi, Mehdi

    2013-11-01

    For the first time, interaction of nuclear fast red (NFR) with human serum albumin (HSA) was studied by experimental and computational approaches. Firstly, experimental measurements including fluorescence spectroscopy (F), UVvis spectrophotometry (UVvis), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were separately used to investigate the interaction of NFR with HSA and interesting thermodynamics information was obtained from these studies. Secondly, new information including electrochemical behavior of NFR-HSA complex species, relative concentrations of the various reacting species and effects of NFR on the sub-structure of HSA was obtained by applying multivariate curve resolution-alternating least squares (MCR-ALS). In this case, a row- and column-wise augmented matrix was built with DPV, LSV, F and UVvis sub-matrices and resolved by MCR-ALS. Surprisingly, by this method two NFR-HSA complex species with different stoichiometries and different electrochemical behaviors were found. Furthermore, by the use of the recorded voltammetric and spectroscopic data the binding constants of complex species were computed by EQUISPEC (a hard-modeling algorithm). Finally, the binding of NFR to HSA was modeled by molecular modeling and molecular dynamics (MD) simulations methods. Excellent agreement was found between experimental and computational results. Both experimental and computational results suggested that the NFR binds mainly to the sub-domain IIA of HSA. PMID:23871980

  5. The Reactivity of Human Serum Albumin towards trans-4-Hydroxy-2-nonenal

    PubMed Central

    Liu, Qingyuan; Simpson, David C.; Gronert, Scott

    2012-01-01

    Mass spectrometry was used to probe the preferred locations of trans-4-hydroxy-2-nonenal (HNE) addition to the cysteine, histidine, and lysine residues of human serum albumin (HSA). Considering only those modified peptides supported by high mass accuracy Orbitrap precursor ion measurements (high confidence hits), with HNE:HSA ratios of 1:1 and 10:1, 3 and 15 addition sites, respectively, were identified. Using less stringent criteria, a total of 34 modifications were identified at the higher concentration. To gain quantitative data, iTRAQ labeling studies were completed. Previous work had identified Cys34, the only free cysteine, as the most reactive residue in HSA and we have found that Lys199, His242/7, and His288 are the next most reactive residues. Although the kinetic data indicate the lysines and histidines can react at relatively similar rates, the results show that lysine addition is much less favorable thermodynamically; under our reaction conditions, lysine addition generally does not go to completion. This suggests that under physiological conditions, HNE addition to lysine is only relevant in situations where unusually high HNE concentrations or access to irreversible secondary reactions are found. PMID:22689617

  6. Differences in Esterase Activity to Aspirin and p-Nitrophenyl Acetate among Human Serum Albumin Preparations.

    PubMed

    Tatsumi, Akitoshi; Okada, Masaya; Inagaki, Yoshihiro; Inoue, Sachiyo; Hamaguchi, Tsuneo; Iwakawa, Seigo

    2016-01-01

    Human serum albumin (HSA) has two major ligand-binding sites, sites I and II, and also hydrolyzes some compounds at both sites. In the present study, we investigated differences in esterase activity among HSA preparations, and also the effects of warfarin, indomethacin, and naproxen on the hydrolytic activities of HSA to aspirin and p-nitrophenyl acetate. The esterase activities of HSA to aspirin or p-nitrophenyl acetate were measured from the pseudo-first-order formation rate constant (kobs) of salicylic acid or p-nitrophenol by HSA. Inter-lot variations were observed in the esterase activities of HSA to aspirin and p-nitrophenyl acetate; however, the esterase activity of HSA to aspirin did not correlate with that to p-nitrophenyl acetate. The inhibitory effects of warfarin and indomethacin on the esterase activity of HSA to aspirin were stronger than that of naproxen. In contrast, the inhibitory effect of naproxen on the esterase activity of HSA to p-nitrophenyl acetate was stronger than those of warfarin and indomethacin. These results suggest that the administration of different commercial HSA preparations and the co-administration with site I or II high-affinity binding drugs may change the pharmacokinetic profiles of drugs that are hydrolyzed by HSA. PMID:27476944

  7. Probing the Sudlow binding site with warfarin: how does gold nanocluster growth alter human serum albumin?

    PubMed

    Russell, B A; Mulheran, P A; Birch, D J S; Chen, Y

    2016-08-17

    The search for new fluorescent molecules is vital to the advancement of molecular imaging and sensing for the benefit of medical and biological studies. One such class of new fluorescent molecule is fluorescent gold nanoclusters encapsulated in Human Serum Albumin (HSA-AuNC). In order to use this new fluorescent molecule as a sensor or fluorescent marker in biological imaging both in vitro and in vivo it is important to understand whether/how the proteins function is changed by the synthesis and presence of the gold nanoclusters inside the protein. Natural HSA acts as the main drug carrier in the blood stream, carrying a multitude of molecules in two major binding sites (Sudlow I and II). To test the effects of gold on the ability of HSA to act as a drug carrier we employed warfarin, an anticoagulant drug, as a fluorescent probe to detect changes between natural HSA and HSA-AuNCs. AuNCs are found to inhibit the take up of warfarin by HSA. Evidence for this is found from fluorescence spectral and lifetime measurements. Interestingly, the presence of warfarin bound to HSA also inhibits the formation of gold nanoclusters within protein. This research provides valuable insight into how protein function can change upon synthesis of AuNCs and how that will affect their use as a fluorescent probe. PMID:27480626

  8. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  9. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography

    PubMed Central

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S.

    2015-01-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  10. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S

    2014-08-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  11. Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries.

    PubMed

    Barreca, Davide; Laganà, Giuseppina; Bruno, Giuseppe; Magazù, Salvatore; Bellocco, Ersilia

    2013-11-01

    Diosmin is a glycosylated polyphenolic compound, commonly found in fruits and vegetables, which is utilized for the pharmacological formulation of some drugs. The interactions of diosmin to human serum albumin have been investigated by fluorescence, UV-visible, FTIR spectroscopy, native electrophoresis and protein-ligand docking studies. The fluorescence studies indicate that the binding site of the additive involves modifications of environment around Trp214 at the level of subdomain IIA. Combining the curve-fitting results of infrared Amide I' band, the modifications of protein secondary structure have been estimated, indicating a decrease in α-helix structure following flavonoid binding. Data obtained by fluorescence and UV-visible spectroscopy, FTIR experiments and molecular modeling afforded a clear picture of the association mode of diosmin to HSA, suggesting that the primary binding site of diosmin is located in Sudlow's site I. Computational mapping confirms this observation suggesting that the possible binding site of diosmin is located in the hydrophobic cavity of subdomain IIA, whose microenvironment is able to help and stabilize the binding of the ligand in non-planar conformation. Moreover the binding of diosmin to HSA significantly contributes to protect the protein against degradation due to HCLO and Fenton reaction. PMID:23886889

  12. Revealing deposition mechanism of colloid particles on human serum albumin monolayers.

    PubMed

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Kujda, Marta

    2016-01-01

    Colloid particle deposition was applied in order to characterize human serum albumin (HSA) monolayers on mica adsorbed under diffusion transport at pH 3.5. The surface concentration of HSA was determined by a direct AFM imaging of single molecules. The electrokinetic characteristics of the monolayers for various ionic strength were done by in situ streaming potential measurements. In this way the mean-field zeta potential of monolayers was determined. It was shown that the initially negative potential changed its sign for HSA surface concentrations above 2800μm(-2) that was interpreted as overcharging effect. The monolayers were also characterized by the colloid deposition method where negatively charged polystyrene particles, 810nm in diameter were used. The kinetics of particle deposition and their maximum coverage were determined as a function of the HSA monolayer surface concentration. An anomalous deposition of particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field theoretical predictions. This effect was quantitatively interpreted in terms of the random site sequential adsorption model. It was shown that efficient immobilization of particles only occurs at adsorption sites formed by three and more closely adsorbed HSA molecules. These results can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles at protein monolayers that has practical significance for the regulation of the bioadhesive properties of surfaces. PMID:26272241

  13. Interactions of acidic pharmaceuticals with human serum albumin: insights into the molecular toxicity of emerging pollutants.

    PubMed

    Chen, Jiabin; Zhou, Xuefei; Zhang, Yalei; Qian, Yajie; Gao, Haiping

    2012-10-01

    Acidic pharmaceuticals such as diclofenac (DCF), clofibric acid (CA) and ketoprofen (KTP) have been detected frequently in environmental media. In order to reveal the toxicity of such emerging pollutants, their interactions with human serum albumin (HSA) were investigated by capillary electrophoresis, molecular spectrometry, and equilibrium dialysis. The binding constants and sites of these acidic pharmaceuticals with HSA were obtained. The thermodynamic parameters, e.g. enthalpy change and entropy change of these interactions were calculated to characterize that all the reactions resulted from hydrophobic and electrostatic interactions. The static quenching of the fluorescence of HSA was observed when interacted with acidic pharmaceuticals, indicating acidic pharmaceuticals bound to Tryptophan residue of HSA. The 3D fluorescence and circular dichroism confirmed that the secondary conformation of HSA changed after the interactions with the pharmaceuticals. At physiological condition, only 0.12 mM acidic pharmaceuticals reduced the binding of vitamin B(2) to HSA by 37, 30 and 21% for DCF, KTP and CA, respectively. This work provides an insight into non-covalent interactions between emerging contaminants and biomolecule, and is helpful for clarifying the toxic mechanism of such emerging contaminants. PMID:22307229

  14. Effect of (−)-Epigallocatechin-3-Gallate on Glucose-Induced Human Serum Albumin Glycation

    PubMed Central

    Li, Min; Hagerman, Ann E.

    2016-01-01

    (−)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10 to 100 mM during a 21-day incubation at 37 °C and pH 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  15. Quantification of total content of non-esterified fatty acids bound to human serum albumin.

    PubMed

    Pavićević, Ivan D; Jovanović, Vesna B; Takić, Marija M; Aćimović, Jelena M; Penezić, Ana Z; Mandić, Ljuba M

    2016-09-10

    Non-esterified fatty acids bound to the human serum albumin (HSA) contribute to several HSAs properties of special concern in pathologies, for instance to the reactivity of the free HSA-Cys34 thiol group (important antioxidative thiol pool in plasma), and to the affinity for binding of molecules and ions (for example cobalt as a prominent biomarker in heart ischemia). Therefore, the method for determination of FAs bound to HSA was developed. FAs were released from HSA (previously isolated from serum by ammonium sulfate precipitation) using acidic copper(II) sulfate in phosphoric acid, extracted by n-heptane-chloroform (4:1, v/v) mixture, spotted on TL silica-gel and then developed with n-heptane-chloroform-acetic acid (5:3:0.3, v/v/v). Common office flatbed scanner and software solution for densitometric image analysis, developed in R, were used. The linearity of calibration curve in concentration range from 0.1 to 5.0mmol/L stearic acid was achieved. The method was proved to be precise (with RSD of 1.4-4.7%) and accurate. Accuracy was examined by standard addition method (recoveries 97.2-102.5%) and by comparison to results of GC. The method is sample saving, technically less demanding, and cheap, and therefore suitable for determination of FAs/HSA ratio when elevated concentrations of free FAs are reliable diagnostic/risk parameter of pathological states. PMID:27394177

  16. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer.

    PubMed

    Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng

    2016-01-01

    Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767

  17. Spectroscopic characterization of the binding mechanism of fluorescein and carboxyfluorescein in human serum albumin

    NASA Astrophysics Data System (ADS)

    Sulaiman, Saba A. J.; Kulathunga, H. Udani; Abou-Zied, Osama K.

    2015-03-01

    Fluorescein (FL) and some of its precursors have proven to be effective fluorescent tracers in pharmaceutical and medical applications owing to their high quantum yield of fluorescence in physiological conditions and their high membrane permeability. In order to protect FL from metabolic effects during the process of its delivery, human serum albumin (HSA) has been used as a carrier because of its compatibility with the human body. In the present work, we used spectroscopic methods to characterize the binding mechanisms of FL and one of its derivatives, 5(6)- carboxyfluorescein (CFL), in the HSA protein. The absorbance change of the two ligands (FL and CFL) was quantified as a function of the HSA concentration and the results indicate a moderate binding strength for the two ligands inside HSA (1.00 +/- 0.12 x 104 M-1). The quenching effect of FL(CFL) on the fluorescence intensity of W214 (the sole tryptophan in HSA) indicates that FL and CFL occupy Site I in the protein which is known to bind several hydrophobic drugs. By performing site-competitive experiments, the location of the ligands is determined to be similar to that of the anticoagulant drug warfarin. At higher ratios of [ligand]/[HSA], we observed an upward curvature in the Stern-Volmer plots which indicates that the ligands occupy more pockets in Site I, close to W214. Our results indicate that both ligands bind in HSA with a moderate strength that should not affect their release when used as fluorescent reporters. The chemical and physical identities of the two ligands are also preserved inside the HSA binding sites.

  18. Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa

    2016-07-01

    Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.

  19. Characterization of the binding of an anticancer drug, lapatinib to human serum albumin.

    PubMed

    Kabir, Md Zahirul; Mukarram, Abdul Kadir; Mohamad, Saharuddin B; Alias, Zazali; Tayyab, Saad

    2016-07-01

    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions. PMID:27128364

  20. Binding of an anticancer drug, axitinib to human serum albumin: Fluorescence quenching and molecular docking study.

    PubMed

    Tayyab, Saad; Izzudin, Mohamad Mirza; Kabir, Md Zahirul; Feroz, Shevin R; Tee, Wei-Ven; Mohamad, Saharuddin B; Alias, Zazali

    2016-09-01

    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT. PMID:27424099

  1. Physiologically relevant plasma d,l-homocysteine concentrations mobilize Cd from human serum albumin.

    PubMed

    Sagmeister, Peter; Gibson, Matthew A; McDade, Kyle H; Gailer, Jürgen

    2016-08-01

    Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs. PMID:27294530

  2. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation.

    PubMed

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. PMID:27574403

  3. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation

    PubMed Central

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. PMID:27574403

  4. Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation

    PubMed Central

    Lee, Yu-Chen; Martin, Emil; Murad, Ferid

    2000-01-01

    The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein. PMID:10995472

  5. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  6. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411.

    PubMed

    Li, Bin; Schopfer, Lawrence M; Hinrichs, Steven H; Masson, Patrick; Lockridge, Oksana

    2007-02-15

    Our goal was to determine whether chlorpyrifos oxon, dichlorvos, diisopropylfluorophosphate (DFP), and sarin covalently bind to human albumin. Human albumin or plasma was treated with organophosphorus (OP) agent at alkaline pH, digested with pepsin at pH 2.3, and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Two singly charged peaks m/z 1718 and 1831, corresponding to the unlabeled peptide fragments containing the active site Tyr411 residue, were detected in all samples. The sequences of the two peptides were VRYTKKVPQVSTPTL and LVRYTKKVPQVSTPTL. The peptide-OP adducts of these peptides were also found. They had masses of 1854 and 1967 for chlorpyrifos oxon, 1825 and 1938 for dichlorvos, 1881 and 1994 for DFP, and 1838 and 1938 for sarin; these masses fit a mechanism whereby OP bound covalently to Tyr411. The binding of DFP to Tyr411 of human albumin was confirmed by electrospray tandem mass spectrometry and analysis of product ions. None of the OP-albumin adducts lost an alkoxy group, leading to the conclusion that aging did not occur. Our results show that OP pesticides and nerve agents bind covalently to human albumin at Tyr411. The presence of Tyr411 on an exposed surface of albumin suggests that an antibody response could be generated against OP-albumin adducts. PMID:17188226

  7. Recombinant production of TEV cleaved human parathyroid hormone.

    PubMed

    Audu, Christopher O; Cochran, Jared C; Pellegrini, Maria; Mierke, Dale F

    2013-08-01

    The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS. PMID:23794508

  8. Granulomatous interstitial pneumonia in a miniature swine associated with repeated intravenous injections of Tc-99m human serum albumin: concise communication

    SciTech Connect

    Whinnery, J.E.; Young, J.T.

    1980-03-01

    Albumin lung-scanning agents have a proven high degree of safety, with the only contraindication to their use being allergic hypersensitivity. We have used these agents to investigate the physiologic effects of high G/sub z/ acceleratory forces on pulmonary perfusion using the miniature swine. Multiple doses of human macroaggregated albumin and human-albumin microspheres were given to a miniature swine at various levels of centrifugal acceleration over a 6-wk period. The dosages given were the same per kilogram as those used for routine clinical human studies. The animal subsequently died from a severe granulomatous interstitial pneumonia. The granulomatous lesions suggest that the pathogenesis may have involved a cell-mediated delayed hypersensitivity. This interstitial pneumonia may represent the end point in a chronic hypersensitivity response to the human-albumin lung-scanning agents.

  9. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion.

    PubMed

    Valerio, Christopher; Theocharidou, Eleni; Davenport, Andrew; Agarwal, Banwari

    2016-03-01

    To provide an overview of the properties of human serum albumin (HSA), and to review the evidence for the use of human albumin solution (HAS) in critical illness, sepsis and cirrhosis. A MEDLINE search was performed using the terms "human albumin", "critical illness", "sepsis" and "cirrhosis". The references of retrieved articles were reviewed manually. Studies published between 1980 and 2014 were selected based on quality criteria. Data extraction was performed by all authors. HSA is the main plasma protein contributing greatly to its oncotic pressure. HSA demonstrates important binding properties for endogenous and exogenous toxins, drugs and drug metabolites that account for its anti-oxidant and anti-inflammatory properties. In disease states, hypoalbuminaemia is secondary to decreased HSA production, increased loss or transcapillary leakage into the interstitial space. HSA function can be also altered in disease with reduced albumin binding capacity and increased production of modified isoforms. HAS has been used as volume expander in critical illness, but received criticism due to cost and concerns regarding safety. More recent studies confirmed the safety of HAS, but failed to show any survival benefit compared to the cheaper crystalloid fluids, therefore limiting its use. On the contrary, in cirrhosis there is robust data to support the efficacy of HAS for the prevention of circulatory dysfunction post-large volume paracentesis and in the context of spontaneous bacterial peritonitis, and for the treatment of hepato-renal syndrome and hypervolaemic hyponatraemia. It is likely that not only the oncotic properties of HAS are beneficial in cirrhosis, but also its functional properties, as HAS replaces the dysfunctional HSA. The role of HAS as the resuscitation fluid of choice in critically ill patients with cirrhosis, beyond the established indications for HAS use, should be addressed in future studies. PMID:26981172

  10. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG<0, ΔH<0 and ΔS<0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. PMID:26952487

  11. Results of a phase I/II open-label, safety and efficacy trial of coagulation factor IX (recombinant), albumin fusion protein in haemophilia B patients

    PubMed Central

    Martinowitz, U; Lissitchkov, T; Lubetsky, A; Jotov, G; Barazani-Brutman, T; Voigt, C; Jacobs, I; Wuerfel, T; Santagostino, E

    2015-01-01

    Introduction rIX-FP is a coagulation factor IX (recombinant), albumin fusion protein with more than fivefold half-life prolongation over other standard factor IX (FIX) products available on the market. Aim This prospective phase II, open-label study evaluated the safety and efficacy of rIX-FP for the prevention of bleeding episodes during weekly prophylaxis and assessed the haemostatic efficacy for on-demand treatment of bleeding episodes in previously treated patients with haemophilia B. Methods The study consisted of a 10–14 day evaluation of rIX-FP pharmacokinetics (PK), and an 11 month safety and efficacy evaluation period with subjects receiving weekly prophylaxis treatment. Safety was evaluated by the occurrence of related adverse events, and immunogenic events, including development of inhibitors. Efficacy was evaluated by annualized spontaneous bleeding rate (AsBR), and the number of injections to achieve haemostasis. Results Seventeen subjects participated in the study, 13 received weekly prophylaxis and 4 received episodic treatment only. No inhibitors were detected in any subject. The mean and median AsBR were 1.25, and 1.13 respectively in the weekly prophylaxis arm. All bleeding episodes were treated with 1 or 2 injections of rIX-FP. Three prophylaxis subjects who were treated on demand prior to study entry had >85% reduction in AsBR compared to the bleeding rate prior to study entry. Conclusion This study demonstrated the efficacy for weekly routine prophylaxis of rIX-FP to prevent spontaneous bleeding episodes and for the treatment of bleeding episodes. In addition no safety issues were detected during the study and an improved PK profile was demonstrated. PMID:25990590

  12. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial

    PubMed Central

    Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-01-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P < .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered at www.clinicaltrials.gov as #NCT0101496274. PMID:26755710

  13. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial.

    PubMed

    Santagostino, Elena; Martinowitz, Uri; Lissitchkov, Toshko; Pan-Petesch, Brigitte; Hanabusa, Hideji; Oldenburg, Johannes; Boggio, Lisa; Negrier, Claude; Pabinger, Ingrid; von Depka Prondzinski, Mario; Altisent, Carmen; Castaman, Giancarlo; Yamamoto, Koji; Álvarez-Roman, Maria-Teresa; Voigt, Christine; Blackman, Nicole; Jacobs, Iris

    2016-04-01

    A global phase 3 study evaluated the pharmacokinetics, efficacy, and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (factor IX [FIX] activity ≤2%). The study included 2 groups: group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10-, or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; group 2 patients received on-demand treatment of bleeding episodes for 26 weeks and then switched to a 7-day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous FIX treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P< .0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor, and no safety concerns were identified. These results indicate rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. This trial was registered atwww.clinicaltrials.govas #NCT0101496274. PMID:26755710

  14. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent

    NASA Astrophysics Data System (ADS)

    Fahrländer, E.; Schelhaas, S.; Jacobs, A. H.; Langer, K.

    2015-04-01

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a ‘brush’ conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life.

  15. Probing the binding of morin to human serum albumin by optical spectroscopy.

    PubMed

    Qi, Zu-de; Zhang, Yue; Liao, Feng-Lin; Ou-Yang, Yi-Wen; Liu, Yi; Yang, Xi

    2008-03-13

    Morin [2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one], a member of flavonols, is an important bioactive compound by interacting with nucleic acids, enzymes and protein. Its binding to human serum albumin was investigated by fluorescence quenching, fluorescence anisotropy, and UV-vis absorbance under the simulative physiological condition. Fluorescence quenching data show that the interaction of morin with HSA forms a non-fluorescent complex with the binding constants of 1.394 x 10(5), 1.489 x 10(5), 1.609 x 10(5) and 1.717 x 10(5)M(-1) at 292, 298, 303 and 310 K, respectively. The thermodynamics parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be 8.97 kJ mol(-1) and 129.15 J mol(-1)K(-1) via van't Hoff equation. From the spectroscopic results and thermodynamics parameters, it is observed that van der Waals and hydrogen bonds are predominant intermolecular forces when forming the complex. The distance r=4.25 nm between donor (Trp214) and accepter (morin) was estimated based on the Förster theory of non-radiative energy transfer. The red shift of UV-vis absorbance shows that morin is bound to several amino acids on the hydrophobic pocket of HSA. Moreover, the competitive probes, such as warfarin and ibuprofen (site I and II probes, respectively), reveal that the binding location of morin to HSA in the site I of the hydrophobic pocket, which corresponds to the results of UV-vis absorbance, while morin also binds other lower affinity binding sites on HSA from the fluorescence anisotropy spectroscopy. PMID:18178358

  16. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin.

    PubMed

    Park, Kwanghee Koh; Park, Joon Woo; Hamilton, Andrew D

    2009-10-21

    A novel solvatochromic fluorescent molecule, 9,9-dibutyl-7-(dimethylamino)-2-fluorenesulfonate 2 was synthesized from 2-nitrofluorene in moderate yield. The fluorescence spectra of 2 and 7-(dimethylamino)-2-fluorenesulfonate 1 shift to shorter wavelengths as the polarity of the medium decreases. Both 1 and 2 bind to hydrophobic sites of human serum albumin (HSA). The apparent binding constants were determined by fluorescence titration to be 0.37 x 10(6) M(-1) for 1 and 2.2 x 10(6) M(-1) for 2. The energy of the Trp-214 fluorescence of HSA is transferred to the HSA-bound fluorophores with near 100% efficiency. The covalent bonding of acrylodan (AC) to Cys-34 has little effect on the binding affinity of 2 to HSA or fluorescent behavior of HSA-bound 2. Bound 2 also has little effect on the fluorescence of AC, but 2-->AC and Trp-214-->2-->AC resonance energy transfers were observed. Competitive binding between the fluorene compounds and other ligands such as 1-anilino-8-naphthalenesulfonate, aspirin, S-(+)-ibuprofen and phenylbutazone were also studied fluorometrically. The results indicated that the primary binding site of 2 to HSA is site II in domain IIIA, whereas 1 binds to site I in domain IIA, but a different region from the phenylbutazone binding site. Because of its large molar absorptivity, strong fluorescence, sensitivity to its environment, and high binding constant to HSA, 2 can be used successfully in the study of proteins and their binding properties. PMID:19795061

  17. Thermodynamic characterization of drug binding to human serum albumin by isothermal titration microcalorimetry.

    PubMed

    Aki, H; Yamamoto, M

    1994-12-01

    Binding sites on human serum albumin (HSA) for anionic drugs and fatty acids have been thermodynamically characterized by microcalorimetry. The binding and the thermodynamic parameters were directly computed from the calorimetric titration data at 37 degrees C in a phosphate buffer (pH 7.4) using one- and two-class binding models. From compensation analyses plotting the molar enthalpy change (delta Hm,i) versus those of the molar free energy (delta Gm,i) and molar entropy (delta Sm,i) for each class of binding sites, HSA binding sites were classified into groups S1, S2, and S3. Group S1 included high-affinity binding sites for site II-bound drugs, such as ibuprofen, flufenamic acid, and ethacrynic acid, and short- or medium-length alkyl-chain fatty acids; group S2 included low-affinity binding sites of site II-bound drugs and long-length alkyl-chain fatty acids; and group S3 contained the high-affinity binding sites for site I-bound drugs, such as phenylbutazone, oxphenbutazone, and warfarin, and long-length alkyl-chain fatty acids. High- and low-affinity bindings sites for salicylic acid and acetylaslicylic acid agreed with the regions of groups S3 and S2, respectively. Groups S1 and S2 were characterized by large negative values of delta Hm,i and delta Sm,i, reflecting van der Waals interaction and hydrogen-bonding formation in low dielectric media, and the main force to stabilize the binding complex in group S3 was a hydrophobic interaction, characterized by a small negative delta Hm,i and minor or positive values of delta Sm,i (entropy-driven). PMID:7891299

  18. PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent.

    PubMed

    Fahrländer, E; Schelhaas, S; Jacobs, A H; Langer, K

    2015-04-10

    Modification with poly(ethylene glycol) (PEG) is a widely used method for the prolongation of plasma half-life of colloidal carrier systems such as nanoparticles prepared from human serum albumin (HSA). However, the quantification of the PEGylation extent is still challenging. Moreover, the influence of different PEG derivatives, which are commonly used for nanoparticle conjugation, has not been investigated so far. The objective of the present study is to develop a method for the quantification of PEG and to monitor the influence of diverse PEG reagents on the amount of PEG linked to the surface of HSA nanoparticles. A size exclusion chromatography method with refractive index detection was established which enabled the quantification of unreacted PEG in the supernatant. The achieved results were confirmed using a fluorescent PEG derivative, which was detected by photometry and fluorimetry. Additionally, PEGylated HSA nanoparticles were enzymatically digested and the linked amount of fluorescently active PEG was directly determined. All the analytical methods confirmed that under optimized PEGylation conditions a PEGylation efficiency of up to 0.5 mg PEG per mg nanoparticle could be achieved. Model calculations made a 'brush' conformation of the PEG chains on the particle surface very likely. By incubating the nanoparticles with fetal bovine serum the reduced adsorption of serum proteins on PEGylated HSA nanoparticles compared to non-PEGylated HSA nanoparticles was demonstrated using sodium dodecylsulfate polyacrylamide gel electrophoresis. Finally, the positive effect of PEGylation on plasma half-life was demonstrated in an in vivo study in mice. Compared to unmodified nanoparticles the PEGylation led to a four times larger plasma half-life. PMID:25789544

  19. Effects of Fatty Acids and Glycation on Drug Interactions with Human Serum Albumin.

    PubMed

    Anguizola, Jeanethe A; Basiaga, Sara B G; Hage, David S

    2013-09-01

    The presence of elevated glucose concentrations in diabetes is a metabolic change that leads to an increase in the amount of non-enzymatic glycation that occurs for serum proteins. One protein that is affected by this process is the main serum protein, human serum albumin (HSA), which is also an important carrier agent for many drugs and fatty acids in the circulatory system. Sulfonylureas drugs, used to treat type 2 diabetes, are known to have significant binding to HSA. This study employed ultrafiltration and high-performance affinity chromatography to examine the effects of HSA glycation on the interactions of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide and gliclazide) with fatty acids, whose concentrations in serum are also affected by diabetes. Similar overall changes in binding were noted for these drugs with normal HSA or glycated HSA and in the presence of the fatty acids. For most of the tested drugs, the addition of physiological levels of the fatty acids to normal HSA and glycated HSA produced weaker binding. At low fatty acid concentrations, many of these systems followed a direct competition model while others involved a mixed-mode interaction. In some cases, there was a change in the interaction mechanism between normal HSA and glycated HSA, as seen with linoleic acid. Systems with only direct competition also gave notable changes in the affinities of fatty acids at their sites of drug competition when comparing normal HSA and glycated HSA. This research demonstrated the importance of considering how changes in the concentrations and types of metabolites (e.g., in this case, glucose and fatty acids) can alter the function of a protein such as HSA and its ability to interact with drugs or other agents. PMID:24349966

  20. Study on the interaction of catechins with human serum albumin using spectroscopic and electrophoretic techniques

    NASA Astrophysics Data System (ADS)

    Trnková, Lucie; Boušová, Iva; Staňková, Veronika; Dršata, Jaroslav

    2011-01-01

    The interaction between eight naturally occurring flavanols (catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate) and human serum albumin (HSA) has been investigated by spectroscopic (fluorescence quenching and UV-Vis absorption) and electrophoretic (native and SDS PAGE) techniques under simulated physiological conditions (pH 7.40, 37 °C). The spectroscopic results confirmed the complex formation for the tested systems. The binding constants and the number of binding sites were obtained by analysis of fluorescence data. The strongest binding affinity to HSA was found for epicatechin gallate and decreased in the order epicatechin gallate ⩾ catechin gallate > epigallocatechin gallate > gallocatechin gallate ≫ epicatechin ⩾ catechin > gallocatechin ⩾ epigallocatechin. All free energy changes possessed negative sign indicating the spontaneity of catechin-HSA systems formation. The binding distances between the donor (HSA) and the acceptors (catechins) estimated by the Förster theory revealed that non-radiation energy transfer from HSA to catechins occurred with high possibility. According to results obtained by native PAGE, the galloylated catechins increased the electrophoretic mobility of HSA, which indicated the change in the molecular charge of HSA, whilst the non-galloylated catechins caused no changes. The ability of aggregation and cross-linking of tested catechins with HSA was not proved by SDS-PAGE. The relationship between the structure characteristics of all tested catechins (e.g. presence of the galloyl moiety on the C-ring, the number of hydroxyl groups on the B-ring, and the spatial arrangement of the substituents on the C-ring) and their binding properties to HSA is discussed. The presented study contributes to the current knowledge in the area of protein-ligand binding, particularly catechin-HSA interactions.

  1. Identification of dityrosine cross-linked sites in oxidized human serum albumin.

    PubMed

    Annibal, Andrea; Colombo, Graziano; Milzani, Aldo; Dalle-Donne, Isabella; Fedorova, Maria; Hoffmann, Ralf

    2016-04-15

    Reactive oxygen species (ROS) can oxidize virtually all cellular components. In proteins cysteine, methionine, tryptophan, and tyrosine residues are most prone to oxidation and their oxidized forms are thus considered as biomarkers of oxidative protein damages. Ultraviolet radiation and some endogenous ROS can produce tyrosine radicals reacting with other tyrosine residues yielding intra- or intermolecular cross-links in proteins. These 3,3'-dityrosines can be quantified by their characteristic fluorescence, but analytical methods to identify the modification sites in proteins are still missing. Although mass spectrometry (MS) is routinely used to map other post-translational modifications, the analysis of dityrosines is challenged by simultaneous fragmentations of both cross-linked peptide chains producing complex tandem mass spectra. Additionally, the fragmentation patterns differ from linear peptides. Here, we studied the fragmentation behavior of dityrosine cross-linked peptides obtained by incubating three peptides (AAVYHHFISDGVR, TEVSSNHVLIYLDK, and LVAYYTLIGASGQR) with horseradish peroxidase in the presence of hydrogen peroxide. Homo- and hetero-dimerization via dityrosine was monitored by fluorescence spectroscopy and MS. The fragmentation characteristics of dityrosine-linked peptides were studied on an ESI-LTQ-Orbitrap-MS using collision induced dissociation, which allowed localizing the cross-linked positions and provided generic rules to identify this oxidative modification. When human serum albumin oxidized with 50-fold molar excess of HOCl in phosphate buffer saline was analyzed by nanoRPC-ESI-MS/MS, an automatic database search considering all possible (in-silico generated) tyrosine-containing peptides as dynamic modifications revealed four different types of oxidatively modified tyrosine residues including dityrosines linking ten different Tyr residues. The automatic database search was confirmed by manual interpretation of each tandem mass spectrum

  2. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change.

    PubMed

    Gorudko, Irina V; Grigorieva, Daria V; Shamova, Ekaterina V; Kostevich, Valeria A; Sokolov, Alexey V; Mikhalchik, Elena V; Cherenkevich, Sergey N; Arnhold, Jürgen; Panasenko, Oleg M

    2014-03-01

    Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA-Cl) and HOBr (HSA-Br) to elicit selected neutrophil responses. HSA-Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA-Cl/Br can initially act as a switch and then as a feeder of the "inflammatory loop" under oxidative stress. In HSA-Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA-Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators. PMID:24384524

  3. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography.

    PubMed

    Pfaunmiller, Erika L; Hartmann, Mahli; Dupper, Courtney M; Soman, Sony; Hage, David S

    2012-12-21

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6-2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6mm i.d.× 50 mm columns. These monoliths were also used to create 4.6mm i.d.× 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5-6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  4. Study of the interaction of C60 fullerene with human serum albumin in aqueous solution

    SciTech Connect

    Li, Song; Zhao, Xiongce; Mo, Yiming; Cummings, Peter T; Heller, William T

    2013-01-01

    Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C60 fullerene, continues to grow. While evidence continues to mount that C60 and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. To better understand the interaction of C60 with proteins, the protein human serum albumin (HSA) was studied in solution with C60 at C60:HSA molar ratios ranging from 1:2 to 4:1. HSA is the major protein component of blood plasma and plays a role in a variety of functions, such as the maintenance of blood pH and pressure. The C60-HSA interaction was probed by a combination of circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS) and atomistic molecular dynamics (MD) simulations to understand C60-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in -helical content in response to the presence of C60. Similarly, C60 produces subtle changes in the solution conformation of HSA, as evidenced by the SANS data and MD. The data do not indicate that C60 is causing a change in the oligomerization state of the protein. Taken together results demonstrate that C60 interacts with HSA, but it does not strongly perturb the structure of the protein by unfolding it or inducing aggregation, suggesting a mechanism for transporting C60 throughout the body to accumulate in various tissues.

  5. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting.

    PubMed

    Cieplak, Maciej; Szwabinska, Katarzyna; Sosnowska, Marta; Chandra, Bikram K C; Borowicz, Pawel; Noworyta, Krzysztof; D'Souza, Francis; Kutner, Wlodzimierz

    2015-12-15

    We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical chemosensor. The HSA template imprinting, and then its releasing from the MIP was confirmed by the differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), XPS, and PM-IRRAS measurements as well as by AFM imaging. Semi-covalent imprinting provided a very well defined locations of recognition sites in the MIP molecular cavities. These sites populated the imprinted cavities or the MIP surface only. The DPV and EIS response of the MIP film coated electrode to the HSA analyte was linear in the range of 0.8 to 20 and 4 to 80 µg/mL HSA, respectively, with the limit of detection of 16.6 and 800 ng/mL, respectively. The impressively high imprinting factor reached, exceeding 20, strongly confirmed that semi-covalent imprinting resulted in formation of a large number of very well defined molecular cavities with high affinity to the HSA molecules. The MIP selectivity against low-(molecular weight) interferences, common for physiological fluids, such as blood and urea, was very high. There was no response to the presence of these interferences at concentrations encountered in the samples analyzed. Moreover, the chemosensor selectivity to the myoglobin and cytochrome c interferences was excellent while that to lysozyme was slightly lower but still high. The chemosensor was useful for determination of abnormal HSA concentration in a control blood serum. PMID:26258876

  6. Exploring the interaction between picoplatin and human serum albumin: The effects on protein structure and activity.

    PubMed

    Wang, Yanqing; Wu, Peirong; Zhou, Xinchun; Zhang, Hongmei; Qiu, Ligan; Cao, Jian

    2016-09-01

    For the first time, the effects of picoplatin on the structure and esterase-like catalytic activity of human serum albumin (HSA) have been investigated by spectroscopic approaches and molecular modeling. The circular dichroism (CD) spectral examinations indicated that the binding of picoplatin with HSA induced a slight decrease of a-helix content of protein and unfolded the constituent polypeptides of the protein. The synchronous fluorescence and three-dimensional fluorescence spectral methods were used to estimate the effect of picoplatin on the micro-environmental changes of the Trp and Tyr residues of HSA, indicating that the micro-environment around the Tyr and Trp residue is partly disturbed by picoplatin. UV-vis absorption spectral result indicated the formation of the ground state complex between picoplatin with HSA. The ANS binding assay indicated the existence of competitive combination of picoplatin and ANS with HSA. The studies on the effects of picoplatin on the binding of HSA with bilirubin and heme showed that picoplatin binding caused a change of angle between two chromophores of bound bilirubin and the binding site of picoplatin does not locate in subdomain IB in HSA that bound with heme. The molecular modeling results showed that picoplatin binds to the connection between domain I and domain II by hydrophobic, hydrogen bonds, and van der Waals forces. In addition, HSA maintains most of its esterase activity in the presence of picoplatin. The investigations on how picoplatin interacts with HSA are important for the understanding of the anticancer mechanism and toxicity of platinum-based anticancer drug. PMID:27484966

  7. Effects of Fatty Acids and Glycation on Drug Interactions with Human Serum Albumin

    PubMed Central

    Anguizola, Jeanethe A.; Basiaga, Sara B. G.; Hage, David S.

    2013-01-01

    The presence of elevated glucose concentrations in diabetes is a metabolic change that leads to an increase in the amount of non-enzymatic glycation that occurs for serum proteins. One protein that is affected by this process is the main serum protein, human serum albumin (HSA), which is also an important carrier agent for many drugs and fatty acids in the circulatory system. Sulfonylureas drugs, used to treat type 2 diabetes, are known to have significant binding to HSA. This study employed ultrafiltration and high-performance affinity chromatography to examine the effects of HSA glycation on the interactions of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide and gliclazide) with fatty acids, whose concentrations in serum are also affected by diabetes. Similar overall changes in binding were noted for these drugs with normal HSA or glycated HSA and in the presence of the fatty acids. For most of the tested drugs, the addition of physiological levels of the fatty acids to normal HSA and glycated HSA produced weaker binding. At low fatty acid concentrations, many of these systems followed a direct competition model while others involved a mixed-mode interaction. In some cases, there was a change in the interaction mechanism between normal HSA and glycated HSA, as seen with linoleic acid. Systems with only direct competition also gave notable changes in the affinities of fatty acids at their sites of drug competition when comparing normal HSA and glycated HSA. This research demonstrated the importance of considering how changes in the concentrations and types of metabolites (e.g., in this case, glucose and fatty acids) can alter the function of a protein such as HSA and its ability to interact with drugs or other agents. PMID:24349966

  8. Binding of naproxen enantiomers to human serum albumin studied by fluorescence and room-temperature phosphorescence

    NASA Astrophysics Data System (ADS)

    Lammers, Ivonne; Lhiaubet-Vallet, Virginie; Ariese, Freek; Miranda, Miguel A.; Gooijer, Cees

    2013-03-01

    The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) × 105 M-1 for (S)-NPX and (3.9 ± 0.6) × 105 M-1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern-Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern-Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 × 105 M-1 for both enantiomers.

  9. Biological Activity of Japanese Quince Extract and Its Interactions with Lipids, Erythrocyte Membrane, and Human Albumin.

    PubMed

    Strugała, Paulina; Cyboran-Mikołajczyk, Sylwia; Dudra, Anna; Mizgier, Paulina; Kucharska, Alicja Z; Olejniczak, Teresa; Gabrielska, Janina

    2016-06-01

    The aim of the study was to determine in vitro biological activity of fruit ethanol extract from Chaenomeles speciosa (Sweet) Nakai (Japanese quince, JQ) and its important constituents (-)-epicatechin (EC) and chlorogenic acid (CA). The study also investigated the structural changes in phosphatidylcholine (PC) liposomes, dipalmitoylphosphatidylcholine liposomes, and erythrocyte membranes (RBC) induced by the extract. It was found that the extract effectively inhibits oxidation of RBC, induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), and PC liposomes, induced by UVB radiation and AAPH. Furthermore, JQ extract to a significant degree inhibited the activity of the enzymes COX-1 and COX-2, involved in inflammatory reactions. The extract has more than 2 times greater activity in relation to COX-2 than COX-1 (selectivity ratio 0.48). JQ extract stimulated growth of the beneficial intestinal bacteria Lactobacillus casei and Lactobacillus plantarum. In the fluorimetric method by means of the probes Laurdan, DPH and TMA-DPH, and (1)H-NMR, we examined the structural changes induced by JQ and its EC and CA components. The results show that JQ and its components induce a considerable increase of the packing order of the polar heads of lipids with a slight decrease in mobility of the acyl chains. Lipid membrane rigidification could hinder the diffusion of free radicals, resulting in inhibition of oxidative damage induced by physicochemical agents. JQ extract has the ability to quench the intrinsic fluorescence of human serum albumin through static quenching. This report thus could be of huge significance in the food industry, pharmacology, and clinical medicine. PMID:26861057

  10. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography

    PubMed Central

    Pfaunmiller, Erika L.; Hartmann, Mahli; Dupper, Courtney M.; Soman, Sony; Hage, David S.

    2012-01-01

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6–2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6 mm i.d. × 50 mm columns. These monoliths were also used to create 4.6 mm i.d. × 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5–6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  11. Nature of autofluorescence in human serum albumin under its native, unfolding and digested forms

    NASA Astrophysics Data System (ADS)

    Manjunath, S.; Rao, Bola Sadashiva Satish; Satyamoorthy, Kapaettu; Mahato, Krishna Kishore

    2014-02-01

    Autofluorescence characteristics of human serum albumin (HSA) are highly sensitive to its local environment. Identification and characterization of the proteins in normal and disease conditions may have great clinical implications. Aim of the present study was to understand how autofluorescence properties of HSA varies with denaturation under urea (3.0M, 6.0M, 9.0M) and guanidine hydrochloride (GnHCl) (2.0M, 4.0M, 6.0M) as well as digestion with trypsin. Towards this, we have recorded the corresponding autofluorescence spectra of HSA at 281nm laser excitation and compared the outcomes. Although, HSA contains 1 tryptophan and 17 tyrosine residues, it has shown intense autofluorescence due to tryptophan as compared to the tyrosine in native form, which may be due to the fluorescence resonance energy transfer (FRET) from tyrosine to tryptophan. As the unfolding progresses in denatured and digested forms of the protein, a clear increase in tyrosine fluorescence as compared to tryptophan was observed, which may be due to the increase of tryptophan - tyrosine separation disturbing the FRET between them resulting in differences in the overall autofluorescence properties. The decrease in tryptophan fluorescence of around 17% in urea denatured, 32% in GnHCl denatured and 96% in tryptic digested HSA was observed as compared to its native form. The obtained results show a clear decrease in FRET between tyrosine and tryptophan residues with the progression of unfolding and urea seems to be less efficient than GnHCl in unfolding of HSA. These results demonstrate the potential of autofluorescence in characterizing proteins in general and HSA in particular.

  12. Use of recombinant approaches to construct human cytomegalovirus mutants.

    PubMed

    Dekhtiarenko, Iryna; Cičin-Šain, Luka; Messerle, Martin

    2014-01-01

    To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they be studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of loss of function viral mutants to the wild-type virus allow the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 15 years. The cloning of CMV genomes into (E. coli) as bacterial artificial chromosomes (BAC) allows not only quick and efficient deletion of viral genomic regions, individual genes, or single nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain of function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, allowing a selective growth advantage to the recombined genomes. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process. PMID:24639218

  13. Spectroscopic investigations of the interactions of tramadol hydrochloride and 5-azacytidine drugs with human serum albumin and human hemoglobin proteins.

    PubMed

    Tunç, Sibel; Cetinkaya, Ahmet; Duman, Osman

    2013-03-01

    The interactions of tramadol hydrochloride (THC) and 5-azacytidine (AZA) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins were investigated by fluorescence, UV absorption and circular dichroism (CD) spectroscopy at pH 7.4 and different temperatures. The UV absorption spectra and the fluorescence quenching of HSA and HMG proteins indicated the formation of HSA-THC and HMG-THC complexes via static quenching mechanism. AZA did not interact with HSA and HMG proteins. It was found that the formation of HMG-THC complex was stronger than that of HSA-THC complex. The stability of HSA-THC and HMG-THC complexes decreased with increasing temperature. The number of binding site was found as one for HSA-THC and HMG-THC systems. Negative enthalpy change (ΔH) and Gibbs free energy change (ΔG) and positive entropy change (ΔS) values were obtained for these systems. The binding of THC-HSA and HMG proteins was spontaneous and exothermic. In addition, electrostatic interactions between protein and drug molecules played an important role in the binding processes. The results of CD analysis revealed that the addition of THC led to a significant conformational change in the secondary structure of HSA protein, on the contrary to HMG protein. PMID:23428887

  14. Copper is taken up efficiently from albumin and α2-macroglobulin by cultured human cells by more than one mechanism

    PubMed Central

    Moriya, Mizue; Ho, Yi-Hsuan; Grana, Anne; Nguyen, Linh; Alvarez, Arrissa; Jamil, Rita; Ackland, M. Leigh; Michalczyk, Agnes; Hamer, Pia; Ramos, Danny; Kim, Stephen; Mercer, Julian F. B.; Linder, Maria C.

    2008-01-01

    Ionic copper entering blood plasma binds tightly to albumin and the macroglobulin transcuprein. It then goes primarily to the liver and kidney except in lactation, where a large portion goes directly to the mammary gland. Little is known about how this copper is taken up from these plasma proteins. To examine this, the kinetics of uptake from purified human albumin and α2-macroglobulin, and the effects of inhibitors, were measured using human hepatic (HepG2) and mammary epithelial (PMC42) cell lines. At physiological concentrations (3–6 μM), both cell types took up copper from these proteins independently and at rates similar to each other and to those for Cu-dihistidine or Cu-nitrilotriacetate (NTA). Uptakes from α2-macroglobulin indicated a single saturable system in each cell type, but with different kinetics, and 65–80% inhibition by Ag(I) in HepG2 cells but not PMC42 cells. Uptake kinetics for Cu-albumin were more complex and also differed with cell type (as was the case for Cu-histidine and NTA), and there was little or no inhibition by Ag(I). High Fe(II) concentrations (100–500 μM) inhibited copper uptake from albumin by 20–30% in both cell types and that from α2-macroglobulin by 0–30%, and there was no inhibition of the latter by Mn(II) or Zn(II). We conclude that the proteins mainly responsible for the plasma-exchangeable copper pool deliver the metal to mammalian cells efficiently and by several different mechanisms. α2-Macroglobulin delivers it primarily to copper transporter 1 in hepatic cells but not mammary epithelial cells, and additional as-yet-unidentified copper transporters or systems for uptake from these proteins remain to be identified. PMID:18579803

  15. c-Ha-ras down regulates the alpha-fetoprotein gene but not the albumin gene in human hepatoma cells.

    PubMed Central

    Nakao, K; Lawless, D; Ohe, Y; Miyao, Y; Nakabayashi, H; Kamiya, H; Miura, K; Ohtsuka, E; Tamaoki, T

    1990-01-01

    We studied the effects of transfection of the normal c-Ha-ras gene, rasGly-12, and its oncogenic mutant, rasVal-12, on expression of the alpha-fetoprotein (AFP) and albumin genes in a human hepatoma cell line, HuH-7. The mutant and, to a lesser extent, the normal ras gene caused reduction of the AFP mRNA but not the albumin mRNA level in transfected HuH-7 cells. Cotransfection experiments with a rasVal-12 expression plasmid and a chloramphenicol acetyltransferase reporter gene fused to AFP regulatory sequences showed that rasVal-12 suppressed the activity of enhancer and promoter regions containing A + T-rich sequences (AT motif). In contrast, rasVal-12 did not affect the promoter activity of the albumin and human hepatitis B virus pre-S1 genes even though these promoters contain homologous A + T-rich elements. ras transfection appeared to induce phosphorylation of nuclear proteins that interact with the AFP AT motif, since gel mobility analysis revealed the formation of slow-moving complexes which was reversed by phosphatase treatment. However, similar changes in complex formation were observed with the albumin and hepatitis B surface antigen pre-S1 promoters. Therefore, this effect alone cannot explain the specific down regulation of the AFP promoter and enhancer activity. ras-mediated suppression of the AFP gene may reflect the process of developmental gene regulation in which AFP gene transcription is controlled by a G-protein-linked signal transduction cascade triggered by external growth stimuli. Images PMID:1690841

  16. Biotinylated recombinant human erythropoietins: Bioactivity and utility as receptor ligand

    SciTech Connect

    Wojchowski, D.M.; Caslake, L. )

    1989-08-15

    Recombinant human erythropoietin labeled covalently with biotin at sialic acid moieties has been prepared, and has been shown to possess high biological activity plus utility as a receptor ligand. Initially, the effects on biological activity of covalently attaching biotin to erythropoietin alternatively at carboxylate, amino, or sialic acid groups were compared. Biotinylation of erythropoietin at carboxylate groups using biotin-amidocaproyl hydrazide plus 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide led to substantial biological inactivation, although biotinylated molecules retained detectable activity when prepared at low stoichiometries. Biotinylation at amino groups using sulfosuccinimidyl 6-(biotinamido) hexanoate resulted in a high level of biological inactivation with little, if any, retention of biological activity, regardless of labeling stoichiometries. Biotinylation at sialic acid moieties using periodate and biotinamidocaproyl hydrazide proceeded efficiently (greater than 95% and 80% labeling efficiencies for human urinary and recombinant erythropoietin, respectively) and yielded stably biotinylated erythropoietin molecules possessing comparably high biological activity (ie, 45% of the activity of unmodified hormone). Utility of recombinant biotin-(sialyl)-erythropoietin (in combination with 125I-streptavidin) in the assay of cell surface receptors was demonstrated using two distinct murine erythroleukemia cell lines, Friend 745 and Rauscher Red 1. The densities and affinities of specific hormone binding sites were 116 +/- 4 sites, 3.3 +/- 0.4 nmol/L kd and 164 +/- 5 sites, 2.7 +/- 0.4 nmol/L kd, respectively. It is predicted that the present development of biotin-(sialyl)-erythropoietin as a chemically and biologically stable, bioactive ligand will assist in advancing an understanding of the regulated expression and physicochemistry of the human and murine erythropoietin receptors.

  17. Recombinant TCR ligand reverses clinical signs and CNS damage of EAE induced by recombinant human MOG.

    PubMed

    Sinha, Sushmita; Subramanian, Sandhya; Emerson-Webber, Ashley; Lindner, Maren; Burrows, Gregory G; Grafe, Marjorie; Linington, Christopher; Vandenbark, Arthur A; Bernard, Claude C A; Offner, Halina

    2010-06-01

    Increasing evidence suggests that in addition to T cell-dependent effector mechanisms, autoantibodies are also involved in the pathogenesis of MS, including demyelinating antibodies specific for myelin oligodendrocyte glycoprotein (MOG). Our previous studies have demonstrated that recombinant T cell receptor ligands (RTLs) are very effective for treating T cell-mediated experimental autoimmune encephalomyelitis (EAE). In order to expand the scope of RTL therapy in MS patients, it was of interest to study RTL treatment of EAE involving a demyelinating antibody component. Therefore, we evaluated the therapeutic effects of RTL551, specific for T cells reactive to mouse (m)MOG-35-55 peptide, on EAE induced with recombinant human (rh)MOG in C57BL/6 mice. We report that RTL551 therapy can reverse disease progression and reduce demyelination and axonal damage induced by rhMOG without suppressing the anti-MOG antibody response. This result suggests that T cell-mediated inflammation and associated blood-brain barrier dysfunction are the central contributors to EAE pathogenesis and that successful regulation of these key players restricts potential damage by demyelinating antibodies. The results of our study lend support for the use of RTL therapy for treatment of MS subjects whose disease includes inflammatory T cells as well as those with an additional antibody component. PMID:19789980

  18. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  19. Unraveling the binding mechanism of asiatic acid with human serum albumin and its biological implications.

    PubMed

    Gokara, Mahesh; Malavath, Tirupathi; Kalangi, Suresh Kumar; Reddana, Pallu; Subramanyam, Rajagopal

    2014-01-01

    Asiatic acid (AsA), a naturally occurring pentacyclictriterpenoid found in Centella asiatica, plays a major role in neuroprotection, anticancer, antioxidant, and hepatoprotective activities. Human serum albumin (HSA), a blood plasma protein, participates in the regulation of plasma osmotic pressure and transports endogenous and exogenous substances. The study undertaken to analyze the drug-binding mechanisms of HSA is crucial in understanding the bioavailability of drugs. In this study, we analyzed the cytotoxic activity of AsA on HepG2 (human hepatocellular carcinoma) cell lines and its binding, conformational, docking, molecular simulation studies with HSA under physiological pH 7.2. These studies revealed a clear decrease in the viability of HepG2 cells upon exposure to AsA in a dose-dependent manner with an IC50 of 45 μM. Further studies showed the quenching of intrinsic fluorescence of HSA by AsA with a binding constant of KAsA = 3.86 ± 0.01 × 10(4) M(-1), which corresponds to the free energy of (ΔG) -6.3 kcal M(-1) at 25 °C. Circular dichroism (CD) studies revealed that there is a clear decrease in the α-helical content from 57.50 ± 2.4 to 50% ± 2.3 and an increase in the β-turns from 25 ± 0.65 to 29% ± 0.91 and random coils from 17.5% ± 0.95 to 21% ± 1.2, suggesting partial unfolding of HSA. Autodock studies revealed that the AsA is bound to the subdomain IIA with hydrophobic and hydrophilic interactions. From molecular dynamics, simulation data (RMSD, Rg and RMSF) emphasized the local conformational changes and rigidity of the residues of both HSA and HSA-AsA complexes. PMID:23844909

  20. Enhanced Proteolytic Processing of Recombinant Human Coagulation Factor VIII B-Domain Variants by Recombinant Furins.

    PubMed

    Demasi, Marcos A; de S Molina, Erika; Bowman-Colin, Christian; Lojudice, Fernando H; Muras, Angelita; Sogayar, Mari C

    2016-06-01

    Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6. PMID:27126696

  1. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    PubMed Central

    Mirsafian, Hoda; Mat Ripen, Adiratna; Singh, Aarti; Teo, Phaik Hwan; Merican, Amir Feisal; Mohamad, Saharuddin Bin

    2014-01-01

    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure. PMID:24707212

  2. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    EPA Science Inventory

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  3. Differential Effects of Methoxy Group on the Interaction of Curcuminoids with Two Major Ligand Binding Sites of Human Serum Albumin

    PubMed Central

    Sato, Hiroki; Chuang, Victor Tuan Giam; Yamasaki, Keishi; Yamaotsu, Noriyuki; Watanabe, Hiroshi; Nagumo, Kohei; Anraku, Makoto; Kadowaki, Daisuke; Ishima, Yu; Hirono, Shuichi; Otagiri, Masaki; Maruyama, Toru

    2014-01-01

    Curcuminoids are a group of compounds with a similar chemical backbone structure but containing different numbers of methoxy groups that have therapeutic potential due to their anti-inflammatory and anti-oxidant properties. They mainly bind to albumin in plasma. These findings influence their body disposition and biological activities. Spectroscopic analysis using site specific probes on human serum albumin (HSA) clearly indicated that curcumin (Cur), demethylcurcumin (Dmc) and bisdemethoxycurcumin (Bdmc) bind to both Site I (sub-site Ia and Ib) and Site II on HSA. At pH 7.4, the binding constants for Site I were relatively comparable between curcuminoids, while the binding constants for Site II at pH 7.4 were increased in order Cur < Dmc < Bdmc. Binding experiments using HSA mutants showed that Trp214 and Arg218 at Site I, and Tyr411 and Arg410 at Site II are involved in the binding of curcuminoids. The molecular docking of all curcuminoids to the Site I pocket showed that curcuminoids stacked with Phe211 and Trp214, and interacted with hydrophobic and aromatic amino acid residues. In contrast, each curcuminoid interacted with Site II in a different manner depending whether a methoxy group was present or absent. A detailed analysis of curcuminoids-albumin interactions would provide valuable information in terms of understanding the pharmacokinetics and the biological activities of this class of compounds. PMID:24498401

  4. Protein adsorption on low temperature isotropic carbon. III. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen.

    PubMed

    Feng, L; Andrade, J D

    1994-04-01

    In this paper we consider the adsorption of albumin and fibrinogen on low temperature isotropic carbon (LTIC). A subsequent paper considers the adsorption of other plasma proteins [Feng L, Andrade JD, Colloids and Surfaces (in press)]. Carbon fragments and silica plates were used as adsorbents. Adsorption was carried out by incubating the adsorbents in solutions of 125I-labelled and unlabelled proteins (single component system), or with buffer-diluted human plasma (multicomponent system). Adsorbed proteins then underwent displacement by buffer, by single protein solutions or by dilute plasma. Results show that the LTIC substrate adsorbs a large amount of proteins before saturation, which may be due to multilayer adsorption. LTIC also irreversibly holds adsorbed proteins against the exchange agents used; little adsorbed proteins can be displaced, even after a very short adsorption time. There is no preferential adsorption for either albumin or fibrinogen on LTIC from their binary solutions, suggesting that both proteins have high affinities for the surface. Such strong interactions between LTIC and proteins are not attributed to electrostatic interactions. On the other hand, protein adsorption on the silica surface is selective and reversible, with a much higher affinity for fibrinogen than albumin and an even higher affinity for some other plasma proteins. The paper also discusses the effect of sequential protein addition to a solution on the surface concentration and suppression of adsorption of both proteins in the presence of other plasma proteins. A very important conclusion is that the LTIC surface is very active towards proteins adsorption. PMID:8061122

  5. Subnanosecond fluorescence spectroscopy of human serum albumin as a method to estimate the efficiency of the depression therapy

    NASA Astrophysics Data System (ADS)

    Syrejshchikova, T. I.; Gryzunov, Yu. A.; Smolina, N. V.; Komar, A. A.; Uzbekov, M. G.; Misionzhnik, E. J.; Maksimova, N. M.

    2010-05-01

    The efficiency of the therapy of psychiatric diseases is estimated using the fluorescence measurements of the conformational changes of human serum albumin in the course of medical treatment. The fluorescence decay curves of the CAPIDAN probe (N-carboxyphenylimide of the dimethylaminonaphthalic acid) in the blood serum are measured. The probe is specifically bound to the albumin drug binding sites and exhibits fluorescence as a reporter ligand. A variation in the conformation of the albumin molecule substantially affects the CAPIDAN fluorescence decay curve on the subnanosecond time scale. A subnanosecond pulsed laser or a Pico-Quant LED excitation source and a fast photon detector with a time resolution of about 50 ps are used for the kinetic measurements. The blood sera of ten patients suffering from depression and treated at the Institute of Psychiatry were preliminary clinically tested. Blood for analysis was taken from each patient prior to the treatment and on the third week of treatment. For ten patients, the analysis of the fluorescence decay curves of the probe in the blood serum using the three-exponential fitting shows that the difference between the amplitudes of the decay function corresponding to the long-lived (9 ns) fluorescence of the probe prior to and after the therapeutic procedure reliably differs from zero at a significance level of 1% ( p < 0.01).

  6. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  7. Influence of the binding of reduced NAMI-A to human serum albumin on the pharmacokinetics and biological activity.

    PubMed

    Novohradský, V; Bergamo, A; Cocchietto, M; Zajac, J; Brabec, V; Mestroni, G; Sava, G

    2015-01-28

    NAMI-A is a ruthenium-based drug endowed with the unique property of selectively targeting solid tumour metastases. Although two clinical studies had already been completed, limited information exists on the behavior of NAMI-A after injection into the bloodstream. PK data in humans informs us of a rather low free drug concentration, of a relatively high half-life time of elimination and of a linear relationship between the administered dose and the corresponding AUC for up to toxic doses. In the present study, we examined the chemical kinetics of albumin binding with or without the presence of reducing agents, and we evaluated how these chemical aspects might influence the in vivo PK and the in vitro ability of NAMI-A to inhibit cell migration, which is a bona fide, rapid and easy way to suggest anti-metastatic properties. The experimental data support the binding of NAMI-A to serum albumin. The reaction is facilitated when the drug is in its reduced form and, in agreement with already reported data, the adduct formed with albumin maintains the biological activity of the ruthenium drug. The formation of the adduct is favored by low ratios of NAMI-A : HSA and by the reduction of the drug with ascorbic acid. The difference in in vivo PK and the faster binding to albumin of the reduced NAMI-A seem to suggest that the drug is not rapidly reduced immediately upon injection, even at low doses. Most probably, cell and protein binding prevail over the reduction of the drug. This observation supports the thesis that the reduction of the drug before injection must be considered relevant for the pharmacological activity of NAMI-A against tumour metastases. PMID:25489765

  8. Serum albumin attenuates the open-channel blocking effects of propofol on the human Kv1.5 channel.

    PubMed

    Kojima, Akiko; Bai, Jia-Yu; Ito, Yuki; Ding, Wei-Guang; Kitagawa, Hirotoshi; Matsuura, Hiroshi

    2016-07-15

    The intravenous anesthetic propofol modulates various ion channel functions. It is generally accepted that approximately 98% of propofol binds to blood constituents and that the free (unbound) drug preferentially affects target proteins including ion channels. However, modulatory effects of propofol on ion channels have not been previously explored in the presence of serum albumin. This study was designed to investigate the effects of serum albumin on the blocking action of propofol on the human Kv1.5 (hKv1.5) current. Whole-cell patch-clamp method was used to record the hKv1.5 channel current, heterologously expressed in Chinese hamster ovary cells, in the absence and presence of bovine serum albumin (BSA). Propofol induced a time-dependent decline of the hKv1.5 current during depolarizing steps and slowed the time course of tail current decay upon repolarization, supporting that propofol acts as an open-channel blocker. This blocking effect was reversible and concentration-dependent with an IC50 of 62.9±3.1μM (n = 6). Bath application of 1% BSA markedly reduced the blocking potency of propofol on hKv1.5 current (IC50 of 1116.0±491.4μM; n = 6). However, in the presence of BSA, the propofol-induced inhibition of hKv1.5 current was also accompanied by a gradual decline of activated current during depolarization and deceleration of deactivating tail current upon repolarization. The presence of BSA greatly attenuated the blocking potency of propofol on hKv1.5 channel without affecting the mode of action of propofol on the channel. Serum albumin thus appears to bind to propofol and thereby reducing effective concentrations of the drug for inhibition of hKv1.5 channel. PMID:27164421

  9. Recombinant human fibrinogen and sulfation of the. gamma. prime chain

    SciTech Connect

    Farrell, D.H.; Huang, S.; Chung, D.W.; Davie, E.W. ); Mulvihill, E.R. )

    1991-10-01

    Human fibrinogen and the homodimeric {gamma}{prime}-chain-containing variant have been expressed in BHK cells using cDNAs coding for the {alpha},{beta}, and {gamma} (or {gamma}{prime}) chains. The fibrinogens were secreted at levels greater than 4 {mu}g (mg of total cell protein){sup {minus}1}day{sup {minus}1} and were biologically active in clotting assays. Recombinant fibrinogen containing the {gamma}' chain incorporated {sup 35}SO{sub 4} into its chains during biosynthesis, while no incorporation occurred in the protein containing the {gamma} chain. The identity of the sulfated {gamma}{prime} chain was verified by its ability to form dimers during clotting. In addition, carboxypeptidase {Upsilon} digestion of the recombinant fibrinogen containing the {gamma}{prime} chain released 96% of the {sup 35}S label from the sulfated chain, and the radioactive material was identified as tyrosine O-sulfate. These results clarify previous findings of the sulfation of tyrosine in human fibrinogen.

  10. Ribonuclease activity and RNA binding of recombinant human Dicer

    PubMed Central

    Provost, Patrick; Dishart, David; Doucet, Johanne; Frendewey, David; Samuelsson, Bengt; Rådmark, Olof

    2002-01-01

    RNA silencing phenomena, known as post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference (RNAi) in animals, are mediated by double-stranded RNA (dsRNA) and mechanistically intersect at the ribonuclease Dicer. Here, we report cloning and expression of the 218 kDa human Dicer, and characterization of its ribonuclease activity and dsRNA-binding properties. The recombinant enzyme generated ∼21–23 nucleotide products from dsRNA. Processing of the microRNA let-7 precursor by Dicer produced an apparently mature let-7 RNA. Mg2+ was required for dsRNase activity, but not for dsRNA binding, thereby uncoupling these reaction steps. ATP was dispensable for dsRNase activity in vitro. The Dicer·dsRNA complex formed at high KCl concentrations was catalytically inactive, suggesting that ionic interactions are involved in dsRNA cleavage. The putative dsRNA-binding domain located at the C-terminus of Dicer was demonstrated to bind dsRNA in vitro. Human Dicer expressed in mammalian cells colocalized with calreticulin, a resident protein of the endoplasmic reticulum. Availability of the recombinant Dicer protein will help improve our understanding of RNA silencing and other Dicer-related processes. PMID:12411504

  11. Liquid crystalline human recombinant collagen: the challenge and the opportunity.

    PubMed

    Yaari, Amit; Posen, Yehudit; Shoseyov, Oded

    2013-07-01

    Collagen is a key component of the extracellular matrix, and by far the most prominent constituent of all load-bearing tissues. Its abundance and self-assembly capacities render it a practical scaffold material for tissue repair and regeneration applications. However, some difficulties exist in artificially regenerating functional collagen structures to match native tissues and their respective performances. There are two major limitations of existing collagen-based scaffolds: The first one is poor mechanical performance, and the second one is the failure to closely mimic natural tissues as to provide the necessary topographic and mechanical cues required for cell propagation and differentiation. The complexity of inducing sufficient order and alignment stands at the base of the impediments to successful formation of artificial collagen scaffolds, which closely match native tissue strength and morphology. Recombinant human collagen produced in transgenic tobacco plants has the capacity of forming highly concentrated liquid crystalline dope that can be aligned by application of shear force. Leveraging shear alignment of liquid crystalline recombinant human collagen opens new possibilities toward obtaining scaffolds that may be able to provide the necessary mechanical support, while closely mimicking the molecular signals and mechanical cues displayed to natural cell milieu. Such scaffolds may prove advantageous in the development of improved medical devices in fields, such as ophthalmology, neurology, and orthopedics. PMID:23368756

  12. Human recombinant neutralizing antibodies against hantaan virus G2 protein.

    PubMed

    Koch, Joachim; Liang, Mifang; Queitsch, Iris; Kraus, Annette A; Bautz, Ekkehard K F

    2003-03-30

    Old world hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS), still present a public health problem in Asia and Eastern Europe. The majority of cases has been recorded in China. The aim of our study was to generate human recombinant neutralizing antibodies to a hantavirus by phage display technology. To preserve the structural identity of viral protein, the panning procedure was performed on native Hantaan (HTN) (76-118) virus propagated in Vero-E6 cells. In total, five complete human recombinant IgG antibodies were produced in a baculovirus expression system. All of them were able to completely neutralize HTN, and Seoul (SEO) virus in a plaque reduction neutralization test (PRNT). Three of these antibodies could also completely neutralize Dobrava (DOB) virus but not Puumala (PUU) virus. All antibodies bind to Hantaan virus G2 protein localized in the virus envelope. The sequence areas within the HTN (76-118)-G2 protein detected by five selected antibodies were mapped using peptide scans. Two partial epitopes, 916-KVMATIDSF-924 and 954-LVTKDIDFD-963, were recognized, which presumably are of paramount importance for docking of the virus to host cell receptors. A consensus motif 916-KVXATIXSF-924 could be identified by mutational analysis. The neutralizing antibodies to the most widely distributed hantaviruses causing HFRS might be promising candidates for the development of an agent for prevention and treatment of HFRS in patients. PMID:12706090

  13. Synthesis and mass-spectrometric characterization of human serum albumins modified by covalent binding of two non-steroidal anti-inflammatory drugs: tolmetin and zomepirac.

    PubMed Central

    Zia-Amirhosseini, P; Ding, A; Burlingame, A L; McDonagh, A F; Benet, L Z

    1995-01-01

    Human serum albumins modified by covalently bound tolmetin or zomepirac were synthesized as models for similar products formed in vivo from acyl glucuronides. Activated esters of both drugs were prepared with 1-ethyl-3-(3-dimethylaminopropyl)-carbodi-imide, and then allowed to react with human serum albumin. Tryptic digests of both protein products were analysed by HPLC to identify peptides containing covalently bound drugs, and binding sites on albumin were identified by high-performance tandem MS. Three binding sites were common to both products, i.e. lysine-195, -199 and -351. Three further modified residues were identified for the tolmetin-albumin product, i.e. aspartic acid 1, and lysine-524 and -536. PMID:7487878

  14. Quantitation of 4,4′-methylene diphenyl diisocyanate human serum albumin adducts

    PubMed Central

    Luna, Leah G.; Green, Brett J.; Zhang, Fagen; Arnold, Scott M.; Siegel, Paul D.; Bartels, Michael J.

    2016-01-01

    4,4′-Methylene diphenyl diisocyanate (herein 4,4′-MDI) is used in the production of polyurethane foams, elastomers, coatings, adhesives and the like for a wide range of commercial products. Occupational exposure to MDI levels above current airborne exposure limits can elicit immune mediated hypersensitivity reactions such as occupational asthma in sensitive individuals. To accurately determine exposure, there has been increasing interest in developing analytical methods to measure internal biomarkers of exposure to MDI. Previous investigators have reported methodologies for measuring MDI diamine metabolites and MDI-Lysine (4,4′-MDI-Lys) adducts. The purpose of this study was to develop and validate an ultra performance liquid chromatography isotope dilution tandem mass spectrometry (UPLC-ID/MS/MS) quantitation method via a signature peptide approach to enable biomonitoring of 4,4′-MDI adducted to human serum albumin (HSA) in plasma. A murine, anti-4,4′-MDI monoclonal IgM antibody was bound to magnetic beads and utilized for enrichment of the MDI adducted HSA. Following enrichment, trypsin digestion was performed to generate the expected 414 site (primary site of adduction) 4,4′-MDI-adducted HSA signature peptide that was quantified by UPLC-ID/MS/MS. An Agilent 6530 UPLC/quadrupole time of flight MS (QTOF) system was utilized for intact adducted protein analysis and an Agilent 6490 UPLC/MS/MS system operated in multiple reaction monitoring (MRM) mode was utilized for quantification of the adducted signature peptide biomarker both for in chemico and worker serum samples. Worker serum samples were initially screened utilizing the previously developed 4,4′-MDI-Lys amino acid method and results showed that 12 samples were identified as quantifiable for 4,4′-MDI-Lys adducts. The signature peptide adduct approach was applied to the 12 worker samples identified as quantifiable for 4,4′-MDI-Lys adducts. Results indicated no positive results were obtained

  15. The Effect of Hydrophobic Pockets in Human Serum Albumin Adsorption to Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Choi, Eugene J.; Jia, Shijin; Petrash, Stanislaw; Foster, Mark D.

    2001-04-01

    Molecular properties of proteins and their interactions with surfaces have an effect on protein adsorption, which is one of the first and most important events that occurs when a biological fluid contacts a surface. For biomaterials applications, blood reaction to foreign objects can cause thrombosis. To understand thrombosis, it is necessary to understand the mechanism of adsorption of blood proteins onto artificial surfaces. Such interactions as hydrophobicity^1,2, electrostatics^3 and specific binding^4 have been found to be driving forces for protein adsorption. Self-assembled monolayers (SAMs) provide an ideal surface for which protein adsorption behavior can be studied.^1 SAMs provide chemical homogeneity, robustness, and variable surface functionality. The hydrophobicity of SAMs has been of great interest in studying surface interactions with proteins.^1, 2 The packing density of alkyl chains of SAMs can also be varied in order to obtain different surface properties. The most abundant protein in the blood is human serum albumin (HSA). Because HSA acts as a fatty acid transporter, it has six binding sites for fatty acids. Pitt and Cooper^4 have shown that alkylation of surfaces increases the initial adsorption rate of delipidized (fatty acid free) HSA. Petrash et al.^5 have shown that delipidized HSA binds more tenaciously to less densely packed alkyl SAMs than to densely packed alkyl SAMs when desorbed by sodium dodecyl sulfate. Using X-ray reflectivity to study the adsorbed protein layer thickness, lipidized HSA (fatty acid bound) adsorption and desorption studies showed that specific binding of HSA is one of the main factors in binding tenacity between HSA and less densely packed alkyl SAMs. Atomic force microscopy was used as a complementary technique to confirm these results, and neutron reflectivity and spectroscopy techniques will also be used to study the adsorption behaviors of HSA and other blood proteins in future work. 1. Prime, K. L.; Whitesides

  16. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  17. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  18. Human albumin solution for patients with cirrhosis and acute on chronic liver failure: Beyond simple volume expansion

    PubMed Central

    Valerio, Christopher; Theocharidou, Eleni; Davenport, Andrew; Agarwal, Banwari

    2016-01-01

    To provide an overview of the properties of human serum albumin (HSA), and to review the evidence for the use of human albumin solution (HAS) in critical illness, sepsis and cirrhosis. A MEDLINE search was performed using the terms “human albumin”, “critical illness”, “sepsis” and “cirrhosis”. The references of retrieved articles were reviewed manually. Studies published between 1980 and 2014 were selected based on quality criteria. Data extraction was performed by all authors. HSA is the main plasma protein contributing greatly to its oncotic pressure. HSA demonstrates important binding properties for endogenous and exogenous toxins, drugs and drug metabolites that account for its anti-oxidant and anti-inflammatory properties. In disease states, hypoalbuminaemia is secondary to decreased HSA production, increased loss or transcapillary leakage into the interstitial space. HSA function can be also altered in disease with reduced albumin binding capacity and increased production of modified isoforms. HAS has been used as volume expander in critical illness, but received criticism due to cost and concerns regarding safety. More recent studies confirmed the safety of HAS, but failed to show any survival benefit compared to the cheaper crystalloid fluids, therefore limiting its use. On the contrary, in cirrhosis there is robust data to support the efficacy of HAS for the prevention of circulatory dysfunction post-large volume paracentesis and in the context of spontaneous bacterial peritonitis, and for the treatment of hepato-renal syndrome and hypervolaemic hyponatraemia. It is likely that not only the oncotic properties of HAS are beneficial in cirrhosis, but also its functional properties, as HAS replaces the dysfunctional HSA. The role of HAS as the resuscitation fluid of choice in critically ill patients with cirrhosis, beyond the established indications for HAS use, should be addressed in future studies. PMID:26981172

  19. Albumin-Like Protein is the Major Protein Constituent of Luminal Fluid in the Human Endolymphatic Sac

    PubMed Central

    Kim, Sung Huhn; Kim, Un-Kyoung; Lee, Won-Sang; Bok, Jinwoong; Song, Jung-Whan; Seong, Je Kyung; Choi, Jae Young

    2011-01-01

    The endolymphatic sac (ES) is an inner ear organ that is connected to the cochleo-vestibular system through the endolymphatic duct. The luminal fluid of the ES contains a much higher concentration of proteins than any other compartment of the inner ear. This high protein concentration likely contributes to inner ear fluid volume regulation by creating an osmotic gradient between the ES lumen and the interstitial fluid. We characterized the protein profile of the ES luminal fluid of patients (n = 11) with enlarged vestibular aqueducts (EVA) by proteomics. In addition, we investigated differences in the protein profiles between patients with recent hearing deterioration and patients without hearing deterioration. The mean total protein concentration of the luminal fluid was 554.7±94.6 mg/dl. A total of 58 out of 517 spots detected by 2-DE were analyzed by MALDI-TOF MS. The protein profile of the luminal fluid was different from the profile of plasma. Proteins identified from 29 of the spots were also present in the MARC-filtered human plasma; however, the proteins identified from the other 25 spots were not detected in the MARC-filtered human plasma. The most abundant protein in the luminal fluid was albumin-like proteins, but most of them were not detected in MARC-filtered human plasma. The concentration of albumin-like proteins was higher in samples from patients without recent hearing deterioration than in patients with recent hearing deterioration. Consequently, the protein of ES luminal fluid is likely to be originated from both the plasma and the inner ear and considering that inner ear fluid volumes increase abnormally in patients with EVA following recent hearing deterioration, it is tempting to speculate that albumin-like proteins may be involved in the regulation of inner ear fluid volume through creation of an osmotic gradient during pathological conditions such as endolymphatic hydrops. PMID:21738753

  20. “Genome-wide recombination and chromosome segregation in human oocytes and embryos reveal selection for maternal recombination rates”

    PubMed Central

    Natesan, Senthilkumar A.; Joshi, Hrishikesh A.; Cimadomo, Danilo; Griffin, Darren K.; Sage, Karen; Summers, Michael C.; Thornhill, Alan R.; Housworth, Elizabeth; Herbert, Alex D.; Rienzi, Laura; Ubaldi, Filippo M.; Handyside, Alan H.; Hoffmann, Eva R.

    2015-01-01

    Crossover recombination reshuffles genes and prevents errors in segregation that lead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here, we generate genome-wide maps of crossovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping > 4 million informative single-nucleotide polymorphisms (SNPs) from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a novel reverse chromosome segregation pattern in which both homologs separate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germline by the elimination of aneuploid embryos; and report chromosomal drive against non-recombinant chromatids at meiosis II. Collectively, our findings reveal that recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II. PMID:25985139

  1. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates.

    PubMed

    Ottolini, Christian S; Newnham, Louise J; Capalbo, Antonio; Natesan, Senthilkumar A; Joshi, Hrishikesh A; Cimadomo, Danilo; Griffin, Darren K; Sage, Karen; Summers, Michael C; Thornhill, Alan R; Housworth, Elizabeth; Herbert, Alex D; Rienzi, Laura; Ubaldi, Filippo M; Handyside, Alan H; Hoffmann, Eva R

    2015-07-01

    Crossover recombination reshuffles genes and prevents errors in segregation that lead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here we generate genome-wide maps of crossovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping >4 million informative SNPs from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a new reverse chromosome segregation pattern in which both homologs separate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germ line by the elimination of aneuploid embryos; and report chromosomal drive against non-recombinant chromatids at meiosis II. Collectively, our findings show that recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II. PMID:25985139

  2. Phylogenetic Mapping of Recombination Hotspots in Human Immunodeficiency Virus via Spatially Smoothed Change-Point Processes

    PubMed Central

    Minin, Vladimir N.; Dorman, Karin S.; Fang, Fang; Suchard, Marc A.

    2007-01-01

    We present a Bayesian framework for inferring spatial preferences of recombination from multiple putative recombinant nucleotide sequences. Phylogenetic recombination detection has been an active area of research for the last 15 years. However, only recently attempts to summarize information from several instances of recombination have been made. We propose a hierarchical model that allows for simultaneous inference of recombination breakpoint locations and spatial variation in recombination frequency. The dual multiple change-point model for phylogenetic recombination detection resides at the lowest level of our hierarchy under the umbrella of a common prior on breakpoint locations. The hierarchical prior allows for information about spatial preferences of recombination to be shared among individual data sets. To overcome the sparseness of breakpoint data, dictated by the modest number of available recombinant sequences, we a priori impose a biologically relevant correlation structure on recombination location log odds via a Gaussian Markov random field hyperprior. To examine the capabilities of our model to recover spatial variation in recombination frequency, we simulate recombination from a predefined distribution of breakpoint locations. We then proceed with the analysis of 42 human immunodeficiency virus (HIV) intersubtype gag recombinants and identify a putative recombination hotspot. PMID:17194781

  3. Human cell lines: A promising alternative for recombinant FIX production.

    PubMed

    de Sousa Bomfim, Aline; Cristina Corrêa de Freitas, Marcela; Picanço-Castro, Virgínia; de Abreu Soares Neto, Mário; Swiech, Kamilla; Tadeu Covas, Dimas; Maria de Sousa Russo, Elisa

    2016-05-01

    Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins. PMID:26802680

  4. Albumin Test

    MedlinePlus

    ... to a variety of conditions in addition to malnutrition , a decrease in albumin needs to be evaluated ... can also be seen in inflammation , shock, and malnutrition . They may be seen with conditions in which ...

  5. Pathogen-specific recombinant human polyclonal antibodies: biodefence applications.

    PubMed

    Bregenholt, Søren; Haurum, John

    2004-03-01

    The potential use of biological agents such as viruses, bacteria or bacterial toxins as weapons of mass destruction has fuelled significant national and international research and development in novel prophylactic or therapeutic countermeasures. Such measures need to be fast-acting and broadly specific, a hallmark of target-specific polyclonal antibodies (pAbs). As reviewed here, pathogen-specific antibodies in the form of human or animal serum have long been recognised as effective therapies in a number of infectious diseases. This review focuses in particular on the potential biowarfare agents prioritised by the National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention (CDC), referred to as the category A organisms. Furthermore, it is propose that the last decade of development in recombinant antibody technologies offers the possibility for developing highly specific human monoclonal or polyclonal pathogen-specific antibodies. In particular, pathogen-specific polyclonal human antibodies offer certain advantages over existing hyperimmune serum products, monoclonal antibodies, small molecule drugs and vaccines. Here, the rationale for designing pAb-based therapeutics against the CDC category A microbial agents causing anthrax, botulism, plague, smallpox, tularaemia and viral haemorrhagic fevers, as well as the overall design of such therapeutics, are discussed. PMID:15006732

  6. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glyc...

  7. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  8. Study on the interaction of antiviral drug 'Tenofovir' with human serum albumin by spectral and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Hadidi, Saba; Feizi, Foroozan

    2015-03-01

    This study was designed to examine the interaction of Tenofovir (Ten) with human serum albumin (HSA) under physiological conditions. The binding of drugs with human serum albumin is a crucial factor influencing the distribution and bioactivity of drugs in the body. To understand the action mechanisms between Ten and HSA, the binding of Ten with HSA was investigated by a combined experimental and computational approach. UV-vis results confirmed that Ten interacted with HSA to form a ground-state complex and values of the Stern-Volmer quenching constant indicate the presence of a static component in the quenching mechanism. As indicated by the thermodynamic parameters (positive ΔH and ΔS values), hydrophobic interaction plays a major role in the Ten-HSA complex. Through the site marker competitive experiment, Ten was confirmed to be located in site I of HSA. Furthermore, UV-vis absorption spectra, synchronous fluorescence spectrum and CD data were used to investigate the structural change of HSA molecules with addition of Ten, the results indicate that the secondary structure of HSA molecules was changed in the presence of Ten. The experimental results were in agreement with the results obtained via molecular docking study.

  9. Toluene Diisocyanate Reactivity with Glutathione Across a Vapor/Liquid Interface and Subsequent Transcarbamoylation of Human Albumin

    PubMed Central

    Wisnewski, Adam V; Hettick, Justin M.; Siegel, Paul D.

    2012-01-01

    Glutathione has previously been identified as a reaction target for toluene diisocyanate (TDI) in vitro and in vivo, and has been suggested to contribute to toxic and allergic reactions to exposure. In this study, the reactivity of reduced glutathione (GSH) with TDI in vitro was further investigated using a mixed phase (vapor/liquid) exposure system to model the in vivo biophysics of exposure in the lower respiratory tract. HPLC/MS/MS was used to characterize the observed reaction products. Under the conditions tested, the major reaction products between TDI vapor and GSH were S-linked bis(GSH)-TDI and to a lesser extent mono(GSH)-TDI conjugates (with one N=C=O hydrolyzed). The vapor phase generated GSH-TDI conjugates were capable of transcarbamoylating human albumin in a pH-dependent manner, resulting in changes in the self-protein’s conformation/charge, based on electrophoretic mobility under native conditions. Specific sites of human albumin-TDI conjugation, mediated by GSH-TDI, were identified (Lys73, Lys159, Lys190, Lys199, Lys212, Lys351, Lys136/137, Lys413/414, Lys524/525) and overlap with those susceptible to direct conjugation by TDI. Together, the data extend proof-of-principle for GSH to act as a “shuttle” for a reactive form of TDI, which could contribute to clinical responses to exposure. PMID:21806041

  10. Human serum albumin-benzo[a]pyrene anti-diol epoxide adduct structure elucidation by fluorescence line narrowing spectroscopy.

    PubMed

    Day, B W; Doxtader, M M; Rich, R H; Skipper, P L; Singh, K; Dasari, R R; Tannenbaum, S R

    1992-01-01

    Cryogenic (4-10 K) laser-induced vibrationless ground state and vibronic excited state fluorescence emission spectra of the adducts resulting from reaction in vitro of human serum albumin and the carcinogen (+-)-r-7,t-8-dihydroxy-c-9,c-10-epoxy-7,8,9,10- tetrahydrobenzo[a]-pyrene were recorded in order to determine the structures formed. Comparison of these fluorescence line-narrowed (FLN) spectra to those obtained from BaP-7,8,9,10- tetrahydrotetrols, synthetic N-t-BOC-alaninate ester, and N tau- and N pi-histidine amine anti-BaPDE adducts revealed that a mixture of adduct types are formed with the protein. Extensive dialysis of the adducted protein simplified the FLN spectrum, causing it to become nearly identical to the FLN spectrum obtained from the stable peptide adduct. Comparison of the FLN spectra of the synthetic histidine adducts to those obtained from peptide adducts isolated from enzymic digestion of the adducted protein indicated that only one of the imidazole nitrogens is the nucleophile which forms a stable adduct with anti-BaPDE. The FLN studies confirm that N tau-histidine adducts are formed between human serum albumin and the C-10 position of anti-BaPDE. PMID:1581540

  11. [Raman spectra of single human living erythrocyte with the effect of pH and serum albumin].

    PubMed

    Wu, Zheng-Jie; Wang, Cheng; Lin, Zheng-Chun; Jiao, Qing-Ze

    2014-05-01

    In the present work, a cell environment which mimicked the real body environment according to the concentration radio between serum albumin and hemoglobin was built, and the cell morphology, the membrane deformation capacity, and the structure of intracellular hemoglobin of single human living erythrocyte under the effect of pH and serum albumin were studied. It was found that at different suspension pH, the magnitude of variations in cell shape and membrane deformation capacity changes with the structural changes of the intracellular hemoglobin. At pH 4. 14, 4. 76 and 10. 18, the loss of helical structure for hemoglobin, exposing of the hydrophobic amino acid in the globin chains, and changing of the combination of heme and globin, would completely destroy the stability of hemoglobin's structure, which seriously changes RBC's morphology and membrane deformation capacity. While at pH 6. 51 and 7. 80, the Raman spectra of erythrocytes are found to have no such changes, indicating that the structure of intracellular hemoglobin was not varied, thus the cell morphology and membrane deformation capacity are quite close to the normal values. At pH 5. 49 and 8. 76, RBC's morphology and membrane deformation capacity have different degrees of variation, but the structure of intracellular hemoglobin has not changed, suggesting that the cell morphology and membrane deformation capacity may be reversible. The results suggest that in the suspension solution containing serum albumin, erythrocytes have better ability to regulate and control the variation of the extracellular pH. In summary, upon building an environment which contains the same concentration radio of serum albumin to hemoglobin in the blood, this work performed systematic studies on the effect of pH on human erythrocytes. It can not only help to solve the problems about the mechanism of the structural and functional changes of erythrocytes induced by environmental pH, but also elucidates the possible variation of

  12. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics

    PubMed Central

    Casademunt, Elisabeth; Martinelle, Kristina; Jernberg, Mats; Winge, Stefan; Tiemeyer, Maya; Biesert, Lothar; Knaub, Sigurd; Walter, Olaf; Schröder, Carola

    2012-01-01

    Introduction Since the early 1990s, recombinant human clotting factor VIII (rhFVIII) produced in hamster cells has been available for haemophilia A treatment. However, the post-translational modifications of these proteins are not identical to those of native human FVIII, which may lead to immunogenic reactions and the development of inhibitors against rhFVIII. For the first time, rhFVIII produced in a human host cell line is available. Aim We describe here the establishment of the first human production cell line for rhFVIII and the manufacturing process of this novel product. Methods and results A human cell line expressing rhFVIII was derived from human embryonic kidney (HEK) 293 F cells transfected with an FVIII expression plasmid. No virus or virus-like particles could be detected following extensive testing. The stringently controlled production process is completely free from added materials of animal or human origin. Multistep purification employing a combination of filtration and chromatography steps ensures the efficient removal of impurities. Solvent/detergent treatment and a 20 nm pore size nanofiltration step, used for the first time in rhFVIII manufacturing, efficiently eliminate any hypothetically present viruses. In contrast to hamster cell-derived products, this rhFVIII product does not contain hamster-like epitopes, which might be expected to be immunogenic. Conclusions HEK 293 F cells, whose parental cell line HEK 293 has been used by researchers for decades, are a suitable production cell line for rhFVIII and will help avoid immunogenic epitopes. A modern manufacturing process has been developed to ensure the highest level of purity and pathogen safety. PMID:22690791

  13. Fetuin-A and Albumin Alter Cytotoxic Effects of Calcium Phosphate Nanoparticles on Human Vascular Smooth Muscle Cells

    PubMed Central

    Dautova, Yana; Kozlova, Diana; Skepper, Jeremy N.; Epple, Matthias; Bootman, Martin D.; Proudfoot, Diane

    2014-01-01

    Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP) crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC) death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥1 µM) reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms. PMID:24849210

  14. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays.

    PubMed

    Hansen, Lajla Bruntse; Buus, Soren; Schafer-Nielsen, Claus

    2013-01-01

    We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm(2). Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA) as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids) at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA) and from rabbit serum albumin (RSA) were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level. PMID:23894373

  15. Effect of lobe pumping on human albumin: investigating the underlying mechanisms of aggregate formation.

    PubMed

    Gomme, Peter T; Hunt, Ben M; Tatford, Owen C; Johnston, Anna; Bertolini, Joseph

    2006-02-01

    A common problem in the manufacture of liquid protein therapeutics is the tendency for aggregation and particle formation on extended storage. One aspect of processing that might contribute to particle formation is pumping. In the present study, we demonstrate that lobe pumps can promote aggregation in albumin preparations. This is accentuated where the clearance between the pump housing and lobes is increased. Under these conditions, the pump efficiency decreases, resulting in increased exposure of the protein to the pump environment. Depending on the inherent physicochemical stability of the protein, this can lead to aggregate formation, which can influence the long-term stability characteristics of the product. PMID:16246176

  16. Discordant uptake of Tc-99m DTPA-galactosyl human serum albumin and Tc-99m Sn colloid in a patient with severe acute hepatitis.

    PubMed

    Miyazaki, C; Matsunaga, T; Kubo, K

    1994-08-01

    A patient with recently diagnosed severe acute hepatitis underwent serial liver scintigraphy with Tc-99m Sn colloid and Tc-99m DTPA-galactosyl human serum albumin. In initial studies, radionuclide distribution on Tc-99m DTPA-galactosyl human serum albumin scintigraphy was completely discrepant to that on Tc-99m Sn colloid scintigraphy. In a follow-up study 1 month later, the distribution of both radionuclides in the liver appeared relatively homogeneous. The uptake of Tc-99m DTPA-galactosyl human serum albumin and Tc-99m Sn colloid reflects the function of hepatocytes and Kupffer cells, respectively. Both kinds of scintigraphic study may be helpful to assess histopathologic change of different hepatic tissue architectures. PMID:7955747

  17. 78 FR 78838 - Grant of Interim Extension of the Term of U.S. Patent No. 5,496,801; Recombinant Human...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...,801; Recombinant Human Parathyroid Hormone AGENCY: United States Patent and Trademark Office, Commerce... human biological product recombinant human parathyroid hormone. The application indicates that Biologics License Application 125511 for the drug product, recombinant human parathyroid hormone, was filed...

  18. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE.

    PubMed

    Korwar, Arvind M; Vannuruswamy, Garikapati; Jagadeeshaprasad, Mashanipalya G; Jayaramaiah, Ramesha H; Bhat, Shweta; Regin, Bhaskaran S; Ramaswamy, Sureshkumar; Giri, Ashok P; Mohan, Viswanathan; Balasubramanyam, Muthuswamy; Kulkarni, Mahesh J

    2015-08-01

    Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified albumin using high resolution accurate mass spectrometry (HR/AM). The glycated peptides were manually inspected and validated for their modification. Further, the fragment ion library was used for quantification of glycated peptides of albumin in the context of diabetes. Targeted Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH) analysis in pooled plasma samples of control, prediabetes, diabetes, and microalbuminuria, has led to identification and quantification of 13 glycated peptides comprised of four AML, seven CML, and two CEL modifications, representing nine lysine sites of albumin. Five lysine sites namely K549, K438, K490, K88, and K375, were observed to be highly sensitive for glycation modification as their respective m/z showed maximum fold change and had both AML and CML modifications. Thus, peptides involving these lysine sites could be potential novel markers to assess the degree of glycation in diabetes. PMID:26023067

  19. Anti-Inflammatory Activity in the Low Molecular Weight Fraction of Commercial Human Serum Albumin (LMWF5A).

    PubMed

    Thomas, Gregory W; Rael, Leonard T; Mains, Charles W; Slone, Denetta; Carrick, Matthew M; Bar-Or, Raphael; Bar-Or, David

    2016-01-01

    The innate immune system is increasingly being recognized as a critical component in osteoarthritis (OA) pathophysiology. An ex vivo immunoassay utilizing human peripheral blood mononuclear cells (PBMC) was developed in order to assess the OA anti-inflammatory properties of the low molecular weight fraction (<5 kDa) of commercial human serum albumin (LMWF5A). PBMC from various donors were pre-incubated with LMWF5A before LPS stimulation. TNFα release was measured by ELISA in supernatants after an overnight incubation. A ≥ 30% decrease in TNFα release was observed. This anti-inflammatory effect is potentially useful in assessing potency of LMWF5A for the treatment of OA. PMID:25961642

  20. An integrated approach with experimental and computational tools outlining the cooperative binding between 2-phenylchromone and human serum albumin.

    PubMed

    Caruso, Ícaro Putinhon; Barbosa Filho, José Maria; de Araújo, Alexandre Suman; de Souza, Fátima Pereira; Fossey, Marcelo Andrés; Cornélio, Marinônio Lopes

    2016-04-01

    2-Phenylchromone (2PHE) is a flavone, found in cereals and herbs, indispensable in the human diet. Its chemical structure is the basis of all flavonoids present in black and green tea, soybean, red fruits and so on. Although offering such nutritional value, it still requires a molecular approach to understand its interactions with a specific target. The combination of experimental and computational techniques makes it possible to describe the interaction between 2PHE and human serum albumin (HSA). Fluorescence spectroscopy results show that the quenching mechanism is static, and thermodynamic analysis points to an entropically driven complex. The binding density function method provides information about a positive cooperative interaction, while drug displacement experiments indicate Sites 1 and 2 of HSA as the most probable binding sites. From the molecular dynamic study, it appears that the molecular docking is in agreement with experimental data and thus more realistic. PMID:26593575

  1. Transgenic silkworms produce recombinant human type III procollagen in cocoons.

    PubMed

    Tomita, Masahiro; Munetsuna, Hiroto; Sato, Tsutomu; Adachi, Takahiro; Hino, Rika; Hayashi, Masahiro; Shimizu, Katsuhiko; Nakamura, Namiko; Tamura, Toshiki; Yoshizato, Katsutoshi

    2003-01-01

    We describe the generation of transgenic silkworms that produce cocoons containing recombinant human collagen. A fusion cDNA was constructed encoding a protein that incorporated a human type III procollagen mini-chain with C-propeptide deleted, a fibroin light chain (L-chain), and an enhanced green fluorescent protein (EGFP). This cDNA was ligated downstream of the fibroin L-chain promoter and inserted into a piggyBac vector. Silkworm eggs were injected with the vectors, producing worms displaying EGFP fluorescence in their silk glands. The cocoons emitted EGFP fluorescence, indicating that the promoter and fibroin L-chain cDNAs directed the synthesized products to be secreted into cocoons. The presence of fusion proteins in cocoons was demonstrated by immunoblotting, collagenase-sensitivity tests, and amino acid sequencing. The fusion proteins from cocoons were purified to a single electrophoretic band. This study demonstrates the viability of transgenic silkworms as a tool for producing useful proteins in bulk. PMID:12483223

  2. Advanced Glycation-Modified Human Serum Albumin Evokes Alterations in Membrane and Eryptosis in Erythrocytes.

    PubMed

    Awasthi, Saurabh; Gayathiri, S K; Ramya, R; Duraichelvan, R; Dhason, A; Saraswathi, N T

    2015-11-01

    Increased burden of advanced glycation end-products (AGEs) in case of hyperglycemic conditions leads to the development of retinopathy, nephropathy, and cardiovascular and neurological disorders such as Alzheimer's disease. AGEs are considered as pro-oxidants, and their accumulation increases the oxidative stress. The prolonged exposure to these AGEs is the fundamental cause of chronic oxidative stress. Abnormal morphology of red blood cells (RBCs) and excessive eryptosis has been observed in diabetes, glomerulonephritis, dyslipidemia, and obesity, but yet the contribution of extracellular AGEs remains undefined. In this study, we investigated the effect of AGEs on erythrocytes to determine their impact on the occurrence of different pathological forms of these blood cells. Specifically, carboxymethyllysine (CML), carboxyethyllysine (CEL), and Arg-pyrimidine (Arg-P) which have been reported to be the most pre-dominant AGEs formed under in vivo conditions were used in this study. Results suggested the eryptotic properties of CML, CEL, and Arg-P for RBCs, which were evident from the highly damaged cell membrane and occurrence of abnormal morphologies. Methylglyoxal-modified albumin showed more severe effects, which can be attributed to the high reactivity and pro-oxidant nature of glycation end products. These findings suggest the possible role of AGE-modified albumin towards the morphological changes in erythrocyte's membrane associated with diabetic conditions. PMID:26276445

  3. Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin

    PubMed Central

    2011-01-01

    Background Iophenoxic acid is an iodinated radiocontrast agent that was withdrawn from clinical use because of its exceptionally long half-life in the body, which was due in part to its high-affinity binding to human serum albumin (HSA). It was replaced by Iopanoic acid, which has an amino rather than a hydroxyl group at position 3 on the iodinated benzyl ring and, as a result, binds to albumin with lower affinity and is excreted more rapidly from the body. To understand how iophenoxic acid binds so tightly to albumin, we wanted to examine the structural basis of its interaction with HSA. Results We have determined the co-crystal structure of HSA in complex with iophenoxic acid at 2.75 Å resolution, revealing a total of four binding sites, two of which - in drugs sites 1 and 2 on the protein - are likely to be occupied at clinical doses. High-affinity binding of iophenoxic acid occurs at drug site 1. The structure reveals that polar and apolar groups on the compound are involved in its interactions with drug site 1. In particular, the 3-hydroxyl group makes three hydrogen bonds with the side-chains of Tyr 150 and Arg 257. The mode of binding to drug site 2 is similar except for the absence of a binding partner for the hydroxyl group on the benzyl ring of the compound. Conclusions The HSA-iophenoxic acid structure indicates that high-affinity binding to drug site 1 is likely to be due to extensive desolvation of the compound, coupled with the ability of the binding pocket to provide a full set of salt-bridging or hydrogen bonding partners for its polar groups. Consistent with this interpretation, the structure also suggests that the lower-affinity binding of iopanoic acid arises because replacement of the 3-hydroxyl by an amino group eliminates hydrogen bonding to Arg 257. This finding underscores the importance of polar interactions in high-affinity binding to albumin. PMID:21501503

  4. Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Lan, Hui; Shao, Minghao; Yu, Yuan; Quan, Fusheng; Zhang, Yong

    2015-10-01

    Transgenic cattle expressing high levels of recombinant human serum albumin (HSA) in their milk may as an alternative source for commercial production. Our objective was to produce transgenic cattle highly expressing HSA in milk by using phiC31 integrase system and somatic cell nuclear transfer (SCNT). The mammary-specific expression plasmid pIACH(-), containing the attB recognition site for phiC31 integrase, were co-transfected with integrase expression plasmid pCMVInt into bovine fetal fibroblast cells (BFFs). PhiC31 integrase-mediated integrations in genome of BFFs were screened by nested inverse PCR. After analysis of sequence of the PCR products, 46.0% (23/50) of the both attB-genome junction sites (attL and attR) were confirmed, and four pseudo attP sites were identified. The integration rates in BF3, BF11, BF19 and BF4 sites were 4.0% (2/50), 6.0% (3/50), 16.0% (8/50) and 20.0% (10/50), respectively. BF3 is located in the bovine chromosome 3 collagen alpha-3 (VI) chain isomer 2 gene, while the other three sites are located in the non-coding region. The transgenic cell lines from BF11, BF19 and BF4 sites were used as donors for SCNT. Two calves from transgenic cells BF19 were born, one died within a few hours after birth, and another calf survived healthy. PCR and Southern blot analysis revealed integration of the transgene in the genome of cloned calves. The nested reverse PCR confirmed that the integration site in cloned calves was identical to the donor cells. The western blotting assessment indicated that recombinant HSA was expressed in the milk of transgenic cattle and the expression level was about 4-8 mg/mL. The present study demonstrated that phiC31 integrase system was an efficient and safety gene delivery tool for producing HSA transgenic cattle. The production of recombinant HSA in the milk of cattle may provide a large-scale and cost-effective resource. PMID:26198751

  5. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    PubMed Central

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  6. Northern African Strains of Human T-Lymphotropic Virus Type 1 Arose from a Recombination Event

    PubMed Central

    Desrames, Alexandra; Cassar, Olivier; Gout, Olivier; Hermine, Olivier; Taylor, Graham P.; Afonso, Philippe V.

    2014-01-01

    ABSTRACT Although recombination is a major source of genetic variability in retroviruses, no recombinant strain had been observed for human T-lymphotropic virus type 1 (HTLV-1), the first isolated human-pathogenic retrovirus. Different genotypes exist for HTLV-1: Genotypes b and d to g are restricted to central Africa, while genotype c is only endemic in Australo-Melanesia. In contrast, the cosmopolitan genotype a is widely distributed. We applied a combination of phylogenetics and recombination analysis approaches to a set of new HTLV-1 sequences, which we collected from 19 countries throughout Africa, the continent where the virus has the largest endemic presence. This led us to demonstrate the presence of recombinants in HTLV-1. Indeed, the HTLV-1 strains currently present in North Africa have originated from a recombinant event between strains from Senegal and West Africa. This recombination is estimated to have occurred around 4,000 years ago. This recombination seems to have been generated during reverse transcription. In conclusion, we demonstrate that, albeit rare, recombination can occur in HTLV-1 and may play a role in the evolution of this retrovirus. IMPORTANCE A number of HTLV-1 subtypes have been described in different populations, but none of the genetic differences between these subtypes have been ascribed to recombination events. Here we report an HTLV-1 recombinant virus among infected individuals in North Africa. This demonstrates that, contrary to what was thought, recombination can occur and could play a role in the evolution of HTLV-1. PMID:24942582

  7. Metabolism of chamaechromone in vitro with human liver microsomes and recombinant human drug-metabolizing enzymes.

    PubMed

    Lou, Yan; Hu, Haihong; Qiu, Yunqing; Zheng, Jinqi; Wang, Linrun; Zhang, Xingguo; Zeng, Su

    2014-04-01

    Chamaechromone is a major component in the dried roots of Stellera chamaejasme with antihepatitis B virus and insecticidal activity. In this study, metabolic profiles of chamaechromone were investigated in human liver microsomes. One monohydroxide and two monoglucuronides of chamaechromone were identified. The enzyme kinetics for both hydroxylation and glucuronidation were fitted to the Michaelis-Menten equation. The hydroxylation of chamaechromone was inhibited by α-naphthoflavone, and predominantly catalyzed by recombinant human cytochrome P450 1A2, whereas the glucuronidation was inhibited by quercetin, 1-naphthol, and fluconazole, and mainly catalyzed by recombinant human UDP-glucuronosyltransferase 1A3, 1A7, 1A9, and 2B7. PMID:24687737

  8. The automatic use of capillary isoelectric focusing with whole column imaging detection for carbamazepine binding to human serum albumin.

    PubMed

    Maciążek-Jurczyk, Małgorzata; Pawliszyn, Janusz

    2016-08-01

    The binding of the anticonvulsant drug carbamazepine (CBZ) to human serum albumin, both without (dHSA) and in the presence of fatty acids (HSA) was studied in real time by capillary isoelectric focusing with whole column imaging detection (cIEF-WCID). Reaction mixtures at different CBZ:HSA and CBZ:dHSA molar ratios (0:1/25:1) were prepared in phosphate buffer saline (PBS) solution at a physiological pH (7.4), and incubated for 0-72h at 37°C in a water bath. Application of the cIEF-WCID method allowed for observations on the impact of increasing CBZ:serum albumin molar ratios on isoelectric point (pI) shifts, as well as changes in peak area and absorbance, which serve as evidence of structural alterations occurring in the protein in the presence of CBZ. The obtained cIEF-WCID results indicated that the dynamic process of complex formation is not dependent on incubation time. The presented work allowed for recognition of different types of interactions, as well as for the calculation of association constants that demonstrate the stability of the complex. This study was also designed to examine the possible impact of fatty acids (FAs) on protein stability and drug delivery in blood. PMID:26809616

  9. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-01

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200 × 10-5 mol L-1. In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.

  10. Mapping the Interactions between the Alzheimer’s Aβ-Peptide and Human Serum Albumin beyond Domain Resolution

    PubMed Central

    Algamal, Moustafa; Milojevic, Julijana; Jafari, Naeimeh; Zhang, William; Melacini, Giuseppe

    2013-01-01

    Human serum albumin (HSA) is a potent inhibitor of Aβ self-association and this novel, to our knowledge, function of HSA is of potential therapeutic interest for the treatment of Alzheimer’s disease. It is known that HSA interacts with Aβ oligomers through binding sites evenly partitioned across the three albumin domains and with comparable affinities. However, as of this writing, no information is available on the HSA-Aβ interactions beyond domain resolution. Here, we map the HSA-Aβ interactions at subdomain and peptide resolution. We show that each separate subdomain of HSA domain 3 inhibits Aβ self-association. We also show that fatty acids (FAs) compete with Aβ oligomers for binding to domain 3, but the determinant of the HSA/Aβ oligomer interactions are markedly distinct from those of FAs. Although salt bridges with the FA carboxylate determine the FA binding affinities, hydrophobic contacts are pivotal for Aβ oligomer recognition. Specifically, we identified a site of Aβ oligomer recognition that spans the HSA (494–515) region and aligns with the central hydrophobic core of Aβ. The HSA (495–515) segment includes residues affected by FA binding and this segment is prone to self-associate into β-amyloids, suggesting that sites involved in fibrilization may provide a lead to develop inhibitors of Aβ self-association. PMID:24094411

  11. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model

    PubMed Central

    Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-01-01

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary. PMID:25015569

  12. Plant-derived recombinant human serum transferrin demonstrates multiple functions.

    PubMed

    Brandsma, Martin E; Diao, Hong; Wang, Xiaofeng; Kohalmi, Susanne E; Jevnikar, Anthony M; Ma, Shengwu

    2010-05-01

    Human serum transferrin (hTf) is the major iron-binding protein in human plasma, having a vital role in iron transport. Additionally, hTf has many other uses including antimicrobial functions and growth factor effects on mammalian cell proliferation and differentiation. The multitask nature of hTf makes it highly valuable for different therapeutic and commercial applications. However, the success of hTf in these applications is critically dependent on the availability of high-quality hTf in large amounts. In this study, we have developed plants as a novel platform for the production of recombinant (r)hTf. We show here that transgenic plants are an efficient system for rhTf production, with a maximum accumulation of 0.25% total soluble protein (TSP) (or up to 33.5 microg/g fresh leaf weight). Furthermore, plant-derived rhTf retains many of the biological activities synonymous with native hTf. In particular, rhTf reversibly binds iron in vitro, exhibits bacteriostatic activity, supports cell proliferation in serum-free medium and can be internalized into mammalian cells in vitro. The success of this study validates the future application of plant rhTf in a variety of fields. Of particular interest is the use of plant rhTf as a novel carrier for cell-specific or oral delivery of protein/peptide drugs for the treatment of human diseases such as diabetes.To demonstrate this hypothesis, we have additionally expressed an hTf fusion protein containing glucagon-like peptide 1 (GLP-1) or its derivative in plants. Here, we show that plant-derived hTf-GLP-1 fusion proteins retain the ability to be internalized by mammalian cells when added to culture medium in vitro. PMID:20432512

  13. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III)-Tetrakis (4-Sulfonatophenyl) Porphyrin-Luminol-Hydrogen Peroxide System

    PubMed Central

    Kazemi, Sayed Yahya; Abedirad, Seyed Mohammad

    2012-01-01

    The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP). The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with kQ values of 3.17 × 105 and 3.7 × 105 M−1 in the quencher concentration range of 1.5 × 10−6 to 1.5 × 10−5 M for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. PMID:22645466

  14. Sustained release emphasizing recombinant human bone morphogenetic protein-2.

    PubMed

    Hollinger; Uludag; Winn

    1998-05-01

    Bone homeostasis is a dynamic process involving a myriad of cells and substrates modulated by regulatory signals such as hormones, growth and differentiating factors. When this environment is damaged, the regenerative sequalae follows a programmed pattern, and the capacity for successful recovery is often dependent on the extent of the injury. Many bony deficits that are excessively traumatic will not result in complete recovery and require therapeutic intervention(s) such as autografting or grafting from banked bone. However, for numerous reasons, an unacceptably high rate of failure is associated with these conventional therapies. Thus, alternative approaches are under investigation. A class of osteogenic regulatory molecules, the bone morphogenetic proteins (BMPs), have been isolated, cloned and characterized as potent supplements to augment bone regeneration. Optimizing a therapeutic application for BMPs may be dependent upon localized sustained release which in kind relies on a safe and well characterized carrier system. This review will discuss the current status of BMPs in bone regeneration and specifically will present the potential for a clinical therapeutic role of recombinant human BMP-2 sustained release carrier systems. PMID:10837631

  15. Recombinant methods for screening human DNA excision repair proficiency

    SciTech Connect

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period.

  16. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives.

    PubMed

    Rossi, Elena J; Sim, Lyann; Kuntz, Douglas A; Hahn, Dagmar; Johnston, Blair D; Ghavami, Ahmad; Szczepina, Monica G; Kumar, Nag S; Sterchi, Erwin E; Nichols, Buford L; Pinto, B M; Rose, David R

    2006-06-01

    Inhibitors targeting pancreatic alpha-amylase and intestinal alpha-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an alpha-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective alpha-glucosidase inhibitors modeled after salacinol, a naturally occurring alpha-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity. PMID:16817895

  17. Recombinant human erythropoietin therapy in critically ill Jehovah's Witnesses.

    PubMed

    Ball, Amanda M; Winstead, P Shane

    2008-11-01

    Blood transfusions and blood products are often given as a life-saving measure in patients with critical illness. However, some patients, such as Jehovah's Witnesses, may refuse their administration due to religious beliefs. Jehovah's Witnesses accept most available medical treatments, but not blood transfusions or blood products due to their religion's interpretation of several passages from the Bible. Since recombinant human erythropoietin (rHuEPO) became available, several cases have been reported in which rHuEPO was successfully administered to critically ill Jehovah's Witnesses. Administration of rHuEPO in combination with other blood conservation techniques has been shown to increase hemoglobin levels and survival in patients who experienced trauma, burns, general surgery, or gastrointestinal hemorrhage. We performed a literature search of the MEDLINE and International Pharmaceutical Abstracts databases of rHuEPO therapy in the Jehovah's Witness population. Fourteen cases were identified in which rHuEPO was administered to Jehovah's Witnesses who required the drug for critical care resuscitation as an alternative to blood products. In each clinical situation, rHuEPO enhanced erythropoiesis; however, time to the start of treatment, dosages, route of administration, and treatment duration varied widely. Supplementation with adjunctive agents, such as iron, folic acid, and vitamin B12, was also beneficial. Use of rHuEPO in Jehovah's Witnesses may provide an alternative to blood transfusions or blood products. Other alternatives, such as hemoglobin-based oxygen carriers and perfluorocarbons, are also being explored. PMID:18956998

  18. Human recombinant RNASET2: A potential anti-cancer drug

    PubMed Central

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  19. Human recombinant RNASET2: A potential anti-cancer drug.

    PubMed

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  20. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  1. Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states.

    PubMed

    Dixon, R; Brunskill, N J

    1999-07-01

    Albumin is filtered into the proximal tubule in large quantities in nephrotic states. It has been proposed that this protein may have a toxic effect on tubular epithelial cells and may be responsible for the initiation of interstitial inflammation and scarring. The mitogenic effect of recombinant human albumin in wild-type opossum kidney cells and in similar cells transfected with a dominant negative p85 subunit (deltap85) of phopshatidylinositide 3-kinase (PI 3-kinase) has been studied. This study demonstrates that recombinant human albumin stimulates proliferation of opossum kidney cells in culture. This effect is mediated via PI 3-kinase, and is inhibited by wortmannin and deltap85 expression. Albumin stimulates PI 3-kinase activity in opossum kidney cells as determined by three different experimental procedures. Recombinant albumin also stimulates pp70(s6) kinase activity in a kinase cascade downstream of PI 3-kinase. Activity of pp70(s6) kinase is essential for albumin-induced proliferation of opossum kidney cells. It is proposed that this mitogenic pathway may have a critical role in proximal tubular homeostasis and pathophysiology of proteinuric states. PMID:10405204

  2. Benzo(a)pyrene-albumin adducts in humans exposed to polycyclic aromatic hydrocarbons in an industrial area of Poland.

    PubMed Central

    Kure, E H; Andreassen, A; Ovrebø, S; Grzybowska, E; Fiala, Z; Strózyk, M; Chorazy, M; Haugen, A

    1997-01-01

    OBJECTIVES: The interaction of benzo(a)pyrene with serum albumin was measured in an attempt to identify the actual exposure and to evaluate albumin adduct measurements as biomarkers for exposure monitoring. METHODS: Benzo(a)pyrene-diol-epoxide (BPDE)-albumin adducts were measured by competitive enzyme linked immunosorbent assay (ELISA) in plasma of coke oven plant workers from three plants and from people living in a highly industrialised area of Silesia in Poland. Due to the high air concentrations of polycyclic aromatic hydrocarbons (PAHs) in this area, a control group was selected from a rural non-industrialised area in Poland. Breathing zone air measurements of PAHs were collected from some of the participants. RESULTS: Coke oven plant workers and non-occupationally exposed people had similar concentrations of albumin adducts whereas the rural controls were significantly lower (2.74 fmol adducts/microgram albumin (SEM 0.124)). The mean concentration of BPDE-albumin adduct in plasma of both the occupational and the environmental groups were significantly higher in the summer samples (4.34 fmol adducts/microgram albumin (SEM 0.335) and 4.55 fmol adducts/microgram albumin (SEM 0.296), respectively) than in the winter samples (3.06 fmol adducts/microgram albumin (SEM 0.187) and 3.04 fmol adducts/microgram albumin (SEM 0.184), respectively) even though the air measurements showed higher concentrations of PAHs in the winter. The statistical analysis did not show any effects of air exposures on concentrations of BPDE-albumin adduct. CONCLUSIONS: A multiple regression analysis of the measured concentrations of BPDE-albumin adducts for all the groups, during both seasons, indicates that occupational exposures do not contribute significantly to the formation of adducts. In general, the concentrations of albumin adducts found vary within relatively small limits for the two seasons and between the various groups of participants. No extreme differences were found. PMID

  3. Effect of Short Chain Poly(ethylene glycol)s on the Hydration Structure and Dynamics around Human Serum Albumin.

    PubMed

    Samanta, Nirnay; Luong, Trung Quan; Das Mahanta, Debasish; Mitra, Rajib Kumar; Havenith, Martina

    2016-01-26

    We report the changes in the hydration dynamics around a globular protein, human serum albumin (HSA), in the presence of two short chain crowding agents, namely poly(ethylene glycol)s (PEG 200 and 400). The change in the network water structure is investigated using FTIR spectroscopy in the far-infrared (FIR) frequency range. Site specific changes are obtained by time-resolved fluorescence spectroscopic technique using the intrinsic fluorophore tryptophan (Trp214) of HSA. The collective hydration dynamics of HSA in the presence of PEG molecules are obtained using terahertz (THz) time domain spectroscopy (TTDS) and high intensity p-Ge THz measurements. Our study affirms a considerable perturbation of HSA hydration beyond a critical concentration of PEG. PMID:26720549

  4. Probing the micellar properties of Quinacrine 2HCl and its binding with surfactants and Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Siddiq, Mohammad

    2013-09-01

    This manuscript reports physicochemical behavior of an antimalarial drug Quinacrine 2HCl (QUN) drug as well as its interaction with surfactant and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solublization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (Kx), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has been analyzed by using UV/Visible and fluorescence spectroscopy. In this way the values of drug-protein binding constant, number of binding sites and free energy of binding were calculated.

  5. Denaturation of human serum albumin under the action of cetyltrimethylammonium bromide according to fluorescence polarization data of protein

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zhuravleva, V. V.; Saletskii, A. M.

    2012-03-01

    Denaturation of human serum albumin (HSA) under the action of cationic detergent cetyltrimethylammonium bromide (CTAB) is studied at different pH values by estimating the rotational diffusion of protein via fluorescence polarization. The degree of polarization of HSA tryptophan fluorescence, the rotational relaxation time, the rotational diffusion coefficient and the effective Einstein radius of the HSA molecules in solutions with different CTAB concentrations at different pH values are determined. The obtained rotational diffusion parameters of the HSA molecules show that under the action of CTAB, HSA denaturation has a one-stage character and proceeds more intensely and effectively at pH values higher than the p I value of protein (4.7).

  6. The orientation of protoberberine alkaloids and their binding activities to human serum albumin by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhao, Yu; Bai, Xueyuan; Wang, Yingping; Zhao, Daqing

    2011-03-01

    Raman and surface-enhanced Raman scattering (SERS) technique are reliably used to compare relative intensity shifts and to investigate the adsorption geometry of protoberberine alkaloids on Ag nanoparticles. We report joint application of fluorescence and SERS spectroscopy to study the interaction between protoberberine alkaloids and human serum albumin (HSA). We propose SERS technique to improve the quenching interaction caused by protoberberine alkaloids which are used to be applied in recognition process of fluorescent drugs with large biomolecules. The fluorescence results show that the fluorescence intensity of HSA is significantly decreased in presence of protoberberine alkaloids. The SERS technique demonstrates obvious advantages over direct measurements in discriminating and identifying pharmaceutical molecules. By means of this method, we are able to detect important information concerning the orientation of protoberberine alkaloids when interacting with HSA. We also show that the nitrogen atom is free, but a benzene ring and two adjacent methoxy groups are involved in the spontaneously electrostatic inducement and subsequently binding with HSA.

  7. Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design†

    PubMed Central

    Montero, Eva I.; Benedetti, Brad T.; Mangrum, John B.; Oehlsen, Michael J.; Qu, Yun; Farrell, Nicholas P.

    2009-01-01

    The interactions of polynuclear platinum complexes with human serum albumin were studied. The compounds examined were the “non-covalent” analogs of the trinuclear BBR3464 as well as the dinuclear spermidine-bridged compounds differing in only the presence or absence of a central -NH2-+ (BBR3571 and analogs). Thus, closely-related compounds could be compared. Evidence for pre-association, presumably through electrostatic and hydrogen-bonding, was obtained from fluorescence and circular dichroism spectroscopy and Electrospray Ionization Mass Spectrometry (ESI-MS). In the case of those compounds containing Pt-Cl bonds, further reaction took place presumably through displacement by sulfur nucleophiles. The implications for protein pre-association and plasma stability of polynuclear platinum compounds are discussed. PMID:17992278

  8. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  9. Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins.

    PubMed

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2013-01-01

    Ascorbic acid, α-tocopherol and proanthocyanidins are three classic dietary antioxidants. In this study, the interaction between the three antioxidants and human serum albumin (HSA) was investigated by several spectroscopic techniques. Experimental results proved that the three antioxidants quench the fluorescence of HSA through a static (proanthocyanidins) or static-dynamic combined quenching mechanism (ascorbic acid and α-tocopherol). Thermodynamic investigations revealed that the combination between ascorbic acid or proanthocyanidins and HSA was driven mainly by electrostatic interaction, and the hydrophobic interactions play a major role for α-tocopherol-HSA association. Binding site I was found to be the primary binding site for ascorbic acid and proanthocyanidins, and site II for α-tocopherol. Additionally, the three antioxidants may induce conformational and microenvironmental changes of HSA. PMID:24140914

  10. Correlated and Anticorrelated Domain Movement of Human Serum Albumin: A Peek into the Complexity of the Crowded Milieu.

    PubMed

    Biswas, Saikat; Chowdhury, Pramit Kumar

    2016-06-01

    Protein dynamics in cells have been shown to be markedly different from that in dilute solutions because of the highly crowded cellular interior. The volume exclusion arising from the high concentration of macromolecules present can affect both equilibrium and kinetic processes involving protein conformational changes. While global changes in structure leading to modulations in the stability of the protein have been well-documented, local changes that can have a large bearing on the functional aspects of these biomolecules are rare to come across. Using the multidomain serum protein human serum albumin and a fluorescence resonance energy transfer (FRET)-based approach, with fluorescent reporters in each of its three domains, we, in this article, have provided a detailed mapping of variations in the interdomain distances (as a function of pH) in the presence of five macromolecular crowding agents, differing based on their constituent monomers and average molecular weight(s). From the observation of correlated domain movements for dextran based crowding agents to anticorrelated motion induced by Ficoll 70, and both correlated and anticorrelated action for PEG8000 (PEG8), our results reveal the inherent complexity of a crowded milieu with the serum protein serving as an able sensor for decoding such variations. Differences in the manner in which the macromolecular crowders of similar average molecular weights influence the protein conformational ensemble also provide insights into the possible variations at the molecular level that these polymeric molecules possess. Evidence is presented in support of the fact that for the large molecular weight crowding agents and PEG8, soft interactions predominate over hard sphere potentials. Finally, the nature of domain movements encountered for the serum protein are of immense significance with respect to the function of human serum albumin (HSA) as a prolific binder and transporter of small molecules. PMID:27163260

  11. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency

    PubMed Central

    Lee, Yu Nee; Frugoni, Francesco; Dobbs, Kerry; Walter, Jolan E.; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Haddad, Elie; LeDeist, Francoise; Bleesing, Jack H.; Henderson, Lauren A.; Pai, Sung-Yun; Nelson, Robert P.; El-Ghoneimy, Dalia H.; El-Feky, Reem A.; Reda, Shereen M.; Hossny, Elham; Soler-Palacin, Pere; Fuleihan, Ramsay L.; Patel, Niraj C.; Massaad, Michel J.; Geha, Raif S.; Puck, Jennifer M.; Palma, Paolo; Cancrini, Caterina; Chen, Karin; Vihinen, Mauno; Alt, Frederick W.; Notarangelo, Luigi D.

    2014-01-01

    Background The recombination-activating gene (RAG) 1/2 proteins play a critical role in the development of T and B cells by initiating the VDJ recombination process that leads to generation of a broad T-cell receptor (TCR) and B-cell receptor repertoire. Pathogenic mutations in the RAG1/2 genes result in various forms of primary immunodeficiency, ranging from T−B− severe combined immune deficiency to delayed-onset disease with granuloma formation, autoimmunity, or both. It is not clear what contributes to such heterogeneity of phenotypes. Objective We sought to investigate the molecular basis for phenotypic diversity presented in patients with various RAG1 mutations. Methods We have developed a flow cytometry–based assay that allows analysis of RAG recombination activity based on green fluorescent protein expression and have assessed the induction of the Ighc locus rearrangements in mouse Rag1−/− pro-B cells reconstituted with wild-type or mutant human RAG1 (hRAG1) using deep sequencing technology. Results Here we demonstrate correlation between defective recombination activity of hRAG1 mutant proteins and severity of the clinical and immunologic phenotype and provide insights on the molecular mechanisms accounting for such phenotypic diversity. Conclusions Using a sensitive assay to measure the RAG1 activity level of 79 mutations in a physiologic setting, we demonstrate correlation between recombination activity of RAG1 mutants and the severity of clinical presentation and show that RAG1 mutants can induce specific abnormalities of the VDJ recombination process. PMID:24290284

  12. Subpressor doses of angiotensin II do not increase albumin excretion in humans.

    PubMed

    Erley, C M; Grau, C; Furian, T C; Wolf, S; Braun, N; Risler, T

    1996-11-01

    The objective of our study was to evaluate the effects of subpressor doses of angiotensin II and mild physical stress on renal hemodynamics and urinary albumin excretion (UAE) in a group of young patients with essential hypertension compared to normotensive subjects. Eleven patients (26 +/- 6 years) and ten healthy control persons (25 +/- 2 years) were enrolled in the study. Secondary forms of hypertension had been excluded. Angiotensin II was infused at a dose of 0.3 and 1.0 ng/kg/min and physical stress testing was done with a cycle ergometer (50 W at 10 min for hypertensives, 100 W at 10 min for normotensives). Renal hemodynamics were assessed by clearance techniques (continuous insulin and p-aminohippurate clearance). Mean arterial pressure (MAP) and UAE were significantly higher in the hypertensive group than in normotensive control persons at any time of measurement. There was no significant increase in MAP or UAE under angiotensin II infusion either in the hypertensive group or in the normotensive group. MAP increased significantly under physical stress in the normotensive group only (83 +/- 7 mmHg baseline vs. 108 +/- mmHg during physical stress, p < 0.05). Angiotensin II infusion resulted in a significant change concerning renal hemodynamics in the hypertensive group only. The filtration fraction increased (18 +/- 3% baseline vs. 25 +/- 7% under infusion of 1.0 ng/kg/min angiotensin II, p < 0.05) due to a decline in ERPF and an increase in GFR in the hypertensive group. The amount of UAE correlated with the magnitude of the MAP in both groups. No correlation was found between renal hemodynamic parameters and the UAE. A significant correlation was found between the norepinephrine levels and the UAE in the control group. We could not demonstrate an albuminuric effect of subpressor doses of angiotensin II in normotensive or hypertensive subjects despite its well known effects on renal hemodynamics with an increase of the filtration fraction. These data

  13. Human insulin genome sequence map, biochemical structure of insulin for recombinant DNA insulin.

    PubMed

    Chakraborty, Chiranjib; Mungantiwar, Ashish A

    2003-08-01

    Insulin is a essential molecule for type I diabetes that is marketed by very few companies. It is the first molecule, which was made by recombinant technology; but the commercialization process is very difficult. Knowledge about biochemical structure of insulin and human insulin genome sequence map is pivotal to large scale manufacturing of recombinant DNA Insulin. This paper reviews human insulin genome sequence map, the amino acid sequence of porcine insulin, crystal structure of porcine insulin, insulin monomer, aggregation surfaces of insulin, conformational variation in the insulin monomer, insulin X-ray structures for recombinant DNA technology in the synthesis of human insulin in Escherichia coli. PMID:12769691

  14. S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes.

    PubMed

    Kinoshita, Ryo; Ishima, Yu; Ikeda, Mayumi; Kragh-Hansen, Ulrich; Fang, Jun; Nakamura, Hideaki; Chuang, Victor T G; Tanaka, Ryota; Maeda, Hitoshi; Kodama, Azusa; Watanabe, Hiroshi; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2015-11-10

    The enhanced permeability and retention (EPR) effect is a unique phenomenon of solid tumors, and it can serve as a basis for the development of macromolecular anticancer therapy. We have previously found that recombinant human serum albumin dimer, and especially its S-nitrosated form (SNO-HSA-Dimer), is an enhancer of the EPR effect. In this study, we investigated the influence of SNO-HSA-Dimer on the anti-tumor effect of two types of macromolecular anti-tumor drugs, namely N-(2-hydroxypropyl)methacrylamide polymer conjugated with zinc protoporphyrin, which forms micelles and can be used for fluorescence studies. The other was PEGylated liposomal doxorubicin (Doxil), a typical example of a stealth liposome approved for medical usage. In mice having C26 tumors with highly permeable vasculature, SNO-HSA-Dimer increases tumor accumulation of the drugs by a factor 3-4 and thereby their anti-tumor effects. Experiments with Evans blue revealed increased EPR effect in all parts of the tumor. Furthermore, SNO-HSA-Dimer improves the anti-metastatic effects of Doxil and reduces its minor uptake in non-tumorous organs such as liver and kidney. Tumor accumulation of Doxil in B16 tumors, which are characterized by a low permeable vasculature, increased even more (6-fold) in the presence of SNO-HSA-Dimer, and the improved accumulation lead to decreased tumor volume and increased survival of the animals. The administration of SNO-HSA-Dimer itself is safe, because it has no effect on blood pressure, heart rate or on several biochemical parameters. The present findings indicate that SNO-HSA-Dimer is promising for enhancing the EPR effect and consequently the specific, therapeutic effects of macromolecular anticancer drugs. PMID:26302904

  15. A novel exendin-4 human serum albumin fusion protein, E2HSA, with an extended half-life and good glucoregulatory effect in healthy rhesus monkeys

    SciTech Connect

    Zhang, Ling; Wang, Lin; Meng, Zhiyun; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Gao, Lei; Zhu, Xiaoxia; Sun, Wenzhong; Li, Jian; Zheng, Ying; Dou, Guifang

    2014-03-07

    Highlights: • E2HSA has an extended half-life and good plasma stability. • E2HSA could improve glucose-dependent insulin secretion. • E2HSA has excellent glucoregulatory effects in vivo. • E2HSA could potentially be used as a new long-acting GLP-1 receptor agonist for type 2 diabetes management. - Abstract: Glucagon-like peptide-1 (GLP-1) has attracted considerable research interest in terms of the treatment of type 2 diabetes due to their multiple glucoregulatory functions. However, the short half-life, rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native incretin hormone. Therefore, efforts are being made to develop the long-acting incretin mimetics via modifying its structure. Here we report a novel recombinant exendin-4 human serum albumin fusion protein E2HSA with HSA molecule extends their circulatory half-life in vivo while still retaining exendin-4 biological activity and therapeutic properties. In vitro comparisons of E2HSA and exendin-4 showed similar insulinotropic activity on rat pancreatic islets and GLP-1R-dependent biological activity on RIN-m5F cells, although E2HSA was less potent than exendin-4. E2HSA had a terminal elimation half-life of approximate 54 h in healthy rhesus monkeys. Furthermore, E2HSA could reduce postprandial glucose excursion and control fasting glucose level, dose-dependent suppress food intake. Improvement in glucose-dependent insulin secretion and control serum glucose excursions were observed during hyperglycemic clamp test (18 h) and oral glucose tolerance test (42 h) respectively. Thus the improved physiological characterization of E2HSA make it a new potent anti-diabetic drug for type 2 diabetes therapy.

  16. Poly(hydroxyethyl methacrylate)-based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin.

    PubMed

    Ye, Jialei; Yun, Junxian; Lin, Dong-Qiang; Xu, Linhong; Kirsebom, Harald; Shen, Shaochuan; Yang, Gensheng; Yao, Kejian; Guan, Yi-Xin; Yao, Shan-Jing

    2013-12-01

    A novel super-macroporous monolithic composite cryogel was prepared by embedding macroporous cellulose beads into poly(hydroxyethyl methacrylate) cryogel. The cellulose beads were fabricated by using a microchannel liquid-flow focusing and cryopolymerization method, while the composite cryogel was prepared by cryogenic radical polymerization of the hydroxyethyl methacrylate monomer with poly(ethylene glycol) diacrylate as cross-linker together with the cellulose beads. After graft polymerization with (vinylbenzyl)trimethylammonium chloride, the composite cryogel was applied to separate immunoglobulin-G and albumin from human serum. Immunoglobulin-G with a mean purity of 83.2% and albumin with a purity of 98% were obtained, indicating the composite cryogel as a promising chromatographic medium in bioseparation for the isolation of important bioactive proteins like immunoglobulins and albumins. PMID:24151195

  17. Evidence that L-Arginine inhibits glycation of human serum albumin (HSA) in vitro

    SciTech Connect

    Servetnick, D.A.; Wiesenfeld, P.L.; Szepesi, B. )

    1990-02-26

    Previous work by Brownlee has shown that glycation of bovine serum albumin can be reduced in the presence of aminoguanidine (AG). Presumably, the guanidinium group on AG interferes with further rearrangement of amadori products to advanced glycosylated end products (AGE). Since L-arginine (ARG) also contains a guanidinium group, its ability to inhibit the formation of AGE products was investigated. HSA was incubated at 37{degrees}C in the presence or absence of glucose; with glucose and fructose; or with sugars in the presence or absence of ARG or AG. A tracer amount of U-{sup 14}C-glucose was added to each tube containing sugars. Protein bound glucose was separated from unreacted glucose by gel filtration. Radioactivity, total protein, fluorescence, and glucose concentration were measured. Preliminary data show enhanced binding of {sup 14}C-glucose to HSA with fructose at all time points. A 30-40% decrease in {sup 14}C-glucose incorporation was observed when ARG or AG as present. ARG and AG were equally effective in inhibiting incorporation of {sup 14}C-glucose. FPLC analysis is in progress to determine the type and degree of HSA crosslinking during the 2 week incubation period.

  18. Myelostimulatory activity of recombinant human interleukin-2 in mice

    SciTech Connect

    Talmadge, J.E.; Schneider, M.; Keller, J.; Ruscetti, F.; Longo, D.; Pennington, R.; Bowersox, O.; Tribble, H.

    1989-05-01

    In a series of studies designed to extend our understanding of interleukin-2 (IL-2) and to study the effect of biologic response modifiers on bone marrow, we observed that administering recombinant human (rH) IL-2 to normal mice resulted in an increase in the frequency of colony-forming units-culture (CFU-C) in bone marrow. In addition, rH IL-2 was able to accelerate host recovery from cyclophosphamide (CTX)- or radiation-induced bone marrow depression and peripheral blood leukopenia. Not only can rH IL-2 accelerate, in a dose-dependent manner, the return of bone marrow, peripheral blood cellularity, and CFU-C frequency to normal levels following cytoreduction by CTX or irradiation, but it also significantly increases CFU-C frequency to greater than normal levels. Furthermore, rH IL-2 can significantly prolong survival of animals receiving a lethal dose of irradiation or CTX. Thus, multiple mechanisms are responsible for the synergistic therapeutic activity associated with rH IL-2 and CTX. rH IL-2 does not act only as an immunomodulatory agent in the presence or absence of suppressor T cells, but also accelerates host recovery from cytoreductive agents, resulting in decreased leukopenia and perhaps resistances to secondary infection. Thus, rH IL-2 plus chemotherapy may increase therapeutic activity against neoplastic disease, not only by adding immune stimulation to the direct antitumor effect of the drug but also by allowing delivery of higher, more effective doses of chemotherapy.

  19. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis.

    PubMed

    Ehrenreich, Hannelore; Fischer, Benjamin; Norra, Christine; Schellenberger, Felix; Stender, Nike; Stiefel, Michael; Sirén, Anna-Leena; Paulus, Walter; Nave, Klaus-Armin; Gold, Ralf; Bartels, Claudia

    2007-10-01

    The neurodegenerative aspects of chronic progressive multiple sclerosis (MS) have received increasing attention in recent years, since anti-inflammatory and immunosuppressive treatment strategies have largely failed. However, successful neuroprotection and/or neuroregeneration in MS have not been demonstrated yet. Encouraged by the multifaceted neuroprotective effects of recombinant human erythropoietin (rhEPO) in experimental models, we performed an investigator-driven, exploratory open label study (phase I/IIa) in patients with chronic progressive MS. Main study objectives were (i) evaluating safety of long-term high-dose intravenous rhEPO treatment in MS, and (ii) collecting first evidence of potential efficacy on clinical outcome parameters. Eight MS patients, five randomly assigned to high-dose (48,000 IU), three to low-dose (8000 IU) rhEPO treatment, and, as disease controls, two drug-naïve Parkinson patients (receiving 48,000 IU) were followed over up to 48 weeks: A 6-week lead-in phase, a 12-week treatment phase with weekly EPO, another 12-week treatment phase with bi-weekly EPO, and a 24-week post-treatment phase. Clinical and electrophysiological improvement of motor function, reflected by a reduction in expanded disability status scale (EDSS), and of cognitive performance was found upon high-dose EPO treatment in MS patients, persisting for three to six months after cessation of EPO application. In contrast, low-dose EPO MS patients and drug-naïve Parkinson patients did not improve in any of the parameters tested. There were no adverse events, no safety concerns and a surprisingly low need of blood-lettings. This first pilot study demonstrates the necessity and feasibility of controlled trials using high-dose rhEPO in chronic progressive MS. PMID:17728357

  20. Skeletal ligament healing using the recombinant human amelogenin protein.

    PubMed

    Hanhan, Salem; Ejzenberg, Ayala; Goren, Koby; Saba, Faris; Suki, Yarden; Sharon, Shay; Shilo, Dekel; Waxman, Jacob; Spitzer, Elad; Shahar, Ron; Atkins, Ayelet; Liebergall, Meir; Blumenfeld, Anat; Deutsch, Dan; Haze, Amir

    2016-05-01

    Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 μg/μl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 μg/μl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 μg/μl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers. PMID:26917487

  1. [Stable expression of recombinant human podoplanin in Chinese hamster ovary (CHO) cells].

    PubMed

    Qu, Le; Zhao, Xingpeng; Fu, Jianxin; Xia, Lijun; Dai, Lan; Ruan, Changgeng; Zhao, Yiming

    2016-01-01

    Objective To construct podoplanin (PDPN) eukaryotic expression plasmid PDPN-pEGFP-N1, establish Chinese hamster ovary (CHO) cell line stably expressing recombinant human PDPN and investigate its biological activity. Methods PDPN cDNA was cloned from HEK293 cells by reverse transcription PCR and recombinant DNA technology and inserted into plasmid pEGFP-N1 labeled by enhanced green fluorescent protein (EGFP). The recombinant vector was identified by PCR, restriction enzyme digestion and DNA sequencing, and then transfected into CHO cells. Recombinant PDPN-EGFP was observed by fluorescent microscopy and CHO cell line with the high expression of PDPN-EGFP was selected by flow cytometry. Recombinant PDPN was detected by Western blotting and the biological activity of the cell line was determined by platelet aggregation assay. Results DNA sequencing and restriction enzyme digestion proved that the gene of PDPN was inserted successfully into pEGFP-N1 plasmid. After stable transfection of the recombinant plasmid into CHO cells, CHO with EGFP could be seen under a fluorescent microscope. The CHO cell line with the high expression of recombinant PDPN-EGFP was obtained after sorting by flow cytometry. Western blotting showed that the recombinant PDPN was expressed on the cell surface. The over-expressing PDPN-EGFP CHO cells were able to induce human platelet aggregation. Conclusion The CHO cell line with the stable and high expression of recombinant PDPN-EGFP has been constructed successfully, and it could induce platelet aggregation. PMID:26728373

  2. An approach to mapping haplotype-specific recombination sites in human MHC class III

    SciTech Connect

    Levo, A.; Westman, P.; Partanen, J.

    1996-12-31

    Studies of the major histocompatibility complex (MHC) in mouse indicate that the recombination sites are not randomly distributed and their occurrence is haplotype-dependent. No data concerning haplotype-specific recombination sites in human are available due to the low number of informative families. To investigate haplotype-specific recombination sites in human MHC, we describe an approach based on identification of recombinant haplotypes derived from one conserved haplotype at the population level. The recombination sites were mapped by comparing polymorphic markers between the recombinant and assumed original haplotypes. We tested this approach on the extended haplotype HLA A3; B47; Bf{sup *}F; C4A{sup *}1; C4B{sup *}Q0; DR7, which is most suitable for this analysis. First, it carries a number of rare markers, and second, the haplotype, albeit rare in the general population, is frequent in patients with 21-hydroxylase (21OH) defect. We observed recombinants derived from this haplotype in patients with 21OH defect. All these haplotypes had the centromeric part (from Bf to DR) identical to the original haplotype, but they differed in HLA A and B. We therefore assumed that they underwent recombinations in the segment that separates the Bf and HLA B genes. Polymorphic markers indicated that all break points mapped to two segments near the TNF locus. This approach makes possible the mapping of preferential recombination sites in different haplotypes. 20 refs., 1 fig., 1 tab.

  3. Catabolism of (64)Cu and Cy5.5-labeled human serum albumin in a tumor xenograft model.

    PubMed

    Kang, Choong Mo; Kim, Hyunjung; Koo, Hyun-Jung; Park, Jin Won; An, Gwang Il; Choi, Joon Young; Lee, Kyung-Han; Kim, Byung-Tae; Choe, Yearn Seong

    2016-07-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, has been used as a drug carrier for the last few decades. Residualizingly radiolabeled serum albumin has been reported to be avidly taken up by tumors of sarcoma-bearing mice and to most likely undergo lysosomal degradation. In this study, we prepared (64)Cu-1,4,7,10-tetraazacyclododecane-N,N',N″,N'″-tetraacetic acid (DOTA) and Cy5.5-conjugated HSA (dual probe), and evaluated its tumor uptake and catabolism. Two dual probes were prepared using different DOTA conjugation sites of HSA (one via Lys residues and the other via the Cys residue). (64)Cu-DOTA-Lys-HSA-Cy5.5 (dual probe-Lys) exhibited higher uptake by RR1022 sarcoma cells in vitro than (64)Cu-DOTA-Cys-HSA-Cy5.5 (dual probe-Cys). In RR1022 tumor-bearing mice, the two dual probes showed a similar level of tumor uptake, but uptake of dual probe-Lys was reduced in the liver and spleen compared to dual probe-Cys, probably because of the presence of a higher number of DOTA molecules in the former. At 24 and 48 h after injection, dual probe-Lys was intact or partially degraded in blood, liver, kidney, and tumor samples, but (64)Cu-DOTA-Lys was observed in the urine using radioactivity detection. Similarly, Cy5.5-Lys was observed in the urine using fluorescence detection. These results indicate that dual probe-Lys may be useful for predicting the catabolic fate of drug-HSA conjugates. PMID:27098932

  4. Review of the rational use and adverse reactions to human serum albumin in the People’s Republic of China

    PubMed Central

    Zhou, Ting; Lu, Saihua; Liu, Xiufeng; Zhang, Ye; Xu, Feng

    2013-01-01

    Human serum albumin (HSA) is an ideal natural colloid that has been widely used in clinical practice for supplemental albumin or as a plasma substitute during therapeutic plasma exchanges to redress hypoproteinemia. However, a paucity of well-designed clinical trials, a lack of a clear cut survival benefit, and frequent case reports of adverse drug reaction (ADR) make the use of HSA controversial. This study aims to review and to comment on the reported ADRs of HSA in the People’s Republic of China, so as to provide the basis for rational HSA use in clinical settings. Data on the ADR case reports from HSA administration between January 1990 and December 2012 available from the China National Knowledge Infrastructure (CNKI) database, Wanfang data (WF), and Chinese Biomedical Literature (CBM) were reviewed. The reasons for using HSA, the types of ADRs, the causality of ADRs and the rationality for HSA administration were extracted and analyzed. In total, 61 cases of ADR reports were identified of which the primary disease of patients using HSA was malignant tumor (34.42%). The primary ADR was anaphylaxis (59.02%). Of the 61 cases, 30 were caused by irrational use of HSA. The most common irrational use was off-label use (56.67%), followed by inappropriate infusion rate. Therefore, we conclude that to avoid the occurrence of ADRs, guidelines for using HSA are needed to guarantee its rational use and HSA should be used strictly according to these guidelines. In addition, medical staff, including clinical pharmacists and nurses, should pay more attention to the patients who inject HSA to ensure its safe use in the clinic. PMID:24348023

  5. The effects of chondroitin sulfate and serum albumin on the fibrillation of human islet amyloid polypeptide at phospholipid membranes.

    PubMed

    Li, Yang; Wang, Li; Lu, Tong; Wei, Ying; Li, Fei

    2016-04-28

    Glycosaminoglycans and serum albumin are important cellular components that regulate the fibril formation of proteins. Whereas the effects of cellular components on the fibrillation of amyloid proteins in bulk solution are widely studied, less attention has been paid to the effects of cellular components on amyloidogenesis occurring at cellular membranes. In this study, we focus on the impacts of chondroitin sulfate A (CSA) and bovine serum albumin (BSA) on the amyloidogenic behaviors of human islet amyloid polypeptide (hIAPP) at phospholipid membranes consisting of neutral POPC and anionic POPG. Using the thioflavin T fluorescence assay, atomic force microscopy, circular dichroism and nuclear magnetic resonance measurements, we demonstrate that CSA has an intensive promotion effect on the fibrillation of hIAPP at the POPC membrane, which is larger than the total effect of CSA alone and POPC alone. The further enhanced promotion of the fibrillation of hIAPP by CSA at the neutral membrane is associated with a specific interaction of CSA with POPC. In contrast, the activity of BSA as an inhibitor of hIAPP fibrillation observed in bulk solution decreases dramatically in the presence of POPG vesicles. The dramatic loss of the inhibition efficiency of BSA arises essentially from a specific interaction with the POPG component, but not simply from suppression by an opposite effect of the anionic membrane. The findings in this study suggest that the interactions between membranes and cellular components may have a significant effect on the activity of the cellular components in regulating the fibrillation of hIAPP. PMID:27067251

  6. Molecular Structure-Affinity Relationship of Bufadienolides and Human Serum Albumin In Vitro and Molecular Docking Analysis

    PubMed Central

    Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs

  7. Glycated human serum albumin isolated from poorly controlled diabetic patients impairs cholesterol efflux from macrophages: an investigation by mass spectrometry.

    PubMed

    Traldi, Pietro; Castilho, Gabriela; Sartori, Camila H; Machado-Lima, Adriana; Nakandakare, Edna R; Corrêa-Giannella, Maria Lucia C; Roverso, Marco; Porcu, Simona; Lapolla, Annunziata; Passarelli, Marisa

    2015-01-01

    Advanced glycation end-products impair ABCA-1-mediated cholesterol efflux by eliciting inflammation, the generation of reactive oxygen species and endoplasmatic reticulum (ER) stress. The glycation level of human serum albumin (HSA) from type 1 and type 2 diabetic patients was determined by matrix assisted laser desorption/ionization (MALDI) mass spectrometry and related to possible impairment of ER function and cellular cholesterol efflux. Comparison of the MALDI spectra from healthy and diabetic subjects allowed us to determine an increased HSA mean mass of 1297 Da for type 1 and 890 Da for type 2. These values reflect a mean condensation of at least 8 glucose units and 5 glucose units, respectively. Mouse peritoneal macrophages were treated with HSA from control, type 1 and type 2 diabetic subjects in order to measure the expression of Grp78, Grp94, protein disulfide isomerase (PDI), calreticulin (CRT) and ABCA-1. (14)C-cholesterol overloaded-J774 macrophages were treated with HSA from control and diabetic subjects and further incubated with apo A-1 to determine the cholesterol efflux. Combined analyses comprising HSA from type 1 and type 2 diabetic patients were performed in cellular functional assays. In macrophages, PDI expression increased 89% and CRT 3.4 times in comparison to HSA from the control subjects. ABCA-1 protein level and apo A-I mediated cholesterol efflux were, respectively, 50% and 60% reduced in macrophages exposed to HSA from type 1 and type 2 diabetic patients when compared to that exposed to HSA from control subjects. We provide evidence that the level of glycation that occurs in albumin in vivo damages the ER function related to the impairment in macrophage reverse cholesterol transport and so contributes to atherosclerosis in diabetes. PMID:26307703

  8. Molecular structure-affinity relationship of bufadienolides and human serum albumin in vitro and molecular docking analysis.

    PubMed

    Zhou, Jing; Lu, Guodi; Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs

  9. Comparison of Recombinant Human Haptocorrin Expressed in Human Embryonic Kidney Cells and Native Haptocorrin

    PubMed Central

    Furger, Evelyne; Fedosov, Sergey N.; Launholt Lildballe, Dorte; Waibel, Robert; Schibli, Roger; Nexo, Ebba; Fischer, Eliane

    2012-01-01

    Haptocorrin (HC) is a circulating corrinoid binding protein with unclear function. In contrast to transcobalamin, the other transport protein in blood, HC is heavily glycosylated and binds a variety of cobalamin (Cbl) analogues. HC is present not only in blood but also in various secretions like milk, tears and saliva. No recombinant form of HC has been described so far. We report the expression of recombinant human HC (rhHC) in human embryonic kidney cells. We purified the protein with a yield of 6 mg (90 nmol) per litre of cell culture supernatant. The isolated rhHC behaved as native HC concerning its spectral properties and ability to recognize both Cbl and its baseless analogue cobinamide. Similar to native HC isolated from blood, rhHC bound to the asialoglycoprotein receptor only after removal of terminal sialic acid residues by treatment with neuraminidase. Interestingly, rhHC, that compared to native HC contains four excessive amino acids (…LVPR) at the C-terminus, showed subtle changes in the binding kinetics of Cbl, cobinamide and the fluorescent Cbl conjugate CBC. The recombinant protein has properties very similar to native HC and although showing slightly different ligand binding kinetics, rhHC is valuable for further biochemical and structural studies. PMID:22662153

  10. High cell density cultivation of recombinant Escherichia coli for prodrug of recombinant human GLPs production.

    PubMed

    Zhou, Ying; Ma, Xue; Hou, Zheng; Xue, Xiaoyan; Meng, Jingru; Li, Mingkai; Jia, Min; Luo, Xiaoxing

    2012-09-01

    Glucagon-like peptide-1 (GLP-1)(2) has been attracting increasing interest on account of its prominent benefits in type 2 diabetes. However, its clinical applications are limited by the short half-life in vivo. To overcome this limitation, a new polymer of GLP-1 was developed by prodrug strategy. In this study a recombinant protein, rhGLPs, was successfully constructed, cloned into plasmid pET30a (+) and expressed in Escherichia coli ArcticExpress(DE3)RP in the form of inclusion body. The recombinant fusion protein productivity could be enhanced by high cell density culture of the recombinant strain. As a result, about 40 g wet weight cells per liter were obtained. The protein was purified by size-exclusion chromatography on a Superdex 75 column and refolded using reverse dilution and dialysis methods. SDS-PAGE, HPLC and MALDI-TOF mass spectrometry were undertaken to determine the purity and molecular weight of rhGLPs. Bioactivity assay revealed that it had glucose-lowering and insulin-releasing action in vivo. PMID:22771632

  11. Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin.

    PubMed

    Vannoy, Charles H; Leblanc, Roger M

    2010-08-26

    Nanoparticles (NPs) are extremely small in size and possess very large surface areas, which gives them unique properties and applications distinct from those of bulk systems. When exposed to biological fluid, these NPs may become coated with proteins and other biomolecules given their dynamic nature. Hence, there is a significant possibility of an enhanced rate of protein fibrillation by utilizing the NPs as nucleation centers and, thus, promoting fibril formation. Protein fibrillation is closely associated with many fatal human diseases, including neurodegenerative diseases and a variety of systemic amyloidoses. This topic of protein-NP interaction brings about many key issues and concerns, especially with respect to the potential risks to human health and the environment. Herein, we demonstrate the effects of specific NPs, semiconductor quantum dots (QDs), in the process of protein fibril formation from samples of human serum albumin (HSA). The protein-NP systems are analyzed by time-lapse Thioflavin T spectroscopy, Congo red binding assays, circular dichroism (CD), protein fluorescence spectroscopy, and transmission electron microscopy (TEM). Our experimental results illustrate that an increased rate of fibrillation occurs following a thermally activated mechanism in conjunction with the addition of NPs into the protein system. These results give rise to the understanding and possibility of controlling biological self-assembly processes for use in nanobiotechnology and nanomedicine. PMID:20681557

  12. Proteolytic processing of human serum albumin generates EPI-X4, an endogenous antagonist of CXCR4.

    PubMed

    Zirafi, Onofrio; Hermann, Patrick C; Münch, Jan

    2016-06-01

    The chemokine receptor CXCR4 is an important G protein-coupled receptor. Signaling via CXCL12 regulates a number of important biologic processes, including immune responses, organogenesis, or hematopoiesis. Dysregulation of CXCR4 signaling is associated with a variety of diseases, such as cancer development and metastasis, immunodeficiencies, or chronic inflammation. Here, we review our findings on endogenous peptide inhibitor of CXCR4 as a novel antagonist of CXCR4. This peptide is a 16-residue fragment of human serum albumin and was isolated as an inhibitor of CXCR4-tropic human immunodeficiency virus type 1 from a blood-derived peptide library. Endogenous peptide inhibitor of CXCR4 binds the second extracellular loop of CXCR4, thereby preventing engagement of CXCL12 and antagonizing the receptor. Consequently, endogenous peptide inhibitor of CXCR4 inhibits CXCL12-mediated migration of CXCR4-expressing cells in vitro, mobilizes hematopoietic stem cells, and suppresses inflammatory responses in vivo. We discuss the generation of endogenous peptide inhibitor of CXCR4, its relevance as biomarker for disease, and its role in human immunodeficiency virus/acquired immunodeficiency syndrome pathogenesis and cancer. Furthermore, we discuss why optimized endogenous peptide inhibitor of CXCR4 derivatives might have advantages over other CXCR4 antagonists. PMID:26965637

  13. Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line

    PubMed Central

    GUO, LIYUAN; PENG, YAN; LI, YULIAN; YAO, JINGPING; ZHANG, GUANGMEI; CHEN, JIE; WANG, JING; SUI, LIHUA

    2015-01-01

    Resveratrol-bovine serum albumin nanoparticles (RES-BSANP) exhibit chemotherapeutic properties, which trigger apoptosis. The aim of the present study was to investigate the caspase-independent cell death pathway induced by RES-BSANP in human ovarian cancer SKOV3 cells and to analyze its mechanism. Morphological changes were observed by apoptotic body/cell nucleus DNA staining using inverted and fluorescence microscopy. The cell death pathway was determined by phosphatidylserine translocation. Western blot analysis was conducted to detect the activation of apoptosis-inducing factor (AIF), cytochrome c (Cyto c) and B-cell lymphoma 2-associated X protein (Bax). Apoptotic body and nuclear condensation and fragmentation were observed simultaneously following treatment with RES-BSANP. RES-BSANP induced apoptosis in a dose-dependent manner in the human ovarian cancer SKOV3 cells. The translocation of AIF from the mitochondria to the cytoplasm occurred earlier than that of Cyto c. In addition, Bax binding to the mitochondria was required for the release of AIF and Cyto c from the mitochondria. The AIF apoptosis pathway may present an alternative caspase-dependent apoptosis pathway in human ovarian cell death induced by RES-BSANP. Elucidation of this pathway may be critical for the treatment of cancer using high doses of RES-BSANP. PMID:25663913

  14. Pharmacokinetics and Tissue Distribution of Folate-Decorated Human Serum Albumin Loaded With Nano-Hydroxycamptothecin for Tumor Targeting.

    PubMed

    Wang, Wenchao; Liang, Hui; Sun, Baihe; Xu, Jialin; Zeng, Zhen; Zhao, Xiaojun; Li, Qingyong

    2016-06-01

    The goal of this work is to develop the method of preparing folate (FA)-decorated human serum albumin (HSA) loaded with nano-hydroxycamptothecin (nHCPT) nanoparticles (NPs) (FA-HSA-nHCPT-NPs) and to explore its antitumor activity in vivo and in vitro. FA-HSA-nHCPT-NPs were obtained by preparing nHCPT by a high-pressure homogenization technique followed with an anti-solvent method. The drug-loading efficiency of the FA-HSA-nHCPT-NPs was 7.8%. We adopted the human breast cancer cells (FA receptor-expressing MCF-7 cells) and BALB/c mice inoculated with human MCF-7 cells to determine the antitumor activity of FA-HSA-nHCPT-NPs in vitro and in vivo, respectively. The antitumor activity of FA-HSA-nHCPT-NPs was stronger than that of the raw HCPT in both conditions. Tissue distribution analysis showed that the FA-HSA-nHCPT-NPs carried more HCPT to tumors than the raw HCPT. The tumor inhibitory rate of FA-HSA-nHCPT-NPs was much higher compared with the raw HCPT. Th7us, the FA-HSA-nHCPT-NPs could serve as a viable delivery system with an obvious target effect on tumor. PMID:27129905

  15. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was

  16. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties.

    PubMed

    Maciążek-Jurczyk, M; Sułkowska, A

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was

  17. Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever

    PubMed Central

    Chanthick, Chanettee; Kanlaya, Rattiyaporn; Kiatbumrung, Rattanaporn; Pattanakitsakul, Sa-nga; Thongboonkerd, Visith

    2016-01-01

    Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between “paracellular” endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether “transcellular” endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS. PMID:27546060

  18. Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever.

    PubMed

    Chanthick, Chanettee; Kanlaya, Rattiyaporn; Kiatbumrung, Rattanaporn; Pattanakitsakul, Sa-Nga; Thongboonkerd, Visith

    2016-01-01

    Vascular leakage is a life-threatening complication of dengue virus (DENV) infection. Previously, association between "paracellular" endothelial hyperpermeability and plasma leakage had been extensively investigated. However, whether "transcellular" endothelial leakage is involved in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) remained unknown. We thus investigated effects of DENV (serotype 2) infection on transcellular transport of albumin, the main oncotic plasma protein, through human endothelial cell monolayer by Western blotting, immunofluorescence staining, fluorescence imaging, and fluorometry. The data showed that Alexa488-conjugated bovine serum albumin (Alexa488-BSA) was detectable inside DENV2-infected cells and its level was progressively increased during 48-h post-infection. While paracellular transport could be excluded using FITC-conjugated dextran, Alexa488-BSA was progressively increased and decreased in lower and upper chambers of Transwell, respectively. Pretreatment with nystatin, an inhibitor of caveolae-dependent endocytic pathway, significantly decreased albumin internalization into the DENV2-infected cells, whereas inhibitors of other endocytic pathways showed no significant effects. Co-localization of the internalized Alexa488-BSA and caveolin-1 was also observed. Our findings indicate that DENV infection enhances caveolae-mediated albumin transcytosis through human endothelial cells that may ultimately induce plasma leakage from intravascular compartment. Further elucidation of this model in vivo may lead to effective prevention and better therapeutic outcome of DHF/DSS. PMID:27546060

  19. Mecasermin (recombinant human insulin-like growth factor I).

    PubMed

    Rosenbloom, Arlan L

    2009-01-01

    Growth hormone (GH) exercises its growth effects by stimulating insulin-like growth factor I (IGF-I) synthesis in the liver (endocrine IGF-I) and by inducing chondrocyte differentiation/replication and local production of IGF-I (paracrine/autocrine IGF-I). Injectable recombinant human (rh)IGF-I (mecasermin) has been available for nearly 20 years for treatment of the rare instances of GH insensitivity caused by GH receptor defects or GH-inhibiting antibodies. Full restoration of normal growth, as occurs with rhGH replacement of GH deficiency, is not seen, presumably because only the endocrine deficiency is addressed. RhIGF-I has also been effective as an insulin-sensitizing agent in severe insulin-resistant conditions. Although the insulin-sensitizing effect may benefit both type 1 and type 2 diabetes, there are no ongoing clinical trials because of concern about risk of retinopathy and other complications. Promotion of rhIGF-I for treatment of idiopathic short stature has been intensive, with neither data nor rationale suggesting that there might be a better response than has been documented with rhGH. Other applications that have either been considered or are undergoing clinical trial are based on the ubiquitous tissue-building properties of IGF-I and include chronic liver disease, cystic fibrosis, wound healing, AIDS muscle wasting, burns, osteoporosis, Crohn's disease, anorexia nervosa, Werner syndrome, X-linked severe combined immunodeficiency, Alzheimer's disease, muscular dystrophy, amyotrophic lateral sclerosis, hearing loss prevention, spinal cord injury, cardiovascular protection, and prevention of retinopathy of prematurity. The most frequent side effect is hypoglycemia, which is readily controlled by administration with meals. Other common adverse effects involve hyperplasia of lymphoid tissue, which may require tonsillectomy/adenoidectomy, accumulation of body fat, and coarsening of facies. The anti-apoptotic properties of IGF-I are implicated in cancer

  20. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    PubMed

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. PMID:25935119

  1. Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: multiple spectroscopic and molecular modeling investigations.

    PubMed

    Feroz, Shevin R; Mohamad, Saharuddin B; Bakri, Zarith S D; Malek, Sri N A; Tayyab, Saad

    2013-01-01

    Interaction of a pharmacologically important flavonoid, pinostrobin (PS) with the major transport protein of human blood circulation, human serum albumin (HSA) has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 10(5) M(-1) at 25°C) between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol(-1) K(-1) and ΔH = -15.48 kJ mol(-1)) and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow's site I, located at subdomain IIA, and was well supported by the molecular modelling data. PMID:24116089

  2. Probing the Interaction of a Therapeutic Flavonoid, Pinostrobin with Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations

    PubMed Central

    Feroz, Shevin R.; Mohamad, Saharuddin B.; Bakri, Zarith S. D.; Malek, Sri N. A.; Tayyab, Saad

    2013-01-01

    Interaction of a pharmacologically important flavonoid, pinostrobin (PS) with the major transport protein of human blood circulation, human serum albumin (HSA) has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 105 M−1 at 25°C) between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol−1 K−1 and ΔH = −15.48 kJ mol−1) and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow’s site I, located at subdomain IIA, and was well supported by the molecular modelling data. PMID:24116089

  3. Investigation of the interaction between quercetin and human serum albumin by multiple spectra, electrochemical impedance spectra and molecular modeling.

    PubMed

    Dai, Jie; Zou, Ting; Wang, Li; Zhang, Yezhong; Liu, Yi

    2014-12-01

    Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu-HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu-HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu-HSA complex was stabilized by H-bonding network at site I in sub-domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu-HSA complex), indicating a slight unfolding of the protein polypeptides. PMID:24801949

  4. [Study of interaction between levofloxacin and human serum albumin by multi-spectroscopic and molecular modeling methods].

    PubMed

    Huang, Fang; Dong, Cheng-Yu; Zhang, Li-Yang; Liu, Ying

    2014-04-01

    Levofloxacin (LVFX) is widely used in clinical treatment due to it has a broad spectrum of in vitro activity against Gram-positive and Gram-negative bacteria. Human serum albumin (HSA) is the most abundant protein in plasma and constitutes approximately half of the protein founds in human blood. And more than 90% of the drugs used in people are bound to HSA. So it is commonly used for the investigation of drug-serum albumin interaction because the binding will significantly influence the absorption, distribution, metabolism excretion, stability and toxicity of the drugs. Therefore, detailed investigating the interaction of LVFX with HSA is very important to understand the pharmacokinetic behavior of the LVFX. In this paper, the interaction of LVFX and HSA has been studied fluorescence, UV, Fourier transform infrared (FT-IR) and molecular modeling method. The results indicated that LVFX induced the intrinsic fluorescence quenching of HSA though a static quenching procedure, and the effective binding constants (K(a)) were calculated to be 9.44 x 10(4) L x mol(-1) (294 K) and 2.74 x 10(4) L x mol(-1) (310 K) by used of the Stern-Volmer equation. According to the Vant's Hoff equation, the reaction was characterized by negative enthalpy (deltaH = -59.00 kJ x mol(-1)) and negative entropy (delta S = - 105.38 J x mol(-1) x K(-1)), indicated that the predominant forces in the LVFX-HSA complex were hydrogen bonding and van der Waals forces. By displacement measurements, the specific binding of LVFX in the vicinity of Site I of HSA was clarified. The binding distance of 3.66 nm between Trp214 and HSA was obtained by the Förster theory on resonance energy transfer. Furthermore, the binding details between LVFX and HSA were further confirmed by molecular docking studies, which were consistent with the experimental results. The alternations of protein secondary structure were calculated from FT-IR spectra. Upon formation of LVFX-HSA complexes, the amount of alpha

  5. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumin on the Synthesis and Stability of Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Miranda, Érica; Tofanello, Aryane; Brito, Adrianne; Lopes, David; Giacomelli, Fernando; Albuquerque, Lindomar; Costa, Fanny; Ferreira, Fabio; Araujo-Chaves, Juliana; de Castro, Carlos; Nantes, Iseli

    2016-03-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from fifteen days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After two months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination

  6. Effect of recombinant human erythropoietin on insulin resistance in hemodialysis patients.

    PubMed

    Khedr, Essam; El-Sharkawy, Magdy; Abdulwahab, Saed; Eldin, Essam Nor; Ali, Medhat; Youssif, Abla; Ahmed, Bassam

    2009-07-01

    Insulin resistance is a characteristic feature of uremia. Insulin resistance and concomitant hyperinsulinemia are present irrespective of the type of renal disease. Treatment with recombinant human erythropoietin (rHuEPO) was said to be associated with improvement in insulin sensitivity in uremic patients. The aim of this study was to compare insulin resistance in adult uremic hemodialysis (HD) patients including diabetic patients treated with or without rHuEPO. A total of 59 HD patients were studied, patients were divided into 2 groups of subjects: 30 HD patients on regular rHuEPO treatment (group A), and 29 HD patients not receiving rHuEPO (group B) diabetic patients were not excluded. Full medical history and clinical examination, hematological parameters, lipid profile, serum albumin, parathyroid horomone, Kt/V, fasting glucose, and insulin levels were measured in all subjects. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was used to compare insulin resistance. The results of this study showed that the mean insulin level of HD patients treated with rHuEPO (group A) (17.5 +/- 10.6 microU/mL) was significantly lower than patients without rHuEPO (group B) (28.8 +/- 7.7 microU/mL), (P<0.001). Homeostasis Model Assessment of Insulin Resistance levels in group A were significantly lower than in group B (3.8 +/- 2.97, 7.98 +/- 4.9, respectively, P<0.001). Insulin resistance reflected by HOMA-IR levels among diabetic patients in group A was significantly lower than among diabetic patients in group B (3.9 +/- 3.2, 9.4 +/- 7.2, respectively, P<0.001). Also, HOMA-IR levels among nondiabetic patients in group A were significantly lower than among nondiabetic patients in group B (3.7 +/- 2.85, 6.9 +/- 1.43, respectively, P<0.01). We found a statistically significant negative correlation between duration of erythropoietin treatment, fasting blood glucose, insulin levels, and insulin resistance (r=-0.62, -0.71, and -0.57, P<0.001). Patients treated with r

  7. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.)

    PubMed Central

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-01-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug’s therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human- or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  8. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.).

    PubMed

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-11-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug's therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  9. Growth of human hemopoietic colonies in response to recombinant gibbon interleukin 3: comparison with human recombinant granulocyte and granulocyte-macrophage colony-stimulating factor

    SciTech Connect

    Messner, H.A.; Yamasaki, K.; Jamal, N.; Minden, M.M.; Yang, Y.C.; Wong, G.G.; Clark, S.C.

    1987-10-01

    Supernatants of COS-1 cells transfected with gibbon cDNA encoding interleukin 3 (IL-3) with homology to sequences for human IL-3 were tested for ability to promote growth of various human hemopoietic progenitors. The effect of these supernatants as a source of recombinant IL-3 was compared to that of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) as well as to that of medium conditioned by phytohemagglutinin-stimulated leukocytes. The frequency of multilineage colonies, erythroid bursts, and megakaryocyte colonies in cultures containing the COS-1 cell supernatant was equivalent to the frequency observed in the controls and significantly higher than found in cultures plated with recombinant GM-CSF. G-CSF did not support the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. In contrast, growth of granulocyte-macrophage colonies was best supported with GM-CSF, while recombinant IL-3 yielded colonies at lower or at best equivalent frequency. The simultaneous addition of higher concentrations of GM-CSF to cultures containing IL-3 in optimal amounts did not enhance the formation of multilineage colonies, erythroid bursts, and megakaryocyte colonies. However, the frequency of such colonies and bursts increased with GM-CSF when cultures were plated with suboptimal concentrations of IL-3. Growth of colonies within the granulocyte-macrophage lineage is optimally supported by GM-CSF and does not increase with further addition of IL-3.

  10. [Treatment of anemia in patients with chronic renal insufficiency with recombinant human erythropoietin].

    PubMed

    Djukanović, Lj; Lezaić, V

    1996-01-01

    The discovery of recombinant human erythropoietin has enabled treatment of anaemia in patients whose anaemia was primarily caused by the lack of erythropoietin. This agent was most widely used in the treatment of anaemia in chronic renal failure patients. Non-regulated hypertension is considered to be the only absolute contraindication for recombinant human erythropoietin application, but thrombocytosis, predisposition to thromboses of arterio-venous fistulae, and convulsions are regarded as relative contraindications. Recombinant human erythropoietin may be administered intravenously, but the subcutaneous route is considered more rational. The treatment is initiated by low doses with gradual dose increase, what enables gradual anaemia correction and prevents the appearance of adverse effects. Haemoglobin level of around 100 g/l is considered the target haemoglobin level. The majority of patients respond well to treatment by human recombinant erythropoietin and the absence of anaemia improvement may be the result of iron deficiency, occult haemorrhages, chronic infection, inadequate dialysis, secondary hyperparathyroidism, aluminium intoxication. Anaemia improvement during the treatment with recombinant erythropoietin leads to the improvement of function of most organs and the quality of life in general as well as avoidance of blood transfusions and their adverse effects. The most frequent adverse effect of recombinant erythropoietin is the development of iron deficiency or hypertension aggravation. PMID:9102827

  11. [Preparation of Recombinant Human Adenoviruses Labeled with miniSOG].

    PubMed

    Zou, Xiaohui; Xiao, Rong; Guo, Xiaojuan; Qu, Jianguo; Lu, Zhuozhuang; Hong, Tao

    2016-01-01

    We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM. PMID:27295881

  12. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive components.

    PubMed

    Li, Hongliang; Wu, Fan; Tan, Jing; Wang, Kai; Zhang, Cuiping; Zheng, Huoqing; Hu, Fuliang

    2016-04-15

    Caffeic acid phenethyl ester (CAPE), as one of the major bioactive components present in propolis, exhibits versatile bioactivities, especially for its potent cytotoxic effects on several cancer cell models. To understand the pharmacokinetic characteristics of CAPE, the binding interaction between CAPE and human serum albumin (HSA) was investigated in vitro using multiple spectroscopic methods and molecular docking. The results reveal that CAPE exhibits a distinctive binding interaction with HSA comparing with other propolis components. The association constant K(A) (L mol(-1)) of the binding reaches 10(6) order of magnitude, which is significantly stronger than the other components of propolis. Based on the theory of fluorescence resonance energy transfer, the binding distance was calculated as 5.7 nm, which is longer than that of the other components of propolis. The thermodynamic results indicate that the binding is mainly driven by hydrogen bonds and van der Waals force. The docking and drugs (warfarin and ibuprofen) competitive results show that CAPE is located in the subdomain IIA (Sudlow's site I, FA7) of HSA, and Gln196 and Lys199 contribute to the hydrogen bonds. Circular dichroism spectra suggest an alteration of the secondary structure of HSA due to its partial unfolding in the presence of CAPE. PMID:26829518

  13. Sulfation of Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-Binding Sites of Human Serum Albumin.

    PubMed

    Rodriguez, Eric A; Li, Xueshu; Lehmler, Hans-Joachim; Robertson, Larry W; Duffel, Michael W

    2016-05-17

    The disposition of toxicants is often affected by their binding to serum proteins, of which the most abundant in humans is serum albumin (HSA). There is increasing interest in the toxicities of environmentally persistent polychlorinated biphenyls (PCBs) with lower numbers of chlorine atoms (LC-PCBs) due to their presence in both indoor and outdoor air. PCB sulfates derived from metabolic hydroxylation and sulfation of LC-PCBs have been implicated in endocrine disruption due to high affinity-binding to the thyroxine-carrying protein, transthyretin. Interactions of these sulfated metabolites of LC-PCBs with HSA, however, have not been previously explored. We have now determined the relative HSA-binding affinities for a group of LC-PCBs and their hydroxylated and sulfated derivatives by selective displacement of the fluorescent probes 5-dimethylamino-1-naphthalenesulfonamide and dansyl-l-proline from the two major drug-binding sites on HSA (previously designated as Site I and Site II). Values for half-maximal displacement of the probes indicated that the relative binding affinities were generally PCB sulfate ≥ OH-PCB > PCB, although this affinity was site- and congener-selective. Moreover, specificity for Site II increased as the numbers of chlorine atoms increased. Thus, hydroxylation and sulfation of LC-PCBs result in selective interactions with HSA which may affect their overall retention and toxicity. PMID:27116425

  14. Synthesis, cytotoxicity assessment, and interaction and docking of novel palladium(II) complexes of imidazole derivatives with human serum albumin.

    PubMed

    Eslami Moghadam, Mahboube; Divsalar, Adeleh; Abolhosseini Shahrnoy, Abdolghafar; Saboury, Ali Akbar

    2016-08-01

    Imidazole analogs are the agents that attract both bioinorganic chemist and drug designer. Numerous methods have been proposed for synthesis of imidazole derivatives. In this study, a series of heterocyclic system with p-conjugated system such as 2-aryl-imidazo[4,5-f][1,10]phenanthroline analogs were synthesized. Then, three new palladium(II) complexes containing 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP) ligands were synthesized. The structures of the compounds, [Pd(Phen)(TIP)](NO3)2, [Pd(Phen)(FIP)](NO3)2, and [Pd(FIP)2]Cl were determined by spectroscopic methods and elemental analysis. Biological activity of the complexes synthesized was assessed against chronic myelogenous leukemia cell line, K562. Also, the interactions of human serum albumin with complexes were investigated using isothermal titration in the Tris buffer, pH 7.4. According to the results obtained, it was found that there is a set of six binding sites for these complexes on HSA with positive cooperativity in the binding process. Docking technique was also applied to confirm the experimental results. The results showed that smaller complexes have higher interaction affinity. PMID:26338667

  15. Study of non-covalent interactions between MRI contrast agents and human serum albumin by NMR diffusometry.

    PubMed

    Henoumont, C; Vander Elst, L; Laurent, S; Muller, Robert N

    2009-06-01

    The NMR diffusometry technique, based on the measurement of the diffusion coefficient of a ligand in the absence and in the presence of its macromolecular partner, was used to study the affinity for human serum albumin (HSA) of four gadolinium complexes, potential or already used magnetic resonance imaging contrast agents. Diamagnetic lanthanum(III) ion or europium(III) ion, which has the advantage of shifting the NMR signals far away from those of the macromolecule, was used to avoid the excessive broadening of the NMR signals induced by the gadolinium(III) ion. Titration experiments, in which the HSA concentration was kept constant and the concentration of the europium or lanthanum chelate was varied, were performed to evaluate the association constant and the number of binding sites. Some additional information about the kinetics of the exchange between the free and the bound chelate was also obtained. Competition experiments with ibuprofen and salicylate, which are ligands with a known affinity for the macromolecule and for which the binding site is known, were also performed to get information about the binding site of the contrast agents. PMID:19241095

  16. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    PubMed

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  17. Studies on the synthesis, characterization, human serum albumin binding and biological activity of single chain surfactant-cobalt(III) complexes.

    PubMed

    Vignesh, G; Sugumar, K; Arunachalam, S; Vignesh, S; Arthur James, R; Arun, R; Premkumar, K

    2016-03-01

    The interaction of surfactant-cobalt(III) complexes [Co(bpy)(dien)TA](ClO4)3 · 3H2O (1) and [Co(dien)(phen)TA](ClO4)3 · 4H2O (2), where bpy = 2,2'-bipyridine, dien = diethylenetriamine, phen = 1,10-phenanthroline and TA = tetradecylamine with human serum albumin (HSA) under physiological conditions was analyzed using steady state, synchronous, 3D fluorescence, UV/visabsorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of HSA through a static mechanism. The binding constant (Kb ) and number of binding-sites (n) were obtained at different temperatures. The corresponding thermodynamic parameters (∆G°, ∆H° and ∆S°) and Ea were also obtained. According to Förster's non-radiation energy transfer theory, the binding distance (r) between the complexes and HSA were calculated. The results of synchronous and 3D fluorescence spectroscopy indicate that the binding process has changed considerably the polarity around the fluorophores, along with changes in the conformation of the protein. The antimicrobial and anticancer activities of the complexes were tested and the results show that the complexes have good activities against pathogenic microorganisms and cancer cells. PMID:26250655

  18. A fluorescent reporter detects details of aromatic ligand interference in drug-binding sites of human serum albumin.

    PubMed

    Dobretsov, Gennady; Smolina, Natalia; Syrejshchikova, Tatiana; Brilliantova, Varvara; Uzbekov, Marat

    2016-09-01

    Human serum albumin (HSA) transports many ligands including small aromatic molecules: metabolites, drugs etc. Phenylbutazone is an anti-inflammatory drug, which binds to the drug-binding site I of HSA. Its interaction with this site has been studied using a fluorescent dye, CAPIDAN, whose fluorescence in serum originates from HSA and is sensitive to the changes in HSA site I in some diseases. Its fluorescence in HSA solutions is strongly suppressed by phenylbutazone. This phenomenon seems to be a basic sign of a simple drug-dye competition. However, a more detailed study of the time-resolved fluorescence decay of CAPIDAN has shown that phenylbutazone lowers fluorescence without changing the total amount of bound dye. In brief, the HSA-bound dye forms three populations due to three types of environment at the binding sites. The first two populations probably have a rather strong Coulomb interaction with the positive charge of residues Arginine 218 or Arginine 222 in site I and are responsible for approximately 90% of the total fluorescence. Phenylbutazone blocks this interaction and therefore lowers this fluorescence. At the same time the binding of the third population increases considerably in the presence of phenylbutazone, and, as a result, the actual number of bound dye molecules remains almost unchanged despite the ligand competition. So, time resolved fluorescence of the reporter allows to observe details of interactions and interference of aromatic ligands in drug binding site I of HSA both in isolated HSA and in serum. PMID:27318089

  19. Multifunctional Effect of Human Serum Albumin Reduces Alzheimer's Disease Related Pathologies in the 3xTg Mouse Model.

    PubMed

    Ezra, Assaf; Rabinovich-Nikitin, Inna; Rabinovich-Toidman, Polina; Solomon, Beka

    2015-01-01

    Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifests simultaneously, eventually leading to cognitive impairment and death. No treatment is currently available; however, an agent addressing several key pathologies simultaneously has a better therapeutic potential. Human serum albumin (HSA) is a highly versatile protein, harboring multifunctional properties that are relevant to key pathologies underlying AD. This study provides insight into the mechanism for HSA's therapeutic effect. In vivo, a myriad of beneficial effects were observed by pumps infusing HSA intracerebroventricularly, for the first time in an AD 3xTg mice model. A significant effect on amyloid-β (Aβ) pathology was observed. Aβ1-42, soluble oligomers, and total plaque area were reduced. Neuroblastoma SHSY5Y cell line confirmed that the reduction in Aβ1-42 toxicity was due to direct binding rather than other properties of HSA. Total and hyperphosphorylated tau were reduced along with an increase in tubulin, suggesting increased microtubule stability. HSA treatment also reduced brain inflammation, affecting both astrocytes and microglia markers. Finally, evidence for blood-brain barrier and myelin integrity repair was observed. These multidimensional beneficial effects of intracranial administrated HSA, together or individually, contributed to an improvement in cognitive tests, suggesting a non-immune or Aβ efflux dependent means for treating AD. PMID:26682687

  20. Synthesis, characterization and the interaction of some new water-soluble metal Schiff base complexes with human serum albumin

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Sadi, Somaye Barzegar; Zarei, Leila; Baigi, Fatemeh Moosavi; Amirghofran, Zahra

    2014-03-01

    Some new water-soluble Schiff base complexes of Na2[M(L)(H2O)n]; (M = Zn, Cu, Ni, Mn) with a new water-soluble Schiff base ligand where L denotes an asymmetric N2O2 Schiff base ligands; N,N";-bis(5-sulfosalicyliden)-3,4-diaminobenzophenone (5-SO3-3,4-salbenz) were synthesized and characterized. The formation constants of the water soluble Schiff base complexes were calculated by Ketelaar's equation. The theoretical molecular structure for the complexes was computed by using the HF method and the 6-311G basis set. The mechanism of binding of Na2[M(L)(H2O)n] with human serum albumin (HSA) was studied by fluorescence spectroscopic technique. The results of fluorescence titration showed that the intrinsic fluorescence of HSA was quenched by the complexes; which was rationalized in terms of the dynamic quenching mechanism. The values of Stern-Volmer constants, quenching rate constants, binding constants, binding sites and average aggregation number of HSA have been determined. The thermodynamic parameters, were calculated by van't Hoff equation, indicate that the binding is entropy driven and enthalpically disfavored. Based on the Förster theory of non-radiation energy transfer, the efficiency of energy transfer and the distance between the donor (Trp residues) and the acceptor (complex) were obtained. Finally, the growth inhibitory effects of the complexes toward the K562 cancer cell line were measured.

  1. Interaction between curcumin and human serum albumin in the presence of excipients and the effect of binding on curcumin photostability.

    PubMed

    Vukićević, Milica; Tønnesen, Hanne Hjorth

    2016-06-01

    Curcumin (Cur) is known to bind to human serum albumin (HSA) which may lead to a reduced phototoxic effect of the compound in the presence of serum or saliva. The influence of excipients on the Cur-HSA binding was studied by HSA florescence quenching and Cur absorption and emission spectroscopy in the presence and absence of the selected excipients. Photostabilty of Cur in the presence of HSA was evaluated, as well as the effect of excipients on HSA bound Cur photodegradation. Cyclodextrins (CDs) (2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin) and polymers (polyethylene glycol 400, PEG 400 and Pluronic F-127, PF-127) were selected for the study. CDs and PF-127 seem to decrease Cur binding to HSA, probably through competitive binding. Cur was still bound to HSA in polyethylene glycol (PEG) solutions at the highest investigated concentration (5% w/v). However, high PEG concentration appears to have effect on the protein conformation, as shown by the fluorescence quenching study. Low Cur photostability in the presence of HSA could be improved by the addition of hydroxylpropyl-γ-cyclodextrin (HPγCD) to the samples, whereas PEG and PF-127 showed no effect. PMID:25716057

  2. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  3. Study of the effect of Cal-Red on the secondary structure of human serum albumin by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Dong, Lijun; Chen, Xingguo; Hu, Zhide

    2007-11-01

    The effect of Cal-Red on the structure of human serum albumin (HSA) was studied using Resonance light scattering (RLS), Fourier transformed Infrared (FT-IR) and Circular dichroism (CD) spectroscopic methods. The RLS spectroscopic results show that the RLS intensity of HSA was significantly increased in the presence of Cal-Red. The binding parameters of HSA with Cal-Red were studied at different temperatures of 289, 299, 309 and 319 K at pH 4.1. It is indicated by the Scatchard plots that the binding constant K decreased from 4.03 × 10 8 to 7.59 × 10 7 l/mol and the maximum binding number N decreased from 215 to 152 with increasing the temperature, respectively. The binding process was exothermic and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction. The enthalpy change Δ H0, the free energy change Δ G0 and the entropy change Δ S0 of 289 K were calculated to be -42.75 kJ/mol, -47.56 kJ/mol and 16.66 J/mol K, respectively. The alterations of protein secondary structure in the presence of Cal-Red in aqueous solution were quantitatively calculated from FT-IR and CD spectroscopy with reductions of α-helices content about 5%, β-turn from 10% to 2% and with increases of β-sheet from 38% to 51%.

  4. A fluorescence-based high throughput assay for the determination of small molecule–human serum albumin protein binding

    PubMed Central

    McCallum, Megan M.; Pawlak, Alan J.; Shadrick, William R.; Simeonov, Anton; Jadhav, Ajit; Yasgar, Adam; Maloney, David J.; Arnold, Leggy A.

    2014-01-01

    Herein, we describe the development of a fluorescence-based high throughput assay to determine the small molecule binding towards human serum albumin (HSA). This innovative competition assay is based on the use of a novel fluorescent small molecule Red Mega 500 with unique spectroscopic and binding properties. The commercially available probe displays a large fluorescence intensity difference between the protein-bound and protein-unbound state. The competition of small molecules for HSA binding in the presence of probe resulted in low fluorescence intensities. The assay was evaluated with the LOPAC small molecule library of 1280 compounds identifying known high protein binders. The small molecule competition of HSA–Red Mega 500 binding was saturable at higher compound concentrations and exhibited IC50 values between 3–24 μM. The compound affinity towards HSA was confirmed by isothermal titration calorimetry indicating that the new protein binding assay is a valid high throughput assay to determine plasma protein binding. PMID:24390461

  5. Interaction of meropenem with 'N' and 'B' isoforms of human serum albumin: a spectroscopic and molecular docking study.

    PubMed

    Rehman, Md Tabish; Ahmed, Sarfraz; Khan, Asad U

    2016-09-01

    Carbapenems are used to control the outbreak of β-lactamases expressing bacteria. The effectiveness of drugs is influenced by its interaction with human serum albumin (HSA). Strong binding of carbapenems to HSA may lead to decreased bioavailability of the drug. The non-optimal drug dosage will provide a positive selection pressure on bacteria to develop resistance. Here, we investigated the interaction between meropenem and HSA at physiological pH 7.5 (N-isoform HSA) and non-physiological pH 9.2 (B-isoform HSA). Results showed that meropenem quenches the fluorescence of both 'N' and 'B' isoforms of HSA (ΔG < 0 and binding constant ~10(4) M(-1)). Electrostatic interactions and van der Waal interactions along with H-bonds stabilized the complex of meropenem with 'N' and 'B' isoforms of HSA, respectively. Molecular docking results revealed that meropenem binds to HSA near Sudlow's site II (subdomain IIIA) close to Trp-214 with a contribution of a few residues of subdomain IIA. CD spectroscopy showed a change in the conformation of both the isoforms of HSA upon meropenem binding. The catalytic efficiency of HSA (only N-isoform) on p-nitrophenyl acetate was increased primarily due to a decrease in Km and an increase in kcat values. This study provides an insight into the molecular basis of interaction between meropenem and HSA. PMID:26372227

  6. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed. PMID:19519376

  7. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    NASA Astrophysics Data System (ADS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.

    2015-03-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  8. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. PMID:25478734

  9. Binding mechanism of trans-N-caffeoyltyramine and human serum albumin: Investigation by multi-spectroscopy and docking simulation.

    PubMed

    Ma, Xiaoli; Yan, Jin; Xu, Kailin; Guo, Luiqi; Li, Hui

    2016-06-01

    trans-N-Caffeoyltyramine (TNC), which was isolated from the Cortex Lycii in our laboratory, is a phenolic amide compound with multiple pharmacological activities. The interaction between TNC and human serum albumin (HSA) was studied by Nuclear magnetic resonance (NMR) relaxation experiment, fluorescence spectroscopy, and docking simulation. NMR methodology is based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of TNC protons in the presence of the HSA. Result indicated that the interaction occurred between HSA and TNC, and changed the proton magnetic environment of TNC. Fluorescence spectroscopy confirmed that TNC displayed a strong capability to quench the fluorescence of HSA, and the acting forces for binding were hydrogen bonds and van der Waals forces. Furthermore, the circular dichroism, synchronous, and three-dimensional fluorescence spectra, which were employed to determine the conformation of protein, revealed that binding of TNC with HSA could induce conformational changes in HSA. In addition, the molecular modeling results exhibited that TNC mainly bonded to site I in sub-domain IIA of HSA. PMID:27131098

  10. Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis.

    PubMed

    Monacelli, Fiammetta; Storace, Daniela; D'Arrigo, Cristina; Sanguineti, Roberta; Borghi, Roberta; Pacini, Davide; Furfaro, Anna L; Pronzato, Maria A; Odetti, Patrizio; Traverso, Nicola

    2013-01-01

    The aim of this work was to evaluate the ability of oxidative and glycative stressors to modify properties of human serum albumin (HSA) by analyzing markers of glycation (pentosidine) and oxidation (advanced oxidative protein products (AOPPs)) and assessing fluorescence and circular dichroism. HSA was incubated for up to 21 days with ribose, ascorbic acid (AA) and diethylenetriamine pentacetate (DTPA) in various combinations in order to evaluate influences of these substances on the structure of HSA. Ribose was included as a strong glycative molecule, AA as a modulator of oxidative stress, and DTPA as an inhibitor of metal-catalyzed oxidation. Ribose induced a significant increase in pentosidine levels. AA and DTPA prevented the accumulation of pentosidine, especially at later time points. Ribose induced a mild increase in AOPP formation, while AA was a strong inducer of AOPP formation. Ribose, in combination with AA, further increased the formation of AOPP. DTPA prevented the AA-induced generation of AOPP. Ribose was also a potent inducer of fluorescence at 335nm ex/385nm em, which is typical of pentosidine. AA and DTPA prevented this fluorescence. Circular dichroism showed complex results, in which AA and DTPA were strong modifiers of the percentages of the alpha-helical structure of HSA, while ribose affected the structure of HSA only at later time points. PMID:23702842

  11. Based on SERS conformational studies of ginsenoside Rb1 and its metabolites before and after combined with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yingping; Bai, Xueyuan; Zhao, Bing

    2015-02-01

    Surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy were employed to probe the interaction of the pharmaceutical and natural product molecules, ginsenoside Rb1, Rd, Rg3 and compound K (CK), with human serum albumin (HSA). Normal Raman spectra of these four ginsenosides were obtained from solid powder on glass slide. Based on the unsplit peak at 1445 cm-1, the stacking modes of ginsenoside Rb1, Rd, Rg3 and CK were quite similar, when the deconvolution of alkyl chain was not occurred. SERS spectra of ginsenoside Rb1, Rd, Rg3 and CK were obtained from a colloidal silver surface on a self-assembled SERS substrate, the most enhanced modes were those with certain motions perpendicular to the metal surface, such as C24dbnd C25 stretch and Csbnd H out-of-plane bending from alkyl chain. The SERS spectra were used to predict similar perpendicular orientation of flexible alkyl chain and parallel orientation of carbocyclic rings on Ag colloid particles. Therefore, when combined with HSA, the transformations of four ginsenosides still exhibit similar, although in different binding cavities in subdomain IIA and IIIA by making the methyls at C26 and C27 perpendicular plugging into the hydrophobic site of HSA, while the aglycone and glucose nearby are perpendicularly exposed outside to fit other suitable active targeting sites.

  12. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  13. Spectroscopic and molecular simulation studies on the interaction of di-(2-ethylhexyl) phthalate and human serum albumin.

    PubMed

    Wang, Yaping; Zhang, Guowen

    2015-03-01

    Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in industrial production, but may have a potential health risk. In this study, the binding characteristics of DEHP with human serum albumin (HSA) in aqueous solution at pH 7.4 were determined using UV/vis absorption, fluorescence, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD), along with a molecular simulation technique. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by DEHP was static. The calculated thermodynamic parameters indicated that hydrophobic forces played a predominant role in formation of the DEHP-HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments and denaturation studies showed that the binding of DEHP to HSA primarily took place in subdomain IIA of HSA, and molecular docking results further corroborated the binding sites. The synchronous fluorescence, UV/vis absorption, FTIR and CD spectra revealed that the addition of DEHP induced changes in the secondary structure of HSA. Protein surface hydrophobicity (PSH) tests indicated that DEHP binding to HSA caused an increase in the PSH. Moreover, the effects of some metal ions on the binding constant of DEHP - HSA interaction were also investigated. PMID:24913815

  14. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  15. Identification of Glucose-Binding Pockets in Human Serum Albumin Using Support Vector Machine and Molecular Dynamics Simulations.

    PubMed

    Ranganarayanan, Preethi; Thanigesan, Narmadha; Ananth, Vivek; Jayaraman, Valadi K; Ramakrishnan, Vigneshwar

    2016-01-01

    Human Serum Albumin (HSA) has been suggested to be an alternate biomarker to the existing Hemoglobin-A1c (HbA1c) marker for glycemic monitoring. Development and usage of HSA as an alternate biomarker requires the identification of glycation sites, or equivalently, glucose-binding pockets. In this work, we combine molecular dynamics simulations of HSA and the state-of-art machine learning method Support Vector Machine (SVM) to predict glucose-binding pockets in HSA. SVM uses the three dimensional arrangement of atoms and their chemical properties to predict glucose-binding ability of a pocket. Feature selection reveals that the arrangement of atoms and their chemical properties within the first 4Å from the centroid of the pocket play an important role in the binding of glucose. With a 10-fold cross validation accuracy of 84 percent, our SVM model reveals seven new potential glucose-binding sites in HSA of which two are exposed only during the dynamics of HSA. The predictions are further corroborated using docking studies. These findings can complement studies directed towards the development of HSA as an alternate biomarker for glycemic monitoring. PMID:26886739

  16. A study of the adsorption of the amphiphilic penicillins cloxacillin and dicloxacillin onto human serum albumin using surface tension isotherms

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Leis, David; Taboada, Pablo; Attwood, David; Mosquera, Victor

    The interaction of human serum albumin (HSA) with two structurally similar anionic amphiphilic penicillins, cloxacillin and dicloxacillin, at 25°C has been examined by surface tension measurements under conditions at which the HSA molecule was positively (pH 4.5) or negatively charged (pH 7.4). Measurements were at fixed HSA concentrations (0.0125 and 0.125% w/v) and at drug concentrations over a range including, where possible, the critical micelle concentration (cmc). Interaction between anionic drugs and positively charged HSA at pH 7.4 resulted in an increase of the cmc of each drug as a consequence of its removal from solution by adsorption. Limited data for cloxacillin at pH 4.5 indicated an apparent decrease of the cmc in the presence of HSA suggesting a facilitation of the aggregation by association with the protein. Changes in the surface tension-log (drug concentration) plots in the presence of HSA have been discussed in terms of the adsorption of drug at the air-solution and protein-solution interfaces. Standard free energy changes associated with the micellization of both drugs and their adsorption at the air-solution interface have been calculated and compared.

  17. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    SciTech Connect

    Ascenzi, Paolo Imperi, Francesco; Coletta, Massimo; Fasano, Mauro

    2008-05-02

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k{sub off}) is reported. In the absence of drugs, the value of k{sub off} is (1.3 {+-} 0.2) x 10{sup -4} s{sup -1}. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k{sub off} value increases to (8.6 {+-} 0.9) x 10{sup -4} s{sup -1}. From the dependence of k{sub off} on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 {+-} 0.2) x 10{sup -3} M and (6.2 {+-} 0.7) x 10{sup -5} M, respectively) were determined. The increase of k{sub off} values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.

  18. Studies on the interaction of total saponins of panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Xie, Meng-Xia; Kang, Juan; Zheng, Dong

    2003-10-01

    Total saponins of panax notoginseng (TPNS), isolated from the roots of panax notoginseng (Burk) F.H. Chen, have been considered as the main active components of San-Chi and have various therapeutical actions. Their interactions with human serum albumin have been investigated by Fourier transformed infrared spectrometry and fluorescence methods. The results showed that TPNS combined with HSA through C=O and CN groups of polypeptide chain. The drug-protein combination caused the significant loss of α-helix structure and the microenvironment changes of the tyrosine residues in protein at higher drug concentration. Combining the curve-fitting results of amide I and amide III bands, the alterations of protein secondary structure after drug complexation were quantitatively determined. The α-helix structure has a decrease of ≈6%, from 55 to 49% and the β-sheet increased ≈3%, from 23 to 26% at high drug concentration. However, no major alterations were observed for the β-turn and random coil structures up on drug-protein binding.

  19. Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study.

    PubMed

    Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Su, Wei; Xiao, Qi

    2015-12-01

    Water-soluble Zn-doped CdTe quantum dots (CdTe:Zn(2+) QDs) have attracted great attention in biological and biomedical applications. In particular, for any potential in vivo application, the interaction of CdTe:Zn(2+) QDs with human serum albumin (HSA) is of greatest importance. As a step toward the elucidation of the fate of CdTe:Zn(2+) QDs introduced to organism, the molecular interactions between CdTe:Zn(2+) QDs with three different sizes and HSA were systematically investigated by spectroscopic techniques. Three CdTe:Zn(2+) QDs with maximum emission of 514 nm (green QDs, GQDs), 578 nm (yellow QDs, YQDs), and 640 nm (red QDs, RQDs) were tested. The binding of CdTe:Zn(2+) QDs with HSA was a result of the formation of HSA-QDs complex and electrostatic interactions played major roles in stabilizing the complex. The Stern-Volmer quenching constant, associative binding constant, and corresponding thermodynamic parameters were calculated. The site-specific probe competitive experiments revealed that the binding location of CdTe:Zn(2+) QDs with HSA was around site I. The microenvironmental and conformational changes of HSA induced by CdTe:Zn(2+) QDs were analyzed. These results suggested that the conformational change of HSA was dramatically at secondary structure level and the biological activity of HSA was weakened in the present of CdTe:Zn(2+) QDs with bigger size. PMID:26555713

  20. Fluorimetric study of the interaction between human serum albumin and quinolones-terbium complex and its application

    NASA Astrophysics Data System (ADS)

    Wang, Yusheng; Feng, Lin; Jiang, Chongqiu

    2005-10-01

    A highly sensitive spectrofluorimetric method is proposed for determination of human serum albumin (HSA) and some quinolone drugs. Using quinolones-terbium (Tb 3+) complex as a fluorescent probe, in the buffer solution of pH 7.8, HSA can remarkably enhance the fluorescence intensity of the quinolones-Tb 3+ complex at 545 nm and the enhanced fluorescence intensity of Tb 3+ ion is in proportion to the concentration of HSA and quinolone drugs. Optimum conditions for the determination of HSA were also investigated. The linear ranges and limits of detection are 8.0 × 10 -9 to 8.0 × 10 -8 mol L -1, 4.20 × 10 -9 mol L -1 (for HSA); 1.0 × 10 -6 to 4.0 × 10 -6 mol L -1, 1.87 × 10 -8 mol L -1 (for norfloxacin) and 1.0 × 10 -7 to 1.0 × 10 -6 mol L -1, 4.82 × 10 -8 mol L -1 (for enoxacine), respectively. This method is simple, practical and relatively free interference from coexisting substances, as well as much more sensitive than most of the existing assays.

  1. A novel drug-polyethylene glycol liquid compound method to prepare 10-hydroxycamptothecin loaded human serum albumin nanoparticle.

    PubMed

    Yang, Zhenbo; Gong, Wei; Wang, Zhiyuan; Li, Bingsheng; Li, Mingyuan; Xie, Xiangyang; Zhang, Hui; Yang, Yang; Li, Zhiping; Li, Ying; Yu, Fanglin; Mei, Xingguo

    2015-07-25

    Drug loading strategies and the methods derived for implementing those strategies are crucially important to the preparation of drug loaded human serum albumin nanoparticles (HSA-NPs), because each of them is focused on wrapping up specific types of drugs via certain physical and chemical properties. However, poor adaptability still exists to load drugs like model substance 10-hydroxycamptothecin (HCPT) by conventional methods. Because it typically represents a large class of water-insoluble drugs, who also structurally possess a certain number of hydrophilic groups. So even though they majorly have lipophilicity but they are of low liposolubility. This article presents a new concept of a loading strategy that takes a drug polymer liquid compound as a loading medium. The drug polymer liquid compound was made from low weight polyethylene glycol (l-PEG) and HCPT. Consequently, this strategy has managed to fabricate HCPT-loaded HSA-NPs through an unconventional approach that overcomes drawbacks of current loading means and better results have been obtained, like high entrapment efficiency (over 99%) and less toxicity involvement. Afterward, in vitro and in vivo evaluations and characterizations were performed to help with the in-depth interpretation of the loading mechanism in order to reveal and further investigate the possible far-reaching applications of this method. PMID:26027489

  2. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    PubMed Central

    Yuqin, Li; Guirong, You; Zhen, Yang; Caihong, Liu; Baoxiu, Jia; Jiao, Chen; Yurong, Guo

    2014-01-01

    The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments. PMID:25110690

  3. Sucrose dependence of solute retention on human serum albumin stationary phase: hydrophobic effect and surface tension considerations.

    PubMed

    Peyrin, E; Guillaume, Y C; Morin, N; Guinchard, C

    1998-07-15

    In a chromatographic system using human serum albumin (HSA) as a stationary phase, D,L dansyl amino acids as solutes, and sucrose as a mobile-phase modifier, a study on the surface tension effect of sugar on compound retention was carried out by varying the salting-out agent concentration c and the column temperature T. The thermodynamic parameters for solute transfer from the mobile to the stationary phase were determined from linear van't Hoff plots. An enthalpy-entropy compensation study revealed that the type of interaction between solute and HSA was independent of the molecular structure of the dansyl amino acids and the mobile-phase composition. An analysis of the experimental variations in the retention factor and the enantioselectivity values with c was performed using a theoretical model. It was shown that the decrease in solute retention accompanying the sucrose concentration increase was principally governed by a structural rearrangement of the binding cavity due to the increased surface tension effects. The cavity apolar residues were assumed to fold out of contact with the medium in order to reduce the surface area accessible to sucrose molecules, thus implying a restriction of the curvature radius of the cavity. Such behavior caused a decrease in the hydrophobic interaction for ligand binding on HSA explaining the observed thermodynamic parameter trends over the sucrose concentration range. PMID:9684542

  4. Effect of functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin.

    PubMed

    Sen, Shubhatam; Konar, Suraj; Pathak, Amita; Dasgupta, Swagata; DasGupta, Sunando

    2014-10-01

    Pathogenesis of amyloid-related diseases is related to nonnative folding of proteins with the formation of insoluble deposits in the extracellular space of various tissues. Having the unique properties of small size, large surface area, biodegradability, and relative nontoxicity, magnetic nanoparticles have drawn a lot of attention in biomedical applications. Herein, we demonstrate the effect of bare and differently functionalized magnetic MnFe2O4 nanoparticles on fibrillation of human serum albumin in vitro. The process has been monitored using Thioflavin T fluorescence, Congo red binding assay, circular dichroism, fluorescence microscopy, and transmission electron microscopy. From our experimental results, amine functionalized MnFe2O4 nanoparticles are found to inhibit formation of fibrils more effectively than bare ones, while carboxylated nanoparticles do not have a significant effect on fibrillation. This study has explored the prospects of using specific magnetic nanoparticles with appropriate modification to control self-assembly of proteins and may act as a precursor in therapeutic applications. PMID:25247718

  5. Ultrasonic microdialysis coupled with capillary electrophoresis electrochemiluminescence study the interaction between trimetazidine dihydrochloride and human serum albumin.

    PubMed

    Sun, Shuangjiao; Long, Chanjuan; Tao, Chunyao; Meng, Sa; Deng, Biyang

    2014-12-01

    The paper describes a homemade ultrasonic microdialysis device coupled with capillary electrophoresis electrochemiluminescence (CE-ECL) for studying the interaction between human serum albumin (HSA) and trimetazidine dihydrochloride (TMZ). The time required for equilibrium by ultrasonic microdialysis was 45min, which was far less than that by traditional dialysis (240min). It took 80min to achieve the required combination equilibrium by normal incubation and only 20min by ultrasonic. Compared with traditional dialysis, the use of ultrasonic microdialysis simplified experimental procedures, shortened experimental time and saved consumption of sample. A simple, sensitive and selective determination of TMZ was developed using CE-ECL and the parameters that affected ECL intensity were optimized. Under the optimized conditions, the linear range of TMZ was from 0.075 to 80μmol/L (r(2)=0.9974). The detection limit was 26nmol/L with RSD of 2.8%. The number of binding sites and binding constant were 1.54 and 15.17L/mol, respectively. PMID:25440662

  6. Rapid Screening of Drug-Protein Binding Using High-Performance Affinity Chromatography with Columns Containing Immobilized Human Serum Albumin

    PubMed Central

    Li, Ying-Fei; Zhang, Xiao-Qiong; Hu, Wei-Yu; Li, Zheng; Liu, Ping-Xia; Zhang, Zhen-Qing

    2013-01-01

    For drug candidates, a plasma protein binding (PPB) more than 90% is more meaningful and deserves further investigation in development. In the study, a high-performance liquid chromatography method employing column containing immobilized human serum albumin (HSA) to screen in vitro PPB of leading compounds was established and successfully applied to tested compounds. Good correlation (a coefficient correlation of 0.96) was attained between the reciprocal values (X) of experimentally obtained retention time of reference compounds eluted through HSA column and the reported PPB values (Y) with a correlation equation of Y = 92.03 − 97.01X. The method was successfully applied to six test compounds, and the result was confirmed by the conventional ultrafiltration technique, and both yielded equal results. However, due to the particular protein immobilized to column, the method cannot be applied for all compounds and should be exploited judiciously based on the value of the logarithmic measure of the acid dissociation constant (pKa) as per the requirement. If α1-acid glycoprotein and other plasma proteins could be immobilized like HSA with their actual ratio in plasma to column simultaneously, the result attained using immobilized column may be more accurate, and the method could be applied to more compounds without pKa limitation. PMID:23607050

  7. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle.

    PubMed

    Sengupta, Bhaswati; Yadav, Rajeev; Sen, Pratik

    2016-06-01

    The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS). The water-pool of a sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelle has been used as the confined environment. It was observed that the conformational fluctuation time is about 6 times smaller compared to bulk medium when confined in a water-pool of 3.5 nm radius. On increasing the size of the water-pool the conformational fluctuation time was found to increase monotonically and approaches the bulk value. The effect of confinement is on par with the general belief about the restricted motion of a macromolecule upon confinement. However, the effect of temperature was found to be surprising. An increase in the temperature from 298 K to 313 K induces a larger change in the conformational fluctuation time in HSA, when confined. In the bulk medium, apparently there is no change in the conformational fluctuation time in the aforementioned temperature range, whereas, when HSA is present in an AOT water-pool of radius 3.5 nm, about an 88% increase in the fluctuation time was observed. The observed prominent thermal effect on the conformational dynamics of domain-I of HSA in the water-pool of an AOT reverse micelle as compared to in the bulk medium was concluded to arise from the confined solvent effect. PMID:27166785

  8. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins.

    PubMed

    Rowland, Andrew; Hallifax, David; Nussio, Matthew R; Shapter, Joseph G; Mackenzie, Peter I; Brian Houston, J; Knights, Kathleen M; Miners, John O

    2015-01-01

    1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP. PMID:25801059

  9. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. PMID:24365328

  10. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

    PubMed Central

    Maffre, Pauline; Brandholt, Stefan; Nienhaus, Karin; Shang, Li; Parak, Wolfgang J

    2014-01-01

    Summary By using fluorescence correlation spectroscopy (FCS), we have studied the adsorption of human serum albumin (HSA) onto Fe–Pt nanoparticles (NPs, 6 nm radius), CdSe/ZnS quantum dots (QDs, 5 nm radius) and Au and Ag nanoclusters (1–4 nm radius), which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both), thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces. PMID:25551031

  11. SK-HEP cells and lentiviral vector for production of human recombinant factor VIII.

    PubMed

    da Rosa, Nathalia Gonsales; Swiech, Kamilla; Picanço-Castro, Virgínia; Russo-Carbolante, Elisa Maria de Sousa; Soares Neto, Mario Abreu; de Castilho-Fernandes, Andrielle; Faça, Vitor Marcel; Fontes, Aparecida Maria; Covas, Dimas Tadeu

    2012-08-01

    Hemophilia A is caused by a deficiency in coagulation factor VIII. Recombinant factor VIII can be used as an alternative although it is unavailable for most patients. Here, we describe the production of a human recombinant B-domain-deleted FVIII (rBDDFVIII) by the human cell line SK-HEP-1, modified by a lentiviral vector rBDDFVIII was produced by recombinant SK-HEP cells (rSK-HEP) at 1.5-2.1 IU/10(6) in 24 h. The recombinant factor had increased in vitro stability when compared to commercial pdFVIII. The functionality of rBDDFVIII was shown by its biological activity and by tail-clip challenge in hemophilia A mice. The rSK-HEP cells grew in a scalable system and produced active rBDDFVIII, indicating that this platform production can be optimized to meet the commercial production scale needs. PMID:22488441

  12. Recombination within and between the human insulin and beta-globin gene loci.

    PubMed Central

    Lebo, R V; Chakravarti, A; Buetow, K H; Cheung, M C; Cann, H; Cordell, B; Goodman, H

    1983-01-01

    We detected a large number of polymorphic insulin restriction fragments in black Americans. These different size fragments were probably generated by unequal recombination on both sides of the human insulin gene. Population genetic analysis indicates that recombination occurred 33 times more frequently than expected to generate this large number of polymorphic fragments. Specific properties of the unique repeated 14- to 16-base-pair sequences 5' to the insulin gene suggest that this sequence would promote increased unequal recombination. Additional pedigree analysis showed that the recombination rate between the structural insulin and beta-globin gene loci was 14% with strong evidence for linkage. Since both insulin and beta-globin have been mapped to the short arm of human chromosome 11, this study establishes that the genetic map distance between these genes is 14.2 centimorgans. PMID:6348773

  13. Albumin impregnated vascular grafts: albumin resorption and tissue reactions.

    PubMed

    Cziperle, D J; Joyce, K A; Tattersall, C W; Henderson, S C; Cabusao, E B; Garfield, J D; Kim, D U; Duhamel, R C; Greisler, H P

    1992-01-01

    This study aimed to determine the kinetics of albumin resorption from and the healing of two types of albumin impregnated Vasculour II (Bard Cardiovascular) Dacron grafts (ACG-A and ACG-B) using whole blood preclotted Vasculour II Dacron grafts (without albumin) as controls (PCC). Prostheses measuring 4 mm ID x 50 mm length were implanted in the aortoiliac position in 24 dogs (ACG-A n = 12, ACG-B n = 24, PCC n = 12) and explanted after 1, 2 4, and 6 months. Platelet count, platelet aggregometry to 10(-5) M ADP, prothrombin time (PT), and partial thromboplastin time (PTT) were determined preoperatively and at explantation. Sections of the explanted grafts were assayed for human albumin by immunohistochemical techniques utilizing a rabbit polyclonal mono-specific antibody for human albumin followed by the addition of a biotinylated goat anti-rabbit IgG. Immunoperoxidase staining was then performed using Avidin D horse-radish peroxidase. Histology of the grafts (light microscopy, scanning electron microscopy, and transmission electron microscopy) as well as percent thrombus free surface area (TFSA) by computerized planimetry were also determined. Seven of 48 grafts were occluded (85.4% patency) with no difference among the three groups. Platelet aggregometry was not predictive of graft patency. No change in PT or PTT occurred nor was there any difference among the three groups. Retained albumin was detected in every one-month explant but not beyond that time, with the sensitivity for detecting human albumin in this assay being 20 mg albumin per gram of Dacron. All ACG explants at one month revealed inner capsular fibrin coagula not present in PCC specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1388174

  14. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking.

    PubMed

    Kabir, Md Zahirul; Feroz, Shevin R; Mukarram, Abdul Kadir; Alias, Zazali; Mohamad, Saharuddin B; Tayyab, Saad

    2016-08-01

    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA. PMID:26331959

  15. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs.

    PubMed

    Salary, Mina; Hadjmohammadi, Mohammadreza

    2015-10-10

    Human serum albumin (HSA) is the most important drug carrier in humans mainly binding acidic drugs. Negatively charged compounds bind more strongly to HSA than it would be expected from their lipophilicity alone. With the development of new acidic drugs, there is a high need for rapid and simple protein binding screening technologies. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography, which can be used as an in vitro system to model the biopartitioning process of drugs when there are no active processes. In this study, a new kind of BMC using hexadecyltrimethylammonium bromide (CTAB) as micellar mobile phases was used for the prediction of protein binding of acidic drugs based on the similar property of CTAB micelles to HSA. The use of BMC is simple, reproducible and can provide key information about the pharmacological behavior of drugs such as protein binding properties of new compounds during the drug discovery process. The relationships between the MLC retention data of a heterogeneous set of 17 acidic and neutral drugs and their plasma protein binding parameter were studied and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of CTAB. However, the developed models are only being able to distinguish between strongly and weakly binding drugs. Also, the developed models were characterized by both the descriptive and predictive ability (R(2)=0.885, RCV(2)=0.838 and R(2)=0.898, RCV(2)=0.859 for 0.07 and 0.09M CTAB, respectively). The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. PMID:25988296

  16. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.

    PubMed

    Ali, Manjoor; Kumar, Amit; Kumar, Mukesh; Pandey, Badri N

    2016-04-01

    Human serum albumin (HSA), the most abundant soluble protein in blood plays critical roles in transportation of biomolecules and maintenance of osmotic pressure. In view of increasing applications of lanthanides- and actinides-based materials in nuclear energy, space, industries and medical applications, the risk of exposure with these metal ions is a growing concern for human health. In present study, binding interaction of actinides/lanthanides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] with HSA and its structural consequences have been investigated. Ultraviolet-visible, Fourier transform-infrared, Raman, Fluorescence and Circular dichroism spectroscopic techniques were applied to study the site of metal ions interaction, binding affinity determination and the effect of metal ions on protein unfolding and HSA conformation. Results showed that these metal ions interacted with carbonyl (CO..:)/amide(N..-H) groups and induced exposure of aromatic residues of HSA. The fluorescence analysis indicated that the actinide binding altered the microenvironment around Trp214 in the subdomain IIA. Binding affinity of U(VI) to HSA was slightly higher than that of Th(IV). Actinides and Ce(IV) altered the secondary conformation of HSA with a significant decrease of α-helix and an increase of β-sheet, turn and random coil structures, indicating a partial unfolding of HSA. A correlation was observed between metal ion's ability to alter HSA conformation and protein unfolding. Both cationic effects and coordination ability of metal ions seemed to determine the consequences of their interaction with HSA. Present study improves our understanding about the protein interaction of these heavy ions and their impact on its secondary structure. In addition, binding characteristics may have important implications for the development of rational antidote for the medical management of health effects of actinides and lanthanides. PMID:26821345

  17. Repression of the albumin gene in Novikoff hepatoma cells.

    PubMed Central

    Capetanaki, Y G; Flytzanis, C N; Alonso, A

    1982-01-01

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin [32P]cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements. Images PMID:6180302

  18. International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays

    EPA Science Inventory

    An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...

  19. Growth promoting effect of recombinant interleukin I and tumor necrosis factor for human astrocytoma cells

    SciTech Connect

    Giulian, D.; Dinarello, C.A.; Brown, D.C.; Lachman, L.B.

    1986-03-01

    Human IL I has been demonstrated to stimulate the growth of rat astrocytes in vitro. To determine if IL I has a similar growth promoting effect upon human brain cells, two astrocytoma cell lines were tested for their ability to incorporate /sup 3/H-thymidine in response to various types of IL I and tumor necrosis factor (TNF). The U373 astrocytoma was found to respond mitogenically to human native IL I, human recombinant IL I, rat IL I and murine recombinant IL I. The cell line failed to respond to recombinant IL 2 and recombinant ..cap alpha.. and ..gamma.. interferon. The sensitivity of the U373 cells paralleled the murine thymocyte assay for IL I. Interestingly, the U373 responded mitogenically to recombinant TNF prepared by two different companies, thus indicating that TNF stimulates proliferation of this cell line and does not lead to cell death. In the murine thymocyte assay for IL I, TNF was not active. The results indicate that 1) both IL I and TNF are mitogenic for a human astrocytoma cell line and 2) the U373 cells may be used to assay both IL I and TNF in a highly sensitive mitogenic assay.

  20. Inhibitory effect of quercetin in the formation of advance glycation end products of human serum albumin: An in vitro and molecular interaction study.

    PubMed

    Alam, Md Maroof; Ahmad, Irshad; Naseem, Imrana

    2015-08-01

    Non-enzymatic glycation entails the reaction between the carbonyl group of a sugar with the amino group of a protein giving rise to Schiff base and Amadori products. The formation of advanced glycation end products (AGEs) leads to the generation of free radicals, which play an important role in the pathophysiology of ageing and diabetes. Bioavailable dietary antioxidants like quercetin (QC) are thought to inhibit AGEs formation. This study was aimed to investigate the effect of quercetin on AGE formation and features the glycation of human serum albumin (HSA) and its characterization by various spectroscopic techniques. The effect of quercetin, against the formation of AGEs was studied using a glycated human serum albumin product, haemoglobin-δ-gluconolactone, and aminoguanidine. The results were then corroborated with estimation of protein oxidation, lipid peroxidation and comet assay. On the basis of the experimental data, computational docking studies were then performed to understand the location of the site of quercetin binding and its best bound conformation with respect to human serum albumin. Through this study we have demonstrated the mechanism of formation of AGE and its inhibition by quercetin. We have also suggested that the supplementation with dietary antioxidants like quercetin might protect against free radical toxicity. PMID:25982953

  1. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    PubMed Central

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315

  2. Superior serum half life of albumin tagged TNF ligands

    SciTech Connect

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus; Wajant, Harald

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  3. Induction of intrachromosomal homologous recombination in human cells by raltitrexed, an inhibitor of thymidylate synthase.

    PubMed

    Waldman, Barbara Criscuolo; Wang, Yibin; Kilaru, Kasturi; Yang, Zhengguan; Bhasin, Alaukik; Wyatt, Michael D; Waldman, Alan S

    2008-10-01

    Thymidylate deprivation brings about "thymineless death" in prokaryotes and eukaryotes. Although the precise mechanism for thymineless death has remained elusive, inhibition of the enzyme thymidylate synthase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. Numerous studies have identified a variety of cellular responses to thymidylate deprivation, including disruption of DNA replication and induction of DNA breaks. Since stalled or collapsed replication forks and strand breaks are generally viewed as being recombinogenic, it is not surprising that a link has been demonstrated between recombination induction and thymidylate deprivation in bacteria and lower eukaryotes. A similar connection between recombination and TS inhibition has been suggested by studies done in mammalian cells, but the relationship between recombination and TS inhibition in mammalian cells had not been demonstrated rigorously. To gain insight into the mechanism of thymineless death in mammalian cells, in this work we undertook a direct investigation of recombination in human cells treated with raltitrexed (RTX), a folate analog that is a specific inhibitor of TS. Using a model system to study intrachromosomal homologous recombination in cultured fibroblasts, we provide definitive evidence that treatment with RTX can stimulate accurate recombination events in human cells. Gene conversions not associated with crossovers were specifically enhanced several-fold by RTX. Additional experiments demonstrated that recombination events provoked by a double-strand break (DSB) were not impacted by treatment with RTX, nor was error-prone DSB repair via nonhomologous end-joining. Our work provides evidence that thymineless death in human cells is not mediated by corruption of DSB repair processes and suggests that an increase in chromosomal recombination may be an important element of cellular responses leading to thymineless death

  4. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures

    PubMed Central

    Miranda, Érica G. A.; Tofanello, Aryane; Brito, Adrianne M. M.; Lopes, David M.; Albuquerque, Lindomar J. C.; de Castro, Carlos E.; Costa, Fanny N.; Giacomelli, Fernando C.; Ferreira, Fabio F.; Araújo-Chaves, Juliana C.; Nantes, Iseli L.

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3–12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with

  5. Effects of Gold Salt Speciation and Structure of Human and Bovine Serum Albumins on the Synthesis and Stability of Gold Nanostructures.

    PubMed

    Miranda, Érica G A; Tofanello, Aryane; Brito, Adrianne M M; Lopes, David M; Albuquerque, Lindomar J C; de Castro, Carlos E; Costa, Fanny N; Giacomelli, Fernando C; Ferreira, Fabio F; Araújo-Chaves, Juliana C; Nantes, Iseli L

    2016-01-01

    The present study aimed to investigate the influence of albumin structure and gold speciation on the synthesis of gold nanoparticles (GNPs). The strategy of synthesis was the addition of HAuCl4 solutions at different pH values (3-12) to solutions of human and bovine serum albumins (HSA and BSA) at the same corresponding pH values. Different pH values influence the GNP synthesis due to gold speciation. Besides the inherent effect of pH on the native structure of albumins, the use N-ethylmaleimide (NEM)-treated and heat-denaturated forms of HSA and BSA provided additional insights about the influence of protein structure, net charge, and thiol group approachability on the GNP synthesis. NEM treatment, heating, and the extreme values of pH promoted loss of the native albumin structure. The formation of GNPs indicated by the appearance of surface plasmon resonance (SPR) bands became detectable from 15 days of the synthesis processes that were carried out with native, NEM-treated and heat-denaturated forms of HSA and BSA, exclusively at pH 6 and 7. After 2 months of incubation, SPR band was also detected for all synthesis carried out at pH 8.0. The mean values of the hydrodynamic radius (RH) were 24 and 34 nm for GNPs synthesized with native HSA and BSA, respectively. X-ray diffraction (XRD) revealed crystallites of 13 nm. RH, XRD, and zeta potential values were consistent with GNP capping by the albumins. However, the GNPs produced with NEM-treated and heat-denaturated albumins exhibited loss of protein capping by lowering the ionic strength. This result suggests a significant contribution of non-electrostatic interactions of albumins with the GNP surface, in these conditions. The denaturation of proteins exposes hydrophobic groups to the solvent, and these groups could interact with the gold surface. In these conditions, the thiol blockage or oxidation, the latter probably favored upon heating, impaired the formation of a stable capping by thiol coordination with the

  6. General pharmacology of recombinant human basic fibroblast growth factor.

    PubMed

    Okumura, M; Yajima, M; Nishimura, T; Ikeda, H; Nishimori, T

    1996-07-01

    General pharmacological effects of recombinant human basic fibroblast growth factor (bFGF) were investigated. 1. Central nervous system: Basic FGF produced almost no effect on the general symptoms and behaviors of mice. Basic FGF did not influence the spontaneous motor activity, hexobarbital-induced anesthesia, electroshock seizure threshold, pentylenetetrazole-induced seizure in mice and normal body temperature and spinal reflex in rats up to a dose of 1 mg/kg (s.c., i.v.). As regards pain sensation, it inhibited the acetic acid-induced writhing at 1 mg/kg (s.c.). No abnormal waves were observed in spontaneous EEG of the rabbit up to 1 mg/kg (i.v.) of bFGF, but at 0.1 mg/kg it had a slight effect on the ratio of EEG levels and at 1 mg/kg induced an increase in rest period, disappearance in the period of fast wave sleep and a decrease in the period of deep sleep. 2. Somatic nervous system: Basic FGF did not influence the corneal reflex, twitch response of the skin and diaphragm-phrenic nerve preparations. 3. Autonomic nervous system and smooth muscle: Basic FGF showed little effects on the spontaneous movement of the isolated ileum, contraction induced by various agonists in isolated ileum, resting tension and noradrenaline(NA)-induced contraction of the aorta, resting tension and histamine-induced contraction of isolated trachea, spontaneous movement and 5-HT-induced contraction of isolated strips of stomach fundus, NA-induced contraction of isolated vas deferens of the rat up to the concentration of 10(-4) g/ml. Basic FGF augmented the tone of the isolated non-pregnant uterus at the concentrations of 10(-5) g/ml and above and inhibited or tended to inhibit the contractile tension of non-pregnant or pregnant uterus at 10(-4) g/ml, but it did not influence the spontaneous movement of the uterus, either the non-pregnant or pregnant, under in situ conditions even at a dose of 1 mg/kg (i.v.). Basic FGF did not influence the pupil size. 4. Respiratory and circulatory

  7. Spread of distinct human immunodeficiency virus type 1 AG recombinant lineages in Africa.

    PubMed

    Cornelissen, M; van Den Burg, R; Zorgdrager, F; Goudsmit, J

    2000-02-01

    To identify new subtype G human immunodeficiency virus type 1 (HIV-1) strains and AG recombinant forms, we collected 28 serum samples from immigrants to the Netherlands from 12 countries throughout Africa. Based on the gag sequences 22 isolates were identified as subtype A or G. Phylogenetic analysis of discontinuous regions of the gag (726 nt), pol (1176 nt) and env (276 nt) genes revealed 13 AG recombinants with the mosaic structure A(gag)/G(pol)/A(env), three with A(gag)/G(pol)/G(env) and one other with A(gag) /G(pol)/G(env), in addition to 'pure' subtypes A(gag)/A(pol)/A(env) (n=1) and G(gag)/G(pol)/G(env) (n=4). To analyse the crossover points in more detail, a new RT-PCR was developed resulting in a large contiguous sequence of 2600 nt from the gag region to half the pol region. All the 13 A(gag)/G(pol)/A(env) recombinants appeared to belong to the circulating recombinant form (CRF) AG (IbNG). The three A(gag)/G(pol) /G(env) recombinants differed from the CRF AG (IbNG) subtype, suggesting the identification of a new CRF subtype. The recovery of AG recombinants from African countries a thousand miles apart indicates the active spread of new recombinants. PMID:10644851

  8. Topological Data Analysis Generates High-Resolution, Genome-wide Maps of Human Recombination.

    PubMed

    Camara, Pablo G; Rosenbloom, Daniel I S; Emmett, Kevin J; Levine, Arnold J; Rabadan, Raul

    2016-07-01

    Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs. PMID:27345159

  9. Simultaneous determination of four local anesthetics by CE with ECL and study on interaction between procainamide and human serum albumin.

    PubMed

    Duan, Hong-Bing; Cao, Jun-Tao; Yang, Jiu-Jun; Wang, Hui; Liu, Yan-Ming

    2016-07-01

    A new method of capillary electrophoresis (CE) coupled with tris(2, 2'-bipyridyl) ruthenium(II) electrochemiluminescence (ECL) detection has been developed to detect four local anesthetics procainamide (PAH), tetracaine (TCH), proparacaine (PCH) and cinchocaine (CIN) simultaneously. An europium (III)-doped prussian blue analogue film (Eu-PB) modified platinum electrode was prepared and applied to improve the detection sensitivity. The parameters including additives, concentration and pH of the running buffer, separation voltage and detection potential that affect CE separation and ECL detection were optimized in detail. The four local anesthetics were baseline separated and detected within 10min under the optimized conditions. The detection limits (LOD) of PAH, TCH, PCH and CIN are 5.5×10(-8), 9.6×10(-8), 2.5×10(-8) and 3.5×10(-8)molL(-1) (S/N=3), respectively. RSDs of the migration time for four analytes range from 1.2% to 2.5% within intraday and from 2.4% to 4.9% in interday, RSDs of the peak area for four analytes are from 1.7% to 3.3% within intraday and from 2.2% to 5.6% in interday, respectively. The limits of quantitation (LOQ) (S/N=10) for PAH, TCH, PCH and CIN in human urine sample are 5.9×10(-7), 9.2×10(-7), 8.3×10(-7) and 5.0×10(-7)molL(-1), separately. The recoveries (n=3) of four analytes in human urine are from 87.6% to 107.7% with less than 5.9% in RSDs. The developed method was used to determine four local anesthetics in human urine samples and investigate the interaction between PAH and human serum albumin (HSA). The number of binding sites and the binding constant of PAH with HSA were calculated to be 1.03 and 2.4×10(4)Lmol(-1), respectively. PMID:27154684

  10. In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes.

    PubMed

    Maul, Ronald; Warth, Benedikt; Schebb, Nils Helge; Krska, Rudolf; Koch, Matthias; Sulyok, Michael

    2015-06-01

    The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate. PMID:24927789

  11. Crystallization and X-ray structure of full-length recombinant human butyrylcholinesterase

    SciTech Connect

    Ngamelue, Michelle N.; Homma, Kohei; Lockridge, Oksana; Asojo, Oluwatoyin A.

    2007-09-01

    The first crystals and the 2.8 Å X-ray structure of full-length recombinant human butyrylcholinesterase are reported. Human butyrylcholinesterase (BChE) has been shown to function as an endogenous scavenger of diverse poisons. BChE is a 340 kDa tetrameric glycoprotein that is present in human serum at a concentration of 5 mg l{sup −1}. The well documented therapeutic effects of BChE on cocaine toxicity and organophosphorus agent poisoning has increased the need for effective methods of producing recombinant therapeutic BChE. In order to be therapeutically useful, BChE must have a long circulatory residence time or associate as tetramers. Full-length recombinant BChE produced in Chinese hamster ovary (CHO) cells or human embryonic kidney cells has been shown to associate as monomers, with a shorter circulatory residence time than the naturally occurring tetrameric serum protein. Based on the preceding observation as well as the need to develop novel methodologies to facilitate the mass production of therapeutic recombinant BChE, studies have been initiated to determine the structural basis of tetramer formation. Towards these ends, full-length monomeric recombinant BChE has been crystallized for the first time. A 2.8 Å X-ray structure was solved in space group P42{sub 1}2, with unit-cell parameters a = b = 156, c = 146 Å.

  12. [Generation and preliminary immunological efficacy of a recombinant human adenovirus-rabies virus glycoprotein].

    PubMed

    Wang, Ying; Zhang, Shou-Feng; Liu, Ye; Zhang, Fei; Zhang, Jin-Xia; Hu, Rong-Liang

    2011-09-01

    To construct a recombinant human adenovirus type 5 expressing glycoprotein (GP) of attenuated rabies virus SRV9 and testing immunological efficacy on the immunized mice. Open reading frame of rabies virus GP gene of SRV9 strain was cloned into the shuttle vector of adenovirus expression system in multiple cloning sites to construct the recombinant shuttle plasmid pacAd5 CMV-Gs9, cotransfection was performed into 293AD cells mediated by FuGENE Transfection Reagent with linearized backbone plasmid and recombinant shuttle plasmid, cell cultures were collected after CPE appearance and were identified by PCR and electronmicroscopy, virus titer was measured in 293AD cells. Kunming mice were intraperitoneally injected with 10(6) TCID50 adenovirus, blood for serum preparation was collected through caudal vein pre-immune and post-immune and tested for VNA appearance by fluorescent antibody virus neutralization test (FAVN) detection. Recombinant shuttle plasmid pacAd5 CMV-Gs9 was constructed correctly. A recombinant human adenovirus type 5 was obtained expressing GP protein of rabies virus SRV9. The virus titer reached 10(6) CFU/mL at the least. All mice developed a certain amount of the anti-rabies neutralizing antibody 14 days after intraperitoneal inoculation, while the effective protection rates were 90%. In conclusion, Recombinant adenovirus expressing the rabies virus GP was constructed successfully and a certain amount of neutralizing antibodies were induced in mice, which laid the material foundation for further development of new rabies vaccine. PMID:21998956

  13. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  14. Properties of human immunodeficiency virus type 1 reverse transcriptase recombination upon infection.

    PubMed

    Sakuragi, Sayuri; Shioda, Tatsuo; Sakuragi, Jun-ichi

    2015-11-01

    Reverse transcription (RT) is one of the hallmark features of retroviruses. During RT, virus encoded reverse transcriptase (RTase) must transfer from one end to the other end of the viral genome on two separate occasions to complete RT and move on to the production of proviral DNA. In addition, multiple strand-transfer events between homologous regions of the dimerized viral genome by RTase are also observed, and such recombination events serve as one of the driving forces behind human immunodeficiency virus (HIV) genome sequence diversity. Although retroviral recombination is widely considered to be important, several features of its mechanism are still unclear. We constructed an HIV-1 vector system to examine the target sequences required for virus recombination, and elucidated other necessary prerequisites to harbor recombination, such as the length, homology and the stability of neighbouring structures around the target sequences. PMID:26282329

  15. In vitro and in vivo modifications of recombinant and human IgG antibodies

    PubMed Central

    Liu, Hongcheng; Ponniah, Gomathinayagam; Zhang, Hui-Min; Nowak, Christine; Neill, Alyssa; Gonzalez-Lopez, Nidia; Patel, Rekha; Cheng, Guilong; Kita, Adriana Z; Andrien, Bruce

    2014-01-01

    Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules. PMID:25517300

  16. Copper inhibits activated protein C: protective effect of human albumin and an analogue of its high-affinity copper-binding site, d-DAHK.

    PubMed

    Bar-Or, David; Rael, Leonard T; Winkler, James V; Yukl, Richard L; Thomas, Gregory W; Shimonkevitz, Richard P

    2002-02-01

    Activated protein C (APC) is useful in the treatment of sepsis. Ischemia and acidosis, which often accompany sepsis, cause the release of copper from loosely bound sites. We investigated (i) whether physiological concentrations of copper inhibit APC anticoagulant activity and (ii) if any copper-induced APC inhibition is reversible by human serum albumin (HSA) or a high-affinity copper-binding analogue of the human albumin N-terminus, d-Asp-d-Al