Science.gov

Sample records for recombinant luminescent bacterial

  1. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    PubMed Central

    2009-01-01

    Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights

  2. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.

    PubMed

    Pines, Gur; Freed, Emily F; Winkler, James D; Gill, Ryan T

    2015-11-20

    The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing. PMID:25856528

  3. Application of internal standard method in recombinant luminescent bacteria test.

    PubMed

    Wang, Yong-Zhi; Li, Dan; He, Miao

    2015-09-01

    Mercury and its organic compounds have been of severe concern worldwide due to their damage to the ecosystem and human health. The development of effective and affordable technology to monitor and signal the presence of bioavailable mercury is an urgent need. The Mer gene is a mercury-responsive resistant gene, and a mercury-sensing recombinant luminescent bacterium using the Mer gene was constructed in this study. The mer operon from marine Pseudomonas putida strain SP1 was amplified and fused with prompterless luxCDABE in the pUCD615 plasmid within Escherichia coli cells, resulting in pTHE30-E. coli. The recombinant strain showed high sensitivity and specificity. The detection limit of Hg(2+) was 5nmol/L, and distinct luminescence could be detected in 30min. Cd(2+), Cu(2+), Zn(2+), Ca(2+), Pb(2+), Mg(2+), Mn(2+), and Al(3+) did not interfere with the detection over a range of 10(-5)-1mM. Application of recombinant luminescent bacteria testing in environmental samples has been a controversial issue: especially for metal-sensing recombinant strains, false negatives caused by high cytotoxicity are one of the most important issues when applying recombinant luminescent bacteria in biomonitoring of heavy metals. In this study, by establishing an internal standard approach, the false negative problem was overcome; furthermore, the method can also help to estimate the suspected mercury concentration, which ensures high detection sensitivity of bioavailable Hg(2+). PMID:26354701

  4. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  5. [Homologous recombination among bacterial genomes: the measurement and identification].

    PubMed

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research. PMID:26907777

  6. Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2007-01-01

    Equipment and a method for rapidly assaying solid surfaces for contamination by bacterial spores are undergoing development. The method would yield a total (nonviable plus viable) spore count of a surface within minutes and a viable-spore count in about one hour. In this method, spores would be collected from a surface by use of a transparent polymeric tape coated on one side with a polymeric adhesive that would be permeated with one or more reagent(s) for detection of spores by use of visible luminescence. The sticky side of the tape would be pressed against a surface to be assayed, then the tape with captured spores would be placed in a reader that illuminates the sample with ultraviolet light and counts the green luminescence spots under a microscope to quantify the number of bacterial spores per unit area. The visible luminescence spots seen through the microscope would be counted to determine the concentration of spores on the surface. This method is based on the chemical and physical principles of methods described in several prior NASA Tech Briefs articles, including Live/Dead Spore Assay Using DPA-Triggered Tb Luminescence (NPO-30444), Vol. 27, No. 3 (March 2003), page 7a. To recapitulate: The basic idea is to exploit the observations that (1) dipicolinic acid (DPA) is present naturally only in bacterial spores; and (2) when bound to Tb3+ ions, DPA triggers intense green luminescence of the ions under ultraviolet excitation; (3) DPA can be released from the viable spores by using L-alanine to make them germinate; and (4) by autoclaving, microwaving, or sonicating the sample, one can cause all the spores (non-viable as well as viable) to release their DPA. One candidate material for use as the adhesive in the present method is polydimethysiloxane (PDMS). In one variant of the method for obtaining counts of all (viable and nonviable) spores the PDMS would be doped with TbCl3. After collection of a sample, the spores immobilized on the sticky tape surface

  7. Evidence that the variable fluorescence in Chlorella is recombination luminescence.

    PubMed

    Mauzerall, D C

    1985-08-28

    The fluorescence lifetime of oxygen-forming photosynthetic systems as a function of closed traps has been studied by several groups using light and poisons (usually 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)) to fix the closed trap state during the experiment. These measurements have now been carried out using light alone, by means of pump and probe laser pulses and a very efficient fast photomultiplier-digitizing system. It is found that the absolute amplitude of fast fluorescence (mean tau, approx. 0.3 ns) remains constant until over half the traps are filled. The amplitude of the slow fluorescence (tau approximately equal to 1.2 ns) increases with pump energy, and its response is best fit with a lag or finite rise-time of approx. 200 ps. This novel result is consistent with the hypothesis that the slow component of the fluorescence is actually recombination luminescence in the trap. Thus, the full trapping time, i.e., the time to form the P+I- state from an excitation in the O2 photosystem, is relatively slow. PMID:3896315

  8. A novel BOD sensor based on bacterial luminescence

    SciTech Connect

    Hyun, Changkee; Tamiya, Eiichi; Takeuchi, Toshifumi; Karube, Isao ); Inoue, Noriuki )

    1993-05-01

    A reagent-type BOD sensor with a new principle employing a luminous bacterium, Photobacterium phosphoreum, was developed. The increased intensity of luminescence resulting from the cellular assimilation of organic compounds in wastewater was detected by a photodiode. The BOD response of the bacterial reagent could be obtained within 15 min with [plus minus] 7% error. The temperature condition for optimal BOD response was 18 to 25 C at pH 7 to 8, indicating that it is possible to measure BOD at room temperature without having to stabilize the temperature of the measuring system. For practical use, two procedures for long-term preservation of the bacterial reagent, vacuum drying method and freezing method, are suggested. The metabolic characteristics of employed luminous bacteria were investigated by comparing the BOD values for several pure organic substrates estimated by the BOD sensor with conventional 5-day BOD values. In comparison with the 5-day BOD measurement for some wastewater samples, BOD values estimated by the sensor showed comparatively good agreement with those measured by the 5-day method.

  9. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    PubMed

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  10. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    PubMed Central

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-01-01

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metal-response genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soil-water suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  11. Recombination luminescence in irradiated silicon - Effects of thermal annealing and lithium impurity.

    NASA Technical Reports Server (NTRS)

    Johnson, E. S.; Compton, W. D.

    1971-01-01

    Use of luminescence in irradiated silicon to determine the thermal stability of the defects responsible for the recombination. It is found that the defect responsible for the zero-phonon line at 0.97 eV has an annealing behavior similar to that of the divacancy and that the zero-phonon line at 0.79 eV anneals in a manner similar to the G-15 or K-center. Annealing at temperatures up to 500 C generates other defects whose luminescence is distinct from that seen previously. Addition of lithium to the material produces defects with new characteristic luminescence. Of particular importance is a defect with a level at E sub g -1.045 eV.

  12. Recombination luminescence from electron-irradiated Li-diffused Si

    NASA Technical Reports Server (NTRS)

    Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Lithium doping has a dramatic effect on the low-temperature photoluminescence of electron-irradiated Si. In oxigen-lean Si with Li doping, a new irradiation-dependent luminescence band between 0.75 and 1.05 eV is observed, which is dominated by a zero-phonon peak at 1.045 eV. This band is believed to be due to radiative transitions involving a Li-modified divacancy. This band is present also in oxygen-rich, Li-diffused Si and is accompanied by bands previously related to the Si-G15(K) center and the divacancy. The intensities of the Li-modified divacancy and Si-G15(K) center bands are relatively weak in the oxygen-rich material, apparently due to the formation of lithium-oxygen complexes which reduce the concentration of unassociated interstitial Li and O.

  13. Genetic manipulation of poxviruses using bacterial artificial chromosome recombineering.

    PubMed

    Cottingham, Matthew G

    2012-01-01

    Traditional methods for genetic manipulation of poxviruses rely on low-frequency natural recombination in virus-infected cells. Although these powerful systems represent the technical foundation of current knowledge and applications of poxviruses, they require long (≥ 500 bp) flanking sequences for homologous recombination, an efficient viral selection method, and burdensome, time-consuming plaque purification. The beginning of the twenty-first century has seen the application of bacterial artificial chromosome (BAC) technology to poxviruses as an alternative method for their genetic manipulation, following the invention of a long-sought-after method for deriving a BAC clone of vaccinia virus (VAC-BAC) by Arban Domi and Bernard Moss. The key advantages of the BAC system are the ease and versatility of performing genetic manipulation using bacteriophage λ Red recombination (recombineering), which requires only ∼50 bp homology arms that can be easily created by PCR, and which allows seamless mutations lacking any marker gene without having to perform transient-dominant selection. On the other hand, there are disadvantages, including the significant setup time, the risk of contamination of the cloned genome with bacterial insertion sequences, and the nontrivial issue of removal of the BAC cassette from derived viruses. These must be carefully weighed to decide whether the use of BACs will be advantageous for a particular application, making pox-BAC systems likely to complement, rather than supplant, traditional methods in most laboratories. PMID:22688760

  14. Fluorescence-PCR Assays and Isolation of Luminescent Bacterial Clones Using an Automated Plate Reader

    ERIC Educational Resources Information Center

    Crowley, Thomas E.

    2011-01-01

    The genes responsible for luminescence in various species of the marine microorganism "Photobacterium", have been used for many years as a tool by researchers and instructors. In particular, the "lux" operon of "Photobacterium fischeri" has been used by many instructors to teach recombinant DNA techniques. Two methods using an automated plate…

  15. Method bacterial endospore quantification using lanthanide dipicolinate luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor); Venkateswaran, Kasthuri J. (Inventor); Kirby, James Patrick (Inventor)

    2007-01-01

    A lanthanide is combined with a medium to be tested for endospores. The dipicolinic acid released from the endospores binds the lanthanides, which have distinctive emission (i.e., luminescence) spectra, and are detected using photoluminescence. The concentration of spores is determined by preparing a calibration curve generated from photoluminescence spectra of lanthanide complex mixed with spores of a known concentration. A lanthanide complex is used as the analysis reagent, and is comprised of lanthanide ions bound to multidentate ligands that increase the dipicolinic acid binding constant through a cooperative binding effect with respect to lanthanide chloride. The resulting combined effect of increasing the binding constant and eliminating coordinated water and multiple equilibria increase the sensitivity of the endospore assay by an estimated three to four orders of magnitude over prior art of endospore detection based on lanthanide luminescence.

  16. Donor-acceptor pair recombination luminescence from monoclinic Cu2SnS3 thin film

    NASA Astrophysics Data System (ADS)

    Aihara, Naoya; Tanaka, Kunihiko; Uchiki, Hisao; Kanai, Ayaka; Araki, Hideaki

    2015-07-01

    The defect levels in Cu2SnS3 (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermal activation energies of which were determined to be 22.9 and 24.8 meV, respectively.

  17. Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of measuring the fraction of bacterial spores in a sample that remain viable exploits DPA-triggered luminescence of Tb(3+) and is based partly on the same principles as those described earlier. Unlike prior methods for performing such live/dead assays of bacterial spores, this method does not involve counting colonies formed by cultivation (which can take days), or counting of spores under a microscope, and works whether or not bacterial spores are attached to other small particles (i.e., dust), and can be implemented on a time scale of about 20 minutes.

  18. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  19. A new, sensitive marine microalgal recombinant biosensor using luminescence monitoring for toxicity testing of antifouling biocides.

    PubMed

    Sanchez-Ferandin, Sophie; Leroy, Fanny; Bouget, François-Yves; Joux, Fabien

    2013-01-01

    In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC(50)) after only 2 days (diuron, 5.65 ± 0.44 μg/liter; Irgarol 1015, 0.76 ± 0.10 μg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds. PMID:23144143

  20. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  1. Development of luminescent pH sensor films for monitoring bacterial growth through tissue

    PubMed Central

    Wang, Fenglin; Raval, Yash; Chen, Hongyu; Tzeng, Tzuen-Rong J.; DesJardins, John D.

    2014-01-01

    Although implanted medical devices (IMDs) offer many benefits, they are susceptible to bacterial colonization and infections. Such infections are difficult to treat because bacteria could form biofilms on the implant surface, which reduce antibiotics penetration and generate local dormant regions with low pH and low oxygen. In addition, these infections are hard to detect early because biofilms are often localized on the surface. Herein, an optical sensor film is developed to detect local acidosis on an implanted surface. The film contains both upconverting particles (UCPs) that serve as a light source and a pH indicator that alters the luminescence spectrum. When irradiated with 980 nm light, the UCPs produce deeply penetrating red light emission, while generating negligible autofluorescence in the tissue. The basic form of the pH indicator absorbs more of upconversion luminescence at 661 nm than at 671 nm and consequently the spectral ratio indicates pH. Implanting this pH sensor film beneath 6-7 mm of porcine tissue does not substantially affect the calibration curve because the peaks are closely spaced. Furthermore, growth of Staphylococcus epidermidis on the sensor surface causes a local pH decrease that can be detected non-invasively through the tissue. PMID:23832869

  2. Effect of concentrating and exposing the bioluminescent bacteria to the non-luminescent allo-bacterial extracellular products on their luminescence.

    PubMed

    Ravindran, J; Geetha Priya, G; Kannapiran, E

    2011-01-01

    Bioluminescence is a biochemical process occurring in many organisms. Bacterial bioluminescence has been investigated extensively that lead to many applications of such knowledge. Quorum sensing in the bioluminescent bacteria is a chemical signal process to recognize the strength of its own population to start luminescence in harmony. There is a mechanism in these bacteria to also recognize inter-species strength. When there is a higher number of these bacteria, the possibility and frequency of cell-cell physical contact will be high. In this study, the physical proximity was artificially enhanced between cells and the effect on luminescence in the concentrated cells in the normal culture medium and in the presence of other non-bacterial cell-free supernatants was investigated. The role of such physical contact in the quorum sensing in the bioluminescence is not known. Increase in the luminescence of V. fischeri when concentrated shows that the presence of physical proximity facilitates the quorum sensing for their bioluminescence. PMID:20017129

  3. Donor-acceptor pair recombination luminescence from monoclinic Cu{sub 2}SnS{sub 3} thin film

    SciTech Connect

    Aihara, Naoya; Tanaka, Kunihiko Uchiki, Hisao; Kanai, Ayaka; Araki, Hideaki

    2015-07-20

    The defect levels in Cu{sub 2}SnS{sub 3} (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermal activation energies of which were determined to be 22.9 and 24.8 meV, respectively.

  4. The Effect of Pre-irradiation Defects on the Recombination Luminescence in Activated Crystals K2SO4

    NASA Astrophysics Data System (ADS)

    Koketai, Temirgaly; Tagayeva, Batima; Tussupbekova, Ainura; Mussenova, Elmira

    The recombinational luminescence of crystals of K2SO4-Mn2+ and K2SO4-Ni2+ is studied in the article. It is established that impurity ions form the radiation induced centers. The cause of changes of the distribution of lightsum on TSL peaks of a matrix is established. It is proposed that it is related to pre-radiation defeсts in crystals. It is established from this effect that ions of Mn2+ and Ni2+ selectively replace cations in a crystal lattice of potassium sulfate.

  5. Bacterial expression and purification of recombinant bovine Fab fragments.

    PubMed

    O'Brien, Philippa M; Maxwell, Gavin; Campo, M Saveria

    2002-02-01

    We have previously described a recombinant phagemid expression vector, pComBov, designed for the production of native sequence bovine monoclonal antibodies (mAb) generated by antibody phage display. Bovine mAb Fab fragments isolated from libraries constructed using pComBov in Escherichia coli strain XL1-Blue, which is routinely used for antibodies expressed on the surface of phage, were expressed at very low yields. Therefore, a study was undertaken to determine optimal growth conditions for maximal expression of bovine Fab fragments in E. coli. By varying the E. coli strain, and the temperature and length of the culture growth, we were able to substantially increase the yield of soluble Fab fragments. A high yield of Fab fragments was found in the culture growth medium, which enabled us to devise a rapid and simple single-step method for the purification of native (nondenatured) Fabs based on immobilized metal affinity chromatography against a six-histidine amino acid carboxyl-terminal extension of the heavy-chain constant region. Using these methods we were able to express and purify antigen-specific bovine Fab fragments from E. coli. PMID:11812221

  6. Essential bacterial helicases that counteract the toxicity of recombination proteins.

    PubMed

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-06-17

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent. PMID:12065426

  7. ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes

    PubMed Central

    Didelot, Xavier; Wilson, Daniel J.

    2015-01-01

    Recombination is an important evolutionary force in bacteria, but it remains challenging to reconstruct the imports that occurred in the ancestry of a genomic sample. Here we present ClonalFrameML, which uses maximum likelihood inference to simultaneously detect recombination in bacterial genomes and account for it in phylogenetic reconstruction. ClonalFrameML can analyse hundreds of genomes in a matter of hours, and we demonstrate its usefulness on simulated and real datasets. We find evidence for recombination hotspots associated with mobile elements in Clostridium difficile ST6 and a previously undescribed 310kb chromosomal replacement in Staphylococcus aureus ST582. ClonalFrameML is freely available at http://clonalframeml.googlecode.com/. PMID:25675341

  8. Recombination luminescence in irradiated silicon-effects of uniaxial stress and temperature variations.

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Compton, W. D.

    1971-01-01

    Demonstration that luminescence in irradiated silicon consists of a spectral group between 0.80 and 1.0 eV which seems to be independent of impurities, while a lower energy group between 0.60 and 0.80 eV is seen only in pulled crystals. The small halfwidth and temperature dependence of the sharp zero-phonon lines observed in these spectra indicate that the luminescence arises from a bound-to-bound transition. A model is proposed for the transition mechanism. Stress data taken on the 0.79-eV zero-phonon line in pulled crystals can be fit by either a tetragonal 100 (in brackets) defect symmetry or by conduction-band splitting effects. It is suggested that the 0.79-eV zero-phonon line and the 0.60- to 0.80-eV spectral group arise from the EPR G-15 center. Stress data on a zero-phonon line at 0.97 eV associated with the 0.80- to 1.0-eV spectral group can be explained by a trigonal 111 (in brackets) defect. The divacancy is tentatively suggested as responsible for this luminescence spectra.

  9. Three R's of bacterial evolution: how replication, repair, and recombination frame the origin of species.

    PubMed

    Brown, E W; LeClerc, J E; Kotewicz, M L; Cebula, T A

    2001-01-01

    The genetic diversity of bacteria results not only from errors in DNA replication and repair but from horizontal exchange and recombination of DNA sequences from similar and disparate species as well. New individuals carrying adaptive changes are thus being spawned constantly among the population at large. When new selection pressures appear, these are the individuals that survive, at the expense of the general population, to forge new populations. Depending on the severity and uniqueness of the selection pressure, this could lead to new speciation. It is becoming more and more evident that, as nucleotide sequences of numerous loci from many bacterial strains continue to amass, horizontal transfer has played a key role in configuring the Escherichia coli chromosome. Here, we examine views, both old and new, for the role of recombination in the evolution of bacterial chromosomes. We present novel phylogenetic evidence for horizontal transfer of three genes involved in DNA replication and repair (mutS, uvrD, and polA). These data reveal a prominent role for horizontal transfer in the evolution of genes known to play a key role in the fidelity of DNA replication and, thus, ultimate survival of the organism. Our data underscore that recombination plays both a diversifying and a homogenizing role in defining the structure of the E. coli genome. PMID:11746762

  10. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins

    PubMed Central

    Croucher, Nicholas J.; Page, Andrew J.; Connor, Thomas R.; Delaney, Aidan J.; Keane, Jacqueline A.; Bentley, Stephen D.; Parkhill, Julian; Harris, Simon R.

    2015-01-01

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates’ recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  11. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins.

    PubMed

    Croucher, Nicholas J; Page, Andrew J; Connor, Thomas R; Delaney, Aidan J; Keane, Jacqueline A; Bentley, Stephen D; Parkhill, Julian; Harris, Simon R

    2015-02-18

    The emergence of new sequencing technologies has facilitated the use of bacterial whole genome alignments for evolutionary studies and outbreak analyses. These datasets, of increasing size, often include examples of multiple different mechanisms of horizontal sequence transfer resulting in substantial alterations to prokaryotic chromosomes. The impact of these processes demands rapid and flexible approaches able to account for recombination when reconstructing isolates' recent diversification. Gubbins is an iterative algorithm that uses spatial scanning statistics to identify loci containing elevated densities of base substitutions suggestive of horizontal sequence transfer while concurrently constructing a maximum likelihood phylogeny based on the putative point mutations outside these regions of high sequence diversity. Simulations demonstrate the algorithm generates highly accurate reconstructions under realistically parameterized models of bacterial evolution, and achieves convergence in only a few hours on alignments of hundreds of bacterial genome sequences. Gubbins is appropriate for reconstructing the recent evolutionary history of a variety of haploid genotype alignments, as it makes no assumptions about the underlying mechanism of recombination. The software is freely available for download at github.com/sanger-pathogens/Gubbins, implemented in Python and C and supported on Linux and Mac OS X. PMID:25414349

  12. [Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis].

    PubMed

    Liu, Gang; Zhang, Yan; Xing, Miao

    2006-03-01

    The effect of dual promoters on recombinant protein production from bacterial phage based Bacillus subtilis expression system was investigated. Alpha amylase (from Bacillus amyloliquefaciens) and penicillin acylase (from Bacillus megaterium) were selected as the indicating enzymes. Both the promoterless genes and the promoter-bearing genes were isolated through PCR amplification with properly designed primers, and were inserted into plasmid pSG703 that contains the lacZ-cat expression cartridge. The lysogenic B. subtilis (phi105 MU331) was transformed with the resultant recombinant plasmids, and the heterologous genes were thereby integrated into the chromosommal DNA of B. subtilis via homologous recombination. The transformants were designated as B. subtilis AMY1, B. subtilis AMY2, B. subtilis PA1, and B. subtilis PA2, respectively. In the recombinant B. subtilis strains, the inserted sequences were located down stream of a strong phage promoter that could be activated by thermal induction. In B. subtilis AMY1 and B. subtilis PA1, transcription of the heterologous genes was only initiated by the phage promoter after heat shock, whereas in B. subtilis AMY2 and B. subtilis PA2, transcription of the heterologous genes was initiated by dual promoters, the phage promoter and the native promoter. The application of dual promoters increased the productivity of both enzymes, with 133% enhancement for alpha-amylase production and 113% enhancement for penicillin acylase production. PMID:16607942

  13. Functional Expression of Recombinant Human Stefin A in Mammalian and Bacterial Cells

    PubMed Central

    Calkins, Catharine C.; Dosescu, Julie; Day, Nancy A.; Ren, Wei-Ping; Fridman, Rafael; Sloane, Bonnie F.; Moin, Kamiar

    2007-01-01

    Recombinant human cysteine protease inhibitor, stefin A, was expressed in both E. coli and BSC-1 monkey kidney cells utilizing pET and recombinant Vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and western blot analysis utilizing a polyclonal antibody against rat cystatin α. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A (~10 kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BSC-1 cells was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells on the other hand, can provide a significant research tool to study the functional roles of stefin A in the mammalian systems such as the regulation of cysteine proteases. PMID:17208452

  14. Identification and characterization of a bacterial hyaluronidase and its production in recombinant form.

    PubMed

    Messina, Luciano; Gavira, Jose A; Pernagallo, Salvatore; Unciti-Broceta, Juan D; Sanchez Martin, Rosario M; Diaz-Mochon, Juan J; Vaccaro, Susanna; Conejero-Muriel, Mayte; Pineda-Molina, Estela; Caruso, Salvatore; Musumeci, Luca; Di Pasquale, Roberta; Pontillo, Angela; Sincinelli, Francesca; Pavan, Mauro; Secchieri, Cynthia

    2016-07-01

    Hyaluronidases (Hyals) are broadly used in medical applications to facilitate the dispersion and/or absorption of fluids or medications. This study reports the isolation, cloning, and industrial-scale recombinant production, purification and full characterization, including X-ray structure determination at 1.45 Å, of an extracellular Hyal from the nonpathogenic bacterium Streptomyces koganeiensis. The recombinant S. koganeiensis Hyal (rHyal_Sk) has a novel bacterial catalytic domain with high enzymatic activity, compared with commercially available Hyals, and is more thermostable and presents higher proteolytic resistance, with activity over a broad pH range. Moreover, rHyal_Sk exhibits remarkable substrate specificity for hyaluronic acid (HA) and poses no risk of animal cross-infection. PMID:27311405

  15. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    PubMed Central

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A. Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  16. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    PubMed

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples. PMID:27095488

  17. Dual Colorimetric and Luminescent Assay for Dipicolinate, a Biomarker of Bacterial Spores

    PubMed Central

    Clear, Kasey J.; Stroud, Sarah

    2013-01-01

    A binary mixture of Tb3+ and pyrocatechol violet (PV) forms a 1:1 Tb3+/PV complex that can be used in a dye displacement assay. Addition of dipicolinate (DPA) to the Tb3+/DPA complex simultaneously produces a PV color change from blue to yellow and luminescence emission from the newly formed Tb3+/DPA complex. PMID:24106737

  18. Genome-wide survey of codons under diversifying selection in a highly recombining bacterial species, Helicobacter pylori

    PubMed Central

    Yahara, Koji; Furuta, Yoshikazu; Morimoto, Shinpei; Kikutake, Chie; Komukai, Sho; Matelska, Dorota; Dunin-Horkawicz, Stanisław; Bujnicki, Janusz M.; Uchiyama, Ikuo; Kobayashi, Ichizo

    2016-01-01

    Selection has been a central issue in biology in eukaryotes as well as prokaryotes. Inference of selection in recombining bacterial species, compared with clonal ones, has been a challenge. It is not known how codons under diversifying selection are distributed along the chromosome or among functional categories or how frequently such codons are subject to mutual homologous recombination. Here, we explored these questions by analysing genes present in >90% among 29 genomes of Helicobacter pylori, one of the bacterial species with the highest mutation and recombination rates. By a method for recombining sequences, we identified codons under diversifying selection (dN/dS > 1), which were widely distributed and accounted for ∼0.2% of all the codons of the genome. The codons were enriched in genes of host interaction/cell surface and genome maintenance (DNA replication, recombination, repair, and restriction modification system). The encoded amino acid residues were sometimes found adjacent to critical catalytic/binding residues in protein structures. Furthermore, by estimating the intensity of homologous recombination at a single nucleotide level, we found that these codons appear to be more frequently subject to recombination. We expect that the present study provides a new approach to population genomics of selection in recombining prokaryotes. PMID:26961370

  19. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    PubMed Central

    Schmeisser, Falko; Weir, Jerry P

    2007-01-01

    Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors. PMID:17501993

  20. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform.

    PubMed Central

    Yun, D J; D'Urzo, M P; Abad, L; Takeda, S; Salzman, R; Chen, Z; Lee, H; Hasegawa, P M; Bressan, R A

    1996-01-01

    NaCl (428 mM)-adapted tobacco (Nicotiana tabacum L. var Wisconsin 38) cells accumulate and secrete several antifungal chitinases. The predominant protein secreted to the culture medium was a 29-kD peptide that, based on internal amino acid sequence, was determined to be a class II acidic chitinase with similarity to PR-Q. The four predominant chitinases (T1, T2, T3, and T4) that accumulated intracellularly in 428 mM NaCl-adapted cells were purified. Based on N-terminal sequence analyses, two of these were identified as class I chitinase isoforms, one similar to the N. tomentosiformis (H. Shinshi, J.M. Neuhaus, J. Ryals, F. Meins [1990] Plant Mol Biol 14:357-368) protein (T1) and the other homologous to the N. sylvestris (Y. Fukuda, M. Ohme, H. Shinshi [1991] Plant Mol Biol 16:1-10) protein (T2). The other two proteins (T3 and T4) were determined to be novel chitinases that have sequence similarity with class I chitinases, but each lacks a chitin-binding domain. All four chitinases inhibited Fusarium oxysporum f. sp. lycopersici and Trichoderma longibrachiatum hyphal growth in vitro, although the isoforms containing a chitin-binding domain were somewhat more active. Conditions were established for the successful expression of soluble and active bacterial recombinant T2. Expression of soluble recombinant T2 was achieved when isopropyl beta-D-thiogalactopyranoside induction occurred at 18 degrees C but not at 25 or 37 degrees C. The purified recombinant protein exhibited antifungal activity comparable to a class I chitinase purified from NaCl-adapted tobacco cells. PMID:8756502

  1. BACTERIAL METABOLISM OF NAPTHALENE: CONSTRUCTION AND USE OF RECOMBINANT BACTERIA TO STUDY THE RING CLEAVAGE OF 1,2-DIIHYDROXYNAPTHALENE

    EPA Science Inventory

    The reactions involved in the bacterial metabolism of napthalene to salicylate have been reinvestigated by using recombinant bacteria carrying genes cloned form plasmid NAH7. hen intact cells of Pseudomonas aeruginosa PAO1 carrying DNA fragments encoding the first three enzymes o...

  2. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli.

    PubMed Central

    Kolodner, R; Fishel, R A; Howard, M

    1985-01-01

    Tn5 insertion mutations in the recN gene, and in what appears to be a new RecF pathway gene designated recO and mapping at approximately 55.4 min on the standard genetic map, were isolated by screening Tn5 insertion mutations that cotransduced with tyrA. The recO1504::Tn5 mutation decreased the frequency of recombination during Hfr-mediated crosses and increased the susceptibility to killing by UV irradiation and mitomycin C when present in a recB recC sbcB background, but only increased the sensitivity to killing by UV irradiation when present in an otherwise Rec+ background. The effects of these and other RecF pathway mutations on plasmid recombination were tested. Mutations in the recJ, recO, and ssb genes, when present in otherwise Rec+ E. coli strains, decreased the frequency of plasmid recombination, whereas the lexA3, recAo281, recN, and ruv mutations had no effect on plasmid recombination. Tn5 insertion mutations in the lexA gene increased the frequency of plasmid recombination. These data indicate that plasmid recombination events in wild-type Escherichia coli strains are catalyzed by a recombination pathway that is related to the RecF recombination pathway and that some component of this pathway besides the recA gene product is regulated by the lexA gene product. PMID:2993230

  3. High yield soluble bacterial expression and streamlined purification of recombinant human interferon α-2a.

    PubMed

    Bis, Regina L; Stauffer, Tara M; Singh, Surinder M; Lavoie, Thomas B; Mallela, Krishna M G

    2014-07-01

    Interferon α-2a (IFNA2) is a member of the Type I interferon cytokine family, known for its antiviral and anti-proliferative functions. The role of this family in the innate immune response makes it an attractive candidate for the treatment of many viral and chronic immune-compromised diseases. Recombinant IFNA2 is clinically used to modulate hairy cell leukemia as well as hepatitis c. Historically, IFNA2 has been purified from human leukocytes as well as bacterial expression systems. In most cases, bacterial expression of IFNA2 resulted in inclusion body formation, or required numerous purification steps that decreased the protein yield. Here, we describe an expression and purification scheme for IFNA2 using a pET-SUMO bacterial expression system and a single purification step. Using the SUMO protein as the fusion tag achieved high soluble protein expression. The SUMO tag was cleaved with the Ulp1 protease leaving no additional amino acids on the fusion terminus following cleavage. Mass spectrometry, circular dichroism, 2D heteronuclear NMR, and analytical ultracentrifugation confirmed the amino acid sequence identity, secondary and tertiary protein structures, and the solution behavior of the purified IFNA2. The purified protein also had antiviral and anti-proliferative activities comparable to the WHO International Standard, NIBSC 95/650, and the IFNA2 standard available from PBL Assay Science. Combining the expression and purification protocols developed here to produce IFNA2 on a laboratory scale with the commercial fermenter technology commonly used in pharmaceutical industry may further enhance IFNA2 yields, which will promote the development of interferon-based protein drugs to treat various disorders. PMID:24794500

  4. Use of Bacterial Artificial Chromosomes in Baculovirus Research and Recombinant Protein Expression: Current Trends and Future Perspectives

    PubMed Central

    Roy, Polly; Noad, Rob

    2012-01-01

    The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome. PMID:23762754

  5. Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices

    NASA Astrophysics Data System (ADS)

    Chen, Xifang; Yan, Ruolin; Zhang, Wenxia; Fan, Jiyang

    2016-04-01

    The underlying mechanism behind the blue/red color-switchable luminescence in the C8 carbon quantum dots (CQDs)/organic hybrid light-emitting devices (LEDs) is investigated. The study shows that the increasing bias alters the energy-level spatial distribution and reduces the carrier potential barrier at the CQDs/organic layer interface, resulting in transition of the carrier transport mechanism from quantum tunneling to direct injection. This causes spatial shift of carrier recombination from the organic layer to the CQDs layer with resultant transition of electroluminescence from blue to red. By contrast, the pure CQDs-based LED exhibits green-red electroluminescence stemming from recombination of injected carriers in the CQDs.

  6. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis

    PubMed Central

    Cuccui, Jon; Thomas, Rebecca M.; Moule, Madeleine G.; D'Elia, Riccardo V.; Laws, Thomas R.; Mills, Dominic C.; Williamson, Diane; Atkins, Timothy P.; Prior, Joann L.; Wren, Brendan W.

    2013-01-01

    Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l−1 of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines. PMID:23697804

  7. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis.

    PubMed

    Cuccui, Jon; Thomas, Rebecca M; Moule, Madeleine G; D'Elia, Riccardo V; Laws, Thomas R; Mills, Dominic C; Williamson, Diane; Atkins, Timothy P; Prior, Joann L; Wren, Brendan W

    2013-05-01

    Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l(-1) of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines. PMID:23697804

  8. Recombination luminescence and trap levels in undoped and Al-doped ZnO thin films on quartz and GaSe (0 0 0 1) substrates

    SciTech Connect

    Evtodiev, I.; Caraman, I.; Leontie, L.; Rusu, D.-I.; Dafinei, A.; Nedeff, V.; Lazar, G.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.

  9. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

    PubMed

    Holmberg, Mats A; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-06-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs. PMID:24631626

  10. Recombinant Immunotoxins Containing Truncated Bacterial Toxins for the Treatment of Hematologic Malignancies

    PubMed Central

    Kreitman, Robert J.

    2009-01-01

    Immunotoxins are molecules that contain a protein toxin and a ligand that is either an antibody or a growth factor. The ligand binds to a target cell antigen, and the target cell internalizes the immunotoxin, allowing the toxin to migrate to the cytoplasm where it can kill the cell. In the case of recombinant immunotoxins, the ligand and toxin are encoded in DNA that is then expressed in bacteria, and the purified immunotoxin contains the ligand and toxin fused together. Among the most active recombinant immunotoxins clinically tested are those that are targeted to hematologic malignancies. One agent, containing human interleukin-2 and truncated diphtheria toxin (denileukin diftitox), has been approved for use in cutaneous T-cell lymphoma, and has shown activity in other hematologic malignancies, including leukemias and lymphomas. Diphtheria toxin has also been targeted by other ligands, including granulocyte-macrophage colony-stimulating factor and interleukin-3, to target myelogenous leukemia cells. Single-chain antibodies containing variable heavy and light antibody domains have been fused to truncated Pseudomonas exotoxin to target lymphomas and lymphocytic leukemias. Recombinant immunotoxins anti-Tac(Fv)-PE38 (LMB-2), targeting CD25, and RFB4(dsFv)-PE38 (BL22, CAT-3888), targeting CD22, have each been tested in patients. Major responses have been observed after failure of standard chemotherapy. The most successful application of recombinant immunotoxins today is in hairy cell leukemia, where BL22 has induced complete remissions in most patients who were previously treated with optimal chemotherapy. PMID:19344187

  11. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes

    SciTech Connect

    Price, Morgan N.; Arkin, Adam P.

    2015-12-15

    Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 1012 individuals and a typical level of homologous recombination (r/m= 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is<107. An argument for high Ne values for bacteria has been the high genetic diversity within many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate Ne correctly. Given an estimate ofNe, standard population genetics models imply that selection should be sufficient to drive evolution if Ne ×s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force ifs is above 10-7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10-9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more

  12. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes

    DOE PAGESBeta

    Price, Morgan N.; Arkin, Adam P.

    2015-12-15

    Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 1012 individuals and a typical level of homologous recombination (r/m= 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is<107. An argument for high Ne values for bacteria has been the high genetic diversity within many bacterial “species,” but thismore » diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate Ne correctly. Given an estimate ofNe, standard population genetics models imply that selection should be sufficient to drive evolution if Ne ×s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force ifs is above 10-7 or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10-9 per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of

  13. EFFECTS OF BACTERIAL LIGNIN PEROXIDASE ON ORGANIC CARBON MINERALIZATION IN SOIL, USING RECOMBINANT STREPTOMYCES STRAINS

    EPA Science Inventory

    Purified lignin peroxidase was added to sterile and nonsterile silt loam soil to study the effects of bacterial lignin peroxidase ALip-P3 of Streptomyces viridosporus T7A on the rate of organic carbon turnover in soil. ignin peroxidase ALip-P3 appears to affect the short-term tur...

  14. Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber[C][W

    PubMed Central

    Alverson, Andrew J; Rice, Danny W; Dickinson, Stephanie; Barry, Kerrie; Palmer, Jeffrey D

    2011-01-01

    Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes. PMID:21742987

  15. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology

    PubMed Central

    Akbarzadeh, Ali; Dehnavi, Ehsan; Aghaeepoor, Mojtaba; Amani, Jafar

    2015-01-01

    Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant

  16. Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release

    PubMed Central

    2011-01-01

    Background Bacterial cell lysis is a widely studied mechanism that can be achieved through the intracellular expression of phage native lytic proteins. This mechanism can be exploited for programmed cell death and for gentle cell disruption to release recombinant proteins when in vivo secretion is not feasible. Several genetic parts for cell lysis have been developed and their quantitative characterization is an essential step to enable the engineering of synthetic lytic systems with predictable behavior. Results Here, a BioBrick™ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction. Conclusions The studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population. PMID:21645422

  17. Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems?

    PubMed

    Porro, Danilo; Gasser, Brigitte; Fossati, Tiziana; Maurer, Michael; Branduardi, Paola; Sauer, Michael; Mattanovich, Diethard

    2011-02-01

    Recombinant DNA (rDNA) technologies allow the production of a wide range of peptides, proteins and metabolites from naturally non-producing cells. Since human insulin was the first heterologous compound produced in a laboratory in 1977, rDNA technology has become one of the most important technologies developed in the 20th century. Recombinant protein and metabolites production is a multi-billion dollar market. The development of a new product begins with the choice of the cell factory. The final application of the compound dictates the main criteria that should be taken into consideration: (1) quality, (2) quantity, (3) yield and (4) space time yield of the desired product. Quantity and quality are the most predominant requirements that must be considered for the commercial production of a protein. Quantity and yield are the requirements for the production of a metabolite. Finally, space time yield is crucial for any production process. It therefore becomes clear why the perfect host does not exist yet, and why-despite important advances in rDNA applications in higher eukaryotic cells-microbial biodiversity continues to represent a potential source of attractive cell factories. In this review, we compare the advantages and limitations of the principal yeast and bacterial workhorse systems. PMID:21125266

  18. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery.

    PubMed

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A; Price, Nancy L; Stratilo, Chad; Feldman, Mario F

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  19. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery

    PubMed Central

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A.; Price, Nancy L.; Stratilo, Chad; Feldman, Mario F.

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  20. Lederberg on bacterial recombination, Haldane, and cold war genetics: an interview.

    PubMed

    Sarkar, Sahotra

    2014-01-01

    Joshua Lederberg (1925-2008), was one of the pioneers of molecular genetics perhaps best known for his discovery of genetic recombination in bacteria which earned him a Nobel Prize in 1958 (shared with George Beadle and Edward Tatum). Lederberg's interests were broad including the origin of life, exobiology (a term that he coined) and emerging diseases and artificial intelligence in his, later years. This article contains the transcription of an interview in excerpts, docu- menting the interactions between Lederberg and fellow biologist J.B.S. Haldane wlich lasted from 1946 until Haldane's death in Kolkata (then Calcutta) in 1964. PMID:25515361

  1. Construction of a recombinant bacterial plasmid containing DNA sequences for a mouse embryonic globin chain.

    PubMed

    Fantoni, A; Bozzoni, I; Ullu, E; Farace, M G

    1979-08-10

    Messenger RNAs for mouse embryonic globins were purified from yolk sac derived eyrthroid cells in mouse fetuses. Double stranded DNAs complementary to these messengers were synthesized and blunt end ligated to a EcoRI digested and DNA polymerase I repaired pBR322 plasmid. Of the ampicillin resistant transformants, one contained a plasmid with globin-specific cDNA. The inserted sequence is about 350 base pairs long. It contains one restriction site for EcoRI and one restriction site for HinfI about 170 and 80 base pairs from one end. The insert is not cleaved by HindIII, HindII, BamHI, PstI, SalI, AvaI, TaqI, HpaII, BglI. A mixture of purified messengers coding for alpha chains and for x, y and z embryonic chains was incubated with the recombinant plasmid and the hybridized messenger was translated in a mRNA depleted reticulocyte lysate protein synthesizing system. The product of translation was identified as a z chain by carboxymethylcellulose cromatography. The recombinant plasmid is named "pBR322-egz" after embryonic globin z. PMID:493112

  2. Construction of a recombinant bacterial plasmid containing DNA sequences for a mouse embryonic globin chain.

    PubMed Central

    Fantoni, A; Bozzoni, I; Ullu, E; Farace, M G

    1979-01-01

    Messenger RNAs for mouse embryonic globins were purified from yolk sac derived eyrthroid cells in mouse fetuses. Double stranded DNAs complementary to these messengers were synthesized and blunt end ligated to a EcoRI digested and DNA polymerase I repaired pBR322 plasmid. Of the ampicillin resistant transformants, one contained a plasmid with globin-specific cDNA. The inserted sequence is about 350 base pairs long. It contains one restriction site for EcoRI and one restriction site for HinfI about 170 and 80 base pairs from one end. The insert is not cleaved by HindIII, HindII, BamHI, PstI, SalI, AvaI, TaqI, HpaII, BglI. A mixture of purified messengers coding for alpha chains and for x, y and z embryonic chains was incubated with the recombinant plasmid and the hybridized messenger was translated in a mRNA depleted reticulocyte lysate protein synthesizing system. The product of translation was identified as a z chain by carboxymethylcellulose cromatography. The recombinant plasmid is named "pBR322-egz" after embryonic globin z. Images PMID:493112

  3. Recombinant expression and purification of "virus-like" bacterial encapsulin protein cages.

    PubMed

    Rurup, W Frederik; Cornelissen, Jeroen J L M; Koay, Melissa S T

    2015-01-01

    Ultracentrifugation, particularly the use of sucrose or cesium chloride density gradients, is a highly reliable and efficient technique for the purification of virus-like particles and protein cages. Since virus-like particles and protein cages have a unique size compared to cellular macromolecules and organelles, the rate of migration can be used as a tool for purification. Here we describe a detailed protocol for the purification of recently discovered virus-like assemblies called bacterial encapsulins from Thermotoga maritima and Brevibacterium linens. PMID:25358773

  4. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri.

    PubMed

    Timilsina, Sujan; Jibrin, Mustafa O; Potnis, Neha; Minsavage, Gerald V; Kebede, Misrak; Schwartz, Allison; Bart, Rebecca; Staskawicz, Brian; Boyer, Claudine; Vallad, Gary E; Pruvost, Olivier; Jones, Jeffrey B; Goss, Erica M

    2015-02-01

    Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations. PMID:25527544

  5. Expression and biochemical characterisation of recombinant AceA, a bacterial alpha-mannosyltransferase.

    PubMed

    Geremia, R A; Roux, M; Ferreiro, D U; Dauphin-Dubois, R; Lellouch, A C; Ielpi, L

    1999-07-01

    Biosynthesis of repeat-unit polysaccharides and N-linked glycans proceeds by sequential transfer of sugars from the appropriate sugar donor to an activated lipid carrier. The transfer of each sugar is catalysed by a specific glycosyltransferase. The molecular basis of the specificity of sugar addition is not yet well understood, mainly because of the difficulty of isolating these proteins. In this study, the aceA gene product expressed by Acetobacter xylinum, which is involved in the biosynthesis of the exopolysaccharide acetan, was overproduced in Escherichia coli and its function was characterised. The aceA ORF was subcloned into the expression vector pET29 in frame with the S.tag epitope. The recombinant protein was identified, and culture conditions were optimised for production of the soluble protein. The results of test reactions showed that AceA is able to transfer one alpha-mannose residue from GDP-mannose to cellobiose-P-P-lipid to produce alpha-mannose-cellobiose-P-P-lipid. AceA was not able to use free cellobiose as a substrate, indicating that the pyrophosphate-lipid moiety is needed for enzymatic activity. PMID:10485283

  6. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability.

    PubMed

    Drewniak, Lukasz; Ciezkowska, Martyna; Radlinska, Monika; Sklodowska, Aleksandra

    2015-02-20

    The plasmid pSinA of Sinorhizobium sp. M14 was used as a source of functional phenotypic modules, encoding proteins involved in arsenite oxidation and arsenic resistance, to obtain recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidative ability. An arsenite oxidation module was cloned into pBBR1MCS-2 vector yielding plasmid vector pAIO1, while an arsenic resistance module was cloned into pCM62 vector yielding plasmid pARS1. Both plasmid constructs were introduced (separately and together) into the cells of phylogenetically distant (representing Alpha-, Beta-, and Gammaproteobacteria) and physiologically diversified (unable to oxidize arsenite and susceptible/resistant to arsenite and arsenate) bacteria. Functional analysis of the modified strains showed that: (i) the plasmid pARS1 can be used for the construction of strains with an increased resistance to arsenite [up to 20mM of As(III), (ii) the presence of the plasmid pAIO1 in bacteria previously unable to oxidize As(III) to As(V), contributes to the acquisition of arsenite oxidation abilities by these cells, (iii) the highest arsenite utilization rate are observed in the culture of strains harbouring both the plasmids pAIO1 and pARS1, (iv) the strains harbouring the plasmid pAIO1 were able to grow on arsenic-contaminated mine waters (∼ 3.0 mg As L(-1)) without any supplementation. PMID:25617684

  7. In vitro bactericidal activity of recombinant human beta-defensin-3 against pathogenic bacterial strains in human tooth root canal.

    PubMed

    Song, Wei; Shi, Yong; Xiao, Mingzhen; Lu, Hong; Qu, Tiejun; Li, Ping; Wu, Gang; Tian, Yu

    2009-03-01

    Human beta-defensin-3 (HBD3), an endogenous antimicrobial peptide, has strong broad-spectrum antimicrobial activity. This study aimed to obtain recombinant HBD3 (rHBD3) and to test the hypothesis that the antimicrobial characteristics of HBD3 may offer an advantage over conventional medicine in reducing intracanal bacteria. Genetic engineering was used to obtain active rHBD3 and analysis revealed that it exhibited a broad spectrum of antibacterial activity at low micromolar concentrations against not only Staphylococcus aureus and Escherichia coli but also against some critical pathogenic microbes in infected root canals, including Fusobacterium nucleatum, Prevotella melaninogenica, Peptostreptococcus anaerobius, Streptococcus mutans, Actinomyces naeslundii, Enterococcus faecalis and Candida albicans. In an in vitro antibacterial experiment, rHBD3 significantly eliminated pathogenic bacteria in root canals. The ratio of bacterial death was up to 98%. We conclude that HBD3 has the potential to eliminate bacteria effectively and rapidly in the local microenvironment of the root canal system and that it may contribute to successful endodontic treatment. PMID:18775647

  8. Telomerase repeat amplification protocol (TRAP) activity upon recombinant expression and purification of human telomerase in a bacterial system.

    PubMed

    Hansen, Debra T; Thiyagarajan, Thirumagal; Larson, Amy C; Hansen, Jeffrey L

    2016-07-01

    Telomerase biogenesis is a highly regulated process that solves the DNA end-replication problem. Recombinant expression has so far been accomplished only within a eukaryotic background. Towards structural and functional analyses, we developed bacterial expression of human telomerase. Positive activity by the telomerase repeat amplification protocol (TRAP) was identified in cell extracts of Escherichia coli expressing a sequence-optimized hTERT gene, the full-length hTR RNA with a self-splicing hepatitis delta virus ribozyme, and the human heat shock complex of Hsp90, Hsp70, p60/Hop, Hsp40, and p23. The Hsp90 inhibitor geldanamycin did not affect post-assembly TRAP activity. By various purification methods, TRAP activity was also obtained upon expression of only hTERT and hTR. hTERT was confirmed by tandem mass spectrometry in a ∼120 kDa SDS-PAGE fragment from a TRAP-positive purification fraction. TRAP activity was also supported by hTR constructs lacking the box H/ACA small nucleolar RNA domain. End-point TRAP indicated expression levels within 3-fold of that from HeLa carcinoma cells, which is several orders of magnitude below detection by the direct assay. These results represent the first report of TRAP activity from a bacterium and provide a facile system for the investigation of assembly factors and anti-cancer therapeutics independently of a eukaryotic setting. PMID:26965413

  9. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  10. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity.

    PubMed

    Bhakta, Varsha; Gierczak, Richard F; Sheffield, William P

    2013-12-01

    Exhaustive mutagenesis studies of the reactive centre loop (RCL), a key structural component of proteins belonging to the serpin superfamily of protease inhibitors, are complicated by the size of the RCL, serpin conformational complexity, and, for most serpins, the lack of a serpin-dependent phenotype of expressing cells. Here, we describe a thrombin capture assay that distinguished thrombin-inhibitory recombinant human alpha-1 proteinase inhibitor (API M358R) from non-inhibitory API variants in Escherichia coli lysates prepared from either single clones or pools. Binding of API proteins in the lysates to thrombin immobilized on microtiter plate wells was quantified via colour generated by a peroxidase-coupled anti-API antibody. Bacterial expression plasmids encoding inhibitory API M358R were mixed 1:99 with plasmids encoding non-inhibitory API T345R/M358R and the resulting library screened in pools of 10. All above-background signals arising from pools or subsequently re-probed single clones were linked to the presence of plasmids encoding API M358R. Screening of a portion of another expression library encoding hypervariable API with all possibilities at codons 352-358 also yielded only novel, thrombin-inhibitory variants. Probing a smaller library expressing all possible codons at Ala347 yielded the wild type, 6 different functional variants, one partially active variant, and two variants with no thrombin-inhibitory activity. API antigen levels varied considerably less among Ala347 variants than activity levels, and comparison of rate constants of inhibition of purified API variants to their corresponding thrombin capture assay lysate values was used to establish the sensitivity and specificity of the assay. The results indicate that the approach is sufficiently robust to correctly identify functional versus non-functional candidates in API expression libraries, and could be of value in systematically probing structure/function relationships not only in the API

  11. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system.

    PubMed

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2016-04-01

    The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 μg gFW(-1), was comparable to the mean HA yield of 846 μg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory. PMID

  12. Type III Restriction Is Alleviated by Bacteriophage (RecE) Homologous Recombination Function but Enhanced by Bacterial (RecBCD) Function

    PubMed Central

    Handa, Naofumi; Kobayashi, Ichizo

    2005-01-01

    Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage—presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks. PMID:16237019

  13. Recombinant bacterial amylopullulanases

    PubMed Central

    Nisha, M; Satyanarayana, T

    2013-01-01

    Pullulanases are endo-acting enzymes capable of hydrolyzing α-1, 6-glycosidic linkages in starch, pullulan, amylopectin, and related oligosaccharides, while amylopullulanases are bifunctional enzymes with an active site capable of cleaving both α-1, 4 and α-1, 6 linkages in starch, amylose and other oligosaccharides, and α-1, 6 linkages in pullulan. The amylopullulanases are classified in GH13 and GH57 family enzymes based on the architecture of catalytic domain and number of conserved sequences. The enzymes with two active sites, one for the hydrolysis of α-1, 4- glycosidic bond and the other for α-1, 6-glycosidic bond, are called α-amylase-pullulanases, while amylopullulanases have only one active site for cleaving both α-1, 4- and α-1, 6-glycosidic bonds. The amylopullulanases produced by bacteria find applications in the starch and baking industries as a catalyst for one step starch liquefaction-saccharification for making various sugar syrups, as antistaling agent in bread and as a detergent additive. PMID:23645215

  14. The RecRO pathway of DNA recombinational repair in Helicobacter pylori and its role in bacterial survival in the host

    PubMed Central

    Wang, Ge; Lo, Leja F.; Maier, Robert J.

    2011-01-01

    Two pathways for DNA recombination, AddAB (RecBCD-like) and RecRO, were identified in Helicobacter pylori, a pathogenic bacterium that colonizes human stomachs resulting in a series of gastric diseases. In this study, we examined the physiological roles of H. pylori RecRO pathway in DNA recombinational repair. We characterized H. pylori single mutants in recR and in recO, genes in the putative gap repair recombination pathway, and an addA recO double mutant that is thus deficient in both pathways that initiate DNA recombinational repair. The recR or recO single mutants showed the same level of sensitivity to mitomycin C as the parent strain, suggesting that the RecRO pathway is not responsible for the repair of DNA double strand breaks. However, H. pylori recR and recO mutants are highly sensitive to oxidative stress and separately to acid stress, two major stress conditions that H. pylori encounters in its physiological niche. The complementation of the recR mutant restored the sensitivity to oxidative and acid stress to the wild type level. By measuring DNA transformation frequencies, the recR and recO single mutants were shown to have no effect on inter-genomic recombination, whereas the addA recO double mutant had a greatly (~12-fold) reduced transformation frequency. On the other hand, the RecRO pathway was shown to play a significant role in intra-genomic recombination with direct repeat sequences. Whereas the recA strain had a deletion frequency 35-fold lower than that of background level, inactivation of recR resulted in a 4-fold decrease in deletion frequency. In a mouse infection model, the three mutant strains displayed a greatly reduced ability to colonize the host stomachs. The geometric means of colonization number for the wild type, recR, recO, and addA recO strains were 6 × 105, 1.6 × 104, 1.4 × 104 and 4 × 103 CFU/g stomach, respectively. H. pylori RecRO-mediated DNA recombinational repair (intra-genomic recombination) is thus involved in

  15. The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the gram-positive bacterial element Tn916.

    PubMed Central

    Tribble, G D; Parker, A C; Smith, C J

    1997-01-01

    The Bacteroides mobilizable transposon Tn4555 is a 12.2-kb molecule that encodes resistance to cefoxitin. Conjugal transposition is hypothesized to occur via a circular intermediate and is stimulated by coresident tetracycline resistance elements and low levels of tetracycline. In this work, the ends of the transposon were identified and found to consist of 12-bp imperfect inverted repeats, with an extra base at one end. In the circular form, the ends were separated by a 6-bp "coupling sequence" which was associated with either the left or the right transposon terminus when the transposon was inserted into the chromosome. Tn4555 does not duplicate its target site upon insertion. Using a conjugation-based transposition assay, we showed that the coupling sequence originated from 6 bases of genomic DNA flanking either side of the transposon prior to excision. Tn4555 preferentially transposed into a 589-bp genomic locus containing a 207-bp direct repeat. Integration occurred before or after the repeated sequence, with one integration site between the two repeats. These observations are consistent with a transposition model based on site-specific recombination. In the bacteriophage lambda model for site-specific recombination, the bacteriophage recombines with the Escherichia coli chromosome via a 7-bp "crossover" region. We propose that the coupling sequence of Tn4555 is analogous in function to the crossover region of lambda but that unlike the situation in lambda, recombination occurs between regions of nonhomologous DNA. This ability to recombine into divergent target sites is also a feature of the gram-positive bacterial transposon Tn916. PMID:9098073

  16. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation.

    PubMed

    Vinuesa, Pablo; Silva, Claudia; Werner, Dietrich; Martínez-Romero, Esperanza

    2005-01-01

    A combination of population genetics and phylogenetic inference methods was used to delineate Bradyrhizobium species and to uncover the evolutionary forces acting at the population-species interface of this bacterial genus. Maximum-likelihood gene trees for atpD, glnII, recA, and nifH loci were estimated for diverse strains from all but one of the named Bradyrhizobium species, and three unnamed "genospecies," including photosynthetic isolates. Topological congruence and split decomposition analyses of the three housekeeping loci are consistent with a model of frequent homologous recombination within but not across lineages, whereas strong evidence was found for the consistent lateral gene transfer across lineages of the symbiotic (auxiliary) nifH locus, which grouped strains according to their hosts and not by their species assignation. A well resolved Bayesian species phylogeny was estimated from partially congruent glnII+recA sequences, which is highly consistent with the actual taxonomic scheme of the genus. Population-level analyses of isolates from endemic Canarian genistoid legumes based on REP-PCR genomic fingerprints, allozyme and DNA polymorphism analyses revealed a non-clonal and slightly epidemic population structure for B. canariense isolates of Canarian and Moroccan origin, uncovered recombination and migration as significant evolutionary forces providing the species with internal cohesiveness, and demonstrated its significant genetic differentiation from B. japonicum, its sister species, despite their sympatry and partially overlapped ecological niches. This finding provides strong evidence for the existence of well delineated species in the bacterial world. The results and approaches used herein are discussed in the context of bacterial species concepts and the evolutionary ecology of (brady)rhizobia. PMID:15579380

  17. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots.

    PubMed

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-01-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future. PMID:27249792

  18. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    PubMed Central

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-01-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future. PMID:27249792

  19. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  20. Effect of radiation-sensitive mutations and mutagens/carcinogens on bacterial recombination and mutagenesis. Progress report

    SciTech Connect

    Not Available

    1982-01-01

    Progress is reported in the following research areas: (1) mutagen assay using Escherichia coli was investigated; (2) a recombination assay has been developed with use of an E. coli partial diploid; (3) the Ames test has been expanded to include Salmonella strains with excision repair capability; and (4) the expanded Ames test was used to test the mutagenicity of various antineoplastic drugs. (ACR)

  1. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals.

    PubMed

    Ivask, A; Bondarenko, O; Jepihhina, N; Kahru, A

    2010-09-01

    We propose a novel combination of high-throughput luminescent bacterial tests for the evaluation of the reactive oxygen species (ROS)-generating potential of engineered nanoparticles (eNPs) and the role of solubilised metal ions in this process. The set of tests consists of differently engineered recombinant Escherichia coli strains: (1) a new sensor strain, which bioluminescence is induced by superoxide anions; (2) six recombinant E. coli strains (superoxide dismutase (sod) single, double and triple mutants and a respective wild-type strain), transformed with luxCDABE genes responding to toxic compounds by decreasing their luminescence; and (3) three strains in which bioluminescence is specifically induced by bioavailable metals (Cu, Zn and Ag). The applicability of this battery of tests in profiling oxidative potential of eNPs was evaluated on nTiO(2), nCuO, nZnO and nAg (25, 30, 70 and <100 nm, respectively) NPs and fullerenes. As controls for the size or solubility, the bulk formulations (bTiO(2), bCuO and bZnO) and soluble salts (ZnSO(4), CuSO(4) and AgNO(3)) were also analysed. Bacterial toxicity tests showed that nCuO was four-fold more toxic, and nAg was 15-fold more toxic to triple sod mutant than to wild type (2-h EC(50) values were 8.1 and 2.0 mg Cu l(-1), respectively, and 46 and 3.1 mg Ag l(-1), respectively). Formation of ROS by nCuO and nAg was proved by superoxide anion-inducible strain. The metal sensor bacteria showed that the ROS formation by CuO NPs was caused by solubilised Cu ions, but in case of nAg, particles also had an effect. nZnO was remarkably more toxic to sod triple mutant than to wild type strain (2-h EC(50) were 4.5 and 54 mg Zn l(-1), respectively). Fullerenes inhibited the bioluminescence of sod triple mutant at 3,882 mg l(-1) but had no effect on the wild-type strain even at 20,800 mg l(-1). Nano and bTiO(2) showed some effect on viability of bacteria only at high concentrations (>4,000 mg l(-1)) although nTiO(2) (but not bTiO(2

  2. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    ERIC Educational Resources Information Center

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  3. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    PubMed

    Lowry, Jake E; Isaak, Dale D; Leonhardt, Jack A; Vernati, Giulia; Pate, Jessie C; Andrews, Gerard P

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of

  4. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    PubMed Central

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  5. Cattle Immunized with a Recombinant Subunit Vaccine Formulation Exhibits a Trend towards Protection against Histophilus somni Bacterial Challenge

    PubMed Central

    Madampage, Claudia Avis; Wilson, Don; Townsend, Hugh; Crockford, Gordon; Rawlyk, Neil; Dent, Donna; Evans, Brock; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2016-01-01

    Histophilosis, a mucosal and septicemic infection of cattle is caused by the Gram negative pathogen Histophilus somni (H. somni). As existing vaccines against H. somni infection have shown to be of limited efficacy, we used a reverse vaccinology approach to identify new vaccine candidates. Three groups (B, C, D) of cattle were immunized with subunit vaccines and a control group (group A) was vaccinated with adjuvant alone. All four groups were challenged with H. somni. The results demonstrate that there was no significant difference in clinical signs, joint lesions, weight change or rectal temperature between any of the vaccinated groups (B,C,D) vs the control group A. However, the trend to protection was greatest for group C vaccinates. The group C vaccine was a pool of six recombinant proteins. Serum antibody responses determined using ELISA showed significantly higher titers for group C, with P values ranging from < 0.0148 to < 0.0002, than group A. Even though serum antibody titers in group B (5 out of 6 antigens) and group D were significantly higher compared to group A, they exerted less of a trend towards protection. In conclusion, the vaccine used in group C exhibits a trend towards protective immunity in cattle and would be a good candidate for further analysis to determine which proteins were responsible for the trend towards protection. PMID:27501390

  6. Cattle Immunized with a Recombinant Subunit Vaccine Formulation Exhibits a Trend towards Protection against Histophilus somni Bacterial Challenge.

    PubMed

    Madampage, Claudia Avis; Wilson, Don; Townsend, Hugh; Crockford, Gordon; Rawlyk, Neil; Dent, Donna; Evans, Brock; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2016-01-01

    Histophilosis, a mucosal and septicemic infection of cattle is caused by the Gram negative pathogen Histophilus somni (H. somni). As existing vaccines against H. somni infection have shown to be of limited efficacy, we used a reverse vaccinology approach to identify new vaccine candidates. Three groups (B, C, D) of cattle were immunized with subunit vaccines and a control group (group A) was vaccinated with adjuvant alone. All four groups were challenged with H. somni. The results demonstrate that there was no significant difference in clinical signs, joint lesions, weight change or rectal temperature between any of the vaccinated groups (B,C,D) vs the control group A. However, the trend to protection was greatest for group C vaccinates. The group C vaccine was a pool of six recombinant proteins. Serum antibody responses determined using ELISA showed significantly higher titers for group C, with P values ranging from < 0.0148 to < 0.0002, than group A. Even though serum antibody titers in group B (5 out of 6 antigens) and group D were significantly higher compared to group A, they exerted less of a trend towards protection. In conclusion, the vaccine used in group C exhibits a trend towards protective immunity in cattle and would be a good candidate for further analysis to determine which proteins were responsible for the trend towards protection. PMID:27501390

  7. High-level soluble expression of a bacterial N-acyl-d-glucosamine 2-epimerase in recombinant Escherichia coli.

    PubMed

    Klermund, Ludwig; Riederer, Amelie; Groher, Anna; Castiglione, Kathrin

    2015-07-01

    N-Acyl-d-glucosamine 2-epimerase (AGE) is an important enzyme for the biocatalytic synthesis of N-acetylneuraminic acid (Neu5Ac). Due to the wide range of biological applications of Neu5Ac and its derivatives, there has been great interest in its large-scale synthesis. Thus, suitable strategies for achieving high-level production of soluble AGE are needed. Several AGEs from various organisms have been recombinantly expressed in Escherichia coli. However, the soluble expression level was consistently low with an excessive formation of inclusion bodies. In this study, the effects of different solubility-enhancement tags, expression temperatures, chaperones and host strains on the soluble expression of the AGE from the freshwater cyanobacterium Anabaena variabilis ATCC 29413 (AvaAGE) were examined. The optimum combination of tag, expression temperature, co-expression of chaperones and host strain (His6-tag, 37°C, GroEL/GroES, E. coli BL21(DE3)) led to a 264-fold improvement of the volumetric epimerase activity, a measure of the soluble expression, compared to the starting conditions (His6-maltose-binding protein-tag, 20°C, without chaperones, E. coli BL21(DE3)). A maximum yield of 22.5mg isolated AvaAGE per liter shake flask culture was obtained. PMID:25804337

  8. The protein environment of the bacteriopheophytin anion modulates charge separation and charge recombination in bacterial reaction centers.

    PubMed

    Pan, Jie; Saer, Rafael G; Lin, Su; Guo, Zhi; Beatty, J Thomas; Woodbury, Neal W

    2013-06-20

    The kinetics and pathway of electron transfer has been explored in a series of reaction center mutants from Rhodobacter sphaeroides, in which the leucine residue at M214 near the bacteriopheophytin cofactor in the A-branch has been replaced with methionine, cysteine, alanine, and glycine. These amino acids have substantially different volumes, both from each other and, except for methionine, from the native leucine. Though the mutation site of M214 is close to the bacteriopheophytin cofactor, which is involved in the electron transfer, none of the mutations alter the cofactor composition of the reaction center and the primary charge separation reaction is essentially undisturbed. However, the kinetics of electron transfer from HA(-) → QA becomes both slower and substantially heterogeneous in three of the four mutants. The decreased HA(-) → QA electron transfer rate allows charge recombination between P(+) and HA(-) to compete with the forward reaction, resulting in a drop in the overall yield of charge separation. Both the yield change and the variation in kinetics correlate well with the volume of the mutant amino acid side chains. Analysis of the kinetics suggests that the introduction of a smaller side chain at M214 results in greater protein structural heterogeneity and dynamics on multiple time scales, resulting in perturbation of the electronic environment and its evolution in the vicinity of the early charge-separated radical pair, P(+)HA(-), and the subsequent acceptor QA, affecting both the extent and time scale of dielectric relaxation. It appears that the reaction center has been optimized not only in terms of its static structure-function relationships, but also finely tuned to favor particular reaction pathways on particular time scales by adjusting protein dynamics. PMID:23688348

  9. Measuring Carrier Lifetime in GaAs by Luminescence

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1986-01-01

    Luminescence proposed as nondestructive technique for measuring Shockley-Read-Hall (SRH) recombination lifetime GaAs. Sample irradiated, and luminescence escapes through surface. Measurement requires no mechanical or electrical contact with sample. No ohmic contacts or p/n junctions needed. Sample not scrapped after tested.

  10. White luminescence from silica glass containing red/green/blue luminescent nanocrystalline silicon particles

    SciTech Connect

    Sato, Keisuke; Kishimoto, Naoki; Hirakuri, Kenji

    2007-11-15

    Silica glasses containing blue/green/red luminescent nanocrystalline silicon (nc-Si) particles that consist of monolayer and/or three-layer structures were fabricated by a radio-frequency sputtering technique and postannealing treatment. These silica glasses showed very broad luminescence spectra with a peak at 460 nm (blue light), 550 nm (green light), and 800 nm (red light). When these samples were irradiated by using a xenon lamp with an optical bandpass filter of 313 nm, the luminescence colors from these silica glasses were a white light. The white luminescence of the sample with the three-layer structure exhibited the high luminance value of 1.5 cd/m{sup 2}. This value was ascribed to the adjustment of sizes and densities of blue/green/red luminescent nc-Si particles, and the lowering of densities of P{sub b} centers (nonradiative recombination centers) at the nc-Si particle/silica glass interface layer.

  11. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank; Chithambo, Makaiko L.

    2016-09-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IRSL signals, both during and after short infrared stimulation pulses. The equations are developed using a recently proposed kinetic model, which describes localized electronic recombination via tunneling between trapped electrons and recombination centers in luminescent materials. Recombination is assumed to take place from the excited state of the trapped electron to the nearest-neighbor center within a random distribution of luminescence recombination centers. Different possibilities are examined within the model, depending on the relative importance of electron de-excitation and recombination. The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results.

  12. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.

    PubMed

    Del Prete, Sonia; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T; Carginale, Vincenzo

    2016-01-15

    With the continuous increase of atmospheric CO2 in the last decades, efficient methods for carbon capture, sequestration, and utilization are urgently required. The possibility of converting CO2 into useful chemicals could be a good strategy to both decreasing the CO2 concentration and for achieving an efficient exploitation of this cheap carbon source. Recently, several single- and multi-enzyme systems for the catalytic conversion of CO2 mainly to bicarbonate have been implemented. In order to design and construct a catalytic system for the conversion of CO2 to organic molecules, we implemented an in vitro multienzyme system using mesophilic and thermophilic enzymes. The system, in fact, was constituted by a recombinant phosphoenolpyruvate carboxylase (PEPC) from the thermophilic cyanobacterium Thermosynechococcus elongatus, in combination with mesophilic/thermophilic bacterial carbonic anhydrases (CAs), for converting CO2 into oxaloacetate, a compound of potential utility in industrial processes. The catalytic procedure is in two steps: the conversion of CO2 into bicarbonate by CA, followed by the carboxylation of phosphoenolpyruvate with bicarbonate, catalyzed by PEPC, with formation of oxaloacetate (OAA). All tested CAs, belonging to α-, β-, and γ-CA classes, were able to increase OAA production compared to procedures when only PEPC was used. Interestingly, the efficiency of the CAs tested in OAA production was in good agreement with the kinetic parameters for the CO2 hydration reaction of these enzymes. This PEPC also revealed to be thermoactive and thermostable, and when coupled with the extremely thermostable CA from Sulphurhydrogenibium azorense (SazCA) the production of OAA was achieved even if the two enzymes were exposed to temperatures up to 60 °C, suggesting a possible role of the two coupled enzymes in biotechnological processes. PMID:26712095

  13. Cleavage of a Recombinant Human Immunoglobulin A2 (IgA2)-IgA1 Hybrid Antibody by Certain Bacterial IgA1 Proteases

    PubMed Central

    Senior, Bernard W.; Dunlop, James I.; Batten, Margaret R.; Kilian, Mogens; Woof, Jenny M.

    2000-01-01

    To understand more about the factors influencing the cleavage of immunoglobulin A1 (IgA1) by microbial IgA1 proteases, a recombinant human IgA2/IgA1 hybrid molecule was generated. In the hybrid, termed IgA2/A1 half hinge, a seven-amino-acid sequence corresponding to one half of the duplicated sequence making up the IgA1 hinge was incorporated into the equivalent site in IgA2. Insertion of the IgA1 half hinge into IgA2 did not affect antigen binding capacity or the functional activity of the hybrid molecule, as judged by its ability to bind to IgA Fcα receptors and trigger respiratory bursts in neutrophils. Although the IgA2/A1 hybrid contained only half of the IgA1 hinge, it was found to be cleaved by a variety of different bacterial IgA1 proteases, including representatives of those that cleave IgA1 in the different duplicated halves of the hinge, namely, those of Prevotella melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition. PMID:10639405

  14. Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases.

    PubMed

    Senior, B W; Dunlop, J I; Batten, M R; Kilian, M; Woof, J M

    2000-02-01

    To understand more about the factors influencing the cleavage of immunoglobulin A1 (IgA1) by microbial IgA1 proteases, a recombinant human IgA2/IgA1 hybrid molecule was generated. In the hybrid, termed IgA2/A1 half hinge, a seven-amino-acid sequence corresponding to one half of the duplicated sequence making up the IgA1 hinge was incorporated into the equivalent site in IgA2. Insertion of the IgA1 half hinge into IgA2 did not affect antigen binding capacity or the functional activity of the hybrid molecule, as judged by its ability to bind to IgA Fcalpha receptors and trigger respiratory bursts in neutrophils. Although the IgA2/A1 hybrid contained only half of the IgA1 hinge, it was found to be cleaved by a variety of different bacterial IgA1 proteases, including representatives of those that cleave IgA1 in the different duplicated halves of the hinge, namely, those of Prevotella melaninogenica, Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition. PMID:10639405

  15. A luminescent nisin biosensor

    NASA Astrophysics Data System (ADS)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  16. The recombination of genetic material

    SciTech Connect

    Low, K.B.

    1988-01-01

    Genetic recombination is the major mechanism by which new arrangements of genetic elements are produced in all living organisms, from the simplest bacterial viruses to humans. This volume presents an overview of the types of recombination found in prokaryotes and eukaryotes.

  17. Oligonucleotide recombination in bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today, there are more than 1,500 completed or draft bacterial genome sequences available for public access. To functionally analyze these genomes and to test the hypotheses that are generated from the sequence information we require new and generically useful tools. Recombineering (genetic engineer...

  18. Hot-exciton luminescence in ZnTe/MnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Ding, J.; Fu, Q.; Nurmikko, A. V.; Durbin, S. M.; Kobayashi, M.; Gunshor, R. L.

    1991-04-01

    Hot-exciton luminescence phenomena are investigated in a ZnTe/MnTe single-quantum-well structure where tunneling through thin MnTe barriers suppresses the formation of thermalized luminescence. The longitudinal-optical-phonon-modulated recombination spectra are excitonic in nature and show strong resonance enhancement at energies that lie within localized states below the n=1 exciton.

  19. Synchrotron and laser excitation of luminescence in PbWO4:Tb crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Novosad, S. S.; Kostyk, L. V.; Novosad, I. S.

    2011-09-01

    The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60-320 nm is analyzed and the nature of the emission bands is discussed.

  20. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  1. Direct charge recombination from D +Q AQ B- to DQ AQ B in bacterial reaction centers from Rhodobacter sphaeroides containing low potential quinone in the Q A site

    NASA Astrophysics Data System (ADS)

    Labahn, A.; Bruce, J. M.; Okamura, M. Y.; Feher, G.

    1995-08-01

    In native RCs from Rb. sphaeroides the recombination D +Q AQ B- → DQ AQ B proceeds via an indirect path involving the intermediate state D +Q A-Q B. To observe the direct recombination rate, kBD, the energy difference between the D +Q A-Q B and D +Q AQ B- states has to be increased. This had been accomplished in mutant RCs (DN(L213)) by lowering the energy of the D +Q AQ B- state [A. Labahn, M.L. Paddock, P.H. McPherson, M.Y. Okamura and G. Feher, J. Phys. Chem. 98 (1994) 3417] or, as presented in this work, by arising the energy of the D +Q A-Q B state through substitution of Q 10 by the low potential quinones: (2,3,5-trimethyl-1,4-naphthoquinone, 2,3,6,7-tetramethyl-1,4-naphthoquinone, 2-chloro-9,10-anthraquinone) while retaining the native Q 10 in the Q B site. The recombination rates kBD in these hybrid RCs were fitted with the Marcus theory giving a reorganization energy, λBD = 1.1 ± 0.1 eV and an electronic matrix element V( r) = (1.2 ± 0.5) × 10 -8 eV. The larger value of λBD compared to λAD (1.1 versus 0.6 eV) is consistent with the more polar environment of Q B- and is believed to be the main contributor to the large observed ratio of kAD/ kBD ≈ 100.

  2. Time-resolved measurements of Cooper-pair radiative recombination in InAs quantum dots

    SciTech Connect

    Mou, S. S.; Nakajima, H.; Kumano, H.; Suemune, I.; Irie, H.; Asano, Y.; Akahane, K.; Sasaki, M.; Murayama, A.

    2015-08-21

    We studied InAs quantum dots (QDs) where electron Cooper pairs penetrate from an adjacent niobium (Nb) superconductor with the proximity effect. With time-resolved luminescence measurements at the wavelength around 1550 nm, we observed luminescence enhancement and reduction of luminescence decay time constants at temperature below the superconducting critical temperature (T{sub C}) of Nb. On the basis of these measurements, we propose a method to determine the contribution of Cooper-pair recombination in InAs QDs. We show that the luminescence enhancement measured below T{sub C} is well explained with our theory including Cooper-pair recombination.

  3. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    PubMed Central

    Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry. PMID:26137472

  4. Effect of ionic strength on intra-protein electron transfer reactions: The case study of charge recombination within the bacterial reaction center.

    PubMed

    Giustini, Mauro; Parente, Matteo; Mallardi, Antonia; Palazzo, Gerardo

    2016-09-01

    It is a common believe that intra-protein electron transfer (ET) involving reactants and products that are overall electroneutral are not influenced by the ions of the surrounding solution. The results presented here show an electrostatic coupling between the ionic atmosphere surrounding a membrane protein (the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides) and two very different intra-protein ET processes taking place within it. Specifically we have studied the effect of salt concentration on: i) the kinetics of the charge recombination between the reduced primary quinone acceptor QA(-) and the primary photoxidized donor P(+); ii) the thermodynamic equilibrium (QA(-)↔QB(-)) for the ET between QA(-) and the secondary quinone acceptor QB. A distinctive point of this investigation is that reactants and products are overall electroneutral. The protein electrostatics has been described adopting the lowest level of complexity sufficient to grasp the experimental phenomenology and the impact of salt on the relative free energy level of reactants and products has been evaluated according to suitable thermodynamic cycles. The ionic strength effect was found to be independent on the ion nature for P(+)QA(-) charge recombination where the leading electrostatic term was the dipole moment. In the case of the QA(-)↔QB(-) equilibrium, the relative stability of QA(-) and QB(-) was found to depend on the salt concentration in a fashion that is different for chaotropic and kosmotropic ions. In such a case both dipole moment and quadrupole moments of the RC must be considered. PMID:27297026

  5. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    PubMed

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry. PMID:26137472

  6. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  7. Luminescent properties of semiconductor photoelectrodes

    NASA Astrophysics Data System (ADS)

    Ellis, A. B.; Karas, B. R.

    1980-08-01

    The use of luminescent, n-type 5-1000-ppm CdS:Te and 10 ppm-CdS:Ag polycrystalline photoelectrodes as probes of recombination in photo-electrochemical cells is reported. Except for intensity, the emission spectra (lambda sub max, 600-700 nm) are insensitive to the presence of S2-/Sn2- electrolyte and to the excitation wavelengths and electrode potentials employed. With ultraband gap irradiation (lambda less than or = 500 nm) and aqueous S2-/Sn2- or Te2-/(Te2)2- electrolytes, optical energy is converted to electricity at 0.1-5% efficiency and to luminescence at 0.01-1.0% efficiency; the effects of surface preparation and grain boundaries in determining efficiency and discussed. Increasingly negative bias applied to CdS:Te and CdS:Ag photoanodes increases emission intensity by 15-100% while the photocurrent simultaneously declines to zero. Band gap edge 514.5-nm excitation yields smaller photocurrents and larger but much less potential dependent emission intensity. These results are consistent with the band bending model presently used to described photoelectrochemical phenomena.

  8. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    PubMed

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p <0.05) higher number of CFUs on agar plates after 8 d, approximately 14-fold higher than that on control plates without rRpf. 16S rRNA gene sequences revealed that all the colonies on plates were mainly related to Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98-99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample. PMID:25843055

  9. Comparison of mammalian and bacterial expression library screening to detect recombinant alpha-1 proteinase inhibitor variants with enhanced thrombin inhibitory capacity.

    PubMed

    Gierczak, Richard F; Bhakta, Varsha; Xie, Michael; Sheffield, William P

    2015-08-20

    Serpins are a widely distributed family of serine proteases. A key determinant of their specificity is the reactive centre loop (RCL), a surface motif of ∼20 amino acids in length. Expression libraries of variant serpins could be rapidly probed with proteases to develop novel inhibitors if optimal systems were available. The serpin variant alpha-1 proteinase inhibitor M358R (API M358R) inhibits the coagulation protease thrombin, but at sub-maximal rates compared to other serpins. Here we compared two approaches to isolate functional API variants from serpin expression libraries, using the same small library of API randomized at residue 358 (M358X): flow cytometry of transfected HEK 293 cells expressing membrane-displayed API; and a thrombin capture assay (TCA) performed on pools of bacterial lysates expressing soluble API. No enrichment for specific P1 residues was observed when the RCL codons of the 1% of sorted transfected 293 cells with the highest fluorescent thrombin-binding signals were subcloned and sequenced. In contrast, screening of 16 pools of bacterial API-expressing transformants led to the facile identification of API M358R and M358K as functional variants. Kinetic characterization showed that API M358R inhibited thrombin 17-fold more rapidly than API M358K. Reducing the incubation time with immobilized thrombin improved the sensitivity of TCA to detect supra-active API M358R variants and was used to screen a hypervariable library of API variants expressing 16 different amino acids at residues 352-357. The most active variant isolated, with TLSATP substituted for FLEAI, inhibited thrombin 2.9-fold more rapidly than API M358R. Our results indicate that flow cytometric approaches used in protein engineering of antibodies are not appropriate for serpins, and highlight the utility of the optimized TCA for serpin protein engineering. PMID:26043905

  10. In vivo excitation of nanoparticles using luminescent bacteria

    PubMed Central

    Dragavon, Joe; Blazquez, Samantha; Rekiki, Abdessalem; Samson, Chelsea; Theodorou, Ioanna; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.

    2012-01-01

    The lux operon derived from Photorhabdus luminescens incorporated into bacterial genomes, elicits the production of biological chemiluminescence typically centered on 490 nm. The light-producing bacteria are widely used for in vivo bioluminescence imaging. However, in living samples, a common difficulty is the presence of blue-green absorbers such as hemoglobin. Here we report a characterization of fluorescence by unbound excitation from luminescence, a phenomenon that exploits radiating luminescence to excite nearby fluorophores by epifluorescence. We show that photons from bioluminescent bacteria radiate over mesoscopic distances and induce a red-shifted fluorescent emission from appropriate fluorophores in a manner distinct from bioluminescence resonance energy transfer. Our results characterizing fluorescence by unbound excitation from luminescence, both in vitro and in vivo, demonstrate how the resulting blue-to-red wavelength shift is both necessary and sufficient to yield contrast enhancement revealing mesoscopic proximity of luminescent and fluorescent probes in the context of living biological tissues. PMID:22615349

  11. Attempts at validating a recombinant Flavobacterium psychrophilum gliding motility protein N as a vaccine candidate in rainbow trout, Oncorhynchus mykiss (Walbaum) against bacterial cold-water disease.

    PubMed

    Plant, Karen P; LaPatra, Scott E; Call, Douglas R; Cain, Kenneth D

    2014-09-01

    The Flavobacterium psychrophilum gliding motility N (GldN) protein was investigated to determine its ability to elicit antibody responses and provide protective immunity in rainbow trout Oncorhynchus mykiss (Walbaum). GldN was PCR-amplified, cloned into pET102/D-TOPO, and expressed in Escherichia coli. Bacteria expressing recombinant GldN (rGldN) were formalin-inactivated and injected intraperitoneally (i.p.) into rainbow trout with Freund's complete adjuvant (FCA) in four separate studies that used two different immunization protocols followed by challenge evaluations. Fish injected with E. coli only in FCA served as the control. Antibody responses to F. psychrophilum whole-cell lysates measured by ELISA were low in all four studies. Protection against F. psychrophilum challenge was observed in the first study, but not in the three following studies. The discrepancies in results obtained in the later studies are unclear but may relate to formalin treatment of the antigen preparations. Overall, it appeared that rGldN delivered i.p. as a crude formalin-killed preparation is not a consistent vaccine candidate, and more work is required. Additionally, this study illustrates the importance of conducting multiple in vivo evaluations on potential vaccine(s) before any conclusions are drawn. PMID:25053267

  12. Sensitivity of detection of bacteria with fluorescent and luminescent phenotypes using different instruments

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2000-04-01

    The problem of bacterial enumeration in different samples is of great importance in many fields of research. Construction of recombinant fluorescent and luminescent bacteria that can be easily detected by nondestructive instrumental methods proves us with an opportunity to monitor bacteria in a wide variety of clinical, environmental and food samples in real time. Three different labels were employed: Green Fluorescent Protein (GFP), Bacterial luciferase (BL) and Firefly Luciferase (FFL). Both plasmid and chromosomal transformants of different strains of E. coli, P. putida and S. enteritidis were used. For the detection of the in vivo GFP the Shimadzu RF 540 spectrofluorimeter, Labsystems FL- 500 plate fluorimeter and Night Owl LB 98 CCD-camera from EG and G Berthold supplied with excitation light source and proper spectral filters both in macroscopic and microscopic mode were used. For the detection of in vivo luminescence of BL and FFL, tube luminometer BG-P from GEM Biomedical Inc., luminometric plate reader from BioOrbit, BIQ Bioview CCD camera from Cambridge Imaging Ltd and Night Owl LB 98 CCD camera both in macroscopic and microscopic mode were used. The expression levels of the labels, their stability, stability of the signal and detection limits of tagged bacteria were investigated. The detection limits for GFP tagged bacteria were 5 X 104 - 6 X 106, for BL tagged bacteria 5 X 102 - 2 X 105, and for FFL tagged bacteria - 4 X 103 - 106 CFU/ml, depending on the instrument used. Single bacteria could be detected with the help of the Night Owl in the microscopic mode.

  13. Study of Luminescence Characteristics of Trivalent Terbium in Silicate Glass

    NASA Technical Reports Server (NTRS)

    West, Mike S.; Armagan, Guzin; Winfree, William P.

    1995-01-01

    An important use of silicate glasses doped with terbium oxide (Tb2O3) is their use as fiber optic sensors for high-resolution imaging applications requiring the detection of x-rays (e.g. tomography and radiography). The x-ray radiation is absorbed by the glass, producing electron-hole pairs (excitons). The excitons migrate through the glass matrix and then recombine, emitting characteristic Tb(3+) luminescence in the optical wavelength region. This emission is due to forbidden transitions of 4f electrons and therefore has a long decay time. Long decay time is undesirable when imaging transient events since it results in blurring in time of the images. It has been reported elsewhere that in crystals Tb(3+) ions can act both as luminescence centers and as fluorescence traps. These traps can capture excitons and delay their recombination. This delayed fluorescence is seen as a long lived, secondary component to the luminescence decay curve, or afterglow. Such a secondary decay component to the luminescence decay of Tb(3+) has been observed before in soda glass following pulsed optical excitation. In order to determine the conditions under which afterglow occurs, an understanding of the material's luminescent properties is required.

  14. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  15. Stored luminescence computed tomography.

    PubMed

    Cong, Wenxiang; Wang, Chao; Wang, Ge

    2014-09-01

    Phosphor nanoparticles made of doped semiconductors and pre-excited by x-ray radiation were recently reported for their luminescence emission in the range of 650-770 nm upon near-infrared (NIR) light stimulation. These nanophosphors can be functionalized as optical probes for molecular imaging. In this paper, we present stored luminescence computed tomography to reconstruct a nanophosphor distribution in an object. The propagation of x rays in a biological object allows significantly better localization and deeper penetration. Moreover, the nanophosphors, which are pre-excited with collimated x-ray beams or focused x-ray waves, can be successively stimulated for stored luminescence emissions by variable NIR stimulation patterns. The sequentially detected luminescence signals provide more information of a nanophosphor spatial distribution for more accurate image reconstruction and higher image resolution. A realistic numerical study is performed to demonstrate the feasibility and merits of the proposed approach. PMID:25321362

  16. Structured luminescence conversion layer

    DOEpatents

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  17. Pickled luminescent silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Boukherroub, R.; Morin, S.; Wayner, D. D. M.; Lockwood, D. J.

    2001-05-01

    In freshly prepared porous Si, the newly exposed silicon-nanostructure surface is protected with a monolayer of hydrogen, which is very reactive and oxidizes in air leading to a loss of luminescence intensity and a degradation of the electronic properties. We report a surface passivation approach based on organic modification that stabilizes the luminescence. This novel 'pickling' process not only augments the desired optoelectronic properties, but also is adaptable to further chemical modification for integration into chemical and biophysical sensors.

  18. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  19. Oligonucleotide recombination in gram negative bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes several key aspects of a novel form of RecA-independent homologous recombination. We found that synthetic single stranded DNA oligonucleotides (oligos) introduced into bacteria by transformation can site-specifically recombine with bacterial chromosomes in the absence of any a...

  20. Oligo Recombination in Gram Negative Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homologous recombination is important for bacterial survival because it simultaneously provides genomic stability as well as genomic plasticity. Of the mechanistic pathways for homologous recombination, those mediated by RecA are the most thoroughly characterized and are understood to be structural...

  1. The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachi; Yu, Minghui; Qin, Qingsong; Zhou, Hongliang; Zhou, Meijiao; Xu, Xuhui; Wang, Yuhua

    2010-12-01

    The nondoped Mg2SnO4 material with inverse spinel structure was synthesized by solid state reaction. This phosphor showed a broad green emission band covering 470-550 nm under 291 nm excitation, which was due to the recombination of F centers with holes. Stimulated by 980 nm infrared laser, the green photostimulated luminescence was first observed in a nondoped oxide. After ultraviolet irradiation, the green persistent luminescence of Mg2SnO4 could be seen in darkness for about 5 h. The decay curves revealed that the long persistent luminescence was governed by tunneling mechanism and it proved the presence of different trap clusters in Mg2SnO4. These trap clusters (such as [SnMg••-Oi″], [SnMg••-2e'], and [SnMg••-e″]) induced the trap levels with different depths in band gap and corresponded to the three components (at 110, 168, and 213 °C) of the thermoluminescence glow curve of Mg2SnO4. These trap levels with different depths were proved to be not independent. It revealed that the shallow traps (110 °C) and part of the deep traps (168 and 213 °C) were involved in the persistent luminescence. Meanwhile, all the shallow and deep traps were responsible for the photostimulated luminescence. Accordingly, the photoluminescence, persistent, and photostimulated luminescence mechanisms of the nondoped Mg2SnO4 material were first proposed.

  2. Wireless Luminescence Integrated Sensors (WLIS)

    SciTech Connect

    Simpson, M.L.; Sayler, G.S.

    2003-11-10

    The goal of this project was the development of a family of wireless, single-chip, luminescence-sensing devices to solve a number of difficult distributed measurement problems in areas ranging from environmental monitoring and assessment to high-throughput screening of combinatorial chemistry libraries. These wireless luminescence integrated sensors (WLIS) consist of a microluminometer, wireless data transmitter, and RF power input circuit all realized in a standard integrated circuit (IC) process with genetically engineered, whole-cell, bioluminescent bioreporters encapsulated and deposited on the IC. The end product is a family of compact, low-power, rugged, low-cost sensors. As part of this program they developed an integrated photodiode/signal-processing scheme with an rms noise level of 175 electrons/second for a 13-minute integration time, and a quantum efficiency of 66% at the 490-nm bioluminescent wavelength. this performance provided a detection limit of < 1000 photons/second. Although sol-gel has previously been used to encapsulate yeast cells, the reaction conditions necessary for polymerization (primarily low pH) have beforehand proven too harsh for bacterial cell immobilizations. Utilizing sonication methods, they have were able to initiate polymerization under pH conditions conductive to cell survival. both a toluene bioreporter (Pseudomonas putida TVA8) and a naphthalene bioreporter (Pseudomonas fluorescens HK44) were successfully encapsulated in sol-gel and shown to produce a fairly significant bioluminescent response. In addition to the previously developed naphthalene- and toluene-sensitive bioreporters, they developed a yeast-based xenoestrogen reporter. This technology has been licensed by Micro Systems Technologies, a startup company in Dayton, Ohio for applications in environmental containments monitoring, and for detecting weapons of mass destruction (i.e. homeland security).

  3. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed. PMID:24442504

  4. Lunar luminescence measurements

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.

    1983-01-01

    Spectra of lunar sites obtained in June 1983 have been analyzed for residual luminescence using the spectral line depth technique. The results or three sites each at three wavelengths are presented. The sites observed were Mare Crisium, Kepler, and Aristarchus. In each case, the value quoted was based not only on the strong Fraunhofer line in the spectral range covered but also on from 11 to 21 weaker lines within 80 A of the strongest feature. These data do not support previous observations. The values given do not indicate a greatly reddened spectrum, and the luminescence spectrum of the mare site is not significantly different from the two young crater sites. These observations cannot be adequately explained by thermal luminescence, theories of direct excitation are also unable to explain the strength of the flux.

  5. Luminescent nanocrystal stress gauge

    PubMed Central

    Choi, Charina L.; Koski, Kristie J.; Olson, Andrew C. K.; Alivisatos, A. Paul

    2010-01-01

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe-CdS core-shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution. PMID:21098301

  6. [Comparative Sensitivity of the Luminescent Photobacterium phosphoreum, Escherichia coli, and Bacillus subtilis Strains to Toxic Effects of Carbon-Based Nanomaterials and Metal Nanoparticles].

    PubMed

    Deryabina, D G; Efremova, L V; Karimov, I F; Manukhov, I V; Gnuchikh, E Yu; Miroshnikov, S A

    2016-01-01

    A comparative analysis of the four commercially available and laboratory luminescent sensor strains to the toxic effect of 10 carbon-based nanomatherials (CBNs) and 10 metal nanoparticles (MNPs) was carried out in this study. The bioluminescence inhibition assays with marine Photobacterium phosphoreum and recombinant Escherichia coli strains were varied in minimal toxic concentrations and EC50 values but led to well correlated biotoxicity evaluation for the most active compounds were ranked as Cu > (MgO, CuO) > (fullerenol, graphene oxide). The novel sensor strain Bacillus subtilis EG 168-1 exhibited the highest sensitivity to CBNs and MNPs that increased significantly number of toxic compounds causing the bacterial bioluminescence inhibition effect. PMID:27476206

  7. Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Wong, Wan Yan

    2008-11-01

    In this thesis we focus on studying the physics of cosmological recombination and how the details of recombination affect the Cosmic Microwave Background (CMB) anisotropies. We present a detailed calculation of the spectral line distortions on the CMB spectrum arising from the Lyman-alpha and the lowest two-photon transitions in the recombination of hydrogen (H), and the corresponding lines from helium (He). The peak of these distortions mainly comes from the Lyman-alpha transition and occurs at about 170 microns, which is the Wien part of the CMB. The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. With this motivation, we perform a multi-level calculation of the recombination of H and He with the addition of the spin-forbidden transition for neutral helium (He I), plus the higher order two-photon transitions for H and among singlet states of He I. We find that the inclusion of the spin-forbidden transition results in more than a percent change in the ionization fraction, while the other transitions give much smaller effects. Last we modify RECFAST by introducing one more parameter to reproduce recent numerical results for the speed-up of helium recombination. Together with the existing hydrogen `fudge factor', we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using a Markov Chain Monte Carlo method with Planck forecast data, we find that we need to determine the parameters to better than 10% for He I and 1% for H, in order to obtain negligible effects on the cosmological parameters.

  8. Quantum chemical modelling of ``green'' luminescence in ABO perovskites

    NASA Astrophysics Data System (ADS)

    Eglitis, R. I.; Kotomin, E. A.; Borstel, G.

    2002-06-01

    The origin of the intrinsic excitonic (``green'') luminescence in ABO3 perovskites remains a hot topic over the last quarter of a century. We suggest as a theoretical interpretation for the ``green'' luminescence in these crystals, the recombination of electron and hole polarons forming a charge transfer vibronic exciton. In order to check quantitatively the proposed model, we performed quantum chemical calculations using the Intermediate Neglect of Differential Overlap (INDO) method combined with the periodic defect model. The luminescence energies calculated for four perovskite crystals are found to be in good agreement with experimental data.

  9. A broadly applicable function for describing luminescence dose response

    SciTech Connect

    Burbidge, C. I.

    2015-07-28

    The basic form of luminescence dose response is investigated, with the aim of developing a single function to account for the appearance of linear, superlinear, sublinear, and supralinear behaviors and variations in saturation signal level and rate. A function is assembled based on the assumption of first order behavior in different major factors contributing to measured luminescence-dosimetric signals. Different versions of the function are developed for standardized and non-dose-normalized responses. Data generated using a two trap two recombination center model and experimental data for natural quartz are analyzed to compare results obtained using different signals, measurement protocols, pretreatment conditions, and radiation qualities. The function well describes a range of dose dependent behavior, including sublinear, superlinear, supralinear, and non-monotonic responses and relative response to α and β radiation, based on change in relative recombination and trapping probability affecting signals sourced from a single electron trap.

  10. A broadly applicable function for describing luminescence dose response

    NASA Astrophysics Data System (ADS)

    Burbidge, C. I.

    2015-07-01

    The basic form of luminescence dose response is investigated, with the aim of developing a single function to account for the appearance of linear, superlinear, sublinear, and supralinear behaviors and variations in saturation signal level and rate. A function is assembled based on the assumption of first order behavior in different major factors contributing to measured luminescence-dosimetric signals. Different versions of the function are developed for standardized and non-dose-normalized responses. Data generated using a two trap two recombination center model and experimental data for natural quartz are analyzed to compare results obtained using different signals, measurement protocols, pretreatment conditions, and radiation qualities. The function well describes a range of dose dependent behavior, including sublinear, superlinear, supralinear, and non-monotonic responses and relative response to α and β radiation, based on change in relative recombination and trapping probability affecting signals sourced from a single electron trap.

  11. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  12. CCD Luminescence Camera

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  13. Recombinant bacterial amylopullulanases: developments and perspectives.

    PubMed

    Nisha, M; Satyanarayana, T

    2013-01-01

    Pullulanases are endo-acting enzymes capable of hydrolyzing α-1, 6-glycosidic linkages in starch, pullulan, amylopectin, and related oligosaccharides, while amylopullulanases are bifunctional enzymes with an active site capable of cleaving both α-1, 4 and α-1, 6 linkages in starch, amylose and other oligosaccharides, and α-1, 6 linkages in pullulan. The amylopullulanases are classified in GH13 and GH57 family enzymes based on the architecture of catalytic domain and number of conserved sequences. The enzymes with two active sites, one for the hydrolysis of α-1, 4- glycosidic bond and the other for α-1, 6-glycosidic bond, are called α-amylase-pullulanases, while amylopullulanases have only one active site for cleaving both α-1, 4- and α-1, 6-glycosidic bonds. The amylopullulanases produced by bacteria find applications in the starch and baking industries as a catalyst for one step starch liquefaction-saccharification for making various sugar syrups, as antistaling agent in bread and as a detergent additive. PMID:23645215

  14. Temperature influence on luminescent coupling efficiency in concentrator MJ SCs

    SciTech Connect

    Shvarts, Maxim Emelyanov, Viktor; Mintairov, Mikhail; Evstropov, Valery; Timoshina, Nailya

    2015-09-28

    In the work, presented are the results of investigation of temperature dependencies of the luminescent coupling effectiveness in lattice-matched (LM) GaInP/GaAs/Ge and metamorphic (MM) GaInP/GaInAs/Ge solar cells. The “ordinary” luminescent coupling effectiveness rise has been observed with temperature decrease for GaAs-Ge, GaInP-GaInAs and GaInAs-Ge pairs of subcells, and its limiting values have been defined. A “reverse” behavior of the luminescent coupling effectiveness for the GaInP-GaAs pair has been found, determined emittance potential drop of wideband GaInP p-n junction. It is shown that the established “unusual” behavior of the LC efficiency may be determined by the presence of thermalized centers of non-radiative recombination of charge carriers for the GaInP subcell in GaInP/GaAs/Ge LM structure. Estimation of characteristic parameters for the nonradiative recombination processes in wideband GaInP p-n junction has been carried out, and values for the energy of the nonradiative center thermalization (E{sub nrad2} =79.42meV) and for the activation energy of nonradiative band-to-band recombination (E{sub A}=33.4meV) have been obtained.

  15. A long persistent phosphor based on recombination centers originating from Zn imperfections.

    PubMed

    Li, Yang; Du, Xi; Sharafudeen, Kaniyarakkal; Liao, Chenxing; Qiu, Jianrong

    2014-04-01

    The recombination luminescence from Zn imperfections has been extensively investigated; however, there have been few reports on the long persistent luminescence of Zn imperfections as emitting centers. Here, we observed a long persistent luminescence in blue-white visible region from 6 ZnO:3 GeO2:Al2O3 phosphor with Zn imperfections as emitting centers. Persistent luminescence could be observed beyond 2h with naked eyes. The properties of traps were also elaborated by the measurements of thermo-luminescence spectra and photo-stimulated luminescence decay curves. Furthermore, a long persistent phosphor with warm white color was developed by doping Cr(3+) into 6 ZnO:3 GeO2:Al2O3 phosphor. PMID:24388995

  16. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  17. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    PubMed

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. PMID:21953119

  18. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  19. Quantitative luminescence imaging system

    DOEpatents

    Erwin, D.N.; Kiel, J.L.; Batishko, C.R.; Stahl, K.A.

    1990-08-14

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopic imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber. 22 figs.

  20. Quantitative luminescence imaging system

    DOEpatents

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  1. An Introduction to Luminescence in Inorganic Solids.

    ERIC Educational Resources Information Center

    DeLuca, John A.

    1980-01-01

    Introduces luminescence by characterizing phosphors, describing phosphor phenomena, presenting a configurational coordinate model of characteristic luminescence, and describing some commercial applications of phosphors. (CS)

  2. Fibre-optic biosensor based on luminescence and immobilized enzymes: microdetermination of sorbitol, ethanol and oxaloacetate.

    PubMed

    Gautier, S M; Blum, L J; Coulet, P R

    1990-01-01

    We have investigated highly selective and ultrasensitive biosensors based on luminescent enzyme systems linked to optical transducers. A fibre-optic sensor with immobilized enzymes was designed; the solid-phase bioreagent was maintained in close contact contact with the tip of a glass fibre bundle connected to the photomultiplier tube of a luminometer. A bacterial luminescence fibre-optic sensor was used for the microdetermination of NADH. Various NAD(P)-dependent enzymes, sorbitol dehydrogenase, alcohol dehydrogenase and malate dehydrogenase, were co-immobilized on preactivated polyamide membranes with the bacterial system and used for the microdetermination of sorbitol, ethanol and oxaloacetate at the nanomolar level with a good precision. PMID:2316395

  3. Luminescence properties of lustre decorated majolica

    NASA Astrophysics Data System (ADS)

    Galli, A.; Martini, M.; Sibilia, E.; Padeletti, G.; Fermo, P.

    Luminescence measurements have been performed on several Italian Renaissance ceramic shards produced in central Italy, as well as on some others from Hispano-Moresque and Fatimid periods. The aim of this study was the characterisation of the raw materials used to manufacture lustre decorated majolica. At first, the thermoluminescence (TL) dating of all ceramic bodies was performed, because the shards lacked sure chronological attribution, having been provided by private collectors, or found during emergency restoration works or archaeological surveys. To characterise the defects and the recombination centers of the different components of the ceramics (ceramic body, glaze, glaze, and lustre), radioluminescence (RL) measurements have been performed on samples representative of each historical period. The dating results are reported, as well as the preliminary RL results.

  4. The nature of unusual luminescence in natural calcite, CaCO3

    SciTech Connect

    Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G.; Porat, N.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.

  5. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  6. Self-trapped exciton and core-valence luminescence in BaF{sub 2} nanoparticles

    SciTech Connect

    Vistovskyy, V. V. Zhyshkovych, A. V.; Chornodolskyy, Ya. M.; Voloshinovskii, A. S.; Myagkota, O. S.; Gloskovskii, A.; Gektin, A. V.; Vasil'ev, A. N.; Rodnyi, P. A.

    2013-11-21

    The influence of the BaF{sub 2} nanoparticle size on the intensity of the self-trapped exciton luminescence and the radiative core-valence transitions is studied by the luminescence spectroscopy methods using synchrotron radiation. The decrease of the self-trapped exciton emission intensity at energies of exciting photons in the range of optical exciton creation (hν ≤ E{sub g}) is less sensitive to the reduction of the nanoparticle sizes than in the case of band-to-band excitation, where excitons are formed by the recombination way. The intensity of the core-valence luminescence shows considerably weaker dependence on the nanoparticle sizes in comparison with the intensity of self-trapped exciton luminescence. The revealed regularities are explained by considering the relationship between nanoparticle size and photoelectron or photohole thermalization length as well as the size of electronic excitations.

  7. Boron clusters in luminescent materials.

    PubMed

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  8. New strategies for genetic engineering Pseudomonas syringae using recombination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  9. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Corneillie, Todd M; Xu, Jide

    2014-05-20

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  10. Luminescent macrocyclic lanthanide complexes

    DOEpatents

    Raymond, Kenneth N.; Corneillie, Todd M.; Xu, Jide

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  11. Colloidal luminescent silicon nanorods.

    PubMed

    Lu, Xiaotang; Hessel, Colin M; Yu, Yixuan; Bogart, Timothy D; Korgel, Brian A

    2013-07-10

    Silicon nanorods are grown by trisilane decomposition in hot squalane in the presence of tin (Sn) nanocrystals and dodecylamine. Sn induces solution-liquid-solid nanorod growth with dodecylamine serving as a stabilizing ligand. As-prepared nanorods do not luminesce, but etching with hydrofluoric acid to remove residual surface oxide followed by thermal hydrosilylation with 1-octadecene induces bright photoluminescence with quantum yields of 4-5%. X-ray photoelectron spectroscopy shows that the ligands prevent surface oxidation for months when stored in air. PMID:23731184

  12. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  13. Enhanced radiation detectors using luminescent materials

    DOEpatents

    Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.

    2001-01-01

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  14. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  15. Temperature lags of luminescence measurements in a commercial luminescence reader

    NASA Astrophysics Data System (ADS)

    Kitis, George; Kiyak, Nafiye G.; Polymeris, George S.

    2015-09-01

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  16. Luminescent screen composition and apparatus

    NASA Technical Reports Server (NTRS)

    Hilborn, E. H.

    1970-01-01

    Ultraviolet light projects photographically produced images on a screen composed of a mixture of linear and nonlinear phosphors whose spectral emissions are different. This allows the display of polychromatic luminescent images, which gives better discrimination of the objects being viewed.

  17. Extrinsic optical recombination in pentacene single crystals: Evidence of gap states

    NASA Astrophysics Data System (ADS)

    He, Rui; Chi, X.; Pinczuk, Aron; Lang, D. V.; Ramirez, A. P.

    2005-11-01

    Two luminescence bands observed in pentacene single crystals with different degrees of purity are identified as due to extrinsic optical emissions. A band at 1.49 eV remains in the crystal with the highest purity. Its redshift of about 0.3 eV from the free exciton optical recombination suggests that the extrinsic transitions could involve gap states recently discovered in pentacene transistors. Absence of resonance Raman scattering when photon energies overlap the extrinsic recombination suggests that the gap states are likely due to impurities. The temperature dependence of luminescence intensities is interpreted by activated decay of excitons to radiative and nonradiative states.

  18. Lattice defects and recombination processes in non-linear crystals LiB3O5

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, I. N.; Kruzhalov, A. V.; Porotnikov, A. V.; Yakovlev, Yu. V.

    The paper presents the results of a study of kinetics of the recombination processes in crystals LiB3O5 (LBO) obtained by the use of time-resolved luminescence and optical absorption spectroscopy. It was revealed that the observed peculiarities of the recombination processes in LBO are due to a participation of the trapped electron (B2+) and hole (O-) centres. In the framework of a model of the competing trapped hole centres the time dependence of both transient optical absorption and luminescence as well as their temperature dependencies was interpreted.

  19. An infrared and luminescence study of tritiated amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Kosteski, T.; Kherani, N.P.; Gaspari, F.; Zukotynski, S.; Shmayda, W.

    1997-07-01

    Tritium has been incorporated into amorphous silicon. Infrared spectroscopy shows new infrared vibration modes due to silicon-tritium (Si-T) bonds in the amorphous silicon network. Si-T vibration frequencies are related to Si-H vibration frequencies by simple mass relationships. Inelastic collisions of {beta} particles, produced as a result of tritium decay, with the amorphous silicon network results in the generation of electron-hole pairs. Radiative recombination of these carriers is observed. Dangling bonds associated with the tritium decay reduce luminescence efficiency.

  20. Photoactivation of luminescence in CdS nanocrystals

    PubMed Central

    Smyntyna, Valentyn; Skobeeva, Valentyna; Malushin, Nikolay

    2014-01-01

    Summary This paper presents the results of the research on the luminescence of cadmium sulfide nanocrystals (NCs) synthesized by colloid chemistry in a gelatinous matrix. The photostimulation of the short-wavelength emission band with λmax = 480 nm has been detected. It is shown that the determining factor of the photostimulation effect is the adsorption of the water molecules on the surface of NC. The observed effect is explained by the recombination mechanism that is responsible for the short-wavelength emission band. PMID:24778959

  1. Enhancement of Luminescence of Colloidal Ag2S Quantum Dots by Thionine Molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, O. V.; Grevtseva, I. G.; Kondratenko, T. S.; Smirnov, M. S.; Evtukhova, A. V.

    2016-07-01

    Enhancement of IR luminescence (1205 nm) of colloidal Ag2S quantum dots (QDs) with an average size of 2.5 ± 0.3 nm was detected upon excitation in the absorption band of thionine dye molecules (530-610 nm). It is found that the observed effect occurs during a hybrid association of Ag2S QDs with monomers of the cationic thionine (Th + ) molecule. It is concluded that the photosensitization of IR luminescence of colloidal Ag2S QDs is realized due to a resonance nonradiative transfer of electronic excitation energy directly to the centers of radiative recombination from the excited Th + molecules.

  2. Interfering with Bacterial Quorum Sensing

    PubMed Central

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  3. Interfering with Bacterial Quorum Sensing.

    PubMed

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  4. A Novel Universal Detection Agent for Time-Gated Luminescence Bioimaging.

    PubMed

    Sayyadi, Nima; Care, Andrew; Connally, Russell E; Try, Andrew C; Bergquist, Peter L; Sunna, Anwar

    2016-01-01

    Luminescent lanthanide chelates have been used to label antibodies in time-gated luminescence (TGL) bioimaging. However, it is a challenging task to label directly an antibody with lanthanide-binding ligands and achieve control of the target ligand/protein ratios whilst ensuring that affinity and avidity of the antibody remain uncompromised. We report the development of a new indirect detection reagent to label antibodies with detectable luminescence that circumvents this problem by labelling available lysine residues in the linker portion of the recombinant fusion protein Linker-Protein G (LPG). Succinimide-activated lanthanide chelating ligands were attached to lysine residues in LPG and Protein G (without Linker) and the resulting Luminescence-Activating (LA-) conjugates were compared for total incorporation and conjugation efficiency. A higher and more efficient incorporation of ligands at three different molar ratios was observed for LPG and this effect was attributed to the presence of eight readily available lysine residues in the linker region of LPG. These Luminescence-Activating (LA-) complexes were subsequently shown to impart luminescence (upon formation of europium(III) complexes) to cell-specific antibodies within seconds and without the need for any complicated bioconjugation procedures. The potential of this technology was demonstrated by direct labelling of Giardia cysts and Cryptosporidium oocysts in TGL bioimaging. PMID:27282464

  5. A Novel Universal Detection Agent for Time-Gated Luminescence Bioimaging

    PubMed Central

    Sayyadi, Nima; Care, Andrew; Connally, Russell E.; Try, Andrew C.; Bergquist, Peter L.; Sunna, Anwar

    2016-01-01

    Luminescent lanthanide chelates have been used to label antibodies in time-gated luminescence (TGL) bioimaging. However, it is a challenging task to label directly an antibody with lanthanide-binding ligands and achieve control of the target ligand/protein ratios whilst ensuring that affinity and avidity of the antibody remain uncompromised. We report the development of a new indirect detection reagent to label antibodies with detectable luminescence that circumvents this problem by labelling available lysine residues in the linker portion of the recombinant fusion protein Linker-Protein G (LPG). Succinimide-activated lanthanide chelating ligands were attached to lysine residues in LPG and Protein G (without Linker) and the resulting Luminescence-Activating (LA-) conjugates were compared for total incorporation and conjugation efficiency. A higher and more efficient incorporation of ligands at three different molar ratios was observed for LPG and this effect was attributed to the presence of eight readily available lysine residues in the linker region of LPG. These Luminescence-Activating (LA-) complexes were subsequently shown to impart luminescence (upon formation of europium(III) complexes) to cell-specific antibodies within seconds and without the need for any complicated bioconjugation procedures. The potential of this technology was demonstrated by direct labelling of Giardia cysts and Cryptosporidium oocysts in TGL bioimaging. PMID:27282464

  6. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  7. Turning on the Light: Lessons from Luminescence

    ERIC Educational Resources Information Center

    O'Hara, Patricia B.; Engelson, Carol; St. Peter, Wayne

    2005-01-01

    Some of the processes by which light is emitted without a simultaneous change in temperature are discussed and is classified as luminescence or cold light. Luminescent processes include triboluminescence, fluorescence, phosphorescence, chemiluminescence, and bioluminescence.

  8. Utilizing Nanofabrication to Construct Strong, Luminescent Materials

    SciTech Connect

    Chen, Wei; Huang, Gang; Lu, Hong B.; McCready, David E.; Joly, Alan G.; Bovin, Jan-Olov

    2006-05-28

    Luminescent materials have been utilized widely in applications from lighting to sensing. The new development of technologies based on luminescence properties requires the materials to have high luminescence efficiency and mechanical strength. In this article, we report the fabrication of luminescent materials possessing high mechanical strength by nanofabrication with polyvinyl alcohol used as a stabilizer or coupling agent. X-ray diffraction and high resolution transmission microscope observations reveal that the nanocomposite sample contains ZnS and ZnO nanoparticles as well as kozoite and sodium nitrate. The mechanical strength and hardness of these nanocomposite materials are higher than polycarbonate and some carbon nanotube reinforced nanocomposites. Strong luminescence is observed in the new nanocomposites and the luminescence intensity does not degrade following up to 30 minutes of X-ray irradiation. Our results indicate that nanofabrication may provide a good method to improve the mechanical strength of luminescent materials for some applications in which high strength luminescent materials are needed.

  9. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  10. Applications of luminescent systems to infectious disease methodology

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Deming, J. W.; Mcgarry, M. A.; Nibley, D. A.; Okrend, H.; Thomas, R. R.

    1976-01-01

    The characterization of a clinical sample by a simple, fast, accurate, automatable analytical measurement is important in the management of infectious disease. Luminescence assays offer methods rich with options for these measurements. The instrumentation is common to each assay, and the investment is reasonable. Three general procedures were developed to varying degrees of completeness which measure bacterial levels by measuring their ATP, FMN and iron porphyrins. Bacteriuria detection and antibiograms can be determined within half a day. The characterization of the sample for its soluble ATP, FMN or prophyrins was also performed.

  11. Luminescence study of homeopathic remedies

    NASA Astrophysics Data System (ADS)

    Lobyshev, Valentin I.; Tomkevitch, Marie

    2001-06-01

    It was shown in our recent papers that distilled water possesses intrinsic luminescence at wavelength of about 400 nm with excitation wavelength 300 nm, which is very sensitive to small amount of dissolved substances. This phenomena was chosen to study homeopathic remedies. Pronounced difference in the intensity of luminescence between several commercial preparations with the same potency and one preparation with various potencies was obtained. Long scale evolution of the spectra was registered and final result was dependent on preparation and its potency. Systematic study of homeopathic preparations of halit (natural sodium chloride) from 1 to 30 decimal dilution was done. A stepwise dilution with mechanical agitation between the dilution steps, the so-called potentisation, was produced specially by homeopathic company Weleda. Luminescence intensity against concentration (potency) of halit is non monotonous function with several maxima, the main maximum is located at 13-14-th dilution. Evolution of the spectra was registered during several months. The analogous potentisation treatment of water without additional substances results also in changes of the luminescence spectra, depending on the number of potentisation. The obtained differences of luminescence spectra at ultra high dilutions and potentisation show that the collective properties of water are really changed in homeopathic preparations.

  12. Method of measuring luminescence of a material

    DOEpatents

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  13. Turn-On Luminescent Probes for the Real-Time Monitoring of Endogenous Hydroxyl Radicals in Living Cells.

    PubMed

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Lu, Chao

    2016-03-18

    The utilization of semiconductor quantum dots (QDs) as optical labels for biosensing and biorecognition has made substantial progress. However, the development of a suitable QD-based luminescent probe that is capable of detecting individual reactive oxygen species (ROS) represents a great challenge, mainly because the fluorescence of QDs is quenched by a wide variety of ROS. To overcome this limitation, a novel QD-based turn-on luminescent probe for the specific detection of (.) OH has been designed, and its application in monitoring the endogenous release of (.) OH species in living cells is demonstrated. Metal citrate complexes on the surfaces of the QDs can act as electron donors, injecting electrons into the LUMO of the QDs, while (.) OH can inject holes into the HOMO of the QDs. Accordingly, electron-hole pairs are produced, which could emit strong luminescence by electron-hole recombination. Importantly, this luminescent probe does not respond to other ROS. PMID:26918802

  14. Specificity of aequorin luminescence to calcium

    NASA Technical Reports Server (NTRS)

    Shimomura, O.; Johnson, F. H.

    1975-01-01

    The presence of Pb(++), Co(++), Cu(++), and Cd(++), each of which possesses a certain luminescence-triggering activity of aequorin, potentially interferes with the specificity of the aequorin luminescence response to Ca(++). Interference by the above cations can be eliminated, without influencing the sensitivity of the luminescence of aequorin to Ca(++), by adding 1 mM of sodium diethyldithiocarbamate.

  15. Bias-dependence of luminescent coupling efficiency in multijunction solar cells.

    PubMed

    Jia, Jieyang; Miao, Yu; Kang, Yangsen; Huo, Yijie; Mazouchi, Mojgan; Chen, Yusi; Zhao, Li; Deng, Huiyang; Supaniratisai, Pakapol; AlQahtani, Sara H; Harris, James S

    2015-04-01

    In this work, we demonstrate an improved method to simulate the characteristics of multijunction solar cell by introducing a bias-dependent luminescent coupling efficiency. The standard two-diode equivalent-circuit model with constant luminescent coupling efficiency has limited accuracy because it does not include the recombination current from photogenerated carriers. Therefore, we propose an alternative analytical method with bias-dependent luminescent coupling efficiency to model multijunction cell behavior. We show that there is a noticeable difference in the J-V characteristics and cell performance generated by simulations with a constant vs. bias-dependent coupling efficiency. The results indicate that introducing a bias-dependent coupling efficiency produces more accurate modeling of multijunction cell behavior under real operating conditions. PMID:25968788

  16. Defect luminescence in films containing Ge and GeO{sub 2} nanocrystals

    SciTech Connect

    Zacharias, M.; Atherton, S.J.; Fauchet, P.M.

    1997-07-01

    Amorphous SiO{sub x} alloys containing Ge or GeO{sub 2} nanocrystals are produced by dc-magnetron sputtering and controlled crystallization. The samples are investigated by Raman scattering, transmission electron microscopy, photoluminescence and excitation spectroscopy. Under UV excitation, both types of films luminesce around 3.1 eV, with identical PL line shapes and subnanosecond PL dynamics. The strongest PL intensity is found for the films containing FeO{sub 2} crystals and for the largest nanocrystals. These results are a clear indication that although the blue luminescence is without a doubt correlated with the formation of Ge (or GeO{sub 2}) nanocrystals, it is not produced by the radiative recombination of excitons confined in the nanocrystals. Possible mechanisms for the luminescence are discussed, including defects at the nanocrystal/matric interface or in the matrix itself.

  17. Surface Chemically Switchable Ultraviolet Luminescence from Interfacial Two-Dimensional Electron Gas.

    PubMed

    Islam, Mohammad A; Saldana-Greco, Diomedes; Gu, Zongquan; Wang, Fenggong; Breckenfeld, Eric; Lei, Qingyu; Xu, Ruijuan; Hawley, Christopher J; Xi, X X; Martin, Lane W; Rappe, Andrew M; Spanier, Jonathan E

    2016-01-13

    We report intense, narrow line-width, surface chemisorption-activated and reversible ultraviolet (UV) photoluminescence from radiative recombination of the two-dimensional electron gas (2DEG) with photoexcited holes at LaAlO3/SrTiO3. The switchable luminescence arises from an electron transfer-driven modification of the electronic structure via H-chemisorption onto the AlO2-terminated surface of LaAlO3, at least 2 nm away from the interface. The control of the onset of emission and its intensity are functionalities that go beyond the luminescence of compound semiconductor quantum wells. Connections between reversible chemisorption, fast electron transfer, and quantum-well luminescence suggest a new model for surface chemically reconfigurable solid-state UV optoelectronics and molecular sensing. PMID:26675987

  18. Unraveling the luminescence signatures of chemical defects in polyethylene.

    PubMed

    Chen, Lihua; Tran, Huan Doan; Wang, Chenchen; Ramprasad, Rampi

    2015-09-28

    Chemical defects in polyethylene (PE) can deleteriously downgrade its electrical properties and performance. Although these defects usually leave spectroscopic signatures in terms of characteristic luminescence peaks, it is nontrivial to make unambiguous assignments of the peaks to specific defect types. In this work, we go beyond traditional density functional theory calculations to determine intra-defect state transition and charge recombination process derived emission and absorption energies in PE. By calculating the total energy differences of the neutral defect at excited and ground states, the emission energies from intra-defect state transition are obtained, reasonably explaining the photoluminescence peaks in PE. In order to study the luminescence emitted in charge recombination processes, we characterize PE defect levels in terms of thermodynamic and optical charge transition levels that involve total energy calculations of neutral and charged defects. Calculations are performed at several levels of theory including those involving (semi)local and hybrid electron exchange-correlation functionals, and many-body perturbation theory. With these critical elements, the emission energies are computed and further used to clarify and confirm the origins of the observed electroluminescence and thermoluminescence peaks. PMID:26429041

  19. Unraveling the luminescence signatures of chemical defects in polyethylene

    SciTech Connect

    Chen, Lihua; Tran, Huan Doan; Wang, Chenchen; Ramprasad, Rampi

    2015-09-28

    Chemical defects in polyethylene (PE) can deleteriously downgrade its electrical properties and performance. Although these defects usually leave spectroscopic signatures in terms of characteristic luminescence peaks, it is nontrivial to make unambiguous assignments of the peaks to specific defect types. In this work, we go beyond traditional density functional theory calculations to determine intra-defect state transition and charge recombination process derived emission and absorption energies in PE. By calculating the total energy differences of the neutral defect at excited and ground states, the emission energies from intra-defect state transition are obtained, reasonably explaining the photoluminescence peaks in PE. In order to study the luminescence emitted in charge recombination processes, we characterize PE defect levels in terms of thermodynamic and optical charge transition levels that involve total energy calculations of neutral and charged defects. Calculations are performed at several levels of theory including those involving (semi)local and hybrid electron exchange-correlation functionals, and many-body perturbation theory. With these critical elements, the emission energies are computed and further used to clarify and confirm the origins of the observed electroluminescence and thermoluminescence peaks.

  20. A luminescent nanocrystal stress gauge

    SciTech Connect

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  1. Quantitative Luminescence Imaging System

    SciTech Connect

    Batishko, C.R.; Stahl, K.A.; Fecht, B.A.

    1992-12-31

    The goal of the MEASUREMENT OF CHEMILUMINESCENCE project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  2. Luminescent lanthanide coordination polymers

    SciTech Connect

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  3. Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests.

    PubMed

    Heinlaan, Margit; Kahru, Anne; Kasemets, Kaja; Kurvet, Imbi; Waterlot, Cristophe; Sepp, Kalev; Dubourguier, Henri-Charles; Douay, Francis

    2007-03-01

    A bacterial test battery, involving i) Microtox, an aquatic test, ii) the Flash assay, a soil-suspension test (with Vibrio fischeri as the test organism), and iii) the Metal Detector assay, a semi-specific aquatic test for heavy metals (with recombinant luminescent Escherichia coli), was used in a combined toxicological and chemical hazard assessment of Estonian soils sampled from a former Soviet military airfield (13 samples) and from traffic-influenced roadsides (5 samples). The soils showed slightly elevated levels of total petroleum hydrocarbons (TPH), but not of heavy metals. In most of the samples, the levels of TPH did not exceed the Estonian permitted limit values set for residential areas. Toxicity testing was performed on both fresh and dried soils, after aqueous extraction for 1 hour and 24 hours. The toxicity results obtained with the Microtox test did not significantly differ in all of the sample treatment schemes; however, it appeared that the drying and sieving of the soils increased the bioavailability of toxicants, probably due to an enlarged reactive soil surface area. According to chemical analysis of the soils and the data from the Microtox test and the Metal Detector assay (performed on aqueous elutriates of the soils), these soils would not be considered to be hazardous. In contrast, the Flash assay performed on soil-water suspensions of dried soils, showed that most of the soils were toxic and thus probably contained undetermined particle-bound bioavailable toxicants. The photobacterial toxicity test (the Flash assay) can be recommended for the rapid screening of soils, as it is sensitive, cheap and inexpensive, and provides valuable information on particle-bound bioavailable toxicants, useful for complementing a chemical analysis and for assessing the risks originating from polluted soils. PMID:17411358

  4. Tunable Luminescence of Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vladimirov, A.; Korovin, S.; Surkov, A.; Kelm, E.; Pustovoy, V.

    2010-10-01

    The luminescent properties of silicon nanoparticles were studied. The particles were prepared by laser pyrolysis of silane in a gas flow reactor. Initially non-luminescent particles were treated by the chemical etching in mixture of fluoric and nitric acids. The high and stable photoluminescence from etched particles was observed. With increasing etching time, the PL peak shifted to blue region. With decreasing of the excitation wavelength from 660 nm to 365 nm, the PL peak shifted from 820 nm to 660 nm. This allows us to use the silicon based particles for wavelength selected excitation in some practical application.

  5. Bacterial Keratitis

    MedlinePlus

    ... very quickly, and if left untreated, can cause blindness. The bacteria usually responsible for this type of ... to intense ultraviolet radiation exposure, e.g. snow blindness or welder's arc eye). Next Bacterial Keratitis Symptoms ...

  6. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  7. Effect of ultrasonic treatment on photoelectric and luminescent properties of ZnSe crystals

    SciTech Connect

    Zobov, E. M. Zobov, M. E.; Gabibov, F. S.; Kamilov, I. K.; Manyakhin, F. I.; Naimi, E. K.

    2008-03-15

    The results of the effect of ultrasonic treatment of ZnSe crystals on the structure of the energy spectrum of electronic states of centers with deep levels forming photoelectric and luminescent properties of this compound are presented. It is for the first time proved experimentally that the climb of edge dislocations under the effect of ultrasound leads to regrouping and generation of defects forming deep levels, which manifest themselves in phenomena of photosensitivity and radiative recombination.

  8. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  9. Radiation-induced luminescence in magnesium aluminate spinel crystals and ceramics

    NASA Astrophysics Data System (ADS)

    Gritsyna, V. T.; Kazarinov, Yu. G.; Kobyakov, V. A.; Reimanis, I. E.

    2006-09-01

    Radioluminescence (RL) and thermoluminescence (TL) in spinel crystals and ceramics were investigated to elucidate the radiation-induced electronic processes in single crystals grown by Verneuil and Czochralski methods as well as transparent and translucent ceramics. Both RL and TL spectra demonstrate a UV-band related to electron-hole recombination luminescence at intrinsic defects; green and red luminescence are identified with emission of Mn 2+- and Cr 3+-ions, respectively. The kinetics of growth of different RL luminescence bands depending on dose at the prolonged X-irradiation shows the competitive character of charge and energy transfer between defects and impurity ions. The dependence of RL intensity on the temperature of the sample was measured in the range of 300-750 K and compared with TL for different emission bands. The variety of maxima in the temperature dependence of RL and in the glow curves of TL measured for different luminescence bands in spinels of different origins and crystalline forms is used to show that charge carrier traps and luminescence centers are not isolated defects but are complexes of defects and impurities. The formation, structure and properties of these complexes depend on the processing conditions.

  10. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  11. Origin of green luminescence in hydrothermally grown ZnO single crystals

    SciTech Connect

    Čížek, J. Hruška, P.; Melikhova, O.; Procházka, I.; Valenta, J.; Novotný, M.; Bulíř, J.

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  12. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGESBeta

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; Joo, Taiha; Wang, Zhehui

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  13. Recombineering homologous recombination constructs in Drosophila.

    PubMed

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A; Williams, Nathan David; Hiesinger, P Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner. PMID:23893070

  14. Plasmon enhancement of luminescence upconversion.

    PubMed

    Park, Wounjhang; Lu, Dawei; Ahn, Sungmo

    2015-05-21

    Frequency conversion has always been an important topic in optics. Nonlinear optics has traditionally focused on frequency conversion based on nonlinear susceptibility but with the recent development of upconversion nanomaterials, luminescence upconversion has begun to receive renewed attention. While upconversion nanomaterials open doors to a wide range of new opportunities, they remain too inefficient for most applications. Incorporating plasmonic nanostructures provides a promising pathway to highly efficient upconversion. Naturally, a plethora of theoretical and experimental studies have been published in recent years, reporting enhancements up to several hundred. It is however difficult to make meaningful comparisons since the plasmonic fields are highly sensitive to the local geometry and excitation condition. Also, many luminescence upconversion processes involve multiple steps via different physical mechanisms and the overall output is often determined by a delicate interplay among them. This review is aimed at offering a comprehensive framework for plasmon enhanced luminescence upconversion. We first present quantum electrodynamics descriptions for all the processes involved in luminescence upconversion, which include absorption, emission, energy transfer and nonradiative transitions. We then present a bird's eye view of published works on plasmon enhanced upconversion, followed by more detailed discussion on comparable classes of nanostructures, the effects of spacer layers and local heating, and the dynamics of the plasmon enhanced upconversion process. Plasmon enhanced upconversion is a challenging and exciting field from the fundamental scientific perspective and also from technological standpoints. It offers an excellent system to study how optical processes are affected by the local photonic environment. This type of research is particularly timely as the plasmonics is placing heavier emphasis on nonlinearity. At the same time, efficient upconversion

  15. Differential Requirements of Singleplex and Multiplex Recombineering of Large DNA Constructs

    PubMed Central

    Reddy, Thimma R.; Kelsall, Emma J.; Fevat, Léna M. S.; Munson, Sarah E.; Cowley, Shaun M.

    2015-01-01

    Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency. PMID:25954970

  16. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  17. Bacterial ghosts as multifunctional vaccine particles.

    PubMed

    Szostak, M P; Mader, H; Truppe, M; Kamal, M; Eko, F O; Huter, V; Marchart, J; Jechlinger, W; Haidinger, W; Brand, E; Denner, E; Resch, S; Dehlin, E; Katinger, A; Kuen, B; Haslberger, A; Hensel, A; Lubitz, W

    1997-02-01

    Expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts have been produced from a variety of bacteria including Escherichia coli. Salmonella typhimurium, Salmonella enteritidis, Vibrio cholerae, Klebsiella pneumoniae, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Pasteurella haemolytica, Pasteurella multocida, and Helicobacter pylori. Such ghosts are used as non-living candidate vaccines and represent an alternative to heat or chemically inactivated bacteria. In recombinant ghosts, foreign proteins can be inserted into the inner membrane prior to E-mediated lysis via specific N-, or C-, or N- and C-terminal anchor sequences. The export of proteins into the periplasmic space or the expression of recombinant S-layer proteins vastly extents the capacity of ghosts or recombinant ghosts as carriers of foreign epitopes or proteins. Oral, aerogenic or parenteral applications of (recombinant) ghosts in experimental animals induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of ghosts and recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in the production of ghosts used as vaccines or as carriers of relevant antigens. The inserted target antigens into the inner membrane or into S-layer proteins are not limited in size. PMID:9382740

  18. Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda).

    PubMed

    Guerrero-Ferreira, R C; Nishiguchi, M K

    2007-10-01

    Luminescent bacteria in the family Vibrionaceae (Bacteria: γ-Proteobacteria) are commonly found in complex, bilobed light organs of sepiolid and loliginid squids. Although morphology of these organs in both families of squid is similar, the species of bacteria that inhabit each host has yet to be verified. We utilized sequences of 16S ribosomal RNA, luciferase α-subunit (luxA) and the glyceraldehyde-3-phosphate dehydrogenase (gapA) genes to determine phylogenetic relationships between 63 strains of Vibrio bacteria, which included representatives from different environments as well as unidentified luminescent isolates from loliginid and sepiolid squid from Thailand. A combined phylogenetic analysis was used including biochemical data such as carbon use, growth and luminescence. Results demonstrated that certain symbiotic Thai isolates found in the same geographic area were included in a clade containing bacterial species phenotypically suitable to colonize light organs. Moreover, multiple strains isolated from a single squid host were identified as more than one bacteria species in our phylogeny. This research presents evidence of species of luminescent bacteria that have not been previously described as symbiotic strains colonizing light organs of Indo-West Pacific loliginid and sepiolid squids, and supports the hypothesis of a non-species-specific association between certain sepiolid and loliginid squids and marine luminescent bacteria. PMID:22707847

  19. Bacterial Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of bacterial agents reside in and around the environment that can cause illness and death in a poultry flock. Many cause disseminated disease while others exert more local effects such as the respiratory or gastrointestinal tract. The host, for our current purposes the laying hen, has de...

  20. Specific features of the luminescence and conductivity of zinc selenide on exposure to X-ray and optical excitation

    SciTech Connect

    Degoda, V. Ya. Sofienko, A. O.

    2010-05-15

    The set of experimental data on the X-ray-excited luminescence and X-ray induced conductivity of ZnSe are compared to the data on the photoluminescence and photoconductivity. It is experimentally established that the current-voltage characteristics and the kinetics of phosphorescence and current relaxation depend on the type of excitation. It is found that the external electric field influences the intensity and shape of bands in the luminescence spectra. It is shown that the character of excitation defines the kinetics of recombination, charge carrier trapping, and conductivity in wide-gap semiconductors.

  1. Dating sediments using luminescence signals

    SciTech Connect

    Wintle, A. )

    1993-05-01

    Before siting a nuclear power station or a nuclear waste repository, it is necessary to establish that the area has been free of earthquake activity for a sufficient period of time. Evidence of past earthquake activity is often provided by faults in surface sediments. Age limits for fault formation can be set by obtaining the depositional ages of the sediment unit in which the fault was formed and the overlying sediment. A useful technique would be one that dating could be applied to the mineral grains that make up the sediments and that would give the time that has passed since the grains were blown or washed into position. Luminescence dating techniques, of which the most well known is thermo-luminescence (TL), provide such information. This approach has been successful in dating movement on the Wasatch Fault in Utah. A combination of TL and radiocarbon dates indicated that three faulting events had occurred within the past 5000 years. 2 refs., 1 fig.

  2. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-11-10

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  3. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L.; Ambrose, W. Patrick; Demas, James N.; Goodwin, Peter M.; Johnson, Mitchell E.; Keller, Richard A.; Petty, Jeffrey T.; Schecker, Jay A.; Wu, Ming

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  4. Material for a luminescent solar concentrator

    DOEpatents

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  5. Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, T.L.; Lee, K.T.

    2009-01-01

    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed.

  6. Luminescent detection of hydrazine and hydrazine derivatives

    DOEpatents

    Swager, Timothy M.; Thomas, III, Samuel W.

    2012-04-17

    The present invention generally relates to methods for modulating the optical properties of a luminescent polymer via interaction with a species (e.g., an analyte). In some cases, the present invention provides methods for determination of an analyte by monitoring a change in an optical signal of a luminescent polymer upon exposure to an analyte. Methods of the present invention may be useful for the vapor phase detection of analytes such as explosives and toxins. The present invention also provides methods for increasing the luminescence intensity of a polymer, such as a polymer that has been photobleached, by exposing the luminescent polymer to a species such as a reducing agent.

  7. Luminescence properties of a Fibonacci photonic quasicrystal.

    PubMed

    Passias, V; Valappil, N V; Shi, Z; Deych, L; Lisyansky, A A; Menon, V M

    2009-04-13

    An active one-dimensional Fibonacci photonic quasi-crystal is realized via spin coating. Luminescence properties of an organic dye embedded in the quasi-crystal are studied experimentally and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in good agreement with the theoretical calculations for steady-state luminescence spectra. PMID:19365490

  8. Resonance-shifting luminescent solar concentrators

    SciTech Connect

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  9. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  10. Recombination in electron coolers

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Gwinner, G.; Linkemann, J.; Saghiri, A. A.; Schmitt, M.; Schwalm, D.; Grieser, M.; Beutelspacher, M.; Bartsch, T.; Brandau, C.; Hoffknecht, A.; Müller, A.; Schippers, S.; Uwira, O.; Savin, D. W.

    2000-02-01

    An introduction to electron-ion recombination processes is given and recent measurements are described as examples, focusing on low collision energies. Discussed in particular are fine-structure-mediated dielectronic recombination of fluorine-like ions, the moderate recombination enhancement by factors of typically 1.5-4 found for most ion species at relative electron-ion energies below about 10 meV, and the much larger enhancement occurring for specific highly charged ions of complex electronic structure, apparently caused by low-energy dielectronic recombination resonances. Recent experiments revealing dielectronic resonances with very large natural width are also described.

  11. Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap

    SciTech Connect

    Maiberg, Matthias Hölscher, Torsten; Zahedi-Azad, Setareh; Scheer, Roland

    2015-09-14

    In the third part of this series, we study the influence of trap states in the band gap of semiconductors on the time-resolved luminescence decay (TRL) after a pulsed excitation. The results based on simulations with Synopsys TCAD{sup ®} and analytical approximations are given for p-doped Cu(In,Ga)Se{sub 2} as a working example. We show that a single trap can be mostly described by two parameters which are assigned to minority carrier capture and emission. We analyze their influence on the luminescence decay and study the difference between a single trap and an energetic Gaussian trap distribution. It is found that trap states artificially increase the TRL decay and obscure the recombination dynamics. Thus, there is a demand for experimental methods which can reveal the recombination of minority carriers in a TRL experiment without trapping effect. In this regard, a variation of the device temperature, the excitation frequency, the injection level, as well as a bias illumination may be promising approaches. We study these methods, discuss advantages and disadvantages, and show experimental TRL for prove of concept. At the end, we validate our approach of simulating only band-to-band radiative recombination although photoluminescence spectra often exhibit free-to-bound radiative recombination of charge carriers.

  12. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  13. [Bacterial vaginosis].

    PubMed

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  14. The origin of white luminescence from silicon oxycarbide thin films

    SciTech Connect

    Nikas, V.; Gallis, S. Huang, M.; Kaloyeros, A. E.; Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V.

    2014-02-10

    Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0 eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at. % and N{sub 2} 95 at. %) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

  15. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  16. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  17. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  18. An improved recombineering approach by adding RecA to lambda Red recombination.

    PubMed

    Wang, Junping; Sarov, Mihail; Rientjes, Jeanette; Fu, Jun; Hollak, Heike; Kranz, Harald; Xie, Wei; Stewart, A Francis; Zhang, Youming

    2006-01-01

    Recombineering is the use of homologous recombination in Escherichia coli for DNA engineering. Of several approaches, use of the lambda phage Red operon is emerging as the most reliable and flexible. The Red operon includes three components: Redalpha, a 5' to 3' exonuclease, Redbeta, an annealing protein, and Redgamma, an inhibitor of the major E. coli exonuclease and recombination complex, RecBCD. Most E. coli cloning hosts are recA deficient to eliminate recombination and therefore enhance the stability of cloned DNAs. However, loss of RecA also impairs general cellular integrity. Here we report that transient RecA co-expression enhances the total number of successful recombinations in bacterial artificial chromosomes (BACs), mostly because the E. coli host is more able to survive the stresses of DNA transformation procedures. We combined this practical improvement with the advantages of a temperature-sensitive version of the low copy pSC101 plasmid to develop a protocol that is convenient and more efficient than any recombineering procedure, for use of either double- or single-stranded DNA, published to date. PMID:16382181

  19. Stacking fault related luminescence in GaN nanorods.

    PubMed

    Forsberg, M; Serban, A; Poenaru, I; Hsiao, C-L; Junaid, M; Birch, J; Pozina, G

    2015-09-01

    Optical and structural properties are presented for GaN nanorods (NRs) grown in the [0001] direction on Si(111) substrates by direct-current reactive magnetron sputter epitaxy. Transmission electron microscopy (TEM) reveals clusters of dense stacking faults (SFs) regularly distributed along the c-axis. A strong emission line at ∼3.42 eV associated with the basal-plane SFs has been observed in luminescence spectra. The optical signature of SFs is stable up to room temperatures with the activation energy of ∼20 meV. Temperature-dependent time-resolved photoluminescence properties suggest that the recombination mechanism of the 3.42 eV emission can be understood in terms of multiple quantum wells self-organized along the growth axis of NRs. PMID:26267041

  20. Luminescence stability of porous Si terminated by hydrophilic organic molecules

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kimihisa; Kamiguchi, Masao; Kamiya, Kazuhide; Nomura, Takashi; Suzuki, Shinya

    2016-02-01

    The effects of the surface termination of a porous Si surface by propionic acid and by undecylenic acid on their hydrophilicity and luminescence stability were studied. In the measurements of the contact angle of water droplets on porous Si films, the hydrophilicity of porous Si is improved by the surface termination each types of organic molecule. The PL intensity of as-prepared porous Si decreased with increasing aging time in ambient air. As PL quenching involves PL blue shift and increasing Si-O bonds density, nonradiative recombination centers are formed in the surface oxide. After the hydrosilylation process of propionic acid and undecylenic acid, PL intensity decreased and became 30% that of as-prepared porous Si film. However, the PL intensity was stable and exceeded that of the as-prepared film after 1000 min of aging in the ambient air. The PL stabilities are contributed to the termination by organic molecules that inhibits surface oxidation.

  1. EBIC and luminescence studies of defects in solar cells.

    PubMed

    Breitenstein, O; Bauer, J; Kittler, M; Arguirov, T; Seifert, W

    2008-01-01

    Electron beam-induced current (EBIC) can be used to detect electronic irregularities in solar cells, such as shunts and precipitates, and to perform physical characterization of defects by, e.g. measuring the temperature dependence of their recombination activity. Recently also luminescence methods such as electroluminescence (EL) and photoluminescence (PL) have been shown to provide useful information on crystal defects in solar cells. In this contribution it will be shown that the combined application of EBIC, EL and PL may deliver useful information on the presence and on the physical properties of crystal defects in silicon solar cells. Also pre-breakdown sites in multicrystalline cells can be investigated by reverse-bias EL and by microplasma-type EBIC, in comparison with lock-in thermography investigations. PMID:18561253

  2. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  3. Spectral Characterization of a Novel Luminescent Organogel

    ERIC Educational Resources Information Center

    Waguespack, Yan; White, Shawn R.

    2007-01-01

    The spectroscopic-based luminescence experiments were designed to expose the students to various concepts of single-triplet excited states, electron spin, vibrational relaxation, fluorescence-phosphorescence lifetimes and quenching. The students were able to learn about luminescence spectra of the gel and have the experience of synthesizing a…

  4. Simple fiber optic coupled luminescence cryostat

    NASA Astrophysics Data System (ADS)

    Meyer, G. D.; Ortiz, T. P.; Costello, A. L.; Brozik, J. A.; Kenney, J. W.

    2002-12-01

    An easy to fabricate, easy to operate, miniature liquid helium insert cryostat has been designed for variable low-temperature luminescence investigations in the 2.7-77 K region with minimal liquid helium consumption. The cryostat, which can be used inside of a standard liquid helium storage Dewar, is optically coupled both to the luminescence spectrophotometer and to the chosen luminescence excitation source (laser or conventional) by a single 1 mm fused silica fiber optic cable. This extremely simple and compact optical system is designed to give highly reproducible luminescence excitation and collection efficiencies for quantitative luminescence intensity studies. Temperature control in the cryostat is achieved through the dynamic balance of up to three distinct heating/cooling processes: raising or lowering the cryostat with respect to the liquid helium level in the Dewar, heating the cryostat with a small resistance heater, or pumping on the cryostat for sub-4.2 K temperatures. The cryostat can operate effectively throughout the 2.7-77 K range in liquid helium storage Dewars containing less than a liter of liquid helium. The wide range of spectroscopic experiments that this novel optical cryostat design can support is illustrated by a temperature-dependent zero field splitting luminescence lifetime study of Ru(bpy)3Cl2, a temperature-dependent relative luminescence intensity (quantum yield) study of Ru(bpy)3Cl2, and a temperature-dependent luminescence vibronic fine structure study of Ti(Cp)2(NCS)2.

  5. Photoluminescence of Sm doped porous silicon—evidence for light emission through luminescence centers in SiO2 layers

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zhang, L. Z.; Huang, Y. M.; Zhang, B. R.; Qin, G. G.

    1994-06-01

    After oxidation promoted by gamma-ray irradiation, in the photoluminescence (PL) spectra of Sm doped porous silicon (PS), there are three sharp peaks, superimposed on a broad band, with wavelengths near to those of the Sm doped SiO2 [R. Morimo, T. Mizushima, and H. Okumura, J. Electrochem. Soc. 137, 2340 (1990)]. The experimental results indicate that Sm-related luminescence centers can be created within the oxide of porous silicon, and only in porous silicon with high porosity can the Sm-related luminescence be found in the SiO2 layer. This experimental result can be explained by the fact that the excitation of electron-hole pairs occurs in nanoscale silicon, and the recombination occurs at the Sm-related luminescence centers in SiO2 layers covering nanoscale silicon.

  6. Bacterial chromosome organization and segregation.

    PubMed

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  7. Luminescence enhancement of Mn doped ZnS nanocrystals passivated with zinc hydroxide

    NASA Astrophysics Data System (ADS)

    Jiang, Daixun; Cao, Lixin; Su, Ge; Qu, Hua; Sun, Dake

    2007-10-01

    Mn-doped ZnS nanocrystals prepared by solvothermal method have been successfully coated with different thicknesses of Zn(OH) 2 shells through precipitation reaction. The impact of Zn(OH) 2 shells on luminescent properties of the ZnS:Mn nanocrystals was investigated. X-ray diffraction (XRD) measurements showed that the ZnS:Mn nanocrystals have cubic zinc blende structure. The morphology of nanocrystals is spherical shape measured by transmission electron microscopy (TEM). ZnS:Mn/Zn(OH) 2 core/shell nanocrystals exhibited much improved luminescent properties than those of unpassivated ZnS:Mn nanocrystals. The luminescence enhancement was observed with the Zn(OH) 2 shell thickening by photoluminescence (PL) spectra at room temperature and the luminescence lifetime of transition from 4T 1 to 6A 1 of Mn 2+ ions was also prolonged. This result was led by the effective, robust passivation of ZnS surface states by the Zn(OH) 2 shells, which consequently suppressed nonradiative recombination transitions.

  8. Using luciferase to image bacterial infections in mice.

    PubMed

    Chang, Mi Hee; Cirillo, Suat L G; Cirillo, Jeffrey D

    2011-01-01

    infections in real time. After luciferin injection, images are acquired using the IVIS Imaging System. During imaging, mice are anesthetized with isoflurane using an XGI-8 Gas Anethesia System. Images can be analyzed to localize and quantify the signal source, which represents the bacterial infection site(s) and number, respectively. After imaging, CFU determination is carried out on homogenized tissue to confirm the presence of bacteria. Several doses of bacteria are used to correlate bacterial numbers with luminescence. Imaging can be applied to study of pathogenesis and evaluation of the efficacy of antibacterial compounds and vaccines. PMID:21372790

  9. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in

  10. Development of luminescent bacteria as tracers for geological reservoir characterization

    SciTech Connect

    King, J.W.

    1991-10-01

    Bioluminescent cultures were acquired and tested for use as biological tracers for reservoir characterization by small independent oil companies. Initially these bacterial cultures were fastidious to work with, but when we finally determined their critical growth parameters simple test variations were developed that could be routinely accomplished. The intensity of their luminescence is easily distinguished by the human eye and requires no sophisticated technical knowledge or instrumentation. Cultures were received from culture banks and collected from marine environments. In our laboratory they were screened using the criteria of optimum growth and luminescence. Three stock cultures proved to grow profusely even when variations were made in nutrient additions, salts, and temperature. These three selected cultures were not inhibited when introduced to formations and formation waters and were not overgrown by other bacteria. Cultures isolated from the Gulf of Mexico were overgrown by indigenous bacteria and therefore, they were eliminated from further screening and adaption. Experiments were performed according to three major task descriptions: 1. Establish growth and luminescencing limitations of selected bacteria in various media, varying salt concentration and temperature. 2. Adapt cultures to formation waters. 3. Determine transport limitations of bioluminescent bacteria through representative reservoir cores. 19 refs., 5 figs., 7 tabs.

  11. [Luminescence characteristics of PVK doped with Ir(ppy)3].

    PubMed

    Yang, Shao-Peng; Zhang, Xue-Feng; Zhao, Su-Ling; Xu, Zheng; Zhang, Fu-Jun; Yang, Ya-Ru; Li, Qing; Pang, Xue-Xia

    2008-03-01

    With the increasing development of organic light emitting devices (OLED), interest in the mechanisms of charge carrier photogeneration, separation, transport and recombination continues to grow. Electromodulation of photoluminescence has been used as an efficient probe to investigate the evolution of primary excitation in all electric field. This method can provide useful information on carrier photogeneration, the formation and dissociation of excitons, energy transfer, and exciton recombination in the presence of electric field. The operation of OLED brings electrons and holes from opposite electrodes and generates singlet and triplet excitons. However, triplet excitons are wasted because a radiative transition from triplets is spin-forbidden. Spin statistics predicts that singlet-to-triplet ratio is 1 : 3 in organic semiconductors. One way to harvest light from triplet excitons is to use phosphorescent materials. These materials incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling. As a result, a spin forbidden transition may occur allowing an enhanced triplet emission. Among phosphorescent materials, Ir(ppy)3 has attracted much attention because of its short triplet lifetime to minimize the triplet-triplet annihilation. High quantum efficiencies have been obtained by doping organic molecules and in polymers with Ir(ppy)3. In the present paper, the photoluminescence and electroluminescence spectra of Ir(ppy)3 doped PVK film are measured at room temperature. The device structure is ITO/PEDOT : PSS/PVK Ir(ppy)3/BCP/Alq3/Al. The results show that the luminescence capabilities of devices are different when the concentration of Ir(ppy)3 is different. When the concentration of Ir(ppy)3 is suitable, the luminescence of PVK is lower but that of Ir(ppy)3 is stronger relatively, indicating that the energy transfer from the host materials to the guest materials is sufficient. It is concluded that the device with 5% of Ir(ppy)3

  12. Bacterial Games

    NASA Astrophysics Data System (ADS)

    Frey, Erwin; Reichenbach, Tobias

    Microbial laboratory communities have become model systems for studying the complex interplay between nonlinear dynamics of evolutionary selection forces, stochastic fluctuations arising from the probabilistic nature of interactions, and spatial organization. Major research goals are to identify and understand mechanisms that ensure viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of "social" behavior. A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and conceptual framework for a deeper understanding of these ecological systems. We give an introduction to the modern formulation of these theories and illustrate their effectiveness, focusing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable, may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in nonequilibrium physics .

  13. The Landscape of Realized Homologous Recombination in Pathogenic Bacteria

    PubMed Central

    Yahara, Koji; Didelot, Xavier; Jolley, Keith A.; Kobayashi, Ichizo; Maiden, Martin C.J.; Sheppard, Samuel K.; Falush, Daniel

    2016-01-01

    Recombination enhances the adaptive potential of organisms by allowing genetic variants to be tested on multiple genomic backgrounds. Its distribution in the genome can provide insight into the evolutionary forces that underlie traits, such as the emergence of pathogenicity. Here, we examined landscapes of realized homologous recombination of 500 genomes from ten bacterial species and found all species have “hot” regions with elevated rates relative to the genome average. We examined the size, gene content, and chromosomal features associated with these regions and the correlations between closely related species. The recombination landscape is variable and evolves rapidly. For example in Salmonella, only short regions of around 1 kb in length are hot whereas in the closely related species Escherichia coli, some hot regions exceed 100 kb, spanning many genes. Only Streptococcus pyogenes shows evidence for the positive correlation between GC content and recombination that has been reported for several eukaryotes. Genes with function related to the cell surface/membrane are often found in recombination hot regions but E. coli is the only species where genes annotated as “virulence associated” are consistently hotter. There is also evidence that some genes with “housekeeping” functions tend to be overrepresented in cold regions. For example, ribosomal proteins showed low recombination in all of the species. Among specific genes, transferrin-binding proteins are recombination hot in all three of the species in which they were found, and are subject to interspecies recombination. PMID:26516092

  14. Functional silk: colored and luminescent.

    PubMed

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others. PMID:22302383

  15. Recombinant protein blends: silk beyond natural design.

    PubMed

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. PMID:26686863

  16. Recombinant laccase: I. Enzyme cloning and characterization.

    PubMed

    Nicolini, Claudio; Bruzzese, Debora; Cambria, Maria Teresa; Bragazzi, Nicola Luigi; Pechkova, Eugenia

    2013-03-01

    We obtained structural and functional characterization of a recombinant Laccase from Rigidoporus lignosus (formerly Rigidoporus microporus), a white-rot basidiomycete, by means of circular dichroism (CD) spectra, cyclic voltammetry (CV) and biochemical assays. Here we report the optimization of expression and purification procedures of a recombinant Laccase expressed in supercompetent Escherichia coli cells. We amplified the coding sequence of Laccase using PCR from cDNA and cloned into a bacterial expression system. The resulting expression plasmid, pET-28b, was under a strong T7/Lac promoter induced by IPTG (isopropyl-β-d-thiogalactoipyranoside). We obtained purification by fast protein liquid chromatography (FPLC) method. We recorded the variation of the current of a solution containing purified Laccase with increasing Syringaldazine (SGZ) concentration using a potentiometer as proof of principle, showing its compatibility with the development of a new enzymatic biosensor for medical purposes, as described in Part II. PMID:22991171

  17. Recombineering BAC transgenes for protein tagging.

    PubMed

    Ciotta, Giovanni; Hofemeister, Helmut; Maresca, Marcello; Fu, Jun; Sarov, Mihail; Anastassiadis, Konstantinos; Stewart, A Francis

    2011-02-01

    Protein tagging offers many advantages for proteomic and regulomic research, particularly due to the use of generic and highly sensitive methods that can be applied with reasonable throughput. Ideally, protein tagging is equivalent to having a high affinity antibody for every chosen protein. However, these advantages are compromised if the tagged protein is overexpressed, which is usually the case from cDNA expression vectors. BAC (bacterial artificial chromosome) transgenes present a way to express a chosen protein at physiological levels with all regulatory elements in their native configurations, including cell cycle, alternative splicing and microRNA regulation. Recombineering has become the method of choice for modifying large constructs like BACs. Here, we present a method for protein tagging by recombineering BACs, transfecting cells and evaluating tagged protein expression. PMID:20868752

  18. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  19. [Recombinant antibodies against bioweapons].

    PubMed

    Thullier, Philippe; Pelat, Thibaut; Vidal, Dominique

    2009-12-01

    The threat posed by bioweapons (BW) could lead to the re-emergence of such deadly diseases as plague or smallpox, now eradicated from industrialized countries. The development of recombinant antibodies allows tackling this risk because these recombinant molecules are generally well tolerated in human medicine, may be utilized for prophylaxis and treatment, and because antibodies neutralize many BW. Recombinant antibodies neutralizing the lethal toxin of anthrax, botulinum toxins and the smallpox virus have in particular been isolated recently, with different technologies. Our approach, which uses phage-displayed immune libraries built from non-human primates (M. fascicularis) to obtain recombinant antibodies, which may later be super-humanized (germlinized), has allowed us to obtain such BWs-neutralizing antibodies. PMID:20035695

  20. Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers.

    PubMed

    Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf

    2011-03-01

    We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions. PMID:21456750

  1. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems.

    PubMed

    Ugarova, N N; Lebedeva, O V; Frumkina, I G

    1988-09-01

    Co-immobilization methods have been developed for a bienzymatic system of luminescent Beneckea harveyi bacteria with formate dehydrogenase, glucose-6-phosphate dehydrogenase, and phosphoglucomutase. Bioluminescent assays have been devised for NADH, NAD, FMN, glucose 6-phosphate, and glucose 1-phosphate using the co-immobilized enzyme preparation. The lowest detection limits were in the picomole range with the bacterial extract and in the femtomole range with the partially purified enzymes, bacterial luciferase, and NADH:FMN oxidoreductase. PMID:3263818

  2. Detection of Bacterial Spores with Lanthanide-Macrocycle Binary Complexes

    PubMed Central

    Cable, Morgan L.; Kirby, James P.; Levine, Dana J.; Manary, Micah J.; Gray, Harry B.; Ponce, Adrian

    2009-01-01

    The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide-macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)+ binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb3+ alone, and 10-fold greater than other Ln(DO2A)+ complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb-DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)+, yielding a 3-fold increase in the signal-to-noise ratio over Tb3+. Out of the eight cases investigated, the Tb(DO2A)+ binary complex is best for the detection of bacterial spores. PMID:19537757

  3. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  4. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  5. Organization of the bacterial chromosome.

    PubMed Central

    Krawiec, S; Riley, M

    1990-01-01

    Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation. PMID:2087223

  6. Luminescence-induced photorefractive spatial solitons

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Alonzo, M.; Devaux, F.; Toncelli, A.; Argiolas, N.; Bazzan, M.; Sada, C.; Chauvet, M.

    2010-03-01

    We report the observation of spatial confinement of a pump beam into a photorefractive solitonic channel induced by luminescence [luminescence induced spatial soliton (LISS)]. Trapped beams have been obtained in erbium doped lithium niobate crystals at concentrations as high as 0.7 mol % of erbium. By pumping at 980 nm, erbium ions emit photons at 550 nm by two-step absorption, wavelength which can be absorbed by lithium niobate and originates the photorefractive effect. The luminescence at 550 nm generates at the same time the solitonic channel and the background illumination reaching a steady-state soliton regime.

  7. Mechanochromic luminescence of copper iodide clusters.

    PubMed

    Benito, Quentin; Maurin, Isabelle; Cheisson, Thibaut; Nocton, Gregory; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2015-04-01

    Luminescent mechanochromic materials are particularly appealing for the development of stimuli-responsive materials. Establishing the mechanism responsible for the mechanochromism is always an issue owing to the difficulty in characterizing the ground phase. Herein, the study of real crystalline polymorphs of a mechanochromic and thermochromic luminescent copper iodide cluster permits us to clearly establish the mechanism involved. The local disruption of the crystal packing induces changes in the cluster geometry and in particular the modification of the cuprophilic interactions, which consequently modify the emissive states. This study constitutes a step further toward the understanding of the mechanism involved in the mechanochromic luminescent properties of multimetallic coordination complexes. PMID:25755012

  8. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  9. Persistent luminescence in Ba{sub 5}(PO{sub 4}){sub 3}Cl:Eu{sup 2+},R{sup 3+} (R = Y, La, Ce, Gd, Tb and Lu)

    SciTech Connect

    Ju, Guifang; Hu, Yihua Chen, Li; Wang, Xiaojuan; Mu, Zhongfei

    2013-07-15

    Graphical abstract: - Highlights: • The persistent luminescence in Ba{sub 5}(PO{sub 4}){sub 3}Cl:Eu{sup 2+},R{sup 3+} was reported. • The influences of auxiliary codopants was discussed. • The concentration quenching of persistent luminescence was discussed. - Abstract: We investigated the persistent luminescence in europium-doped barium chloroapatite upon codoping with auxiliary rare earth ions. Luminescence properties of the phosphors, including photoluminescence, luminescence decay, and thermoluminescence are systematically studied. We formulated a model of persistent luminescence on the basis of the experimental results. In our model, some Eu{sup 2+} ions are oxidized to Eu{sup 3+} under short UV excitation, and the released electrons are trapped at the positive defect. The persistent luminescence arises from the recombination of these trapped electrons with the photo-ionized Eu{sup 3+} ions. The influence of auxiliary codopants was discussed in terms of ionic potential and ionic radius. Eventually, the concentration quenching of persistent luminescence was reported and discussed.

  10. Cell probing by delayed luminescence

    NASA Astrophysics Data System (ADS)

    Musumeci, Francesco; Ballerini, Monica; Baroni, Giuliana; Costato, Michele; Ferraro, Lorenzo; Milani, Marziale; Scordino, Agata; Triglia, Antonio

    1999-05-01

    Delayed luminescence (D.L.) is a measure that provides important information on biological systems fields, structures and activities, by counting impinging and emitted photons. Many recent experimental works have shown the existence of a close connection, sometimes analytically expressed between the biological state of the system and D.L. parameters. Our investigations aim to show that D.L. is a workable analytical technique covering a large number of disciplinary fields, from agriculture to pollution control and from medical diagnostics to food quality control. The authors have conducted systematic research about D.L. from unicellular alga Acetabularia acetabulum to Saccharomyces cerevisiae yeast cultures and about more complex systems such as Soya seed (Glycine max, L.) and its dependence on sample preparation, history, intracellular signaling, metabolism and pollutant presence. We will discuss the most relevant results together with theoretical considerations on the basic interaction at work between biological systems and electromagnetic fields.