Science.gov

Sample records for recombinant hybrid protein

  1. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  2. Conservation of antigen components from two recombinant hybrid proteins protective against malaria.

    PubMed Central

    Knapp, B; Nau, U; Hundt, E

    1993-01-01

    Recently, we have shown that two hybrid proteins carrying partial sequences of the blood-stage antigens SERP, HRPII, and MSAI from Plasmodium falciparum confer protective immunity on Aotus monkeys against an experimental parasite infection (B. Knapp, E. Hundt, B. Enders, and H. A. Küpper, Infect. Immun. 60:2397-2401, 1992). The malarial components of the hybrid proteins consist of amino acid residues 630 to 892 of SERP, amino acid residues 146 to 260 of MSAI, and the 189 C-terminal residues of HRPII. We have studied the diversity of these protein regions in field isolates of P. falciparum. Genomic DNA was extracted from the blood of six donors from two different areas where malaria is endemic. The gene regions of SERP and MSAI coding for the corresponding sequences of the protective hybrid proteins and the exon II region of the HRPII gene were amplified by polymerase chain reaction and sequenced. All three regions were found to be highly conserved. In the 262-amino-acid fragment of SERP, one single conservative amino acid substitution was found. The exon II region of HRPII showed only a slight variability in number and arrangement of the repeat units. The 115-amino-acid fragment of MSAI which is located within an N-terminal region known to be conserved among different parasite strains was shown to be the most variable among the vaccine components: amino acid substitutions were found in 14 different positions of this MSAI region when both laboratory strains and field isolates were compared. PMID:8432609

  3. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  4. Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment.

    PubMed

    Isidro, Inês A; Portela, Rui M; Clemente, João J; Cunha, António E; Oliveira, Rui

    2016-09-01

    Despite the growing importance of the Pichia pastoris expression system as industrial workhorse, the literature is almost absent in systematic studies on how culture medium composition affects central carbon fluxes and heterologous protein expression. In this study we investigate how 26 variations of the BSM+PTM1 medium impact central carbon fluxes and protein expression in a P. pastoris X-33 strain expressing a single-chain antibody fragment. To achieve this goal, we adopted a hybrid metabolic flux analysis (MFA) methodology, which is a modification of standard MFA to predict the rate of synthesis of recombinant proteins. Hybrid MFA combines the traditional parametric estimation of central carbon fluxes with non-parametric statistical modeling of product-related quantitative or qualitative measurements as a function of central carbon fluxes. It was observed that protein yield variability was 53.6 % (relative standard deviation) among the different experiments. Protein yield is much more sensitive to medium composition than biomass growth, which is mainly determined by the carbon source availability and main salts. Hybrid MFA was able to describe accurately the protein yield with normalized RMSE of 6.3 % over 5 independent experiments. The metabolic state that promotes high protein yields is characterized by high overall metabolic rates through main central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy generating pathways. PMID:27129458

  5. Recombinant protein blends: silk beyond natural design.

    PubMed

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. PMID:26686863

  6. Induction of single and dual cytotoxic T-lymphocyte responses to viral proteins in mice using recombinant hybrid Ty-virus-like particles.

    PubMed

    Layton, G T; Harris, S J; Myhan, J; West, D; Gotch, F; Hill-Perkins, M; Cole, J S; Meyers, N; Woodrow, S; French, T J; Adams, S E; Kingsman, A J

    1996-02-01

    The induction of cytotoxic T-lymphocyte (CTL) responses to viral proteins is thought to be an essential component of protective immunity against viral infections. Methods for generating such responses in a reproducible manner would be of great value in vaccine development. We demonstrate here that the recombinant antigen-presentation system based on the yeast transposon (Ty) particle-forming p1 protein is a potent means of inducing CTL responses to a variety of viral CTL epitopes, including influenza virus nucleoprotein (two epitopes), Sendai virus and vesicular stomatitis virus nucleoproteins, and the V3 loop of human immunodeficiency virus type-1 (HIV-1) gp120. CTL were primed by hybrid Ty-virus-like particles (VLP) carrying the minimal epitope or as much as 19,000 MW of protein. Ty-VLP carrying two different epitopes (dual-epitope Ty-VLP) were capable of priming CTL responses in two different strains of mice or against two epitopes in the same individual. Furthermore, co-administration of a mixture of two different Ty-VLP carrying single epitopes could induce responses to both epitopes in the same individual. Ty-VLP appear to represent a reproducible and flexible system for inducing CTL responses in mice, and warrant further evaluation in primates. PMID:8698376

  7. Immunization of Saimiri sciureus Monkeys with a Recombinant Hybrid Protein Derived from the Plasmodium falciparum Antigen Glutamate-Rich Protein and Merozoite Surface Protein 3 Can Induce Partial Protection with Freund and Montanide ISA720 Adjuvants

    PubMed Central

    Carvalho, Leonardo J. M.; Alves, Francisco A.; Bianco, Cesare; Oliveira, Salma G.; Zanini, Graziela M.; Soe, Soe; Druilhe, Pierre; Theisen, Michael; Muniz, José A. P. C.; Daniel-Ribeiro, Cláudio T.

    2005-01-01

    The immunogenicity and efficacy of a hybrid recombinant protein derived from the N-terminal end of the glutamate-rich protein (GLURP) and the C-terminal portion of the merozoite surface protein 3 (MSP3) of Plasmodium falciparum was evaluated in Saimiri sciureus monkeys. The GLURP/MSP3 hybrid protein, expressed in Lactococcus lactis, was administered in association with alum, Montanide ISA720, or complete or incomplete Freund adjuvant (CFA/IFA) in groups of five animals each. The three formulations were shown to be immunogenic, but the one with alum was shown to be weak compared to the other two, particularly CFA/IFA, which provided very high antibody titers (enzyme-linked immunosorbent assay titers of >3,000,000 and immunofluorescence antibody test titers of 6,400). After a challenge infection with P. falciparum FUP strain, all five monkeys from the GLURP/MSP3-alum group showed a rapid increase in parasitemia, reaching 10% and were treated early. The two monkeys with the highest antibody titers in group GLURP/MSP3-Montanide ISA720 had a delay in the course of parasitemia and were treated late due to a low hematocrit. In the GLURP/MSP3-CFA/IFA group, parasitemia remained below this threshold in four of the five animals and, after it reached a peak, parasitemia started to decrease and monkeys were treated late. When all animals were grouped according to the outcome, a statistically significant association between high antibody titers and partial protection was observed. The challenge infection boosted the antibody titers, and the importance of this event for vaccine efficacy in areas where this parasite is endemic is discussed. In conclusion, these data suggest that GLURP and MSP3 can induce protection against malaria infection if antibodies are induced at properly high titers. PMID:15699417

  8. Improving recombinant protein purification yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  9. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  10. Recombinant protein production and streptomycetes.

    PubMed

    Anné, Jozef; Maldonado, Bárbara; Van Impe, Jan; Van Mellaert, Lieve; Bernaerts, Kristel

    2012-04-30

    The biopharmaceutical market has come a long way since 1982, when the first biopharmaceutical product, recombinant human insulin, was launched. Just over 200 biopharma products have already gained approval. The global market for biopharmaceuticals which is currently valued at over US$99 billion has been growing at an impressive compound annual growth rate over the previous years. To produce these biopharmaceuticals and other industrially important heterologous proteins, different prokaryotic and eukaryotic expression systems are used. All expression systems have some advantages as well as some disadvantages that should be considered in selecting which one to use. Choosing the best one requires evaluating the options--from yield to glycosylation, to proper folding, to economics of scale-up. No host cell from which all the proteins can be universally expressed in large quantities has been found so far. Therefore, it is important to provide a variety of host-vector expression systems in order to increase the opportunities to screen for the most suitable expression conditions or host cell. In this overview, we focus on Streptomyces lividans, a Gram-positive bacterium with a proven excellence in secretion capacity, as host for heterologous protein production. We will discuss its advantages and disadvantages, and how with systems biology approaches strains can be developed to better producing cell factories. PMID:21777629

  11. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  12. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  13. Recombineering BAC transgenes for protein tagging.

    PubMed

    Ciotta, Giovanni; Hofemeister, Helmut; Maresca, Marcello; Fu, Jun; Sarov, Mihail; Anastassiadis, Konstantinos; Stewart, A Francis

    2011-02-01

    Protein tagging offers many advantages for proteomic and regulomic research, particularly due to the use of generic and highly sensitive methods that can be applied with reasonable throughput. Ideally, protein tagging is equivalent to having a high affinity antibody for every chosen protein. However, these advantages are compromised if the tagged protein is overexpressed, which is usually the case from cDNA expression vectors. BAC (bacterial artificial chromosome) transgenes present a way to express a chosen protein at physiological levels with all regulatory elements in their native configurations, including cell cycle, alternative splicing and microRNA regulation. Recombineering has become the method of choice for modifying large constructs like BACs. Here, we present a method for protein tagging by recombineering BACs, transfecting cells and evaluating tagged protein expression. PMID:20868752

  14. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    PubMed

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-01

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. PMID:23306362

  15. Acid extraction and purification of recombinant spider silk proteins.

    PubMed

    Mello, Charlene M; Soares, Jason W; Arcidiacono, Steven; Butler, Michelle M

    2004-01-01

    A procedure has been developed for the isolation of recombinant spider silk proteins based upon their unique stability and solubilization characteristics. Three recombinant silk proteins, (SpI)7, NcDS, and [(SpI)4/(SpII)1]4, were purified by extraction with organic acids followed by affinity or ion exchange chromatography resulting in 90-95% pure silk solutions. The protein yield of NcDS (15 mg/L culture) and (SpI)7 (35 mg/L) increased 4- and 5-fold, respectively, from previously reported values presumably due to a more complete solubilization of the expressed recombinant protein. [(SpI)4/(SpII)1]4, a hybrid protein based on the repeat sequences of spidroin I and spidroin II, had a yield of 12.4 mg/L. This method is an effective, reproducible technique that has broad applicability for a variety of silk proteins as well as other acid stable biopolymers. PMID:15360297

  16. Meiotic Segregation and Male Recombination in Interspecific Hybrids of Drosophila

    PubMed Central

    Coyne, Jerry A.

    1986-01-01

    Male hybrids between three pairs of Drosophila species show no substantial distortion of Mendelian segregation and no appreciable male recombination. These results do not support the theories that meiotic drive alleles of large effect are often fixed within species and that transposable genetic elements cause speciation. PMID:3021573

  17. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining.

    PubMed

    Raghavan, Sathees C; Tong, Jiangen; Lieber, Michael R

    2006-02-01

    In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining. PMID:16275127

  18. Recombinant therapeutic proteins: production platforms and challenges.

    PubMed

    Dingermann, Theo

    2008-01-01

    Since the approval of insulin in 1982, more than 120 recombinant drug substances have been approved and become available as extremely valuable therapeutic options. Exact copying of the most common human form is no longer a value per se, as challenges, primarily related to the pharmacokinetics of artificial recombinant drugs, can be overcome by diverging from the original. However, relatively minor changes in manufacturing or packaging may impact safety of therapeutic proteins. A major achievement is the development of recombinant proteins capable of entering a cell. Such drugs open up completely new opportunities by targeting intracellular mechanisms or by substituting intracellularly operating enzymes. Concerns that protein variants would cause an intolerable immune response turned out to be exaggerated. Although most recombinant drugs provoke some immune response, they are still well tolerated. This knowledge might result in a change in attitude towards antibody formation, i.e., neutralizing antibody activity (in vitro) may be overcome by dosing consistently on the basis of antibody titers and not only on body weight. As with other drugs, efficacy and safety of therapeutic proteins have to be demonstrated in clinical studies, and superiority over available products has to be proven instead of just claimed. PMID:18041103

  19. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  20. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  1. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  2. Recombinant protein scaffolds for tissue engineering.

    PubMed

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-02-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. PMID:22262725

  3. Protein-inorganic hybrid nanoflowers

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Lei, Jiandu; Zare, Richard N.

    2012-07-01

    Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of `nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes with the copper ions, and these complexes become nucleation sites for primary crystals of copper phosphate. Interaction between the protein and copper ions then leads to the growth of micrometre-sized particles that have nanoscale features and that are shaped like flower petals. When an enzyme is used as the protein component of the hybrid nanoflower, it exhibits enhanced enzymatic activity and stability compared with the free enzyme. This is attributed to the high surface area and confinement of the enzymes in the nanoflowers.

  4. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  5. Lipopolysaccharide induced conversion of recombinant prion protein

    PubMed Central

    Saleem, Fozia; Bjorndahl, Trent C; Ladner, Carol L; Perez-Pineiro, Rolando; Ametaj, Burim N; Wishart, David S

    2014-01-01

    The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232). PMID:24819168

  6. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  7. Vidas UP-enzyme-linked fluorescent immunoassay based on recombinant phage protein and fluorescence in situ hybridization as alternative methods for detection of Salmonella enterica serovars in meat.

    PubMed

    Zadernowska, Anna; Chajęcka-Wierzchowska, Wioleta; Kłębukowska, Lucyna

    2014-09-01

    Several methods for the rapid and specific detection of Salmonella spp. in meat have been described. This study was conducted to evaluate the capability of the VIDAS(®) UP (SPT [Salmonella Phage Technology]), an enzyme-linked fluorescent immunoassay method, and fluorescence in situ hybridization (FISH) to complement the International Organization for Standardization Method 6579 (ISO) in detecting Salmonella spp. from beef, pork, and poultry meat samples. The meat was inoculated with a mixture of Salmonella spp. on three levels of contamination. It was also checked that the tests did not produce cross-reactions with other Enterobacteriaceae rods. On the basis of the results, the relative specificity, relative accordance, and relative sensitivity of the method were determined. In meat samples, Vidas UP and FISH detection results were in substantial agreement with ISO, with relative specificity, accordance, and sensitivity rates of 90%, 96.3%, and 100%, respectively, for Vidas UP and 100%, 100%, and 99.4%, respectively, for FISH. This is the first report on the evaluation of both Vidas UP and FISH compared to ISO for the rapid detection of Salmonella enterica serovars in meat. PMID:24971928

  8. Hybrid exciton recombination dynamics in inorganic-organic materials

    SciTech Connect

    Mastour, N. Bouchriha, H.

    2013-12-16

    A systematic analysis of hybrid Frenkel–Wannier–Mott excitons recombination dynamics in nanocomposite material (organic–inorganic) is performed. A theoretical model based on the rate equation is used in the calculation of the light intensity and relative quantum efficiency. Numerical results have been presented for low and high concentration of quantum dots (Qds). Our results show that the light emission and relative quantum efficiency are significantly enhanced by incorporation of Qds in polymer matrix. Moreover our calculations were found to be in good agreement with the experimental data.

  9. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters.

    PubMed

    Puthumana, Jayesh; Philip, Rosamma; Bright Singh, I S

    2016-08-01

    It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation. PMID:25982944

  10. Recombinant HT.sub.m4 gene, protein and assays

    DOEpatents

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  11. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion

    PubMed Central

    Laureau, Raphaëlle; Loeillet, Sophie; Salinas, Francisco; Bergström, Anders; Legoix-Né, Patricia; Liti, Gianni; Nicolas, Alain

    2016-01-01

    In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH), allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG). Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH) events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs) in diploid strains without undergoing sexual reproduction. PMID:26828862

  12. Multivalent Recombinant Protein Vaccine against Coccidioidomycosis

    PubMed Central

    Tarcha, Eric J.; Basrur, Venkatesha; Hung, Chiung-Yu; Gardner, Malcolm J.; Cole, Garry T.

    2006-01-01

    Coccidioidomycosis is a human respiratory disease that is endemic to the southwestern United States and is caused by inhalation of the spores of a desert soilborne fungus. Efforts to develop a vaccine against this disease have focused on identification of T-cell-reactive antigens derived from the parasitic cell wall which can stimulate protective immunity against Coccidioides posadasii infection in mice. We previously described a productive immunoproteomic/bioinformatic approach to the discovery of vaccine candidates which makes use of the translated genome of C. posadasii and a computer-based method of scanning deduced sequences of seroreactive proteins for epitopes that are predicted to bind to human major histocompatibility (MHC) class II-restricted molecules. In this study we identified a set of putative cell wall proteins predicted to contain multiple, promiscuous MHC II binding epitopes. Three of these were expressed by Escherichia coli, combined in a vaccine, and tested for protective efficacy in C57BL/6 mice. Approximately 90% of the mice survived beyond 90 days after intranasal challenge, and the majority cleared the pathogen. We suggest that the multicomponent vaccine stimulates a broader range of T-cell clones than the single recombinant protein vaccines and thereby may be capable of inducing protection in an immunologically heterogeneous human population. PMID:16988258

  13. Recombinant protein vaccines produced in insect cells.

    PubMed

    Cox, Manon M J

    2012-02-27

    The baculovirus-insect cell expression system is a well known tool for the production of complex proteins. The technology is also used for commercial manufacture of various veterinary and human vaccines. This review paper provides an overview of how this technology can be applied to produce a multitude of vaccine candidates. The key advantage of this recombinant protein manufacturing platform is that a universal "plug and play" process may be used for producing a broad range of protein-based prophylactic and therapeutic vaccines for both human and veterinary use while offering the potential for low manufacturing costs. Large scale mammalian cell culture facilities previously established for the manufacturing of monoclonal antibodies that have now become obsolete due to yield improvement could be deployed for the manufacturing of these vaccines. Alternatively, manufacturing capacity could be established in geographic regions that do not have any vaccine production capability. Dependent on health care priorities, different vaccines could be manufactured while maintaining the ability to rapidly convert to producing pandemic influenza vaccine when the need arises. PMID:22265860

  14. Integrated continuous production of recombinant therapeutic proteins.

    PubMed

    Warikoo, Veena; Godawat, Rahul; Brower, Kevin; Jain, Sujit; Cummings, Daniel; Simons, Elizabeth; Johnson, Timothy; Walther, Jason; Yu, Marcella; Wright, Benjamin; McLarty, Jean; Karey, Kenneth P; Hwang, Chris; Zhou, Weichang; Riske, Frank; Konstantinov, Konstantin

    2012-12-01

    In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high-density perfusion CHO cell cultures were operated at a quasi-steady state of 50-60 × 10(6) cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed-batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time-based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch-column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non-value-added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. PMID:22729761

  15. Production of recombinant oxytocin through sulfitolysis of inteincontaining fusion protein.

    PubMed

    Esipov, Roman S; Stepanenko, Vasily N; Chupova, Larisa A; Miroshnikov, Anatoly I

    2012-05-01

    An artificial gene consisting of seven copies of an oxytocinoyl-lysine encoding sequence arranged in a tandem was synthesized and inserted downstream of the SspDnaB intein gene in a pTWIN1 plasmid. The corresponding fusion protein Dnab-7oxy contained 16 cysteine residues and formed inclusion bodies when expressed in E. coli. The standard protocol involving solubilization of the fusion protein and its autocatalytic cleavage on a chitin resin was not effective because of a very low yield of the cleavage reaction. Attempts to perform a refolding of the intein part of the fusion protein in solution were also unsuccessful because of a high level of protein aggregation. Sulfitolysis of cysteine residues is known to increase a solubility of proteins and peptides. Therefore we suggested a one-step approach that combines solubilization of inclusion bodies and sulfitolysis of a hybrid protein. The fusion protein was completely reduced and solubilized in 8M urea at pH 9.0 in the presence of sodium sulfite and sodium tetrathionate. The sulfitized protein was loaded onto a chitin column, an efficient cleavage was induced by a pH shift from 9.0 to 6.5, and seven successively connected oxytocinoyl- lysine units were released. The heptamer was subjected to trypsinolysis yielding sulfitized monomers of oxytocinoyllysine. Oxytocinoyl-lysine was refolded as described previously and treated by carboxypeptidase B to form the oxytocinic acid. The target oxytocin amide was then synthesized via methyl ester intermediate. Using this approach 6 mg of recombinant oxytocin can be obtained from 1 g of biomass. PMID:22316308

  16. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  17. Recombinant HT{sub m4} gene, protein and assays

    DOEpatents

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  18. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  19. Production and secretion of recombinant proteins in Dictyostelium discoideum.

    PubMed

    Dittrich, W; Williams, K L; Slade, M B

    1994-06-01

    We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection. PMID:7764951

  20. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Weidner, Maria; Taupp, Marcus; Hallam, Steven J.

    2010-01-01

    Protein expression in the microbial eukaryotic host Pichia pastoris offers the possibility to generate high amounts of recombinant protein in a fast and easy to use expression system. As a single-celled microorganism P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. Being a eukaryote, P. pastoris is able to perform many of the post-translational modifications performed by higher eukaryotic cells and the obtained recombinant proteins undergo protein folding, proteolytic processing, disulfide bond formation and glycosylation [1]. As a methylotrophic yeast P. pastoris is capable of metabolizing methanol as its sole carbon source. The strong promoter for alcohol oxidase, AOX1, is tightly regulated and induced by methanol and it is used for the expression of the gene of interest. Accordingly, the expression of the foreign protein can be induced by adding methanol to the growth medium [2; 3]. Another important advantage is the secretion of the recombinant protein into the growth medium, using a signal sequence to target the foreign protein to the secretory pathway of P. pastoris. With only low levels of endogenous protein secreted to the media by the yeast itself and no added proteins to the media, a heterologous protein builds the majority of the total protein in the medium and facilitates following protein purification steps [3; 4]. The vector used here (pPICZαA) contains the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest; the α-factor secretion signal for secretion of the recombinant protein, a Zeocin resistance gene for selection in both E. coli and Pichia and a C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant protein. We also show western blot analysis of the recombinant protein using the specific Anti-myc-HRP antibody recognizing the c-myc epitope on the parent vector. PMID:20186119

  1. Optimising yeast as a host for recombinant protein production (review).

    PubMed

    Bonander, Nicklas; Bill, Roslyn M

    2012-01-01

    Having access to suitably stable, functional recombinant protein samples underpins diverse academic and industrial research efforts to understand the workings of the cell in health and disease. Synthesising a protein in recombinant host cells typically allows the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to the native human source cells of many proteins of interest, while also being quick, easy, and cheap to grow and process. Even in these cells the production of some proteins can be plagued by low functional yields. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast cell factories. In this chapter, we provide an overview of the opportunities available to improve yeast as a host system for recombinant protein production. PMID:22454109

  2. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. PMID:24334194

  3. [Processing and Modification of Recombinant Spider Silk Proteins].

    PubMed

    Liu, Bin; Wang, Tao; Liu, Xiaobing; Luo, Yongen

    2015-08-01

    Due to its special sequence structure, spider silk protein has unique physical and chemical properties, mechanical properties and excellent biological properties. With the expansion of the application value of spider silk in many fields as a functional material, progress has been made in the studies on the expression of recombinant spider silk proteins through many host systems by gene recombinant techniques. Recombinant spider silk proteins can be processed into high performance fibers, and a wide range of nonfibrous morphologies. Moreover, for their excellent biocompatibility and low immune response they are ideal for biomedical applications. Here we review the process and mechanism of preparation in vitro, chemistry and genetic engineering modification on recombinant spider silk protein. PMID:26710473

  4. Utilizing Protein-lean Co-products from Corn Containing Recombinant Pharmaceutical Proteins for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were used to produce fuel ethanol and residual r-proteins in the co-product, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein ...

  5. Recombinant human bone morphogenetic protein induces bone formation.

    PubMed Central

    Wang, E A; Rosen, V; D'Alessandro, J S; Bauduy, M; Cordes, P; Harada, T; Israel, D I; Hewick, R M; Kerns, K M; LaPan, P

    1990-01-01

    We have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 micrograms of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans. Images PMID:2315314

  6. A new recombinant hybrid polypeptide and its immunologic adjuvant activity for inactivated infectious bursal disease vaccine.

    PubMed

    Cai, Mei-hong; Zhu, Feng; Wu, Hao-chen; Shen, Ping-ping

    2014-07-01

    Both bursin (Lys-His-Gly-NH2) and Gagnon's peptides (Lys-Asn-Pro-Tyr) can induce B-cell differentiation. However, it is unclear whether a recombinant hybrid polypeptide consisting of a tandem array of 14 copies of bursin and two copies of Gagnon's peptide can induce the proliferative activity of lymphocytes. Here, this recombinant hybrid polypeptide was expressed in Escherichia coli and purified by SDS-PAGE. Various assays showed that it not only promoted B-lymphocyte proliferation in vitro but also increased the titers of antibodies directed against infectious bursal disease virus fourfold in the sera of chickens vaccinated with the inactivated infectious bursal disease virus vaccine. The recombinant hybrid polypeptide also reduced the pathological lesions in the bursa of Fabricius caused by infectious bursal disease virus BC6/85. Our results show that this recombinant hybrid polypeptide may be a promising immune adjuvant. PMID:24652544

  7. Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    PubMed Central

    Bally, Julia; Job, Claudette; Belghazi, Maya; Job, Dominique

    2011-01-01

    Background Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. Methodology/Principal Findings Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. Conclusions/Significance The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation. PMID:21966485

  8. Recombinant protein expression in Escherichia coli: advances and challenges

    PubMed Central

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  9. Self-assembly of tunable protein suprastructures from recombinant oleosin

    PubMed Central

    Vargo, Kevin B.; Parthasarathy, Ranganath; Hammer, Daniel A.

    2012-01-01

    Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications. PMID:22753512

  10. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  11. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success. PMID:21924345

  12. Production of recombinant proteins in microalgae at pilot greenhouse scale.

    PubMed

    Gimpel, Javier A; Hyun, James S; Schoepp, Nathan G; Mayfield, Stephen P

    2015-02-01

    Recombinant protein production in microalgae chloroplasts can provide correctly folded proteins in significant quantities and potentially inexpensive costs compared to other heterologous protein production platforms. The best results have been achieved by using the psbA promoter and 5' untranslated region (UTR) to drive the expression of heterologous genes in a psbA-deficient, non-photosynthetic, algal host. Unfortunately, using such a strategy makes the system unviable for large scale cultivation using natural sunlight for photosynthetic growth. In this study we characterized eight different combinations of 5' regulatory regions and psbA coding sequences for their ability to restore photosynthesis in a psbA-deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psbA promoter/5'UTR. The recombinant protein corresponded to bovine Milk Amyloid A (MAA), which is present in milk colostrum and could be used to prevent infectious diarrhea in mammals. This approach allowed us to identify photosynthetic strains that achieved constitutive production of MAA when grown photosynthetically in 100 L bags in a greenhouse. Under these conditions, the maximum MAA expression achieved was 1.86% of total protein, which corresponded to 3.28 mg/L of culture medium. Within our knowledge, this is the first report of a recombinant protein being produced this way in microalgae. PMID:25116083

  13. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    PubMed

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  14. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  15. Plant cell cultures for the production of recombinant proteins.

    PubMed

    Hellwig, Stephan; Drossard, Jürgen; Twyman, Richard M; Fischer, Rainer

    2004-11-01

    The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems. PMID:15529167

  16. Strand invasion promoted by recombination protein of coliphage

    NASA Astrophysics Data System (ADS)

    Rybalchenko, Nataliya; Golub, Efim I.; Bi, Baoyuan; Radding, Charles M.

    2004-12-01

    Studies of phage in vivo have indicated that its own recombination enzymes, protein and exonuclease, are capable of catalyzing two dissimilar pathways of homologous recombination that are widely distributed in nature: single-strand annealing and strand invasion. The former is an enzymatic splicing of overlapping ends of broken homologous DNA molecules, whereas the latter is characterized by the formation of a three-stranded synaptic intermediate and subsequent strand exchange. Previous studies in vitro have shown that protein has annealing activity, and that exonuclease, acting on branched substrates, can produce a perfect splice that requires only ligation for completion. The present study shows that protein can initiate strand invasion in vitro, as evidenced both by the formation of displacement loops (D-loops) in superhelical DNA and by strand exchange between colinear single-stranded and double-stranded molecules. Thus, protein can catalyze steps that are central to both strand annealing and strand invasion pathways of recombination. These observations add protein to a set of diverse proteins that appear to promote recognition of homology by a unitary mechanism governed by the intrinsic dynamic properties of base pairs in DNA. genetic recombination | phage λ

  17. Genome engineering for improved recombinant protein expression in Escherichia coli.

    PubMed

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-01-01

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review. PMID:25523647

  18. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  19. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  20. Optimizing the yield of recombinant pharmaceutical proteins in plants.

    PubMed

    Twyman, Richard M; Schillberg, Stefan; Fischer, Rainer

    2013-01-01

    The production of recombinant pharmaceutical proteins in plants is entering a new phase with the recent approval of recombinant glucocerebrosidase produced in carrot cells and the successful production of clinical-grade proteins in diverse plant-based production platforms. In the long journey from concept to product, the field of molecular farming has faced technical and economic hurdles, many reflecting the initially limited productivity of plants compared to established platforms such as mammalian cells. This challenge has been met by innovative research aiming to increase recombinant protein yields and maximize the economic benefits of plants. Research has focused on increasing the intrinsic yield capability of plants by optimizing expression construct design, and also on novel strategies to avoid epigenetic silencing and environmental effects on protein accumulation. In this article, we discuss the diverse approaches that have been used to increase the productivity of plant-based platforms for the production of recombinant pharmaceutical proteins and consider future opportunities to maximize the potential of plants and increase their competitiveness outside niche markets. PMID:23394567

  1. Potential of fragment recombination for rational design of proteins.

    PubMed

    Eisenbeis, Simone; Proffitt, William; Coles, Murray; Truffault, Vincent; Shanmugaratnam, Sooruban; Meiler, Jens; Höcker, Birte

    2012-03-01

    It is hypothesized that protein domains evolved from smaller intrinsically stable subunits via combinatorial assembly. Illegitimate recombination of fragments that encode protein subunits could have quickly led to diversification of protein folds and their functionality. This evolutionary concept presents an attractive strategy to protein engineering, e.g., to create new scaffolds for enzyme design. We previously combined structurally similar parts from two ancient protein folds, the (βα)(8)-barrel and the flavodoxin-like fold. The resulting "hopeful monster" differed significantly from the intended (βα)(8)-barrel fold by an extra β-strand in the core. In this study, we ask what modifications are necessary to form the intended structure and what potential this approach has for the rational design of functional proteins. Guided by computational design, we optimized the interface between the fragments with five targeted mutations yielding a stable, monomeric protein whose predicted structure was verified experimentally. We further tested binding of a phosphorylated compound and detected that some affinity was already present due to an intact phosphate-binding site provided by one fragment. The affinity could be improved quickly to the level of natural proteins by introducing two additional mutations. The study illustrates the potential of recombining protein fragments with unique properties to design new and functional proteins, offering both a possible pathway of protein evolution and a protocol to rapidly engineer proteins for new applications. PMID:22329686

  2. Gene A protein cleavage of recombinant plasmids containing the phi X174 replication origin.

    PubMed Central

    Fluit, A C; Baas, P D; Van Boom, J H; Veeneman, G H; Jansz, H S

    1984-01-01

    Synthetic oligonucleotides, DNA ligase and DNA polymerase were used to construct double-stranded DNA fragments homologous to the first 25, 27 or 30 b.p. of the origin of replication of bacteriophage phi X174 (nucleotides 4299-4328 of the phi X174 DNA sequence). The double-stranded DNA fragments were cloned into the unique SmaI or HindIII restriction sites in the kanamycin-resistance gene of pACYC177 (AmpR, KmR). Recombinant plasmids were picked up by colony hybridization. DNA sequencing showed that not only recombinant plasmids with the expected insert were formed, but also recombinant plasmids with a shorter insert. Recombinant plasmids with an insert homologous to the first 24, 25, 26, 27, 28 or all 30 b.p. of the phi X174 origin region were thus obtained. Supercoiled plasmids containing a sequence homologous to the first 27, 28 or 30 b.p. of the phi X174 origin region are nicked by the phi X174 gene A protein. However, the other supercoiled plasmids are not nicked by the phi X174 gene A protein. These results show that the first 27 b.p. of the phi X174 origin region are sufficient as well as required for the initiation step in phi X174 RF DNA replication, i.e. the cleavage by gene A protein. Images PMID:6236428

  3. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  4. [Recombinant proteins containing amino acid sequences of two ectatomin chains].

    PubMed

    Esipov, R S; Gurevich, A I; Kaiushin, A L; Korosteleva, M D; Miroshnikov, A I; Shevchenko, L V; Pluzhnikov, K A; Grishin, E V

    1997-12-01

    Artificial genes for chains A and B of ectatomin, an Ectatomma tuberculatum ant toxin, were obtained by chemical and enzymic synthesis and cloned into new plasmid vectors. Expression plasmids with the genes of hybrid proteins were constructed containing human interleukin-3 or its terminal 63-mer fragment as well as chains A and B of ectatomin, which are linked via a region containing the cleavage site of specific protease, enterokinase (hybrid proteins IL3ETOXA, IL3ETOXB, ILETOXA, and ILETOXB). Escherichia coli producer strains providing a high yield of IL3ETOXA and IL3ETOXB proteins as inclusion bodies were obtained. PMID:9499370

  5. Chemical Polysialylation of Recombinant Human Proteins.

    PubMed

    Smirnov, Ivan V; Vorobiev, Ivan I; Belogurov, Alexey A; Genkin, Dmitry D; Deyev, Sergey M; Gabibov, Alexander G

    2015-01-01

    Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anion-exchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein-PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity. PMID:26082236

  6. Expression and Characterization of Recombinant Campylobacter jejuni Chemotactic Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression and Characterization of Recombinant Campylobacter jejuni Chemotactic Proteins Hung-Yueh Yeh*, Kelli L. Hiett, John E. Line, Brian B. Oakley and Bruce S. Seal, Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, Uni...

  7. Leptospirosis serodiagnosis by ELISA based on recombinant outer membrane protein.

    PubMed

    Chalayon, Piyanart; Chanket, Phanita; Boonchawalit, Toungporn; Chattanadee, Siriporn; Srimanote, Potjanee; Kalambaheti, Thareerat

    2011-05-01

    The outer membrane protein LipL21, LipL32, LipL41 and Loa22 of Leptospira interrogans serovar Copenhageni were previously revealed by immunoproteomic analysis, using sera from acute phase infection in a guinea pig. The full-length DNA of each protein was then cloned from the same serovar and expressed in pRSET vector. The obtained molecular weight (MW) of recombinant proteins rLipL21, rLipL32 and rLoa22 were slightly higher than the MW predicted from nucleotide sequences of each inserted gene, while only the N-terminal half of rLipL41 was obtained. Mice antiserum raised against each purified recombinant protein could react with the whole cell lysate of leptospiral serovars, implying that leptospiral native proteins shared a common epitope with recombinant protein. Serodiagnosis using recombinant protein antigen based on indirect ELISA procedure was developed in this study. The optimization of the ELISA components lead to determination of optical density (OD) from a single serum-dilution of 1:1000 in the leptospirosis patients group and normal healthy control group. The cut off OD values for both IgG and IgM class were investigated, and based on this fixed dilution only the IgG class could be used for differential diagnosis of patients and normal individuals. Compared with the MAT assay, ELISA assay utilizing both rLipL32 and rLoa22 as antigen, gave high accuracy and could thus be useful as a confirmative serology test. PMID:21353274

  8. Construction of pBR322-ara hybrid plasmids by in vivo recombination.

    PubMed

    Horwitz, A H; Heffernan, L; Cass, L; Miyada, C G; Wilcox, G

    1980-01-01

    In vivo recombination was used to clone deletions of the araBAD-araC genes of Escherichia coli onto a hybrid pBR322-ara plasmid. Genetic and physical analyses demonstrated that the desired deletions had been recombined onto the plasmid. In addition to permitting a detailed physical analysis of various ara deletions, this procedure has generated a series of plasmid cloning vehicles that can be used to clone, by in vivo recombination, any ara point mutation located within the region covered by the deletions. Hybrid plasmids containing the cloned point mutation can be distinguished from the original cloning vehicle by genetic complementation. The desired recombinant plasmid can be easily obtained because the frequency of recombination between the plasmid ara region and the chromosomal ara region is 0.025%--3%. A plasmid containing a deletion which removes the ara controlling site region and the araC gene was used to clone two types of araBAD promoter mutations and an araC mutation by in vivo recombination. Genetic and physical analysis of these plasmids established that the mutations in question had been recombined on to the ara deletion plasmid. The application of this procedure to the ara genes and to other genetic systems is discussed. PMID:6255287

  9. Recombinant inbred lines derived from potato interspecific hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant inbred lines (RILs) offer new opportunities for mapping traits of interest to potato breeders. We are developing a set of six RILs, which will comprise a nested association mapping population. The common parent is M6, an inbred line of the diploid wild relative Solanum chacoense. Other g...

  10. Hybrid system of semiconductor and photosynthetic protein.

    PubMed

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. PMID:25091409

  11. Recombinant protein production from stable mammalian cell lines and pools.

    PubMed

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. PMID:27322762

  12. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:24674065

  13. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data. PMID:27165321

  14. Immunodiagnosis of Ehrlichia canis Infection with Recombinant Proteins

    PubMed Central

    McBride, Jere W.; Corstvet, Richard E.; Breitschwerdt, Edward B.; Walker, David H.

    2001-01-01

    Ehrlichia canis causes a potentially fatal rickettsial disease of dogs that requires rapid and accurate diagnosis in order to initiate appropriate therapy leading to a favorable prognosis. We recently reported the cloning of two immunoreactive E. canis proteins, P28 and P140, that were applicable for serodiagnosis of the disease. In the present study we cloned a new immunoreactive E. canis surface protein gene of 1,170 bp, which encodes a protein with a predicted molecular mass of 42.6 kDa (P43). The P43 gene was not detected in E. chaffeensis DNA by Southern blot, and antisera against recombinant P43 (rP43) did not react with E. chaffeensis as detected by indirect fluorescent antibody (IFA) assay. Forty-two dogs exhibiting signs and/or hematologic abnormalities associated with canine ehrlichiosis were tested by IFA assay and by recombinant Western immunoblot. Among the 22 samples that were IFA positive for E. canis, 100% reacted with rP43, 96% reacted with rP28, and 96% reacted with rP140. The specificity of the recombinant proteins compared to the IFAs was 96% for rP28, 88% for P43 and 63% for P140. The results of this study demonstrate that the rP43 and rP28 are sensitive and reliable serodiagnostic antigens for E. canis infections. PMID:11136790

  15. Genetic recombination in Sorghum bicolor x S. macrospermum interspecific hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum has been improved by public and private breeding programs utilizing germplasm mostly from within the species Sorghum bicolor. Until recently, cross-incompatibilities have prevented its hybridization with most species within the genus Sorghum. Utilizing germplasm homozygous for the iap alle...

  16. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  17. Application of a hybrid collisional radiative model to recombining argon plasmas

    NASA Astrophysics Data System (ADS)

    Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.

    1993-02-01

    A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.

  18. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow.

    PubMed

    Christe, Camille; Stölting, Kai N; Bresadola, Luisa; Fussi, Barbara; Heinze, Berthold; Wegmann, Daniel; Lexer, Christian

    2016-06-01

    Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown. PMID:26880192

  19. Breakable Hybrid Organosilica Nanocapsules for Protein Delivery.

    PubMed

    Prasetyanto, Eko Adi; Bertucci, Alessandro; Septiadi, Dedy; Corradini, Roberto; Castro-Hartmann, Pablo; De Cola, Luisa

    2016-03-01

    The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule-containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms. PMID:26643574

  20. Functional insights into recombinant TROSPA protein from Ixodes ricinus.

    PubMed

    Figlerowicz, Marek; Urbanowicz, Anna; Lewandowski, Dominik; Jodynis-Liebert, Jadwiga; Sadowski, Czeslaw

    2013-01-01

    Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia. PMID:24204685

  1. ELISA for brucellosis detection based on three Brucella recombinant proteins.

    PubMed

    Thepsuriyanont, Pikun; Intarapuk, Apiradee; Chanket, Panita; Tunyong, Wittawat; Kalambaheti, Thareerat

    2014-01-01

    Control of brucellosis among farm animals, wildlife and humans require reliable diagnosis. Rose Bengal serological test (RBT) is based on lipopolysaccharide antigen of Brucella, which may cross react with other gram-negative bacteria and produce false positive result. Immunoreactive proteins, such as outer-membrane protein BP26, ribosome recycling factor protein CP24 and Brucella lumazine synthase (BLS), previously reported to be recognized by infected sheep sera, were selected for production of recombinant proteins for use in an ELISA in order to investigate immune response among goats and cows, in comparison with commercial RBT. Cut-off value for ELISA was based on the immune response of in vitro fertilized goats and cows. Goats positive for Brucella culture or by RBT were ELISA positive for either IgG or IgM against at least one recombinant protein. For animals with negative RBT, animals with positive ELISA could be detected, and 61.6% possessed ELISA values as high as in infected animals. Thus, this ELISA procedure is proposed as an alternative to RBT for screening of brucellosis in farm animals. PMID:24964662

  2. Systems biology of recombinant protein production using Bacillus megaterium.

    PubMed

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  3. Mechanism of charge recombination in organic-inorganic hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin; organic Group Team

    2015-03-01

    In the recent popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and open circuit voltages, but the underlying mechanism remains unclear. In this work we study the recombination mechanism in perovskite solar cells and its roles on determining the device performance. Based on macroscopic device model simulations, the recombination resistances (Rrec) under different applied voltages are calculated to characterize the recombination mechanism, and the current density-voltage (J - V) curves are simulated to describe the device performance under at the same time. Through comparison with the impedance spectroscopy (IS) extracted Rrec data, it is found that bimolecular recombination (BR) is the dominant recombination process in the whole applied voltage regime and can determine the open circuit voltage, while the trap-assisted SRH monomolecular recombination (MR) is only important if the trap density is high or the BR rate is significantly reduced. The different electron injection barriers at the contact can induce different patterns for the Rrec- V characteristics. Under the cases of increased band gap or decreased BR rate, the Rrec's are enhanced which leads to high open circuit voltages. We are grateful to the support from the state key laboratory of surface physics, Fudan University.

  4. Tagging recombinant proteins to enhance solubility and aid purification.

    PubMed

    Walls, Dermot; Loughran, Sinéad T

    2011-01-01

    Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined. PMID:20978965

  5. Tracing the recombination and colonization history of hybrid species in space and time.

    PubMed

    Lexer, C; Stölting, K N

    2011-09-01

    Hybrid speciation has long fascinated evolutionary biologists and laymen alike, presumably because it challenges our classical view of evolution as a 'one-way street' leading to strictly tree-like patterns of ancestry and descent. Homoploid hybrid speciation (HHS) has been a particularly interesting puzzle, as it appears to occur extremely rapidly, perhaps within less than 50 generations (McCarthy et al. 1995; Buerkle et al. 2000). Nevertheless, HHS may sometimes involve extended or repeated periods of recombination and gene exchange between populations subject to strong divergent natural selection (Buerkle & Rieseberg 2008). Thus, HHS provides a highly interesting setting for understanding the drivers and tempo of adaptive divergence and speciation in the face of gene flow (Arnold 2006; Rieseberg & Willis 2007; Nolte & Tautz 2009). In the present issue of Molecular Ecology, Wang et al. (2011) explore a particularly challenging issue connected to HHS: they attempt to trace the colonization and recombination history of an ancient (several MYA) hybrid species, from admixture and recombination in the ancestral hybrid zone to subsequent range shifts triggered by tectonic events (uplift of the Tibetan plateau) and climatic shifts (Pleistocene ice ages). This work is important because it addresses key issues related to the origin of the standing genetic variation available for adaptive responses (e.g. to climate change) and speciation in temperate species, which are topics of great current interest (Rieseberg et al. 2003; Barrett & Schluter 2008; de Carvalho et al. 2010). PMID:21902743

  6. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  7. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    PubMed

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  8. Dynamics of unfolded protein response in recombinant CHO cells.

    PubMed

    Prashad, Kamal; Mehra, Sarika

    2015-03-01

    Genes in the protein secretion pathway have been targeted to increase productivity of monoclonal antibodies in Chinese hamster ovary cells. The results have been highly variable depending on the cell type and the relative amount of recombinant and target proteins. This paper presents a comprehensive study encompassing major components of the protein processing pathway in the endoplasmic reticulum (ER) to elucidate its role in recombinant cells. mRNA profiles of all major ER chaperones and unfolded protein response (UPR) pathway genes are measured at a series of time points in a high-producing cell line under the dynamic environment of a batch culture. An initial increase in IgG heavy chain mRNA levels correlates with an increase in productivity. We observe a parallel increase in the expression levels of majority of chaperones. The chaperone levels continue to increase until the end of the batch culture. In contrast, calreticulin and ERO1-L alpha, two of the lowest expressed genes exhibit transient time profiles, with peak induction on day 3. In response to increased ER stress, both the GCN2/PKR-like ER kinase and inositol-requiring enzyme-1alpha (Ire1α) signalling branch of the UPR are upregulated. Interestingly, spliced X-Box binding protein 1 (XBP1s) transcription factor from Ire1α pathway is detected from the beginning of the batch culture. Comparison with the expression levels in a low producer, show much lower induction at the end of the exponential growth phase. Thus, the unfolded protein response strongly correlates with the magnitude and timing of stress in the course of the batch culture. PMID:24504562

  9. Immunogenicity of recombinant Plasmodium falciparum SERA proteins in rodents.

    PubMed

    Barr, P J; Inselburg, J; Green, K M; Kansopon, J; Hahm, B K; Gibson, H L; Lee-Ng, C T; Bzik, D J; Li, W B; Bathurst, I C

    1991-03-01

    We have expressed defined regions of the serine-repeat antigen (SERA) of the Honduras-1 strain of Plasmodium falciparum in the yeast Saccharomyces cerevisiae. Amino-terminal domains of the natural SERA protein have been shown previously to be targets for parasite-inhibitory murine monoclonal antibodies. Two recombinant SERA antigens were selected for purification and immunological analysis. The first (SERA 1), corresponding to amino acids 24-285 of the natural SERA precursor, was expressed by the ubiquitin fusion method. This allowed for in vivo cleavage by endogenous yeast ubiquitin hydrolase, and subsequent isolation of the mature polypeptide. The second, larger protein (SERA N), encompassing amino acids 24-506, was expressed at only low levels using this system, but could be isolated in high yields when fused to human gamma-interferon (gamma-IFN). Each purified protein was used to immunize mice with either Freund's adjuvant or a muramyl tripeptide adjuvant that has been used in humans. Sera from immunized mice were shown to be capable of in vitro inhibition of invasion of erythrocytes by the Honduras-1 strain of P. falciparum. The results suggest that a recombinant SERA antigen may be an effective component of a candidate malaria vaccine. PMID:2052035

  10. Human recombinant neutralizing antibodies against hantaan virus G2 protein.

    PubMed

    Koch, Joachim; Liang, Mifang; Queitsch, Iris; Kraus, Annette A; Bautz, Ekkehard K F

    2003-03-30

    Old world hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS), still present a public health problem in Asia and Eastern Europe. The majority of cases has been recorded in China. The aim of our study was to generate human recombinant neutralizing antibodies to a hantavirus by phage display technology. To preserve the structural identity of viral protein, the panning procedure was performed on native Hantaan (HTN) (76-118) virus propagated in Vero-E6 cells. In total, five complete human recombinant IgG antibodies were produced in a baculovirus expression system. All of them were able to completely neutralize HTN, and Seoul (SEO) virus in a plaque reduction neutralization test (PRNT). Three of these antibodies could also completely neutralize Dobrava (DOB) virus but not Puumala (PUU) virus. All antibodies bind to Hantaan virus G2 protein localized in the virus envelope. The sequence areas within the HTN (76-118)-G2 protein detected by five selected antibodies were mapped using peptide scans. Two partial epitopes, 916-KVMATIDSF-924 and 954-LVTKDIDFD-963, were recognized, which presumably are of paramount importance for docking of the virus to host cell receptors. A consensus motif 916-KVXATIXSF-924 could be identified by mutational analysis. The neutralizing antibodies to the most widely distributed hantaviruses causing HFRS might be promising candidates for the development of an agent for prevention and treatment of HFRS in patients. PMID:12706090

  11. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.

    PubMed

    Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-07-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection. PMID:27160295

  12. Fibroblast adhesion to recombinant tropoelastin expressed as a protein A-fusion protein.

    PubMed Central

    Grosso, L E; Parks, W C; Wu, L J; Mecham, R P

    1991-01-01

    A bovine tropoelastin cDNA encoding exons 15-36 that includes the elastin-receptor binding site was expressed in Escherichia coli as a fusion protein with Protein A from Staphylococcus aureus. After isolation of the fusion protein by affinity chromatography on Ig-Sepharose, the tropoelastin domain was separated from plasmid-pR1T2T-encoded Protein A (Protein A') by CNBr cleavage. Cell-adhesion assays demonstrated specific adhesion to the recombinant tropoelastin. Furthermore, the data indicate that interactions involving the bovine elastin receptor mediate nuchalligament fibroblast adhesion to the recombinant protein. In agreement with earlier studies of fibroblast chemotaxis to bovine tropoelastin, nuchal-ligament fibroblast adhesion demonstrated developmental regulation of the elastin receptor. Images Fig. 2. Fig. 3. PMID:1996952

  13. Hybrid assemblies of fluorescent nanocrystals and membrane proteins in liposomes.

    PubMed

    De Leo, Vincenzo; Catucci, Lucia; Falqui, Andrea; Marotta, Roberto; Striccoli, Marinella; Agostiano, Angela; Comparelli, Roberto; Milano, Francesco

    2014-02-18

    Because of the growing potential of nanoparticles in biological and medical applications, tuning and directing their properties toward a high compatibility with the aqueous biological milieu is of remarkable relevance. Moreover, the capability to combine nanocrystals (NCs) with biomolecules, such as proteins, offers great opportunities to design hybrid systems for both nanobiotechnology and biomedical technology. Here we report on the application of the micelle-to-vesicle transition (MVT) method for incorporation of hydrophobic, red-emitting CdSe@ZnS NCs into the bilayer of liposomes. This method enabled the construction of a novel hybrid proteo-NC-liposome containing, as model membrane protein, the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Electron microscopy confirmed the insertion of NCs within the lipid bilayer without significantly altering the structure of the unilamellar vesicles. The resulting aqueous NC-liposome suspensions showed low turbidity and kept unaltered the wavelengths of absorbance and emission peaks of the native NCs. A relative NC fluorescence quantum yield up to 8% was preserved after their incorporation in liposomes. Interestingly, in proteo-NC-liposomes, RC is not denatured by Cd-based NCs, retaining its structural and functional integrity as shown by absorption spectra and flash-induced charge recombination kinetics. The outlined strategy can be extended in principle to any suitably sized hydrophobic NC with similar surface chemistry and to any integral protein complex. Furthermore, the proposed approach could be used in nanomedicine for the realization of theranostic systems and provides new, interesting perspectives for understanding the interactions between integral membrane proteins and nanoparticles, i.e., in nanotoxicology studies. PMID:24460372

  14. Expression of recombinant green fluorescent protein in Bacillus methanolicus.

    PubMed

    Nilasari, Dewi; Dover, Nir; Rech, Sabine; Komives, Claire

    2012-01-01

    Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein. PMID:22275315

  15. Accelerated protein engineering for chemical biotechnology via homologous recombination.

    PubMed

    Nordwald, Erik M; Garst, Andrew; Gill, Ryan T; Kaar, Joel L

    2013-12-01

    Protein engineering has traditionally relied on random mutagenesis strategies to generate diverse libraries, which require high-throughput screening or selection methods to identify rare variants. Alternatively, approaches to semi-rational library construction can be used to minimize the screening load and enhance the efficiency by which improved mutants may be identified. Such methods are typically limited to characterization of relatively few variants due to the difficulties in generating large rational libraries. New tools from synthetic biology, namely multiplexed DNA synthesis and homologous recombination, provide a promising avenue to rapidly construct large, rational libraries. These technologies also enable incorporation of synthetically encoded features that permit efficient characterization of the fitness of each mutant. Extension of these tools to protein library design could complement rational protein design cycles in an effort to more systematically search complex fitness landscapes. The highly parallelized nature with which such libraries can be generated also has the potential to expand directed protein evolution from single protein targets to protein networks whose concerted activities are required for the biological function of interest. PMID:23540421

  16. Intracellular protein interaction mapping with FRET hybrids

    PubMed Central

    You, Xia; Nguyen, Annalee W.; Jabaiah, Abeer; Sheff, Mark A.; Thorn, Kurt S.; Daugherty, Patrick S.

    2006-01-01

    A quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment. For both SH3 and PDZ domain-type target receptors, physiologically meaningful consensus sequences were apparent among the isolated ligands. The relative dissociation constants of interacting partners could be measured directly by using a dilution series of cell lysates containing FRET hybrids, providing a previously undescribed high-throughput approach to rank the affinity of many interaction partners. FRET hybrid interaction screening provides a powerful tool to discover protein ligands in the cellular context with potential applications to a wide variety of eukaryotic cell types. PMID:17130455

  17. Mapping the Protein-Protein Interactome Networks Using Yeast Two-Hybrid Screens.

    PubMed

    Rajagopala, Seesandra Venkatappa

    2015-01-01

    The yeast two-hybrid system (Y2H) is a powerful method to identify binary protein-protein interactions in vivo. Here we describe Y2H screening strategies that use defined libraries of open reading frames (ORFs) and cDNA libraries. The array-based Y2H system is well suited for interactome studies of small genomes with an existing ORFeome clones preferentially in a recombination based cloning system. For large genomes, pooled library screening followed by Y2H pairwise retests may be more efficient in terms of time and resources, but multiple sampling is necessary to ensure comprehensive screening. While the Y2H false positives can be efficiently reduced by using built-in controls, retesting, and evaluation of background activation; implementing the multiple variants of the Y2H vector systems is essential to reduce the false negatives and ensure comprehensive coverage of an interactome. PMID:26621469

  18. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides.

    PubMed

    Cao, Yu; Yu, Rong Qing; Liu, Yi; Zhou, Huo Xiang; Song, Ling Ling; Cao, Yi; Qiao, Dai Rong

    2010-09-01

    In order to evaluate their antibacterial activities and toxicities, the cecropins-melittin hybrid antimicrobial peptide, CA(1-7)-M(4-11) (CAM) and CB(1-7)-M(4-11) (CBM), were designed by APD2 database. The recombinant hybrid antimicrobial peptides were successfully expressed and purified in Pichia pastoris. Antimicrobial activity assay showed that both of the two hybrid antimicrobial peptides had strong antibacterial abilities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Bacillus thuringiensis, and Salmonella derby. The potency of CAM and CBM to E. coli 25922 were 0.862 and 0.849, respectively, slightly lower than Amp's 0.957. The hemolytic assays indicated CAM and CBM had no hemolytic in vivo and in vitro, and so they had a good application prospect. PMID:20111863

  19. RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins.

    PubMed

    Magner, Daniel B; Blankschien, Matthew D; Lee, Jennifer A; Pennington, Jeanine M; Lupski, James R; Rosenberg, Susan M

    2007-04-27

    The RecQ-helicase family is widespread, is highly conserved, and includes human orthologs that suppress genomic instability and cancer. In vivo, some RecQ homologs promote reduction of steady-state levels of bimolecular recombination intermediates (BRIs), which block chromosome segregation if not resolved. We find that, in vivo, E. coli RecQ can promote the opposite: the net accumulation of BRIs. We report that cells lacking Ruv and UvrD BRI-resolution and -prevention proteins die and display failed chromosome segregation attributable to accumulation of BRIs. Death and segregation failure require RecA and RecF strand exchange proteins. FISH data show that replication is completed during chromosome-segregation failure/death of ruv uvrD recA(Ts) cells. Surprisingly, RecQ (and RecJ) promotes this death. The data imply that RecQ promotes the net accumulation of BRIs in vivo, indicating a second paradigm for the in vivo effect of RecQ-like proteins. The E. coli RecQ paradigm may provide a useful model for some human RecQ homologs. PMID:17466628

  20. RecQ Promotes Toxic Recombination in Cells Lacking Recombination-Intermediate-Removal Proteins

    PubMed Central

    Magner, Daniel B.; Blankschien, Matthew D.; Lee, Jennifer A.; Pennington, Jeanine M.; Lupski, James R.; Rosenberg, Susan M.

    2010-01-01

    Summary The RecQ-helicase family is widespread, highly conserved, and includes human orthologues that suppress genomic instability and cancer. In vivo, some RecQ homologues promote reduction of steady-state levels of bimolecular recombination intermediates (BRIs), which block chromosome segregation if not resolved. We find that in vivo, E. coli RecQ can promote the opposite: the net accumulation of BRIs. We report that cells lacking Ruv and UvrD BRI-resolution and -prevention proteins die and display failed chromosome segregation attributable to accumulation of BRIs. Death and segregation failure require RecA and RecF strand-exchange proteins. FISH data show that replication is completed during chromosome-segregation failure/death of ruv uvrD recA(Ts) cells. Surprisingly, RecQ (and RecJ) promote this death. The data imply that RecQ promotes the net accumulation of BRIs in vivo, indicating a second paradigm for the in-vivo effect of RecQ-like proteins. The E. coli RecQ paradigm may provide a useful model for some human RecQ homologues. PMID:17466628

  1. Recombinant isotope labeled and selenium quantified proteins for absolute protein quantification.

    PubMed

    Zinn, Nico; Winter, Dominic; Lehmann, Wolf D

    2010-03-15

    A novel, widely applicable method for the production of absolutely quantified proteins is described, which can be used as internal standards for quantitative proteomic studies based on mass spectrometry. These standards are recombinant proteins containing an isotope label and selenomethionine. For recombinant protein expression, assembly of expression vectors fitted to cell-free protein synthesis was conducted using the gateway technology which offers fast access to a variety of genes via open reading frame libraries and an easy shuttling of genes between vectors. The proteins are generated by cell-free expression in a medium in which methionine is exchanged against selenomethionine and at least one amino acid is exchanged by a highly stable isotope labeled analogue. After protein synthesis and purification, selenium is used for absolute quantification by element mass spectrometry, while the heavy amino acids in the protein serve as reference in subsequent analyses by LC-ESI-MS or MALDI-MS. Accordingly, these standards are denominated RISQ (for recombinant isotope labeled and selenium quantified) proteins. In this study, a protein was generated containing Lys+6 ([(13)C(6)]-lysine) and Arg+10 ([(13)C(6),(15)N(4)]-arginine) so that each standard tryptic peptide contains a labeled amino acid. Apolipoprotein A1 was synthesized as RISQ protein, and its use as internal standard led to quantification of a reference material within the specified value. Owing to their cell-free expression, RISQ proteins do not contain posttranslational modifications. Thus, correct quantitative data by ESI- or MALDI-MS are restricted to quantifications based on peptides derived from unmodified regions of the analyte protein. Therefore, besides serving as internal standards, RISQ proteins stand out as new tools for quantitative analysis of covalent protein modifications. PMID:20163147

  2. The production of recombinant dengue virus E protein using Escherichia coli and Pichia pastoris.

    PubMed

    Sugrue, R J; Cui, T; Xu, Q; Fu, J; Chan, Y C

    1997-12-01

    The dengue virus envelope protein was expressed as a GST fusion protein using E. coli and P. pastoris as expression hosts. In E. coli the recombinant E protein is expressed initially as a soluble 81 kDa GST fusion protein. Treatment of the fusion protein with thrombin released a 55 kDa protein, which is the expected size for correctly processed, non-glycosylated recombinant E protein. The antiserum from animals immunised with this recombinant E protein was found to specifically recognise the dengue virus E protein in virus-infected cells, thus demonstrating the immunogenic nature of the recombinant E protein. This expression system allowed production of up to 2 mg of purified recombinant E protein from a 1 1 bacterial culture. In contrast, expression of this GST fusion protein in P. pastoris is associated with extensive proteolytic degradation of the recombinant E protein. However, this proteolytic degradation was not observed in the truncated E protein sequences which were expressed. One of these recombinant fusion proteins, GST E401 was secreted into the culture medium at levels of up to 100 microg/l of growth medium. PMID:9504761

  3. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures. PMID:26614282

  4. Reduced recombination patterns in Robertsonian hybrids between chromosomal races of the house mouse: chiasma analyses.

    PubMed

    Dumas, D; Catalan, J; Britton-Davidian, J

    2015-01-01

    The recombination suppression models of chromosomal speciation posit that chromosomal rearrangements act as partial barriers to gene flow allowing these regions to accumulate genetic incompatibilities, thus contributing to the divergence of populations. Empirical and theoretical studies exploring the requirements of these models have mostly focused on the role of inversions. Here, the recombination landscape of heterozygosity for Robertsonian (Rb) fusions is investigated in the house mouse. Laboratory-bred F1 males and females between highly differentiated races from Tunisia (Rb: 2n=22, Standard, St: 2n=40) were produced in which all Rb fusions are present as trivalents in meiosis. Recombination patterns were determined by the analysis of chiasmata and compared with previous data on the Tunisian parental mice. A comparative analysis was performed on wild-caught male mice spanning the hybrid zone between two Italian races (2n=40, 2n=22). The results showed that the chiasma characteristics of both male and female Tunisian F1 and Italian hybrids clearly differed from those of Rb and St mice. Not only was the mean chiasma number (CN) intermediate between those of the parental mice in both geographic samples, but the distribution of chiasmata along the chromosomal arms of the F1 showed a distinct mosaic pattern. In short, the proximal region in the F1 exhibited a reduced CN similar to that observed in homozygous Rb, whereas distal regions more closely matched those in St mice. These results suggest that Rb rearrangements (homozygous or heterozygous) reduce recombination in the proximal regions of the chromosomes supporting their potential role in recombination-mediated speciation models. PMID:25074574

  5. Recombinant baculoviruses as vectors for identifying proteins encoded by intron-containing members of complex multigene families.

    PubMed Central

    Iatrou, K; Meidinger, R G; Goldsmith, M R

    1989-01-01

    Using a transfer vector derived from Bombyx mori nuclear polyhedrosis virus (BmNPV), we have constructed recombinant baculoviruses that contain complete silk moth chorion chromosomal genes encoding high-cysteine proteins under the control of the polyhedrin promoter. Silk moth tissue culture cells infected with these recombinant viruses were found to contain abundant RNA sequences of sizes similar to those of the authentic chorion mRNAs. Chorion transcripts present in infected cells were initiated almost exclusively at the cap site of the polyhedrin start site. Primer extension and RNase protection experiments revealed that a considerable proportion of the resultant transcripts were spliced at the same sites as those utilized in follicular cells for the production of functional chorion mRNA. Electrophoretic analysis and immunoprecipitation of the proteins of host cells infected with the recombinant viruses revealed the presence of the corresponding chorion proteins. We conclude that baculovirus vectors can be used for expressing efficiently not only cDNAs or simple genes devoid of intervening sequences but also intron-containing chromosomal genes. Thus, recombinant baculoviruses offer a powerful alternative to hybrid-selected translation, particularly when the identification of proteins encoded by members of complex multigene families is required. Images PMID:2556701

  6. Extraction and downstream processing of plant-derived recombinant proteins.

    PubMed

    Buyel, J F; Twyman, R M; Fischer, R

    2015-11-01

    glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale. PMID:25922318

  7. Ligand binding and protein relaxation in heme proteins: a room temperature analysis of NO geminate recombination.

    PubMed

    Petrich, J W; Lambry, J C; Kuczera, K; Karplus, M; Poyart, C; Martin, J L

    1991-04-23

    Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well. PMID:2018766

  8. Hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer

    SciTech Connect

    Kim, Taehee; Choi, Jin Young; Jeon, Jun Hong; Kim, Youn-Su; Kim, Bong-Soo; Lee, Doh-Kwon; Kim, Honggon; Han, Seunghee; Kim, Kyungkon

    2012-10-15

    Highlights: ► This work enhanced power conversion efficiency of the hybrid tandem solar cell from 1.0% to 2.6%. ► The interfacial series resistance of the tandem solar cell was eliminated by inserting ITO layer. ► This work shows the feasibility of the highly efficient hybrid tandem solar cells. -- Abstract: We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (V{sub OC} = 1.041 V, J{sub SC} = 2.97 mA/cm{sup 2}, FF = 32.3%) to 2.6% (V{sub OC} = 1.336 V, J{sub SC} = 4.65 mA/cm{sup 2}, FF = 41.98%) due to the eliminated interfacial series resistance.

  9. Activation of V(D)J Recombination Induces the Formation of Interlocus Joints and Hybrid Joints in scid Pre-B-Cell Lines

    PubMed Central

    Lew, Sandra; Franco, Daniel; Chang, Yung

    2000-01-01

    V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations. PMID:10982833

  10. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-01

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294

  11. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Azarhoosh, Pooya; McKechnie, Scott; Frost, Jarvist M.; Walsh, Aron; van Schilfgaarde, Mark

    2016-09-01

    The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  12. Quality Control of Widely Used Therapeutic Recombinant Proteins by a Novel Real-Time PCR Approach

    PubMed Central

    Mamnoon, Babak; Naserpour Farivar, Taghi; Kamyab, Ahmad Reza; Ilghari, Dariush; Khamesipour, Ali; Karimi Arzenani, Mohsen

    2016-01-01

    Background: Existence of bacterial host-cell DNA contamination in biopharmaceutical products is a potential risk factor for patients receiving these drugs. Hence, the quantity of contamination must be controlled under the regulatory standards. Although different methods such as hybridization assays have been employed to determine DNA impurities, these methods are labor intensive and rather expensive. In this study, a rapid real-time PCR test was served as a method of choice to quantify the E. coli host- cell DNA contamination in widely used recombinant streptokinase (rSK), and alpha interferon (IFN-α) preparations. Methods: A specific primer pair was designed to amplify a sequence inside the E. coli 16S rRNA gene. Serial dilutions of DNA extracted from E. coli host cells, along with DNA extracted from Active Pharmaceutical Ingredients of rSK, and IFN-α samples were subjected to an optimized real-time PCR assay based on SYBR Green chemistry. Results: The test enabled us to detect a small quantity of genomic DNA contamination as low as 0.0002 pg in recombinant protein-based drugs. For the first time, this study showed that DNA contamination in rSK and IFN-α preparation manufactured in Pasteur Institute of Iran is much lower than the safety limit suggested by the US FDA. Conclusion: Real-time PCR is a reliable test for rapid detection of host-cell DNA contamination, which is a major impurity of therapeutic recombinant proteins to keep manufacturers’ minds on refining drugs, and provides consumers with safer biopharmaceuticals. PMID:26047906

  13. Strain engineering to prevent norleucine incorporation during recombinant protein production in Escherichia coli.

    PubMed

    Veeravalli, Karthik; Laird, Michael W; Fedesco, Mark; Zhang, Yu; Yu, X Christopher

    2015-01-01

    Incorporation of norleucine in place of methionine residues during recombinant protein production in Escherichia coli is well known. Continuous feeding of methionine is commonly used in E. coli recombinant protein production processes to prevent norleucine incorporation. Although this strategy is effective in preventing norleucine incorporation, there are several disadvantages associated with continuous feeding. Continuous feeding increases the operational complexity and the overall cost of the fermentation process. In addition, the continuous feed leads to undesirable dilution of the fermentation medium possibly resulting in lower cell densities and recombinant protein yields. In this work, the genomes of three E. coli hosts were engineered by introducing chromosomal mutations that result in methionine overproduction in the cell. The recombinant protein purified from the fermentations using the methionine overproducing hosts had no norleucine incorporation. Furthermore, these studies demonstrated that the fermentations using one of the methionine overproducing hosts exhibited comparable fermentation performance as the control host in three different recombinant protein production processes. PMID:25315437

  14. Self-assembly studies of native and recombinant fibrous proteins

    NASA Astrophysics Data System (ADS)

    Wilson, Donna Lucille

    unmodified silk protein. A sequence block from the native primary structure of collagen IV, as well as sequences of selected collagen-modifying enzymes, were manipulated through recombinant DNA technology. Collagen IV is found primarily in the basement membrane of cells and typically characterized by a loose "chicken-mesh" network of individual molecules assembled via their end regions. (Abstract shortened by UMI.)

  15. A Recombinant Multiepitope Protein for Hepatitis B Diagnosis

    PubMed Central

    de Souza, Marilen Queiroz; Galdino, Alexsandro Sobreira; dos Santos, José Carlos; Soares, Marcus Vinicius; de Nóbrega, Yanna C.; Álvares, Alice da Cunha Morales; de Freitas, Sonia Maria; Torres, Fernando Araripe Gonçalves; Felipe, Maria Sueli Soares

    2013-01-01

    Hepatitis B is a liver inflammation caused by hepatitis B virus (HBV) and can be diagnosed in clinical stage by hepatitis B core antibody from IgM class (anti-HBcIgM). Hepatitis B core antibody from IgG class (Anti-HBcIgG) appears quickly after IgM, reaching high titers in chronic hepatitis, and remains even after cure. Since hepatitis B core antibody (anti-HBc) is the first antibody identified and sometimes the only marker detected during the course of infection, it can be used both to indicate HBV acute infection (anti-HBc-IgM) and to identify individuals who have come into contact with the virus (anti-HBc-IgG). In this work we propose a recombinant hepatitis B core multiepitope antigen (rMEHB) to be used for diagnosis of hepatitis B. For this purpose, a synthetic gene coding for rMEHB was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal. Time course induction in E. coli showed an induced protein with an apparent molecular mass of ~21 kDa. Protein purification was performed by a single step with affinity chromatography Ni-NTA. Circular dichroism spectroscopy indicated rMEHB as a thermal stable protein at pH 7.0 and 8.0. In these conditions rMEHB was successfully used to perform an enzyme linked immuno sorbent assay (ELISA) with positive and negative sera. PMID:24294596

  16. A role for homologous recombination proteins in cell cycle regulation

    PubMed Central

    Kostyrko, Kaja; Bosshard, Sandra; Urban, Zuzanna; Mermod, Nicolas

    2015-01-01

    Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling. PMID:26125600

  17. Comparative Evaluation of Recombinant Protein Production in Different Biofactories: The Green Perspective

    PubMed Central

    Capaldi, Stefano

    2014-01-01

    In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms. PMID:24745008

  18. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  19. Sustained release emphasizing recombinant human bone morphogenetic protein-2.

    PubMed

    Hollinger; Uludag; Winn

    1998-05-01

    Bone homeostasis is a dynamic process involving a myriad of cells and substrates modulated by regulatory signals such as hormones, growth and differentiating factors. When this environment is damaged, the regenerative sequalae follows a programmed pattern, and the capacity for successful recovery is often dependent on the extent of the injury. Many bony deficits that are excessively traumatic will not result in complete recovery and require therapeutic intervention(s) such as autografting or grafting from banked bone. However, for numerous reasons, an unacceptably high rate of failure is associated with these conventional therapies. Thus, alternative approaches are under investigation. A class of osteogenic regulatory molecules, the bone morphogenetic proteins (BMPs), have been isolated, cloned and characterized as potent supplements to augment bone regeneration. Optimizing a therapeutic application for BMPs may be dependent upon localized sustained release which in kind relies on a safe and well characterized carrier system. This review will discuss the current status of BMPs in bone regeneration and specifically will present the potential for a clinical therapeutic role of recombinant human BMP-2 sustained release carrier systems. PMID:10837631

  20. Protein-protein interactions in a higher-order structure direct lambda site-specific recombination.

    PubMed

    Thompson, J F; de Vargas, L M; Skinner, S E; Landy, A

    1987-06-01

    The highly directional site-specific recombination of bacteriophage lambda is tightly regulated by the binding of three different proteins to a complex array of sites. The manner in which these reactions are both stimulated and inhibited by co-operative binding of proteins to specific sites on the P arm of attP and AttR has been elucidated by correlation of nuclease protection with recombination studies of both wild-type and mutant DNAs. In addition to co-operative forces, there is a specific competitive interaction that allows the protein-DNA complex to serve as a "biological switch". This switch does not depend upon the simple occlusion of DNA binding sites by neighboring proteins; but, rather, the outcome of this competition is dependent on long-range interactions that vary between the higher-order structures of attP and attR. These higher-order structures are dependent on cooperative interactions involving three proteins binding to five or more sites. PMID:2958633

  1. Recombinant bovine herpesvirus-1 expressing p23 protein of Cryptosporidium parvum induces neutralizing antibodies in rabbits.

    PubMed

    Takashima, Yasuhiro; Xuan, Xuenan; Kimata, Isao; Iseki, Motohiro; Kodama, Yoshikatsu; Nagane, Noriko; Nagasawa, Hideyuki; Matsumoto, Yasunobu; Mikami, Takeshi; Otsuka, Haruki

    2003-04-01

    In order to develop a vaccine against cryptosporidiosis in cattle, we constructed a recombinant bovine herpesvirus-1 (BHV-1) expressing an immunodominant surface protein, p23, of Cryptosporidium parvum sporozoites. In the recombinant virus, the p23 gene under the control of a CAG promoter and a gene coding for an enhanced green fluorescent protein were integrated into the gG gene of BHV-1. Despite a low frequency of homologous recombination, cloning of the recombinants was easy because of the specific fluorescence of the plaques formed by recombinants. These plaques were among the plaques of the nonfluorescent parental virus. All clones selected for fluorescence also contained the p23 gene. In MDBK cells infected with the recombinant BHV-1, the antibody against the p23 protein recognized the p23 protein as an approximately 23-kDa specific band in Western blotting analysis. Rabbits immunized with the recombinant produced IgG against the p23 protein. It was also demonstrated that the sera of immunized rabbits reduced infection of C. parvum sporozoites in HCT-8 cells. The serum of an immunized rabbit reduced infection compared with the normal rabbit serum control. These results indicate that the recombinant BHV-1 induces neutralizing antibodies in rabbits. PMID:12760641

  2. Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests.

    PubMed

    Kiani, Sarfraz; Mohamed, Bahaeldeen Babiker; Shehzad, Kamran; Jamal, Adil; Shahid, Muhammad Naveed; Shahid, Ahmad Ali; Husnain, Tayyab

    2013-07-10

    Plants transformed with single Bt gene are liable to develop insect resistance and this has already been reported in a number of studies carried out around the world where Bt cotton was cultivated on commercial scale. Later, it was envisaged to transform plants with more than one Bt genes in order to combat with resistant larvae. This approach seems valid as various Bt genes possess different binding domains which could delay the likely hazards of insect resistance against a particular Bt toxin. But it is difficult under field conditions to develop homozygous plants expressing all Bt genes equally after many generations without undergoing recombination effects. A number of researches claiming to transform plants from three to seven transgenes in a single plant were reported during the last decade but none has yet applied for patent of homozygous transgenic lines. A better strategy might be to use hybrid-Bt gene(s) modified for improved lectin-binding domains to boost Bt receptor sites in insect midgut. These recombinant-Bt gene(s) would express different lectin domains in a single polypeptide and it is relatively easy to develop homozygous transgenic lines under field conditions. Enhanced chloroplast-localized expression of hybrid-Bt gene would leave no room for insects to develop resistance. We devised and successfully applied this strategy in cotton (Gossypium hirsutum) and data up to T3 generation showed that our transgenic cotton plants were displaying enhanced chloroplast-targeted Cry1Ac-RB expression. Laboratory and field bioassays gave promising results against American bollworm (Heliothis armigera), pink bollworm (Pictinophora scutigera) and fall armyworm (Spodoptera frugiperda) that otherwise, were reported to have evolved resistance against Cry1Ac toxin. Elevated levels of hybrid-Bt toxin were confirmed by ELISA of chloroplast-enriched protein samples extracted from leaves of transgenic cotton lines. While, localization of recombinant Cry1Ac-RB protein in

  3. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.

    PubMed

    Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique

    2016-01-01

    We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts. PMID:26614285

  4. The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori.

    PubMed

    Xu, Hanfu

    2014-10-01

    The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed. PMID:25113390

  5. Production of antigens in Chlamydomonas reinhardtii: green microalgae as a novel source of recombinant proteins.

    PubMed

    Fuhrmann, Markus

    2004-01-01

    Recombinant small-scale proteins are produced in a number of systems, from bacteria like Escherichia coli, through lower eukaryotes like baker's yeast, up to mammalian cell cultures. However, the need for safe and cheap sources of large amounts of recombinant proteins for different purposes, including material sciences, diagnostics, and, of course, medical therapy, has forced the development of alternative production systems. Green microalgae are cheap and easily grown and offer a high protein content, which would seem to make them ideal hosts for the large-scale sustainable production of recombinant proteins in the future. In selected species, recombinant DNA can be introduced into the genomes of the nucleus, the chloroplast, and even the mitochondria, and thus the system offers both prokaryotic (chloroplast, mitochondria) and eukaryotic translation systems for a tailored expression of virtually any protein. PMID:14959830

  6. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  7. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

    PubMed Central

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F.; Nam, Ho-Woo

    2016-01-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  8. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    USGS Publications Warehouse

    Ostberg, Carl O.; Hauser, Lorenz; Pritchard, Victoria L.; Garza, John C.; Naish, Kerry A.

    2013-01-01

    Chromosome rearrangements suppressed recombination in the hybrids. This result supports several previous findings demonstrating that recombination suppression restricts gene flow between chromosomes that differ by arrangement. Conservation of synteny and map order between the hybrid and rainbow trout maps and minimal segregation distortion in the hybrids suggest rainbow and Yellowstone cutthroat trout genomes freely introgress across chromosomes with similar arrangement. Taken together, these results suggest that rearrangements impede introgression. Recombination suppression across rearrangements could enable large portions of non-recombined chromosomes to persist within admixed populations.

  9. Investigating the dynamics of recombinant protein secretion from a microalgal host.

    PubMed

    Lauersen, Kyle J; Huber, Isabel; Wichmann, Julian; Baier, Thomas; Leiter, Andreas; Gaukel, Volker; Kartushin, Viktor; Rattenholl, Anke; Steinweg, Christian; von Riesen, Lena; Posten, Clemens; Gudermann, Frank; Lütkemeyer, Dirk; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    Production of recombinant proteins with microalgae represents an alternative platform over plant- or bacterial-based expression systems for certain target proteins. Secretion of recombinant proteins allows accumulation of the target product physically separate from the valuable algal biomass. To date, there has been little investigation into the dynamics of recombinant protein secretion from microalgal hosts-the culture parameters that encourage secreted product accumulation and stability, while encouraging biomass production. In this work, the efficiency of recombinant protein production was optimized by adjusting cultivation parameters for a strain of Chlamydomonas reinhardtii previously engineered to secrete a functional recombinant Lolium perenne ice binding protein (LpIBP), which has applications as a frozen food texturing and cryopreservation additive, into its culture medium. Three media and several cultivation styles were investigated for effects on secreted LpIBP titres and culture growth. A combination of acetate and carbon dioxide feeding with illumination resulted in the highest overall biomass and recombinant protein titres up to 10mgL(-1) in the culture medium. Pure photoautotrophic production was possible using two media types, with recombinant protein accumulation in all cultivations correlating to culture cell density. Two different cultivation systems were used for scale-up to 10L cultivations, one of which produced yields of secreted recombinant protein up to 12mgL(-1) within six cultivation days. Functional ice recrystallization inhibition (IRI) of the LpIBP from total concentrated extracellular protein extracts was demonstrated in a sucrose solution used as a simplified ice cream model. IRI lasted up to 7 days, demonstrating the potential of secreted products from microalgae for use as food additives. PMID:25975624

  10. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. PMID:26805756

  11. Skeletal ligament healing using the recombinant human amelogenin protein.

    PubMed

    Hanhan, Salem; Ejzenberg, Ayala; Goren, Koby; Saba, Faris; Suki, Yarden; Sharon, Shay; Shilo, Dekel; Waxman, Jacob; Spitzer, Elad; Shahar, Ron; Atkins, Ayelet; Liebergall, Meir; Blumenfeld, Anat; Deutsch, Dan; Haze, Amir

    2016-05-01

    Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 μg/μl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 μg/μl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 μg/μl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers. PMID:26917487

  12. Green Fluorescent Protein as a Visual Marker in Somatic Hybridization

    PubMed Central

    OLIVARES‐FUSTER, O.; PEÑA, L.; DURAN‐VILA, N.; NAVARRO, L.

    2002-01-01

    Using a transgenic citrus plant expressing Green Fluorescent Protein (GFP) as a parent in somatic fusion experiments, we investigated the suitability of GFP as an in vivo marker to follow the processes of protoplast fusion, regeneration and selection of hybrid plants. A high level of GFP expression was detected in transgenic citrus protoplasts, hybrid callus, embryos and plants. It is demonstrated that GFP can be used for the continuous monitoring of the fusion process, localization of hybrid colonies and callus, and selection of somatic hybrid embryos and plants. PMID:12096810

  13. Stabilizing Additives Added during Cell Lysis Aid in the Solubilization of Recombinant Proteins

    PubMed Central

    Leibly, David J.; Nguyen, Trang Nhu; Kao, Louis T.; Hewitt, Stephen N.; Barrett, Lynn K.; Van Voorhis, Wesley C.

    2012-01-01

    Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl2, proline, xylitol, NDSB 201, CTAB and K2PO4) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher. PMID:23285060

  14. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.

    PubMed

    Abdellaoui, Sofiene; Hickey, David P; Stephens, Andrew R; Minteer, Shelley D

    2015-10-01

    The complete electro-oxidation of glycerol to CO2 is performed through an oxidation cascade using a hybrid catalytic system combining a recombinant enzyme, oxalate decarboxylase from Bacillus subtilis, and an organic oxidation catalyst, 4-amino-TEMPO. This system is capable of electrochemically oxidizing glycerol at a carbon electrode collecting all 14 electrons per molecule. PMID:26271633

  15. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  16. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  17. Unique Characteristics of Recombinant Hybrid Manganese Superoxide Dismutase from Staphylococcus equorum and S. saprophyticus.

    PubMed

    Retnoningrum, Debbie S; Rahayu, Anis Puji; Mulyanti, Dina; Dita, Astrid; Valerius, Oliver; Ismaya, Wangsa T

    2016-04-01

    A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at -20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na(+), K(+)), divalent (Ca(2+), Mg(2+)), multivalent (Mn(2+/4+), Zn(2+/4+)) cations and anions (Cl(-), SO4 (2-)) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus. PMID:26960678

  18. Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects.

    PubMed

    Gong, Yangmin; Hu, Hanhua; Gao, Yuan; Xu, Xudong; Gao, Hong

    2011-12-01

    Over the last few years microalgae have gained increasing interest as a natural source of valuable compounds and as bioreactors for recombinant protein production. Natural high-value compounds including pigments, long-chain polyunsaturated fatty acids, and polysaccharides, which have a wide range of applications in the food, feed, cosmetics, and pharmaceutical industries, are currently produced with nontransgenic microalgae. However, transgenic microalgae can be used as bioreactors for the production of therapeutic and industrially relevant recombinant proteins. This technology shows great promise to simplify the production process and significantly decrease the production costs. To date, a variety of recombinant proteins have been produced experimentally from the nuclear or chloroplast genome of transgenic Chlamydomonas reinhardtii. These include monoclonal antibodies, vaccines, hormones, pharmaceutical proteins, and others. In this review, we outline recent progress in the production of recombinant proteins with transgenic microalgae as bioreactors, methods for genetic transformation of microalgae, and strategies for highly efficient expression of heterologous genes. In particular, we highlight the importance of maximizing the value of transgenic microalgae through producing recombinant proteins together with recovery of natural high-value compounds. Finally, we outline some important issues that need to be addressed before commercial-scale production of high-value recombinant proteins and compounds from transgenic microalgae can be realized. PMID:21882013

  19. Bacteriorhodopsin protein hybrids for chemical and biological sensing

    NASA Astrophysics Data System (ADS)

    Winder, Eric Michael

    Bacteriorhodopsin (bR), an optoelectric protein found in Halobacterium salinarum, has the potential for use in protein hybrid sensing systems. Bacteriorhodopsin has no intrinsic sensing properties, however molecular and chemical tools permit production of bR protein hybrids with transducing and sensing properties. As a proof of concept, a maltose binding protein-bacteriorhodopsin ([MBP]-bR) hybrid was developed. It was proposed that the energy associated with target molecule binding, maltose, to the hybrid sensor protein would provide a means to directly modulate the electrical output from the MBP-bR bio-nanosensor platform. The bR protein hybrid is produced by linkage between bR (principal component of purified purple membrane [PM]) and MBP, which was produced by use of a plasmid expression vector system in Escherichia coli and purified utilizing an amylose affinity column. These proteins were chemically linked using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), which facilitates formation of an amide bond between a primary carboxylic acid and a primary amine. The presence of novel protein hybrids after chemical linkage was analyzed by SDS-PAGE. Soluble proteins (MBP-only derivatives and unlinked MBP) were separated from insoluble proteins (PM derivatives and unlinked PM) using size exclusion chromatography. The putatively identified MBP-bR protein hybrid, in addition to unlinked bR, was collected. This sample was normalized for bR concentration to native PM and both were deposited onto indium tin oxide (ITO) coated glass slides by electrophoretic sedimentation. The photoresponse of both samples, activated using 100 Watt tungsten lamp at 10 cm distance, were equal at 175 mV. Testing of deposited PM with 1 mM sucrose or 1 mM maltose showed no change in the photoresponse of the material, however addition of 1 mM maltose to the deposited MBP-bR linked hybrid material elicited a 57% decrease in photoresponse

  20. The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism.

    PubMed

    Martinsohn, Jann T; Radman, Miroslav; Petit, Marie-Agnès

    2008-05-01

    Genome mosaicism in temperate bacterial viruses (bacteriophages) is so great that it obscures their phylogeny at the genome level. However, the precise molecular processes underlying this mosaicism are unknown. Illegitimate recombination has been proposed, but homeologous recombination could also be at play. To test this, we have measured the efficiency of homeologous recombination between diverged oxa gene pairs inserted into lambda. High yields of recombinants between 22% diverged genes have been obtained when the virus Red Gam pathway was active, and 100 fold less when the host Escherichia coli RecABCD pathway was active. The recombination editing proteins, MutS and UvrD, showed only marginal effects on lambda recombination. Thus, escape from host editing contributes to the high proficiency of virus recombination. Moreover, our bioinformatics study suggests that homeologous recombination between similar lambdoid viruses has created part of their mosaicism. We therefore propose that the remarkable propensity of the lambda-encoded Red and Gam proteins to recombine diverged DNA is effectively contributing to mosaicism, and more generally, that a correlation may exist between virus genome mosaicism and the presence of Red/Gam-like systems. PMID:18451987

  1. Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination.

    PubMed Central

    Grishchuk, A L; Kohli, J

    2003-01-01

    The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles. PMID:14668362

  2. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    PubMed

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  3. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    PubMed Central

    Scriber, Jon Mark

    2013-01-01

    Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes

  4. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  5. Recombinant protein production data after expression in the bacterium Escherichia coli.

    PubMed

    Cantu-Bustos, J Enrique; Cano Del Villar, Kevin D; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-06-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography. PMID:27014739

  6. Recombinant protein production data after expression in the bacterium Escherichia coli

    PubMed Central

    Cantu-Bustos, J. Enrique; Cano del Villar, Kevin D.; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-01-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography. PMID:27014739

  7. Recombinant production and film properties of full-length hornet silk proteins.

    PubMed

    Kambe, Yusuke; Sutherland, Tara D; Kameda, Tsunenori

    2014-08-01

    Full-length versions of the four main components of silk cocoons of Vespa simillima hornets, Vssilk1-4, were produced as recombinant proteins in Escherichia coli. In shake flasks, the recombinant Vssilk proteins yielded 160-330mg recombinant proteinl(-1). Films generated from solutions of single Vssilk proteins had a secondary structure similar to that of films generated from native hornet silk. The films made from individual recombinant hornet silk proteins had similar or enhanced mechanical performance compared with films generated from native hornet silk, possibly reflecting the homogeneity of the recombinant proteins. The pH-dependent changes in zeta (ζ) potential of each Vssilk film were measured, and isoelectric points (pI) of Vssilk1-4 were determined as 8.9, 9.1, 5.0 and 4.2, respectively. The pI of native hornet silk, a combination of the four Vssilk proteins, was 4.7, a value similar to that of Bombyx mori silkworm silk. Films generated from Vssilk1 and 2 had net positive charge under physiological conditions and showed significantly higher cell adhesion activity. It is proposed that recombinant hornet silk is a valuable new material with potential for cell culture applications. PMID:24862540

  8. Purification of human recombinant interleukin 1 receptor antagonist proteins upon Bacillus subtilis sporulation.

    PubMed

    Maurizi, G; Di Cioccio, V; Macchia, G; Bossù, P; Bizzarri, C; Visconti, U; Boraschi, D; Tagliabue, A; Ruggiero, P

    1997-03-01

    Human interleukin 1 receptor antagonist (IL-1ra) and IL-1ra mutants were constitutively expressed in recombinant Bacillus subtilis in endocellular and active form. In order to optimize the purification of the recombinant proteins, a new method has been developed. After bacterial growth in fermenter, release of recombinant protein was achieved by starvation-induced sporulation. The sporulation supernatant was recovered by centrifugation, filtered, and subjected sequentially to cation- and anion-exchange chromatography. Alternatively, the fermenter's contents were directly subjected to expanded bed adsorption on a Streamline cation-exchange column, thus avoiding the centrifugation and filtration steps. Up to 88 mg of biological active purified recombinant protein per liter of culture was obtained, with a 72-79% recovery and 98% purity, depending on the molecule. By using the method described here, it is possible to achieve a spontaneous release of recombinant proteins expressed endocellularly at high levels in B. subtilis without need of a cell breakage step. Thus, this method could allow purification of the endocellular recombinant protein as if it were secreted. Furthermore, when using the expanded bed adsorption, highly purified protein was obtained in only two steps after sporulation. Among the advantages of the method, one of the most relevant is the possibility of keeping the system closed up to completion of the first purification step. PMID:9056487

  9. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins.

    PubMed Central

    von Specht, B U; Knapp, B; Muth, G; Bröker, M; Hungerer, K D; Diehl, K D; Massarrat, K; Seemann, A; Domdey, H

    1995-01-01

    Recombinant outer membrane proteins (Oprs) of Pseudomonas aeruginosa were expressed in Escherichia coli as glutathione S-transferase (GST)-linked fusion proteins. GST-linked Oprs F and I (GST-OprF190-350 [GST linked to OprF spanning amino acids 190 to 350] and GST-OprI21-83, respectively) and recombinant hybrid Oprs (GST-OprF190-342-OprI21-83 and GST-OprI21-83-OprF190-350) were isolated and tested for their efficacy as vaccines in immunodeficient mice. GST-OprF-OprI protected the mice against a 975-fold 50% lethal dose of P. aeruginosa. Expression of GST-unfused OprF-OprI failed in E. coli, although this hybrid protein has been expressed without a fusion part in Saccharomyces cerevisiae and used for immunizing rabbits. The immune rabbit sera protected severe combined deficient (SCID) mice against a 1,000-fold 50% lethal dose of P. aeruginosa. Evidence is provided to show that the most C-terminal part of OprF (i.e., amino acids 332 to 350) carries an important protective epitope. Opr-based hybrid proteins may have implications for a clinical vaccine against P. aeruginosa. PMID:7729895

  10. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter.

    PubMed

    Braun-Galleani, Stephanie; Baganz, Frank; Purton, Saul

    2015-08-01

    Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually. PMID:26098300

  11. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter

    PubMed Central

    Baganz, Frank; Purton, Saul

    2015-01-01

    Abstract Microalgae have potential as platforms for the synthesis of high‐value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low‐cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co‐expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl‐1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl‐1. This study suggests that recombinant protein expression is product‐specific and needs to be optimized individually. PMID:26098300

  12. Transforming the treatment for hemophilia B patients: update on the clinical development of recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP).

    PubMed

    Santagostino, Elena

    2016-05-01

    Recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP; Idelvion®(†)) is an innovative new treatment designed to extend the half-life of factor IX (FIX) and ease the burden of care for hemophilia B patients. The rIX-FP clinical development program - PROLONG-9FP - is in its advanced phases, with pivotal studies in previously treated adults, adolescents, and pediatrics now completed. Across all age groups studied, rIX-FP has demonstrated a markedly improved pharmacokinetic profile compared with plasma-derived and recombinant FIX treatments, with a 30-40% higher incremental recovery, an approximately 5-fold longer half-life, a lower clearance, and a greater area under the curve. rIX-FP has been very well tolerated with an excellent safety profile. In the pivotal studies, there have been no reports of FIX inhibitors or antidrug antibodies, and few treatment-related adverse events have been observed. Prophylactic regimens of rIX-FP administered once weekly to once every 14 days have been highly effective. When used for surgical prophylaxis, a single infusion of rIX-FP has been sufficient to maintain hemostasis, even during major orthopedic surgery. An ongoing study is now enrolling previously untreated patients and evaluating the possibility of extending the dosing interval to every 21 days. There is little doubt that rIX-FP will transform the treatment of hemophilia B. PMID:27288064

  13. Complement factor H–related hybrid protein deregulates complement in dense deposit disease

    PubMed Central

    Chen, Qian; Wiesener, Michael; Eberhardt, Hannes U.; Hartmann, Andrea; Uzonyi, Barbara; Kirschfink, Michael; Amann, Kerstin; Buettner, Maike; Goodship, Tim; Hugo, Christian; Skerka, Christine; Zipfel, Peter F.

    2013-01-01

    The renal disorder C3 glomerulopathy with dense deposit disease (C3G-DDD) pattern results from complement dysfunction and primarily affects children and young adults. There is no effective treatment, and patients often progress to end-stage renal failure. A small fraction of C3G-DDD cases linked to factor H or C3 gene mutations as well as autoantibodies have been reported. Here, we examined an index family with 2 patients with C3G-DDD and identified a chromosomal deletion in the complement factor H–related (CFHR) gene cluster. This deletion resulted in expression of a hybrid CFHR2-CFHR5 plasma protein. The recombinant hybrid protein stabilized the C3 convertase and reduced factor H–mediated convertase decay. One patient was refractory to plasma replacement and exchange therapy, as evidenced by the hybrid protein quickly returning to pretreatment plasma levels. Subsequently, complement inhibitors were tested on serum from the patient for their ability to block activity of CFHR2-CFHR5. Soluble CR1 restored defective C3 convertase regulation; however, neither eculizumab nor tagged compstatin had any effect. Our findings provide insight into the importance of CFHR proteins for C3 convertase regulation and identify a genetic variation in the CFHR gene cluster that promotes C3G-DDD. Monitoring copy number and sequence variations in the CFHR gene cluster in C3G-DDD and kidney patients with C3G-DDD variations will help guide treatment strategies. PMID:24334459

  14. Elimination of truncated recombinant protein expressed in Escherichia coli by removing cryptic translation initiation site.

    PubMed

    Jennings, Matthew J; Barrios, Adam F; Tan, Song

    2016-05-01

    Undesirable truncated recombinant protein products pose a special expression and purification challenge because such products often share similar chromatographic properties as the desired full length protein. We describe here our observation of both full length and a truncated form of a yeast protein (Gcn5) expressed in Escherichia coli, and the reduction or elimination of the truncated form by mutating a cryptic Shine-Dalgarno or START codon within the Gcn5 coding region. Unsuccessful attempts to engineer in a cryptic translation initiation site into other recombinant proteins suggest that cryptic Shine-Dalgarno or START codon sequences are necessary but not sufficient for cryptic translation in E. coli. PMID:26739786

  15. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature. PMID:22627880

  16. Design of high-affinity S100-target hybrid proteins.

    PubMed

    Rezvanpour, Atoosa; Phillips, Jeremy M; Shaw, Gary S

    2009-12-01

    S100B and S100A10 are dimeric, EF-hand proteins. S100B undergoes a calcium-dependent conformational change allowing it to interact with a short contiguous sequence from the actin-capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N-terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100-target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1-15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by (1)H-(15)N HSQC spectra showed the linker did not perturb the structures of the S100A10-annexin A2 or S100B-TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments ((1)H, (15)N, and (13)C) showed that residues T102-S108 of annexin A2 formed a well-defined alpha-helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N-terminus with a single turn of alpha-helix from D108-K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes. PMID:19827097

  17. An optimized protocol for overproduction of recombinant protein expression in Escherichia coli.

    PubMed

    Bahreini, Elham; Aghaiypour, Khosrow; Abbasalipourkabir, Roghayeh; Goodarzi, Mohammad Taghi; Saidijam, Massoud; Safavieh, Sedigheh Sadat

    2014-01-01

    The gram-negative bacterium Escherichia coli (E. coli) offers a means for rapid, high-yield, and economical production of recombinant proteins. Here, a protocol for optimization of parameters involved in bacterial expression conditions is described. L-Asparaginase (ASNase II) was chosen as a model protein for our experiments. ASNase II gene (ansB) was cloned into the pAED4 plasmid and transformed into E. coli BL21pLysS (DE3)-competent cells. It was assumed that high cell density and high copy number of recombinant plasmid in the bacteria host could result in very high production of the recombinant protein. Circumstances for the overproduction of recombinant ASNase II including cell growth conditions, isopropyl β-D-1-thiogalactopyranoside (IPTG) level, ampicillin (Amp) concentration before and during IPTG induction, and cell density were optimized. Regarding the final optimization, overexpression of ASNase II was assessed on a large scale in LB medium. Periplasmic ASNase II was extracted using an alkaline lysis method. The extracted protein was purified by one-step DEAE-Sepharose fast-flow chromatography. ASNase II activity was considered an index for the protein expression. Applying the optimized practical protocol, protein production was significantly enhanced in comparison to the traditional IPTG induction method in the absence of a fermentor and can be applied for overexpression of other recombinant proteins. PMID:24219068

  18. The devil and holy water: protein and carbon nanotube hybrids.

    PubMed

    Calvaresi, Matteo; Zerbetto, Francesco

    2013-11-19

    Integrating carbon nanotubes (CNTs) with biological systems to form hybrid functional assemblies is an innovative research area with great promise for medical, nanotechnology, and materials science applications. The specifics of molecular recognition and catalytic activity of proteins combined with the mechanical and electronic properties of CNTs provides opportunities for physicists, chemists, biologists, and materials scientists to understand and develop new nanomachines, sensors, or any of a number of other molecular assemblies. Researchers know relatively little about the structure, function, and spatial orientation of proteins noncovalently adsorbed on CNTs, yet because the interaction of CNTs with proteins depends strongly on the tridimensional structure of the proteins, many of these questions can be answered in simple terms. In this Account, we describe recent research investigating the properties of CNT/protein hybrids. Proteins act to solvate CNTs and may sort them according to diameter or chirality. In turn, CNTs can support and immobilize enzymes, creating functional materials. Additional applications include proteins that assemble ordered hierarchical objects containing CNTs, and CNTs that act as protein carriers for vaccines, for example. Protein/CNT hybrids can form bioscaffolds and can serve as therapeutic and imaging materials. Proteins can detect CNTs or coat them to make them biocompatible. One of the more challenging applications for protein/CNT hybrids is to make CNT substrates for cell growth and neural interfacing applications. The challenge arises from the structures' interactions with living cells, which poses questions surrounding the (nano)toxicology of CNTs and whether and how CNTs can detect biological processes or sense them as they occur. The surface chemistry of CNTs and proteins, including interactions such as π-π stacking interactions, hydrophobic interactions, surfactant-like interactions, and charge-π interactions, governs the

  19. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast

    PubMed Central

    Vidi, Pierre-Alexandre; Kessler, Felix; Bréhélin, Claire

    2007-01-01

    Background The potential of transgenic plants for cost-effective production of pharmaceutical molecules is now becoming apparent. Plants have the advantage over established fermentation systems (bacterial, yeast or animal cell cultures) to circumvent the risk of pathogen contamination, to be amenable to large scaling up and to necessitate only established farming procedures. Chloroplasts have proven a useful cellular compartment for protein accumulation owing to their large size and number, as well as the possibility for organellar transformation. They therefore represent the targeting destination of choice for recombinant proteins in leaf crops such as tobacco. Extraction and purification of recombinant proteins from leaf material contribute to a large extent to the production costs. Developing new strategies facilitating these processes is therefore necessary. Results Here, we evaluated plastoglobule lipoprotein particles as a new subchloroplastic destination for recombinant proteins. The yellow fluorescent protein as a trackable cargo was targeted to plastoglobules when fused to plastoglobulin 34 (PGL34) as the carrier. Similar to adipocyte differentiation related protein (ADRP) in animal cells, most of the protein sequence of PGL34 was necessary for targeting to lipid bodies. The recombinant protein was efficiently enriched in plastoglobules isolated by simple flotation centrifugation. The viability of plants overproducing the recombinant protein was not affected, indicating that plastoglobule targeting did not significantly impair photosynthesis or sugar metabolism. Conclusion Our data identify plastoglobules as a new targeting destination for recombinant protein in leaf crops. The wide-spread presence of plastoglobules and plastoglobulins in crop species promises applications comparable to those of transgenic oilbody-oleosin technology in molecular farming. PMID:17214877

  20. Mitotic Illegitimate Recombination Is a Mechanism for Novel Changes in High-Molecular-Weight Glutenin Subunits in Wheat-Rye Hybrids

    PubMed Central

    Yuan, Zhongwei; Liu, Dengcai; Zhang, Lianquan; Zhang, Li; Chen, Wenjie; Yan, Zehong; Zheng, Youliang; Zhang, Huaigang; Yen, Yang

    2011-01-01

    Wide hybrids can have novel traits or changed expression of a quantitative trait that their parents do not have. These phenomena have long been noticed, yet the mechanisms are poorly understood. High-molecular-weight glutenin subunits (HMW-GS) are seed storage proteins encoded by Glu-1 genes that only express in endosperm in wheat and its related species. Novel HMW-GS compositions have been observed in their hybrids. This research elucidated the molecular mechanisms by investigating the causative factors of novel HMW-GS changes in wheat-rye hybrids. HMW-GS compositions in the endosperm and their coding sequences in the leaves of F1 and F2 hybrids between wheat landrace Shinchunaga and rye landrace Qinling were investigated. Missing and/or additional novel HMW-GSs were observed in the endosperm of 0.5% of the 2078 F1 and 22% of 36 F2 hybrid seeds. The wildtype Glu-1Ax null allele was found to have 42 types of short repeat sequences of 3-60 bp long that appeared 2 to 100 times. It also has an in-frame stop codon in the central repetitive region. Analyzing cloned allele sequences of HMW-GS coding gene Glu-1 revealed that deletions involving the in-frame stop codon had happened, resulting in novel ∼1.8-kb Glu-1Ax alleles in some F1 and F2 plants. The cloned mutant Glu-1Ax alleles were expressed in Escherichia coli, and the HMW-GSs produced matched the novel HMW-GSs found in the hybrids. The differential changes between the endosperm and the plant of the same hybrids and the data of E. coli expression of the cloned deletion alleles both suggested that mitotic illegitimate recombination between two copies of a short repeat sequence had resulted in the deletions and thus the changed HMW-GS compositions. Our experiments have provided the first direct evidence to show that mitotic illegitimate recombination is a mechanism that produces novel phenotypes in wide hybrids. PMID:21887262

  1. Tying up the loose ends: circular permutation decreases the proteolytic susceptibility of recombinant proteins.

    PubMed

    Whitehead, Timothy A; Bergeron, Lisa M; Clark, Douglas S

    2009-10-01

    Recombinant proteins often suffer from poor expression because of proteolysis. Existing genetic engineering or fermentation strategies work for only a subset of cases where higher recombinant protein expression is needed. In this paper, we describe the use of circular permutation, wherein the original termini of a protein are concatenated and new termini are generated elsewhere with the sequence, as a general protein engineering strategy to produce full-length, active recombinant protein. We show that a circularly permuted variant of the thermosome (Group II chaperonin) from Methanocaldococcus jannaschii exhibited reduced proteolysis and increased expression in three different strains of Escherichia coli. Circular permutation of a different protein, TEM-1 beta-lactamase, by a similar method increased the expression lifetime of the protein in the periplasm of E. coli. Both circularly permuted proteins maintained activity near their wild-type counterparts and design criteria for selecting the sites for circular permutation are discussed. It is expected that this method will find broad utility for enhanced expression of recombinant proteins when proteolysis is a factor. PMID:19622546

  2. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    PubMed

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines. PMID:23857606

  3. Protein-protein complex structure predictions by multimeric threading and template recombination

    PubMed Central

    Mukherjee, Srayanta; Zhang, Yang

    2011-01-01

    Summary The number of protein-protein complex structures is nearly 6-times smaller than that of tertiary structures in PDB which limits the power of homology-based approaches to complex structure modeling. We present a new threading-recombination approach, COTH, to boost the protein complex structure library by combining tertiary structure templates with complex alignments. The query sequences are first aligned to complex templates using a modified dynamic programming algorithm, guided by ab initio binding-site predictions. The monomer alignments are then shifted to the multimeric template framework by structural alignments. COTH was tested on 500 non-homologous dimeric proteins, which can successfully detect correct templates for half of the cases after homologous templates are excluded, which significantly outperforms conventional homology modeling algorithms. It also shows a higher accuracy in interface modeling than rigid-body docking of unbound structures from ZDOCK although with lower coverage. These data demonstrate new avenues to model complex structures from non-homologous templates. PMID:21742262

  4. Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids.

    PubMed

    Mason, Annaliese S; Nelson, Matthew N; Castello, Marie-Claire; Yan, Guijun; Cowling, Wallace A

    2011-02-01

    We investigated the influence of genotype on homoeologous and homologous recombination frequency in eight different Brassica napus (AAC(n)C(n)) × B. carinata (BBC(c)C(c)) interspecific hybrids (genome composition C(n)C(c)AB). Meiotic recombination events were assessed through microsatellite marker analysis of 67 unreduced microspore-derived progeny. Thirty-four microsatellite markers amplified 83 A-, B-, C(n)- and C(c)-genome alleles at 64 loci, of which a subset of seven markers amplifying 26 alleles could be used to determine allele copy number. Hybrid genotypes varied significantly in loss of A- and B-genome alleles (P < 0.0001), which ranged from 6 to 22% between hybrid progeny sets. Allele copy number analysis revealed 19 A-C, 3 A-B and 10 B-C duplication/deletion events attributed to homoeologous recombination. Additionally, 55 deletions and 19 duplications without an accompanying dosage change in homoeologous alleles were detected. Hybrid progeny sets varied in observed frequencies of loss, gain and exchange of alleles across the A and B genomes as well as in the diploid C genome. Self-fertility in hybrid progeny decreased as the loss of B-genome loci (but not A-genome loci) increased. Hybrid genotypes with high levels of homologous and homoeologous exchange may be exploited for genetic introgressions between B. carinata and B. napus (canola), and those with low levels may be used to develop stable synthetic Brassica allopolyploids. PMID:21046065

  5. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  6. Production of recombinant protein in Escherichia coli cultured in extract from waste product alga, Ulva lactuca.

    PubMed

    Rechtin, Tammy M; Hurst, Matthew; Potts, Tom; Hestekin, Jamie; Beitle, Robert; McLaughlin, John; May, Peter

    2014-01-01

    This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six-months-old were able to produce two-fold more GFP protein than traditional Lysogeny Broth media. PMID:24799463

  7. Biomimetic production of silk-like recombinant squid sucker ring teeth proteins.

    PubMed

    Ding, Dawei; Guerette, Paul A; Hoon, Shawn; Kong, Kiat Whye; Cornvik, Tobias; Nilsson, Martina; Kumar, Akshita; Lescar, Julien; Miserez, Ali

    2014-09-01

    The sucker ring teeth (SRT) of Humboldt squid exhibit mechanical properties that rival those of robust engineered synthetic polymers. Remarkably, these properties are achieved without a mineral phase or covalent cross-links. Instead, SRT are exclusively made of silk-like proteins called "suckerins", which assemble into nanoconfined β-sheet reinforced supramolecular networks. In this study, three streamlined strategies for full-length recombinant suckerin protein production and purification were developed. Recombinant suckerin exhibited high solubility and colloidal stability in aqueous-based solvents. In addition, the colloidal suspensions exhibited a concentration-dependent conformational switch, from random coil to β-sheet enriched structures. Our results demonstrate that recombinant suckerin can be produced in a facile manner in E. coli and processed from mild aqueous solutions into materials enriched in β-sheets. We suggest that recombinant suckerin-based materials offer potential for a range of biomedical and engineering applications. PMID:25068184

  8. Overexpression and Enzymatic Assessment of Antigenic Fragments of Hyaluronidase Recombinant Protein From Streptococcus pyogenes

    PubMed Central

    Sadoogh Abbasian, Shabnam; Ghaznavi Rad, Ehsanollah; Akbari, Neda; Zolfaghari, Mohammad Reza; pakzad, Iraj; Abtahi, Hamid

    2014-01-01

    Background: Hyaluronidase catalyzes the hydrolysis of hyaluronan polymers to N-acetyl-D-glucosamine and D-glucuronic acid. This enzyme is a dimer of identical subunits. Hyaluronidase has different pharmaceutical and medical applications. Previously, we produced a recombinant hyaluronidase antigenic fragment of Streptococcus pyogenes. Objectives: This study aimed to improve the protein production and purity of hyaluronidase recombinant protein from S. pyogenes. In addition, the enzymatic activity of this protein was investigated. Materials and Methods: The expression of hyaluronidase antigenic fragments was optimized using IPTG concentration, time of induction, temperature, culture, and absorbance of 0.6-0.8-1 at 600 nm. Afterwards, the expressed proteins were purified and the enzymatic activity was assessed by turbid metric method. Results: Data indicated that maximum protein is produced in OD = 0.8, 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG), 37ºC, NB 1.5x, without glucose, incubated for overnight. The enzymatic activity of the recombinant protein was similar to the commercial form of hyaluronidase. Conclusions: The results showed that an antigenic fragment of the recombinant hyaluronidase protein from S. pyogenes has a considerable enzymatic activity. It can be suggested to use it for medical purposes. In addition, applications of bioinformatics software would facilitate the production of a smaller protein with same antigenic properties and enzymatic activity. PMID:25789122

  9. Hyper-Enhanced Production of Foreign Recombinant Protein by Fusion with the Partial Polyhedrin of Nucleopolyhedrovirus

    PubMed Central

    Bae, Sung Min; Kim, Hee Jung; Lee, Jun Beom; Choi, Jae Bang; Shin, Tae Young; Koo, Hyun Na; Choi, Jae Young; Lee, Kwang Sik; Je, Yeon Ho; Jin, Byung Rae; Yoo, Sung Sik; Woo, Soo Dong

    2013-01-01

    To enhance the production efficiency of foreign protein in baculovirus expression systems, the effects of polyhedrin fragments were investigated by fusion expressing them with the enhanced green fluorescent protein (EGFP). Recombinant viruses were generated to express EGFP fused with polyhedrin fragments based on the previously reported minimal region for self-assembly and the KRKK nuclear localization signal (NLS). Fusion expressions with polyhedrin amino acids 19 to 110 and 32 to 110 lead to localization of recombinant protein into the nucleus and mediate its assembly. The marked increase of EGFP by these fusion expressions was confirmed through protein and fluorescence intensity analyses. The importance of nuclear localization for enhanced production was shown by the mutation of the NLS within the fused polyhedrin fragment. In addition, when the polyhedrin fragment fused with EGFP was not localized in the nucleus, some fragments increased the production of protein. Among these fragments, some degradation of only the fused polyhedrin was observed in the fusion of amino acids 19 to 85 and 32 to 85. The fusion of amino acids 32 to 85 may be more useful for the enhanced and intact production of recombinant protein. The production of E2 protein, which is a major antigen of classical swine fever virus, was dramatically increased by fusion expression with polyhedrin amino acids 19 to 110, and its preliminary immunogenicity was verified using experimental guinea pigs. This study suggests a new option for higher expression of useful foreign recombinant protein by using the partial polyhedrin in baculovirus. PMID:23593321

  10. Impact of Profiling Technologies in the Understanding of Recombinant Protein Production

    NASA Astrophysics Data System (ADS)

    Vijayendran, Chandran; Flaschel, Erwin

    Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.

  11. LC-MS and MS/MS in the analysis of recombinant proteins

    NASA Astrophysics Data System (ADS)

    Coulot, M.; Domon, B.; Grossenbacher, H.; Guenat, C.; Maerki, W.; Müller, D. R.; Richter, W. J.

    1993-03-01

    Applicability and performance of electrospray ionization mass spectrometry (ESIMS) is demonstrated for protein analysis. ESIMS is applied in conjunction with on-line HPLC (LC-ESlMS) and direct tandem mass spectrometry (positive and negative ion mode ESlMS/MS) to the structural characterization of a recombinant protein (r-hirudin variant 1) and a congener phosphorylated at threonine 45 (RP-1).

  12. Prediction of recombinant protein overexpression in Escherichia coli using a machine learning based model (RPOLP).

    PubMed

    Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip

    2015-11-01

    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. PMID:26476414

  13. Recombinant sheep pox virus proteins elicit neutralizing antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the immunogenicity and neutralizing activity of bacterially-expressed sheep pox virus (SPPV) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins from vaccinia...

  14. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches.

    PubMed

    Huang, Sheng-You; Li, Min; Wang, Jianxin; Pan, Yi

    2016-06-27

    Structure-based molecular docking and ligand-based similarity search are two commonly used computational methods in computer-aided drug design. Structure-based docking tries to utilize the structural information on a drug target like protein, and ligand-based screening takes advantage of the information on known ligands for a target. Given their different advantages, it would be desirable to use both protein- and ligand-based approaches in drug discovery when information for both the protein and known ligands is available. Here, we have presented a general hybrid docking protocol, referred to as HybridDock, to utilize both the protein structures and known ligands by combining the molecular docking program MDock and the ligand-based similarity search method SHAFTS, and evaluated our hybrid docking protocol on the CSAR 2013 and 2014 exercises. The results showed that overall our hybrid docking protocol significantly improved the performance in both binding affinity and binding mode predictions, compared to the sole MDock program. The efficacy of the hybrid docking protocol was further confirmed using the combination of DOCK and SHAFTS, suggesting an alternative docking approach for modern drug design/discovery. PMID:26317502

  15. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  16. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions.

    PubMed

    Iverson, Douglas; Serrano, Crystal; Brahan, Ann Marie; Shams, Arik; Totsingan, Filbert; Bell, Anthony J

    2015-12-01

    The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b. PMID:26348651

  17. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    PubMed Central

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of recombinant protein in the intracellular compartment is critical, at this would lessen any competition in this region between the endogenous seed proteins and the introduced foreign protein. The production yields of several recombinant proteins have been greatly increased by this strategy. PMID:23563599

  18. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 PMID:26701602

  19. Segregation of recessive phenotypes in somatic cell hybrids role of mitotic recombination, gene inactivation, and chromosome nondisjunction

    SciTech Connect

    Campbell, C.E.; Worton, R.G.

    1981-04-01

    Somatic cell hybrids heterozygous at the emetine resistance locus (emt/sup r//emt/sup +/) or the chromate resistance locus (chr/sup r//chr/sup +/) are known to segregate the recessive drug resistance phenotype at high frequency. The authors have examined mechanisms of segregation in Chinese hamster cell hybrids heterozygous at these two loci, both of which map to the long arm of Chinese hamster chromosome 2. To allow the fate of chromosomal arms through the segregation process, our hybrids were also heterozygous at the mtx (methotrexate resistance) locus on the short arm of chromosome 2 and carried cytogenetically marked chromosomes with either a short-arm deletion 2p/sup -/) or a long-arm addition (2q/sup +/). Karotype and phenotype analysis of emetine- or chromate-resistant segregants from such hybrids allowed us to distinguish four potential segregation mechanisms: (i) loss of the emt/sup +/ - or chr/sup +/-bearing chromosome; (ii) mitotic recombination between the centromere and the emt or chr loci giving rise to homozygous resistant segregants; (iii) inactivation of the emt/sup +/ or chr/sup +/ alleles; and (iv) loss of the emt/sup +/ - or chr/sup +/-bearing chromosome with duplication of the homologous chromosome carrying the emt/sup r/ or chr/sup r/ allele. Of 48 independent segregants examined, only 9 (20%) arose by simple chromosome loss. Two segregants (4%) were consistent with a gene inactivation mechanism, but because of their rarity, other mechanisms such as mutation or submicroscopic deletion could not be excluded. Twenty-one segregants (44%) arose by either mitotic recombination or chromosome loss and duplication; the two mechanisms were not distinguishable in that experiment. Finally, in hybrids allowing these two mechanisms to be distinguished, 15 segregants (31%) arose by chromosome loss and duplication, and none arose by mitotic recombination.

  20. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination.

    PubMed

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C

    2014-12-16

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  1. Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.

    PubMed

    Farahmand, Mahin; Nahrevanian, Hossein

    2016-07-01

    Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs. PMID:26883952

  2. Cellular immune responses to recombinant heat shock protein 70 from Histoplasma capsulatum.

    PubMed Central

    Allendoerfer, R; Maresca, B; Deepe, G S

    1996-01-01

    Heat shock protein (hsp) 70 from several microbes is antigenic in mammals. In this study we sequenced and expressed the gene encoding this protein from Histoplasma capsulatum to study its immunological activity. The deduced amino acid sequence of the gene demonstrated 71 and 76% identity to hsp7O from humans and Saccharomyces cerevisiae, respectively. A cDNA was synthesized by reverse transcription-PCR and was expressed in Escherichia coli. Recombinant protein reacted with a mouse monoclonal antibody raised against human hsp7O. Splenocytes from C57BL/6 mice immunized with recombinant hsp7O emulsified in adjuvant, but not yeast cells, reacted in vitro to the antigen. Recombinant hsp7O elicited a cutaneous delayed-type hypersensitivity response in mice immunized with protein or with viable yeast cells. Mice were injected with recombinant hsp7O and challenged intranasally with a sublethal inoculum of yeast cells. Vaccination did not confer protection in this model. Thus, recombinant hsp7O can induce a cell-mediated immune response but does not induce a protective response. PMID:8926078

  3. Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs

    PubMed Central

    Farahmand, Mahin; Nahrevanian, Hossein

    2016-01-01

    Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs. PMID:26883952

  4. Expression and purification of two recombinant sterol-carrier proteins: SCPX and SCP2.

    PubMed

    Manfra, D J; Baum, C L; Reschley, E; Lundell, D; Zavodny, P; Dalie, B

    1995-04-01

    We report the cloning, expression, and purification of the rat sterol carrier proteins SCPX and SCP2. The cDNA's encoding rat SCPX and SCP2 were isolated from a lambda gt11 rat liver cDNA library. To maximize expression and to facilitate the purification of the recombinant proteins, the SCPX and SCP2 proteins were expressed as carboxy-terminal fusion proteins to the glutathione S-transferase (GST). The GST-SCPX and GST-SCP2 fusion proteins contained a thrombin recognition site between the GST and SCPX or SCP2 polypeptides. The expression of the fusion proteins was controlled by the inducible tac promoter. Under optimal conditions, the approximately 85-kDa GST-SCPX and the approximately 41-kDa GST-SCP2 proteins represented approximately 1-2% of the total cell lysate. Both fusion proteins were easily purified under nondenaturing conditions from the soluble fraction of total cell lysate by glutathione-Sepharose 4B affinity chromatography. Thrombin cleavage resulted in the release of the SCPX and SCP2 proteins from the GST-SCPX and GST-SCP2 fusions, respectively. Amino terminal protein sequencing confirmed the authenticity of the recombinant proteins. Furthermore, functional assay revealed that recombinant SCP2 is highly active in facilitating the conversion of 7-dehydrocholesterol to cholesterol. Recombinant SCPX is also active in this assay but only 50% as active as SCP2. We anticipate that the preparation and purification techniques described in this study will facilitate further biochemical characterization of these proteins. PMID:7606169

  5. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  6. Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis.

    PubMed

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying; Wu, Yimou

    2013-10-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  7. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus

    PubMed Central

    2011-01-01

    Background To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP), a component of sporozoites that contains a B-cell epitope. Methods A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR), beta-glucuronidase reporter gene (GUS) assay, and Western blot. Results The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n = 38) and a clinical specificity of 100% (n = 24) as assessed by enzyme-linked immunosorbent assay (ELISA). Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40), TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. Conclusions The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria. PMID:21529346

  8. Evaluation of the Recombinant Protein TpF1 of Treponema pallidum for Serodiagnosis of Syphilis

    PubMed Central

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying

    2013-01-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  9. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. PMID:25727088

  10. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  11. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    PubMed

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail. PMID:26614293

  12. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  13. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    PubMed

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  14. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  15. Recombinant Protein Production of Earthworm Lumbrokinase for Potential Antithrombotic Application

    PubMed Central

    Wang, Kevin Yueju; Wang, Nan; Liu, Dehu

    2013-01-01

    Earthworms have been used as a traditional medicine in China, Japan, and other Far East countries for thousands of years. Oral administration of dry earthworm powder is considered as a potent and effective supplement for supporting healthy blood circulation. Lumbrokinases are a group of enzymes that were isolated and purified from different species of earthworms. These enzymes are recognized as fibrinolytic agents that can be used to treat various conditions associated with thrombosis. Many lumbrokinase (LK) genes have been cloned and characterized. Advances in genetic technology have provided the ability to produce recombinant LK and have made it feasible to purify a single lumbrokinase enzyme for potential antithrombotic application. In this review, we focus on expression systems that can be used for lumbrokinase production. In particular, the advantages of using a transgenic plant system to produce edible lumbrokinase are described. PMID:24416067

  16. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  17. Inhibition of homologous recombination by the PCNA-interacting protein PARI.

    PubMed

    Moldovan, George-Lucian; Dejsuphong, Donniphat; Petalcorin, Mark I R; Hofmann, Kay; Takeda, Shunichi; Boulton, Simon J; D'Andrea, Alan D

    2012-01-13

    Inappropriate homologous recombination (HR) causes genomic instability and cancer. In yeast, the UvrD family helicase Srs2 is recruited to sites of DNA replication by SUMO-modified PCNA, where it acts to restrict HR by disassembling toxic RAD51 nucleofilaments. How human cells control recombination at replication forks is unknown. Here, we report that the protein PARI, containing a UvrD-like helicase domain, is a PCNA-interacting partner required for preservation of genome stability in human and DT40 chicken cells. Using cell-based and biochemical assays, we show that PARI restricts unscheduled recombination by interfering with the formation of RAD51-DNA HR structures. Finally, we show that PARI knockdown suppresses the genomic instability of Fanconi Anemia/BRCA pathway-deficient cells. Thus, we propose that PARI is a long sought-after factor that suppresses inappropriate recombination events at mammalian replication forks. PMID:22153967

  18. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    SciTech Connect

    Yang, Wenchao; Yao, Yao Wu, Chang-Qin

    2015-04-21

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (R{sub rec}−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted R{sub rec} data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the R{sub rec}–V characteristics. For the perovskites of increased band gaps, the R{sub rec}'s are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the R{sub rec} decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  19. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-04-01

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  20. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications.

    PubMed

    Liu, Xiuxia; Yang, Yankun; Zhang, Wei; Sun, Yang; Peng, Feng; Jeffrey, Laura; Harvey, Linda; McNeil, Brian; Bai, Zhonghu

    2016-08-01

    Corynebacterium glutamicum (C. glutamicum) is a highly promising alternative prokaryotic host for recombinant protein expression, as it possesses several significant advantages over Escherichia coli (E. coli), the currently leading bacterial protein expression system. During the past decades, several experimental techniques and vector components for genetic manipulation of C. glutamicum have been developed and validated, including strong promoters for tightly regulating target gene expression, various types of plasmid vectors, protein secretion systems and methods of genetically modifying the host strain genome to improve protein production potential. This review critically discusses current progress in establishing C. glutamicum as a host for recombinant protein expression, and examines, in depth, some successful case studies of actual application of this expression system. The established "expression tool box" for developing novel constructs based on C. glutamicum as a host are also evaluated. Finally, the existing issues and solutions in process development with C. glutamicum as a host are specifically addressed. PMID:25714007

  1. Development of a lectin binding assay to differentiate between recombinant and endogenous proteins in pharmacokinetic studies of protein-biopharmaceuticals.

    PubMed

    Weber, Alfred; Minibeck, Eva; Scheiflinger, Friedrich; Turecek, Peter L

    2015-04-10

    Human glycoproteins, expressed in hamster cell lines, show similar glycosylation patterns to naturally occurring human molecules except for a minute difference in the linkage of terminal sialic acid: both cell types lack α2,6-galactosyl-sialyltransferase, abundantly expressed in human hepatocytes and responsible for the α2,6-sialylation of circulating glycoproteins. This minute difference, which is currently not known to have any physiological relevance, was the basis for the selective measurement of recombinant glycoproteins in the presence of their endogenous counterparts. The assay is based on using the lectin Sambucus nigra agglutinin (SNA), selectively binding to α2,6-sialylated N-glycans. Using von Willebrand factor (VWF), factor IX (FIX), and factor VIIa (FVIIa), it was demonstrated that (i) the plasma-derived proteins, but not the corresponding recombinant proteins, specifically bind to SNA and (ii) this binding can be used to deplete the plasma-derived proteins. The feasibility of this approach was confirmed in spike-recovery studies for all three recombinant coagulation proteins in human plasma and for recombinant VWF (rVWF) in macaque plasma. Analysis of plasma samples from macaques after administration of recombinant and a plasma-derived VWF demonstrated the suitability and robustness of this approach. Data showed that rVWF could be selectively measured without changing the ELISAs and furthermore revealed the limitations of baseline adjustment using a single measurement of the predose concentration only. The SNA gel-based depletion procedure can easily be integrated in existing procedures as a specific sample pre-treatment step. While ELISA-based methods were used to measure the recombinant coagulation proteins in the supernatants obtained by depletion, this procedure is applicable for all biochemical analyses. PMID:25703236

  2. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.

    PubMed

    Leclerc, Jérémie; Lefèvre, Thierry; Pottier, Fabien; Morency, Louis-Philippe; Lapointe-Verreault, Camille; Gagné, Stéphane M; Auger, Michèle

    2012-06-01

    The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins. PMID:21898365

  3. Complement receptor activity of recombinant porcine CR1-like protein expressed in a eukaryotic system.

    PubMed

    Yin, Wei; Wei, Xiaoming; Jiang, Junbing; Fan, Kuohai; Zhao, Junxing; Sun, Na; Wang, Zhiwei; Sun, Yaogui; Ma, Haili; Zhao, Xin; Li, Hongquan

    2016-08-01

    Primate complement receptor type 1 (CR1) protein, a single-chain transmembrane glycoprotein, plays an important role in immune adherence and clearing complement-opsonized immune complexes. Here, the mRNA of the porcine primate-like complement receptor (CR1-like) gene was analyzed, and two domain sequences with potential functions were cloned into the pwPICZalpha vector for expression in Pichia pastoris. The recombinant proteins were purified with both Protein Pure Ni-NTA resin and strong anion exchange resin. The activities of the purified recombinant proteins were evaluated by SDS-PAGE, western blotting, and complement receptor assays. The results indicated that two domains of the CR1-like protein, CCP36 and CCP811 with molecular weights of 29.8 kDa and 30 kDa, respectively, were successfully expressed in P. pastoris. These two recombinant proteins possess some of the functions of the primate CR1 protein. Using these two proteins coupled with an antibody blocking technique, we also showed that CR1-like is expressed on natural porcine erythrocytes. PMID:26903010

  4. The recombinant expression and activity detection of MAF-1 fusion protein

    PubMed Central

    Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian

    2015-01-01

    This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression. PMID:26423137

  5. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain

    2002-01-01

    In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452

  6. Several recombinant capsid proteins of equine rhinitis a virus show potential as diagnostic antigens.

    PubMed

    Li, Fan; Stevenson, Rachel A; Crabb, Brendan S; Studdert, Michael J; Hartley, Carol A

    2005-06-01

    Equine rhinitis A virus (ERAV) is a significant pathogen of horses and is also closely related to Foot-and-mouth disease virus (FMDV). Despite these facts, knowledge of the prevalence and importance of ERAV infections remains limited, largely due to the absence of a simple, robust diagnostic assay. In this study, we compared the antigenicities of recombinant full-length and fragmented ERAV capsid proteins expressed in Escherichia coli by using sera from experimentally infected and naturally exposed horses. We found that, from the range of antigens tested, recombinant proteins encompassing the C-terminal region of VP1, full-length VP2, and the N-terminal region of VP2 reacted specifically with antibodies present in sera from each of the five experimentally infected horses examined. Antibodies to epitopes on VP2 (both native and recombinant forms) persisted longer postinfection (>105 days) than antibodies specific for epitopes on other fragments. Our data also suggest that B-cell epitopes within the C terminus of VP1 and N terminus of VP2 contribute to a large proportion of the total reactivity of recombinant VP1 and VP2, respectively. Importantly, the reactivity of these VP1 and VP2 recombinant proteins in enzyme-linked immunosorbent assays (ELISAs) correlated well with the results from a range of native antigen-based serological assays using sera from 12 field horses. This study provides promising candidates for development of a diagnostic ERAV ELISA. PMID:15939754

  7. Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice

    PubMed Central

    Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2015-01-01

    The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases. PMID:26070075

  8. Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice.

    PubMed

    Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2015-01-01

    The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases. PMID:26070075

  9. A poliovirus hybrid expressing a neutralization epitope from the major outer membrane protein of Chlamydia trachomatis is highly immunogenic.

    PubMed Central

    Murdin, A D; Su, H; Manning, D S; Klein, M H; Parnell, M J; Caldwell, H D

    1993-01-01

    Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes on the major outer membrane protein (MOMP) of C. trachomatis have been identified as important targets for the development of vaccines. In order to examine the immunogenicity of a recombinant vector expressing a chlamydial epitope, a poliovirus hybrid was constructed in which part of neutralization antigenic site I of poliovirus type 1 Mahoney (PV1-M) was replaced by a sequence from variable domain I of the MOMP of C. trachomatis serovar A. The chlamydial sequence included the neutralization epitope VAGLEK. This hybrid was viable, grew very well compared with PV1-M, and expressed both poliovirus and chlamydial antigenic determinants. When inoculated into rabbits, this hybrid was highly immunogenic, inducing a strong response against both PV1-M and C. trachomatis serovar A. Antichlamydia titers were 10- to 100-fold higher than the titers induced by equimolar amounts of either purified MOMP or a synthetic peptide expressing the VAGLEK epitope. Furthermore, rabbit antisera raised against this hybrid neutralized chlamydial infectivity both in vitro, for hamster kidney cells, and passively in vivo, for conjunctival epithelia of cynomolgus monkeys. Because poliovirus infection induces a strong mucosal immune response in primates and humans, these results indicate that poliovirus-chlamydia hybrids could become powerful tools for the study of mucosal immunity to chlamydial infection and for the development of recombinant chlamydial vaccines. Images PMID:7691749

  10. Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein.

    PubMed

    Robert, Stéphanie; Goulet, Marie-Claire; D'Aoust, Marc-André; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 μg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 μg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins. PMID:26286859

  11. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement. PMID:26216265

  12. A Library of Functional Recombinant Cell-surface and Secreted P. falciparum Merozoite Proteins*

    PubMed Central

    Crosnier, Cécile; Wanaguru, Madushi; McDade, Brian; Osier, Faith H.; Marsh, Kevin; Rayner, Julian C.; Wright, Gavin J.

    2013-01-01

    Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world's major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and

  13. Contraceptive efficacy of recombinant fusion protein comprising zona pellucida glycoprotein-3 fragment and gonadotropin releasing hormone.

    PubMed

    Arukha, Ananta Prasad; Minhas, Vidisha; Shrestha, Abhinav; Gupta, Satish Kumar

    2016-04-01

    Contraceptive vaccines have been used for the management of wildlife population. In the present study, we have examined the contraceptive potential of Escherichia coli-expressed recombinant fusion protein comprising of 'promiscuous' T cell epitope of tetanus toxoid [TT; amino acid (aa) residues 830-844] followed by dilysine linker (KK), dog ZP3 fragment (aa residues 307-346), triglycine spacer (GGG), T cell epitope of bovine RNase (bRNase; aa residues 94-104), GnRH, T cell epitope of circumsporozoite protein of Plasmodium falciparum (CSP; aa residues 362-383), and GnRH. SDS-PAGE analysis of the purified refolded protein revealed a dominant ∼12 kDa band, which in Western blot reacted with mouse polyclonal antibodies against dog ZP3 fragment and mouse monoclonal antibodies against GnRH. Immunization of female FvB/J mice following two booster schedule with the above recombinant protein supplemented with alum led to high antibody titres against the immunogen as well as ZP3 and GnRH as determined by ELISA. The immune sera reacted with zona pellucida of mouse oocyte and also inhibited in-vitro fertilization. The qRT-PCR studies showed decrease in the ovarian GnRH receptor in mice immunized with the recombinant fusion protein. Mating studies revealed high contraceptive efficacy of the recombinant protein as in two independent experiments, 90% of the immunized female mice failed to conceive. Following one booster immunization schedule, 50% of the immunized female mice failed to conceive. However, in adjuvanted controls, all the female mice became pregnant. To conclude, the recombinant protein described herein has a good potential to be developed as candidate contraceptive vaccine. PMID:26859695

  14. Effect of metal catalyzed oxidation in recombinant viral protein assemblies

    PubMed Central

    2014-01-01

    Background Protein assemblies, such as virus-like particles, have increasing importance as vaccines, delivery vehicles and nanomaterials. However, their use requires stable assemblies. An important cause of loss of stability in proteins is oxidation, which can occur during their production, purification and storage. Despite its importance, very few studies have investigated the effect of oxidation in protein assemblies and their structural units. In this work, we investigated the role of in vitro oxidation in the assembly and stability of rotavirus VP6, a polymorphic protein. Results The susceptibility to oxidation of VP6 assembled into nanotubes (VP6NT) and unassembled VP6 (VP6U) was determined and compared to bovine serum albumin (BSA) as control. VP6 was more resistant to oxidation than BSA, as determined by measuring protein degradation and carbonyl content. It was found that assembly protected VP6 from in vitro metal-catalyzed oxidation. Oxidation provoked protein aggregation and VP6NT fragmentation, as evidenced by dynamic light scattering and transmission electron microscopy. Oxidative damage of VP6 correlated with a decrease of its center of fluorescence spectral mass. The in vitro assembly efficiency of VP6U into VP6NT decreased as the oxidant concentration increased. Conclusions Oxidation caused carbonylation, quenching, and destruction of aromatic amino acids and aggregation of VP6 in its assembled and unassembled forms. Such modifications affected protein functionality, including its ability to assemble. That assembly protected VP6 from oxidation shows that exposure of susceptible amino acids to the solvent increases their damage, and therefore the protein surface area that is exposed to the solvent is determinant of its susceptibility to oxidation. The inability of oxidized VP6 to assemble into nanotubes highlights the importance of avoiding this modification during the production of proteins that self-assemble. This is the first time that the role of

  15. Synthesizing a Cellulase like Chimeric Protein by Recombinant Molecular Biology Techniques

    PubMed Central

    Banerjee, Hirendra Nath; Krauss, Christopher; Smith, Valerie; Mahaffey, Kelly; Boston, Ava

    2016-01-01

    In order to meet the Renewable Fuels Standard demands for 30 billion gallons of biofuels by the end of 2020, new technologies for generation of cellulosic ethanol must be exploited. Breaking down cellulose by cellulase enzyme is very important for this purpose but this is not thermostable and degrades at higher temperatures in bioreactors. Towards creation of a more ecologically friendly method of rendering bioethanol from cellulosic waste, we attempted to produce recombinant higher temperature resistant cellulases for use in bioreactors. The project involved molecular cloning of genes for cellulose-degrading enzymes based on bacterial source, expressing the recombinant proteins in E. coli and optimizing enzymatic activity. We were able to generate in vitro bacterial expression systems to produce recombinant His-tag purified protein which showed cellulase like activity. PMID:27468362

  16. Rapid screening for the robust expression of recombinant proteins in algal plastids.

    PubMed

    Barrera, Daniel; Gimpel, Javier; Mayfield, Stephen

    2014-01-01

    Chlamydomonas reinhardtii has many advantages as a photosynthetic model organism. One of these is facile, targeted chloroplast transformation by particle bombardment. Functional recombinant proteins can be expressed to significant levels in this system, potentially outperforming higher plants in speed of scaling, cost, and space requirements. Several strategies and regulatory regions can be used for achieving transgene expression. Here we present two of those strategies: one makes use of the psbD promoter for expressing moderate levels of the recombinant protein in a photosynthetic background. The other strategy is based on the strong psbA promoter for obtaining high yields of the recombinant product in a non-photosynthetic strain. We herein describe the vectors, transformation procedures, and screening methods associated with these two strategies. PMID:24599869

  17. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  18. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  19. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages.

    PubMed

    Bannantine, John P; Stabel, Judith R; Laws, Elizabeth; D Cardieri, Maria Clara; Souza, Cleverson D

    2015-01-01

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages. PMID:26076028

  20. Cell culture process operations for recombinant protein production.

    PubMed

    Abu-Absi, Susan; Xu, Sen; Graham, Hugh; Dalal, Nimish; Boyer, Marcus; Dave, Kedar

    2014-01-01

    The market for protein therapeutics has grown significantly over the past two decades and the pace of development continues to increase. It is a challenge to the industry to maintain the desired quality attributes while accelerating delivery to patients, reducing the cost of goods, and providing production flexibility. Efficient manufacturing scale production of protein therapeutics is required to continue to meet the needs of the patients and stockholders. This chapter describes batch, fed-batch, and perfusion processes and their utilization in the production of monoclonal antibodies and other therapeutic proteins. In addition, we have provided detailed discussions of the ongoing challenges of lactate metabolism and the future prospects of process monitoring and control. PMID:24153406

  1. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. PMID:27105777

  2. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  3. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    PubMed

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. Biotechnol. Bioeng. 2016;113: 961-969. © 2015 Wiley Periodicals, Inc. PMID:26480251

  4. Production and characterization of ZFP36L1 antiserum against recombinant protein from Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/ZFP36) family proteins are anti-inflammatory. They bind and destabilize some AU-rich element-containing mRNAs such as tumor necrosis factor mRNA. In this study, recombinant ZFP36L1/TIS11B (a TTP homologue) was over-expressed in E. coli, purified, and used for polyclonal antibody...

  5. Antigenic Profiles of Recombinant Proteins from Mycobacterium avium subsp paratuberculosis in Sheep with Johne's Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to improve the ELISA test to detect Mycobacterium avium subsp paratuberculosis have been explored over several years. Previously, selected recombinant proteins of M. avium subspecies paratuberculosis were found to be immunogenic in cattle with Johne’s disease. In the present study, antibo...

  6. A proposed feeding strategy for the overproduction of recombinant proteins in Escherichia coli.

    PubMed

    Babaeipour, Valiollah; Shojaosadati, Seyed Abbas; Khalilzadeh, Rasoul; Maghsoudi, Nader; Tabandeh, Fatemeh

    2008-02-01

    Different feeding strategies for the production of human interferon-gamma using an isopropyl beta-D-thiogalactoside-inducible expression system in recombinant Escherichia coli BL21(DE3) (plasmid pET3a-ifngamma) were studied. Four fed-batch modes were designed to compare the effect of mu (specific growth rate) on recombinant-protein production, substrate consumption, by-product formation and plasmid stability during pre- and post-chemical induction in high-cell-density cultures of E. coli. It was found that Y(p/s), the product/substrate yield of interferon-gamma was significantly affected by mu throughout the process, but product/biomass yield (Y(p/x)) was influenced by mu at the pre-induction stage. By applying an efficient feeding strategy, in which the mu was maintained at the maximum attainable level, recombinant protein was accumulated up to a level of 60% of the total cell protein and its productivity was increased significantly. In this case, the overall productivities of biomass and recombinant protein were 6.36 g l(-1) h(-1) and 2.1 g l(-1) h(-1) respectively, in comparison with 1.91 g l(-1) h(-1) and 0.16 g l(-1) h(-1) during exponential feeding, in which the specific growth rate was kept constant throughout the entire process. PMID:17630954

  7. Recombinant Antibody Production in Arabidopsis Seeds Triggers an Unfolded Protein Response1[W][OA

    PubMed Central

    De Wilde, Kirsten; De Buck, Sylvie; Vanneste, Kevin; Depicker, Ann

    2013-01-01

    Among the many plant-based production systems that are being tested for molecular farming, seeds are very attractive, as they provide a stable environment in which the accumulating recombinant proteins can be stored. However, it is not known exactly how high production levels of recombinant antibodies influence the endogenous transcriptome and proteome of the developing seed. To address this question, we studied the transcriptomic status in developing Arabidopsis (Arabidopsis thaliana) seeds 13 d post anthesis of three transgenic lines, producing varying levels of recombinant VHH or single-chain Fv antibody fragments fused to the human immunoglobulin G1-derived Fc fragment under the control of the β-PHASEOLIN seed-specific promoter. Using genome-wide Tiling arrays, we demonstrated that only a small proportion of the transcriptome was significantly changed in each of the lines compared with the wild type. Strikingly, in all three lines, we found a large overlap of up-regulated genes corresponding to protein folding, glycosylation/modification, translocation, vesicle transport, and protein degradation, suggestive of a state of cellular stress called the unfolded protein response. Moreover, the gene up-regulation amplitude was similar in all three lines. We hypothesize that the production of recombinant antibodies in the endoplasmic reticulum triggers endoplasmic reticulum stress, causing a disturbance of the normal cellular homeostasis. PMID:23188806

  8. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae.

    PubMed

    Liu, Zihe; Tyo, Keith E J; Martínez, José L; Petranovic, Dina; Nielsen, Jens

    2012-05-01

    Yeast Saccharomyces cerevisiae has become an attractive cell factory for production of commodity and speciality chemicals and proteins, such as industrial enzymes and pharmaceutical proteins. Here we evaluate most important expression factors for recombinant protein secretion: we chose two different proteins (insulin precursor (IP) and α-amylase), two different expression vectors (POTud plasmid and CPOTud plasmid) and two kinds of leader sequences (the glycosylated alpha factor leader and a synthetic leader with no glycosylation sites). We used IP and α-amylase as representatives of a simple protein and a multi-domain protein, as well as a non-glycosylated protein and a glycosylated protein, respectively. The genes coding for the two recombinant proteins were fused independently with two different leader sequences and were expressed using two different plasmid systems, resulting in eight different strains that were evaluated by batch fermentations. The secretion level (µmol/L) of IP was found to be higher than that of α-amylase for all expression systems and we also found larger variation in IP production for the different vectors. We also found that there is a change in protein production kinetics during the diauxic shift, that is, the IP was produced at higher rate during the glucose uptake phase, whereas amylase was produced at a higher rate in the ethanol uptake phase. For comparison, we also refer to data from another study, (Tyo et al. submitted) in which we used the p426GPD plasmid (standard vector using URA3 as marker gene and pGPD1 as expression promoter). For the IP there is more than 10-fold higher protein production with the CPOTud vector compared with the standard URA3-based vector, and this vector system therefore represent a valuable resource for future studies and optimization of recombinant protein production in yeast. PMID:22179756

  9. Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them.

    PubMed

    Boock, Jason T; Waraho-Zhmayev, Dujduan; Mizrachi, Dario; DeLisa, Matthew P

    2015-01-01

    Recombinant protein expression in Escherichia coli represents a cornerstone of the biotechnology enterprise. While cytoplasmic expression in this host has received the most attention, achieving substantial yields of correctly folded proteins in this compartment can sometimes be met with difficulties. These issues can often be overcome by targeting protein expression to extracytoplasmic compartments (e.g., membrane, periplasm) or to the culture medium. This chapter discusses various strategies for exporting proteins out of the cytoplasm as well as tools for monitoring and optimizing these different export mechanisms. PMID:25447860

  10. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  11. Intratracheal Recombinant Surfactant Protein D Prevents Endotoxin Shock in the Newborn Preterm Lamb

    PubMed Central

    Ikegami, Machiko; Carter, Karen; Bishop, Kimberly; Yadav, Annuradha; Masterjohn, Elizabeth; Brondyk, William; Scheule, Ronald K.; Whitsett, Jeffrey A.

    2006-01-01

    Rationale: The susceptibility of neonates to pulmonary and systemic infection has been associated with the immaturity of both lung structure and the immune system. Surfactant protein (SP) D is a member of the collectin family of innate immune molecules that plays an important role in innate host defense of the lung. Objectives: We tested whether treatment with recombinant human SP-D influenced the response of the lung and systemic circulation to intratracheally administered Escherichia coli lipopolysaccharides. Methods: After intratracheal lipopolysaccharide instillation, preterm newborn lambs were treated with surfactant and ventilated for 5 h. Measurement: Survival rate, physiologic lung function, lung and systemic inflammation, and endotoxin level in plasma were evaluated. Main Results: In control lambs, intratracheal lipopolysaccharides caused septic shock and death associated with increased endotoxin in plasma. In contrast, all lambs treated with recombinant human SP-D were physiologically stable and survived. Leakage of lipopolysaccharides from the lungs to the systemic circulation was prevented by intratracheal recombinant human SP-D. Recombinant human SP-D prevented systemic inflammation and decreased the expression of IL-1β, IL-8, and IL-6 in the spleen and liver. Likewise, recombinant human SP-D decreased IL-1β and IL-6 in the lung and IL-8 in the plasma. Recombinant human SP-D did not alter pulmonary mechanics following endotoxin exposure. Recombinant human SP-D was readily detected in the lung 5 h after intratracheal instillation. Conclusions: Intratracheal recombinant human SP-D prevented shock caused by endotoxin released from the lung during ventilation in the premature newborn. PMID:16556693

  12. Surface Display of Recombinant Proteins on Bacillus subtilis Spores

    PubMed Central

    Isticato, Rachele; Cangiano, Giuseppina; Tran, Hoa T.; Ciabattini, Annalisa; Medaglini, Donata; Oggioni, Marco R.; De Felice, Maurilio; Pozzi, Gianni; Ricca, Ezio

    2001-01-01

    We developed a novel surface display system based on the use of bacterial spores. A protein of the Bacillus subtilis spore coat, CotB, was found to be located on the spore surface and used as fusion partner to express the 459-amino-acid C-terminal fragment of the tetanus toxin (TTFC). Western, dot blot and fluorescent-activated cell sorting analyses were used to monitor TTFC surface expression on purified spores. We estimated that more than 1.5 × 103 TTFC molecules were exposed on the surface of each spore and recognized by TTFC-specific antibodies. The efficient surface presentation of the heterologous protein, together with the simple purification procedure and the high stability and safety record of B. subtilis spores, makes this spore-based display system a potentially powerful approach for surface expression of bioactive molecules. PMID:11591673

  13. Preparative Purification of Recombinant Proteins: Current Status and Future Trends

    PubMed Central

    Saraswat, Mayank; Ravidá, Alessandra; Holthofer, Harry

    2013-01-01

    Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications. PMID:24455685

  14. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  15. Cryptocaryon irritans recombinant proteins as potential antigens for sero-surveillance of cryptocaryonosis.

    PubMed

    Lokanathan, Y; Mohd-Adnan, A; Kua, B-C; Nathan, S

    2016-09-01

    Cryptocaryonosis is a major problem for mariculture, and the absence of suitable sero-surveillance tools for the detection of cryptocaryonosis makes it difficult to screen Cryptocaryon irritans-infected fish, particularly asymptomatic fish. In this study, we proposed a serum-based assay using selected C. irritans proteins to screen infected and asymptomatic fish. Eight highly expressed genes were chosen from an earlier study on C. irritans expressed sequence tags and ciliate glutamine codons were converted to universal glutamine codons. The chemically synthesized C. irritans genes were then expressed in an Escherichia coli expression host under optimized conditions. Five C. irritans proteins were successfully expressed in E. coli and purified by affinity chromatography. These proteins were used as antigens in an enzyme-linked immunosorbent assay (ELISA) to screen sera from experimentally immunized fish and naturally infected fish. Sera from both categories of fish reacted equally well with the expressed C. irritans recombinant proteins as well as with sonicated theronts. This study demonstrated the utility of producing ciliate recombinant proteins in a heterologous expression host. An ELISA was successfully developed to diagnose infected and asymptomatic fish using the recombinant proteins as antigens. PMID:27086498

  16. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast

    PubMed Central

    Bae, Jung-Hoon; Hyun Sung, Bong; Kim, Hyun-Jin; Park, Soon-Ho; Lim, Kwang-Mook; Kim, Mi-Jin; Lee, Cho-Ryong; Sohn, Jung-Hoon

    2015-01-01

    To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins. PMID:26195161

  17. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein. PMID:25115849

  18. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks.

    PubMed

    Ma, Tengfei; Liu, Yongxia; Cheng, Jia; Liu, Yanhan; Fan, Wentao; Cheng, Ziqiang; Niu, Xudong; Liu, Jianzhu

    2016-04-27

    To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks. PMID:27016654

  19. IMAC capture of recombinant protein from unclarified mammalian cell feed streams

    PubMed Central

    Kinna, Alexander; Tolner, Berend; Rota, Enrique Miranda; Titchener‐Hooker, Nigel; Nesbeth, Darren

    2015-01-01

    ABSTRACT Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ∼8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc. PMID:26174988

  20. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae.

    PubMed

    Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S

    2015-09-01

    The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding  sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine. PMID:26435147

  1. Producing Recombinant mTEX101; a Murine Testis Specific Protein

    PubMed Central

    Barzegar Yarmohammadi, Leila; Modarresi, Mohammad Hossein; Talebi, Saeed; Hadavi, Reza; Ostad Karampour, Mahyar; Mahmoudi, Ahmad Reza; Akhondi, Mohammad Mehdi; Rabbani, Hodjattallah; Jeddi-Tehrani, Mahmood

    2009-01-01

    Introduction Production of antibodies against specific proteins of testis germ cells is of great significance for the investigation of processes involved in spermatogenesis, study of infertility problems and determination of the probable role of these proteins as cancer-testis antigens. Murine Testis Specific Recombinant Protein 101 (mTEX101) is a 38kDa, GPI-anchored protein which is expressed in testis germ cells of adult mice but it seems to be absent in other tissues. The structure and function of mTEX101 is not completely understood yet, but it is speculated that it may transduce biochemical signals into the cytoplasm since mTEX101 does not have an intracellular domain but the precise mechanisms are still ambiguous. Materials and Methods RNA was extracted from three adult mice testis. The RNA was used in RT-PCR, employing a pair of specific primers for mTEX101 ORF region. TA-cloning technique was performed by the insertion of mTEX101 into a pGEM-T Easy Vector, followed by its subcloning into a His-tagged expression vector, pET-28a (+). The recombinant mTEX101 was then produced by transfection of the expression vector into BL 21 (DE3) E. coli strain. Results A recombinant protein, weighing 27kDa, was produced upon IPTG-induction of the bacterial host. The presence of mTEX101 protein was detected through Western blot analysis by anti-mTEX101 peptide antibodies. Conclusion We produced mTEX101 recombinant protein that could be used for the production of mono and polyclonal antibodies. PMID:23926468

  2. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus. PMID:27076136

  3. RIG-I ligand enhances the immunogenicity of recombinant H7HA protein.

    PubMed

    Cao, Weiping; Liepkalns, Justine S; Kamal, Ram P; Reber, Adrian J; Kim, Jin Hyang; Hofstetter, Amelia R; Amoah, Samuel; Stevens, James; Ranjan, Priya; Gangappa, Shivaprakash; York, Ian A; Sambhara, Suryaprakash

    2016-01-01

    Avian H7N9 influenza virus infection with fatal outcomes continues to pose a pandemic threat and highly immunogenic vaccines are urgently needed. In this report we show that baculovirus-derived recombinant H7 hemagglutinin protein, when delivered with RIG-I ligand, induced enhanced antibody and T cell responses and conferred protection against lethal challenge with a homologous H7N9 virus. These findings indicate the potential utility of RIG-I ligands as vaccine adjuvants to increase the immunogenicity of recombinant H7 hemagglutinin. PMID:27106062

  4. Chloroplast-Based Expression of Recombinant Proteins by Gateway® Cloning Technology.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas

    2016-01-01

    Plastid transformation for the expression of recombinant proteins and entire enzymatic pathways has become a promising tool for plant biotechnology in the past decade. Several improvements of the technology have turned plant plastids into robust and dependable expression platforms for multiple high value compounds. In this chapter, we describe our current methodology based on Gateway(®) recombinant cloning, which we have adapted for plastid transformation. We describe the steps required for cloning, biolistic transformation, identification, and regeneration of transplastomic plant lines and Western blot analysis. PMID:26614278

  5. Screening of hepatocyte proteins binding with the middle surface protein of the hepatitis B virus by the yeast two-hybrid system.

    PubMed

    Li, Zhiqun; Linghu, Enqiang; Cheng, Jun

    2014-06-01

    The effect of the middle hepatitis B virus surface protein (MHBs) remains to be elucidated. To investigate the biological function of the MHBs protein, the present study performed yeast two-hybrid screening to search for proteins that interact with the MHBs protein in hepatocytes. The bait plasmid expressing the MHBs protein was constructed by cloning the gene of the MHBs protein into pGBKT7, then the recombinant plasmid DNA was transformed into AH109 yeast (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing the liver cDNA library plasmid in 2X yeast peptone dextrose adenine (YPDA) medium. The mated diploid yeast was plated on quadruple dropout medium (SD/-Trp-Leu-His-Ade) containing X-α-gal for selection and screening. Following extracting and sequencing of the plasmids from positive (blue) colonies, the sequence analysis was conducted and analyzed by bioinformatics methods. Two colonies were selected and sequenced. Among them, one was the human DNA sequence from the clone RP11-490D19 on chromosome 9 and the other was homo sapiens 12 BAC RP11-180M15 (Roswell Park Cancer Institute Human BAC Library). The yeast two-hybrid system is an effective method for identifying hepatocyte proteins that interact with MHBs. The MHBs protein binds with different proteins suggesting that it has multiple functions in vivo. PMID:24676405

  6. Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection.

    PubMed

    Liu, Long; Yang, Haiquan; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-11-01

    Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces. PMID:24068337

  7. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses.

    PubMed

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  8. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  9. Multiplexed expression and screening for recombinant protein production in mammalian cells

    PubMed Central

    Chapple, Susan DJ; Crofts, Anna M; Shadbolt, S Paul; McCafferty, John; Dyson, Michael R

    2006-01-01

    Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell culture will also be useful

  10. Essential bacterial helicases that counteract the toxicity of recombination proteins.

    PubMed

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-06-17

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent. PMID:12065426

  11. Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production.

    PubMed

    Martínez-Alonso, Mónica; Villaverde, Antonio; Ferrer-Miralles, Neus

    2010-01-01

    Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield. PMID:21326941

  12. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    SciTech Connect

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin; Qi, Jianxun; Gao, George Fu

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  13. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    SciTech Connect

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; Sanchez-Quesada, Miguel; Lopez, Concepcion Jimenez; Prozorov, Tanya

    2014-03-07

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus, strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formation of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.

  14. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli.

    PubMed

    Tsao, Chen-Yu; Hooshangi, Sara; Wu, Hsuan-Chen; Valdes, James J; Bentley, William E

    2010-05-01

    Quorum sensing (QS) enables an individual bacterium's metabolic state to be communicated to and ultimately control the phenotype of an emerging population. Harnessing the hierarchical nature of this signal transduction process may enable the exploitation of individual cell characteristics to direct or "program" entire populations of cells. We re-engineered the native QS regulon so that individual cell signals (autoinducers) are used to guide high level expression of recombinant proteins in E. coli populations. Specifically, the autoinducer-2 (AI-2) QS signal initiates and guides the overexpression of green fluorescent protein (GFP), chloramphenicol acetyl transferase (CAT) and beta-galactosidase (LacZ). The new process requires no supervision or input (e.g., sampling for optical density measurement, inducer addition, or medium exchange) and represents a low-cost, high-yield platform for recombinant protein production. Moreover, rewiring a native signal transduction circuit exemplifies an emerging class of metabolic engineering approaches that target regulatory functions. PMID:20060924

  15. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    DOE PAGESBeta

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; Sánchez-Quesada, Miguel; Jiménez López, Concepción; Prozorov, Tanya

    2014-01-01

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus , strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formationmore » of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.« less

  16. Liposomes containing recombinant gp85 protein vaccine against ALV-J in chickens.

    PubMed

    Zhang, Limei; Cai, Dongjie; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Qi, Chunhua; Liu, Jianzhu; Xu, Ruixue; Zhao, Peng; Cui, Zhizhong

    2014-05-01

    To study the potential of liposome vaccines in the clinical prevention of ALV-J, the effect of recombinant gp85 protein of subgroup J avian leukosis virus (ALV-J) entrapped by liposomes in chickens against ALV-J infection was investigated in this paper. A recombinant plasmid (PET28a-gp85) containing the PET28a vector and gp85 gene was constructed and then expressed in Rosetta (DE3) cells with 0.5mM IPTG to produce recombinant gp85 proteins that could be entrapped by liposomes through reverse-phase evaporation. The chickens were inoculated intramuscularly either once or twice with the liposomes or with Freund's adjuvant emulsion containing recombinant gp85 protein. Sixty chickens were raised to one week old for the first inoculation and to three weeks old for the second inoculation. Chickens raised to five weeks old were challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of ALV-J. Blood samples were collected from each chicken at weekly intervals for serum antibody and viremia analyses. Changes in serum antibodies showed that positive serum antibodies (S/P value >0.6) could be induced in all groups regardless of the frequency of inoculation but improved significantly in the twice-inoculated groups. As well, high levels of antibodies emerged earlier in the Freund's adjuvant groups but persisted longer in the liposome groups. Detection of viremia indicated that the liposomes provide better protection against ALV-J than Freund's adjuvant emulsion and that this protection is directly influenced by serum antibody levels. Overall, this study reveals the potential of liposome vaccines containing recombinant gp85 protein in the clinical prevention of ALV-J. PMID:24625339

  17. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin

    SciTech Connect

    Rouhier, Nicolas . E-mail: nrouhier@scbiol.uhp-nancy.fr; Gama, Filipe; Wingsle, Gunnar; Gelhaye, Eric; Gans, Pierre; Jacquot, Jean-Pierre

    2006-03-24

    The existence of natural peroxiredoxin-glutaredoxin hybrid enzymes in several bacteria is in line with previous findings indicating that poplar peroxiredoxin II can use glutaredoxin as an electron donor. This peroxiredoxin remains however unique since it also uses thioredoxin with a quite good efficiency. Based on the existing fusions, we have created artificial enzymes containing a poplar peroxiredoxin module linked to glutaredoxin or thioredoxin modules. The recombinant fusion enzymes folded properly into non-covalently bound homodimers or homotetramers. Two of the three protein constructs exhibit peroxidase activity, a reaction where the two modules need to function together, but they also display enzymatic activities specific of each module. In addition, mass spectrometry analyses indicate that the Prx module can be both glutathiolated or overoxidized in vitro. This is discussed in the light of the Prx reactivity.

  18. Evidence for recombination and segregation of virulence to pine in a hybrid cross between Gibberella circinata and G. subglutinans.

    PubMed

    Friel, Christopher J; Desjardins, Anne E; Kirkpatrick, Sharon C; Gordon, Thomas R

    2007-07-01

    Two species associated with the Gibberella fujikuroi species complex, G. circinata (the cause of pitch canker in pines) and G. subglutinans (avirulent on pine), were found to have limited interfertility in hybrid crosses. MAT idiomorphs, polymorphisms in the histone H3 gene, vegetative compatibility, and virulence phenotypes were used to verify recombination. The MAT idiomorphs appeared to be assorting independently, but the histone H3 haplotype was disproportionately represented by that of the G. subglutinans parent. Ninety-eight percent (45/46) of the progeny tested were vegetatively incompatible with both parents. All F(1) progeny were avirulent to pine, but a wide range of virulence was restored through a backcross to the virulent parent (G. circinata). Attempts at hybrid crosses using other isolate combinations were rarely successful (1/26). This limited interfertility supports retention of G. circinata and G. subglutinans as separate species, but offers opportunities to characterize the inheritance of virulence to pine. PMID:17681226

  19. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  20. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins. PMID:25069136

  1. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum.

    PubMed

    Yim, Sung Sun; Choi, Jae Woong; Lee, Roo Jin; Lee, Yong Jae; Lee, Se Hwa; Kim, So Young; Jeong, Ki Jun

    2016-01-01

    Corynebacterium glutamicum, which has been for long an industrial producer of various L-amino acids, nucleic acids, and vitamins, is now also regarded as a potential host for the secretory production of recombinant proteins. To harness its potential as an industrial platform for recombinant protein production, the development of an efficient secretion system is necessary. Particularly, regarding protein production in large-scale bioreactors, it would be appropriate to develop a secretory expression system that is specialized for high cell density cultivation conditions. Here we isolated a new signal peptide that mediates the efficient secretion of recombinant proteins under high cell density cultivation conditions. The secretome of C. glutamicum ATCC 13032 under high cell density cultivation conditions was initially investigated, and one major protein was identified as a hypothetical protein encoded by cg1514. Novel secretory production systems were then developed using the Cg1514 signal peptide and its own promoter. Efficient protein secretion was demonstrated using three protein models: endoxylanase, α-amylase, and camelid antibody fragment (VHH). For large-scale production, fed-batch cultivations were also conducted and high yields were successfully achieved--as high as 1.07 g/L (endoxylanase), 782.6 mg/L (α-amylase), and 1.57 g/L (VHH)--in the extracellular medium. From the culture media, all model proteins could be simply purified by one-step column chromatography with high purities and recovery yields. To the best of our knowledge, this is the first report of the development of an efficient secretory expression system by secretome analysis under high cell density cultivation conditions in C. glutamicum. PMID:26134574

  2. Making recombinant proteins in filamentous fungi- are we expecting too much?

    PubMed

    Nevalainen, Helena; Peterson, Robyn

    2014-01-01

    Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions. Attempts to increase correct folding and thereby the yields of heterologous proteins in fungal hosts by co-expression of cellular chaperones and foldases have resulted in variable success; underlying reasons have been explored mainly at the transcriptional level. The observed physiological changes in fungal strains experiencing increasing stress through protein overexpression under strong gene promoters also reflect the challenge the host organisms are experiencing. It is evident, that as with other eukaryotes, fungal endoplasmic reticulum is a highly dynamic structure. Considering the above, there is an emerging body of work exploring the use of weaker expression promoters to avoid undue stress. Filamentous fungi have been hailed as candidates for the production of pharmaceutically relevant proteins for therapeutic use. One of the biggest challenges in terms of fungally produced heterologous gene products is their mode of glycosylation; fungi lack the functionally important terminal sialylation of the glycans that occurs in mammalian cells. Finally, exploration of the metabolic pathways and fluxes together with the development of sophisticated fermentation protocols may result in new strategies to produce recombinant proteins in filamentous fungi. PMID:24578701

  3. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity.

    PubMed

    Münch, Karin M; Müller, Johannes; Wienecke, Sarah; Bergmann, Simone; Heyber, Steffi; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2015-09-01

    During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species. PMID:26116677

  4. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity

    PubMed Central

    Münch, Karin M.; Müller, Johannes; Wienecke, Sarah; Bergmann, Simone; Heyber, Steffi; Biedendieck, Rebekka; Jahn, Dieter

    2015-01-01

    During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species. PMID:26116677

  5. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana.

    PubMed

    Shi, Jiahai; Lua, Shixiong; Du, Ning; Liu, Xiangyang; Song, Jianxing

    2008-06-01

    Unlike silkworm and spider silks assembled from very large and repetitive fibrous proteins, the bee and ant silks were recently demonstrated to consist of four small and non-repetitive coiled-coil proteins. The design principle for this silk family remains largely unknown and so far no structural study is available on them in solution. The present study aimed to identify, express and characterize the Asiatic honeybee silk proteins using DLS, CD and NMR spectroscopy. Consequently, (1) four silk proteins are identified, with approximately 6, 10, 9 and 8% variations, respectively, from their European honeybee homologs. Strikingly, their recombinant forms can be produced in Escherichia coil with yields of 10-60 mg/l. (2) Despite containing approximately 65% coiled-coil sequences, four proteins have very low alpha-helix (9-27%) but unusually high random coil (45-56%) contents. Surprisingly, beta-sheet is also detected in four silk proteins (26-35%), implying the possible presence of beta-sheet in the bee and ant silks. (3) Four proteins lacking of the tight tertiary packing appear capable of interacting with each other weakly but this interaction triggers no significant formation of the tight tertiary packing. The study not only implies the promising potential to produce recombinant honeybee silk proteins for the development of various biomaterials; but also provides the first structural insight into the molecular mechanism underlying the formation of the coiled-coil silks. PMID:18394700

  6. Substrate oscillations boost recombinant protein release from Escherichia coli.

    PubMed

    Jazini, Mohammadhadi; Herwig, Christoph

    2014-05-01

    Intracellular production of recombinant proteins in prokaryotes necessitates subsequent disruption of cells for protein recovery. Since the cell disruption and subsequent purification steps largely contribute to the total production cost, scalable tools for protein release into the extracellular space is of utmost importance. Although there are several ways for enhancing protein release, changing culture conditions is rather a simple and scalable approach compared to, for example, molecular cell design. This contribution aimed at quantitatively studying process technological means to boost protein release of a periplasmatic recombinant protein (alkaline phosphatase) from E. coli. Quantitative analysis of protein in independent bioreactor runs could demonstrate that a defined oscillatory feeding profile was found to improve protein release, about 60 %, compared to the conventional constant feeding rate. The process technology included an oscillatory post-induction feed profile with the frequency of 4 min. The feed rate was oscillated triangularly between a maximum (1.3-fold of the maximum feed rate achieved at the end of the fed-batch phase) and a minimum (45 % of the maximum). The significant improvement indicates the potential to maximize the production rate, while this oscillatory feed profile can be easily scaled to industrial processes. Moreover, quantitative analysis of the primary metabolism revealed that the carbon dioxide yield can be used to identify the preferred feeding profile. This approach is therefore in line with the initiative of process analytical technology for science-based process understanding in process development and process control strategies. PMID:24114459

  7. A systematic investigation of production of synthetic prions from recombinant prion protein

    PubMed Central

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K.; Edgeworth, Julie A.; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M.; Brandner, Sebastian; Hosszu, Laszlo L. P.; Tattum, M. Howard; Jat, Parmjit; Clarke, Anthony R.; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Jackson, Graham S.; Collinge, John

    2015-01-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  8. A systematic investigation of production of synthetic prions from recombinant prion protein.

    PubMed

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  9. Transgenic rabbits for the production of biologically-active recombinant proteins in the milk.

    PubMed

    Castro, F O; Limonta, J; Rodriguez, A; Aguirre, A; de la Fuente, J; Aguilar, A; Ramos, B; Hayes, O

    1999-11-01

    The use of live bioreactors for the expression of human genes in the mammary gland of transgenic animals is one of the most cost-effective ways for the production of valuable recombinant therapeutic proteins. Among the transgenic species used so far, rabbits are good candidates for the expression of tens to hundreds of grams of complex proteins in the milk during lactation. The lactating mammary gland of rabbits has proven to be effective in the processing of complex proteins. In this work. the potential use of rabbits as bioreactors is discussed based on our results and the published data. PMID:10596760

  10. [Construction of recombinant adenoviral vector expressing genes of the conservative influenza proteins M2 and nucleoprotein].

    PubMed

    Esmagambetov, I B; Sedova, E S; Shcherbinin, D N; Lysenko, A A; Garas, M N; Shmarov, M M; Logunov, D Iu

    2014-01-01

    Influenza is a highly contagious and one of the most massive infection diseases. General epidemiological significance has a strain, which belongs to subtype A. A high degree of genetic variety leads to the permanent changes in the antigenic structure of the influenza virus. Therefore, the current influenza vaccines require periodic updating of the composition of strains. Presently, it is important to develop a universal vaccine that can protect against different strains of influenza A virus at the same time and is based on the conserved antigens of the influenza virus. The recombinant adenovirus vectors expressing genes of conserved viral antigenes may be a promising candidate vaccine against influenza A. Using the method of the homologous recombination, we developed in this study recombinant adenovirus of fifth serotype that expresses genes of the ion channel M2 and nucleoprotein NP of the influenza virus A. Genes of the consensus protein M2 and NP of human influenza A virus were included into the structure of the viral genome. The expression of the antigens M2 and NP using recombinant adenovirus vector was detected by a Western blot assay. The immunogenicity of the developed recombinant adenovirus vector was demonstrated by the intranasal immunization of laboratory mice. PMID:25080815

  11. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity.

    PubMed

    Tan, B H; Fu, J; Sugrue, R J; Yap, E H; Chan, Y C; Tan, Y H

    1996-02-15

    The complete nonstructural NS5 gene of dengue type 1 virus, Singapore strain S275/90 (D1-S275/90) was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein (126 kDa). The GST-NS5 fusion protein was purified and the recombinant NS5 protein released from the fusion protein by thrombin cleavage. The recombinant NS5 had a predicted molecular weight of 100 kDa and reacted with antiserum against D1-S275/90 virus in Western blot analysis. The purified recombinant NS5 protein possessed RNA-dependent RNA polymerase activity which was inhibited (>99%) by antibodies against the recombinant NS5 protein. The polymerase product was shown to be a negative-stranded RNA molecule, of template size, which forms a double-stranded complex with the template RNA. PMID:8607261

  12. Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving

    PubMed Central

    Begg, Douglas J.; Purdie, Auriol C.; Bannantine, John P.; Whittington, Richard J.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced. PMID:24132604

  13. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression.

    PubMed

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  14. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression

    PubMed Central

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area–time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  15. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    NASA Astrophysics Data System (ADS)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  16. Recombinant Protein-Stabilized Monodisperse Microbubbles with Tunable Size Using a Valve-Based Microfluidic Device

    PubMed Central

    2015-01-01

    Microbubbles are used as contrast enhancing agents in ultrasound sonography and more recently have shown great potential as theranostic agents that enable both diagnostics and therapy. Conventional production methods lead to highly polydisperse microbubbles, which compromise the effectiveness of ultrasound imaging and therapy. Stabilizing microbubbles with surfactant molecules that can impart functionality and properties that are desirable for specific applications would enhance the utility of microbubbles. Here we generate monodisperse microbubbles with a large potential for functionalization by combining a microfluidic method and recombinant protein technology. Our microfluidic device uses an air-actuated membrane valve that enables production of monodisperse microbubbles with narrow size distribution. The size of microbubbles can be precisely tuned by dynamically changing the dimension of the channel using the valve. The microbubbles are stabilized by an amphiphilic protein, oleosin, which provides versatility in controlling the functionalization of microbubbles through recombinant biotechnology. We show that it is critical to control the composition of the stabilizing agents to enable formation of highly stable and monodisperse microbubbles that are echogenic under ultrasound insonation. Our protein-shelled microbubbles based on the combination of microfluidic generation and recombinant protein technology provide a promising platform for ultrasound-related applications. PMID:25265041

  17. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells.

    PubMed

    Loh, Wan Ping; Loo, Bernard; Zhou, Lihan; Zhang, Peiqing; Lee, Dong-Yup; Yang, Yuansheng; Lam, Kong Peng

    2014-09-01

    MicroRNAs (miRNAs) are short, non-coding RNAs that can negatively regulate expression of multiple genes at post-transcriptional levels. Using miRNAs to target multiple genes and pathways is a promising cell-engineering strategy to increase recombinant protein production in mammalian cells. Here, we identified miRs-17, -19b, -20a, and -92a to be differentially expressed between high- and low- monoclonal antibody-producing Chinese hamster ovary (CHO) cell clones using next-generation sequencing and quantitative real-time PCR. These miRNAs were stably overexpressed individually and in combination in a high-producing clone to assess their effects on CHO cell growth, recombinant protein productivity and product quality. Stably transfected pools demonstrated 24-34% increases in specific productivity (qP) and 21-31% increases in titer relative to the parental clone, without significant alterations in proliferation rates. The highest protein-producing clones isolated from these pools exhibited 130-140% increases in qP and titer compared to the parental clone, without major changes in product aggregation and N-glycosylation profile. From our clonal data, correlations between enhanced qP/titer and increased levels of miRs-17, -19b, and -92a were observed. Our results demonstrate the potential of miRs-17, -19b, and -92a as cell-engineering targets to increase recombinant protein production in mammalian cells. PMID:24819042

  18. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination.

    PubMed

    Baude, Annika; Aaes, Tania Løve; Zhai, Beibei; Al-Nakouzi, Nader; Oo, Htoo Zarni; Daugaard, Mads; Rohde, Mikkel; Jäättelä, Marja

    2016-03-18

    We have recently identified lens epithelium-derived growth factor (LEDGF/p75, also known as PSIP1) as a component of the homologous recombination DNA repair machinery. Through its Pro-Trp-Trp-Pro (PWWP) domain, LEDGF/p75 binds to histone marks associated with active transcription and promotes DNA end resection by recruiting DNA endonuclease retinoblastoma-binding protein 8 (RBBP8/CtIP) to broken DNA ends. Here we show that the structurally related PWWP domain-containing protein, hepatoma-derived growth factor-related protein 2 (HDGFRP2), serves a similar function in homologous recombination repair. Its depletion compromises the survival of human U2OS osteosarcoma and HeLa cervix carcinoma cells and impairs the DNA damage-induced phosphorylation of replication protein A2 (RPA2) and the recruitment of DNA endonuclease RBBP8/CtIP to DNA double strand breaks. In contrast to LEDGF/p75, HDGFRP2 binds preferentially to histone marks characteristic for transcriptionally silent chromatin. Accordingly, HDGFRP2 is found in complex with the heterochromatin-binding chromobox homologue 1 (CBX1) and Pogo transposable element with ZNF domain (POGZ). Supporting the functionality of this complex, POGZ-depleted cells show a similar defect in DNA damage-induced RPA2 phosphorylation as HDGFRP2-depleted cells. These data suggest that HDGFRP2, possibly in complex with POGZ, recruits homologous recombination repair machinery to damaged silent genes or to active genes silenced upon DNA damage. PMID:26721387

  19. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    PubMed

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs. PMID:26742322

  20. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination

    PubMed Central

    Baude, Annika; Aaes, Tania Løve; Zhai, Beibei; Al-Nakouzi, Nader; Oo, Htoo Zarni; Daugaard, Mads; Rohde, Mikkel; Jäättelä, Marja

    2016-01-01

    We have recently identified lens epithelium-derived growth factor (LEDGF/p75, also known as PSIP1) as a component of the homologous recombination DNA repair machinery. Through its Pro-Trp-Trp-Pro (PWWP) domain, LEDGF/p75 binds to histone marks associated with active transcription and promotes DNA end resection by recruiting DNA endonuclease retinoblastoma-binding protein 8 (RBBP8/CtIP) to broken DNA ends. Here we show that the structurally related PWWP domain-containing protein, hepatoma-derived growth factor-related protein 2 (HDGFRP2), serves a similar function in homologous recombination repair. Its depletion compromises the survival of human U2OS osteosarcoma and HeLa cervix carcinoma cells and impairs the DNA damage-induced phosphorylation of replication protein A2 (RPA2) and the recruitment of DNA endonuclease RBBP8/CtIP to DNA double strand breaks. In contrast to LEDGF/p75, HDGFRP2 binds preferentially to histone marks characteristic for transcriptionally silent chromatin. Accordingly, HDGFRP2 is found in complex with the heterochromatin-binding chromobox homologue 1 (CBX1) and Pogo transposable element with ZNF domain (POGZ). Supporting the functionality of this complex, POGZ-depleted cells show a similar defect in DNA damage-induced RPA2 phosphorylation as HDGFRP2-depleted cells. These data suggest that HDGFRP2, possibly in complex with POGZ, recruits homologous recombination repair machinery to damaged silent genes or to active genes silenced upon DNA damage. PMID:26721387

  1. Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris.

    PubMed

    Karaoglan, Mert; Karaoglan, Fidan Erden; Inan, Mehmet

    2016-05-01

    Recombinant protein production under the control of the PADH3 was compared with Pichia pastoris PAOX1 and PGAP. The single-copy-clones expressing Aspergillus niger xylanase (XylB) gene with the three different promoters were tested in shake flask and 5 L fed-batch fermentation processes. Recombinant protein production with PADH3, PAOX1 and PGAP were initiated by addition of ethanol, methanol and glucose, respectively in the culture medium. The fermentation process was carried out for 72 h at 30 °C, pH 5 and 30% dissolved oxygen. Extracellular protein production yield for PADH3 (3725 U/mL) was higher than for PAOX1 (2095 U/mL) and PGAP (580 U/mL) at fermentor scale under the conditions tested. These results show that the PADH3 promoter is a promising tool for large scale production of recombinant proteins and can be an alternative to the PAOX1 and PGAP. PMID:26835836

  2. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C.; Remington, Mary P.; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  3. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2.

    PubMed

    Zhang, Zheng; Wang, Guoxian; Li, Chen; Liu, Danping

    2013-08-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2(+) gene) was cloned into an adenovirus shuttle vector to obtain pShuttle cytomegalovirus (CMV)-BMP2(+)-internal ribosome entry site (IRES)-hrGFP-1. The adenovirus plasmid pAd CMV-BMP2(+)-IRES-hrGFP-1 was constructed by homologous recombination and was transfected into HEK293A cells, followed by adenovirus packaging. pAd CMV-BMP2 was used as the control. The two types of adenovirus were transfected into marrow stromal cells (MSCs). The expression of BMP2 and GFP, as well as the alkaline phosphatase (ALP) activity of expressed BMP2 were detected. Following mutagenesis, the BMP2 gene sequence and recombinant adenovirus vector were as predicted. The novel adenovirus vector expressed both BMP2 and GFP, indicating that a novel recombinant human adenovirus vector expressing BMP2 had been successfully constructed. PMID:24137184

  4. Immunotherapeutic potential of recombinant ESAT-6 protein in mouse model of experimental tuberculosis.

    PubMed

    Mir, Shabir Ahmad; Verma, Indu; Sharma, Sadhna

    2014-01-01

    Recent understanding of the pathogenesis of tuberculosis allows the possible application of immunotherapy for the treatment of tuberculosis. Therapies that would upregulate the host antimycobacterial immune response and/or attenuate T-cell suppressive and macrophage-deactivating cytokines may prove to be useful in the treatment of tuberculosis. ESAT6, 6-kDa early secreted antigenic target, is a potent protective antigen and is considered as major target for long-lived memory cells. In the present study the immunotherapeutic potential of ESAT-6 has been evaluated in mouse model of experimental tuberculosis. In the present study the ESAT-6 protein was cloned in Escherichia coli using pET23a(+) plasmid and purified by Ni(2+)-NTA chromatography. Further, the immunotherapeutic potential of the recombinant ESAT-6 (in terms of CFU enumeration in the target organs and histopathological analysis of lungs) was evaluated against experimental tuberculosis. The recombinant ESAT-6 with C-terminal histidine-tag and free N-terminus mimics the natural form of ESAT-6 has been successfully cloned and purified. The recombinant ESAT-6 protein adjuvanted with dimethyl dioctadecylammonium bromide (DDA) moderately reduced the bacterial load in the target organs of infected mice. Further, the formulation (ESAT-6-DDA) was able to act synergistically when given in combination with antituberculosis drugs. This recombinant ESAT-6 showed good immunotherapeutic potential against experimental tuberculosis and can be used as an adjunct to the conventional antituberculosis chemotherapy. PMID:24345702

  5. Purification and characterization of recombinant supersweet protein thaumatin II from tomato fruit.

    PubMed

    Firsov, Aleksey; Shaloiko, Lyubov; Kozlov, Oleg; Vinokurov, Leonid; Vainstein, Alexander; Dolgov, Sergey

    2016-07-01

    Thaumatin, a supersweet protein from the African plant katemfe (Thaumatococcus daniellii Benth.), is a promising zero-calorie sweetener for use in the food and pharmaceutical industries. Due to limited natural sources of thaumatin, its production using transgenic plants is an advantageous alternative. We report a simple protocol for purification of recombinant thaumatin II from transgenic tomato. Thaumatin was extracted from ripe tomato fruit in a low-salt buffer and purified on an SP-Sephacryl column. Recombinant thaumatin yield averaged 50 mg/kg fresh fruit. MALDI-MS analysis showed correct processing of thaumatin in tomato plants. The recombinant thaumatin was indistinguishable from the native protein in a taste test. The purified tomato-derived thaumatin had an intrinsic sweetness with a threshold value in taste tests of around 50 nM. These results demonstrate the potential of an expression system based on transgenic tomato plants for production of recombinant thaumatin for the food and pharmaceutical industries. PMID:26965414

  6. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli

    PubMed Central

    Held, Mark; Kolb, Alexander; Perdue, Sarah; Hsu, Szu-Yi; Bloch, Sarah E.; Quin, Maureen B.; Schmidt-Dannert, Claudia

    2016-01-01

    Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways. PMID:27063436

  7. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli.

    PubMed

    Held, Mark; Kolb, Alexander; Perdue, Sarah; Hsu, Szu-Yi; Bloch, Sarah E; Quin, Maureen B; Schmidt-Dannert, Claudia

    2016-01-01

    Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways. PMID:27063436

  8. Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield

    PubMed Central

    Bonander, Nicklas; Darby, Richard AJ; Grgic, Ljuban; Bora, Nagamani; Wen, Jikai; Brogna, Saverio; Poyner, David R; O'Neill, Michael AA; Bill, Roslyn M

    2009-01-01

    Background The production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts. Results We show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis. Conclusion This work demonstrates the power of a rational approach to recombinant protein production by using the results of transcriptome analysis to engineer

  9. Structural and functional characterization of recombinant human cellular retinaldehyde-binding protein.

    PubMed Central

    Crabb, J. W.; Carlson, A.; Chen, Y.; Goldflam, S.; Intres, R.; West, K. A.; Hulmes, J. D.; Kapron, J. T.; Luck, L. A.; Horwitz, J.; Bok, D.

    1998-01-01

    Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Müller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein. Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 15-20% of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state 19F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies. PMID:9541407

  10. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  11. Recombinant CHIK virus E1 coat protein of 11 KDa with antigenic domains for the detection of Chikungunya.

    PubMed

    Yathi, Krishna Kammara; Joseph, Julia Mary; Bhasker, Salini; Kumar, Ramesh; Chinnamma, Mohankumar

    2011-09-30

    Chikungunya is an acute febrile illness caused by an alpha virus technically called as CHIK virus. A smaller size of CHIK virus E1 coat protein -11 kDa was expressed in prokaryotic expression system. The recombinant protein was purified and confirmed by western blot analysis. The positions of the antigenic domain in the protein were identified and the immunoreactivity of recombinant protein with anti-CHIK IgM antibodies was ascertained. The antigen showed an 88% sensitivity and 100% specificity by Indirect ELISA. No cross reactivity of the antigen was observed with anti-Dengue virus serum samples. The results strongly support that the recombinant CHIK coat protein could be used as a diagnostic antigen for the detection of Chikungunya by Indirect ELISA. The relevance of a smaller size recombinant antigen highlights its large scale application in serodiagnosis of CHIK virus since bacterial expression is more simple and cost effective than eukaryotic system. PMID:21798263

  12. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects.

    PubMed

    Bill, Roslyn M; von der Haar, Tobias

    2015-06-01

    Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells. PMID:26037971

  13. Hybrid molecules synergistically acting against protein aggregation diseases.

    PubMed

    Korth, Carsten; Klingenstein, Ralf; Müller-Schiffmann, Andreas

    2013-01-01

    An emerging common feature of the age-associated neurodegenerative disorders like Alzheimer's disease (AD) and Creutzfeldt-Jakob disease (CJD) is the ability of many disease-associated protein aggregates to induce conversion of a normal counterpart conformer leading to an acceleration of disease progression. Curative pharmacotherapy has not been achieved so far despite successes in elucidating pathomechanisms. Here, we review the pharmaceutical strategy of generating hybrid compounds, i.e. compounds consisting of several independently acting moieties with synergistic effects, on key molecular players in AD and CJD. For prion diseases, we review hybrid compounds consisting of two different heterocyclic compounds, their synergistic effects on prion replication in a cell culture model and their ability to prolong survival of experimentally prion-infected mice in vivo. While a combination therapy of several antiprion compounds including quinacrine, clomipramine, simvastatin and tocopherol prolonged survival time to 10-25%, administration of hybrid compound quinpramine alone, a chimera of acridine and iminodibenzyl scaffolds, led to 10% survival time extension. For AD, we review a hybrid compound consisting of an Aβ recognizing D-peptide fused to a small molecule β-sheet breaker, an aminopyrazole. This molecule was able to diminish Aβ oligomers in cell culture and significantly decrease synaptotoxicity as measured by miniature excitatory postsynaptic responses in vitro. Hybrid compounds can dramatically increase potency of their single moieties and lead to novel functions when they act in a simultaneous or sequential manner thereby revealing synergistic properties. Their systematic generation combining different classes of compounds from peptides to small molecules has the potential to significantly accelerate drug discovery. PMID:24059335

  14. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    PubMed Central

    Chakrabarti, Sanjukta; Barrow, Colin J.; Kanwar, Rupinder K.; Ramana, Venkata; Kanwar, Jagat R.

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  15. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization.

    PubMed

    Chakrabarti, Sanjukta; Barrow, Colin J; Kanwar, Rupinder K; Ramana, Venkata; Kanwar, Jagat R

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1-D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  16. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag

    PubMed Central

    Duong-Ly, Krisna C.; Gabelli, Sandra B.

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:26096500

  17. Versatile Recombinant SUMOylation System for the Production of SUMO-Modified Protein

    PubMed Central

    Weber, Alain R.; Schuermann, David; Schär, Primo

    2014-01-01

    Posttranslational modification by small ubiquitin-like modifiers (SUMO) is being associated with a growing number of regulatory functions in diverse cellular processes. The biochemical investigation into the underlying molecular mechanisms, however, has been lagging behind due to the difficulty to generate sufficient amounts of recombinant SUMOylated proteins. Here, we present two newly designed two-component vector systems for the expression and purification of SUMO-modified target proteins in Escherichia coli. One system consists of a vector for SUMO conjugation, expressing human SUMO-activating (SAE1/SAE2) and conjugating (Ubc9) enzymes together with His6-tagged SUMO1, 2 or 3, that can be combined with commonly used expression constructs for any gene of interest. To facilitate SUMOylation of targets normally requiring a SUMO-E3 ligase for efficient modification, a second system is designed to express the target protein as a fusion with the human SUMO-conjugating enzyme Ubc9, thus compensating the absence of a potential SUMO ligase. We demonstrate the proficiency of these systems by SUMOylation of two DNA repair proteins, the thymine DNA glycosylase (TDG) and XRCC1, and describe purification schemes for SUMOylated proteins in native and active form. This SUMO toolbox facilitates “in-cell” and “in-extract” production and purification of recombinant SUMO-modified target proteins for functional and structural analysis. PMID:25007328

  18. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives

    PubMed Central

    2016-01-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design. PMID:27581654

  19. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    PubMed

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories. PMID:25749949

  20. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins.

    PubMed

    Larsen, Sasha; Weaver, Jun; de Sa Campos, Katherine; Bulahan, Rhobe; Nguyen, Jackson; Grove, Heather; Huang, Amy; Low, Lauren; Tran, Namphuong; Gomez, Seth; Yau, Jennifer; Ilustrisimo, Thomas; Kawilarang, Jessica; Lau, Jonathan; Tranphung, Maivi; Chen, Irene; Tran, Christina; Fox, Marcia; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P

    2013-11-01

    Although Pichia pastoris is a popular protein expression system, it exhibits limitations in its ability to secrete heterologous proteins. Therefore, a REMI (restriction enzyme mediated insertion) strategy was utilized to select mutant beta-g alactosidase s upersecretion (bgs) strains that secreted increased levels of a β-galactosidase reporter. Many of the twelve BGS genes may have functions in intracellular signaling or vesicle transport. Several of these strains also appeared to contain a more permeable cell wall. Preliminary characterization of four bgs mutants showed that they differed in the ability to enhance the export of other reporter proteins. bgs13, which has a disruption in a gene homologous to Saccharomyces cerevisiae protein kinase C (PKC1), gave enhanced secretion of most recombinant proteins that were tested, raising the possibility that it has the universal super-secreter phenotype needed in an industrial production strain of P. pastoris. PMID:23881328

  1. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives.

    PubMed

    Jia, Baolei; Jeon, Che Ok

    2016-08-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design. PMID:27581654

  2. Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression.

    PubMed

    Krasovska, Olena S; Stasyk, Olena G; Nahorny, Viktor O; Stasyk, Oleh V; Granovski, Nikolai; Kordium, Vitaliy A; Vozianov, Oleksandr F; Sibirny, Andriy A

    2007-07-01

    The most commonly used expression platform for production of recombinant proteins in the methylotrophic yeast Hansenula polymorpha relies on the strong and strictly regulated promoter from the gene encoding peroxisomal enzyme alcohol (or methanol) oxidase (P(MOX)). Expression from P(MOX) is induced by methanol and is partially derepressed in glycerol or xylose medium, whereas in the presence of hexoses, disaccharides or ethanol, it is repressed. The need for methanol for maximal induction of gene expression in large-scale fermentation is a significant drawback, as this compound is toxic, flammable, supports a slow growth rate and requires extensive aeration. We isolated H. polymorpha mutants deficient in glucose repression of P(MOX) due to an impaired HpGCR1 gene, and other yet unidentified secondary mutations. The mutants exhibited pronounced defects in P(MOX) regulation only by hexoses and xylose, but not by disaccharides or ethanol. With one of these mutant strains as hosts, we developed a modified two-carbon source mode expression platform that utilizes convenient sugar substrates for growth (sucrose) and induction of recombinant protein expression (glucose or xylose). We demonstrate efficient regulatable by sugar carbon sources expression of three recombinant proteins: a secreted glucose oxidase from the fungus Aspergillus niger, a secreted mini pro-insulin, and an intracellular hepatitis B virus surface antigen in these mutant hosts. The modified expression platform preserves the favorable regulatable nature of P(MOX) without methanol, making a convenient alternative to the traditional system. PMID:17163508

  3. Tunable recombinant protein expression in E. coli: enabler for continuous processing?

    PubMed

    Marschall, Lukas; Sagmeister, Patrick; Herwig, Christoph

    2016-07-01

    Tuning of transcription is a powerful process technological tool for efficient recombinant protein production in Escherichia coli. Many challenges such as product toxicity, formation of inclusion bodies, cell death, and metabolic burden are associated with non-suitable (too high or too low) levels of recombinant protein expression. Tunable expression systems allow adjusting the recombinant protein expression using process technological means. This enables to exploit the cell's metabolic capacities to a maximum. Within this article, we review genetic and process technological aspects of tunable expression systems in E. coli, providing a roadmap for the industrial exploitation of the reviewed technologies. We attempt to differentiate the term "expression tuning" from its inflationary use by providing a concise definition and highlight interesting fields of application for this versatile new technology. Dependent on the type of inducer (metabolizable or non-metabolizable), different process strategies are required in order to achieve tuning. To fully profit from the benefits of tunable systems, an independent control of growth rate and expression rate is indispensable. Being able to tackle problems such as long-term culture stability and constant product quality expression tuning is a promising enabler for continuous processing in biopharmaceutical production. PMID:27170324

  4. Dunaliella salina as a novel host for the production of recombinant proteins.

    PubMed

    Feng, Shuying; Li, Xuebing; Xu, Zhengshun; Qi, Jingjiao

    2014-05-01

    Although several expression systems are currently available for the production of recombinant proteins, they still have some inherent disadvantages, thereby resulting in the desire to explore a novel expression system for producing recombinant proteins. Dunaliella salina (D. salina) has been exploited as a novel expression system for the field of genetic engineering because of its distinct advantages, including low production cost, fast growth, easy culture, ease of transgenic manipulation, and modified abilities of transcription and translation. Thus far, studies on D. salina host have made great development and significant progress. This paper presents a comprehensive summary of the achievements of D. salina host from the following aspects: the advantages of D. salina cells, transformation methods, cloning of D. salina genes, and expression of exogenous genes into D. salina. Furthermore, the authors identified the current main obstacles and future application prospects for the recombinant proteins produced by D. salina, which could be used as a basis for the future maturation of D. salina expression system. PMID:24643734

  5. Cloning, expression, and antigenic characterization of recombinant protein of Mycoplasma gallisepticum expressed in Escherichia coli.

    PubMed

    Rocha, T S; Tramuta, C; Catania, S; Matucci, A; Giuffrida, M G; Baro, C; Profiti, M; Bertolotti, L; Rosati, S

    2015-04-01

    Mycoplasma gallisepticum (MG) is a member of the most important avian mycoplasmas, causing chronic respiratory disease in chickens and leading to important economic losses in the poultry industry. Recombinant technology represents a strategic approach used to achieve highly reliable and specific diagnostic tests in veterinary diseases control: in particular this aspect is crucial for confirming mycoplasma infection and for maintaining mycoplasma-free breeder flocks. In this study, we identified a component of the pyruvate dehydrogenase dihydrolipoamide acetyltransferase (i.e., E2) protein by 2-dimensional electrophoresis (2-DE), characterized it in immunoblotting assays, and analyzed its recombinant (r-E2) in a rec-ELISA test. For full-length protein expression in Escherichia coli (EC) a point mutation was introduced. A rabbit antiserum produced against r-E2 was tested in a Western Blot using different samples of Mycoplasma species. The results showed the applicability of site-directed mutagenesis, with a good yield of the r-E2 after purification. Also, anti-E2 serum reacted with all the tested MG strains showing no cross reaction with other mycoplasmas. The developed E2 ELISA test was capable of detecting MG antibodies in the sera examined. Those results demonstrate the antigenic stability of the E2 protein which could represent a recombinant antigen with potential diagnostic applications. PMID:25667423

  6. Structure and mechanism of the phage T4 recombination mediator protein UvsY

    PubMed Central

    Gajewski, Stefan; Waddell, Michael Brett; Vaithiyalingam, Sivaraja; Nourse, Amanda; Li, Zhenmei; Woetzel, Nils; Alexander, Nathan; Meiler, Jens; White, Stephen W.

    2016-01-01

    The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY–ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA–gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA–UvsX filament. PMID:26951671

  7. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing.

    PubMed Central

    Davis, A P; Symington, L S

    2001-01-01

    The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing. PMID:11606529

  8. BTK gene targeting by homologous recombination using a helper-dependent adenovirus/adeno-associated virus hybrid vector.

    PubMed

    Yamamoto, H; Ishimura, M; Ochiai, M; Takada, H; Kusuhara, K; Nakatsu, Y; Tsuzuki, T; Mitani, K; Hara, T

    2016-02-01

    X-linked agammaglobulinemia (XLA) is one of the most common humoral immunodeficiencies, which is caused by mutations in Bruton's tyrosine kinase (BTK) gene. To examine the possibility of using gene therapy for XLA, we constructed a helper-dependent adenovirus/adeno-associated virus BTK targeting vector (HD-Ad.AAV BTK vector) composed of a genomic sequence containing BTK exons 6-19 and a green fluorescence protein-hygromycin cassette driven by a cytomegalovirus promoter. We first used NALM-6, a human male pre-B acute lymphoblastic leukemia cell line, as a recipient to measure the efficiency of gene targeting by homologous recombination. We identified 10 clones with the homologous recombination of the BTK gene among 107 hygromycin-resistant stable clones isolated from two independent experiments. We next used cord blood CD34⁺ cells as the recipient cells for the gene targeting. We isolated colonies grown in medium containing cytokines and hygromycin. We found that the targeting of the BTK gene occurred in four of the 755 hygromycin-resistant colonies. Importantly, the gene targeting was also observed in CD19⁺ lymphoid progenitor cells that were differentiated from the homologous recombinant CD34⁺ cells during growth in selection media. Our study shows the potential for the BTK gene therapy using the HD-Ad.AAV BTK vector via homologous recombination in hematopoietic stem cells. PMID:26280081

  9. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    PubMed

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions. PMID:24341724

  10. Expression, purification and production of antisera against recombinant truncated VP22 protein

    PubMed Central

    YU, XIAN; LEI, JUN; YANG, QIN; XU, ZHENGMIN; WANG, YAN

    2016-01-01

    Cell-penetrating peptides (CPPs) are non-invasive vectors that can efficiently transport bioactive cargo across the cell membrane. Naturally occurring CPPs, such as the tegument protein VP22 of the Herpes simplex virus type 1, can potentiate protein-drug delivery into living cells. The aim of the present study was to construct anti-VP22 antibodies that can be used to detect VP22-fusion drugs. Therefore, 60- and 45-amino acid peptides corresponding to the N-terminus and C-terminus of VP22, respectively, were cloned, expressed and purified. Subsequently, polyclonal antisera against them were generated. The DNA sequence, cloned into the pGEX-5X-1 vector, was transformed into E. coli BL21 (DE3). After inducing expression with 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) at 25°C for 4 h, the recombinant VP22 proteins were purified by electroelution. The high titers of polyclonal antisera obtained subsequent to immunization of mice with the purified recombinant truncated VP22 was confirmed by ELISA. Western blot and immunofluorescence analysis showed that the antisera detected both the truncated and full-length VP22 protein. Therefore, the polyclonal antisera against VP22 may be used in the detection of the intracellular location of VP22-fusion protein drugs. PMID:27168799

  11. Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools.

    PubMed

    Balasubramanian, Sowmya; Matasci, Mattia; Kadlecova, Zuzana; Baldi, Lucia; Hacker, David L; Wurm, Florian M

    2015-04-20

    Heterogeneous populations of stably transfected cells (cell pools) can serve for the rapid production of moderate amounts of recombinant proteins. Here, we propose the use of the piggyBac (PB) transposon system to improve the productivity and long-term stability of cell pools derived from Chinese hamster ovary (CHO) cells. PB is a naturally occurring genetic element that has been engineered to facilitate the integration of a transgene into the genome of the host cell. In this report PB-derived cell pools were generated after 10 days of selection with puromycin. The resulting cell pools had volumetric productivities that were 3-4 times higher than those achieved with cell pools generated by conventional plasmid transfection even though the number of integrated transgene copies per cell was similar in the two populations. In 14-day batch cultures, protein levels up to 600 and 800 mg/L were obtained for an Fc-fusion protein and a monoclonal antibody, respectively, at volumetric scales up to 1L. In general, the volumetric protein yield from cell pools remained constant for up to 3 months in the absence of selection. In conclusion, transfection of CHO cells with the PB transposon system is a simple, efficient, and reproducible approach to the generation of cell pools for the rapid production of recombinant proteins. PMID:25758242

  12. Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production

    PubMed Central

    Nocon, Justyna; Steiger, Matthias G.; Pfeffer, Martin; Sohn, Seung Bum; Kim, Tae Yong; Maurer, Michael; Rußmayer, Hannes; Pflügl, Stefan; Ask, Magnus; Haberhauer-Troyer, Christina; Ortmayr, Karin; Hann, Stephan; Koellensperger, Gunda; Gasser, Brigitte; Lee, Sang Yup; Mattanovich, Diethard

    2014-01-01

    The production of recombinant proteins is frequently enhanced at the levels of transcription, codon usage, protein folding and secretion. Overproduction of heterologous proteins, however, also directly affects the primary metabolism of the producing cells. By incorporation of the production of a heterologous protein into a genome scale metabolic model of the yeast Pichia pastoris, the effects of overproduction were simulated and gene targets for deletion or overexpression for enhanced productivity were predicted. Overexpression targets were localized in the pentose phosphate pathway and the TCA cycle, while knockout targets were found in several branch points of glycolysis. Five out of 9 tested targets led to an enhanced production of cytosolic human superoxide dismutase (hSOD). Expression of bacterial β-glucuronidase could be enhanced as well by most of the same genetic modifications. Beneficial mutations were mainly related to reduction of the NADP/H pool and the deletion of fermentative pathways. Overexpression of the hSOD gene itself had a strong impact on intracellular fluxes, most of which changed in the same direction as predicted by the model. In vivo fluxes changed in the same direction as predicted to improve hSOD production. Genome scale metabolic modeling is shown to predict overexpression and deletion mutants which enhance recombinant protein production with high accuracy. PMID:24853352

  13. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  14. Recombinant Major Antigenic Protein 2 of Ehrlichia canis: a Potential Diagnostic Tool

    PubMed Central

    Alleman, A. Rick; McSherry, Leo J.; Barbet, Anthony F.; Breitschwerdt, Edward B.; Sorenson, Heather L.; Bowie, Michael V.; Bélanger, Myriam

    2001-01-01

    The major antigenic protein 2 (MAP2) of Ehrlichia canis was cloned and expressed. The recombinant protein was characterized and tested in an enzyme-linked immunosorbent assay (ELISA) format for potential application in the serodiagnosis of canine monocytic ehrlichiosis. The recombinant protein, which contained a C-terminal polyhistidine tag, had a molecular mass of approximately 26 kDa. The antigen was clearly identified by Western immunoblotting using antihistidine antibody and immune serum from an experimentally infected dog. The recombinant MAP2 (rMAP2) was tested in an ELISA format using 141 serum samples from E. canis immunofluorescent antibody (IFA)-positive and IFA-negative dogs. Fifty-five of the serum samples were from dogs experimentally or naturally infected with E. canis and were previously demonstrated to contain antibodies reactive with E. canis by indirect immunofluorescence assays. The remaining 86 samples, 33 of which were from dogs infected with microorganisms other than E. canis, were seronegative. All of the samples from experimentally infected animals and 36 of the 37 samples from naturally infected animals were found to contain antibodies against rMAP2 of E. canis in the ELISA. Only 3 of 53 IFA-negative samples tested positive on the rMAP2 ELISA. There was 100% agreement among IFA-positive samples from experimentally infected animals, 97.3% agreement among IFA-positive samples from naturally infected animals, and 94.3% agreement among IFA-negative samples, resulting in a 97.2% overall agreement between the two assays. These data suggest that rMAP2 of E. canis could be used as a recombinant test antigen for the serodiagnosis of canine monocytic ehrlichiosis. PMID:11427559

  15. Characterization of the recombinant proteins of porcine circovirus type2 field isolate expressed in the baculovirus system.

    PubMed

    Kim, Yuna; Kim, Jinhyun; Kang, Kyoungsoo; Lyoo, Young S

    2002-03-01

    Porcine circovirus (PCV) type2 was isolated using primary porcine kidney cells from lymph node of piglets with typical PMWS. The presence of the virus was identified by PCR using primers specific to PCV type2. The ORFs 1 and 2 were amplified by PCR using primers corresponding to the target genes of the PCV type 2. Cloned genes were inserted into the baculovirus expression vector and PCV recombinant proteins were expressed using baculovirus expression system. Recombinant protein expression was determined by indirect immunofluorescent assay (IFA) and immunoblotting using polyclonal antiserum to PCV. ORF1 gene expressed two proteins with approximately 17 kDa and 31 kDa proteins in the baculovirus system. Recombinant protein of the ORF2 was similar to that of the native virus except minor bands with different molecular weight were detected. Recombinant protein expressed in the baculovirus system showed at least two glycosylation sites based on the tunicamycin treatment. Recombinant protein of the ORF2 assembled virus-like particle in recombinant virus infected insect cells. PMID:14614268

  16. Antimicrobial activity of snakin-defensin hybrid protein in tobacco and potato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To augment plant protection against phytopathogens, we constructed a fusion gene for the simultaneous expression of snakin-1 (SN1) and defensin-1 (PTH1) antimicrobial proteins as a hybrid protein (SAP) in plant cells. Prior to in vivo evaluation of SAP phytoprotective activity, the hybrid protein ex...

  17. Species-specific antibody responses to the recombinant 53-kilodalton excretory and secretory proteins in mice infected with Trichinella spp.

    PubMed

    Nagano, Isao; Wu, Zhiliang; Takahashi, Yuzo

    2008-03-01

    The 53-kDa proteins in larval excretory and secretory (E-S) products were expressed from five Trichinella species (T. spiralis, T. britovi, T. nativa, T. pseudospiralis, and T. papuae), using the Escherichia coli expression system, and the antibody responses to the 53-kDa recombinant proteins in mice infected with Trichinella spp. were analyzed by Western blotting. The 53-kDa protein is conserved among the five Trichinella species, with >60% similarity in amino acid sequences. The 53-kDa recombinant proteins of T. spiralis and T. pseudospiralis reacted to sera from mice infected with T. spiralis and T. pseudospiralis at 8 days postinfection (p.i.), respectively. An antibody against the 53-kDa recombinant protein of T. spiralis recognized the 53-kDa protein in the crude extracts from adult worms and 30-day p.i. muscle larvae and E-S products from muscle larvae of T. spiralis but did not recognize any proteins from T. pseudospiralis. The sera from the mice infected with T. spiralis strongly reacted with the 53-kDa recombinant protein of T. spiralis but did not react with the 53-kDa recombinant proteins of T. britovi, T. nativa, T. pseudospiralis, and T. papuae. Similarly, the sera from mice infected with T. britovi, T. nativa, T. pseudospiralis, or T. papuae strongly reacted with the 53-kDa recombinant proteins of T. britovi, T. nativa, T. pseudospiralis, or T. papuae, respectively. These results showed that the 53-kDa recombinant proteins provide early and species-specific antibody responses in mice infected with Trichinella spp. PMID:18184826

  18. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  19. Novel Recombinant Multiepitope Proteins for the Diagnosis of Asymptomatic Leishmania infantum-Infected Dogs

    PubMed Central

    Faria, Angélica Rosa; de Castro Veloso, Luciano; Coura-Vital, Wendel; Reis, Alexandre Barbosa; Damasceno, Leonardo Miranda; Gazzinelli, Ricardo T.; Andrade, Hélida M.

    2015-01-01

    Background Visceral leishmaniasis is the most severe form of leishmaniasis. Worldwide, approximately 20% of zoonotic human visceral leishmaniasis is caused by Leishmania infantum, also known as Leishmania chagasi in Latin America. Current diagnostic methods are not accurate enough to identify Leishmania-infected animals and may compromise the effectiveness of disease control. Therefore, we aimed to produce and test two recombinant multiepitope proteins as a means to improve and increase accuracy in the diagnosis of canine visceral leishmaniasis (CVL). Methodology/Principal Findings Ten antigenic peptides were identified by CVL ELISA in previous work. In the current proposal, the coding sequences of these ten peptides were assembled into a synthetic gene. Furthermore, other twenty peptides were selected from work by our group where good B and T cell epitopes were mapped. The coding sequences of these peptides were also assembled into a synthetic gene. Both genes have been cloned and expressed in Escherichia coli, producing two multiepitope recombinant proteins, PQ10 and PQ20. These antigens have been used in CVL ELISA and were able to identify asymptomatic dogs (80%) more effectively than EIE-LVC kit, produced by Bio-Manguinhos (0%) and DPP kit (10%). Moreover, our recombinant proteins presented an early detection (before PCR) of infected dogs, with positivities ranging from 23% to 65%, depending on the phase of infection in which sera were acquired. Conclusions/Significance Our study shows that ELISA using the multiepitope proteins PQ10 and PQ20 has great potential in early CVL diagnosis. The use of these proteins in other methodologies, such as immunochromatographic tests, could be beneficial mainly for the detection of asymptomatic dogs. PMID:25569685

  20. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    PubMed Central

    Carrick, Brian H.; Hao, Linxuan; Smaldino, Philip J.; Engelke, David R.

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  1. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant. PMID:24744029

  2. Secretion of human interleukin-2 fused with green fluorescent protein in recombinant Pichia pastoris.

    PubMed

    Cha, Hyung Joon; Dalal, Nimish N; Bentley, William E

    2005-07-01

    Methylotrophic yeast Pichia pastoris is convenient for the expression of eukaryotic foreign proteins owing to its potential for posttranslational modifications, protein folding, and facile culturing. In this work, human interleukin (hIL)-2 was successfully produced as a secreted fusion form in recombinant P. pastoris. By employing green fluorescent protein (GFP) as a monitoring fusion partner, clear identification of fusion protein expression and quantification of intracellular hIL-2 were possible even though there was no correlation between culture supernatant fluorescence and secreted hIL-2 owing to high media interference. Importantly, by the addition of casamino acids in basal medium, we were able to enhance threefold amount of secreted hIL-2, which was present both as a fusion and as a clipped fragment. PMID:16014994

  3. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    PubMed Central

    2012-01-01

    Background In nature, mussel adhesive proteins (MAPs) show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa) and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate the use of functional MAPs in

  4. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae.

    PubMed

    Mori, Akihiro; Hara, Shoichi; Sugahara, Tomohiro; Kojima, Takaaki; Iwasaki, Yugo; Kawarasaki, Yasuaki; Sahara, Takehiko; Ohgiya, Satoru; Nakano, Hideo

    2015-11-01

    The secretion efficiency of foreign proteins in recombinant microbes is strongly dependent on the combination of the signal peptides (SPs) used and the target proteins; therefore, identifying the optimal SP sequence for each target protein is a crucial step in maximizing the efficiency of protein secretion in both prokaryotes and eukaryotes. In this study, we developed a novel method, named the SP optimization tool (SPOT), for the generation and rapid screening of a library of SP-target gene fusion constructs to identify the optimal SP for maximizing target protein secretion. In contrast to libraries generated in previous studies, SPOT fusion constructs are generated without adding the intervening sequences associated with restriction enzyme digestion sites. Therefore, no extra amino acids are inserted at the N-terminus of the target protein that might affect its function or conformational stability. As a model system, β-galactosidase (LacA) from Aspergillus oryzae was used as a target protein for secretion from Saccharomyces cerevisiae. In total, 60 SPs were selected from S. cerevisiae secretory proteins and utilized to generate the SP library. While many of the SP-LacA fusions were not secreted, several of the SPs, AGA2, CRH1, PLB1, and MF(alpha)1, were found to enhance LacA secretion compared to the WT sequence. Our results indicate that SPOT is a valuable method for optimizing the bioproduction of any target protein, and could be adapted to many host strains. PMID:25912446

  5. Effect of Chemical Chaperones in Improving the Solubility of Recombinant Proteins in Escherichia coli▿†

    PubMed Central

    Prasad, Shivcharan; Khadatare, Prashant B.; Roy, Ipsita

    2011-01-01

    The recovery of active proteins from inclusion bodies usually involves chaotrope-induced denaturation, followed by refolding of the unfolded protein. The efficiency of renaturation is low, leading to reduced yield of the final product. In this work, we report that recombinant proteins can be overexpressed in the soluble form in the host expression system by incorporating compatible solutes during protein expression. Green fluorescent protein (GFP), which was otherwise expressed as inclusion bodies, could be made to partition off into the soluble fraction when sorbitol and arginine, but not ethylene glycol, were present in the growth medium. Arginine and sorbitol increased the production of soluble protein, while ethylene glycol did not. Production of ATP increased in the presence of sorbitol and arginine, but not ethylene glycol. A control experiment with fructose addition indicated that protein solubilization was not due to a simple ATP increase. We have successfully reproduced these results with the N-terminal domain of HypF (HypF-N), a bacterial protein which forms inclusion bodies in Escherichia coli. Instead of forming inclusion bodies, HypF-N could be expressed as a soluble protein in the presence of sorbitol, arginine, and trehalose in the expression medium. PMID:21551288

  6. Production of recombinant proteins in Mycobacterium smegmatis for structural and functional studies

    PubMed Central

    Bashiri, Ghader; Baker, Edward N

    2015-01-01

    Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over-express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non-pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics. PMID:25303009

  7. The extent and position of homoeologous recombination in a distant hybrid of Alstroemeria: a molecular cytogenetic assessment of first generation backcross progenies.

    PubMed

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1999-04-01

    To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis. Four different probes were used for the FISH analysis: two species-specific and two rDNA probes. The six BC1 plants were obtained from crosses between the hybrid A. aurea x A. inodora with its parent A. inodora. GISH clearly identified all chromosomes of both parental genomes as well as recombinant chromosomes. The sequential GISH and FISH analysis enabled the accurate identification of all individual chromosomes in the BC1 plants, resulting in the construction of detailed karyotypes of the plants. The identification of the recombinant chromosomes provided evidence which chromosomes of the two species are homoeologous. Two of the BC1 plants were aneuploid (2n=2x+1=17) and four triploid (2n=3x=24), indicating that both n and 2n gametes were functional in the F1 hybrid. Using GISH, it was possible to estimate homeologous recombination in two different types of gametes in the F1 hyrid. The positions of the crossover points ranged from highly proximal to distal and the maximum number of crossover points per chromosome arm was three. Compared with the aneuploid plants, the triploid plants (which received 2n gametes) clearly possessed fewer crossovers per chromosome, indicating reduced chromosome pairing/recombination prior to the formation of the 2n gametes. Besides homeologous recombination, evidence was found for the presence of structural rearrangements (inversion and translocation) between the chromosomes of the parental species. The presence of the ancient translocation was confirmed through FISH analysis of mitotic and meiotic chromosomes. PMID:10199956

  8. A yeast-based genetic screening to identify human proteins that increase homologous recombination.

    PubMed

    Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro

    2008-05-01

    To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR. PMID:18248415

  9. Recombination between viral DNA and the transgenic coat protein gene of African cassava mosaic geminivirus.

    PubMed

    Frischmuth, T; Stanley, J

    1998-05-01

    Nicotiana benthamiana was transformed with three different constructs (pCRA1, pCRA2 and pJC1) containing the coat protein coding sequence of African cassava mosaic virus (ACMV). Transformed plants were inoculated with a coat protein deletion mutant of ACMV that induces mild systemic symptoms in control plants. Several inoculated plants of transgenic lines CRA1/3, CRA1/4, CRA2/1 and CRA2/2 developed severe systemic symptoms typical of ACMV. DNA analysis revealed that, in these plants, recombination had occurred between the mutant viral DNA and the integrated construct DNA, resulting in the production of recombinant virus progeny with 'wild-type' characteristics. No reversion of mutant to 'wild-type' virus was observed in pJC1-transformed plants. Recombinant virus from several transgenic plants was analysed by PCR and parts of DNA A of virus progeny were cloned. Sequence analysis revealed that only a few nucleotides were changed from the published sequence. PMID:9603342

  10. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins

    PubMed Central

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A.; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S.; Greenblatt, Jack F.; Marcon, Edyta; Arrowsmith, Cheryl H.; Edwards, Aled M.; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  11. Identification of recombinant baculoviruses using green fluorescent protein as a selectable marker.

    PubMed

    Wilson, L E; Wilkinson, N; Marlow, S A; Possee, R D; King, L A

    1997-04-01

    A rapid procedure for the production and identification of recombinant baculoviruses is described that uses the autofluorescent properties of the Aquorea victoria green fluorescent protein (GFP). Expression of the GFP cDNA (without signal peptide sequence) in Spodoptera frugiperda cells resulted in the synthesis of a 30-kDa protein, which was confirmed as GFP by Western blotting and by the emission of green fluorescence when illuminated with longwave UV light (495 or 365 nm). To use GFP as a marker for the selection of recombinant baculoviruses, we prepared a virus, BacGFP1, in which the GFP cDNA was inserted in lieu of lacZ in BacPAK6. Before the use of BacPAK6 or BacGFP1 in a cotransfection to prepare recombinant baculoviruses, the virus DNA was linearized with Bsu361 to improve the recovery of non-parental virus plaques. The use of BacGFP1 DNA resulted in the recovery of 79%-91% plaques with the non-parental phenotype. Plaques were rapidly identified by simply exposing them briefly to longwave UV light (365 nm) without the need for exogenous substrates or biological stains. PMID:9105619

  12. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae.

    PubMed

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen; Sommer, Morten O A

    2015-12-01

    Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74-84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered a less leaky Cu(2+)-inducible promoter based on CUP1. The basal expression level of the new promoter was approximately 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu(2+)-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms. PMID:26392044

  13. Rabbit Hemorrhagic Disease Virus Variant Recombinant VP60 Protein Induces Protective Immunogenicity.

    PubMed

    Yang, Dong-Kun; Kim, Ha-Hyun; Nah, Jin-Ju; Song, Jae-Young

    2015-11-01

    Rabbit hemorrhagic disease virus (RHDV) is highly contagious and often causes fatal disease that affects both wild and domestic rabbits of the species Oryctolagus cuniculus. A highly pathogenic RHDV variant (RHDVa) has been circulation in the Korean rabbit population since 2007 and has a devastating effect on the rabbit industry in Korea. A highly pathogenic RHDVa was isolated from naturally infected rabbits, and the gene encoding the VP60 protein was cloned into a baculovirus transfer vector and expressed in insect cells. The hemagglutination titer of the Sf-9 cell lysate infected with recombinant VP60 baculovirus was 131,072 units/50 μl and of the supernatant 4,096 units/50 μl. Guinea pigs immunized twice intramuscularly with a trial inactivated RHDVa vaccine containing recombinant VP60 contained 2,152 hemagglutination inhibition (HI) geometric mean titers. The 8-week-old white rabbits inoculated with one vaccine dose were challenged with a lethal RHDVa 21 days later and showed 100% survival rates. The recombinant VP60 protein expressed in a baculovirus system induced high HI titers in guinea pigs and rendered complete protection, which led to the development of a novel inactivated RHDVa vaccine. PMID:26198122

  14. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein

    PubMed Central

    Ducken, Deirdre R.; Brown, Wendy C.; Alperin, Debra C.; Brayton, Kelly A.; Reif, Kathryn E.; Turse, Joshua E.; Palmer, Guy H.; Noh, Susan M.

    2015-01-01

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines

  15. Tender coconut water an economical growth medium for the production of recombinant proteins in Escherichia coli

    PubMed Central

    2013-01-01

    Background Escherichia coli is most widely used prokaryotic expression system for the production of recombinant proteins. Several strategies have been employed for expressing recombinant proteins in E.coli. This includes the development of novel host systems, expression vectors and cost effective media. In this study, we exploit tender coconut water (TCW) as a natural and cheaper growth medium for E.coli and Pichia pastoris. Result E.coli and P.pastoris were cultivated in TCW and the growth rate was monitored by measuring optical density at 600 nm (OD600nm), where 1.55 for E.coli and 8.7 for P.pastoris was obtained after 12 and 60 hours, respectively. However, variation in growth rate was observed among TCW when collected from different localities (0.15-2.5 at OD600nm), which is attributed to the varying chemical profile among samples. In this regard, we attempted the supplementation of TCW with different carbon and nitrogen sources to attain consistency in growth rate. Here, supplementation of TCW with 25 mM ammonium sulphate (TCW-S) was noted efficient for the normalization of inconsistency, which further increased the biomass of E.coli by 2 to 10 folds, and 1.5 to 2 fold in P.pastoris. These results indicate that nitrogen source is the major limiting factor for growth. This was supported by total nitrogen and carbon estimation where, nitrogen varies from 20 to 60 mg/100 ml while carbohydrates showed no considerable variation (2.32 to 3.96 g/100 ml). In this study, we also employed TCW as an expression media for recombinant proteins by demonstrating successful expression of maltose binding protein (MBP), MBP-TEV protease fusion and a photo switchable fluorescent protein (mEos2) using TCW and the expression level was found to be equivalent to Luria Broth (LB). Conclusion This study highlights the possible application of TCW-S as a media for cultivation of a variety of microorganisms and recombinant protein expression. PMID:24004578

  16. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    PubMed Central

    Licitra, Beth N.; Duhamel, Gerald E.; Whittaker, Gary R.

    2014-01-01

    Canine enteric coronavirus (CCoV) is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs) that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host. PMID:25153347

  17. Holliday intermediates and reaction by-products in FLP protein-promoted site-specific recombination.

    PubMed Central

    Meyer-Leon, L; Huang, L C; Umlauf, S W; Cox, M M; Inman, R B

    1988-01-01

    Holliday structures are formed and resolved by FLP protein during site-specific recombination. These structures have been isolated and are visualized in both native and partially denatured states by electron microscopy. No single-strand breaks are found within the junction, indicating that the structure results from a reciprocal exchange of strands. These structures have properties consistent with being reaction intermediates. Double-strand cleavage products and "Y structures" are also detected and appear to be by-products of the reaction. The Y structures are three-armed branched molecules with a covalently closed junction located at the FLP recombination target site. Models are discussed, suggesting that both of these novel structures are made by aberrant cleavages during formation and resolution of the Holliday intermediate. Images PMID:3065624

  18. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  19. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  20. Residual Endotoxin Contaminations in Recombinant Proteins Are Sufficient to Activate Human CD1c+ Dendritic Cells

    PubMed Central

    Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta

    2014-01-01

    Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14. PMID:25478795

  1. Validation of the Chlamydia trachomatis genital challenge pig model for testing recombinant protein vaccines.

    PubMed

    Schautteet, Katelijn; Stuyven, Edith; Cox, Eric; Vanrompay, Daisy

    2011-01-01

    Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen that is the leading cause of bacterial sexually transmitted disease in humans in developing countries. A vaccination programme is considered to be the best approach to reduce the prevalence of C. trachomatis infections. However, there are still no commercial C. trachomatis vaccines. In order to develop effective C. trachomatis vaccines, it is important to identify those antigens that elicit a protective immune response, and to develop new and adequate methods and adjuvants for effective vaccine delivery, as conventional methods have failed to induce protective immunity. In order to test different vaccine candidates, animal models are needed. Former studies have used non-primate monkeys, mice or guinea pig infection models. The present study used a pig model for testing recombinant protein vaccines. Two recombinant proteins, polymorphic membrane protein G (PmpG), and secretion and cellular translocation protein C (SctC), were tested for their ability to create protection in a pig C. trachomatis challenge model. The vaccines were administered subcutaneously with GNE adjuvant. Six weeks later, animals were challenged intravaginally with C. trachomatis serovar E. After a further 4 weeks, the pigs were euthanized. PmpG-immunized pigs were better protected than pigs immunized with the less promising SctC candidate vaccine antigen. Interestingly, significant protection was apparently not correlated with a strong humoral immune response upon subcutaneous immunization. In conclusion, the pig model is useful for studying the efficacy of vaccine candidates against genital human C. trachomatis infection. PMID:20847123

  2. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    PubMed Central

    Gao, Meili; Li, Yongfei; Xue, Xiaochang; Wang, Xianfeng; Long, Jiangang

    2012-01-01

    Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed. PMID:23093835

  3. Protective immunity induced in Aotus monkeys by recombinant SERA proteins of Plasmodium falciparum.

    PubMed Central

    Inselburg, J; Bzik, D J; Li, W B; Green, K M; Kansopon, J; Hahm, B K; Bathurst, I C; Barr, P J; Rossan, R N

    1991-01-01

    We describe the vaccination of Panamanian monkeys (Aotus sp.) with two recombinant blood stage antigens that each contain a portion of the N-terminal region of the SERA (serine repeat antigen) protein of the malaria parasite Plasmodium falciparum. We immunized with either a 262-amino-acid SERA fragment (SERA I) that contains amino acids 24 to 285 of the 989-amino-acid protein or a 483-amino-acid SERA fragment (SERA N) that contains amino acids 24 to 506 as part of a fusion protein with human gamma interferon. The recombinant proteins were shown to stimulate protective immunity when administered with complete and incomplete Freund adjuvant. Four of six immunized monkeys challenged by intravenous inoculation with blood stage P. falciparum developed parasitemias that were reduced by at least 1,000-fold. Two of six immunized monkeys developed parasitemias which were comparable to the lowest parasitemia in one of four controls and were 50- to 1,000-fold lower than in the other three controls. PMID:1900809

  4. Protective immunity induced in Aotus monkeys by recombinant SERA proteins of Plasmodium falciparum.

    PubMed

    Inselburg, J; Bzik, D J; Li, W B; Green, K M; Kansopon, J; Hahm, B K; Bathurst, I C; Barr, P J; Rossan, R N

    1991-04-01

    We describe the vaccination of Panamanian monkeys (Aotus sp.) with two recombinant blood stage antigens that each contain a portion of the N-terminal region of the SERA (serine repeat antigen) protein of the malaria parasite Plasmodium falciparum. We immunized with either a 262-amino-acid SERA fragment (SERA I) that contains amino acids 24 to 285 of the 989-amino-acid protein or a 483-amino-acid SERA fragment (SERA N) that contains amino acids 24 to 506 as part of a fusion protein with human gamma interferon. The recombinant proteins were shown to stimulate protective immunity when administered with complete and incomplete Freund adjuvant. Four of six immunized monkeys challenged by intravenous inoculation with blood stage P. falciparum developed parasitemias that were reduced by at least 1,000-fold. Two of six immunized monkeys developed parasitemias which were comparable to the lowest parasitemia in one of four controls and were 50- to 1,000-fold lower than in the other three controls. PMID:1900809

  5. Expression and V(D)J recombination activity of mutated RAG-1 proteins.

    PubMed Central

    Sadofsky, M J; Hesse, J E; McBlane, J F; Gellert, M

    1993-01-01

    The products of the RAG-1 and RAG-2 genes are essential for the recombination of the DNA encoding the antigen receptors of the developing immune system. Little is known of the specific role these genes play. We have explored the sequences encoding mouse RAG-1 by deleting large parts of the gene and by introducing local sequence changes. We find that a RAG-1 gene with 40% of the coding region deleted still retains its recombination function. In addition, a series of small deletions within the strongly conserved remaining 60% of the coding region was tested. Nine out of ten of these prove unable to provide RAG-1 activity, but one is quite active. Certain peptide sequences were also specifically targeted for mutagenesis. The RAG-1 protein generated from this expression system is transported to the nucleus and is degraded with a 15 minute half-life. The fate of the proteins made by the deletion mutants were also assessed. Transport of RAG-1 protein to the nucleus was found even with the most extensive deletions studied. The functionality of the deleted proteins is discussed with relation to an alignment of RAG-1 sequences from five animal species. Images PMID:8284210

  6. A Wd Repeat Protein, Rec14, Essential for Meiotic Recombination in Schizosaccharomyces Pombe

    PubMed Central

    Evans, D. H.; Li, Y. F.; Fox, M. E.; Smith, C. R.

    1997-01-01

    Mutations in the Schizosaccharomyces pombe rec14 gene reduce meiotic recombination by as much as a factor of 1000 in the three intervals tested on chromosomes I and III. A DNA clone complementing the rec14 mutation was shown by genetic and physical analysis to contain the rec14 gene, which was functional in plasmid-borne inserts as small as 1.4 kb. The rec14 gene contains two exons separated by a 53-bp intron, which was confirmed by analysis of rec14 transcripts. The spliced transcript encodes a protein product of 302 amino acids, which contains six WD repeat motifs found in the G-beta transducin family of proteins and other proteins, including the Saccharomyces cerevisiae Ski8 (Rec103) protein. Although the rec14 transcripts were present in mitotically dividing cells, rec14 mutations had no detectable effect on mitotic recombination. The pattern of expression of rec14 differs from that of previously analyzed S. pombe rec genes. Based upon mutant phenotypes and amino acid sequence similarities, we propose that S. pombe Rec14 is a functional homologue of S. cerevisiae Rec103. PMID:9258671

  7. Protection of mice against H. somni septicemia by vaccination with recombinant immunoglobulin binding protein subunits

    PubMed Central

    Geertsema, Roger S.; Worby, Carolyn; Kruger, Robert P.; Tagawa, Yuichi; Russo, Riccardo; Herdman, D. Scott; Lo, Kimby; Kimball, Richard A.; Dixon, Jack; Corbeil, Lynette B.

    2008-01-01

    Haemophilus somni causes bovine pneumonia as well as septicemia and its sequelae but mechanisms of virulence and protective immunity are poorly understood. Since surface immunoglobulin binding proteins are virulence factors, we addressed their role as protective antigens in a mouse model of H. somni septicemia. Immunoglobulin binding protein A (IbpA), has homology to Bordetella pertussis filamentous hemagglutinin and other large bacterial exoproteins. IbpA is a major surface antigen encoded by the ibpA gene with many domains that may be important in pathogenesis and immune protection. Three IbpA recombinant protein subunits, IbpA3, IbpA5 and IbpADR2 were chosen for study because of putative functional domains and motifs. These recombinant GST fusion subunit proteins were compared with GST (negative control), formalin-killed H. somni (commercial vaccine control), live H. somni (to induce convalescent immunity) and H. somni culture supernatant (containing IbpA shed from the bacterial surface). In vaccination/challenge studies, both live H. somni (convalescent immunity) and supernatant protected equally but formalin-killed H. somni and GST did not protect against septicemia. The DR2 and A3 subunits protected moderately well and induced antibody responses against supernatant antigen and the homologous subunit in ELISA but not against whole cell antigens. Supernatant immunization protected better than the IbpA subunit antigens and induced high antibody activity against both whole cells and supernatant antigens. The results indicate that culture supernatant antigens or perhaps recombinant IbpA subunits may be useful in H. somni vaccines. These studies also provide insight into the contribution of IbpA domains to pathogenesis of H. somni septicemia. PMID:18590787

  8. Protection of mice against H. somni septicemia by vaccination with recombinant immunoglobulin binding protein subunits.

    PubMed

    Geertsema, Roger S; Worby, Carolyn; Kruger, Robert P; Tagawa, Yuichi; Russo, Riccardo; Herdman, D Scott; Lo, Kimby; Kimball, Richard A; Dixon, Jack; Corbeil, Lynette B

    2008-08-18

    Histophilus somni causes bovine pneumonia as well as septicemia and its sequelae but mechanisms of virulence and protective immunity are poorly understood. Since surface immunoglobulin binding proteins are virulence factors, we addressed their role as protective antigens in a mouse model of H. somni septicemia. Immunoglobulin binding protein A (IbpA), has homology to Bordetella pertussis filamentous hemagglutinin and other large bacterial exoproteins. IbpA is a major surface antigen encoded by the ibpA gene with many domains that may be important in pathogenesis and immune protection. Three IbpA recombinant protein subunits, IbpA3, IbpA5 and IbpADR2 were chosen for study because of putative functional domains and motifs. These recombinant GST fusion subunit proteins were compared with GST (negative control), formalin-killed H. somni (commercial vaccine control), live H. somni (to induce convalescent immunity) and H. somni culture supernatant (containing IbpA shed from the bacterial surface). In vaccination/challenge studies, both live H. somni (convalescent immunity) and supernatant protected equally but formalin-killed H. somni and GST did not protect against septicemia. The DR2 and A3 subunits protected moderately well and induced antibody responses against supernatant antigen and the homologous subunit in ELISA but not against whole cell antigens. Supernatant immunization protected better than the IbpA subunit antigens and induced high antibody activity against both whole cells and supernatant antigens. The results indicate that culture supernatant antigens or perhaps recombinant IbpA subunits may be useful in H. somni vaccines. These studies also provide insight into the contribution of IbpA domains to pathogenesis of H. somni septicemia. PMID:18590787

  9. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.

    PubMed

    Nocon, Justyna; Steiger, Matthias; Mairinger, Teresa; Hohlweg, Jonas; Rußmayer, Hannes; Hann, Stephan; Gasser, Brigitte; Mattanovich, Diethard

    2016-07-01

    Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of (13)C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production. PMID:27020289

  10. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

    PubMed

    Pane, Katia; Durante, Lorenzo; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  11. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

    PubMed Central

    Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  12. Matrix metalloproteinase-mediation of tumor targeting human recombinant tumor necrosis factor-α fusion protein.

    PubMed

    Ren, Hui; Shao, Xin; Zeng, Liang; Wang, Fa; Huang, Di-Nan; Hou, Gan

    2015-08-01

    The aim of the present study was to use genetic engineering in order to establish an efficient tumor necrosis factor (TNF)-α fusion protein with low toxicity, which may be used to target tumors. Four types of matrix metalloproteinase (MMP)-mediated tumor targeting human recombinant TNF-α (rhTNF-α) fusion protein vectors were constructed. These were subsequently introduced into Escherichia coli. rhTNF-α fusion protein with a glutathione S-transferase (GST)-tag was purified using GST resin affinity chromatography, and GST-tags were digested using factor Xa. The cytotoxic effects of the fusion protein on L929 cells were determined using MTT assays. At a concentration of 1 pM, the GST-tagged fusion protein exerted no cytotoxic effects on the cells, compared with the negative control cells (P=0.975>0.05). However, at a concentration of 1000 pM, the deblocking fusion protein exerted greater cytotoxic effects on L929 cells, compared with positive control cells (P<0.05). Treatment with the fusion protein also induced cell apoptosis in the nasopharyngeal cancer cell line, CNE-2Z, which secretes high levels of MMP-1. In conclusion, the results of the present study suggested that MMP-mediated rhTNF-α fusion protein induces CNE-2Z cells apoptosis. rhTNF-α exhibits high efficacy and tumor cell targeting capability, with low toxicity effects on healthy cells. PMID:25891416

  13. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    PubMed Central

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  14. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  15. CTLA-4 recombinant protein genetically fused to canine Fcepsilon receptor Ialpha enhances allergen specific lymphocyte responses in experimentally sensitized dogs.

    PubMed

    Yasunaga, Sho; Tsukui, Toshihiro; Masuda, Kenichi; Ohno, Koichi; Tsujimoto, Hajime

    2004-06-01

    Vaccination with a recombinant antigen fused to a targeting molecule is a potential strategy for inducing efficient immune responses. For the therapeutic purpose of allergic diseases in dogs, a DNA construct which expresses recombinant fusion protein with two functional domains, cytotoxic T lymphocyte antigen (CTLA-4) and Fcepsilon receptor Ialpha, was developed to bridge antigen-presenting cells and IgE-allergen complex. The recombinant fusion protein expressed by the DNA construct was demonstrated to retain the ability to bind monocytes in PBMC and dog IgE, respectively. Additionally, the recombinant protein induced enhancement of allergen-induced lymphoproliferation in experimentally sensitized dogs under conditions of suboptimal allergen stimulation. These results indicated that the DNA construct could enhance allergen-induced immune responses in vivo, implying its usefulness for perspective application in immunotherapy in dogs. PMID:15240934

  16. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  17. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice.

    PubMed

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  18. Triatoma Virus Recombinant VP4 Protein Induces Membrane Permeability through Dynamic Pores

    PubMed Central

    Sánchez-Eugenia, Rubén; Goikolea, Julen; Gil-Cartón, David; Sánchez-Magraner, Lissete

    2015-01-01

    ABSTRACT In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane

  19. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent.

    PubMed

    Niebla, O; Alvarez, A; Martín, A; Rodríguez, A; Delgado, M; Falcón, V; Guillén, G

    2001-05-14

    The possibility of eliciting bactericidal antibodies against a recombinant class 1 protein (P1) from Neisseria meningitidis, joined to the first 45 amino acids of the neisserial LpdA protein (PM82), was examined. P1 was produced in Escherichia coli as intracellular inclusion bodies, from which it was purified and reconstituted by (a) inclusion into phospholipid vesicles and detergent and (b) refolding in 0.1% SDS. When Balb/c mice were immunised, high titres of subtype-specific bactericidal antibodies against P1 were obtained in both cases. These results suggest that in spite of being a denaturing agent, it is possible to use SDS to reconstitute the P1 protein in a conformation that exposes the immunodominat regions. PMID:11348724

  20. Selective Blockade of Trypanosomatid Protein Synthesis by a Recombinant Antibody Anti-Trypanosoma cruzi P2β Protein

    PubMed Central

    Simonetti, Leandro; Duffy, Tomas; Longhi, Silvia A.; Gómez, Karina A.; Hoebeke, Johan; Levin, Mariano J.; Smulski, Cristian R.

    2012-01-01

    The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope. PMID:22570698

  1. AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit.

    PubMed

    Hamilton, Stephen R; O'Donnell, John B; Hammet, Andrew; Stapleton, David; Habinowski, Susan A; Means, Anthony R; Kemp, Bruce E; Witters, Lee A

    2002-05-10

    The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active. PMID:12051742

  2. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications.

    PubMed

    Michon, C; Langella, P; Eijsink, V G H; Mathiesen, G; Chatel, J M

    2016-01-01

    Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB. PMID:27142045

  3. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    PubMed

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. PMID:26427325

  4. The RAG proteins and V(D)J recombination: complexes, ends, and transposition.

    PubMed

    Fugmann, S D; Lee, A I; Shockett, P E; Villey, I J; Schatz, D G

    2000-01-01

    V(D)J recombination proceeds through a series of protein:DNA complexes mediated in part by the RAG1 and RAG2 proteins. These proteins are responsible for sequence-specific DNA recognition and DNA cleavage, and they appear to perform multiple postcleavage roles in the reaction as well. Here we review the interaction of the RAG proteins with DNA, the chemistry of the cleavage reaction, and the higher order complexes in which these events take place. We also discuss postcleavage functions of the RAG proteins, including recent evidence indicating that they initiate the process of coding end processing by nicking hairpin DNA termini. Finally, we discuss the evolutionary and functional implications of the finding that RAG1 and RAG2 constitute a transposase, and we consider RAG protein biochemistry in the context of several bacterial transposition systems. This suggests a model of the RAG protein active site in which two divalent metal ions serve alternating and opposite roles as activators of attacking hydroxyl groups and stabilizers of oxyanion leaving groups. PMID:10837067

  5. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling.

    PubMed Central

    Chiesa, A; Rapizzi, E; Tosello, V; Pinton, P; de Virgilio, M; Fogarty, K E; Rizzuto, R

    2001-01-01

    Luminous proteins include primary light producers, such as aequorin, and secondary photoproteins that in some organisms red-shift light emission for better penetration in space. When expressed in heterologous systems, both types of proteins may act as versatile reporters capable of monitoring phenomena as diverse as calcium homoeostasis, protein sorting, gene expression, and so on. The Ca(2+)-sensitive photoprotein aequorin was targeted to defined intracellular locations (organelles, such as mitochondria, endoplasmic reticulum, sarcoplasmic reticulum, Golgi apparatus and nucleus, and cytoplasmic regions, such as the bulk cytosol and the subplasmalemmal rim), and was used to analyse Ca(2+) homoeostasis at the subcellular level. We will discuss this application, reviewing its advantages and disadvantages and the experimental procedure. The applications of green fluorescent protein (GFP) are even broader. Indeed, the ability to molecularly engineer and recombinantly express a strongly fluorescent probe has provided a powerful tool for investigating a wide variety of biological events in live cells (e.g. tracking of endogenous proteins, labelling of intracellular structures, analysing promoter activity etc.). More recently, the demonstration that, using appropriate mutants and/or fusion proteins, GFP fluorescence can become sensitive to physiological parameters or activities (ion concentration, protease activity, etc.) has further expanded its applications and made GFP the favourite probe of cell biologists. We will here present two applications in the field of cell signalling, i.e. the use of GFP chimaeras for studying the recruitment of protein kinase C isoforms and the activity of intracellular proteases. PMID:11256942

  6. Understanding the yeast host cell response to recombinant membrane protein production.

    PubMed

    Bawa, Zharain; Bland, Charlotte E; Bonander, Nicklas; Bora, Nagamani; Cartwright, Stephanie P; Clare, Michelle; Conner, Matthew T; Darby, Richard A J; Dilworth, Marvin V; Holmes, William J; Jamshad, Mohammed; Routledge, Sarah J; Gross, Stephane R; Bill, Roslyn M

    2011-06-01

    Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes. PMID:21599640

  7. Expression, purification and characterization of the recombinant ribonuclease P protein component from Bacillus subtilis.

    PubMed Central

    Niranjanakumari, S; Kurz, J C; Fierke, C A

    1998-01-01

    Ribonuclease P is a ribonucleoprotein complex that catalyzes the essential 5' maturation of all precursor tRNA molecules. The protein component both alters the conformation of the RNA component and enhances the substrate affinity and specificity. To facilitate biochemical and biophysical studies, the protein component of Bacillus subtilis ribonuclease P (RNase P) was overproduced in Escherichia coli using the native amino acid sequence with the initial 20 codons optimized for expression in E.coli . A simple purification procedure using consecutive cation exchange chromatography steps in the presence and absence of urea was developed to purify large quantities of P protein without contaminating nucleic acids. The identity of the recombinant protein as a cofactor of RNase P was established by its ability to stimulate the activity of the RNA component in low ionic strength buffer in a 1:1 stoichiometry. Circular dichroism studies indicate that P protein is a combination of alpha-helix and beta-sheet secondary structures and is quite stable, with a T m of 67 degrees C. The described methods facilitated the large scale purification of homogeneous, RNA-free P protein required for high resolution crystallographic analyses and may be useful for the preparation of other RNA binding proteins. PMID:9628904

  8. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling.

    PubMed

    Chiesa, A; Rapizzi, E; Tosello, V; Pinton, P; de Virgilio, M; Fogarty, K E; Rizzuto, R

    2001-04-01

    Luminous proteins include primary light producers, such as aequorin, and secondary photoproteins that in some organisms red-shift light emission for better penetration in space. When expressed in heterologous systems, both types of proteins may act as versatile reporters capable of monitoring phenomena as diverse as calcium homoeostasis, protein sorting, gene expression, and so on. The Ca(2+)-sensitive photoprotein aequorin was targeted to defined intracellular locations (organelles, such as mitochondria, endoplasmic reticulum, sarcoplasmic reticulum, Golgi apparatus and nucleus, and cytoplasmic regions, such as the bulk cytosol and the subplasmalemmal rim), and was used to analyse Ca(2+) homoeostasis at the subcellular level. We will discuss this application, reviewing its advantages and disadvantages and the experimental procedure. The applications of green fluorescent protein (GFP) are even broader. Indeed, the ability to molecularly engineer and recombinantly express a strongly fluorescent probe has provided a powerful tool for investigating a wide variety of biological events in live cells (e.g. tracking of endogenous proteins, labelling of intracellular structures, analysing promoter activity etc.). More recently, the demonstration that, using appropriate mutants and/or fusion proteins, GFP fluorescence can become sensitive to physiological parameters or activities (ion concentration, protease activity, etc.) has further expanded its applications and made GFP the favourite probe of cell biologists. We will here present two applications in the field of cell signalling, i.e. the use of GFP chimaeras for studying the recruitment of protein kinase C isoforms and the activity of intracellular proteases. PMID:11256942

  9. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications.

    PubMed

    Bhatla, S C; Kaushik, V; Yadav, M K

    2010-01-01

    Oil bodies obtained from oilseeds have been exploited for a variety of applications in biotechnology in the recent past. These applications are based on their non-coalescing nature, ease of extraction and presence of unique membrane proteins-oleosins. In suspension, oil bodies exist as separate entities and, hence, they can serve as emulsifying agent for a wide variety of products, ranging from vaccines, food, cosmetics and personal care products. Oil bodies have found significant uses in the production and purification of recombinant proteins with specific applications. The desired protein can be targeted to oil bodies in oilseeds by affinity tag or by fusing it directly to the N or C terminal of oleosins. Upon targeting, the hydrophobic domain of oleosin embeds into the TAG matrix of oil body, whereas the protein fused with N and/or C termini is exposed on the oil body surface, where it acquires correct confirmation spontaneously. Oil bodies with the attached foreign protein can be separated easily from other cellular components. They can be used directly or the protein can be cleaved from the fusion. The desired protein can be a pharmaceutically important polypeptide (e.g. hirudin, insulin and epidermal growth factor), a neutraceutical polypeptide (somatotropin), a commercially important enzyme (e.g. xylanase), a protein important for improvement of crops (e.g. chitinase) or a multimeric protein. These applications can further be widened as oil bodies can also be made artificially and oleosin gene can be expressed in bacterial systems. Thus, a protein fused to oleosin can be expressed in Escherichia coli and after cell lysis it can be incorporated into artificial oil bodies, thereby facilitating the extraction and purification of the desired protein. Artificial oil bodies can also be used for encapsulation of probiotics. The manipulation of oleosin gene for the expression of polyoleosins has further expanded the arena of the applications of oil bodies in

  10. Physical and kinetic characterization of recombinant human cholesteryl ester transfer protein.

    PubMed Central

    Connolly, D T; McIntyre, J; Heuvelman, D; Remsen, E E; McKinnie, R E; Vu, L; Melton, M; Monsell, R; Krul, E S; Glenn, K

    1996-01-01

    Cholesteryl ester transfer protein (CETP) mediates the exchange of triglycerides (TGs), cholesteryl esters (CEs) and phospholipids (PLs) between lipoproteins in the plasma. In order to better understand the lipid transfer process, we have used recombinant human CETP expressed in cultured mammalian cells, purified to homogeneity by immunoaffinity chromatography. Purified recombinant CETP had a weight-average relative molecular mass (MW) of 69561, determined by sedimentation equilibrium, and a specific absorption coefficient of 0.83 litre.g-1.cm-1. The corresponding hydrodynamic diameter (Dh) of the protein, determined by dynamic light scattering, was 14 nm, which is nearly twice the expected value for a spheroidal protein of this molecular mass. These data suggest that CETP has a non-spheroidal shape in solution. The secondary structure of CETP was estimated by CD to contain 32% alpha-helix, 35% beta-sheet, 17% turn and 16% random coil. Like the natural protein from plasma, the recombinant protein consisted of several glycoforms that could be only partially deglycosylated using N-glycosidase F. Organic extraction of CETP followed by TLC showed that CE, unesterified cholesterol (UC), PL, TG and fatty acids (FA) were associated with the pure protein. Quantitative analyses verified that each mol of CETP contained 1.0 mol of cholesterol, 0.5 mol of TG and 1.3 mol of PL. CETP mediated the transfer of CE, TG, PL, and UC between lipoproteins, or between protein-free liposomes. In dual-label transfer experiments, the transfer rates for CE or TG from HDL to LDL were found to be proportional to the initial concentrations of the respective ligands in the donor HDL particles. Kinetic analysis of CE transfer was consistent with a carrier mechanism, having a Km of 700 nM for LDL particles and of 2000 nM for HDL particles, and a kcat of 2 s-1. The Km values were thus in the low range of the normal physiological concentration for each substrate. The carrier mechanism was verified

  11. Passive immunization by recombinant ferric enterobactin protein (FepA) from Escherichia coli O157

    PubMed Central

    Larrie-Bagha, Seyed Mehdi; Rasooli, Iraj; Mousavi-Gargari, Seyed Latif; Rasooli, Zohreh; Nazarian, Shahram

    2013-01-01

    Background and Objectives Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been recognized as a major food borne pathogen responsible for frequent hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are important reservoirs of E. coli O157:H7, in which the organism colonizes the intestinal tract and is shed in the feces. Objective Vaccination of cattle has significant potential as a pre-harvest intervention strategy for E. coli O157:H7. The aim of this study was to evaluate active and passive immunization against E. coli O157:H7 using a recombinant protein. Materials and Methods The recombinant FepA protein induced by IPTG was purified by nickel affinity chromatography. Antibody titre was determined by ELISA in FepA immunized rabbits sera. Sera collected from vaccinated animals were used for bacterial challenge in passive immunization studies. Results The results demonstrate that passive immunization with serum raised against FepA protects rabbits from subsequent infection. Conclusion Significant recognition by the antibody of ferric enterobactin binding protein may lead to its application in the restriction of Enterobacteriaceae propagation. PMID:23825727

  12. Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms.

    PubMed

    Stepanenko, Olga V; Roginskii, Denis O; Stepanenko, Olesya V; Kuznetsova, Irina M; Uversky, Vladimir N; Turoverov, Konstantin K

    2016-01-01

    In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located. PMID:27114857

  13. Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts

    SciTech Connect

    Mulari, Mika T.K. Nars, Martin; Laitala-Leinonen, Tiina; Kaisto, Tuula; Metsikkoe, Kalervo; Sun Yi; Vaeaenaenen, H. Kalervo

    2008-05-01

    Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-{beta}-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.

  14. Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms

    PubMed Central

    Stepanenko, Olga V.; Roginskii, Denis O.; Stepanenko, Olesya V.; Kuznetsova, Irina M.

    2016-01-01

    In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located. PMID:27114857

  15. Assessment of Tropism and Effectiveness of New Primate-Derived Hybrid Recombinant AAV Serotypes in the Mouse and Primate Retina

    PubMed Central

    Lipinski, Daniel M.; Singh, Mandeep S.; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R.; Hankins, Mark W.; During, Matthew J.; MacLaren, Robert E.

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4−/− mouse which is a model for Stargardt disease and in the Pde6brd1/rd1 mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4−/− mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments. PMID:23593201

  16. A Cost-Effective ELP-Intein Coupling System for Recombinant Protein Purification from Plant Production Platform

    PubMed Central

    Tian, Li; Sun, Samuel S. M.

    2011-01-01

    Background Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor. Methodology/Principal Findings To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP) fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV). The in vivo uncleaved EiP protein was accumulated up to 2–4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein. Conclusion/Significance This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry. PMID:21918684

  17. Autoclaving as a chemical-free process to stabilize recombinant silk-elastinlike protein polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Qiu, Weiguo; Cappello, Joseph; Wu, Xiaoyi

    2011-06-01

    We report here that autoclaving is a chemical-free, physical crosslinking strategy capable of stabilizing electrospun recombinant silk-elastinlike protein (SELP) polymer nanofibers. Fourier transform infrared spectroscopy showed that the autoclaving of SELP nanofibers induced a conformational conversion of β-turns and unordered structures to ordered β-sheets. Tensile stress-strain analysis of the autoclaved SELP nanofibrous scaffolds in phosphate buffered saline at 37 °C revealed a Young's modulus of 1.02 ± 0.28 MPa, an ultimate tensile strength of 0.34 ± 0.04 MPa, and a strain at failure of 29% ± 3%.

  18. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein

    PubMed Central

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon

    2016-01-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  19. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Kim, Suk

    2016-03-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  20. Genetic diversity and recombination analysis in the coat protein gene of Banana bract mosaic virus.

    PubMed

    Balasubramanian, V; Selvarajan, R

    2014-06-01

    Banana bract mosaic virus (BBrMV), a member of the genus Potyvirus, family Potyviridae, is the causal agent of the bract mosaic disease (BBrMD) that causes serious yield losses in banana and plantain in India and the Philippines. In this study, global genetic diversity and molecular evolution of BBrMV based on the capsid protein (CP) gene were investigated. Multiple alignments of CP gene of 49 BBrMV isolates showed nucleotide (nt) and amino acid (aa) identity of 79-100 and 80-100 %, respectively. Phylogenetic analysis revealed that except two Indians isolates (TN14 and TN16), all isolates clustered together. Eleven recombination events were detected using Recombination Detection Program. Codon-based maximum-likelihood methods revealed that most of the codons in the CP gene were under negative or neutral selection except for codons 28, 43, and 92 which were under positive selection. Gene flow between BBrMV populations of banana and cardamom was relatively frequent but not between two different populations of banana infecting isolates identified in this study. This is the first report on genetic diversity, and evolution of BBrMV isolates based on recombination and phylogenetic analysis in India. PMID:24691817

  1. Detecting Protein-Protein Interactions in Vesicular Stomatitis Virus Using a Cytoplasmic Yeast Two Hybrid System

    PubMed Central

    Moerdyk-Schauwecker, Megan; DeStephanis, Darla; Hastie, Eric; Grdzelishvili, Valery Z.

    2011-01-01

    Summary Protein-protein interactions play an important role in many virus-encoded functions and in virus-host interactions. While a “classical” yeast two-hybrid system (Y2H) is one of the most common techniques to detect such interactions, it has a number of limitations, including a requirement for the proteins of interest to be relocated to the nucleus. Modified Y2H, such as the Sos recruitment system (SRS), which detect interactions occurring in the cytoplasm rather than the nucleus, allow proteins from viruses replicating in the cytoplasm to be tested in a more natural context. In this study, a SRS was used to detect interactions involving proteins from vesicular stomatitis virus (VSV), a prototypic non-segmented negative strand RNA (NNS) virus. All five full-length VSV proteins, as well as several truncated proteins, were screened against each other. Using the SRS, most interactions demonstrated previously involving VSV phosphoprotein, nucleocapsid (N) and large polymerase proteins were confirmed independently, while difficulties were encountered using the membrane associated matrix and glycoproteins. A human cDNA library was also screened against VSV N protein and one cellular protein, SFRS18, was identified which interacted with N in this context. The system presented can be redesigned easily for studies in other less tractable NNS viruses. PMID:21320532

  2. Recombination Activator Function of the Novel RAD51- and RAD51B-binding Protein, Human EVL*S⃞

    PubMed Central

    Takaku, Motoki; Machida, Shinichi; Hosoya, Noriko; Nakayama, Shugo; Takizawa, Yoshimasa; Sakane, Isao; Shibata, Takehiko; Miyagawa, Kiyoshi; Kurumizaka, Hitoshi

    2009-01-01

    The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression. PMID:19329439

  3. Logic implementations using a single nanoparticle-protein hybrid.

    PubMed

    Medalsy, Izhar; Klein, Michael; Heyman, Arnon; Shoseyov, Oded; Remacle, F; Levine, R D; Porath, Danny

    2010-06-01

    A Set-Reset machine is the simplest logic circuit with a built-in memory. Its output is a (nonlinear) function of the input and of the state stored in the machine's memory. Here, we report a nanoscale Set-Reset machine operating at room temperature that is based on a 5-nm silicon nanoparticle attached to the inner pore of a stable circular protein. The nanoparticle-protein hybrid can also function as a balanced ternary multiplier. Conductive atomic force microscopy is used to implement the logic input and output operations, and the processing of the logic Set and Reset operations relies on the finite capacitance of the nanoparticle provided by the good electrical isolation given by the protein, thus enabling stability of the logic device states. We show that the machine can be cycled, such that in every successive cycle, the previous state in the memory is retained as the present state. The energy cost of one cycle of computation is minimized to the cost of charging this state. PMID:20400968

  4. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. PMID:26072304

  5. Air Filter Devices Including Nonwoven Meshes of Electrospun Recombinant Spider Silk Proteins

    PubMed Central

    Lang, Gregor; Jokisch, Stephan; Scheibel, Thomas

    2013-01-01

    Based on the natural sequence of Araneus diadematus Fibroin 4 (ADF4), the recombinant spider silk protein eADF4(C16) has been engineered. This highly repetitive protein has a molecular weight of 48kDa and is soluble in different solvents (hexafluoroisopropanol (HFIP), formic acid and aqueous buffers). eADF4(C16) provides a high potential for various technical applications when processed into morphologies such as films, capsules, particles, hydrogels, coatings, fibers and nonwoven meshes. Due to their chemical stability and controlled morphology, the latter can be used to improve filter materials. In this protocol, we present a procedure to enhance the efficiency of different air filter devices, by deposition of nonwoven meshes of electrospun recombinant spider silk proteins. Electrospinning of eADF4(C16) dissolved in HFIP results in smooth fibers. Variation of the protein concentration (5-25% w/v) results in different fiber diameters (80-1,100 nm) and thus pore sizes of the nonwoven mesh. Post-treatment of eADF4(C16) electrospun from HFIP is necessary since the protein displays a predominantly α-helical secondary structure in freshly spun fibers, and therefore the fibers are water soluble. Subsequent treatment with ethanol vapor induces formation of water resistant, stable β-sheet structures, preserving the morphology of the silk fibers and meshes. Secondary structure analysis was performed using Fourier transform infrared spectroscopy (FTIR) and subsequent Fourier self-deconvolution (FSD). The primary goal was to improve the filter efficiency of existing filter substrates by adding silk nonwoven layers on top. To evaluate the influence of electrospinning duration and thus nonwoven layer thickness on the filter efficiency, we performed air permeability tests in combination with particle deposition measurements. The experiments were carried out according to standard protocols. PMID:23685883

  6. Efficient expression and purification of recombinant therapeutic protein candidates, human midkine and pleiotrophin.

    PubMed

    Murasugi, Akira

    2013-01-01

    Midkine is a heparin-binding growth factor that promotes cell growth, survival, and migration. Externally added midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction in the mouse. Preclinical testing of this protein is in progress. Externally added pleiotrophin, a member of the midkine protein family, promotes functional recovery after neural transplantation in rats. Thus, pleiotrophin is also a candidate therapeutic protein. Large amounts of these proteins were obtained by using the heterologous protein expression system of Pichia pastoris, and the recombinant P. pastoris clones were cultured in a controlled fermentor. Intracellular expression yielded about 300 mg/L recombinant human (rh)-midkine, which was extracted, renatured, and purified. From 1 L of the culture, 64 mg of rh-midkine was purified. Secretory expression induced by the midkine secretion signal resulted in about 100 mg of rhmidkine in 1 L of the culture supernatant, but over 70% of the rh-midkine had yeast-specific glycosylation. Three threonyl residues that are targets for glycosylation were substituted with alanyl residues, and nonglycosylated, active rh-midkine was obtained. In secretory expression using α-mating factor prepro-sequence, about 640 mg/L rh-midkine was obtained, but it was partially truncated. Therefore, a protease-deficient host was used, and about 360 mg/L intact rh-midkine was then obtained. The rh-midkine was recovered and purified, with 70% final yield. All purified rh-midkine, regardless of expression method, was able to promote mammalian cell proliferation. In secretory expression of rh-pleiotrophin using α- mating factor prepro-sequence, 260 mg/L rh-pleiotrophin could be secreted. The rh-pleiotrophin was recovered and efficiently purified with 72% final yield. PMID:24372230

  7. Bio-assisted potentiometric multisensor system for purity evaluation of recombinant protein A.

    PubMed

    Voitechovič, Edita; Korepanov, Anton; Kirsanov, Dmitry; Jahatspanian, Igor; Legin, Andrey

    2016-08-15

    Recombinant proteins became essential components of drug manufacturing. Quality control of such proteins is routine task, which usually requires a lot of time, expensive reagents, specialized equipment and highly educated personnel. In this study we propose a new concept for protein purity evaluation that is based on application of bio-assisted potentiometric multisensor system. The model object for analysis was recombinant protein A from Staphylococcus aureus (SpA), which is commonly used for monoclonal antibody purification. SpA solutions with different amount of host cell related impurities (Escherichia coli, bacterial lysate) were analyzed. Two different bio-transducers were employed: proteinase K from Tritirachium album and baker's yeast Saccharomyces cerevisiae. It was shown that both bio-transducers are able to induce changes in pure and lysate-contaminated SpA samples. Different products of yeast digestion and proteolysis with proteinase of pure SpA and lysate were detected with size exclusion high-performance liquid chromatography (SE-HPLC). The induced changes of chemical composition are detectible with potentiometric multisensor system and can be related to SpA purity through projection on latent structures (PLS) regression technique. The proposed method allows for estimation of the impurity content with 12% accuracy using proteinase K and 16% accuracy using baker's yeast. The suggested approach could be useful for early contamination warning at initial protein purification steps. The analysis requires no expensive materials and equipment, no bio-material immobilization, and its duration time is comparable with other commonly used methods like chromatography or electrophoresis though the main part of this time is related to the sample preparation. PMID:27260439

  8. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    SciTech Connect

    Gizatullina, Albina K.; Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V.; Shenkarev, Zakhar O.; Ovchinnikova, Tatiana V.

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  9. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  10. Better and faster: improvements and optimization for mammalian recombinant protein production

    PubMed Central

    Almo, Steven C.; Love, James D.

    2014-01-01

    Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells. PMID:24721463

  11. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands.

    PubMed

    Alturki, Norah A; Henry, Kevin A; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide's amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest. PMID:26424272

  12. A Protocol for Phage Display and Affinity Selection Using Recombinant Protein Baits

    PubMed Central

    Kushwaha, Rekha; Schäfermeyer, Kim R.; Downie, A. Bruce

    2014-01-01

    Using recombinant phage as a scaffold to present various protein portions encoded by a directionally cloned cDNA library to immobilized bait molecules is an efficient means to discover interactions. The technique has largely been used to discover protein-protein interactions but the bait molecule to be challenged need not be restricted to proteins. The protocol presented here has been optimized to allow a modest number of baits to be screened in replicates to maximize the identification of independent clones presenting the same protein. This permits greater confidence that interacting proteins identified are legitimate interactors of the bait molecule. Monitoring the phage titer after each affinity selection round provides information on how the affinity selection is progressing as well as on the efficacy of negative controls. One means of titering the phage, and how and what to prepare in advance to allow this process to progress as efficiently as possible, is presented. Attributes of amplicons retrieved following isolation of independent plaque are highlighted that can be used to ascertain how well the affinity selection has progressed. Trouble shooting techniques to minimize false positives or to bypass persistently recovered phage are explained. Means of reducing viral contamination flare up are discussed. PMID:24637694

  13. Better and faster: improvements and optimization for mammalian recombinant protein production.

    PubMed

    Almo, Steven C; Love, James D

    2014-06-01

    Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells. PMID:24721463

  14. A recombinant triblock protein polymer with dispersant and binding properties for digital printing.

    PubMed

    Qi, Min; O'Brien, John P; Yang, Jianjun

    2008-01-01

    A structured triblock protein was designed to explore the potential of engineered peptides to function as high-performance ink dispersants and binders. The protein consists of three functional elements, including a pigment binding domain, a hydrophilic linker, and a printing surface binding domain. To construct such a chimeric protein, a carbon black binding peptide, FHENWPS, and a cellulose binding peptide, THKTSTQRLLAA, were identified from phage display libraries through biopanning, based on their strong and specific binding affinities to carbon black and cellulose. They were used as carbon black and cellulose binding domains, respectively, in a recombinant triblock protein. A linker sequence, PTPTPTPTPTPTPTPTPTPTPTP, was adapted from endoglucanase A of the bacterium Cellulomonas fimi, as a small, rigid, and hydrophilic interdomain linker. When incorporated into the triblock structure between the carbon black and cellulose binding sequences, the linker sufficiently isolates these two elements and allows dual binding activity. The structured triblock protein was shown to disperse carbon black particles and attach it to paper surfaces. Thus, the utility of structured proteins having useful dispersant and binding properties for digital printing inks was demonstrated. PMID:17972282

  15. Cell Penetrating Peptide POD Mediates Delivery of Recombinant Proteins to Retina, Cornea and Skin

    PubMed Central

    Johnson, Leslie N.; Cashman, Siobhan M.; Read, Sarah Parker; Kumar-Singh, Rajendra

    2009-01-01

    Recently we described a novel cell penetrating peptide, POD (peptide for ocular delivery) that could deliver small molecules including fluorescent dyes into retinal cells. The objective of the current study was to examine whether biologically relevant macromolecules such as proteins, genetically fused with POD could also be delivered into retinal tissues in vivo. We generated a POD-GFP fusion protein and examined its cell and tissue penetrating properties. We found that endogenously expressed POD-GFP fusion protein localized to the nucleus, suggesting that POD acts as a nuclear localization signal. Adenovirus (Ad) vectors expressing POD-GFP fusion protein were constructed and the recombinant protein was purified from Ad-infected human embryonic retinoblasts (HER). Exogenously supplied POD-GFP fusion protein rapidly transduced A549 and HER cells and colocalized in part with markers of late endosomes, from which it could escape. Following subretinal delivery, POD-GFP localized to the retinal pigment epithelium and the photoreceptor cell bodies. When injected into the vitreous, POD-GFP localized to the ganglion cells and the inner nuclear layer of the retina as well as the lens capsule. Topical application of POD-GFP to ocular surfaces resulted in uptake by the corneal epithelium. POD-GFP also transduced non-ocular tissues, including the epidermis of the skin following topical application. PMID:19733192

  16. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli

    PubMed Central

    de Marco, Ario

    2009-01-01

    Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins. PMID:19442264

  17. Probing Photocurrent Generation, Charge Transport, and Recombination Mechanisms in Mesostructured Hybrid Perovskite through Photoconductivity Measurements.

    PubMed

    Sveinbjörnsson, Kári; Aitola, Kerttu; Zhang, Xiaoliang; Pazoki, Meysam; Hagfeldt, Anders; Boschloo, Gerrit; Johansson, Erik M J

    2015-11-01

    Conductivity of methylammonium lead triiodide (MAPbI3) perovskite was measured on different mesoporous metal oxide scaffolds: TiO2, Al2O3, and ZrO2, as a function of incident light irradiation and temperature. It was found that MAPbI3 exhibits intrinsic charge separation, and its conductivity stems from a majority of free charge carriers. The crystal morphology of the MAPbI3 was found to significantly affect the photoconductivity, whereas in the dark the conductivity is governed by the perovskite in the pores of the mesoporous scaffold. The temperature-dependent conductivity measurements also indicate the presence of states within the band gap of the perovskite. Despite a relatively large amount of crystal defects in the measured material, the main recombination mechanism of the photogenerated charges is bimolecular (band-to-band), which suggests that the defect states are rather inactive in the recombination. This may explain the remarkable efficiencies obtained for perovskite solar cells prepared with wet-chemical methods. PMID:26538041

  18. Medium-throughput production of recombinant human proteins: protein production in E. coli.

    PubMed

    Burgess-Brown, Nicola A; Mahajan, Pravin; Strain-Damerell, Claire; Gileadi, Opher; Gräslund, Susanne

    2014-01-01

    In Chapter 4 we described the SGC process for generating multiple constructs of truncated versions of each protein using LIC. In this chapter we provide a step-by-step procedure of our E. coli system for test expressing intracellular (soluble) proteins in a 96-well format that enables us to identify which proteins or truncated versions are expressed in a soluble and stable form suitable for structural studies. In addition, we detail the process for scaling up cultures for large-scale protein purification. This level of production is required to obtain sufficient quantities (i.e., milligram amounts) of protein for further characterization and/or crystallization experiments. Our standard process is purification by immobilized metal affinity chromatography (IMAC) using nickel resin followed by size exclusion chromatography (SEC), with additional procedures arising from the complexity of the protein itself. PMID:24203325

  19. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/. PMID:24647341

  20. A fast and simple method to eliminate Cpn60 from functional recombinant proteins produced by E. coli Arctic Express.

    PubMed

    Belval, Lorène; Marquette, Arnaud; Mestre, Pere; Piron, Marie-Christine; Demangeat, Gérard; Merdinoglu, Didier; Chich, Jean-François

    2015-05-01

    A frequent problem of recombinant protein production is their insolubility. To address this issue, engineered Escherichiacoli strains like Arctic Express that produce an exogenous chaperone facilitating protein folding, have been designed. A drawback is the frequent contamination of the protein by chaperones. A simple method, using urea at a sub-denaturing concentration, allows unbinding of Cpn60 from expressed protein. This method was successfully used to purify 2 proteins, an enzyme and a viral protein. The enzyme was fully active. The nature of interaction forces between enzyme and Cpn60 was investigated. The method is likely applicable to purify other proteins. PMID:25655203

  1. Nucleocapsid protein N of Lelystad virus: expression by recombinant baculovirus, immunological properties, and suitability for detection of serum antibodies.

    PubMed Central

    Meulenberg, J J; Bende, R J; Pol, J M; Wensvoort, G; Moormann, R J

    1995-01-01

    The ORF7 gene, encoding the nucleocapsid protein N of Lelystad virus (LV), was inserted downstream of the P10 promoter into Autographa californica nuclear polyhedrosis virus (baculovirus). The resulting recombinant baculovirus, designated bac-ORF7, expressed a 15-kDa protein in insect cells. This protein was similar in size to the N protein expressed by LV in CL2621 cells when it was analyzed on sodium dodecyl sulfate-polyacrylamide gels. The N protein expressed by bac-ORF7 was immunoprecipitated with anti-ORF7 was immunoprecipitated with anti-ORF7 peptide serum, porcine convalescent-phase anti-LV serum, and N protein-specific monoclonal antibodies, indicating that this N protein had retained its native antigenic structure. The recombinant N protein was immunogenic in pigs, and the porcine antibodies raised against this protein recognized LV in an immunoperoxidase monolayer assay. However, pigs vaccinated twice with approximately 20 micrograms of N protein were not protected against a challenge with 10(5) 50% tissue culture infective doses of LV. Experimental and field sera directed against various European and North American isolates reacted with the N protein expressed by bac-ORF7 in a blocking enzyme-linked immunosorbent assay. Therefore, the recombinant N protein may be useful for developing diagnostic assays for the detection of serum antibodies directed against different isolates of LV. PMID:8574824

  2. Cell culture media supplementation of bioflavonoids for the targeted reduction of acidic species charge variants on recombinant therapeutic proteins.

    PubMed

    Hossler, Patrick; Wang, Min; McDermott, Sean; Racicot, Christopher; Chemfe, Kofi; Zhang, Yun; Chumsae, Christopher; Manuilov, Anton

    2015-01-01

    Charge variants in recombinant proteins are an important series of protein modifications, whose potential role on protein stability, activity, immunogenicity, and pharmacokinetics continues to be studied. Monoclonal antibodies in particular have been shown to have a wide range of acidic species variants, including those associated with the addition of covalent modifications as well as the chemical degradation at specific peptide regions on the antibody. These variants play a significant role toward the overall heterogeneity of recombinant therapeutic proteins and are typically monitored during manufacturing to ensure they lie within proven acceptable ranges. In this work, it has been found that the supplementation of members of the bioflavonoid chemical family into mammalian cell culture media was effective toward the reduction of acidic species charge variants on recombinant monoclonal antibodies and dual variable domain immunoglobulins. The demonstrated reduction in acidic species through the use of bioflavonoids facilitates the manufacturing of a less heterogeneous product with potential improvements in antibody structure and function. PMID:25920009

  3. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. PMID:26657801

  4. Diversity and Recombination of Dispersed Ribosomal DNA and Protein Coding Genes in Microsporidia

    PubMed Central

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a

  5. "Recombinant Protein of the Day": Using Daily Student Presentations to Add Real-World Aspects to a Biotechnology Course

    ERIC Educational Resources Information Center

    Shaffer, Justin F.

    2013-01-01

    To provide a realistic view of the biotechnology industry for students, a novel course focusing on recombinant proteins and their importance in medicine, pharmaceuticals, industry, scientific research, and agriculture was developed. ''Designer Proteins and Society,'' an upper-division elective, was taught in the Fall 2012…

  6. Production of Polyclonal Antibodies to the Recombinant Coat Protein of Citrus tristeza virus and Their Effectiveness for Virus Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The p25 coat protein gene of three Citrus tristeza virus (CTV) isolates, two from Mexico and one from India, was amplified by RT-PCR and further cloned and expressed in Escherichia coli cells. The recombinant coat protein (rCP) of the three CTV isolates was injected into rabbits and goats for antibo...

  7. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. PMID:25277090

  8. Spontaneous hybrids between native and exotic Rubus in the Western United States produce offspring both by apomixis and by sexual recombination.

    PubMed

    Clark, L V; Jasieniuk, M

    2012-11-01

    Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species. PMID:22850699

  9. Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein.

    PubMed

    Bogdanov, I V; Finkina, E I; Balandin, S V; Melnikova, D N; Stukacheva, E A; Ovchinnikova, T V

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major peach allergen Pru p 3. Both isoforms were shown to have immunological properties similar to those of other plant allergenic LTPs, but Lc-LTP3 displayed a less pronounced immunoreactivity. PMID:26483961

  10. Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein

    PubMed Central

    Bogdanov, I. V.; Finkina, E. I.; Balandin, S. V.; Melnikova, D. N.; Stukacheva, E. A.; Ovchinnikova, T. V.

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major peach allergen Pru p 3. Both isoforms were shown to have immunological properties similar to those of other plant allergenic LTPs, but Lc-LTP3 displayed a less pronounced immunoreactivity. PMID:26483961

  11. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    PubMed

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality. PMID:19005652

  12. Protease-Triggered, Integrin-Targeted Cellular Uptake of Recombinant Protein Micelles.

    PubMed

    Gao, Chen; Vargo, Kevin B; Hammer, Daniel A

    2016-09-01

    Targeting nanoparticles for drug delivery has great potential for improving efficacy and reducing side effects from systemic toxicity. New developments in the assembly of materials afford the opportunity to expose cryptic targeting domains in tissue-specific microenvironments in which certain proteases are expressed. Here, recombinant proteins are designed to combine the responsiveness to environmental proteases with specific targeting. Materials made recombinantly allow complete control over amino acid sequence, in which each molecule is identically functionalized. Previously, oleosin, a naturally occurring plant protein that acts as a surfactant, has been engineered to self-assemble into spherical micelles-a useful structure for drug delivery. To make oleosins that are locally activated to bind receptors, oleosin is genetically modified to incorporate the integrin-binding motif RGDS just behind a domain cleavable by thrombin. The resulting modified oleosin self-assembles into spherical micelles in aqueous environments, with the RGDS motif protected by the thrombin-cleavable domain. Upon the addition of thrombin, the RGDS is exposed and the binding of the spherical micelles to breast cancer cells is increased fourfold. PMID:27284959

  13. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.

    PubMed

    Carmona, Lina Marcela; Fugmann, Sebastian D; Schatz, David G

    2016-04-15

    The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the "12/23 rule," a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity. PMID:27056670

  14. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice

    PubMed Central

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection. PMID:26575028

  15. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    PubMed

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris. PMID:23247902

  16. Expression and in vitro functional analyses of recombinant Gam1 protein.

    PubMed

    Avila, Gustavo A; Ramirez, Daniel H; Hildenbrand, Zacariah L; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2015-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1's roles in viral replication. PMID:25450237

  17. Development of a highly efficient protein-secreting system in recombinant Lactobacillus casei.

    PubMed

    Kajikawa, Akinobu; Ichikawa, Eiko; Igimi, Shizunobu

    2010-02-01

    The available techniques for heterologous protein secretion in Lactobacillus strains are limited. The aim of the present study was to develop an efficient protein-secretion system using recombinant lactobacilli for various applications such as live delivery of biotherapeutics. For the construction of expression vectors, the Lactobacillus brevis slpA promoter, Lactobacillus casei prtP signal sequence, and mouse IL-10 sequences were used as a model system. Interestingly, the slpA promoter exhibited strong activity in L. casei contrary to previous observations. In order to stabilize replication of the plasmid in E. coli, a removable terminator sequence was built into the promoter region. For the improvement of secretion efficiency, a DTNSD oligopeptide was added to the cleavage site of signal peptidase. The resulting plasmids provided remarkably efficient IL-10 secretion. Accumulation of the protein in the culture supernatant varied widely according to the pH conditions. By analysis of the secreted protein, formation of homodimers and biological activity, IL-10 was confirmed to be functional. The presently constructed plasmids could be useful tools for heterologous protein-secretion in L. casei. PMID:20208444

  18. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins.

    PubMed

    Kovalskaya, Natalia; Hammond, Rosemarie W

    2009-01-01

    In this study, for the first time, functionally active, recombinant, cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were expressed and purified using a prokaryotic expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Escherichia coli was commensurate with that of the same proteins previously obtained from plant tissues. Both proteins exhibited strong antibacterial activity against the phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus (50% inhibitory concentration (IC(50)) 1.5-8 microM) and antifungal activity against the phytopathogenic fungi Colletotrichum coccoides and Botrytis cinerea (IC(50) 5-14 microM). Significantly weaker activity was observed against Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. tabaci. A pronounced synergistic antimicrobial effect against P. syringae pv. syringae and an additive effect against P. syringae pv. tabaci occurred with a combination of SN1 and PTH1. Aggregation of C. michiganensis subsp. sepedonicus bacterial cells at all protein concentrations tested was observed with the combination of SN1 and PTH1 and with SN1 alone. Our results demonstrate the use of a cost effective prokaryotic expression system for generation and in vitro characterization of plant cysteine-rich proteins with potential antimicrobial activities against a wide range of phytopathogenic microorganisms in order to select the most effective agents for future in vivo studies. PMID:18824107

  19. Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme.

    PubMed

    Cass, Brian; Pham, Phuong Lan; Kamen, Amine; Durocher, Yves

    2005-03-01

    Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%. PMID:15721774

  20. High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus.

    PubMed Central

    Stunnenberg, H G; Lange, H; Philipson, L; van Miltenburg, R T; van der Vliet, P C

    1988-01-01

    Initiation of Adenovirus (Ad) DNA replication occurs by a protein-priming mechanism in which the viral precursor terminal protein (pTP) and DNA polymerase (pol) as well as two nuclear DNA-binding proteins from uninfected HeLa cells are required. Biochemical studies on the pTP and DNA polymerase proteins separately have been hampered due to their low abundance and their presence as a pTP-pol complex in Ad infected cells. We have constructed a genomic sequence containing the large open reading frame from the Ad5 pol gene to which 9 basepairs from a putative exon were ligated. When inserted behind a modified late promoter of vaccinia virus the resulting recombinant virus produced enzymatically active 140 kDa Ad DNA polymerase. The same strategy was applied to express the 80 kDa pTP gene in a functional form. Both proteins were overexpressed at least 30-fold compared to extracts from Adenovirus infected cells and, when combined, were fully active for initiation in an in vitro Adenovirus DNA replication system. Images PMID:3362670

  1. Self-cycling operation increases productivity of recombinant protein in Escherichia coli.

    PubMed

    Storms, Zachary J; Brown, Tobin; Sauvageau, Dominic; Cooper, David G

    2012-09-01

    Self-cycling fermentation (SCF), a cyclical, semi-continuous process that induces cell synchrony, was incorporated into a recombinant protein production scheme. Escherichia coli CY15050, a lac(-) mutant lysogenized with temperature-sensitive phage λ modified to over-express β-galactosidase, was used as a model system. The production scheme was divided into two de-coupled stages. The host cells were cultured under SCF operation in the first stage before being brought to a second stage where protein production was induced. In the first stage, the host strain demonstrated a stable cycling pattern immediately following the first cycle. This reproducible pattern was maintained over the course of the experiments and a significant degree of cell synchrony was obtained. By growing cells using SCF, productivity increased 50% and production time decreased by 40% compared to a batch culture under similar conditions. In addition, synchronized cultures induced from the end of a SCF cycle displayed shorter lysis times and a more complete culture-wide lysis than unsynchronized cultures. Finally, protein synthesis was influenced by the time at which the lytic phase was induced in the cell life cycle. For example, induction of a synchronized culture immediately prior to cell division resulted in the maximum protein productivity, suggesting protein production can be optimized with respect to the cell life cycle using SCF. PMID:22407770

  2. Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein.

    PubMed

    Mertens, Marc; Kindler, Eveline; Emmerich, Petra; Esser, Jutta; Wagner-Wiening, Christiane; Wölfel, Roman; Petraityte-Burneikiene, Rasa; Schmidt-Chanasit, Jonas; Zvirbliene, Aurelija; Groschup, Martin H; Dobler, Gerhard; Pfeffer, Martin; Heckel, Gerald; Ulrich, Rainer G; Essbauer, Sandra S

    2011-10-01

    Puumala virus (PUUV) is the predominant hantavirus species in Germany causing large numbers of mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS). During an outbreak in South-East Germany in 2004 a novel PUUV subtype designated Bavaria was identified as the causative agent of HFRS in humans [1]. Here we present a molecular characterization of this PUUV strain by investigating novel partial and almost entire nucleocapsid (N) protein-encoding small (S-) segment sequences and partial medium (M-) segment sequences from bank voles (Myodes glareolus) trapped in Lower Bavaria during 2004 and 2005. Phylogenetic analyses confirmed their classification as subtype Bavaria, which is further subdivided into four geographical clusters. The entire N protein, harbouring an amino-terminal hexahistidine tag, of the Bavarian strain was produced in yeast Saccharomyces cerevisiae and showed a slightly different reactivity with N-specific monoclonal antibodies, compared to the yeast-expressed N protein of the PUUV strain Vranica/Hällnäs. Endpoint titration of human sera from different parts of Germany and from Finland revealed only very slight differences in the diagnostic value of the different recombinant proteins. Based on the novel N antigen indirect and monoclonal antibody capture IgG-ELISAs were established. By using serum panels from Germany and Finland their validation demonstrated a high sensitivity and specificity. In summary, our investigations demonstrated the Bavarian PUUV strain to be genetically divergent from other PUUV strains and the potential of its N protein for diagnostic applications. PMID:21598005

  3. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  4. Recombinant Minimalist Spider Wrapping Silk Proteins Capable of Native-Like Fiber Formation

    PubMed Central

    Xu, Lingling; Rainey, Jan K.; Meng, Qing; Liu, Xiang-Qin

    2012-01-01

    Spider silks are desirable biomaterials characterized by high tensile strength, elasticity, and biocompatibility. Spiders produce different types of silks for different uses, although dragline silks have been the predominant focus of previous studies. Spider wrapping silk, made of the aciniform protein (AcSp1), has high toughness because of its combination of high elasticity and tensile strength. AcSp1 in Argiope trifasciata contains a 200-aa sequence motif that is repeated at least 14 times. Here, we produced in E. coli recombinant proteins consisting of only one to four of the 200-aa AcSp1 repeats, designated W1 to W4. We observed that purified W2, W3 and W4 proteins could be induced to form silk-like fibers by shear forces in a physiological buffer. The fibers formed by W4 were ∼3.4 µm in diameter and up to 10 cm long. They showed an average tensile strength of 115 MPa, elasticity of 37%, and toughness of 34 J cm−3. The smaller W2 protein formed fewer fibers and required a higher protein concentration to form fibers, whereas the smallest W1 protein did not form silk-like fibers, indicating that a minimum of two of the 200-aa repeats was required for fiber formation. Microscopic examinations revealed structural features indicating an assembly of the proteins into spherical structures, fibrils, and silk-like fibers. CD and Raman spectral analysis of protein secondary structures suggested a transition from predominantly α-helical in solution to increasingly β-sheet in fibers. PMID:23209681

  5. Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication▿ †

    PubMed Central

    Langelier, Charles R.; Sandrin, Virginie; Eckert, Debra M.; Christensen, Devin E.; Chandrasekaran, Viswanathan; Alam, Steven L.; Aiken, Christopher; Olsen, John C.; Kar, Alak Kanti; Sodroski, Joseph G.; Sundquist, Wesley I.

    2008-01-01

    The rhesus monkey intrinsic immunity factor TRIM5αrh recognizes incoming capsids from a variety of retroviruses, including human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV), and inhibits the accumulation of viral reverse transcripts. However, direct interactions between restricting TRIM5α proteins and retroviral capsids have not previously been demonstrated using pure recombinant proteins. To facilitate structural and mechanistic studies of retroviral restriction, we have developed methods for expressing and purifying an active chimeric TRIM5αrh protein containing the RING domain from the related human TRIM21 protein. This recombinant TRIM5-21R protein was expressed in SF-21 insect cells and purified through three chromatographic steps. Two distinct TRIM5-21R species were purified and shown to correspond to monomers and dimers, as analyzed by analytical ultracentrifugation. Chemically cross-linked recombinant TRIM5-21R dimers and mammalian-expressed TRIM5-21R and TRIM5α proteins exhibited similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities, indicating that mammalian TRIM5α proteins are predominantly dimeric. Purified TRIM5-21R had ubiquitin ligase activity and could autoubquitylate with different E2 ubiquitin conjugating enzymes in vitro. TRIM5-21R bound directly to synthetic capsids composed of recombinant HIV-1 CA-NC proteins and to authentic EIAV core particles. HIV-1 CA-NC assemblies bound dimeric TRIM5-21R better than either monomeric TRIM5-21R or TRIM5-21R constructs that lacked the SPRY domain or its V1 loop. Thus, our studies indicate that TRIM5α proteins are dimeric ubiquitin E3 ligases that recognize retroviral capsids through direct interactions mediated by the SPRY domain and demonstrate that these activities can be recapitulated in vitro using pure recombinant proteins. PMID:18799573

  6. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.

    PubMed

    Xia, Xiao-Xia; Qian, Zhi-Gang; Ki, Chang Seok; Park, Young Hwan; Kaplan, David L; Lee, Sang Yup

    2010-08-10

    Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250-320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications. PMID:20660779

  7. Use of the 27-Kilodalton Recombinant Protein from Paracoccidioides brasiliensis in Serodiagnosis of Paracoccidioidomycosis

    PubMed Central

    Ortiz, B. L.; Díez, S.; Urán, M. E.; Rivas, J. M.; Romero, M.; Caicedo, V.; Restrepo, A.; McEwen, J. G.

    1998-01-01

    Paracoccidioidomycosis (PCM) is one of the most important endemic mycoses in Latin America; it is usually diagnosed by observation and/or isolation of the etiologic agent, Paracoccidioides brasiliensis, as well as by a variety of immunological methods. Although the latter are effective, two circumstances, cross-reactions with other mycotic agents and antigen preparation that is marked by extreme variability among lots, hinder proper standardization of the procedures. To circumvent this lack of reproducibility, molecular biology tools were used to produce a recombinant 27-kDa-molecular-mass antigen from this fungus; a sizable quantity of this antigen was obtained through fermentation of Escherichia coli DH5α, which is capable of expressing the fungal protein. The latter was purified by the Prep-Cell System (Bio-Rad); the recovery rate of the pure protein was approximately 6%. A battery of 160 human serum samples, consisting of 64 specimens taken at the time of diagnosis from patients with PCM representing the various clinical forms plus 15 serum specimens each from patients with histoplasmosis and aspergillosis, 10 each from patients with cryptococcosis and tuberculosis, 6 from patients with coccidioidomycosis, and 40 from healthy subjects, were all tested by an indirect enzyme-linked immunosorbent assay with the purified 27-kDa recombinant protein. The latter was used at a concentration of 1.0 μg/well; there were three serum dilutions (1:1,000, 1:2,000, and 1:4,000). The experiment was repeated at least twice. The average sensitivity for both experiments was 73.4%; in comparison with the healthy subjects, the specificity for PCM patients was 87.5% while for patients with other mycoses, it was 58.7%. Important cross-reactions with sera from patients with aspergillosis and histoplasmosis were detected. The positive predictive value of the test was 90.4%. These results indicate that it is possible to employ recombinant antigenic proteins for the immunologic

  8. [Application of the recombinant protein MOMP(VD2-VD3) from Chlamydia pneumoniae in sero diagnosis].

    PubMed

    Zhou, Zhou; Wu, Yi-mou; Liu, Jie; Chen, Chao-qun; Yang, Ling

    2007-06-01

    To express the recombinant protein MOMP(VD2-VD3) of Chlamydia pneumoniae, and research on the immunocompetence of the MOMP(VD2-VD3) to support serodiagnosis,PCR and gene recombinant technique was used to clone the targeted DNA fragment from a strain AR-39. The recombinant plasmid was induced in E. coli BL21 after having constructed the prokaryotic expression system, then the immunocompetence of the expression product was analyzed by Western blot and indirected ELISA which is based on the animal experimentation. A group of control sera and 126 sera from patients with coronary heart disease were examined by using ELISAs based on the recombinant protein (MOMP(VD2-VD3), and then the results were evaluated comparing with a commercial ELISAs kit. The results of the Western blot and indirected ELISA showed ompA(VD2-VD3) gene inserted in pET30a could express a recombinant protein with the molecular weight of 24kDa in BL21 and specifically reacted with the antibodies against the MOMP. Specific humoral response was elicited after immune the BALB/c mouse with protein and the specific antibody titer was more than 1:20480. Using a panel of control sera, the participation of the recombinant antigen, the sensitivity and the specificity of the indirected ELISAs were 100% respectively. Comparisons between two methods in detecting 126 sero samples, the concordance of two tests was 96.3%. The results reported here show that the recombinant protein with excellent immunocompetence could benefit the research on the serodiagnosis to Chlamydia pneumoniae. PMID:17672316

  9. Development of a recombinant antibody to target peptides and proteins to sialoadhesin-expressing macrophages

    PubMed Central

    2013-01-01

    Background Sialoadhesin (Sn)-expressing monocytes/macrophages have been associated with several diseases like inflammatory and autoimmune disorders as well as viral infections, and they also appear to play a role in the initiation of an adaptive immune response. This makes Sn-expressing cells not only attractive targets for cell-directed therapies, but also an appealing target for vaccination. Furthermore, since Sn was shown to be an endocytic receptor, the conjugation of effector molecules to an Sn-specific ligand should allow intracellular delivery of these conjugates. Previously, we developed functional Sn-specific immunoconjugates that were generated via chemical coupling. Although successful, the system requires significant optimization for each immunoconjugate to be made. To generate a more flexible and controlled system, we developed a recombinant antibody vector allowing the creation of genetic antibody fusion constructs. This paper reports on the characterization of the recombinant antibody and the evaluation of its use for Sn-directed targeting. Results The variable domains of the porcine Sn-specific monoclonal antibody 41D3 were sequenced and cloned in frame with a mouse IgG1 backbone. Transfection of HEK293T cells with the resulting plasmid led to the secretion of fully assembled IgG into the culture medium. This recombinant antibody rec41D3 was shown to specifically bind to porcine Sn with a comparable affinity as the native monoclonal antibody. In addition, rec41D3 also induced Sn endocytosis in primary macrophages and resided for prolonged times in early/late endosomes. To allow the generation of antibody fusion constructs, a multiple cloning site was introduced at the C-terminus of the heavy chain. Two fusion constructs were generated, one containing a V5 peptide tag and one containing an eGFP molecule. Both constructs were shown to be efficiently produced in HEK293T cells and easily purified using standard protein G chromatography. In addition

  10. Design and characterization of novel recombinant listeriolysin O-protamine fusion proteins for enhanced gene delivery.

    PubMed

    Kim, Na Hyung; Provoda, Chester; Lee, Kyung-Dall

    2015-02-01

    To improve the efficiency of gene delivery for effective gene therapy, it is essential that the vector carries functional components that can promote overcoming barriers in various steps leading to the transport of DNA from extracellular to ultimately nuclear compartment. In this study, we designed genetically engineered fusion proteins as a platform to incorporate multiple functionalities in one chimeric protein. Prototypes of such a chimera tested here contain two domains: one that binds to DNA; the other that can facilitate endosomal escape of DNA. The fusion proteins are composed of listeriolysin O (LLO), the endosomolytic pore-forming protein from Listeria monocytogenes, and a 22 amino acid sequence of the DNA-condensing polypeptide protamine (PN), singly or as a pair: LLO-PN and LLO-PNPN. We demonstrate dramatic enhancement of the gene delivery efficiency of protamine-condensed DNA upon incorporation of a small amount of LLO-PN fusion protein and further improvement with LLO-PNPN in vitro using cultured cells. Additionally, the association of anionic liposomes with cationic LLO-PNPN/protamine/DNA complexes, yielding a net negative surface charge, resulted in better in vitro transfection efficiency in the presence of serum. An initial, small set of data in mice indicated that the observed enhancement in gene expression could also be applicable to in vivo gene delivery. This study suggests that incorporation of a recombinant fusion protein with multiple functional components, such as LLO-protamine fusion protein, in a nonviral vector is a promising strategy for various nonviral gene delivery systems. PMID:25521817

  11. Clonality, recombination, and hybridization in the plumbing-inhabiting human pathogen Fusarium keratoplasticum inferred from multilocus sequence typing

    PubMed Central

    2014-01-01

    Background Recent work has shown that Fusarium species and genotypes most commonly associated with human infections, particularly of the cornea (mycotic keratitis), are the same as those most commonly isolated from plumbing systems. The species most dominant in plumbing biofilms is Fusarium keratoplasticum, a cosmopolitan fungus known almost exclusively from animal infections and biofilms. To better understand its diversity and population dynamics, we developed and utilized a nine-locus sequence-based typing system to make inferences about clonality, recombination, population structure, species boundaries and hybridization. Results High levels of genetic diversity and evidence for recombination and clonality were detected among 75 clinical and 156 environmental isolates of Fusarium keratoplasticum. The multilocus sequence typing system (MLST) resolved 111 unique nine-locus sequence types (STs). The single locus bifactorial determinants of mating compatibility (mating types MAT1-1 and MAT1-2), were found in a ratio of 70:30. All but one of the 49 isolates of the most common ST (FSSC 2d-2) came from human infections, mostly of the cornea, and from biofilms associated with contact lenses and plumbing surfaces. Significant levels of phylogenetic incongruence were found among loci. Putative clonal relationships among genotypes were estimated, showing a mixture of large clonal complexes and unrelated singletons. Discordance between the nuclear ribosomal rRNA and other gene genealogies is consistent with introgression of ribosomal RNA alleles of phylogenetic species FSSC 9 into F. keratoplasticum. No significant population subdivision based on clinical versus non-clinical sources was found. Conclusions Incongruent phylogenetic trees and the presence of both mating types within otherwise identical STs were observed, providing evidence for sexuality in F. keratoplasticum. Cryptic speciation suggested in a published three-locus MLST system was not supported with the addition

  12. Increasing recombinant protein production in Escherichia coli K12 through metabolic engineering.

    PubMed

    Waegeman, Hendrik; De Lausnay, Stijn; Beauprez, Joeri; Maertens, Jo; De Mey, Marjan; Soetaert, Wim

    2013-01-25

    Escherichia coli strains are widely used as host for the production of recombinant proteins. Compared to E. coli K12, E. coli BL21 (DE3) has several biotechnological advantages, such as a lower acetate yield and a higher biomass yield, which have a beneficial effect on protein production. In a previous study (BMC Microbiol. 2011, 11:70) we have altered the metabolic fluxes of a K12 strain (i.e. E. coli MG1655) by deleting the regulators ArcA and IclR in such a way that the biomass yield is remarkably increased, while the acetate production is decreased to a similar value as for BL21 (DE3). In this study we show that the increased biomass yield beneficially influences recombinant protein production as a higher GFP yield was observed for the double knockout strain compared to its wild type. However, at higher cell densities (>2 g L(-1) CDW), the GFP concentration decreases again, due to the activity of proteases which obstructs the application of the strain in high cell density cultivations. By further deleting the genes lon and ompT, which encode for proteases, this degradation could be reduced. Consequently, higher GFP yields were observed in the quadruple knockout strain as opposed to the double knockout strain and the MG1655 wild type and its yield approximates the GFP yield of E. coli BL21 (DE3), that is, 27±5 mg g(CDW)(-1) vs. 30±5 mg g(CDW)(-1), respectively. PMID:22115732

  13. DNA binding specificities of the long zinc-finger recombination protein PRDM9

    PubMed Central

    2013-01-01

    Background Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed 'hotspots', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions. Results Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone. Conclusions These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex. PMID:23618393

  14. Expression and In Silico Analysis of the Recombinant Bovine Papillomavirus E6 Protein as a Model for Viral Oncoproteins Studies

    PubMed Central

    Mazzuchelli-de-Souza, J.; Carvalho, R. F.; Ruiz, R. M.; Melo, T. C.; Araldi, R. P.; Carvalho, E.; Thompson, C. E.; Sircili, M. P.; Beçak, W.; Stocco, R. C.

    2013-01-01

    Bovine papillomaviruses (BPVs) are recognized as the causal agents of economical relevant diseases in cattle, associated with the development of tumors in skin and mucosa. The oncogenesis process is mainly associated with different viral oncoprotein expressions, which are involved in cell transformation. The expression and characterization of recombinant viral oncoproteins represent an attractive strategy to obtain biotechnological products as antibodies and potential vaccines, Thus, the aim of this work was to clone and express the BPV-1 and BPV-2 E6 recombinant proteins and perform in silico analysis in order to develop a strategy for the systematic study of other papillomaviruses oncoproteins. The results demonstrated that BPV-1 and BPV-2 E6 recombinant proteins were expressed and purified from bacterial system as well as its in silico analysis was performed in order to explore and predict biological characteristics of these proteins. PMID:23878806

  15. Use of Bacterial Artificial Chromosomes in Baculovirus Research and Recombinant Protein Expression: Current Trends and Future Perspectives

    PubMed Central

    Roy, Polly; Noad, Rob

    2012-01-01

    The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome. PMID:23762754

  16. A Complete Recombinant Silk-Elastinlike Protein-Based Tissue Scaffold

    PubMed Central

    Qiu, Weiguo; Huang, Yiding; Teng, Weibing; Cohn, Celine M.; Cappello, Joseph; Wu, Xiaoyi

    2010-01-01

    Due to their improved biocompatibility and specificity over synthetic materials, protein-based biomaterials, either derived from natural sources or genetically engineered, have been widely fabricated into nanofibrous scaffolds for tissue engineering applications. However, their inferior mechanical properties often require the reinforcement of protein-based tissue scaffolds using synthetic polymers. In this study, we report the electrospinning of a completely recombinant silk-elastinlike protein-based tissue scaffold with excellent mechanical properties and biocompatibility. In particular, SELP-47K containing tandemly repeated polypeptide sequences derived from native silk and elastin was electrospun into nanofibrous scaffolds, and stabilized via chemical vapor treatment and mechanical preconditioning. When fully hydrated in 1x PBS at 37 °C, mechanically preconditioned SELP-47K scaffolds displayed elastic moduli of 3.4 to 13.2 MPa, ultimate tensile strengths of 5.7 to 13.5 MPa, deformabilities of 100 to 130% strain, and resilience of 80.6 to 86.9%, closely matching or exceeding those of protein-synthetic blend polymeric scaffolds. Additionally, SELP-47K nanofibrous scaffolds promoted cell attachment and growth demonstrating their in vitro biocompatibility. PMID:21058633

  17. Expression, purification and characterization of recombinant severe acute respiratory syndrome coronavirus non-structural protein 1

    PubMed Central

    Brucz, Kimberly; Miknis, Zachary J.; Schultz, L. Wayne; Umland, Timothy C.

    2007-01-01

    The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering. PMID:17187987

  18. Protective immunity induced by recombinant protein CPSIT_p8 of Chlamydia psittaci.

    PubMed

    Liang, Mingxing; Wen, Yating; Ran, Ou; Chen, Liesong; Wang, Chuan; Li, Li; Xie, Yafeng; Zhang, Yang; Chen, Chaoqun; Wu, Yimou

    2016-07-01

    Chlamydia psittaci is a zoonotic pathogen with a broad host range that can lead to severe respiratory and systemic disease in humans. Currently, an effective commercial vaccine against C. psittaci infection is not available. The chlamydial plasmid is an important virulence factor and encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. In this study, we assessed the efficacy of vaccination with plasmid proteins at preventing C. psittaci lung infection in a murine model. BALB/c mice were immunized intraperitoneally, three times at 2-week intervals, with purified recombinant CPSIT_p8 protein and then infected with C. psittaci. Immunization significantly decreased chlamydial load in the lungs of infected mice, resulted in a lower level of IFN-γ, and reduced the extent of inflammation. In vivo or in vitro neutralization of C. psittaci with sera collected from immunized mice did not reduce the amount of viable C. psittaci in the lungs of mice, indicating that CPSIT_p8-specific antibodies do not have neutralizing capacity. Furthermore, confocal fluorescence microscopy using a mouse anti-CPSIT_p8 antibody revealed that CPSIT_p8 was localized inside the inclusion of C. psittaci 6BC-infected cells. Our results demonstrate that CPSIT_p8 protein induces significant protective immunity against challenge with C. psittaci in mice and represents a promising new vaccine candidate for the prevention of C. psittaci infection. PMID:27052378

  19. Integrated bioprocess for the production and purification of recombinant proteins by affinity chromatography in Escherichia coli.

    PubMed

    Beshay, Usama; Miksch, Gerhard; Friehs, Karl; Flaschel, Erwin

    2009-02-01

    In order to improve the effectiveness of the production of recombinant proteins in E. coli, integrated fermentation processes were developed. Therefore, expression vectors were constructed containing a strongly expressed gene for a beta-glucanase fused with a metal-chelating affinity tag and a leader peptide for directing the fusion protein into the periplasmic space. Its export into the medium was achieved by means of co-expression of a bacteriocin-release protein, the Kil protein from pColE1. Bioreactors were modified so that special devices containing metal chelate pentadentate chelator PDC resins were located within the bioreactor. Using the bioreactor with an internal device the Zn2+-PDC had a 4.3-fold higher binding capacity than metal-free PDC (12.3 and 2.6 kU ml(-1) PDC, respectively. Using the bioreactor with charged PDC in an external circuit revealed even higher beta-glucanase concentration (65.6 kU ml(-1)), i.e. 1.5-fold compared to the internal adsorbent system. PMID:18481103

  20. The pCri System: a vector collection for recombinant protein expression and purification.

    PubMed

    Goulas, Theodoros; Cuppari, Anna; Garcia-Castellanos, Raquel; Snipas, Scott; Glockshuber, Rudi; Arolas, Joan L; Gomis-Rüth, F Xavier

    2014-01-01

    A major bottleneck in structural, biochemical and biophysical studies of proteins is the need for large amounts of pure homogenous material, which is generally obtained by recombinant overexpression. Here we introduce a vector collection, the pCri System, for cytoplasmic and periplasmic/extracellular expression of heterologous proteins that allows the simultaneous assessment of prokaryotic and eukaryotic host cells (Escherichia coli, Bacillus subtilis, and Pichia pastoris). By using a single polymerase chain reaction product, genes of interest can be directionally cloned in all vectors within four different rare restriction sites at the 5'end and multiple cloning sites at the 3'end. In this way, a number of different fusion tags but also signal peptides can be incorporated at the N- and C-terminus of proteins, facilitating their expression, solubility and subsequent detection and purification. Fusion tags can be efficiently removed by treatment with site-specific peptidases, such as tobacco etch virus proteinase, thrombin, or sentrin specific peptidase 1, which leave only a few extra residues at the N-terminus of the protein. The combination of different expression systems in concert with the cloning approach in vectors that can fuse various tags makes the pCri System a valuable tool for high throughput studies. PMID:25386923

  1. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles

    SciTech Connect

    Asteriti, Sabrina; Dal Cortivo, Giuditta; Pontelli, Valeria; Cangiano, Lorenzo; Buffelli, Mario; Dell’Orco, Daniele

    2015-06-12

    The potential of liposomes to deliver functional proteins in retinal photoreceptors and modulate their physiological response was investigated by two experimental approaches. First, we treated isolated mouse retinas with liposomes encapsulating either recoverin, an important endogenous protein operating in visual phototransduction, or antibodies against recoverin. We then intravitrally injected in vivo liposomes encapsulating either rhodamin B or recoverin and we investigated the distribution in retina sections by confocal microscopy. The content of liposomes was found to be released in higher amount in the photoreceptor layer than in the other regions of the retina and the functional effects of the release were in line with the current model of phototransduction. Our study sets the basis for quantitative investigations aimed at assessing the potential of intraocular protein delivery via biocompatible nanovesicles, with promising implications for the treatment of retinal diseases affecting the photoreceptor layer. - Highlights: • Recombinant proteins encapsulated in nano-sized liposomes injected intravitreally reach retinal photoreceptors. • The phototransduction cascade in rods is modulated by the liposome content. • Mathematical modeling predicts the alteration of the photoresponses following liposome fusion.

  2. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Champion, C I; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1996-01-01

    The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete. PMID:8759855

  3. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    PubMed

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes. PMID:24399704

  4. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions.

    PubMed

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas

    2016-01-01

    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media. PMID:26522884

  5. Comparison of barley malt alpha-amylase isozymes 1 and 2: construction of cDNA hybrids by in vivo recombination and their expression in yeast.

    PubMed

    Juge, N; Søgaard, M; Chaix, J C; Martin-Eauclaire, M F; Svensson, B; Marchis-Mouren, G; Guo, X J

    1993-08-25

    Germinating barley produces two alpha-amylase isozymes, AMY1 and AMY2, having 80% amino acid (aa) sequence identity and differing with respect to a number of functional properties. Recombinant AMY1 (re-AMY1) and AMY2 (re-AMY2) are produced in yeast, but whereas all re-AMY1 is secreted, re-AMY2 accumulates within the cell and only traces are secreted. Expression of AMY1::AMY2 hybrid cDNAs may provide a means of understanding the difference in secretion efficiency between the two isozymes. Here, the efficient homologous recombination system of the yeast, Saccharomyces cerevisiae, was used to generate hybrids of barley AMY with the N-terminal portion derived from AMY1, including the signal peptide (SP), and the C-terminal portion from AMY2. Hybrid cDNAs were thus generated that encode either the SP alone, or the SP followed by the N-terminal 21, 26, 53, 67 or 90 aa from AMY1 and the complementary C-terminal sequences from AMY2. Larger amounts of re-AMY are secreted by hybrids containing, in addition to the SP, 53 or more aa of AMY1. In contrast, only traces of re-AMY are secreted for hybrids having 26 or fewer aa of AMY1. In this case, re-AMY hybrid accumulates intracellularly. Transformants secreting hybrid enzymes also accumulated some re-AMY within the cell. The AMY1 SP, therefore, does not ensure re-AMY2 secretion and a certain portion of the N-terminal sequence of AMY1 is required for secretion of a re-AMY1::AMY2 hybrid. PMID:8359683

  6. Putative protein partners for the human CPI-17 protein revealed by bacterial two-hybrid screening.

    PubMed

    Kim, Kyung-mi; Adyshev, Djanybek M; Kása, Anita; Zemskov, Evgeny A; Kolosova, Irina A; Csortos, Csilla; Verin, Alexander D

    2013-07-01

    We have previously demonstrated that PKC-potentiated inhibitory protein of protein phosphatase-1 (CPI-17) is expressed in lung endothelium. CPI-17, a specific inhibitor of myosin light chain phosphatase (MLCP), is involved in the endothelial cytoskeletal and barrier regulation. In this paper, we report the identification of fourteen putative CPI-17 interacting proteins in the lung using BacterioMatch Two-Hybrid System. Five of them: plectin 1 isoform 1, alpha II spectrin, OK/SW-CL.16, gelsolin isoform a, and junction plakoglobin are involved in actin cytoskeleton organization and cell adhesion, suggesting possible significance of these binding partners in CPI-17-mediated cytoskeletal reorganization of endothelial cells. Furthermore, we confirmed the specific interaction between plakoglobin and CPI-17, which is affected by the phosphorylation status of CPI-17 in human lung microvascular endothelial cells. PMID:23583905

  7. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers.

    PubMed

    Fukushi, Shuetsu; Tani, Hideki; Yoshikawa, Tomoki; Saijo, Masayuki; Morikawa, Shigeru

    2012-10-01

    The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW) and New World (NW) complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF) in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA) and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs) derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs) to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture) ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV)-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses. PMID:23202455

  8. Construction and Immunogenicity of Recombinant Swinepox Virus Expressing Outer Membrane Protein L of Salmonella.

    PubMed

    Fang, Yizhen; Lin, Huixing; Ma, Zhe; Fan, Hongjie

    2016-07-28

    Salmonella spp. are gram-negative flagellated bacteria that cause a variety of diseases in humans and animals, ranging from mild gastroenteritis to severe systemic infection. To explore development of a potent vaccine against Salmonella infections, the gene encoding outer membrane protein L (ompL) was inserted into the swinepox virus (SPV) genome by homologous recombination. PCR, western blot, and immunofluorescence assays were used to verify the recombinant swinepox virus rSPV-OmpL. The immune responses and protection efficacy of rSPV-OmpL were assessed in a mouse model. Forty mice were assigned to four groups, which were immunized with rSPV-OmpL, inactive Salmonella (positive control), wildtype SPV (wtSPV; negative control), or PBS (challenge control), respectively. The OmpLspecific antibody in the rSPV-OmpL-immunized group increased dramatically and continuously over time post-vaccination, and was present at a significantly higher level than in the positive control group (p < 0.05). The concentrations of IFN-γ and IL-4, which represent Th1-type and Th2-type cytokine responses, were significantly higher (p < 0.05) in the rSPVOmpL- vaccinated group than in the other three groups. After intraperitoneal challenge with a lethal dose of Salmonella typhimurium CVCC542, eight out of ten mice in the rSPV-OmpLvaccinated group were protected, whereas all the mice in the negative control and challenge control groups died within 3 days. Passive immune protection assays showed that hyperimmune sera against OmpL could provide mice with effective protection against challenge from S. typhimurium. The recombinant swinepox virus rSPV-OmpL might serve as a promising vaccine against Salmonella infection. PMID:27012234

  9. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  10. Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination.

    PubMed

    Cheng, Zhihong; Liu, Yuying; Wang, Chernhoe; Parker, Roy; Song, Haiwei

    2004-10-01

    Ski8p is a WD-repeat protein with an essential role for the Ski complex assembly in an exosome-dependent 3'-to-5' mRNA decay. In addition, Ski8p is involved in meiotic recombination by interacting with Spo11p protein. We have determined the crystal structure of Ski8p from Saccharomyces cerevisiae at 2.2 A resolution. The structure reveals that Ski8p folds into a seven-bladed beta propeller. Mapping sequence conservation and hydrophobicities of amino acids on the molecular surface of Ski8p reveals a prominent site on the top surface of the beta propeller, which is most likely involved in mediating interactions of Ski8p with Ski3p and Spo11p. Mutagenesis combined with yeast two-hybrid and GST pull-down assays identified the top surface of the beta propeller as being required for Ski8p binding to Ski3p and Spo11p. The functional implications for Ski8p function in both mRNA decay and meiotic recombination are discussed. PMID:15340168

  11. Microwell hybridization assay for detection of PCR products from Mycobacterium tuberculosis complex and the recombinant Mycobacterium smegmatis strain 1008 used as an internal control.

    PubMed Central

    Kox, L F; Noordhoek, G T; Kunakorn, M; Mulder, S; Sterrenburg, M; Kolk, A H

    1996-01-01

    A microwell hybridization assay was developed for the detection of the PCR products from both Mycobacterium tuberculosis complex bacteria and the recombinant Mycobacterium smegmatis strain 1008 that is used as an internal control to monitor inhibition in the PCR based on the M. tuberculosis complex-specific insertion sequence IS6110. The test is based on specific detection with digoxigenin-labeled oligonucleotide probes of biotinylated PCR products which are captured in a microtiter plate coated with streptavidin. The captured PCR products are hybridized separately with two probes, one specific for the PCR product from IS6110 from M. tuberculosis complex and the other specific for the PCR fragment from the modified IS6110 fragment from the recombinant M. smegmatis 1008. The microwell hybridization assay discriminates perfectly between the two types of amplicon. The amount of PCR product that can be detected by this assay is 10 times less than that which can be detected by agarose gel electrophoresis. The test can be performed in 2 h. It is much faster and less laborious than Southern blot hybridization. Furthermore, the interpretation of results is objective. The assay was used with 172 clinical samples in a routine microbiology laboratory, and the results were in complete agreement with those of agarose gel electrophoresis and Southern blot hybridization. PMID:8862568

  12. A vector system for ABC transporter-mediated secretion and purification of recombinant proteins in Pseudomonas species.

    PubMed

    Ryu, Jaewook; Lee, Ukjin; Park, Jiye; Yoo, Do-Hyun; Ahn, Jung Hoon

    2015-03-01

    Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species. PMID:25548043

  13. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. PMID:25448590

  14. An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein

    PubMed Central

    Juleff, Nicholas; Moffat, Katy; Berryman, Stephen; Christie, John M.; Charleston, Bryan; Jackson, Terry

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed. PMID:23559477

  15. Use of a 24-kilodalton Trypanosoma cruzi recombinant protein to monitor cure of human Chagas' disease.

    PubMed Central

    Krautz, G M; Galvão, L M; Cançado, J R; Guevara-Espinoza, A; Ouaissi, A; Krettli, A U

    1995-01-01

    A 24-kDa recombinant protein from Trypanosoma cruzi (rTc24) was evaluated by enzyme-linked immunosorbent assay (ELISA) and Western blot (immunoblot) tests to identify treated chagasic patients considered parasitologically cured on the basis of persistently negative tests of hemocultures and lytic antibodies. Some of these patients were termed dissociated because their sera, although negative by the complement-mediated lysis test, were positive by conventional serology. The negative lysis test indicates the absence of active infection after specific treatment, but this assay requires live and infectious parasites and cannot be used easily in a laboratory routine. Here we tested rTc24 by ELISA and Western blotting as an alternative for the complement-mediated lysis test. For the group of patients with active infection despite the treatment (uncured patients), all the sera tested recognized rTc24 in both tests. For the dissociated patients, approximately 80% of the sera did not react with rTc24 in the ELISA or in Western blots, in agreement with the negative complement-mediated lysis tests. Thus, the 24-kDa T. cruzi recombinant antigen, when used for initial trials to evaluate cure of chagasic patients submitted to specific treatment, will allow the identification of most, but not all, cases. PMID:7559953

  16. Novel Recombinant Hepatitis B Virus Vectors Efficiently Deliver Protein and RNA Encoding Genes into Primary Hepatocytes

    PubMed Central

    Hong, Ran; Bai, Weiya; Zhai, Jianwei; Liu, Wei; Li, Xinyan; Zhang, Jiming; Cui, Xiaoxian; Zhao, Xue; Ye, Xiaoli; Deng, Qiang; Tiollais, Pierre; Wen, Yumei

    2013-01-01

    Hepatitis B virus (HBV) has extremely restricted host and hepatocyte tropism. HBV-based vectors could form the basis of novel therapies for chronic hepatitis B and other liver diseases and would also be invaluable for the study of HBV infection. Previous attempts at developing HBV-based vectors encountered low yields of recombinant viruses and/or lack of sufficient infectivity/cargo gene expression in primary hepatocytes, which hampered follow-up applications. In this work, we constructed a novel vector based on a naturally occurring, highly replicative HBV mutant with a 207-bp deletion in the preS1/polymerase spacer region. By applying a novel insertion strategy that preserves the continuity of the polymerase open reading frame (ORF), recombinant HBV (rHBV) carrying protein or small interfering RNA (siRNA) genes were obtained that replicated and were packaged efficiently in cultured hepatocytes. We demonstrated that rHBV expressing a fluorescent reporter (DsRed) is highly infective in primary tree shrew hepatocytes, and rHBV expressing HBV-targeting siRNA successfully inhibited antigen expression from coinfected wild-type HBV. This novel HBV vector will be a powerful tool for hepatocyte-targeting gene delivery, as well as the study of HBV infection. PMID:23552416

  17. Immunisation with recombinant proteins subolesin and Bm86 for the control of Dermanyssus gallinae in poultry.

    PubMed

    Harrington, David; Canales, Mario; de la Fuente, José; de Luna, Carlos; Robinson, Karen; Guy, Jonathan; Sparagano, Olivier

    2009-06-19

    Dermanyssus gallinae has a worldwide distribution and is considered to be the most serious and economically significant ectoparasite affecting egg-laying poultry in Europe. Recombinant Bm86 and subolesin proteins derived from Boophilus microplus ticks and Aedes albopictus mosquitoes were used to immunise poultry in an attempt to control D. gallinaein vitro. Immunisation with subolesin and Bm86 stimulated different profiles of IgY response, whilst Bm86 but not subolesin was recognized by IgY on western blots. Orthologues for Bm86 were not found in D. gallinae by PCR, but a 150 bp fragment aligned with mammalian akirin 1 and a 300 bp fragment aligned with Amblyomma hebraeum were amplified by subolesin PCR. D. gallinae mortality after feeding was 35.1% higher (P=0.009) in the Subolesin group and 23% higher (not significant) in the Bm86 compared to the Control group. Thus it can be concluded that immunisation with recombinant subolesin can stimulate a protective response in laying hens against D. gallinae. PMID:19501789

  18. Characterization of serovars of the genus Leptospira by DNA hybridization with hardjobovis and icterohaemorrhagiae recombinant probes with special attention to serogroup sejroe.

    PubMed Central

    Van Eys, G J; Gerritsen, M J; Korver, H; Schoone, G J; Kroon, C C; Terpstra, W J

    1991-01-01

    Recombinant DNA probes derived from genomic libraries of serovars hardjobovis and icterohaemorrhagiae were applied for the characterization of leptospires. Differences in hybridization signals in combination with the banding pattern appear to provide good characteristics for strain typing. The banding patterns were easy to distinguish, since the recombinant DNA probes hybridized with a limited number of fragments. They were also indicative of genomic relationships between serovars. The probes suggested the existence of four subgroups with extensive genomic homology within the serogroup Sejroe. A number of serovars outside the serogroup Sejroe showed genomic homology with these subgroups. Amplification with the polymerase chain reaction showed a correlation with the genomic homologies demonstrated by Southern analysis. Knowledge about genomic relationships between leptospiral strains, as revealed by Southern analysis, may lead to a more rational approach for primer selection for polymerase chain reaction or cloning of particular genes. Images PMID:2056039

  19. Four Trypanosoma brucei fatty acyl-CoA synthetases: fatty acid specificity of the recombinant proteins.

    PubMed Central

    Jiang, D W; Englund, P T

    2001-01-01

    As part of our investigation of fatty acid metabolism in Trypanosoma brucei, we have expressed four acyl-CoA synthetase (TbACS) genes in Esherichia coli. The recombinant proteins, with His-tags on their C-termini, were purified to near homogeneity using nickel-chelate affinity chromatography. Although these enzymes are highly homologous, they have distinct specificities for fatty acid chain length. TbACS1 prefers saturated fatty acids in the range C(11:0) to C(14:0) and TbACS2 prefers shorter fatty acids, mainly C(10:0). TbACS3 and 4, which have 95% sequence identity, have similar specificities, favouring fatty acids between C(14:0) and C(17:0). In addition, TbACS1, 3 and 4 function well with a variety of unsaturated fatty acids. PMID:11535136

  20. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus

    PubMed Central

    Fonseca, Wendy; Ozawa, Makoto; Hatta, Masato; Orozco, Esther; Martínez, Máximo B; Kawaoka, Yoshihiro

    2014-01-01

    Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections. PMID:24292020

  1. Lifecycle management for recombinant protein production using mammalian cell culture technology.

    PubMed

    Moran, Enda; Gammell, Patrick

    2014-01-01

    Product lifecycle management refers to the oversight process and activities carried out to fully realize the commercial potential and value of a product in the marketplace. It is typical for many changes to be introduced to the production processes and testing methods for biopharmaceutical drugs over their lifetime in the commercial marketplace. Technology lifecycle management, as discussed here, refers to the management of the different phases or generations of processes and methods used to make and test the active biopharmaceutical ingredient or drug product, and the adoption of different devices used to present the drug product to patients. The factors to consider when making changes to a commercial biopharmaceutical manufacturing process as part of a technology lifecycle management program are discussed. A case study outlines one approach taken in bringing forward a major process change to a cell culture process for the production of a therapeutic recombinant protein. PMID:24196316

  2. Secretion of green fluorescent protein from recombinant baculovirus-infected insect cells.

    PubMed

    Laukkanen, M L; Oker-Blom, C; Keinänen, K

    1996-09-24

    Trichoplusia ni (High Five) and Spodoptera frugiperda (Sf21) cells were engineered for expression of epitope (Flag)-tagged signal peptide-green fluorescent protein (GFP) fusions to examine the suitability of GFP as a secretory marker. The recombinant baculovirus-infected cells became fluorescent, and the High Five cells but not Sf21 cells secreted GFP in the culture medium as detected by the presence in the culture supernatant of a Flag-immunoreactive 30-kDa species and the characteristic 510-nm GFP fluorescence peak. Signal peptides derived from ecdysteroid UDP-glucosyltransferase of Autographa californica nuclear polyhedrosis virus and from rat brain glutamate receptor were both able to promote secretion of GFP. GFP may thus be used as a research tool in the study of the secretory process in insect cells both in cell biology and in biotechnological applications. PMID:8831686

  3. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  4. Induction of Mucosal and Systemic Immunity to a Recombinant Simian Immunodeficiency Viral Protein

    NASA Astrophysics Data System (ADS)

    Lehner, T.; Bergmeier, L. A.; Panagiotidi, C.; Tao, L.; Brookes, R.; Klavinskis, L. S.; Walker, P.; Walker, J.; Ward, R. G.; Hussain, L.; Gearing, A. J. H.; Adams, S. E.

    1992-11-01

    Heterosexual transmission through the cervico-vaginal mucosa is the principal route of human immunodeficiency virus (HIV) infection in Africa and is increasing in the United States and Europe. Vaginal immunization with simian immunodeficiency virus (SIV) had not yet been studied in nonhuman primates. Immune responses in macaques were investigated by stimulation of the genital and gut-associated lymphoid tissue with a recombinant, particulate SIV antigen. Vaginal, followed by oral, administration of the vaccine elicited three types of immunity: (i) gag protein p27-specific, secretory immunoglobulin A (IgA) and immunoglobulin G (IgG) in the vaginal fluid, (ii) specific CD4^+ T cell proliferation and helper function in B cell p27-specific IgA synthesis in the genital lymph nodes, and (iii) specific serum IgA and IgG, with CD4^+ T cell proliferative and helper functions in the circulating blood.

  5. Moderate Humidity Delays Electron-Hole Recombination in Hybrid Organic-Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments.

    PubMed

    Long, Run; Fang, Weihai; Prezhdo, Oleg V

    2016-08-18

    Experiments show both positive and negative changes in performance of hybrid organic-inorganic perovskite solar cells upon exposure to moisture. Ab initio nonadiabatic molecular dynamics reveals the influence of humidity on nonradiative electron-hole recombination. In small amounts, water molecules perturb perovskite surface and localize photoexcited electron close to the surface. Importantly, deep electron traps are avoided. The electron-hole overlap decreases, and the excited state lifetime increases. In large amounts, water forms stable hydrogen-bonded networks, has a higher barrier to enter perovskite, and produces little impact on charge localization. At the same time, by contributing high frequency polar vibrations, water molecules increase nonadiabatic coupling and accelerate recombination. In general, short coherence between electron and hole benefits photovoltaic response of the perovskites. The calculated recombination time scales show excellent agreement with experiment. The time-domain atomistic simulations reveal the microscopic effects of humidity on perovskite excited-state lifetimes and rationalize the conflicting experimental observations. PMID:27485025

  6. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    PubMed

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  7. Gamete Therapeutics: Recombinant Protein Adsorption by Sperm for Increasing Fertility via Artificial Insemination

    PubMed Central

    Alvarez-Gallardo, Horacio; Kjelland, Michael E.; Moreno, Juan F.; Welsh, Thomas H.; Randel, Ronald D.; Lammoglia, Miguel A.; Pérez-Martínez, Mario; Lara-Sagahón, Alma V.; Esperón-Sumano, A. Enrique; Romo, Salvador

    2013-01-01

    A decrease in fertility can have a negative economic impact, both locally and over a broader geographical scope, and this is especially the case with regard to the cattle industry. Therefore, much interest exists in evaluating proteins that might be able to increase the fertility of sperm. Heparin binding proteins (HBPs), specifically the fertility associated antigen (FAA) and the Type-2 tissue inhibitor of metalloproteinase (TIMP-2), act to favor the capacitation and acrosome reaction and perhaps even modulate the immune system’s response toward the sperm. The objective of this research was to determine the effect on fertility of adding recombinant FAA (rFAA) and recombinant TIMP-2 (rTIMP-2) to bovine semen before cryopreservation for use in an artificial insemination (AI) program in a tropical environment. For this experiment, 100 crossbred (Bos taurus x Bos indicus) heifers were selected based on their estrus cycle, body condition score (BCS), of 4 to 6 on a scale of 1 to 9, and adequate anatomical conformation evaluated by pelvic and genital (normal) measurements. Heifers were synchronized using estradiol benzoate (EB), Celosil® (PGF2α) (Shering-Plough) and a controlled internal drug release (CIDR) device was inserted that contained progesterone. Inseminations were performed in two groups at random, 50 animals per group. The control group was inseminated with conventional semen. The treatment group was inseminated with semen containing rFAA (25 µg/mL) and rTIMP-2 (25 µg/mL). In the control group a 16% pregnancy rate was obtained versus a 40% pregnancy rate for the HBP treatment group, resulting in a significant difference (P = 0.0037). Given the results herein, one may conclude that the HBPs can increase fertility and could be an option for cattle in tropical conditions; however, one needs to consider the environment, nutrition, and the genetic interaction affecting the final result in whatever reproductive program that is implemented. PMID:23762288

  8. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production

    PubMed Central

    Duwadi, Kishor; Chen, Ling; Menassa, Rima; Dhaubhadel, Sangeeta

    2015-01-01

    Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL)-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP) in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10) were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER), suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves. PMID:26148064

  9. Adjuvant requirement for successful immunization with recombinant derivatives of Plasmodium vivax merozoite surface protei