Science.gov

Sample records for recombinant vaccine administered

  1. Recombinant Protective Antigen Anthrax Vaccine Improves Survival when Administered as a Postexposure Prophylaxis Countermeasure with Antibiotic in the New Zealand White Rabbit Model of Inhalation Anthrax

    PubMed Central

    Bourdage, James S.; Williamson, E. Diane; Duchars, Matthew; Fuerst, Thomas R.; Fusco, Peter C.

    2012-01-01

    Inhalation anthrax is a potentially lethal form of disease resulting from exposure to aerosolized Bacillus anthracis spores. Over the last decade, incidents spanning from the deliberate mailing of B. anthracis spores to incidental exposures in users of illegal drugs have highlighted the importance of developing new medical countermeasures to protect people who have been exposed to “anthrax spores” and are at risk of developing disease. The New Zealand White rabbit (NZWR) is a well-characterized model that has a pathogenesis and clinical presentation similar to those seen in humans. This article reports how the NZWR model was adapted to evaluate postexposure prophylaxis using a recombinant protective antigen (rPA) vaccine in combination with an oral antibiotic, levofloxacin. NZWRs were exposed to multiples of the 50% lethal dose (LD50) of B. anthracis spores and then vaccinated immediately (day 0) and again on day 7 postexposure. Levofloxacin was administered daily beginning at 6 to 12 h postexposure for 7 treatments. Rabbits were evaluated for clinical signs of disease, fever, bacteremia, immune response, and survival. A robust immune response (IgG anti-rPA and toxin-neutralizing antibodies) was observed in all vaccinated groups on days 10 to 12. Levofloxacin plus either 30 or 100 μg rPA vaccine resulted in a 100% survival rate (18 of 18 per group), and a vaccine dose as low as 10 μg rPA resulted in an 89% survival rate (16 of 18) when used in combination with levofloxacin. In NZWRs that received antibiotic alone, the survival rate was 56% (10 of 18). There was no adverse effect on the development of a specific IgG response to rPA in unchallenged NZWRs that received the combination treatment of vaccine plus antibiotic. This study demonstrated that an accelerated two-dose regimen of rPA vaccine coadministered on days 0 and 7 with 7 days of levofloxacin therapy results in a significantly greater survival rate than with antibiotic treatment alone. Combination of

  2. Controlled trial of immune response of preterm infants to recombinant hepatitis B and inactivated poliovirus vaccines administered simultaneously shortly after birth

    PubMed Central

    Linder, N.; Handsher, R.; German, B.; Sirota, L.; Bachman, M.; Zinger, S.; Mendelson, E.; Barzilai, A.

    2000-01-01

    AIM—The study was conducted to evaluate the immunogenicity of an early, extra dose of enhanced inactivated poliovirus vaccine (IPV) administered simultaneously with recombinant hepatitis B vaccine (HBV) to preterm infants shortly after birth.
METHODS—Three groups were studied. Fifty preterm infants received IPV intramuscularly within 24 hours of birth, in addition to routine recommended childhood immunisations. Fifty two preterm infants and 35 full term infants received routine immunisations only (routine vaccination timing: HBV at birth, 1 and 6 months of age; IPV at 2 and 4 months; oral polio vaccine (OPV) at 4 and 6 months; diphtheria-tetanus-pertussis (DTP) at 2, 4, and 6 months; and Haemophilus influenzae B vaccine at 2 and 4 months). Blood samples were taken at birth, 3 and 7months of age from all infants, and at 1 month of age from preterm infants only.
RESULTS—At birth, a lower percentage of both study and control preterm infants had antipoliovirus type 3 titres ⩾ 1:8 than full term infants. At 1 and 3 months of age significantly more early IPV infants had antipoliovirus type 3 titres ⩾ 1:8 than routinely vaccinated preterm infants (p < 0.05). At 7 months of age there were no significant differences in percentage of antipoliovirus titres ⩾ 1:8 or geometric mean times (GMTs) between the early IPV group and the routinely vaccinated preterm group. At 3 and 7 months of age, the percentage of positive antihepatitis B titres (⩾ 1:10) and the GMT of the early IPV preterm group did not differ significantly from those of preterm controls. There was no significant difference in percentage of positive antihepatitis B titres between the early IPV group and full term controls at any time. GMTs for hepatitis B antibodies were significantly lower in the early IPV preterm group than in full term controls at 3 and 7 months of age.
CONCLUSIONS—Administration of an additional dose of IPV simultaneously with routine HBV to preterm infants shortly after

  3. Recombinant influenza vaccines.

    PubMed

    Sedova, E S; Shcherbinin, D N; Migunov, A I; Smirnov, Iu A; Logunov, D Iu; Shmarov, M M; Tsybalova, L M; Naroditskiĭ, B S; Kiselev, O I; Gintsburg, A L

    2012-10-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains. PMID:23346377

  4. Recombinant vaccines against leptospirosis.

    PubMed

    Dellagostin, Odir A; Grassmann, André A; Hartwig, Daiane D; Félix, Samuel R; da Silva, Éverton F; McBride, Alan J A

    2011-11-01

    Leptospirosis is an important neglected infectious disease that occurs in urban environments, as well as in rural regions worldwide. Rodents, the principal reservoir hosts of pathogenic Leptospira spp., and other infected animals shed the bacteria in their urine. During occupational or even recreational activities, humans that come into direct contact with infected animals or with a contaminated environment, particularly water, are at risk of infection. Prevention of urban leptospirosis is largely dependent on sanitation measures that are often difficult to implement, especially in developing countries. Vaccination with inactivated whole-cell preparations (bacterins) has limited efficacy due to the wide antigenic variation of the pathogen. Intensive efforts towards developing improved recombinant vaccines are ongoing. During the last decade, many reports on the evaluation of recombinant vaccines have been published. Partial success has been obtained with some surface-exposed protein antigens. The combination of protective antigens and new adjuvants or delivery systems may result in the much-needed effective vaccine. PMID:22048111

  5. Efficacy of Recombinant HVT-IBD Vaccines Administered to Broiler Chicks from a Single Breeder Flock at 30 and 60 Weeks of Age.

    PubMed

    Gelb, Jack; Jackwood, Daral J; Brannick, Erin M; Ladman, Brian S

    2016-09-01

    The efficacy of commercially available recombinant herpesvirus of turkeys-infectious bursal disease (rHVT-IBD) virus vaccines was studied in broiler chickens derived from an IBDV-vaccinated breeder flock at 30 wk of age (Trial 1) and 60 wk of age (Trial 2). In parallel, specific-pathogen-free (SPF) white leghorn chickens were used to evaluate vaccine efficacy to control for the effects of maternally derived antibodies (MDA) associated with the broiler chickens. Broilers and SPF leghorns were vaccinated subcutaneously in the neck at 1 day of age with Vaxxitek® HVT+IBD or Vectormune® HVT-IBD vaccines and were placed in isolators. On 10, 14, 18, 22, and 26 days postvaccination (DPV), vaccinated and nonvaccinated broilers and SPF leghorns were bled prior to challenge via the oral-nasal route with infectious bursal disease (IBD) reference strains ST-C, Delaware variant E (Del E), or contemporary field isolates DMV/5038/07 or FF6. Microscopic lesion assessment of the bursa was useful for assessing IBDV challenge in both rHVT-IBD-vaccinated broiler and SPF leghorn chickens. In general, rHVT-IBD vaccines induced greater protection as the time between vaccination and challenge increased. Based on incidence of microscopic lesions (IML) of bursa tissue, Vaxxitek HVT+IBD vaccination of SPF leghorns induced protection by 18 DPV and continued to protect 22 DPV and 26 DPV in Trials 1 and 2. Vectormune HVT-IBD vaccine induced protection of SPF leghorns by 18 or 22 DPV in Trial 1, depending upon the IBDV challenge strain. However, the onset of protection was delayed until 22 or 26 DPV in Trial 2. With either commercial vaccine, rHVT-IBD vaccination of broiler chickens was not as effective as was observed in SPF leghorns, based on IML of bursa tissue. However, Vaxxitek HVT+IBD vaccination protected broilers following challenge with ST-C in both Trial 1 (30-wk-old breeder progeny) and Trial 2 (60-wk-old breeder progeny). Partial protection against FF6 (Trial 1) and DMV/5038

  6. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses. PMID:10774221

  7. Oral vaccination of dogs with recombinant rabies virus vaccines.

    PubMed

    Rupprecht, Charles E; Hanlon, Cathleen A; Blanton, Jesse; Manangan, Jamie; Morrill, Patricia; Murphy, Staci; Niezgoda, Michael; Orciari, Lillian A; Schumacher, Carolin L; Dietzschold, Bernhard

    2005-07-01

    Oral rabies virus (RV) vaccines are used to immunize a diversity of mammalian carnivores, but no single biological is effective for all major species. Recently, advances in reverse genetics have allowed the design of recombinant RV for consideration as new vaccines. The objective of this experiment was to examine the safety, immunogenicity and efficacy of recombinant RV vaccines administered to captive dogs by the oral route, compared to a commercial vaccinia-rabies glycoprotein (V-RG) recombinant virus vaccine. Animals consisted of naive purpose-bred beagles of both sexes, and were 6 months of age or older. Dogs were randomly assigned to one of six groups, and received either diluent or vaccine (PBS; V-RG; RV SN10-333; RV SPBN-Cyto c; RV SPBNGA; RV SPBNGAGA), with at least six animals per group. On day 0, 1 ml of each vaccine (or PBS) was administered to the oral cavity of each dog, at an approximate concentration of 10(8) to 10(9) TCID50. After vaccination, dogs were observed daily and bled weekly, for 5 weeks, prior to RV challenge. No signs of illness related to vaccination were detected during the observation period. Excluding the controls, RV neutralizing antibodies were detected in the majority of animals within 1-2 weeks of primary vaccination. Thereafter, all dogs were inoculated in the masseter muscle with a street virus of canine origin. All control animals developed rabies, but no vaccinates succumbed, with the exception of a single dog in the V-RG group. Review of these preliminary data demonstrates the non-inferiority of recombinant RV products, as concerns both safety and efficacy, and supports the suggestion that these vaccines may hold promise for future development as oral immunogens for important carnivore species, such as dogs. PMID:15896409

  8. Interactions of conjugate vaccines and co-administered vaccines.

    PubMed

    Findlow, H; Borrow, R

    2016-01-01

    Conjugate vaccines play an important role in the prevention of infectious diseases such as those caused by the bacteria Haemophilus influenzae (Hi) type b (Hib), Neisseria meningitidis, and Streptococcus pneumoniae. Vaccines developed against these 3 pathogens utilize 3 main carrier proteins, non-toxic mutant of diphtheria toxin (CRM197), diphtheria toxoid (DT) and tetanus toxoid (TT). Current pediatric immunisation schedules include the administration of several vaccines simultaneously, therefore increasing the potential for immune interference (both positively and negatively) to the antigens administered. Knowledge of vaccine interactions is principally derived from clinical trials, these are reviewed here to explore immune interference which may result of from carrier-specific T-cell helper interactions, bystander interference and carrier induced epitopic suppression. PMID:26619353

  9. Recombinant Swinepox Virus for Veterinary Vaccine Development.

    PubMed

    Fan, Hong-Jie; Lin, Hui-Xing

    2016-01-01

    Poxvirus-vectors have been widely used in vaccine development for several important human and animal diseases; some of these vaccines have been licensed and used extensively. Swinepox virus (SPV) is well suited to develop recombinant vaccines because of its large packaging capacity for recombinant DNA, its host range specificity, and its ability to induce appropriate immune responses. PMID:26458836

  10. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  11. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  12. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Cancer.gov

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  13. DNA vaccines encoding the envelope protein of West Nile virus lineages 1 or 2 administered intramuscularly, via electroporation and with recombinant virus protein induce partial protection in large falcons (Falco spp.).

    PubMed

    Fischer, Dominik; Angenvoort, Joke; Ziegler, Ute; Fast, Christine; Maier, Kristina; Chabierski, Stefan; Eiden, Martin; Ulbert, Sebastian; Groschup, Martin H; Lierz, Michael

    2015-01-01

    As West Nile virus (WNV) can cause lethal diseases in raptors, a vaccination prophylaxis of free-living and captive populations is desirable. In the absence of vaccines approved for birds, equine vaccines have been used in falcons, but full protection against WNV infection was not achieved. Therefore, two DNA vaccines encoding the ectodomain of the envelope protein of WNV lineages 1 and 2, respectively, were evaluated in 28 large falcons. Four different vaccination protocols were used, including electroporation and booster-injections of recombinant WNV domain III protein, before challenge with the live WNV lineage 1 strain NY99. Drug safety, plasmid shedding and antibody production were monitored during the vaccination period. Serological, virological, histological, immunohistochemical and molecular biological investigations were performed during the challenge trials. Antibody response following vaccination was low overall and lasted for a maximum of three weeks. Plasmid shedding was not detected at any time. Viremia, mortality and levels, but not duration, of oral virus shedding were reduced in all of the groups during the challenge trial compared to the non-vaccinated control group. Likewise, clinical scoring, levels of cloacal virus shedding and viral load in organs were significantly reduced in three vaccination groups. Histopathological findings associated with WNV infections (meningo-encephalitis, myocarditis, and arteritis) were present in all groups, but immunohistochemical detection of the viral antigen was reduced. In conclusion, the vaccines can be used safely in falcons to reduce mortality and clinical signs and to lower the risk of virus transmission due to decreased levels of virus shedding and viremia, but full protection was not achieved in all groups. PMID:26282836

  14. Vaccine development using recombinant DNA technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines induce an immune response in the host that subsequently recognizes infectious agents and helps fight off the disease; vaccines must do this without causing the disease. This paper reviews the development of recombinant DNA technologies as a means of providing new ways for attenuating diseas...

  15. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    PubMed

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches. PMID:27076288

  16. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... small amount of a mercury-based preservative called thimerosal. Studies have not shown thimerosal in vaccines to be harmful, but flu vaccines that do not contain thimerosal are available.There is no live flu virus ...

  17. Recombinant hepatitis B triple antigen vaccine: Hepacare.

    PubMed

    Zuckerman, Jane N; Zuckerman, Arie J

    2002-08-01

    Infection with hepatitis B virus is a public health problem throughout the world. Hepatitis B vaccines are now included in national immunization programmes of infants and/or adolescents in 129 countries. Current single antigen vaccines, that are plasma-derived or produced by recombinant DNA technology are highly effective, but between 5-10% or more of healthy immunocompetent subjects do not mount an antihepatitis B surface antibody protective response and others respond poorly (hyporesponders). The inclusion of pre-S1 and -S2 components of hepatitis B surface antigen in addition to the single antigen (triple antigen) in a novel vaccine, Hepacare, Medeva Pharma Plc, Speke, UK, overcomes nonresponsiveness and hyporesponsiveness in a significant number of individuals. The triple antigen is indicated for vaccination of nonresponders (and hyporesponders) to the current single antigen vaccines and for persons who require rapid protection against hepatitis B infection. PMID:12901552

  18. Molecular and immunological characterisation of recombinant Brucella abortus glyceraldehyde-3-phosphate-dehydrogenase, a T- and B-cell reactive protein that induces partial protection when co-administered with an interleukin-12-expressing plasmid in a DNA vaccine formulation.

    PubMed

    Rosinha, Gracia M S; Myioshi, Anderson; Azevedo, Vasco; Splitter, Gary A; Oliveira, Sergio C

    2002-08-01

    To identify antigens of Brucella spp. that are potentially involved in stimulating a protective T-cell-mediated immune response, previous studies identified 10 clones from a Brucella abortus 2308 genomic library with primed lymphocytes as probes. One selected positive clone (182) contained an insert of 1.2 kb which was identified, sequenced and characterised. The deduced amino acid sequence of the open reading frame (ORF) revealed 82% and 81% identity to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes from Agrobacterium tumefaciens and Xanthobacter flavus, respectively. Southern blot analysis demonstrated that the gap gene is present in only one copy in the Brucella genome. B. abortus GAPDH was then expressed in Escherichia coli as a fusion protein with the maltose-binding protein (MBP). To demonstrate the functional activity of Brucella GAPDH, E. coli gap mutants were transformed with a Brucella pMAL-gap construct. Genetic complementation was achieved and as a result E. coli mutants were able to grow on glucose or other carbon source medium. The humoral and cellular immune responses to the recombinant (r) GAPDH were characterised. In Western blots, sera from naturally infected cattle and sheep showed antibody reactivity against rGAPDH. In response to in-vitro stimulation by rGAPDH, splenocytes from mice vaccinated with rGAPDH or B. abortus S19 were able to produce gamma-interferon and tumour necrosis factor-a but not interleukin (IL)-4. Furthermore, gap associated with murine IL-12 gene in a DNA vaccine formulation partially protected mice against experimental infection. PMID:12171297

  19. Recombinant viral vaccines for enzootic bovine leucosis.

    PubMed

    Daniel, R C; Gatei, M H; Good, M F; Boyle, D B; Lavin, M F

    1993-10-01

    Recently published studies on the development and use of recombinant vaccinia virus (VV) vaccines incorporating either the complete envelope (env) gene or only a fragment of the env gene consisting of the coding sequence for the env glycoprotein 51 (gp51) and part of gp30 of the bovine leukaemia virus (BLV) are described. It has been reported that vaccination of sheep with recombinant VV vaccines containing the complete env gene appears to protect sheep against challenge infection with BLV. The evidence for this protection is based on the lack of persistence of high titres of anti-gp51 antibodies compared with unvaccinated BLV infected controls, on the enhanced CD4 proliferative responses to specific BLV gp51 synthetic peptides in the vaccinated sheep, and on the inability to detect BLV pro-virus by polymerase chain reaction in the vaccinated sheep after 4 months following challenge infection compared with continual detection in unvaccinated sheep over a 16 month trial period. It has been suggested that cell-mediated immune responses may be an important aspect of protective immunity against BLV infection and it has been reported that large tracts of amino acid sequences within the env and pol genes are highly conserved in different isolates from different countries which is of importance in designing peptide derived vaccines. PMID:8270269

  20. Three-year duration of immunity in dogs vaccinated with a canarypox-vectored recombinant canine distemper virus vaccine.

    PubMed

    Larson, L J; Schultz, R D

    2007-01-01

    Two studies evaluated the duration of serologic response to the recombinant, canarypox-vectored canine distemper virus vaccine (Recombitek, Merial). Serologic duration of immunity was shown to be at least 36 months. Thus, Recombitek provides protection when administered less frequently than the manufacturer's label. After the initial vaccination protocol of two or more doses administered approximately 4 weeks apart, with the last dose given at 12 to 16 weeks of age or older, and re-vaccination at 1 year of age, Recombitek can confidently be readministered every 3 years with assurance of protection in immunocompetent dogs. This allows the vaccine to be administered in accordance with the recommendations of the American Animal Hospital Association Canine Vaccine Task Force and others. PMID:17616944

  1. Recombinant protein vaccines produced in insect cells.

    PubMed

    Cox, Manon M J

    2012-02-27

    The baculovirus-insect cell expression system is a well known tool for the production of complex proteins. The technology is also used for commercial manufacture of various veterinary and human vaccines. This review paper provides an overview of how this technology can be applied to produce a multitude of vaccine candidates. The key advantage of this recombinant protein manufacturing platform is that a universal "plug and play" process may be used for producing a broad range of protein-based prophylactic and therapeutic vaccines for both human and veterinary use while offering the potential for low manufacturing costs. Large scale mammalian cell culture facilities previously established for the manufacturing of monoclonal antibodies that have now become obsolete due to yield improvement could be deployed for the manufacturing of these vaccines. Alternatively, manufacturing capacity could be established in geographic regions that do not have any vaccine production capability. Dependent on health care priorities, different vaccines could be manufactured while maintaining the ability to rapidly convert to producing pandemic influenza vaccine when the need arises. PMID:22265860

  2. Multivalent Recombinant Protein Vaccine against Coccidioidomycosis

    PubMed Central

    Tarcha, Eric J.; Basrur, Venkatesha; Hung, Chiung-Yu; Gardner, Malcolm J.; Cole, Garry T.

    2006-01-01

    Coccidioidomycosis is a human respiratory disease that is endemic to the southwestern United States and is caused by inhalation of the spores of a desert soilborne fungus. Efforts to develop a vaccine against this disease have focused on identification of T-cell-reactive antigens derived from the parasitic cell wall which can stimulate protective immunity against Coccidioides posadasii infection in mice. We previously described a productive immunoproteomic/bioinformatic approach to the discovery of vaccine candidates which makes use of the translated genome of C. posadasii and a computer-based method of scanning deduced sequences of seroreactive proteins for epitopes that are predicted to bind to human major histocompatibility (MHC) class II-restricted molecules. In this study we identified a set of putative cell wall proteins predicted to contain multiple, promiscuous MHC II binding epitopes. Three of these were expressed by Escherichia coli, combined in a vaccine, and tested for protective efficacy in C57BL/6 mice. Approximately 90% of the mice survived beyond 90 days after intranasal challenge, and the majority cleared the pathogen. We suggest that the multicomponent vaccine stimulates a broader range of T-cell clones than the single recombinant protein vaccines and thereby may be capable of inducing protection in an immunologically heterogeneous human population. PMID:16988258

  3. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis.

    PubMed

    Robinson, K; Chamberlain, L M; Schofield, K M; Wells, J M; Le Page, R W

    1997-07-01

    To determine whether a protective immune response could be elicited by oral delivery of a recombinant bacterial vaccine, tetanus toxin fragment C (TTFC) was expressed constitutively in Lactococcus lactis and administered orally to C57 BL/6 mice. The antibody titers elicited were lower than those following intranasal immunization (a route already known to result in high-level systemic anti-TTFC immune responses) but the protective efficacy was the same order of magnitude. The serum antibody isotypes elicited were predominantly IgG1 and IgG2a. TTFC-specific fecal IgA responses could be detected following oral or intranasal immunization. Chemically killed lactococci administered via the intranasal route were also able to elicit serum antibody responses of similar levels and kinetics to those induced by live bacteria. PMID:9219268

  4. Multiplex PCR Method for Identifying Recombinant Vaccine-Related Polioviruses

    PubMed Central

    Kilpatrick, David R.; Ching, Karen; Iber, Jane; Campagnoli, Ray; Freeman, Christopher J.; Mishrik, Nada; Liu, Hong-Mei; Pallansch, Mark A.; Kew, Olen M.

    2004-01-01

    The recent discovery of recombinant circulating vaccine-derived poliovirus (recombinant cVDPV) has highlighted the need for enhanced global poliovirus surveillance to assure timely detection of any future cVDPV outbreaks. Six pairs of Sabin strain-specific recombinant primers were designed to permit rapid screening for VDPV recombinants by PCR. PMID:15365031

  5. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  6. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein.

    PubMed

    Chen, Zhenhai; Zhou, Ming; Gao, Xiudan; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Fu, Zhen F; He, Biao

    2013-03-01

    Untreated rabies virus (RABV) infection leads to death. Vaccine and postexposure treatment have been effective in preventing RABV infection. However, due to cost, rabies vaccination and treatment have not been widely used in developing countries. There are 55,000 human death caused by rabies annually. An efficacious and cost-effective rabies vaccine is needed. Parainfluenza virus 5 (PIV5) is thought to contribute to kennel cough, and kennel cough vaccines containing live PIV5 have been used in dogs for many years. In this work, a PIV5-vectored rabies vaccine was tested in mice. A recombinant PIV5 encoding RABV glycoprotein (G) (rPIV5-RV-G) was administered to mice via intranasal (i.n.), intramuscular (i.m.), and oral inoculation. The vaccinated mice were challenged with a 50% lethal challenge dose (LD(50)) of RABV challenge virus standard 24 (CVS-24) intracerebrally. A single dose of 10(6) PFU of rPIV5-RV-G was sufficient for 100% protection when administered via the i.n. route. The mice vaccinated with a single dose of 10(8) PFU of rPIV5-RV-G via the i.m. route showed very robust protection (90% to 100%). Intriguingly, the mice vaccinated orally with a single dose of 10(8) PFU of rPIV5-RV-G showed a 50% survival rate, which is comparable to the 60% survival rate among mice inoculated with an attenuated rabies vaccine strain, recombinant LBNSE. This is first report of an orally effective rabies vaccine candidate in animals based on PIV5 as a vector. These results indicate that rPIV5-RV-G is an excellent candidate for a new generation of recombinant rabies vaccine for humans and animals and PIV5 is a potential vector for oral vaccines. PMID:23269806

  7. Development of recombinant vaccines for botulinum neurotoxin.

    PubMed

    Smith, L A

    1998-11-01

    Synthetic genes encoding non-toxic, carboxyl-terminal regions (approximately 50 kDa) of botulinum neurotoxin (BoNT) serotypes A and B (referred to as fragment C or HC) were constructed and cloned into the methylotropic yeast, Pichia pastoris. Genes specifying BoNTA(HC) and BoNTB(HC) were expressed as both intracellular and secreted products. Recombinants, expressed intracellularly, yielded products with the expected molecular weight as judged by SDS PAGE and Western blot (immunoblot) analysis, while secreted products were larger due to glycosylation. Gene products were used to vaccinate mice and evaluated for their ability to elicit protective antibody titers in vivo. Mice given three intramuscular vaccinations with yeast supernatant containing glycosylated BoNTA(HC) were protected against an intraperitoneal challenge of 10(6) 50% mouse lethal doses (MLD50) of serotype A neurotoxin, a result not duplicated by its BoNTB(HC) counterpart. Vaccinating mice with cytoplasmically produced BoNTA(HC) and BoNTB(HC) protected animals from a challenge of 10(6) MLD50 of serotype A and B toxins, respectively. Because of the glycosylation encountered with secreted BoNT(HC), our efforts focused on the production and purification of products from intracellular expression. PMID:9792170

  8. Recombinant vaccine for canine parvovirus in dogs.

    PubMed

    López de Turiso, J A; Cortés, E; Martínez, C; Ruiz de Ybáñez, R; Simarro, I; Vela, C; Casal, I

    1992-05-01

    VP2 is the major component of canine parvovirus (CPV) capsids. The VP2-coding gene was engineered to be expressed by a recombinant baculovirus under the control of the polyhedrin promoter. A transfer vector that contains the lacZ gene under the control of the p10 promoter was used in order to facilitate the selection of recombinants. The expressed VP2 was found to be structurally and immunologically indistinguishable from authentic VP2. The recombinant VP2 shows also the capability to self-assemble, forming viruslike particles similar in size and appearance to CPV virions. These viruslike particles have been used to immunize dogs in different doses and combinations of adjuvants, and the anti-CPV responses have been measured by enzyme-linked immunosorbent assay, monolayer protection assays, and an assay for the inhibition of hemagglutination. A dose of ca. 10 micrograms of VP2 was able to elicit a good protective response, higher than that obtained with a commercially available, inactivated vaccine. The results indicate that these viruslike particles can be used to protect dogs from CPV infection. PMID:1313899

  9. Comparison of oral and intramuscular recombinant canine distemper vaccination in African wild dogs (Lycaon pictus).

    PubMed

    Connolly, Maren; Thomas, Patrick; Woodroffe, Rosie; Raphael, Bonnie L

    2013-12-01

    A series of three doses of recombinant canary-pox-vectored canine distemper virus vaccine was administered at 1-mo intervals, orally (n = 8) or intramuscularly (n = 13), to 21 previously unvaccinated juvenile African wild dogs (Lycaon pictus) at the Wildlife Conservation Society's Bronx Zoo. Titers were measured by serum neutralization at each vaccination and at intervals over a period of 3.5-21.5 mo after the initial vaccination. All postvaccination titers were negative for orally vaccinated animals at all sampling time points. Of the animals that received intramuscular vaccinations, 100% had presumed protective titers by the end of the course of vaccination, but only 50% of those sampled at 6.5 mo postvaccination had positive titers. None of the three animals sampled at 21.5 mo postvaccination had positive titers. PMID:24450046

  10. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    MedlinePlus

    ... your family and other people. 2. Inactivated and recombinant flu vaccines A dose of flu vaccine is recommended every ... Vaccine Information Statement. Influenza (Flu) Vaccine (Inactivated or ... website at www.cdc.gov/vaccines/hcp/vis/vis-statements/ ...

  11. Preclinical and clinical development of a dengue recombinant subunit vaccine.

    PubMed

    Manoff, Susan B; George, Sarah L; Bett, Andrew J; Yelmene, Michele L; Dhanasekaran, Govindarajan; Eggemeyer, Linda; Sausser, Michele L; Dubey, Sheri A; Casimiro, Danilo R; Clements, David E; Martyak, Timothy; Pai, Vidya; Parks, D Elliot; Coller, Beth-Ann G

    2015-12-10

    This review focuses on a dengue virus (DENV) vaccine candidate based on a recombinant subunit approach which targets the DENV envelope glycoprotein (E). Truncated versions of E consisting of the N-terminal portion of E (DEN-80E) have been expressed recombinantly in the Drosophila S2 expression system and shown to have native-like conformation. Preclinical studies demonstrate that formulations containing tetravalent DEN-80E adjuvanted with ISCOMATRIX™ adjuvant induce high titer virus neutralizing antibodies and IFN-γ producing T cells in flavivirus-naïve non-human primates. The preclinical data further suggest that administration of such formulations on a 0, 1, 6 month schedule may result in higher maximum virus neutralizing antibody titers and better durability of those titers compared to administration on a 0, 1, 2 month schedule. In addition, the virus neutralizing antibody titers induced by adjuvanted tetravalent DEN-80E compare favorably to the titers induced by a tetravalent live virus comparator. Furthermore, DEN-80E was demonstrated to be able to boost virus neutralizing antibody titers in macaques that have had a prior DENV exposure. A monovalent version of the vaccine candidate, DEN1-80E, was formulated with Alhydrogel™ and studied in a proof-of-principle Phase I clinical trial by Hawaii Biotech, Inc. (NCT00936429). The clinical trial results demonstrate that both the 10 μg and 50 μg formulations of DEN1-80E with 1.25 mg of elemental aluminum were immunogenic when administered in a 3-injection series (0, 1, 2 months) to healthy, flavivirus-naïve adults. The vaccine formulations induced DENV-1 neutralizing antibodies in the majority of subjects, although the titers in most subjects were modest and waned over time. Both the 10 μg DEN1-80E and the 50 μg DEN1-80E formulations with Alhydrogel™ were generally well tolerated. PMID:26458804

  12. Effect of recombinant canine distemper vaccine on antibody titers in previously vaccinated dogs.

    PubMed

    Larson, L J; Hageny, T L; Haase, C J; Schultz, R D

    2006-01-01

    Two canine distemper virus (CDV) vaccine types are currently commercially available: modified-live virus (MLV) vaccines and a canarypox recombinant CDV (rCDV) vaccine (Recombitek, Merial). This study compared the ability of the rCDV vaccine and MLV vaccines to significantly enhance (boost) the antibody response of previously immunized adult and juvenile dogs. A significant (fourfold or greater) increase in titer occurred in significantly more dogs revaccinated with Recombitek C-4 or Recombitek C-6 than with the MLV-CDV vaccines. This study demonstrates that Recombitek, the only vaccine for dogs containing rCDV, is more likely to significantly boost the CDV antibody response in previously vaccinated dogs than are the MLV-CDV vaccines. Because rCDV vaccine can boost the antibody titer of dogs previously vaccinated with an MLV vaccine, it can and should be used when core vaccines are readministered. PMID:16871492

  13. Validation of the Chlamydia trachomatis genital challenge pig model for testing recombinant protein vaccines.

    PubMed

    Schautteet, Katelijn; Stuyven, Edith; Cox, Eric; Vanrompay, Daisy

    2011-01-01

    Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen that is the leading cause of bacterial sexually transmitted disease in humans in developing countries. A vaccination programme is considered to be the best approach to reduce the prevalence of C. trachomatis infections. However, there are still no commercial C. trachomatis vaccines. In order to develop effective C. trachomatis vaccines, it is important to identify those antigens that elicit a protective immune response, and to develop new and adequate methods and adjuvants for effective vaccine delivery, as conventional methods have failed to induce protective immunity. In order to test different vaccine candidates, animal models are needed. Former studies have used non-primate monkeys, mice or guinea pig infection models. The present study used a pig model for testing recombinant protein vaccines. Two recombinant proteins, polymorphic membrane protein G (PmpG), and secretion and cellular translocation protein C (SctC), were tested for their ability to create protection in a pig C. trachomatis challenge model. The vaccines were administered subcutaneously with GNE adjuvant. Six weeks later, animals were challenged intravaginally with C. trachomatis serovar E. After a further 4 weeks, the pigs were euthanized. PmpG-immunized pigs were better protected than pigs immunized with the less promising SctC candidate vaccine antigen. Interestingly, significant protection was apparently not correlated with a strong humoral immune response upon subcutaneous immunization. In conclusion, the pig model is useful for studying the efficacy of vaccine candidates against genital human C. trachomatis infection. PMID:20847123

  14. Commercialisation of a recombinant vaccine against Boophilus microplus.

    PubMed

    Willadsen, P; Bird, P; Cobon, G S; Hungerford, J

    1995-01-01

    Increasingly, there is need for methods to control cattle tick (Boophilus microplus) infestations by the use of non-chemical technology. This need is brought about by a mixture of market forces and the failure or inadequacy of existing technology. A recombinant vaccine has now been developed against the tick. This vaccine relies on the uptake with the blood meal of antibody directed against a critical protein in the tick gut. The isolation of the vaccine antigen, Bm86, and its production as a recombinant protein is briefly described. The vaccine has been tested in the field, has been taken through the full registration process and is now in commercial use in Australia. A related development has occurred in Cuba. The potential for improvement of the current vaccine and for the development of similar vaccines against other haematophagous parasites is discussed. PMID:7784128

  15. Safety of Intravitreally Administered Recombinant Erythropoietin (An AOS Thesis)

    PubMed Central

    Tsai, James C.

    2008-01-01

    Purpose This study investigated the safety and potential retinal toxicity of intravitreally administered erythropoietin (EPO) in a rodent animal model. Methods Forty-two healthy Sprague-Dawley rats were divided into one of 7 groups (N = 6 per group): control, sham injection, vehicle injection, and EPO injections of 50 ng (5 U), 100 ng (10 U), 250 ng (25 U), and 625 ng (62.5 U). Only the right eye was treated in each animal. Standard full-field dark- and light-adapted electroretinography (ERG) was obtained at 1 day prior to injection and then on postinjection days 3, 7, 14, and 21. Intraocular pressure (IOP) was measured at the conclusion of each ERG recording. Animals were sacrificed and the eyes underwent histologic examination with light microscopy and hematoxylin-eosin staining. Results Rod peak, scotopic, and photopic responses (amplitude and latency) were not statistically different in the animals receiving 50 to 100 ng EPO. In the 250-ng group, the photopic b-wave amplitude at day 21 was elevated (P <.05), whereas in the 625-ng group, the scotopic OP3 latency ratio was higher at baseline (P <.05). No significant histologic abnormalities were noted except for one animal (625-ng group) with qualitative differences in retinal layer thickness and cellular density. Conclusions Intravitreal administration of EPO (at doses up to 625 ng) does not cause adverse effects on retinal function as assessed by ERG. Moreover, single intravitreal dosing does not appear to elicit retinal neovascularization. Further investigation is warranted to assess fully the potential of this neuroprotective cytokine as a treatment for glaucoma. PMID:19277250

  16. Attenuated vaccines can recombine to form virulent field viruses.

    PubMed

    Lee, Sang-Won; Markham, Philip F; Coppo, Mauricio J C; Legione, Alistair R; Markham, John F; Noormohammadi, Amir H; Browning, Glenn F; Ficorilli, Nino; Hartley, Carol A; Devlin, Joanne M

    2012-07-13

    Recombination between herpesviruses has been seen in vitro and in vivo under experimental conditions. This has raised safety concerns about using attenuated herpesvirus vaccines in human and veterinary medicine and adds to other known concerns associated with their use, including reversion to virulence and disease arising from recurrent reactivation of lifelong chronic infection. We used high-throughput sequencing to investigate relationships between emergent field strains and vaccine strains of infectious laryngotracheitis virus (ILTV, gallid herpesvirus 1). We show that independent recombination events between distinct attenuated vaccine strains resulted in virulent recombinant viruses that became the dominant strains responsible for widespread disease in Australian commercial poultry flocks. These findings highlight the risks of using multiple different attenuated herpesvirus vaccines, or vectors, in the same populations. PMID:22798607

  17. Dengue vaccine: an update on recombinant subunit strategies.

    PubMed

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines. PMID:26982462

  18. Oral vaccination of the fox against rabies using a live recombinant vaccinia virus.

    PubMed

    Blancou, J; Kieny, M P; Lathe, R; Lecocq, J P; Pastoret, P P; Soulebot, J P; Desmettre, P

    Rabies, a viral disease affecting all warm-blooded animals, is prevalent in most parts of the world, where it propagates amongst wild animals, particularly the fox and dog. The public health and economic consequences of infection in man and livestock are well known. Attempts to control the disease by vaccinating wild carnivores with inactivated or attenuated rabies virus remain controversial, and we have instead evaluated here the potential of a recombinant vaccinia virus to protect foxes against the disease. We have found that the administration of vaccinia virus (VV) or a recombinant harbouring the rabies surface antigen gene (VVTGgRAB) is innocuous to foxes. The recombinant virus can elicit the production of titers of rabies-neutralizing antibodies equal or superior to those obtained with conventional vaccine, and 10(8) plaque-forming units (PFU) of VVTGgRAB administered subcutaneously, intradermally or orally confers complete protection to severe challenge infection with street rabies virus. PMID:3736663

  19. Protection against infectious laryngotracheitis by in ovo vaccination with commercially available viral vector recombinant vaccines.

    PubMed

    Johnson, Deirdre I; Vagnozzi, Ariel; Dorea, Fernanda; Riblet, Sylva M; Mundt, Alice; Zavala, Guillermo; García, Maricarmen

    2010-12-01

    Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is mainly controlled through biosecurity and by vaccination with live-attenuated vaccines. The chicken embryo origin (CEO) vaccines, although proven to be effective in experimental settings, have limited efficacy in controlling the disease in dense broiler production sites due to unrestricted use and poor mass vaccination coverage. These factors allowed CEO vaccines to regain virulence, causing long lasting and, consequently, severe outbreaks of the disease. A new generation of viral vector fowl poxvirus (FPV) and herpesvirus of turkey (HVT) vaccines carrying ILTV genes has been developed and such vaccines are commercially available. These vaccines are characterized by their lack of transmission, lack of ILTV-associated latent infections, and no reversion to virulence. HVT-vectored ILTV recombinant vaccines were originally approved for subcutaneous HVT or transcutaneous (pox) delivery. The increased incidence of ILTV outbreaks in broiler production sites encouraged the broiler industry to deliver the FPV-LT and HVT-LT recombinant vaccines in ovo. The objective of this study was to evaluate the protection induced by ILTV viral vector recombinant vaccines after in ovo application in 18-day-old commercial broiler embryos. The protection induced by recombinant ILTV vaccines was assessed by their ability to prevent clinical signs and mortality; to reduce challenge virus replication in the trachea; to prevent an increase in body temperature; and to prevent a decrease in body weight gain after challenge. In this study, both recombinant-vectored ILTV vaccines provided partial protection, thereby mitigating the disease, but did not reduce challenge virus loads in the trachea. PMID:21313847

  20. Vaccination of vampire bats using recombinant vaccinia-rabies virus.

    PubMed

    Aguilar-Setién, Alvaro; Leon, Yolanda Campos; Tesoro, Emiliano Cruz; Kretschmer, Roberto; Brochier, Bernard; Pastoret, Paul-Pierre

    2002-07-01

    Adult vampire bats (Desmodus rotundus) were vaccinated by intramuscular, scarification, oral, or aerosol routes (n = 8 in each group) using a vaccinia-rabies glycoprotein recombinant virus. Sera were obtained before and 30 days after vaccination. All animals were then challenged intramuscularly with a lethal dose of rabies virus. Neutralizing antirabies antibodies were measured by rapid fluorescent focus inhibition test (RFFIT). Seroconversion was observed with each of the routes employed, but some aerosol and orally vaccinated animals failed to seroconvert. The highest antibody titers were observed in animals vaccinated by intramuscular and scarification routes. All animals vaccinated by intramuscular, scarification, and oral routes survived the viral challenge, but one of eight vampire bats receiving aerosol vaccination succumbed to the challenge. Of 31 surviving vaccinated and challenged animals, nine lacked detectable antirabies antibodies by RFFIT (five orally and four aerosol immunized animals). In contrast, nine of 10 non-vaccinated control bats succumbed to viral challenge. The surviving control bat had antiviral antibodies 90 days after viral challenge. These results suggest that the recombinant vaccine is an adequate and safe immunogen for bats by all routes tested. PMID:12243138

  1. Assessing the relationship between antigenicity and immunogenicity of human rabies vaccines when administered by intradermal route

    PubMed Central

    Bilagumba, Gangaboraiah; Ravish, Haradanahalli Shankarappa; Narayana, Hanumanthappa Ashwath Doddabele

    2010-01-01

    The metadata of 10 published studies and 3 vaccine trial reports comprising of 19 vaccine cohorts from four countries conducted over a period of 23 years (1986–2009) was used for metaanalysis. The vaccines studied were purified chick embryo cell vaccine (Rabipur, India and Germany), purified vero cell rabies vaccine (Verorab, France; Indirab, India) and human diploid cell vaccine (MIRV, France). The potency of these vaccines varied from 0.55 IU to 2.32 IU per intradermal dose of 0.1 ml per site. The vaccines were administered to 1,011 subjects comprising of 19 cohorts and using five different ID regimens. The immunogenicity was measured by assays of rabies virus neutralizing antibody (RVNA) titres using rapid fluorescent focus inhibition test (RFFIT) [15 cohorts] and mouse neutralization test (MNT) [4 cohorts]. The statistical analysis of the data was done by Karl Pearson's correlation coefficient to measure the relationship between antigenicity and immunogenicity. It was revealed that, there was no significant linear relationship between antigenicity and immunogenicity of rabies vaccines when administered by intradermal route (p > 0.230 and p > 0.568). PMID:20523131

  2. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    PubMed Central

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in E. coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., (P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. PMID:22885016

  3. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  4. Recombinant raccoon pox vaccine protects mice against lethal plague

    USGS Publications Warehouse

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7??104LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague. ?? 2002 Elsevier Science Ltd. All rights reserved.

  5. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  6. Recombinant Mycobacterium bovis BCG as an HIV vaccine vector.

    PubMed

    Chapman, Rosamund; Chege, Gerald; Shephard, Enid; Stutz, Helen; Williamson, Anna-Lise

    2010-06-01

    HIV-1 has resulted in a devastating AIDS pandemic. An effective HIV/AIDS vaccine that can be used to either, prevent HIV infection, control infection or prevent progression of the disease to AIDS is needed. In this review we discuss the use of Mycobacterium bovis BCG, the tuberculosis vaccine, as a vaccine vector for an HIV vaccine. Numerous features make BCG an attractive vehicle to deliver HIV antigens. It has a good safety profile, elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable, a necessary consideration for developing countries. In this review we discuss the numerous factors that influence generation of a genetically stable recombinant BCG vaccine for HIV. PMID:20353397

  7. Yeast-recombinant hepatitis B vaccine: efficacy with hepatitis B immune globulin in prevention of perinatal hepatitis B virus transmission

    SciTech Connect

    Stevens, C.E.; Taylor, P.E.; Tong, M.J.; Toy, P.T.; Vyas, G.N.; Nair, P.V.; Weissman, J.Y.; Krugman, S.

    1987-05-15

    A yeast-recombinant hepatitis B vaccine was licensed recently by the Food and Drug administration and is now available. To assess the efficacy of the yeast-recombinant vaccine, the authors administered the vaccine in combination with hepatitis B immune globulin to high-risk newborns. If infants whose mothers were positive for both hepatitis B surface antigen and the e antigen receive no immunoprophylaxis, 70% to 90% become infected with the virus, and almost all become chronic carriers. Among infants in this study who received hepatitis B immune globulin at birth and three 5-/sup +/g doses of yeast-recombinant hepatitis B vaccine, only 4.8% became chronic carriers, a better than 90% level of protection and a rate that is comparable with that seen with immune globulin and plasma-derived hepatitis B vaccine. Hepatitis surface antigen and antibodies were detected by radioimmunoassay. These data suggest that, in this high-risk setting, the yeast-recombinant vaccine is as effective as the plasma-derived vaccine in preventing hepatitis B virus infection and the chronic carrier state.

  8. Overview of developments in the last 10-15 years in recombinant vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This introductory talk will describe the various types of recombinant DNA vaccines that have been developed for the poultry industry. The talk will not discuss the efficacy of specific recombinant DNA vaccines. Instead, I will focus on describing how various recombinant vaccines are made and some ad...

  9. Recombinant Moraxella bovoculi cytotoxin-ISCOM matrix adjuvanted vaccine to prevent naturally occurring infectious bovine keratoconjunctivitis

    PubMed Central

    Lane, V. Michael; Ball, Louise M.; Hess, John F.

    2010-01-01

    A randomized, blinded, controlled field trial was conducted during summer 2006 in a northern California, USA, herd of beef cattle to evaluate the efficacy of a recombinant Moraxella bovoculi cytotoxin subunit vaccine to prevent naturally occurring infectious bovine keratoconjunctivitis (IBK; pinkeye). A convenience sample comprised of 127 steers were administered a subcutaneous dose of either adjuvant alone (ISCOM matrices; control group) or recombinant M. bovoculi cytotoxin carboxy terminus adjuvanted with ISCOM matrices (MbvA group) and were boostered 21 days later. The steers were examined once weekly for 15 weeks for evidence of IBK. No significant difference in the cumulative proportion of corneal ulcerations was detected between groups. Compared to the control calves, the MbvA vaccinates had significantly higher increases in serum neutralizing titers to M. bovoculi hemolysin between week 0 and week 6. The prevalence of M. bovis isolations was higher from ulcerated eyes of calves vaccinated with MbvA as compared to control calves. Vaccination of calves against the carboxy terminus of M. bovoculi RTX toxin resulted in significant increases in serum hemolysin neutralizing titers and may modulate organism type cultured from ulcerated eyes of calves in herds where both M. bovis and M. bovoculi exist. Use of M. bovoculi antigens alone in vaccines to prevent IBK may not be beneficial in herds where IBK is associated with both M. bovoculi and M. bovis. PMID:20217228

  10. Experimental studies of a vaccine formulation of recombinant human VEGF antigen with aluminum phosphate

    PubMed Central

    Pérez Sánchez, Lincidio; Morera Díaz, Yanelys; Bequet-Romero, Mónica; Ramses Hernández, Gerardo; Rodríguez, Yadira; Castro Velazco, Jorge; Puente Pérez, Pedro; Ayala Avila, Marta; Gavilondo, Jorge V

    2015-01-01

    CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen. PMID:25891359

  11. Raccoon poxvirus rabies virus glycoprotein recombinant vaccine in sheep.

    PubMed

    DeMartini, J C; Bickle, H M; Brodie, S J; He, B X; Esposito, J J

    1993-01-01

    Twenty sheep were divided into groups and inoculated by various routes with recombinant raccoon poxvirus expressing the CVS rabies virus glycoprotein (rRCNV-G) or with raccoon poxvirus (RCNV). The apparent innocuous pathologic responses to each virus coupled with development of high levels of rabies virus neutralizing antibodies in animals vaccinated with rRCNV-G intradermally or intramuscularly suggested that the recombinant is effective and that RCNV would be a suitable substrate for further development of sheep vaccines. Poor antibody response to rRCNV-G given orally implied that it would be relatively harmless if inadvertently ingested by sheep. Virus transmission between vaccinated and sentinel sheep was not observed or detected serologically. PMID:8240013

  12. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  13. Successive site translocating inoculation potentiates DNA/recombinant vaccinia vaccination

    PubMed Central

    Ren, Yanqin; Wang, Na; Hu, Weiguo; Zhang, Xiaoyan; Xu, Jianqing; Wan, Yanmin

    2015-01-01

    DNA vaccines have advantages over traditional vaccine modalities; however the relatively low immunogenicity restrains its translation into clinical use. Further optimizations are needed to get the immunogenicity of DNA vaccine closer to the level required for human use. Here we show that intramuscularly inoculating into a different limb each time significantly improves the immunogenicities of both DNA and recombinant vaccinia vaccines during multiple vaccinations, compared to repeated vaccination on the same limb. We term this strategy successive site translocating inoculation (SSTI). SSTI could work in synergy with genetic adjuvant and DNA prime-recombinant vaccinia boost regimen. By comparing in vivo antigen expression, we found that SSTI avoided the specific inhibition of in vivo antigen expression, which was observed in the limbs being repeatedly inoculated. Employing in vivo T cell depletion and passive IgG transfer, we delineated that the inhibition was not mediated by CD8+ T cells but by specific antibodies. Finally, by using C3−/− mouse model and in vivo NK cells depletion, we identified that specific antibodies negatively regulated the in vivo antigen expression primarily in a complement depended way. PMID:26667202

  14. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives

    PubMed Central

    Linhart, Birgit; Valenta, Rudolf

    2015-01-01

    Hundred years ago therapeutic vaccination with allergen-containing extracts has been introduced as a clinically effective, disease-modifying, allergen-specific and long-lasting form of therapy for allergy, a hypersensitivity disease affecting more than 25% of the population. Today, the structures of most of the disease-causing allergens have been elucidated and recombinant hypoallergenic allergen derivatives with reduced allergenic activity have been engineered to reduce side effects during allergen-specific immunotherapy (SIT). These recombinant hypoallergens have been characterized in vitro, in experimental animal models and in clinical trials in allergic patients. This review provides a summary of the molecular, immunological and preclinical evaluation criteria applied for this new generation of allergy vaccines. Furthermore, we summarize the mechanisms underlying SIT with recombinant hypoallergens which are thought to be responsible for their therapeutic effect. PMID:22100888

  15. Community pharmacist–administered influenza immunization improves patient access to vaccination

    PubMed Central

    Folkins, Chris; Li, Wilson; Zervas, John

    2014-01-01

    Objectives: To describe the demographic characteristics and risk factors of patients receiving influenza vaccination in community pharmacies and to understand patient experiences and perceptions surrounding being vaccinated by a pharmacist. Methods: Survey data were collected by research pharmacists at 4 different community pharmacy locations in Toronto throughout a period of 8 weeks during October and November 2013. Participation in the survey was voluntary, and all patients vaccinated by pharmacists were invited to complete a survey following immunization. Results: During the course of the study, 2498 vaccine doses were administered among all study sites, and 1502 surveys were completed. Our data showed a high degree of patient satisfaction, with 92% of patients indicating they were very satisfied with the pharmacist’s injection technique and the services they received. Furthermore, 86% of patients were very comfortable with being vaccinated by a pharmacist, and 99% of patients reported they would recommend that friends and family be vaccinated by a pharmacist. Convenience and accessibility were major determinants of patient satisfaction, as shown by 46% of all written comments specifically addressing these factors. Of the patients surveyed, 25% were not regular annual vaccine recipients, and 47% were classified as being at high risk for influenza complications according to Public Health Agency of Canada criteria. Notably, 28% of total patients and 21% of high-risk patients reported that they would not have been immunized this year if pharmacy-based vaccination were not available. Conclusions: Our findings suggest that pharmacists provide a highly convenient and accessible option for seasonal flu vaccination that is viewed favourably by patients. Administration of the flu vaccine by pharmacists has the potential to positively affect public health by improving vaccination rates among high-risk patients, first-time or occasional vaccine recipients, and patients

  16. The persistence of anti-HBs antibody and anamnestic response 20 years after primary vaccination with recombinant hepatitis B vaccine at infancy

    PubMed Central

    Bagheri-Jamebozorgi, Masoomeh; Keshavarz, Jila; Nemati, Maryam; Mohammadi-Hossainabad, Saeed; Rezayati, Mohammad-Taghi; Nejad-Ghaderi, Mohsen; Jamalizadeh, Ahmad; Shokri, Fazel; Jafarzadeh, Abdollah

    2014-01-01

    Hepatitis B (HB) vaccine induces protective levels of antibody response (anti-HBs ≥ 10 mIU/mL) in 90–99% of vaccinees. The levels of anti-HBs antibody decline after vaccination. The aim of this study was to evaluate the persistence of anti-HBs antibodies and immunologic memory in healthy adults at 20 years after primary vaccination with recombinant HB vaccine. Blood samples were collected from 300 adults at 20 years after primary HB vaccination and their sera were tested for anti-HBs antibody by ELISA technique. A single booster dose of HB vaccine was administered to a total of 138 subjects, whose anti-HBs antibody titer was <10 mIU/mL. The sera of subjects were re-tested for the anti-HBs antibody levels at 4 weeks after booster vaccination. At 20 years after primary vaccination 37.0% of participants had protective levels of antibody with geometric mean titer (GMT) of 55.44 ± 77.01 mIU/mL. After booster vaccination, 97.1% of vaccinees developed protective levels of antibody and the GMT rose from 2.35 ± 6.49 mIU/mL to 176.28 ± 161.78 mIU/mL. 125/138 (90.6%) of re-vaccinated subjects also showed an anamnestic response to booster vaccination. At 20 years after primary vaccination with HB vaccine, low proportion of the subjects had protective levels of antibody. However, the majority of the re-vaccinated subjects developed protective levels of anti-HBs and showed an anamnestic response after booster vaccination. Additional follow-up studies are necessary to determine the duration of immunological memory. PMID:25483689

  17. Recombinant Baculovirus Associated with Bilosomes as an Oral Vaccine Candidate against HEV71 Infection in Mice

    PubMed Central

    Premanand, Balraj; Prabakaran, Mookkan; Kiener, Tanja K.; Kwang, Jimmy

    2013-01-01

    Background Human enterovirus 71 (HEV71) is one of the major pathogen responsible for hand, foot and mouth disease (HFMD). Currently no effective vaccine or antiviral drugs are available. Like poliovirus, EV71 is transmitted mainly by the feco-oral route. To date the majority of the studied EV71 vaccine candidates are administered parenterally. Injectable vaccines induce good systemic immunity but mucosal responses are often unsatisfactory, whereas mucosal vaccines provide both systemic and mucosal immunity. Therefore, oral immunization appears to be an attractive alternative to parenteral immunization. Methodology/Principal Findings In this report, we studied the efficacy of an orally administered vaccine candidate developed using recombinant baculovirus displaying VP1 (Bac-VP1) in a murine model. Gastrointestinal delivery of Bac-VP1 significantly induced VP1-specific humoral (IgG) and mucosal (IgA) immune responses. Further, we studied the efficacy of the Bac-VP1 associated with bilosomes and observed that the Bac-VP1 associated with bilosomes elicited significantly higher immune responses compared to bilosomes non-associated with Bac-VP1. However, mice immunized subcutaneously with live Bac-VP1 had significantly enhanced VP1 specific serum IgG levels and higher neutralizing antibody titers compared with mice orally immunized with live Bac-VP1 alone or associated with bilosomes. Conclusion Bilosomes have been shown to possess inherent adjuvant properties when associated with antigen. Therefore Bac-VP1 with bilosomes could be a promising oral vaccine candidate against EV71 infections. Thus, Bac-VP1 loaded bilosomes may provide a needle free, painless approach for immunization against EV71, thereby increasing patient compliance and consequently increasing vaccination coverage. PMID:23390538

  18. Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination

    PubMed Central

    Boudewijns, Steve; Koornstra, Rutger H. T.; Westdorp, Harm; Schreibelt, Gerty; van den Eertwegh, Alfons J. M.; Geukes Foppen, Marnix H.; Haanen, John B.; de Vries, I. Jolanda M.; Figdor, Carl G.; Bol, Kalijn F.; Gerritsen, Winald R.

    2016-01-01

    ABSTRACT Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease. PMID:27622070

  19. Efficacy of Various HVT Vaccines (Conventional and Recombinant) Against Marek's Disease in Broiler Chickens: Effect of Dose and Age of Vaccination.

    PubMed

    Gimeno, I M; Cortes, A L; Faiz, N; Villalobos, T; Badillo, H; Barbosa, T

    2016-09-01

    Herpesvirus of turkeys (HVT) has been successfully used as a Marek's disease (MD) vaccine for more than 40 yr. Either alone (broiler chickens) or in combination with vaccines of other serotypes (broilers, broiler breeders, and layers), HVT is used worldwide. In recent years, several vector vaccines based on HVT (rHVT) have been developed. At present, there are both conventional HVT and rHVTs in the market, and it is unknown if all of them confer the same level of protection against MD. The objective of this study was to further characterize the protection conferred by two conventional HVTs (HVT-A and HVT-B) and three recombinant HVTs (rHVT-B, rHVT-C, and rHVT-D) against MD in broiler chickens. In a first study we evaluated the efficacy of two conventional HVTs (HVT-A and HVT-B) administered at different doses (475, 1500, and 4000 PFU) at day of age on the ability to protect against an early challenge with very virulent plus strain 645. In a second experiment we evaluated the protection ability of several HVTs (both conventional and recombinant) when administered in ovo at a dose of 1500 PFU using the same challenge model. Our results show that each HVT product is unique, regardless of being conventional or recombinant, in their ability to protect against MD and might require different PFUs to achieve its maximum efficacy. In Experiment 1, HVT-A at 4000 PFU conferred higher protection (protection index [PI] = 63) than any of the other vaccine protocols (PI ranging from 36 to 47). In Experiment 2, significant differences were found among vaccine protocols with PI varying from 66 (HVT-A) to 15 (rHVT-D). Our results show that each HVT is unique and age at vaccination and vaccine dose greatly affected vaccine efficacy. Furthermore, they highlight the need of following manufacturer's recommendations. PMID:27610727

  20. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond.

    PubMed

    Yusibov, Vidadi; Streatfield, Stephen J; Kushnir, Natasha

    2011-03-01

    In the last few years, plants have become an increasingly attractive platform for recombinant protein production. This builds on two decades of research, starting with transgenic approaches to develop oral vaccines in which antigens or therapeutics can be delivered in processed plant biomass, and progressing to transient expression approaches whereby high yields of purified targets are administered parenterally. The advantages of plant-based expression systems include high scalability, low upstream costs, biocontainment, lack of human or animal pathogens, and ability to produce target proteins with desired structures and biological functions. Using transgenic and transient expression in whole plants or plant cell culture, a variety of recombinant subunit vaccine candidates, therapeutic proteins, including monoclonal antibodies, and dietary proteins have been produced. Some of these products have been tested in early phase clinical trials, and show safety and efficacy. Among those are mucosal vaccines for diarrheal diseases, hepatitis B and rabies; injectable vaccines for non-Hodgkin's lymphoma, H1N1 and H5N1 strains of influenza A virus, and Newcastle disease in poultry; and topical antibodies for the treatment of dental caries and HIV. As lead plant-based products have entered clinical trials, there has been increased emphasis on manufacturing under current Good Manufacturing Practice (cGMP) guidelines, and the preparation and presentation to the relevant government agencies of regulatory packages. PMID:21346417

  1. Adjuvant activity of chicken interleukin-12 co-administered with infectious bursal disease virus recombinant VP2 antigen in chickens.

    PubMed

    Su, Bor Sheu; Chiu, Hua Hsien; Lin, Cheng Chung; Shien, Jui Hung; Yin, Hsien Sheng; Lee, Long Huw

    2011-02-15

    A recombinant fowlpox virus (rFPV/VP2) expressing infectious bursal diseases virus (IBDV) VP2 gene has been constructed. After purification and identification of rFPV/VP2, the adjuvant activity of the recombinant chicken IL-12 (rchIL-12), synthesized by our previous construct of rFPV/chIL-12, in rFPV/VP2-expressed rVP2 antigen was assessed in one-week-old specific-pathogen free chickens. The results indicated that rchIL-12 alone or rchIL-12 plus mineral oil (MO) co-administered with rVP2 antigen significantly enhanced the production of serum neutralization (SN) antibody against IBDV, compared to those with MO alone. The SN titers in groups receiving rVP2 antigen with MO alone were more inconsistent after vaccination. On the other hand, rchIL-12 significantly stimulated IFN-γ production in serum and in splenocyte cultured supernatant, suggesting that rchIL-12 alone or plus MO significantly induced a cell-mediated immune response. Finally, bursal lesion protection from very virulent IBDV (vvIBDV) challenge in chickens receiving rVP2 antigen with rchIL-12 alone or plus MO was much more effective than that with MO alone at two weeks after boosting. Taken together, rchIL-12 alone augmented in vivo the induction of a primary and also a secondary SN antibody production and a cell-mediated immunity against IBDV rVP2 antigen, which conferred the enhancement of bursal lesion protective efficacy from vvIBDV challenge. These data indicated that a potential for chIL-12 as immunoadjuvant for chicken vaccine development such as IBDV rVP2 antigen. PMID:21035196

  2. Serial Recombination during Circulation of Type 1 Wild-Vaccine Recombinant Polioviruses in China

    PubMed Central

    Liu, Hong-Mei; Zheng, Du-Ping; Zhang, Li-Bi; Oberste, M. Steven; Kew, Olen M.; Pallansch, Mark A.

    2003-01-01

    Type 1 wild-vaccine recombinant polioviruses sharing a 367-nucleotide (nt) block of Sabin 1-derived sequence spanning the VP1 and 2A genes circulated widely in China from 1991 to 1993. We surveyed the sequence relationships among 34 wild-vaccine recombinants by comparing six genomic intervals: the conserved 5′-untranslated region (5′-UTR) (nt 186 to 639), the hypervariable portion of the 5′-UTR (nt 640 to 742), the VP4 and partial VP2 genes (nt 743 to 1176), the VP1 gene (nt 2480 to 3385), the 2A gene (nt 3386 to 3832), and the partial 3D gene (nt 6011 to 6544). The 5′-UTR, capsid (VP4-VP2 and VP1), and 2A sequence intervals had similar phylogenies. By contrast, the partial 3D sequences could be distributed into five divergent genetic classes. Most (25 of 34) of the wild-vaccine recombinant isolates showed no evidence of additional recombination beyond the initial wild-Sabin recombination event. Eight isolates from 1992 to 1993, however, appear to be derived from three independent additional recombination events, and one 1993 isolate was derived from two consecutive events. Complete genomic sequences of a representative isolate for each 3D sequence class demonstrated that these exchanges had occurred in the 2B, 2C, and 3D genes. The 3D gene sequences were not closely related to those of the Sabin strains or 53 diverse contemporary wild poliovirus isolates from China, but all were related to the 3D genes of species C enteroviruses. The appearance within approximately 2.5 years of five recombinant classes derived from a single ancestral infection illustrates the rapid emergence of new recombinants among circulating wild polioviruses. PMID:14512548

  3. Benefits and Effectiveness of Administering Pneumococcal Polysaccharide Vaccine With Seasonal Influenza Vaccine: An Approach for Policymakers

    PubMed Central

    Nanni, Angeline; Levine, Orin

    2012-01-01

    For the influenza pandemic of 2009–2010, countries responded to the direct threat of influenza but may have missed opportunities and strategies to limit secondary pneumococcal infections. Delivering both vaccines together can potentially increase pneumococcal polysaccharide vaccine (PPV23) immunization rates and prevent additional hospitalizations and mortality in the elderly and other high-risk groups. We used PubMed to review the literature on the concomitant use of PPV23 with seasonal influenza vaccines. Eight of 9 clinical studies found that a concomitant program conferred clinical benefits. The 2 studies that compared the cost-effectiveness of different strategies found concomitant immunization to be more cost-effective than either vaccine given alone. Policymakers should consider a stepwise strategy to reduce the burden of secondary pneumococcal infections during seasonal and pandemic influenza outbreaks. PMID:22397339

  4. Expression of Recombinant Vaccines and Antibodies in Plants

    PubMed Central

    2014-01-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants. PMID:24937251

  5. Vaccinations Administered During Off-Clinic Hours at a National Community Pharmacy: Implications for Increasing Patient Access and Convenience

    PubMed Central

    Goad, Jeffery A.; Taitel, Michael S.; Fensterheim, Leonard E.; Cannon, Adam E.

    2013-01-01

    PURPOSE Approximately 50,000 adults die annually from vaccine-preventable diseases in the United States. Most traditional vaccine providers (eg, physician offices) administer vaccinations during standard clinic hours, but community pharmacies offer expanded hours that allow patients to be vaccinated at convenient times. We analyzed the types of vaccines administered and patient populations vaccinated during off-clinic hours in a national community pharmacy, and their implications for vaccination access and convenience. METHODS We retrospectively reviewed data for all vaccinations given at the Walgreens pharmacy chain between August 2011 and July 2012. The time of vaccination was categorized as occurring during traditional hours (9:00 am–6:00 pm weekdays) or off-clinic hours, consisting of weekday evenings, weekends, and federal holidays. We compared demographic characteristics and types of vaccine. We used a logistic regression model to identify predictors of being vaccinated during off-clinic hours. RESULTS During the study period, pharmacists administered 6,250,402 vaccinations, of which 30.5% were provided during off-clinic hours: 17.4% were provided on weekends, 10.2% on evenings, and 2.9% on holidays. Patients had significantly higher odds of off-clinic vaccination if they were younger than 65 years of age, were male, resided in an urban area, and did not have any chronic conditions. CONCLUSIONS A large proportion of adults being vaccinated receive their vaccines during evening, weekend, and holiday hours at the pharmacy, when traditional vaccine providers are likely unavailable. Younger, working-aged, healthy adults, in particular, a variety of immunizations during off-clinic hours. With the low rates of adult and adolescent vaccination in the United States, community pharmacies are creating new opportunities for vaccination that expand access and convenience. PMID:24019274

  6. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years. PMID:26511884

  7. Antihepatitis B response to hepatitis B vaccine administered simultaneously with tetanus toxoid in nonresponder individuals.

    PubMed

    Sönmez, Emine; Sönmez, Ali Suha; Bayindir, Yaşar; Coskun, Diler; Aritürk, Sedat

    2002-12-13

    In this prospective study, our aim was to test the effect of simultaneous administration of preS2 and S containing recombinant hepatitis B vaccine (S2SRHB) with tetanus toxoid (TT) to the individuals who did not respond after three doses of hepatitis B vaccine previously. There were three groups (healthy individuals, pregnant women, hemodialysis patients), each was divided into two subgroups as groups A and B. Group A received S2SRHB+TT and group B received only S2SRHB. We found that in groups receiving both vaccines, both seroconversion rate and antibody titer level were significantly higher (P<0.05). In conclusion, simultaneous administration of S2SRHB+TT is more effective than administration of S2SRHB alone. PMID:12450699

  8. Immunity Elicited by an Experimental Vaccine Based on Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein in Piglets.

    PubMed

    Zhu, Shanshan; Zhang, Chunyan; Wang, Jing; Wei, Li; Quan, Rong; Yang, Jiayu; Yan, Xu; Li, Zixuan; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2016-01-01

    In a recent study, we reported that a recombinant protein from fusion expression of flagellin to porcine circovirus type 2 (PCV2) Cap induced robust humoral and cell-mediated immunity that afforded full protection for PCV2 infection using BALB/c mice. Here, we further evaluated the immunogenicity and protection of the recombinant protein using specific pathogen free (SPF) pigs. Twenty-five 3-week-old piglets without passively acquired immunity were divided into 5 groups. All piglets except negative controls were challenged with a virulent PCV2 at 21 days after booster vaccination and necropsied at 21 days post-challenge. Vaccination of piglets with the recombinant protein without adjuvant induced strong humoral and cellular immune responses as observed by high levels of PCV2-specific IgG antibodies and neutralizing antibodies, as well as frequencies of PCV2-specific IFN-γ-secreting cells that conferred good protection against PCV2 challenge, with significant reduced PCV2 viremia, mild lesions, low PCV2 antigen-positive cells, as well as improved body weight gain, comparable to piglets vaccinated with a commercial PCV2 subunit vaccine. These results further demonstrated that the recombinant flagellin-Cap fusion protein is capable of inducing solid protective humoral and cellular immunity when administered to pigs, thereby becoming an effective PCV2 vaccine candidate for control of PCV2 infection. PMID:26848967

  9. Immunity Elicited by an Experimental Vaccine Based on Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein in Piglets

    PubMed Central

    Wang, Jing; Wei, Li; Quan, Rong; Yang, Jiayu; Yan, Xu; Li, Zixuan; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2016-01-01

    In a recent study, we reported that a recombinant protein from fusion expression of flagellin to porcine circovirus type 2 (PCV2) Cap induced robust humoral and cell-mediated immunity that afforded full protection for PCV2 infection using BALB/c mice. Here, we further evaluated the immunogenicity and protection of the recombinant protein using specific pathogen free (SPF) pigs. Twenty-five 3-week-old piglets without passively acquired immunity were divided into 5 groups. All piglets except negative controls were challenged with a virulent PCV2 at 21 days after booster vaccination and necropsied at 21 days post-challenge. Vaccination of piglets with the recombinant protein without adjuvant induced strong humoral and cellular immune responses as observed by high levels of PCV2-specific IgG antibodies and neutralizing antibodies, as well as frequencies of PCV2-specific IFN-γ-secreting cells that conferred good protection against PCV2 challenge, with significant reduced PCV2 viremia, mild lesions, low PCV2 antigen-positive cells, as well as improved body weight gain, comparable to piglets vaccinated with a commercial PCV2 subunit vaccine. These results further demonstrated that the recombinant flagellin-Cap fusion protein is capable of inducing solid protective humoral and cellular immunity when administered to pigs, thereby becoming an effective PCV2 vaccine candidate for control of PCV2 infection. PMID:26848967

  10. Effective induction of protective systemic immunity with nasally-administered vaccines adjuvanted with IL-1

    PubMed Central

    Gwinn, William M.; Kirwan, Shaun M.; Wang, Sheena H.; Ashcraft, Kathleen A.; Sparks, Neil L.; Doil, Catherine R.; Tlusty, Tom G.; Casey, Leslie S.; Hollingshead, Susan K.; Briles, David E.; Dondero, Richard S.; Hickey, Anthony J.; Foster, W. Michael; Staats, Herman F.

    2010-01-01

    IL-1α and IL-1β were evaluated for their ability to provide adjuvant activity for the induction of serum antibody responses when nasally-administered with protein antigens in mice and rabbits. In mice, intranasal (i.n.) immunization with pneumococcal surface protein A (PspA) or tetanus toxoid (TT) combined with IL-1β induced protective immunity that was equivalent to that induced by parenteral immunization. Nasal immunization of awake (i.e., not anesthetized) rabbits with IL-1-adjuvanted vaccines induced highly variable serum antibody responses and was not as effective as parenteral immunization for the induction of antigen-specific serum IgG. However, i.n. immunization of deeply anesthetized rabbits with rPA + IL-1α consistently induced rPA-specific serum IgG ELISA titers that were not significantly different than those induced by intramuscular (IM) immunization with rPA + alum although lethal toxin neutralizing titers induced by nasal immunization were lower than those induced by IM immunization. Gamma scintigraphy demonstrated that the enhanced immunogenicity of nasal immunization in anesthetized rabbits correlated with an increased nasal retention of i.n. delivered non-permeable radio-labeled colloidal particles. Our results demonstrate that, in mice, IL-1 is an effective adjuvant for nasally-administered vaccines for the induction of protective systemic immunity and that in non-rodent species, effective induction of systemic immunity with nasally-administered vaccines may require formulations that ensure adequate retention of the vaccine within the nasal cavity. PMID:20723629

  11. Comparison of Newcastle disease vaccine administered as powder or liquid in relation to the serum antibody response and adverse vaccinal reactions in broilers.

    PubMed

    Landman, W J M; Huyge, K; Remon, J P; Vervaet, C; van Eck, J H H

    2015-01-01

    Liquid spray and aerosol mass vaccination of poultry have several drawbacks, such as uncontrolled deposition of vaccine particles in the respiratory tract and vaccine virus inactivation by formation and evaporation of droplets. These may be addressed by using dry powder vaccines with defined particle size distribution targeting the upper (primary vaccination) or the entire respiratory tract (booster vaccination). Therefore, a coarse Newcastle disease (LZ58 strain) powder vaccine was administered to specified pathogen free (SPF) broiler hens to compare the antibody response and adverse vaccinal reactions with those induced by a coarse liquid spray and a fine liquid aerosol. Groups of 40 broilers each housed in isolators were vaccinated at 4 days of age and intratracheally inoculated with Escherichia coli (strain 506) at 11 days of age. Adverse vaccinal reactions were evaluated by measuring body weight gain and mortality between 4 and 11 days of age and between 11 and 18 days of age, and by recording colibacillosis lesions at 18 days of age. The antibody serum response was measured at 18 days of age by the haemagglutination inhibition test. Despite the relative low initial vaccine virus loss and narrow particle size distribution of the powder vaccines in comparison with their liquid counter parts, no significant differences (P > 0.05) regarding adverse vaccinal reactions and antibody response were observed between broilers vaccinated with the powder vaccines or with their liquid counterparts. PMID:25588317

  12. Construction and Immunogenicity Testing of Whole Recombinant Yeast-Based T-Cell Vaccines.

    PubMed

    King, Thomas H; Guo, Zhimin; Hermreck, Melanie; Bellgrau, Donald; Rodell, Timothy C

    2016-01-01

    GlobeImmune's Tarmogen(®) immunotherapy platform utilizes recombinant Saccharomyces cerevisiae yeast as a vaccine vector to deliver heterologous antigens for activation of disease-specific, targeted cellular immunity. The vaccines elicit immune-mediated killing of target cells expressing viral and cancer antigens in vivo via a CD8(+) CTL-mediated mechanism. Tarmogens are not neutralized by host immune responses and can be administered repeatedly to boost antigen-specific immunity. Production of the vaccines yields stable off-the-shelf products that avoid the need for patient-specific manufacturing found with other immunotherapeutic approaches. Tarmogens for the treatment of chronic hepatitis B and C and various cancers were well tolerated and immunogenic in phase 1 and 2 clinical trials encompassing >600 subjects. The platform is being widely utilized in basic vaccine research and the most rapid path to success in these endeavors follows from optimal immunoassay selection and execution. This chapter provides detailed methods for the construction and preclinical immunogenicity testing of yeast-based immunotherapeutic products to support the rapid and efficient use of this versatile technology. PMID:27076321

  13. A novel recombinant vaccine protecting mice against abrin intoxication

    PubMed Central

    Wang, Junhong; Gao, Shan; Xin, Wenwen; Kang, Lin; Xu, Na; Zhang, Tao; Liu, Wensen; Wang, Jinglin

    2015-01-01

    Abrin toxin (AT) consisting of an A chain and a B chain is a potential agent for bioterrorism and an effective vaccine against AT poisoning is urgently required. In this study, AT B chain (ATB) was successfully expressed in the Escherichia coli (E. coli) and assessed the protection capacity against AT intoxication. The recombinant ATB (rATB) subunit induces a good immune response after 4 immunizations. All BALB/c mice immunized intraperitoneally (i.p.) with the purified rATB protein survived after challenged with 5 × LD50 of AT. Transfusion of sera from immunized mice provided passive protection in naive mice. Furthermore, histological findings showed that immunization with rATB decreased the severity of toxin-related tissue damage. This work indicates that the rATB protein may be a promising vaccine candidate against human exposure to AT. PMID:26086588

  14. Immunogenicity of a recombinant lumpy skin disease virus (neethling vaccine strain) expressing the rabies virus glycoprotein in cattle.

    PubMed

    Aspden, Kate; van Dijk, Alberdina A; Bingham, John; Cox, Dermot; Passmore, Jo-Ann; Williamson, Anna-Lise

    2002-06-21

    Rabies virus (RV) readily infects cattle and causes a fatal neurological disease. A stable vaccine, which does not require the maintenance of a cold chain and that is administered once to elicit lifelong immunity to rabies would be advantageous. The present study describes the construction of a live recombinant lumpy skin disease virus (LSDV) vaccine, expressing the glycoprotein of rabies virus (RG) and assessment of its ability to generate a humoral and cellular immune response against rabies virus in cattle. Cattle inoculated with the recombinant virus (rLSDV-RG) developed humoral immunity that was demonstrated in ELISA and neutralisation assays to RV. High titres of up to 1513IU/ml of RV neutralising antibodies were induced. In addition, peripheral blood mononuclear cells from rLSDV-RG-immunised animals demonstrated the ability to proliferate in response to stimulation with inactivated RV, whereas the animal vaccinated with wild type LSDV did not. This recombinant vaccine candidate thus has the potential to be used in ruminants as a cost-effective vaccine against both lumpy skin disease (LSD) and rabies. PMID:12034095

  15. Salivary binding antibodies induced by human immunodeficiency virus type 1 recombinant gp120 vaccine. The NIAID AIDS Vaccine Evaluation Group.

    PubMed Central

    Gorse, G J; Yang, E Y; Belshe, R B; Berman, P W

    1996-01-01

    Salivary binding antibodies induced by candidate human immunodeficiency virus type 1 (HIV-1) vaccines in healthy, HIV-1 uninfected volunteers were assessed in a clinical trial evaluating intramuscularly injected HIV-1MN recombinant gp120 (rgp120) vaccine alone or with HIV-1IIIB rgp120 vaccine. The two rgp120 vaccines induced envelope glycoprotein-specific immunoglobulin G (IgG) and IgA antibodies in whole saliva and serum. PMID:8914773

  16. Characterization of recombinant Raccoonpox Vaccine Vectors in Chickens

    USGS Publications Warehouse

    Hwa, S.-H.; Iams, K.P.; Hall, J.S.; Kingstad, B.A.; Osorio, J.E.

    2010-01-01

    Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens. ?? American Association of Avian Pathologists 2010.

  17. Hepatitis B Vaccination Protection

    MedlinePlus

    ... The hepatitis B vaccination is a non-infectious, vaccine prepared from recombinant yeast cultures, rather than human blood or plasma. There is no risk of contamination from other bloodborne pathogens nor is there any ... from the vaccine. The vaccine must be administered according to the ...

  18. Clinical experience with a recombinant DNA hepatitis B vaccine.

    PubMed

    Andre, F E

    1988-09-01

    The clinical testing of EngerixR-B, the hepatitis B vaccine produced by SmithKline Biologicals using recombinant DNA technology, started in February 1984. Since extensive pre-clinical laboratory work had established that the polypeptide (HBsAg) expressed in genetically engineered yeast cells was after purification--physically, chemically and antigenically similar to the viral surface antigen particles found in the blood of chronic carriers, the aims of the clinical trials were to compare the safety, reactogenicity, immunogenicity and protective efficacy of yeast-derived (YDV) and plasma-derived (PDV) vaccines. By September 1987, 89 studies had been initiated involving a total of 10,545 subjects aged from birth to 82 years. This extensive experience has established that the risk of hypersensitivity to yeast-derived contaminants is negligible since no hypersensitivity reaction has been observed in any vaccinee, the incidence and severity of local reactions have not increased after repeated inoculations and no anti-yeast antibodies were produced by vaccination. Reactogenicity has been comparable to that of PDV's consisting essentially of transient mild irritation at the site of injection presumably caused by the aluminium hydroxide used as adjuvant. The anti-HBs responses to YDV and PDV's were quantitatively (seroconversion rates, peak antibody levels and persistence) as well as qualitatively (epitope specificity and affinity) similar. The expected protective effect of the immune response to the vaccine was confirmed in a challenge study in chimpanzees and in vaccinated human populations (male homosexuals, institutionalized mentally retarded patients, neonates of carrier women) with historically a high infection rate. PMID:2464196

  19. Assessing the relationship between antigenicity and immunogenicity of human rabies vaccines when administered by intradermal route: results of a metaanalysis.

    PubMed

    Sudarshan, Mysore K; Gangaboraiah, Bilagumba; Ravish, Haradanahalli S; Narayana, Doddabele H Ashwath

    2010-07-01

    The metadata of 10 published studies and 3 vaccine trial reports comprising of 19 vaccine cohorts from four countries conducted over a period of 23 years (1986 - 2009) was used for metaanalysis. The vaccines studied were purified chick embryo cell vaccine (Rabipur, India & Germany), purified vero cell rabies vaccine (Verorab, France; Indirab, India) & human diploid cell vaccine (MIRV, France).The potency of these vaccines varied from 0.55 IU to 2.32 IU per intradermal dose of 0.1 ml per site. The vaccines were administered to 1,011 subjects comprising of 19 cohorts and using five different ID regimens. The immunogenicity was measured by assays of rabies virus neutralizing antibody (RVNA) titres using rapid fluorescent focus inhibition test (RFFIT) [15 cohorts] and mouse neutralization test (MNT) [4 cohorts]. The statistical analysis of the data was done by Karl Pearson's correlation coefficient to measure the relationship between antigenicity and immunogenicity. It was revealed that, there was no significant linear relationship between antigenicity and immunogenicity of rabies vaccines when administered by intradermal route. (p> 0.230 and p>0.568). PMID:20523131

  20. [Response to recombinant DNA antihepatitis B vaccine in mentally retarded patients with Down's syndrome. A controlled study].

    PubMed

    García Bengoechea, M; Cortés, A; Cabriada, J; Albizu, I; Dorronsoro, M; Arriola, J A; Arenas, J I

    1990-04-14

    To investigate the response of mentally retarded individuals (MR) with Down's syndrome (Down-MR) to recombinant hepatitis B vaccine, three doses (20 micrograms per dose) were administered on the usual schedule (months 0, 1 and 6) to two groups of MR with mean age of 14.6 years. The first group consisted of 32 MR-Down. The second group consisted of 35 MR other etiologies (non Down-MR). Both had the same sex distribution and similar ages and weight/height index. The post vaccination anti-HBs titers were measured on months 1, 2, 6 and 8. The results could be analysed in 63 MR. Eight months after vaccination, 100% of Down-MR and 91% of non Down-MR developed a response to the vaccine (anti-HBs greater than 10 IU/l). Both groups achieved high antibody titers (geometric mean 4.298 and 6.424, respectively). A significant inverse correlation of anti-HBs with age was found, but not with sex of with the weight-height index. It was concluded that Down-MR in young age have a normal response to recombinant hepatitis B vaccine at the usual dose and schedule. Therefore, the goal to suppress the reservoir of hepatitis B in Down-MR both in institutions for MR and in normal schools should be achieved. PMID:2141377

  1. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    PubMed

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. PMID:24050999

  2. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. PMID:26514419

  3. Structure of RiVax: a recombinant ricin vaccine

    SciTech Connect

    Legler, Patricia M.; Brey, Robert N.; Smallshaw, Joan E.; Vitetta, Ellen S.; Millard, Charles B.

    2011-09-01

    The X-ray crystal structure (at 2.1 Å resolution) of an immunogen under development as part of a ricin vaccine for humans is presented and structure-based analysis of the results was conducted with respect to related proteins and the known determinants for inducing or suppressing the protective immune response. RiVax is a recombinant protein that is currently under clinical development as part of a human vaccine to protect against ricin poisoning. RiVax includes ricin A-chain (RTA) residues 1–267 with two intentional amino-acid substitutions, V76M and Y80A, aimed at reducing toxicity. Here, the crystal structure of RiVax was solved to 2.1 Å resolution and it was shown that it is superposable with that of the ricin toxin A-chain from Ricinus communis with a root-mean-square deviation of 0.6 Å over 258 C{sup α} atoms. The RiVax structure is also compared with the recently determined structure of another potential ricin-vaccine immunogen, RTA 1–33/44–198 R48C/T77C. Finally, the locations and solvent-exposure of two toxin-neutralizing B-cell epitopes were examined and it was found that these epitopes are within or near regions predicted to be involved in catalysis. The results demonstrate the composition of the RiVax clinical material and will guide ongoing protein-engineering strategies to develop improved immunogens.

  4. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1.

    PubMed

    Li, Junping; Yang, Tao; Xu, Qingyuan; Sun, Encheng; Feng, Yufei; Lv, Shuang; Zhang, Qin; Wang, Haixiu; Wu, Donglai

    2015-10-01

    Bluetongue virus (BTV) is the causative agent of bluetongue (BT), an important sheep disease that caused great economic loss to the sheep industry. There are 26 BTV serotypes based on the outer protein VP2. However, the serotypes BTV-1 and BTV-16 are the two most prevalent serotypes in China. Vaccination is the most effective method of preventing viral infections. Therefore, the need for an effective vaccine against BTV is urgent. In this study, DNA vaccines and recombinant fowlpox virus (rFPV) vaccines expressing VP2 alone or VP2 in combination with VP5 or co-expressing the VP2 and VP5 proteins of BTV-1 were evaluated in both mice and sheep. Several strategies were tested in mice, including DNA vaccine prime and boost, rFPV vaccine prime and boost, and DNA vaccine prime and rFPV vaccine boost. We then determined the best vaccine strategy in sheep. Our results indicated that a strategy combining a DNA vaccine prime (co-expressing VP2 and VP5) followed by an rFPV vaccine boost (co-expressing VP2 and VP5) induced a high titer of neutralizing antibodies in sheep. Therefore, our data suggest that a DNA vaccine consisting of a pCAG-(VP2+VP5) prime and an rFPV-(VP2+VP5) boost is an important candidate for the design of a novel vaccine against BTV-1. PMID:26048472

  5. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    PubMed

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. PMID:27005809

  6. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    PubMed

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. PMID:23867013

  7. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus. PMID:27076136

  8. The effect of a booster dose of quadrivalent or bivalent HPV vaccine when administered to girls previously vaccinated with two doses of quadrivalent HPV vaccine.

    PubMed

    Gilca, Vladimir; Sauvageau, Chantal; Boulianne, Nicole; De Serres, Gatson; Crajden, Mel; Ouakki, Manale; Trevisan, Andrea; Dionne, Marc

    2015-01-01

    This randomized, blinded study evaluated the immunogenicity and safety of a booster dose of Gardasil (qHPV) or Cervarix (bHPV) when administered to 12-13 year-old girls who were vaccinated at the age of 9-10 with 2 doses of qHPV (0-6 months). 366 out of 416 eligible girls participated in this follow-up study. Antibody titers were measured just before and one month post-booster. A Luminex Total IgG assay was used for antibody assessment and results are presented in Liminex Units (LU). Three years post-primary vaccination, 99-100% of subjects had detectable antibodies to 4HPV genotypes included in the qHPV with GMTs varying from 50 to 322 LU depending on genotype. After a booster dose of qHPV, a ≥4 fold increase of antibody titers to genotypes included in the vaccine was observed in 88-98% of subjects. Post-booster GMTs varied from 1666 to 4536 LU depending on genotype. These GMTs were 1.1 to 1.8-fold higher when compared to those observed one month post-second dose. After a booster of bHPV, a ≥4 fold increase of antibody titers to HPV16 and HPV18 was observed in 93-99% of subjects. The anti-HPV16 and HPV18 GMTs were 5458 and 2665 LU, respectively. These GMTs were 1.2 and 1.8 higher than those observed in the qHPV group (both P < 0.01). In bHPV group a 1.4-1.6-fold increase of antibody GMTs to HPV6 and HPV11was also observed (P < 0.001). The safety profile was acceptable for both vaccines. Both qHPV and bHPV increase antibody titers when given as a booster to girls previously vaccinated with 2 doses of qHPV. The magnitude of the immune response after booster is vaccine-dependent and has the same pattern as that reported after primary vaccination with qHPV or bHPV. When given as a booster, both vaccines have an acceptable safety profile. Longer follow-up studies are warranted to assess the need of booster doses. PMID:25714044

  9. The effect of a booster dose of quadrivalent or bivalent HPV vaccine when administered to girls previously vaccinated with two doses of quadrivalent HPV vaccine

    PubMed Central

    Gilca, Vladimir; Sauvageau, Chantal; Boulianne, Nicole; De Serres, Gatson; Crajden, Mel; Ouakki, Manale; Trevisan, Andrea; Dionne, Marc

    2015-01-01

    This randomized, blinded study evaluated the immunogenicity and safety of a booster dose of Gardasil (qHPV) or Cervarix (bHPV) when administered to 12–13 year-old girls who were vaccinated at the age of 9–10 with 2 doses of qHPV (0–6 months). 366 out of 416 eligible girls participated in this follow-up study. Antibody titers were measured just before and one month post-booster. A Luminex Total IgG assay was used for antibody assessment and results are presented in Liminex Units (LU). Three years post-primary vaccination, 99–100% of subjects had detectable antibodies to 4HPV genotypes included in the qHPV with GMTs varying from 50 to 322 LU depending on genotype. After a booster dose of qHPV, a ≥4 fold increase of antibody titers to genotypes included in the vaccine was observed in 88–98% of subjects. Post-booster GMTs varied from 1666 to 4536 LU depending on genotype. These GMTs were 1.1 to 1.8-fold higher when compared to those observed one month post-second dose. After a booster of bHPV, a ≥4 fold increase of antibody titers to HPV16 and HPV18 was observed in 93–99% of subjects. The anti-HPV16 and HPV18 GMTs were 5458 and 2665 LU, respectively. These GMTs were 1.2 and 1.8 higher than those observed in the qHPV group (both P < 0.01). In bHPV group a 1.4–1.6-fold increase of antibody GMTs to HPV6 and HPV11was also observed (P < 0.001). The safety profile was acceptable for both vaccines. Both qHPV and bHPV increase antibody titers when given as a booster to girls previously vaccinated with 2 doses of qHPV. The magnitude of the immune response after booster is vaccine-dependent and has the same pattern as that reported after primary vaccination with qHPV or bHPV. When given as a booster, both vaccines have an acceptable safety profile. Longer follow-up studies are warranted to assess the need of booster doses. PMID:25714044

  10. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    PubMed

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-01

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process. PMID:26430814

  11. Prime–Boost with Mycobacterium smegmatis Recombinant Vaccine Improves Protection in Mice Infected with Mycobacterium tuberculosis

    PubMed Central

    Junqueira-Kipnis, Ana Paula; de Oliveira, Fábio Muniz; Trentini, Monalisa Martins; Tiwari, Sangeeta; Chen, Bing; Resende, Danilo Pires; Silva, Bruna D. S.; Chen, Mei; Tesfa, Lydia; Jacobs, William R.; Kipnis, André

    2013-01-01

    The development of a new vaccine as a substitute for Bacillus Calmette–Guerin or to improve its efficacy is one of the many World Health Organization goals to control tuberculosis. Mycobacterial vectors have been used successfully in the development of vaccines against tuberculosis. To enhance the potential utility of Mycobacterium smegmatis as a vaccine, it was transformed with a recombinant plasmid containing the partial sequences of the genes Ag85c, MPT51, and HspX (CMX) from M. tuberculosis. The newly generated recombinant strain mc2-CMX was tested in a murine model of infection. The recombinant vaccine induced specific IgG1 or IgG2a responses to CMX. CD4+ and CD8+ T cells from the lungs and spleen responded ex vivo to CMX, producing IFN-γ, IL17, TNF-α, and IL2. The vaccine thus induced a significant immune response in mice. Mice vaccinated with mc2-CMX and challenged with M. tuberculosis showed better protection than mice immunized with wild-type M. smegmatis or BCG. To increase the safety and immunogenicity of the CMX antigens, we used a recombinant strain of M. smegmatis, IKE (immune killing evasion), to express CMX. The recombinant vaccine IKE-CMX induced a better protective response than mc2-CMX. The data presented here suggest that the expression of CMX antigens improves the immune response and the protection induced in mice when M. smegmatis is used as vaccine against tuberculosis. PMID:24250805

  12. Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91.

    PubMed

    Willadsen, P; Smith, D; Cobon, G; McKenna, R V

    1996-05-01

    Cattle were vaccinated either with a single recombinant tick antigen, Bm86 or with a combination of two recombinant antigens, Bm86 and Bm91 from the tick Boophilus microplus. In three experiments, the responses of cattle to subsequent challenge with the tick were assessed. The addition of the Bm91 antigen enhanced the efficacy of the vaccination over that with Bm86 alone to a statistically significant degree. Moreover, co-vaccination with two antigens did not impair the response of cattle to the Bm86 antigen. Finally, responses of individual cattle to the two antigens were independent. All of these results may be relevant to the increase in efficacy expected from a dual antigen vaccine. PMID:9229376

  13. Fate of Systemically Administered Cocaine in Nonhuman Primates Treated with the dAd5GNE Anticocaine Vaccine

    PubMed Central

    Hicks, Martin J.; Kaminsky, Stephen M.; De, Bishnu P.; Rosenberg, Jonathan B.; Evans, Suzette M.; Foltin, Richard W.; Andrenyak, David M.; Moody, David E.; Koob, George F.; Janda, Kim D.; Ricart Arbona, Rodolfo J.; Lepherd, Michelle L.

    2014-01-01

    Abstract Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1−E3− serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile. PMID:24649839

  14. Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE anticocaine vaccine.

    PubMed

    Hicks, Martin J; Kaminsky, Stephen M; De, Bishnu P; Rosenberg, Jonathan B; Evans, Suzette M; Foltin, Richard W; Andrenyak, David M; Moody, David E; Koob, George F; Janda, Kim D; Ricart Arbona, Rodolfo J; Lepherd, Michelle L; Crystal, Ronald G

    2014-03-01

    Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1(-)E3(-) serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile. PMID:24649839

  15. Effect of vaccination with recombinant canine distemper virus vaccine immediately before exposure under shelter-like conditions.

    PubMed

    Larson, L J; Schultz, R D

    2006-01-01

    Vaccination with modified-live virus (MLV) canine distemper virus (CDV) vaccine has historically been recommended for animals in high-risk environments because of the rapid onset of immunity following vaccination. Recombinant CDV (rCDV) vaccine was deemed a suitable alternative to MLV-CDV vaccination in pet dogs, but insufficient data precluded its use where CDV was a serious threat to puppies, such as in shelters, kennels, and pet stores. In this study, dogs experimentally challenged hours after a single dose of rCDV or MLV vaccine became sick but recovered, whereas unvaccinated dogs became sick and died. Dogs vaccinated with a single dose of rCDV or MLV vaccine 1 week before being experimentally challenged remained healthy and showed no clinical signs. Dogs given one dose of rCDV vaccine hours before being placed in a CDV-contaminated environment did not become sick. These findings support the hypothesis that rCDV vaccine has a similar time-to-immunity as MLV-CDV vaccines and can likewise protect dogs in high-risk environments after one dose. PMID:16871493

  16. Comparative Immunogenicity of the Tetanus Toxoid and Recombinant Tetanus Vaccines in Mice, Rats, and Cynomolgus Monkeys.

    PubMed

    Yu, Rui; Fang, Ting; Liu, Shuling; Song, Xiaohong; Yu, Changming; Li, Jianmin; Fu, Ling; Hou, Lihua; Xu, Junjie; Chen, Wei

    2016-01-01

    Tetanus is caused by the tetanus neurotoxin (TeNT) and is one of the most dreaded diseases especially in the developing countries. The current vaccine against tetanus is based on an inactivated tetanus toxin, which is effective but has many drawbacks. In our previous study, we developed a recombinant tetanus vaccine based on protein TeNT-Hc, with clear advantages over the toxoid vaccine in terms of production, characterization, and homogeneity. In this study, the titers, growth extinction, and persistence of specific antibodies induced by the two types of vaccine in mice, rats, and cynomolgus monkeys were compared. The booster vaccination efficacy of the two types of vaccines at different time points and protection mechanism in animals were also compared. The recombinant tetanus vaccine induced persistent and better antibody titers and strengthened the immunity compared with the commercially available toxoid vaccine in animals. Our results provide a theoretical basis for the development of a safe and effective recombinant tetanus vaccine to enhance the immunity of adolescents and adults as a substitute for the current toxoid vaccine. PMID:27348002

  17. Comparative Immunogenicity of the Tetanus Toxoid and Recombinant Tetanus Vaccines in Mice, Rats, and Cynomolgus Monkeys

    PubMed Central

    Yu, Rui; Fang, Ting; Liu, Shuling; Song, Xiaohong; Yu, Changming; Li, Jianmin; Fu, Ling; Hou, Lihua; Xu, Junjie; Chen, Wei

    2016-01-01

    Tetanus is caused by the tetanus neurotoxin (TeNT) and is one of the most dreaded diseases especially in the developing countries. The current vaccine against tetanus is based on an inactivated tetanus toxin, which is effective but has many drawbacks. In our previous study, we developed a recombinant tetanus vaccine based on protein TeNT-Hc, with clear advantages over the toxoid vaccine in terms of production, characterization, and homogeneity. In this study, the titers, growth extinction, and persistence of specific antibodies induced by the two types of vaccine in mice, rats, and cynomolgus monkeys were compared. The booster vaccination efficacy of the two types of vaccines at different time points and protection mechanism in animals were also compared. The recombinant tetanus vaccine induced persistent and better antibody titers and strengthened the immunity compared with the commercially available toxoid vaccine in animals. Our results provide a theoretical basis for the development of a safe and effective recombinant tetanus vaccine to enhance the immunity of adolescents and adults as a substitute for the current toxoid vaccine. PMID:27348002

  18. Recombinant Iss as a potential vaccine for avian colibacillosis.

    PubMed

    Lynne, Aaron M; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Johnson, Timothy J; Johnson, Sara J; Sinha, Avanti S; Lynne, Dorie K; Moon, Harley W; Jordan, Dianna M; Logue, Catherine M; Foley, Steven L; Nolan, Lisa K

    2012-03-01

    Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized

  19. Recombinant viral vectored vaccines for the control of avian influenza: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poultry industry has been at the forefront of developing recombinant viral vectored vaccines in an attempt to improve the immune response to vaccination. With AIV, the hemagglutinin surface glycoprotein is the key antigen for protection against infection. This allows a single gene to be transf...

  20. Recombinant Newcastle disease vaccines: risk for reversion to virulence and spread in non-target species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study is being conducted to determine the risk associated with using live recombinant NDV(rNDV) vaccines in the field. The goals of this study are to 1) determine the risk of rNDV vaccines, containing an attenuated fusion (F) protein cleavage site, to revert back to a virulent virus phen...

  1. Immunogenicity of a Recombinant Rift Valley Fever MP-12-NSm Deletion Vaccine Candidate in Calves

    PubMed Central

    Morrill, John C.; Laughlin, Richard C.; Lokugamage, Nandadeva; Wu, Jing; Pugh, Roberta; Kanani, Pooja; Adams, L. Garry; Makino, Shinji; Peters, C. J.

    2013-01-01

    The safety and immunogenicity of an authentic recombinant (ar) of the live, attenuated MP-12 Rift Valley fever (RVF) vaccine virus with a large deletion of the NSm gene in the pre-Gn region of the M RNA segment (arMP-12ΔNSm21/384) was tested in 4 – 6 month old Bos taurus calves. Phase I of this study evaluated the neutralizing antibody response, measured by 80% plaque reduction neutralization (PRNT80), and clinical response of calves to doses of 1×101 through 1×107 plaque forming units (PFU) administered subcutaneously (s.c.). Phase II evaluated the clinical and neutralizing antibody response of calves inoculated s.c. or intramuscularly (i.m.) with 1×103, 1×104 or 1×105 PFU of arMP-12ΔNSm21/384. No significant adverse clinical events were observed in the animals in these studies. Of all specimens tested, only one vaccine viral isolate was recovered and that virus retained the introduced deletion. In the Phase I study, there was no statistically significant difference in the PRNT80 response between the dosage groups though the difference in IgG response between the 1×101 PFU group and the 1×105 PFU group was statistically significant (p <0.05). The PRNT80 response of the respective dosage groups corresponded to dose of vaccine with the 1×101 PFU dose group showing the least response. The Phase II study also showed no statistically significant difference in PRNT80 response between the dosage groups though the difference in RVFV-specific IgG values was significantly increased (P<0.001) in animals inoculated i.m. with 1×104 or 1×105 PFU versus those inoculated s. c. with 1×103 or 1×105 PFU. Although the study groups were small, these data suggest that 1×104 or 1×105 PFU of arMP-12ΔNSm21/384 administered i.m. to calves will consistently stimulate a presumably protective PRNT80 response for at least 91 days post inoculation. Further studies of arMP-12ΔNSm21/384 are warranted to explore its suitability as an efficacious livestock vaccine. PMID:23994375

  2. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  3. Factors Affecting the Efficacy of Recombinant Marek's Disease Vaccine Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors have the potential to influence the efficacy of Marek's disease (MD) vaccination. Some of these factors include maternal antibody, vaccine dose, age of birds at vaccination or challenge, challenge virus strain and genetic background of chickens. The objective of this study was to evalua...

  4. Recombinant cancer vaccines and new vaccine targets. Interview by Jenaid Rees.

    PubMed

    Schlom, Jeffrey

    2013-10-01

    Interview by Jenaid Rees, Commissioning Editor Jeffrey Schlom obtained his PhD from Rutgers University (NJ, USA). After obtaining his PhD, he worked at Columbia University (NY, USA) before moving in 1973 to the National Cancer Institute, National Institutes of Health (MD, USA). Since then he has served as the Chief of several sections, including his present position as the Chief of the Laboratory of Tumor Immunology and Biology in the Center for Cancer Research which he has held for the past 30 years. During this period, he has worked as an Adjunct Professor at George Washington University (Washington, DC, USA), served on the Editorial Board of several journals and holds membership in a number of committees. He holds over 30 patents and patent applications in the areas of vaccines, tumor antigens and monoclonal antibodies and has received honors and awards throughout his career. Jeffrey Schlom has been involved in translational research involving the immunotherapy of a range of carcinomas and predominantly works in the areas of tumor immunology, mechanisms of tumor cell-immune cell interactions and immune mechanisms. He has recently been working on the design and characterization of recombinant vaccines for cancer therapy. PMID:24098990

  5. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin.

    PubMed

    Wang, Chuanwen; Liu, Liping; Zhang, Zhen; Yan, Zhengui; Yu, Cuilian; Shao, Mingxu; Jiang, Xiaodong; Chi, Shanshan; Wei, Kai; Zhu, Ruiliang

    2015-10-01

    Dermonecrotic toxin (DNT) produced by Bordetella bronchiseptica (B. bronchiseptica) can cause clinical turbinate atrophy in swine and induce dermonecrotic lesions in model mice. We know that the N-terminal of DNT molecule contains the receptor-binding domain, which facilitates binding to the target cells. However, we do not know whether this domain has sufficient immunogenicity to resist B. bronchiseptica damage and thereby to develop a subunit vaccine for the swine industry. In this study, we prokaryotically expressed the recombinant N-terminal of DNT from B. bronchiseptica (named DNT-N) and prepared it for the subunit vaccine to evaluate its immunogenicity. Taishan Pinus massoniana pollen polysaccharide (TPPPS), a known immunomodulator, was used as the adjuvant to examine its immune-conditioning effects. At 49 d after inoculation, 10 mice from each group were challenged with B. bronchiseptica, and another 10 mice were intradermally challenged with native DNT, to examine the protection imparted by the vaccines. The immune parameters (T-lymphocyte counts, cytokine secretions, serum antibody titers, and survival rates) and skin lesions were determined. The results showed that pure DNT-N vaccine significantly induced immune responses and had limited ability to resist the B. bronchiseptica and DNT challenge, whereas the mice administered with TPPPS or Freund's incomplete adjuvant vaccine could induce higher levels of the above immune parameters. Remarkably, the DNT-N vaccine combined with TPPPS adjuvant protected the mice effectively to prevent B. bronchiseptica infection. Our findings indicated that DNT-N has potential for development as an effective subunit vaccine to counteract the damage of B. bronchiseptica infection, especially when used conjointly with TPPPS. PMID:26337750

  6. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks.

    PubMed

    Ma, Tengfei; Liu, Yongxia; Cheng, Jia; Liu, Yanhan; Fan, Wentao; Cheng, Ziqiang; Niu, Xudong; Liu, Jianzhu

    2016-04-27

    To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks. PMID:27016654

  7. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. PMID:27523740

  8. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    PubMed

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. PMID:24662701

  9. Oral vaccination and protection of red foxes (Vulpes vulpes) against rabies using ONRAB, an adenovirus-rabies recombinant vaccine.

    PubMed

    Brown, L J; Rosatte, R C; Fehlner-Gardiner, C; Bachmann, P; Ellison, J A; Jackson, F R; Taylor, J S; Davies, C; Donovan, D

    2014-02-12

    Twenty-seven red foxes (Vulpes vulpes) were each offered a bait containing ONRAB, a recombinant oral rabies vaccine that uses a human adenovirus vector to express the immunogenic rabies virus glycoprotein; 10 controls received no vaccine baits. Serum samples collected from all foxes before treatment, and each week post-treatment for 16 weeks, were tested for the presence of rabies virus neutralizing antibody (RVNA). In the bait group, a fox was considered a responder to vaccination if serum samples from 3 or more consecutive weeks had RVNA ≥0.5 IU/ml. Using this criterion, 79% of adult foxes (11/14) and 46% of juveniles (6/13) responded to vaccination with ONRAB. Serum RVNA of adults first tested positive (≥0.5 IU/ml) between weeks 1 and 3, about 4 weeks earlier than in juveniles. Adults also responded with higher levels of RVNA and these levels were maintained longer. Serum samples from juveniles tested positive for 1-4 consecutive weeks; in adults the range was 2-15 weeks, with almost half of adults maintaining titres above 0.5 IU/ml for 9 or more consecutive weeks. Based on the kinetics of the antibody response to ONRAB, the best time to sample sera of wild adult foxes for evidence of vaccination is 7-11 weeks following bait distribution. Thirty-four foxes (25 ONRAB, 9 controls) were challenged with vulpine street virus 547 days post-vaccination. All controls developed rabies whereas eight of 13 adult vaccinates (62%) and four of 12 juvenile vaccinates (33%) survived. All foxes classed as non-responders to vaccination developed rabies. Of foxes considered responders to vaccination, 80% of adults (8/10) and 67% of juveniles (4/6) survived challenge. The duration of immunity conferred to foxes would appear adequate for bi-annual and annual bait distribution schedules as vaccinates were challenged 1.5 years post-vaccination. PMID:24374501

  10. Safety and Immunogenicity of purified chick embryo cell rabies vaccine (VaxiRab N) administered intradermally as post exposure prophylaxis

    PubMed Central

    Ravish, Hardanahalli S; Vijayashankar, Veena; Madhusudana, Shampur N; Sudarshan, Mysore K; Narayana, Doddabele HA; Andanaiah, Gangaboraiah; Ashwin, Belludi Y; Rachana, Annadani R; Shamanna, Manjula

    2014-01-01

    The affordability to rabies vaccine for intramuscular administration in post exposure prophylaxis is a major constraint. Therefore, in countries, where there are financial constraints, World Health Organization recommends intradermal rabies vaccination that reduces the quantity and cost of vaccination. This study was done to evaluate the safety and immunogenicity of indigenously developed rabies vaccine (VaxiRab N) in comparison to a WHO recommended rabies vaccine (Rabipur) with demonstrated efficacy when administered by intradermal route using updated Thai Red Cross regimen. Eighty-six dog bite cases were randomly given either VaxiRab N (n = 43) or Rabipur (n = 43) as post exposure prophylaxis. The rabies virus neutralizing antibody concentrations on days 14, 28, 90, and 180 were tested by modified rapid fluorescent focus inhibition test. The geometric mean RVNA concentration of both the groups were compared using t- test and was found that, P value > 0.05 on all days, thus showing no significant difference between the 2 groups. The adverse drug events were also compared using Z-test and was found to be not statistically significant (Z = 1.476, P = 0.139). In conclusion, VaxiRab N was found to be safe and effective in post exposure prophylaxis by intradermal route and was similar to the WHO recommended rabies vaccine (Rabipur) of demonstrated efficacy. PMID:25424951

  11. Peptide vaccination is superior to genetic vaccination using a recombineered bacteriophage λ subunit vaccine.

    PubMed

    Thomas, Brad S; Nishikawa, Sandra; Ito, Kenichi; Chopra, Puja; Sharma, Navneet; Evans, David H; Tyrrell, D Lorne J; Bathe, Oliver F; Rancourt, Derrick E

    2012-02-01

    Genetic immunization holds promise as a vaccination method, but has so far proven ineffective in large primate and human trials. Herein, we examined the relative merits of genetic immunization and peptide immunization using bacteriophage λ. Bacteriophage λ has proven effective in immune challenge models using both immunization methods, but there has never been a direct comparison of efficacy and of the quality of immune response. In the current study, this vector was produced using a combination of cis and trans phage display. When antibody titers were measured from immunized animals together with IL-2, IL-4 and IFNγ production from splenocytes in vitro, we found that proteins displayed on λ were superior at eliciting an immune response in comparison to genetic immunization with λ. We also found that the antibodies produced in response to immunization with λ displayed proteins bound more epitopes than those produced in response to genetic immunization. Finally, the general immune response to λ inoculation, whether peptide or genetic, was dominated by a Th1 response, as determined by IFNγ and IL-4 concentration, or by a higher concentration of IgG2a antibodies. PMID:22210400

  12. Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: A 3-year study

    PubMed Central

    Hermann, Joseph R.; Fry, Alethea M.; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M.

    2011-01-01

    Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironments in order to describe its viability and facilitate effective baiting strategies. Field microenvironments influenced the stability of this vaccine in this study. This study emphasizes the importance of understanding how vaccines perform under varying field conditions in order to plan effective baiting strategies. PMID:22468025

  13. Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies.

    PubMed

    Niu, Yange; Liu, Ye; Yang, Limin; Qu, Hongren; Zhao, Jingyi; Hu, Rongliang; Li, Jing; Liu, Wenjun

    2016-04-01

    Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5-6 IU/mL in mice and 7-9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%-80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies. PMID:27068655

  14. Differential Blood and Mucosal Immune Responses against an HIV-1 Vaccine Administered via Inguinal or Deltoid Injection

    PubMed Central

    Price, Charles; Hultin, Lance E.; Elliott, Julie; Hultin, Patricia M.; Shih, Roger; Hausner, Mary Ann; Ng, Hwee L.; Hoffman, Jennifer; Jamieson, Beth D.

    2014-01-01

    Mucosal immunity is central to sexual transmission and overall pathogenesis of HIV-1 infection, but the ability of vaccines to induce immune responses in mucosal tissue compartments is poorly defined. Because macaque vaccine studies suggest that inguinal (versus limb) vaccination may better target sexually-exposed mucosa, we performed a randomized, double-blinded, placebo-controlled Phase I trial in HIV-1-uninfected volunteers, using the recombinant Canarypox (CP) vaccine vCP205 delivered by different routes. 12 persons received vaccine and 6 received placebo, divided evenly between deltoid-intramuscular (deltoid-IM) or inguinal-subcutaneous (inguinal-SC) injection routes. The most significant safety events were injection site reactions (Grade 3) in one inguinal vaccinee. CP-specific antibodies were detected in the blood of all 12 vaccinees by Day 24, while HIV-1-specific antibodies were observed in the blood and gut mucosa of 1/9 and 4/9 evaluated vaccinees respectively, with gut antibodies appearing earlier in inguinal vaccinees (24–180 versus 180–365 days). HIV-1-specific CD8+ T lymphocytes (CTLs) were observed in 7/12 vaccinees, and blood and gut targeting were distinct. Within blood, both deltoid and inguinal responders had detectable CTL responses by 17–24 days; inguinal responders had early responses (within 10 days) while deltoid responders had later responses (24–180 days) in gut mucosa. Our results demonstrate relative safety of inguinal vaccination and qualitative or quantitative compartmentalization of immune responses between blood and gut mucosa, and highlight the importance of not only evaluating early blood responses to HIV-1 vaccines but also mucosal responses over time. Trial Registration ClinicalTrials.gov NCT00076817 PMID:24558403

  15. Nanoparticles and microparticles of polymers and polysaccharides to administer fish vaccines.

    PubMed

    Rivas-Aravena, Andrea; Sandino, Ana María; Spencer, Eugenio

    2013-01-01

    Aquaculture has become an important economic sector worldwide, but is faced with an ongoing threat from infectious diseases. Vaccination plays a critical role in protecting commercially raised fish from bacterial, viral and parasitic diseases. However, the production of effective vaccines is limited by the scarcity of knowledge about the immune system of fish. Improving vaccines implies using antigens, adjuvants and employing methods of administration that are more effective and less harmful to the fish. In this context, in recent year there have studies of methods of encapsulating antigens in matrices of different types to apply in fish vaccines. This work reviews the new methods to improve fish vaccines by encapsulating them in polymers and polysaccharides. PMID:24510143

  16. Vaccination against Anthrax with Attenuated Recombinant Strains of Bacillus anthracis That Produce Protective Antigen

    PubMed Central

    Barnard, John P.; Friedlander, Arthur M.

    1999-01-01

    The protective efficacy of several live, recombinant anthrax vaccines given in a single-dose regimen was assessed with Hartley guinea pigs. These live vaccines were created by transforming ΔANR and ΔSterne, two nonencapsulated, nontoxinogenic strains of Bacillus anthracis, with four different recombinant plasmids that express the anthrax protective antigen (PA) protein to various degrees. This enabled us to assess the effect of the chromosomal background of the strain, as well as the amount of PA produced, on protective efficacy. There were no significant strain-related effects on PA production in vitro, plasmid stability in vivo, survival of the immunizing strain in the host, or protective efficacy of the immunizing infection. The protective efficacy of the live, recombinant anthrax vaccine strains correlated with the anti-PA antibody titers they elicited in vivo and the level of PA they produced in vitro. PMID:9916059

  17. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins

    PubMed Central

    Bredenbeek, Peter J.; Molenkamp, Richard; Spaan, Willy J.M.; Deubel, Vincent; Marianneau, Phillippe; Salvato, Maria S.; Moshkoff, Dmitry; Zapata, Juan; Tikhonov, Ilia; Patterson, Jean; Carrion, Ricardo; Ticer, Anysha; Brasky, Kathleen; Lukashevich, Igor S.

    2006-01-01

    The Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa. PMID:16412488

  18. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins.

    PubMed

    Bredenbeek, Peter J; Molenkamp, Richard; Spaan, Willy J M; Deubel, Vincent; Marianneau, Phillippe; Salvato, Maria S; Moshkoff, Dmitry; Zapata, Juan; Tikhonov, Ilia; Patterson, Jean; Carrion, Ricardo; Ticer, Anysha; Brasky, Kathleen; Lukashevich, Igor S

    2006-02-20

    The Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa. PMID:16412488

  19. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs

    PubMed Central

    Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F.

    2015-01-01

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  20. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  1. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  2. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  3. A Recombinant Hendra Virus G Glycoprotein Subunit Vaccine Protects Nonhuman Primates against Hendra Virus Challenge

    PubMed Central

    Mire, Chad E.; Geisbert, Joan B.; Agans, Krystle N.; Feng, Yan-Ru; Fenton, Karla A.; Bossart, Katharine N.; Yan, Lianying; Chan, Yee-Peng; Geisbert, Thomas W.

    2014-01-01

    ABSTRACT Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. IMPORTANCE A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use. PMID:24522928

  4. A new recombinant hybrid polypeptide and its immunologic adjuvant activity for inactivated infectious bursal disease vaccine.

    PubMed

    Cai, Mei-hong; Zhu, Feng; Wu, Hao-chen; Shen, Ping-ping

    2014-07-01

    Both bursin (Lys-His-Gly-NH2) and Gagnon's peptides (Lys-Asn-Pro-Tyr) can induce B-cell differentiation. However, it is unclear whether a recombinant hybrid polypeptide consisting of a tandem array of 14 copies of bursin and two copies of Gagnon's peptide can induce the proliferative activity of lymphocytes. Here, this recombinant hybrid polypeptide was expressed in Escherichia coli and purified by SDS-PAGE. Various assays showed that it not only promoted B-lymphocyte proliferation in vitro but also increased the titers of antibodies directed against infectious bursal disease virus fourfold in the sera of chickens vaccinated with the inactivated infectious bursal disease virus vaccine. The recombinant hybrid polypeptide also reduced the pathological lesions in the bursa of Fabricius caused by infectious bursal disease virus BC6/85. Our results show that this recombinant hybrid polypeptide may be a promising immune adjuvant. PMID:24652544

  5. TH1 and TH2 responses are influenced by HLA antigens in healthy neonates vaccinated with recombinant hepatitis B vaccine.

    PubMed

    Jafarzadeh, Abdollah; Shokri, Fazel

    2012-12-01

    The immune response to hepatitis B surface antigen (HBsAg) is influenced by several factors, of which HLA antigens and balanced secretion of Th1/Th2 cytokines play important roles. The aim of this study was to evaluate the influence of HLA antigens on cytokine secretion by HBsAg-stimulated peripheral blood mononuclear cells (PBMC) from healthy neonates vaccinated with recombinant HBsAg. PBMCs were isolated from 48 Iranian neonates vaccinated with a recombinant HBV vaccine. The cells were stimulated in vitro with rHBsAg and the concentration of IL-4, IL-10, IL-12 and IFN-γ were quantitated in culture supernatant by sandwich ELISA. HLA typing was performed by microlymphocytotoxicity method. Significant diminished secretion of both Th1 (IFN-γ) and Th2 (IL-4, IL-10) cytokines was observed in HBsAg-stimulated PBMC from vaccinees expressing the HLA-DR7 compared to DR7 negative vaccinees. Similarly, lower production of these cytokines was also observed in vaccinees with DR7-DR53-DQ2, B7-DR7-DR53-DQ2 and A2-DR7-DR53-DQ2 haplotypes (p<0.05, p <0.005). While HBsAg-stimulated PBMC of DR13+ subjects produced lower levels of Th2-type cytokines (IL-4 and IL-10), those of HLA-B8+ or HLA-A9+ subjects produced higher levels of Th2-type cytokines. Cytokine secretion in response to PHA mitogen was not associated with a given HLA antigen or haplotype and was similarly represented in all groups of subjects irrespective of their HLA complex. These results indicate that HLA antigens may differentially influence cytokine secretion by HBsAg-specific T-cells of healthy neonates vaccinated with recombinant HB vaccine. This phenomenon may have an important implication for control of the immune response to HBsAg vaccine. PMID:23264407

  6. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  7. The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants

    PubMed Central

    Jul-Larsen, Åsne; Madhun, Abdullah S.; Brokstad, Karl A.; Montomoli, Emanuele; Yusibov, Vidadi; Cox, Rebecca J.

    2012-01-01

    Rapid production of influenza vaccine antigen is an important challenge when a new pandemic occurs. Production of recombinant antigens in plants is a quick, cost effective and up scalable new strategy for influenza vaccine production. In this study, we have characterized a recombinant influenza haemagglutinin antigen (HAC1) that was derived from the 2009 pandemic H1N1 (pdmH1N1) virus and expressed in tobacco plants. Volunteers vaccinated with the 2009 pdmH1N1 oil-in-water adjuvanted vaccine provided serum and lymphocyte samples that were used to study the immunogenic properties of the HAC1 antigen in vitro. By 7 d post vaccination, the vaccine fulfilled the licensing criteria for antibody responses to the HA detected by haemagglutination inhibition and single radial hemolysis. By ELISA and ELISPOT analysis we showed that HAC1 was recognized by specific serum antibodies and antibody secreting cells, respectively. We conducted a kinetic analysis and found a peak of serum HAC1 specific antibody response between day 14 and 21 post vaccination by ELISA. We also detected elevated production of IL-2 and IFNγ and low frequencies of CD4+ T cells producing single or multiple Th1 cytokines after stimulating PBMCs (peripheral blood mononuclear cells) with the HAC1 antigen in vitro. This indicates that the antigen can interact with T cells, although confirming that an effective adjuvant would be required to improve the T-cell stimulation of plant based vaccines. We conclude that the tobacco derived recombinant HAC1 antigen is a promising vaccine candidate recognized by both B and T cells. PMID:22634440

  8. Immune response to the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose or 3-dose schedule up to 4 years after vaccination

    PubMed Central

    Romanowski, Barbara; Schwarz, Tino F; Ferguson, Linda M; Ferguson, Murdo; Peters, Klaus; Dionne, Marc; Schulze, Karin; Ramjattan, Brian; Hillemanns, Peter; Behre, Ulrich; Suryakiran, Pemmaraju; Thomas, Florence; Struyf, Frank

    2014-01-01

    This randomized, partially-blind study (ClinicalTrials.gov registration number NCT00541970) evaluated the immunogenicity and safety of 2-dose (2D) schedules of the HPV-16/18 AS04-adjuvanted vaccine. Results to month (M) 24 have been reported previously and we now report data to M48 focusing on the licensed vaccine formulation (20 μg each of HPV-16 and -18 antigens) administered at M0,6 compared with the standard 3-dose (3D) schedule (M0,1,6). Healthy females (age stratified: 9–14, 15–19, 20–25 years) were randomized to receive 2D at M0,6 (n = 240) or 3D at M0,1,6 (n = 239). In the according-to-protocol immunogenicity cohort, all initially seronegative subjects seroconverted for HPV-16 and -18 antibodies and remained seropositive up to M48. For both HPV-16 and -18, geometric mean antibody titer (GMT) ratios (3D schedule in women aged 15–25 years divided by 2D schedule in girls aged 9–14 years) at M36 and M48 were close to 1, as they were at M7 when non-inferiority was demonstrated. The kinetics of HPV-16, -18, -31, and -45 antibody responses were similar for both groups and HPV-16 and -18 GMTs were substantially higher than natural infection titers. The vaccine had a clinically acceptable safety profile in both groups. In summary, antibody responses to a 2D M0,6 schedule of the licensed vaccine formulation in girls aged 9–14 years appeared comparable to the standard 3D schedule in women aged 15–25 years up to 4 years after first vaccination. A 2D schedule could facilitate implementation of HPV vaccination programs and improve vaccine coverage and series completion rates. PMID:24576907

  9. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    PubMed

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-01

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. PMID:23306362

  10. [Recombinant hepatitis B vaccine in health personnel of the Peruvian Institute of Social Security].

    PubMed

    Zumaeta, E; Figueroa, R; Ferrándiz, J; González Griego, A; Ramírez Albajés, V

    1995-01-01

    The immune response to cuban recombinant Hepatitis B vaccine was studied (sero conversion, sero protection, hyper response and geometric median) in 211 health workers from different general hospitals of Peruvian Social Security, along the coast of Perú. Vaccine was given by deltoid intramuscular injection at 0-1-2 months interval. Quantification of Anti HBS was done according to Organon Tecknica Methodology. Sero protection was obtained in 97% of people studied just at days of the first injection. Women less than 40 years old showed better immunogenic response. This Hepatitis B Vaccine program is recommended due to its symmetry, short time course and high immune protection obtained. PMID:7662916

  11. An orally administered DNA vaccine targeting vascular endothelial growth factor receptor-3 inhibits lung carcinoma growth.

    PubMed

    Chen, Yan; Liu, Xin; Jin, Cong Guo; Zhou, Yong Chun; Navab, Roya; Jakobsen, Kristine Raaby; Chen, Xiao Qun; Li, Jia; Li, Ting Ting; Luo, Lu; Wang, Xi Cai

    2016-02-01

    Lung cancer is the leading cause of mortality and 5-year survival rate is very low worldwide. Recent studies show that vascular endothelial growth factor receptor-3 (VEGFR-3) signaling pathway contributes to lung cancer progression. So we hypothesize that an oral DNA vaccine that targets VEGFR-3 carried by attenuated Salmonella enterica serovar typhimurium strain SL3261 has impacts on lung cancer progression. In this study, the oral VEGFR-3-based vaccine-immunized mice showed appreciable inhibition of tumor growth and tumor lymphatic microvessels in lung cancer mice model. Moreover, the oral VEGFR-3-based vaccine-immunized mice showed remarkable increases in both VEGFR-3-specific antibody levels and cytotoxic activity. Furthermore, the oral VEGFR-3-based vaccine-immunized mice showed a significant increase in the levels of T helper type 1 (Th1) cell intracellular cytokine expression (IL-2, IFN-γ, and TNF-α). After inoculation with murine Lewis lung carcinoma (LLC) cells, CD4(+) or CD8(+) T cell numbers obviously declined in control groups whereas high levels were maintained in the oral VEGFR-3-based vaccine group. These results demonstrated that the oral VEGFR-3-based vaccine could induce specific humoral and cellular immune responses and then significantly inhibit lung carcinoma growth via suppressing lymphangiogenesis. PMID:26376999

  12. Recombinant Hemagglutinin and Virus-Like Particle Vaccines for H7N9 Influenza Virus

    PubMed Central

    Li, Xiaohui; Pushko, Peter; Tretyakova, Irina

    2015-01-01

    Cases of H7N9 human infection were caused by a novel, avian-origin H7N9 influenza A virus that emerged in eastern China in 2013. Clusters of human disease were identified in many cities in China, with mortality rates approaching 30%. Pandemic concerns were raised, as historically, influenza pandemics were caused by introduction of novel influenza A viruses into immunologically naïve human population. Currently, there are no approved human vaccines for H7N9 viruses. Recombinant protein vaccine approaches have advantages in safety and manufacturing. In this review, we focused on evaluation of the expression of recombinant hemagglutinin (rHA) proteins as candidate vaccines for H7N9 influenza, with the emphasis on the role of oligomeric and particulate structures in immunogenicity and protection. Challenges in preparation of broadly protective influenza vaccines are discussed, and examples of broadly protective vaccines are presented including rHA stem epitope vaccines, as well as recently introduced experimental multi-HA VLP vaccines. PMID:26523241

  13. Immunogenicity and protective efficacy of an elastase-dependent live attenuated swine influenza virus vaccine administered intranasally in pigs.

    PubMed

    Masic, Aleksandar; Lu, Xinya; Li, Junwei; Mutwiri, George K; Babiuk, Lorne A; Brown, Earl G; Zhou, Yan

    2010-10-01

    Influenza A virus is an important respiratory pathogen of swine that causes significant morbidity and economic impact on the swine industry. Vaccination is the first choice for prevention and control of influenza infections. Live attenuated influenza vaccines (LAIV) are approved for use in humans and horses and their application provides broad protective immunity, however no LAIV against swine influenza virus (SIV) exists in the market. Previously we reported that an elastase-dependent mutant SIV A/Sw/Sk-R345V (R345V) derived from A/Sw/Saskatchewan/18789/02 (H1N1) (SIV/Sk02) is highly attenuated in pigs. Two intratracheal administrations of R345V induced strong cell-mediated and humoral immune responses and provided a high degree of protection to antigenically different SIV infection in pigs. Here we evaluated the immunogenicity and the protective efficacy of R345V against SIV infection by intranasal administration, the more practical route for vaccination of pigs in the field. Our data showed that intranasally administered R345V live vaccine is capable of inducing strong antigen-specific IFN-γ response from local tracheo-bronchial lymphocytes and antibody responses in serum and respiratory mucosa after two applications. Intranasal vaccination of R345V provided pigs with complete protection not only from parental wild type virus infection, but also from homologous antigenic variant A/Sw/Indiana/1726/88 (H1N1) infection. Moreover, intranasal administration of R345V conferred partial protection from heterologous subtypic H3N2 SIV infection in pigs. Thus, R345V elastase-dependent mutant SIV can serve as a live vaccine against antigenically different swine influenza viruses in pigs. PMID:20708697

  14. Recombinant varicella vaccines induce neutralizing antibodies and cellular immune responses to SIV and reduce viral loads in immunized rhesus macaques

    PubMed Central

    Traina-Dorge, V.; Pahar, B.; Marx, P.; Kissinger, P.; Montefiori, D.; Ou, Y.; Gray, W.L.

    2010-01-01

    The development of an effective AIDS vaccine remains one of the highest priorities in HIV research. The live, attenuated varicella-zoster virus (VZV) Oka vaccine, safe and effective for prevention of chickenpox and zoster, also has potential as a recombinant vaccine against other pathogens, including human immunodeficiency virus (HIV). The simian varicella model, utilizing simian varicella virus (SVV), offers an approach to evaluate recombinant varicella vaccine candidates. Recombinant SVV (rSVV) vaccine viruses expressing simian immunodeficiency virus (SIV) env and gag antigens were constructed. The hypothesis tested was that a live, attenuated rSVV-SIV vaccine will induce immune responses against SIV in the rhesus macaques and provide protection against SIV challenge. The results demonstrated that rSVV-SIV vaccination induced low levels of neutralizing antibodies and cellular immune responses to SIV in immunized rhesus macaques and significantly reduced viral loads following intravenous challenge with pathogenic SIVmac251-CX-1. PMID:20654666

  15. Clinical experience with recombinant molecules for allergy vaccination.

    PubMed

    Cromwell, Oliver; Niederberger, Verena; Horak, Friedrich; Fiebig, Helmut

    2011-01-01

    Numerous allergens have been cloned and produced by the use of recombinant DNA technology. In several cases recombinant variants with reduced IgE-reactivity have also been developed as candidates for allergen specific immunotherapy. Only very few of these proteins have as yet been tested in the clinic, and the major focus has been on birch and grass pollen, two of the most common causes of IgE-mediated allergic disease. This article serves to justify the rational for using recombinant products and reviews the progress that has been made to date with their clinical assessment. PMID:21562972

  16. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper.

    PubMed

    Wang, Xijun; Feng, Na; Ge, Jinying; Shuai, Lei; Peng, Liyan; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu; Bu, Zhigao

    2012-07-20

    Effective, safe, and affordable rabies vaccines are still being sought. Attenuated live vaccine has been widely used to protect carnivores from canine distemper. In this study, we generated a recombinant canine distemper virus (CDV) vaccine strain, rCDV-RVG, expressing the rabies virus glycoprotein (RVG) by using reverse genetics. The recombinant virus rCDV-RVG retained growth properties similar to those of vector CDV in Vero cell culture. Animal studies demonstrated that rCDV-RVG was safe in mice and dogs. Mice inoculated intracerebrally or intramuscularly with rCDV-RVG showed no apparent signs of disease and developed a strong rabies virus (RABV) neutralizing antibody response, which completely protected mice from challenge with a lethal dose of street virus. Canine studies showed that vaccination with rCDV-RVG induced strong and long-lasting virus neutralizing antibody responses to RABV and CDV. This is the first study demonstrating that recombinant CDV has the potential to serve as bivalent live vaccine against rabies and canine distemper in animals. PMID:22698451

  17. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    PubMed

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs. PMID:26742322

  18. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  19. Randomized, Controlled Trial of a 13-Valent Pneumococcal Conjugate Vaccine Administered Concomitantly with an Influenza Vaccine in Healthy Adults

    PubMed Central

    Gurtman, Alejandra; Rubino, John; Smith, William; van Cleeff, Martin; Jayawardene, Deepthi; Giardina, Peter C.; Emini, Emilio A.; Gruber, William C.; Scott, Daniel A.; Schmöle-Thoma, Beate

    2012-01-01

    A randomized, double-blind, phase 3 trial evaluated the immunogenicity, safety, and tolerability of a 13-valent pneumococcal conjugate vaccine (PCV13) coadministered with trivalent inactivated influenza vaccine (TIV) in pneumococcal vaccine-naive adults. Participants ages 50 to 59 years (n = 1,116) received TIV with PCV13 (group 1) or placebo (group 2) (1:1 randomization); 1 month later, group 1 received placebo and group 2 received PCV13. A hemagglutination inhibition (HAI) assay for TIV and a standardized enzyme-linked immunosorbent assay for pneumococcal serotype-specific immunoglobulin G (IgG) were performed and opsonophagocytic activity (OPA) titers (assessed post hoc) were measured at baseline and 1 and 2 months postvaccination. The rises in HAI assay geometric mean titer (GMT) and percentage of participants in groups 1 and 2 with ≥4-fold increases in HAI responses (A/H1N1, 84.0% and 81.2%, respectively; A/H3N2, 71.1% and 69.5%, respectively; and B, 60.6% and 60.3%, respectively) were similar. In group 1, all serotypes met the predefined IgG geometric mean concentration (GMC) ratio noninferiority criterion relative to group 2, but GMCs were lower in group 1 than group 2. When comparing group 1 with group 2, 5 serotypes did not meet the OPA GMT ratio noninferiority criterion, and OPA GMTs were significantly lower for 10 serotypes. PCV13 injection site reactions were similar and mostly mild in both groups. Systemic events were more frequent in group 1 (86.2%) than group 2 (76.7%; P < 0.001); no vaccine-related serious adverse events occurred. Coadministration of PCV13 and TIV was well tolerated but associated with lower PCV13 antibody responses and is of unknown clinical significance. Given the positive immunologic attributes of PCV13, concomitant administration with TIV should be dictated by clinical circumstances. PMID:22739693

  20. Construction of recombinant baculovirus vaccines for Newcastle disease virus and an assessment of their immunogenicity.

    PubMed

    Ge, Jingping; Liu, Ying; Jin, Liying; Gao, Dongni; Bai, Chengle; Ping, Wenxiang

    2016-08-10

    Newcastle disease (ND) is a lethal avian infectious disease caused by Newcastle disease virus (NDV) which poses a substantial threat to China's poultry industry. Conventional live vaccines against NDV are available, but they can revert to virulent strains and do not protect against mutant strains of the virus. Therefore, there is a critical unmet need for a novel vaccine that is safe, efficacious, and cost effective. Here, we designed novel recombinant baculovirus vaccines expressing the NDV F or HN genes. To optimize antigen expression, we tested the incorporation of multiple regulatory elements including: (1) truncated vesicular stomatitis virus G protein (VSV-GED), (2) woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), (3) inverted terminal repeats (ITRs) of adeno-associated virus (AAV Serotype II), and (4) the cytomegalovirus (CMV) promoter. To test the in vivo efficacy of the viruses, we vaccinated chickens with each construct and characterized the cellular and humoral immune response to challenge with virulent NDV (F48E9). All of the vaccine constructs provided some level of protection (62.5-100% protection). The F-series of vaccines provided a greater degree of protection (87.5-100%) than the HN-series (62.5-87.5%). While all of the vaccines elicited a robust cellular and humoral response subtle differences in efficacy were observed. The combination of the WPRE and VSV-GED regulatory elements enhanced the immune response and increased antigen expression. The ITRs effectively increased the length of time IFN-γ, IL-2, and IL-4 were expressed in the plasma. The F-series elicited higher titers of neutralizing antibody and NDV-specific IgG. The baculovirus system is a promising platform for NDV vaccine development that combines the immunostimulatory benefits of a recombinant virus vector with the non-replicating benefits of a DNA vaccine. PMID:27015979

  1. Vaccination of cats with an attenuated recombinant myxoma virus expressing feline calicivirus capsid protein.

    PubMed

    McCabe, Victoria J; Tarpey, Ian; Spibey, Norman

    2002-06-01

    Myxoma virus, a member of the Poxviridae family (genus Leporipoxvirus) is the agent responsible for myxomatosis in the European rabbit. Recombinant myxoma viruses expressing the capsid gene of an F9 strain of feline calicivirus (FCV) were constructed from an apathogenic, laboratory attenuated, isolate of myxoma virus. The FCV capsid genes were recombined into the myxoma growth factor (MGF) locus of the myxoma genome and expressed from synthetic poxvirus promoters. Myxoma virus is unable to replicate productively in feline cells in vitro, however, cells infected with recombinant viruses do express the heterologous antigens from both late and early/late synthetic promoters. Cats immunised with myxoma-FCV recombinant virus generated high levels of serum neutralising antibody and were protected from disease on subsequent challenge with virulent FCV. Furthermore, there was no evidence of transmission of myxoma-FCV recombinant virus from vaccinated to non-vaccinated cats. These results demonstrate the potential of myxoma virus as a safe vaccine vector for use in non-lepori species and in particular the cat. PMID:12057600

  2. [Construction of recombinant yellow fever virus 17D containing 2A fragment as a vaccine vector].

    PubMed

    Xiaowu, Pang; Fu, Wen-Chuan; Guo, Yin-Han; Zhang, Li-Shu; Xie, Tian-Pei; Xinbin, Gu

    2006-05-01

    The Yellow Fever (YF) vaccine, an attenuated yellow fever 17D (YF-17D) live vaccine, is one of the most effective and safest vaccines in the world and is regarded as one of the best candidates for viral expression vector. We here first reported in China the construction and characterization of the recombinant expression vector of yellow fever 17D which contained the proteinase 2A fragment of foot-and-mouth disease virus (FMDV). Three cDNA fragments representing the full-length YF-17D genome, named 5'-end cDNA (A), 3'-end cDNA (B) and middle cDNA (C), were obtained by reverse transcription polymerase chain reaction (RT-PCR), together with the introduction of SP6 enhancer, necessary restriction sites and overlaps for homologous recombination in yeast. Fragment A and B were then introduced into pRS424 in turn by DNA recombination, followed by transfection of fragment C and the recombinant pRS424 containing A and B (pRS-A-B) into yeast. A recombinant vector containing full length cDNA of YF-17D (pRS-YF) was obtained by screening on medium lack of tryptophan and uracil. A recombinant YF-17D expression vector containing FMDV-2A gene fragment (pRS-YF-2A1) was then constructed by methods of DNA recombination and homologous recombination in yeast described above. In vitro transcription of the recombinant vector pRS-YF-2A1 was then carried out and introduced into BHK-21 cells by electroporation. Results of indirect immunofluorescence assay (IFA) and titer determination showed a stable infectious recombinant virus was gotten, whose features such as growth curve were similar to those of the parental YF-17D. The results suggest that the recombinant vector pRS-YF-2A1, by introduction of heterogenous genes via 2A region, is potential to be an effective live vaccine expression vector. PMID:16755933

  3. Recombinant bivalent vaccines against infectious laryngotracheitis and Newcastle disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection of infectious laryngotracheitis virus (ILTV). The current commercial ILT vaccines are either not safe or less effective. Therefore, there is a pressing need to develop safer and more...

  4. Control of Boophilus microplus populations in grazing cattle vaccinated with a recombinant Bm86 antigen preparation.

    PubMed

    Rodríguez, M; Penichet, M L; Mouris, A E; Labarta, V; Luaces, L L; Rubiera, R; Cordovés, C; Sánchez, P A; Ramos, E; Soto, A

    1995-04-01

    Current methods for the control of cattle tick Boophilus microplus infestations are not effective and the parasite remains a serious problem for the cattle industry in tropical and subtropical areas. Recently, we developed a vaccine against B. microplus employing a recombinant Bm86 (rBm86) antigen preparation (Gavac, Heber Biotec) and it was shown to induce a protective response in vaccinated animals under controlled conditions. Here we show that, under field conditions in grazing cattle, the vaccine is able to control B. microplus populations. Two parasite-free farms were employed for the study. In the first farm, animals were vaccinated with the recombinant vaccine, while, in the second, animals received a saline injection in adjuvant. After immunization, animals were artificially infected and the infestation rate was recorded. Over the 33 weeks of the experiment, the infestation rate was lower in the vaccinated group compared with the control group. At the end of the experiment it was necessary to use chemicals in the control farm after serious losses in production and animals. PMID:7660571

  5. Mucosal vaccination with recombinant adenovirus encoding nucleoprotein provides potent protection against influenza virus infection.

    PubMed

    Kim, So-Hee; Kim, Joo Young; Choi, Youngjoo; Nguyen, Huan H; Song, Man Ki; Chang, Jun

    2013-01-01

    Influenza vaccines that target the highly variable surface glycoproteins hemagglutinin and neuraminidase cause inconvenience of having vaccination every year. For this reason, development of universal vaccines targeting conserved viral components is needed. In this study, we generated recombinant adenovirus (rAd) vaccine encoding nucleoprotein (NP) of A/PR/8/34 influenza virus, designated rAd/NP. BALB/c mice were immunized intranasally or sublingually with rAd/NP vaccine and subsequently challenged with lethal doses of heterologous as well as homologous influenza viruses. We found that intranasal immunization of rAd/NP elicited strong mucosal IgA responses as well as stronger CD8 T-cell responses toward immunodominant K(d)-restricted NP147-155 epitope than sublingual immunization. Importantly, only single intranasal but not sublingual immunization of rAd/NP provides potent protection against both homologous and heterologous influenza virus challenges. These results suggest that recombinant rAd/NP could be a universal vaccine candidate for mucosal administration against influenza virus. PMID:24086536

  6. Advances and future challenges in recombinant adenoviral vectored H5N1 influenza vaccines.

    PubMed

    Zhang, Jianfeng

    2012-11-01

    The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future. PMID:23202501

  7. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    PubMed Central

    Zhang, Jianfeng

    2012-01-01

    The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future. PMID:23202501

  8. Recombinant Saccharomyces cerevisiae serves as novel carrier for oral DNA vaccines in Carassius auratus.

    PubMed

    Yan, Nana; Xu, Kun; Li, Xinyi; Liu, Yuwan; Bai, Yichun; Zhang, Xiaohan; Han, Baoquan; Chen, Zhilong; Zhang, Zhiying

    2015-12-01

    Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture. PMID:26481518

  9. α-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant

    PubMed Central

    Artiaga, Bianca L.; Yang, Guan; Hackmann, Timothy J.; Liu, Qinfang; Richt, Jürgen A.; Salek-Ardakani, Shahram; Castleman, William L.; Lednicky, John A.; Driver, John P.

    2016-01-01

    Natural killer T (NKT) -cells activated with the glycolipid ligand α-galactosylceramide (α-GalCer) stimulate a wide array of immune responses with many promising immunotherapeutic applications, including the enhancement of vaccines against infectious diseases and cancer. In the current study, we evaluated whether α-GalCer generates protective immunity against a swine influenza (SI) virus infection when applied as an intramuscular vaccine adjuvant. Immunization of newly weaned piglets with UV-killed pandemic H1N1 A/California/04/2009 (kCA04) SI virus and α-GalCer induced high titers of anti-hemagglutinin antibodies and generated virus-specific T cells that localized in intrapulmonary airways and in alveolar walls. Vaccination with α-GalCer resulted in a systemic increase in NKT-cell concentrations, including in the respiratory tract, which was associated with complete inhibition of viral replication in the upper and lower respiratory tract and much reduced viral shedding. These results indicate that NKT-cell agonists could be used to improve swine vaccine formulations in order to reduce the clinical signs of SI infection and limit the spread of influenza viruses amongst commercial pigs. PMID:27004737

  10. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; Meulen, Jan Ter; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  11. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  12. Protective Immunity to Vaccinia Virus Induced by Vaccination with Multiple Recombinant Outer Membrane Proteins of Intracellular and Extracellular Virions

    PubMed Central

    Fogg, Christiana; Lustig, Shlomo; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Moss, Bernard

    2004-01-01

    Infectious intracellular and extracellular forms of vaccinia virus have different outer membrane proteins, presenting multiple targets to the immune system. We investigated the immunogenicity of soluble forms of L1, an outer membrane protein of the intracellular mature virus, and of A33 and B5, outer membrane proteins of the extracellular enveloped virus. The recombinant proteins, in 10-μg amounts mixed with a Ribi- or saponin-type adjuvant, were administered subcutaneously to mice. Antibody titers to each protein rose sharply after the first and second boosts, reaching levels that surpassed those induced by percutaneous immunization with live vaccinia virus. Immunoglobulin G1 (IgG1) antibody predominated after the protein immunizations, indicative of a T-helper cell type 2 response, whereas live vaccinia virus induced mainly IgG2a, indicative of a T-helper cell type 1 response. Mice immunized with any one of the recombinant proteins survived an intranasal challenge with 5 times the 50% lethal dose of the pathogenic WR strain of vaccinia virus. Measurements of weight loss indicated that the A33 immunization most effectively prevented disease. The superiority of protein combinations was demonstrated when the challenge virus dose was increased 20-fold. The best protection was obtained with a vaccine made by combining recombinant proteins of the outer membranes of intracellular and extracellular virus. Indeed, mice immunized with A33 plus B5 plus L1 or with A33 plus L1 were better protected than mice immunized with live vaccinia virus. Three immunizations with the three-protein combination were necessary and sufficient for complete protection. These studies suggest the feasibility of a multiprotein smallpox vaccine. PMID:15367588

  13. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    PubMed

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. PMID:26994964

  14. A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform

    PubMed Central

    Malczyk, Anna H.; Kupke, Alexandra; Prüfer, Steffen; Scheuplein, Vivian A.; Hutzler, Stefan; Kreuz, Dorothea; Beissert, Tim; Bauer, Stefanie; Hubich-Rau, Stefanie; Tondera, Christiane; Eldin, Hosam Shams; Schmidt, Jörg; Vergara-Alert, Júlia; Süzer, Yasemin; Seifried, Janna; Hanschmann, Kay-Martin; Kalinke, Ulrich; Herold, Susanne; Sahin, Ugur; Cichutek, Klaus; Waibler, Zoe; Eickmann, Markus; Becker, Stephan

    2015-01-01

    ABSTRACT In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR−/−)-CD46Ge mice with 2 × 105 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE Although MERS-CoV has not yet acquired extensive distribution

  15. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    SciTech Connect

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  16. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine

    PubMed Central

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie

    2015-01-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the “next-generation” recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. PMID:25787135

  17. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. PMID:25787135

  18. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice

    PubMed Central

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection. PMID:26575028

  19. Effectiveness of DNA-recombinant anti-hepatitis B vaccines in blood donors: a cohort study

    PubMed Central

    Kupek, Emil; de Souza, Denise ER; Petry, Andrea

    2007-01-01

    Background Although various studies have demonstrated efficacy of DNA-recombinant anti-hepatitis B vaccines, their effectiveness in health care settings has not been researched adequately. This gap is particularly visible for blood donors, a group of significant importance in the reduction of transfusion-transmitted hepatitis B. Methods This is a double cohort study of 1411 repeat blood donors during the period 1998–2002, involving a vaccinated and an unvaccinated cohort, with matching of the two in terms of sex, age and residence. Average follow-up was 3.17 person-years. The outcome measure was infection with hepatitis B virus (HBV), defined by testing positive on serologic markers HBsAg or anti-HBC. All blood donors were from the blood bank in Joaçaba, federal state of Santa Catarina, Brazil. Results The cohorts did not differ significantly regarding sex, age and marital status but the vaccinated cohort had higher mean number of blood donations and higher proportion of those residing in the county capital Joaçaba. Hepatitis B incidences per 1000 person-years were zero among vaccinated and 2,33 among non-vaccinated, resulting in 100% vaccine effectiveness with 95% confidence interval from 30,1% to 100%. The number of vaccinated persons necessary to avoid one HBV infection in blood donors was estimated at 429 with 95% confidence interval from 217 to 21422. Conclusion The results showed very high effectiveness of DNA-recombinant anti-HBV vaccines in blood donors. Its considerable variation in this study is likely due to the limited follow-up and the influence of confounding factors normally balanced out in efficacy clinical trials. PMID:17986330

  20. Antiserum from mice vaccinated with modified vaccinia Ankara virus expressing African horse sickness virus (AHSV) VP2 provides protection when it is administered 48h before, or 48h after challenge.

    PubMed

    Calvo-Pinilla, Eva; de la Poza, Francisco; Gubbins, Simon; Mertens, Peter Paul Clement; Ortego, Javier; Castillo-Olivares, Javier

    2015-04-01

    Previous studies show that a recombinant modified vaccinia Ankara (MVA) virus expressing VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against challenge. Follow up experiments indicated that passive transfer of antiserum, from MVA-VP2 immune donors to recipient mice 1h before challenge, conferred complete clinical protection and significantly reduced viraemia. These studies have been extended to determine the protective effect of MVA-VP2 vaccine-induced antiserum, when administered 48h before, or 48h after challenge. In addition, passive transfer of splenocytes was undertaken to assess if they confer any degree of immunity to immunologically naïve recipient mice. Thus, antisera and splenocytes were collected from groups of mice that had been vaccinated with MVA-VP2, or wild type MVA (MVA-wt), for passive immunisation of recipient mice. The latter were subsequently challenged with AHSV-4 (together with appropriate vaccinated or unvaccinated control animals) and protection was assessed by comparing clinical signs, lethality and viraemia between treated and control groups. All antiserum recipients showed high protection against disease (100% survival rates even in mice that were immunised 48h after challenge) and statistically significant reduction or viraemia in comparison with the control groups. The mouse group receiving splenocytes from MVA-VP2 vaccinates, showed only a 40% survival rate, with a small reduction in viraemia, compared to those mice that had received splenocytes from MVA-wt vaccinates. These results confirm the primarily humoral nature of protective immunity conferred by MVA-VP2 vaccination and show the potential of administering MVA-VP2 specific antiserum as an emergency treatment for AHSV. PMID:25643968

  1. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: vaccine potency, antibody persistence, and maternal antibody transfer.

    PubMed

    Mesonero, Alexander; Suarez, David L; van Santen, Edzard; Tang, De-Chu C; Toro, Haroldo

    2011-06-01

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibody persistence, transfer of maternal antibodies (MtAb), and interference between MtAb and active in ovo or mucosal immunization with RCA-free recombinant Ad expressing a codon-optimized AIV H5 HA gene from A/turkey/WI/68 (AdTW68.H5(ck)). Vaccine coverage and intrapotency test repeatability were based on anti-H5 hemagglutination inhibition (HI) antibody levels detected in in ovo vaccinated chickens. Even though egg inoculation of each replicate was performed by individuals with varying expertise and with different vaccine batches, the average vaccine coverage of three replicates was 85%. The intrapotency test repeatability, which considers both positive as well as negative values, varied between 0.69 and 0.71, indicating effective vaccination. Highly pathogenic (HP) AIV challenge of chicken groups vaccinated with increasing vaccine doses showed 90% protection in chickens receiving > or = 10(8) ifu (infectious units)/bird. The protective dose 50% (PD50) was determined to be 10(6.5) ifu. Even vaccinated chickens that did not develop detectable antibody levels were effectively protected against HP AIV challenge. This result is consistent with previous findings ofAd-vector eliciting T lymphocyte responses. Higher vaccine doses significantly reduced viral shedding as determined by AIV RNA concentration in oropharyngeal swabs. Assessment of antibody persistence showed that antibody levels of in ovo immunized chickens continued to increase until 12 wk and started to decline after 18 wk of age. Intramuscular (IM) booster vaccination with the same vaccine at 16 wk of age significantly increased the antibody responses in breeder hens, and these responses were maintained at high

  2. Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers.

    PubMed

    Metzger, W G; Mansouri, E; Kronawitter, M; Diescher, S; Soerensen, M; Hurwitz, R; Bumann, D; Aebischer, T; Von Specht, B-U; Meyer, T F

    2004-06-01

    Orally administered recombinant Salmonella vaccines represent an attractive option for mass vaccination programmes against various infectious diseases. Therefore, it is crucial to gather knowledge about the possible impact of preexisiting immunity to carrier antigens on the immunogenicity of recombinant vaccines. Thirteen volunteers were preimmunized with Salmonella typhi Ty21a in order to evaluate the effects of prior immunization with the carrier strain. Then, they received three doses of 1-2 x 10(10) viable organisms of either the vaccine strain S. typhi Ty21a (pDB1) expressing subunits A and B of recombinant Helicobacter pylori urease (n = 9), or placebo strain S. typhi Ty21a (n = 4). Four volunteers were preimmunized and boosted with the vaccine strain S. typhi Ty21a (pDB1). No serious adverse effects were observed in any of the volunteers. Whereas none of the volunteers primed and boosted with the vaccine strain responded to the recombinant antigen, five of the nine volunteers preimmunized with the carrier strain showed cellular immune responses to H. pylori urease (56%). This supports the results of a previous study in non-preimmunized volunteers where 56% (five of nine) of the volunteers showed a cellular immune response to urease after immunisation with S. typhi Ty21a (pDB1). PMID:15149786

  3. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    PubMed

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines. PMID:26116253

  4. Successful immunization of naturally reared pigs against porcine cysticercosis with a recombinant oncosphere antigen vaccine

    PubMed Central

    Jayashi, César M.; Kyngdon, Craig T.; Gauci, Charles G.; Gonzalez, Armando E.; Lightowlers, Marshall W.

    2012-01-01

    Taenia solium causes cysticercosis in pigs and taeniasis and neurocysticercosis in humans. Oncosphere antigens have proven to be effective as vaccines to protect pigs against an experimental infection with T. solium. A pair-matched vaccination trial field, using a combination of two recombinant antigens, TSOL16 and TSOL18, was undertaken in rural villages of Peru to evaluate the efficacy of this vaccine under natural conditions. Pairs of pigs (n = 137) comprising one vaccinated and one control animal, were allocated to local villagers. Animals received two vaccinations with 200 μg of each of TSOL16 and TSOL18, plus 5 mg Quil-A. Necropsies were performed 7 months after the animals were distributed to the farmers. Vaccination reduced 99.7% and 99.9% (p < 0.01) the total number of cysts and the number of viable cysts, respectively. Immunization with the TSOL16–TSOL18 vaccines has the potential to control T. solium transmission in areas where the disease is endemic, reducing the source for tapeworm infections in humans. PMID:22541797

  5. Comparison of antibody response to a non-adjuvanted, live canarypox-vectored recombinant rabies vaccine and a killed, adjuvanted rabies vaccine in Eld's deer (Rucervus eldi thamin).

    PubMed

    Marrow, Judilee C; Padilla, Luis R; Hayek, Lee-Ann C; Bush, Mitch; Murray, Suzan

    2014-06-01

    Captive Eld's deer (Rucervus eldi thamin) were evaluated for the presence of rabies virus-neutralizing antibodies using a rapid fluorescent focus inhibition after vaccination with either a live canarypox-vectored recombinant rabies vaccine or a killed monovalent rabies vaccine. Twelve deer were vaccinated with 1.0 ml of killed, adjuvanted, monovalent rabies vaccine at 5-33 mo of age then annually thereafter, and 14 deer were vaccinated with 1.0 ml nonadjuvanted, live canarypox-vectored rabies vaccine at 3-15 mo of age then annually thereafter. Banked serum was available or collected prospectively from deer at 6 mo and 1 yr after initial vaccination, then collected annually. Rabies virus-neutralizing antibodies considered adequate (>0.5 IU/ml) were present in 20/34 samples vaccinated with canarypox-vectored rabies vaccine and in 12/14 samples vaccinated with killed adjuvanted rabies vaccine. Poor seroconversion was noted in deer less than 6 mo of age vaccinated with the canarypox-vectored rabies vaccine. PMID:25000692

  6. Vaccination with a cocktail of Ancylostoma ceylanicum recombinant antigens leads to worm burden reduction in hamsters.

    PubMed

    Wiśniewski, Marcin; Łapiński, Maciej; Daniłowicz-Luebert, Emilia; Jaros, Sławomir; Długosz, Ewa; Wędrychowicz, Halina

    2016-09-01

    Hookworms, a group to which Ancylostoma ceylanicum belongs, are gastrointestinal nematodes that infect more than 700 million people around the world. They are a leading cause of anemia in developing countries. In order to effectively prevent hookworm infections research is conducted to develop an effective vaccine using recombinant antigens of the parasite. The aim of this study was to examine the influence of the hosts' on protection against ancylostomiasis and the shaping of the humoral immune response among Syrian hamsters after immunization with a cocktail of five A. ceylanicum recombinant antigens. Ace-ASP-3, Ace-ASP-4, Ace-APR-1, Ace-MEP-6 and Ace-MEP-7 were obtained in the pET expression system. Immunization with a vaccine cocktail resulted in a 33.5% worm burden reduction. The immunogenicity of the recombinant proteins were determined using ELISA. Statistical analysis showed that vaccinated hamsters developed stronger humoral responses to four of five recombinant antigens (the exception being Ace-ASP-3) compared to hamsters from the control group. PMID:27447220

  7. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure

    PubMed Central

    Henderson, Thomas; Nilles, Matthew L.; Kwilas, Steve A.; Josleyn, Matthew D.; Hammerbeck, Christopher D.; Schiltz, James; Royals, Michael; Ballantyne, John; Hooper, Jay W.; Bradley, David S.

    2015-01-01

    Andes virus (ANDV) and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS) cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA) for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000). Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50). Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8), or no-treatment (n=8), developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral biological product

  8. Immunogenicity and reactogenicity of the human rotavirus vaccine, RIX4414 oral suspension, when co-administered with routine childhood vaccines in Chinese infants.

    PubMed

    Li, Rong-Cheng; Huang, Teng; Li, Yanping; Wang, Lao-Hong; Tao, Junhui; Fu, Botao; Si, Guoai; Nong, Yi; Mo, Zhaojun; Liao, XueYan; Luan, Ivy; Tang, Haiwen; Rathi, Niraj; Karkada, Naveen; Han, Htay Htay

    2016-03-01

    This study evaluated the immunogenicity of the human rotavirus (RV) vaccine (RIX4414) when co-administered with routine childhood vaccines in Chinese infants (NCT01171963). Healthy infants aged 6-16 weeks received 2 doses of either RIX4414 or placebo according to a 0, 1-month schedule. Infants received routine diphtheria-tetanus-acellular pertussis (DTPa) and oral poliovirus (OPV) vaccines either separately from or concomitantly with RIX4414/placebo (separate and co-administration cohorts, respectively). Anti-RV IgA seroconversion rates (one month post-dose-2) and seropositivity rates (at one year of age) were measured using ELISA. Immune responses against the DTPa and OPV antigens were measured one month post-DTPa dose-3 in the co-administration cohort. Solicited local and general symptoms were recorded for 8-days post-vaccination (total cohort). The according-to-protocol immunogenicity population included 511 infants in the separate cohort and 275 in the co-administration cohort. One month post-RIX4414 dose-2, anti-RV IgA seroconversion rates were 74.7% (95% confidence interval [CI]: 68.9-79.9) and 64.2% (95% CI: 55.4-72.3) in the separate and co-administration cohorts; seropositivity rates at one year of age were 71.5% (95% CI: 65.5-77.1) and 50.0% (95% CI: 40.9-59.1), respectively. One month post-DTPa dose-3, all infants in the co-administration cohort were seroprotected against diphtheria and tetanus, and seropositive for pertussis toxoid, pertactin and filamentous haemaglutinin. Two months post-OPV dose-3, seroprotection rates against anti-poliovirus types 1, 2 and 3 were >99% in the co-administration cohort. Reactogenicity profiles were similar in both cohorts. RIX4414 was immunogenic and well-tolerated in Chinese infants and did not appear to interfere with the immunogenicity and reactogenicity of co-administered routine childhood vaccines. PMID:27149266

  9. Immunogenicity and reactogenicity of the human rotavirus vaccine, RIX4414 oral suspension, when co-administered with routine childhood vaccines in Chinese infants

    PubMed Central

    Li, Rong-cheng; Huang, Teng; Li, Yanping; Wang, Lao-Hong; Tao, Junhui; Fu, Botao; Si, Guoai; Nong, Yi; Mo, Zhaojun; Liao, XueYan; Luan, Ivy; Tang, Haiwen; Rathi, Niraj; Karkada, Naveen; Han, Htay Htay

    2016-01-01

    Abstract This study evaluated the immunogenicity of the human rotavirus (RV) vaccine (RIX4414) when co-administered with routine childhood vaccines in Chinese infants (NCT01171963). Healthy infants aged 6–16 weeks received 2 doses of either RIX4414 or placebo according to a 0, 1-month schedule. Infants received routine diphtheria-tetanus-acellular pertussis (DTPa) and oral poliovirus (OPV) vaccines either separately from or concomitantly with RIX4414/placebo (separate and co-administration cohorts, respectively). Anti-RV IgA seroconversion rates (one month post-dose-2) and seropositivity rates (at one year of age) were measured using ELISA. Immune responses against the DTPa and OPV antigens were measured one month post-DTPa dose-3 in the co-administration cohort. Solicited local and general symptoms were recorded for 8-days post-vaccination (total cohort). The according-to-protocol immunogenicity population included 511 infants in the separate cohort and 275 in the co-administration cohort. One month post-RIX4414 dose-2, anti-RV IgA seroconversion rates were 74.7% (95% confidence interval [CI]: 68.9–79.9) and 64.2% (95% CI: 55.4–72.3) in the separate and co-administration cohorts; seropositivity rates at one year of age were 71.5% (95% CI: 65.5–77.1) and 50.0% (95% CI: 40.9–59.1), respectively. One month post-DTPa dose-3, all infants in the co-administration cohort were seroprotected against diphtheria and tetanus, and seropositive for pertussis toxoid, pertactin and filamentous haemaglutinin. Two months post-OPV dose-3, seroprotection rates against anti-poliovirus types 1, 2 and 3 were >99% in the co-administration cohort. Reactogenicity profiles were similar in both cohorts. RIX4414 was immunogenic and well-tolerated in Chinese infants and did not appear to interfere with the immunogenicity and reactogenicity of co-administered routine childhood vaccines. PMID:27149266

  10. Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick.

    PubMed

    Canales, M; Enríquez, A; Ramos, E; Cabrera, D; Dandie, H; Soto, A; Falcón, V; Rodríguez, M; de la Fuente, J

    1997-03-01

    A gene coding for the Bm86 tick protein was recently cloned, expressed in Pichia pastoris and shown to induce an inmunological response in cattle against ticks. Moreover, the Gavac vaccine (Heber Biotec S.A., Havana, Cuba), which contains this recombinant protein, has proved to control the Boophilus microplus populations under field conditions. This paper reviews the development and large-scale production of this vaccine, the efficacy of the resulting product and the strategy followed in designing its production plant. The production plant fulfills biosafety requirements and GMP. PMID:9141213

  11. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging.

    PubMed

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J; Vanderplasschen, Alain

    2015-02-01

    Cyprinid herpesvirus 3 (CyHV 3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV 3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV 3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. PMID:25700279

  12. Rational Development of an Attenuated Recombinant Cyprinid Herpesvirus 3 Vaccine Using Prokaryotic Mutagenesis and In Vivo Bioluminescent Imaging

    PubMed Central

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S.; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J.; Vanderplasschen, Alain

    2015-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. PMID:25700279

  13. Recombinant rabies virus as potential live-viral vaccines for HIV-1

    PubMed Central

    Schnell, Matthias J.; Foley, Heather D.; Siler, Catherine A.; McGettigan, James P.; Dietzschold, Bernhard; Pomerantz, Roger J.

    2000-01-01

    Recombinant, replication-competent rabies virus (RV) vaccine strain-based vectors were developed expressing HIV type I (HIV-1) envelope glycoprotein (gp160) from both a laboratory-adapted (CXCR4-tropic) and a primary (dual-tropic) HIV-1 isolate. An additional transcription stop/start unit within the RV genome was used to express HIV-1 gp160 in addition to the other RV proteins. The HIV-1 gp160 protein was stably and functionally expressed, as indicated by fusion of human T cell lines after infection with the recombinant RVs. Inoculation of mice with the recombinant RVs expressing HIV-1 gp160 induced a strong humoral response directed against the HIV-1 envelope protein after a single boost with recombinant HIV-1 gp120 protein. Moreover, high neutralization titers up to 1:800 against HIV-1 could be detected in the mouse sera. These data indicate that a live recombinant RV, a rhabdovirus, expressing HIV-1 gp160 may serve as an effective vector for an HIV-1 vaccine. PMID:10706640

  14. Recombinant rabies virus as potential live-viral vaccines for HIV-1.

    PubMed

    Schnell, M J; Foley, H D; Siler, C A; McGettigan, J P; Dietzschold, B; Pomerantz, R J

    2000-03-28

    Recombinant, replication-competent rabies virus (RV) vaccine strain-based vectors were developed expressing HIV type I (HIV-1) envelope glycoprotein (gp160) from both a laboratory-adapted (CXCR4-tropic) and a primary (dual-tropic) HIV-1 isolate. An additional transcription stop/start unit within the RV genome was used to express HIV-1 gp160 in addition to the other RV proteins. The HIV-1 gp160 protein was stably and functionally expressed, as indicated by fusion of human T cell lines after infection with the recombinant RVs. Inoculation of mice with the recombinant RVs expressing HIV-1 gp160 induced a strong humoral response directed against the HIV-1 envelope protein after a single boost with recombinant HIV-1 gp120 protein. Moreover, high neutralization titers up to 1:800 against HIV-1 could be detected in the mouse sera. These data indicate that a live recombinant RV, a rhabdovirus, expressing HIV-1 gp160 may serve as an effective vector for an HIV-1 vaccine. PMID:10706640

  15. An Overview of Live Attenuated Recombinant Pseudorabies Viruses for Use as Novel Vaccines

    PubMed Central

    Dong, Bo; Zarlenga, Dante S.; Ren, Xiaofeng

    2014-01-01

    Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals. PMID:24995348

  16. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus

    PubMed Central

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development. PMID:26930411

  17. Immunoenhancing effects of MontanideTM ISA oil-based adjuvants on recombinant coccidia antigen vaccination against Eimeria acervulina infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study was conducted to investigate the immunoenhancing effects of Montanide' adjuvants on protein subunit vaccination against avian coccidiosis. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with one ...

  18. Effect of montanide adjuvants on recombinant coccidia antigen vaccination against Eimeria infection in commercial meat-type chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current study was conducted to investigate the immunoenhancing effects of Montanide' adjuvants on protein subunit vaccination against experimental avian coccidiosis. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mi...

  19. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis

    PubMed Central

    Cuccui, Jon; Thomas, Rebecca M.; Moule, Madeleine G.; D'Elia, Riccardo V.; Laws, Thomas R.; Mills, Dominic C.; Williamson, Diane; Atkins, Timothy P.; Prior, Joann L.; Wren, Brendan W.

    2013-01-01

    Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l−1 of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines. PMID:23697804

  20. Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis.

    PubMed

    Cuccui, Jon; Thomas, Rebecca M; Moule, Madeleine G; D'Elia, Riccardo V; Laws, Thomas R; Mills, Dominic C; Williamson, Diane; Atkins, Timothy P; Prior, Joann L; Wren, Brendan W

    2013-05-01

    Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l(-1) of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines. PMID:23697804

  1. Development of a recombinant epsilon toxoid vaccine against enterotoxemia and its use as a combination vaccine with live attenuated sheep pox virus against enterotoxemia and sheep pox.

    PubMed

    Chandran, Dev; Naidu, Sureddi Satyam; Sugumar, Parthasarathy; Rani, Gudavalli Sudha; Vijayan, Shahana Pallichera; Mathur, Deepika; Garg, Lalit C; Srinivasan, Villuppanoor Alwar

    2010-06-01

    Sheep pox and enterotoxemia are important diseases of sheep, and these diseases cause severe economic losses to sheep farmers. The present study was undertaken to evaluate the potential of formaldehyde-inactivated recombinant epsilon toxin as a vaccine candidate. The potency of the recombinant epsilon toxoid with aluminum hydroxide as an adjuvant in sheep was determined. Vaccinated sheep were protected against enterotoxemia, with potency values of >5 IU being protective. Further, the use of this construct in a combination vaccine against sheep pox resulted in the sheep being protected against both sheep pox and enterotoxemia. PMID:20427629

  2. Development of a Recombinant Epsilon Toxoid Vaccine against Enterotoxemia and Its Use as a Combination Vaccine with Live Attenuated Sheep Pox Virus against Enterotoxemia and Sheep Pox▿

    PubMed Central

    Chandran, Dev; Naidu, Sureddi Satyam; Sugumar, Parthasarathy; Rani, Gudavalli Sudha; Vijayan, Shahana Pallichera; Mathur, Deepika; Garg, Lalit C.; Srinivasan, Villuppanoor Alwar

    2010-01-01

    Sheep pox and enterotoxemia are important diseases of sheep, and these diseases cause severe economic losses to sheep farmers. The present study was undertaken to evaluate the potential of formaldehyde-inactivated recombinant epsilon toxin as a vaccine candidate. The potency of the recombinant epsilon toxoid with aluminum hydroxide as an adjuvant in sheep was determined. Vaccinated sheep were protected against enterotoxemia, with potency values of >5 IU being protective. Further, the use of this construct in a combination vaccine against sheep pox resulted in the sheep being protected against both sheep pox and enterotoxemia. PMID:20427629

  3. Experimental vaccination of sheep and cattle against tick infestation using recombinant 5'-nucleotidase.

    PubMed

    Hope, M; Jiang, X; Gough, J; Cadogan, L; Josh, P; Jonsson, N; Willadsen, P

    2010-02-01

    Limited prior evidence suggests that 5'-nucleotidase, an ectoenzyme principally located in the Malpighian tubules of the tick Rhipicephalus (Boophilus) microplus, could be an effective antigen in an anti-tick vaccine. To assess this, recombinant 5'-nucleotidase was expressed in Escherichia coli and used in vaccination trials with both sheep and cattle. Vaccinated sheep were challenged with freshly moulted adult ticks. Those with high titres of anti-nucleotidase antibodies showed significant protection against tick infestation, although protection was less than that found with the previously characterized antigen, Bm86. Cattle were vaccinated, in separate groups, with 5'-nucleotidase, Bm86 and both antigens combined. Cattle, as the natural host, were challenged with larval ticks. Although Bm86 showed typical efficacy, no significant protection was seen in cattle vaccinated with 5'-nucleotidase. Cattle receiving a dual antigen formulation were no better protected than those receiving Bm86 alone. One possible reason for the difference between host species, namely antibody titre, was examined and shown to be an unlikely explanation. This demonstrates a limitation of using a model host like sheep in vaccine studies. PMID:20070827

  4. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    PubMed

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. PMID:23583494

  5. Experimental vaccination of sheep and cattle against tick infestation using recombinant 5′-nucleotidase

    PubMed Central

    HOPE, M; JIANG, X; GOUGH, J; CADOGAN, L; JOSH, P; JONSSON, N; WILLADSEN, P

    2010-01-01

    Limited prior evidence suggests that 5′-nucleotidase, an ectoenzyme principally located in the Malpighian tubules of the tick Rhipicephalus (Boophilus) microplus, could be an effective antigen in an anti-tick vaccine. To assess this, recombinant 5′-nucleotidase was expressed in Escherichia coli and used in vaccination trials with both sheep and cattle. Vaccinated sheep were challenged with freshly moulted adult ticks. Those with high titres of anti-nucleotidase antibodies showed significant protection against tick infestation, although protection was less than that found with the previously characterized antigen, Bm86. Cattle were vaccinated, in separate groups, with 5′-nucleotidase, Bm86 and both antigens combined. Cattle, as the natural host, were challenged with larval ticks. Although Bm86 showed typical efficacy, no significant protection was seen in cattle vaccinated with 5′-nucleotidase. Cattle receiving a dual antigen formulation were no better protected than those receiving Bm86 alone. One possible reason for the difference between host species, namely antibody titre, was examined and shown to be an unlikely explanation. This demonstrates a limitation of using a model host like sheep in vaccine studies. PMID:20070827

  6. Stabilization of a Recombinant Ricin Toxin A Subunit Vaccine through Lyophilization

    PubMed Central

    Hassett, Kimberly J.; Cousins, Megan C.; Rabia, Lilia A.; Chadwick, Chrystal M.; O’Hara, Joanne M.; Nandi, Pradyot; Brey, Robert N.; Mantis, Nicholas J.; Carpenter, John F.; Randolph, Theodore W.

    2013-01-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40°C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNA) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40°C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40°C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. PMID:23583494

  7. A Promising Trigene Recombinant Human Adenovirus Vaccine Against Classical Swine Fever Virus.

    PubMed

    Li, Helin; Gao, Rui; Zhang, Yanming

    2016-05-01

    Classical swine fever (CSF) vaccine based on HAdV-5 had achieved an efficient protection in swine. Both classical swine fever virus (CSFV) E0 glycoprotein and E2 glycoprotein were the targets for neutralizing antibodies and related to immune protection against CSF. Interleukin-2 (IL2), as an adjuvant, also had been used in CSF vaccine research. In this study, coexpression of the CSFV E0, E2, and IL2 genes by HAdV-5 (rAdV-E0-E2-IL2) was constructed and immunized to evaluate its efficacy. Three expressed genes had been sequentially connected with foot-and-mouth disease virus 2A (FMDV 2A). The vaccine was administered by intramuscular inoculation to CSFV-free pigs (10(8) TCID50) twice at triweekly intervals. No adverse clinical signs were observed in any of the pigs after vaccination. The vaccine induced strong humoral and cellular responses that led to complete protection against clinical signs of lethal CSFV infection, viremia, and shedding of challenge virus. The rAdV-E0-E2-IL2 is a promising, efficient, and safe marker vaccine candidate against CSFV. PMID:26918463

  8. Genome sequence of SG33 strain and recombination between wild-type and vaccine myxoma viruses.

    PubMed

    Camus-Bouclainville, Christelle; Gretillat, Magalie; Py, Robert; Gelfi, Jacqueline; Guérin, Jean Luc; Bertagnoli, Stéphane

    2011-04-01

    Myxomatosis in Europe is the result of the release of a South America strain of myxoma virus in 1952. Several attenuated strains with origins in South America or California have since been used as vaccines in the rabbit industry. We sequenced the genome of the SG33 myxoma virus vaccine strain and compared it with those of other myxoma virus strains. We show that SG33 genome carries a large deletion in its right end. Furthermore, our data strongly suggest that the virus isolate from which SG33 is derived results from an in vivo recombination between a wild-type South America (Lausanne) strain and a California MSD-derived strain. These findings raise questions about the use of insufficiently attenuated virus in vaccination. PMID:21470452

  9. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus

    PubMed Central

    Fonseca, Wendy; Ozawa, Makoto; Hatta, Masato; Orozco, Esther; Martínez, Máximo B; Kawaoka, Yoshihiro

    2014-01-01

    Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections. PMID:24292020

  10. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    PubMed

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses. PMID:27029122

  11. Crystal structures of enterovirus 71 (EV71) recombinant virus particles provide insights into vaccine design.

    PubMed

    Lyu, Ke; Wang, Guang-Chuan; He, Ya-Ling; Han, Jian-Feng; Ye, Qing; Qin, Cheng-Feng; Chen, Rong

    2015-02-01

    Hand-foot-and-mouth disease (HFMD) remains a major health concern in the Asia-Pacific regions, and its major causative agents include human enterovirus 71 (EV71) and coxsackievirus A16. A desirable vaccine against HFMD would be multivalent and able to elicit protective responses against multiple HFMD causative agents. Previously, we have demonstrated that a thermostable recombinant EV71 vaccine candidate can be produced by the insertion of a foreign peptide into the BC loop of VP1 without affecting viral replication. Here we present crystal structures of two different naturally occurring empty particles, one from a clinical C4 strain EV71 and the other from its recombinant virus containing an insertion in the VP1 BC loop. Crystal structure analysis demonstrated that the inserted foreign peptide is well exposed on the particle surface without significant structural changes in the capsid. Importantly, such insertions do not seem to affect the virus uncoating process as illustrated by the conformational similarity between an uncoating intermediate of another recombinant virus and that of EV71. Especially, at least 18 residues from the N terminus of VP1 are transiently externalized. Altogether, our study provides insights into vaccine development against HFMD. PMID:25492868

  12. Generation of Recombinant Arenavirus for Vaccine Development in FDA-Approved Vero Cells

    PubMed Central

    de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2013-01-01

    The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field 4. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis 1, 3, 11 . In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications 5 . Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses 16 . The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines 7,19 , which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells. PMID:23928556

  13. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.

    PubMed

    Martinez-Torrecuadrada, Jorge L; Saubi, Narciís; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio

    2003-07-01

    The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3 micrograms of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components. PMID:12804866

  14. Structure-dependent efficacy of infectious bursal disease virus (IBDV) recombinant vaccines.

    PubMed

    Martinez-Torrecuadrada, Jorge L; Saubi, Narcis; Pagès-Manté, Albert; Castón, José R; Espuña, Enric; Casal, J Ignacio

    2003-05-16

    The immunogenicity and protective capability of several baculovirus-expressed infectious bursal disease virus (IBDV)-derived assemblies as VP2 capsids, VPX tubules and polyprotein (PP)-derived mixed structures, were tested. Four-week-old chickens were immunised subcutaneously with one dose of each particulate antigen. VP2 icosahedral capsids induced the highest neutralising response, followed by PP-derived structures and then VPX tubules. All vaccinated animals were protected when challenged with a very virulent IBDV (vvIBDV) isolate, however the degree of protection is directly correlated with the levels of neutralising antibodies. VP2 capsids elicited stronger protective immunity than tubular structures and 3& mgr;g of them were sufficient to confer a total protection comparable to that induced by an inactivated vaccine. Therefore, VP2 capsids represent a suitable candidate recombinant vaccine instead of virus-like particles (VLPs) for IBDV infections. Our results also provide clear evidence that the recombinant IBDV-derived antigens are structure-dependent in order to be efficient as vaccine components. PMID:12706682

  15. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen.

    PubMed

    Porta, Claudine; Kotecha, Abhay; Burman, Alison; Jackson, Terry; Ren, Jingshan; Loureiro, Silvia; Jones, Ian M; Fry, Elizabeth E; Stuart, David I; Charleston, Bryan

    2013-03-01

    Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals. PMID:23544011

  16. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  17. Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice.

    PubMed

    Changklungmoa, Narin; Phoinok, Natthacha; Yencham, Chonthicha; Sobhon, Prasert; Kueakhai, Pornanan

    2016-08-15

    In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals. PMID:27514897

  18. Impact on respiratory tract infections of heptavalent pneumococcal conjugate vaccine administered at 3, 5 and 11 months of age

    PubMed Central

    Esposito, Susanna; Lizioli, Alessandro; Lastrico, Annalisa; Begliatti, Enrica; Rognoni, Alessandro; Tagliabue, Claudia; Cesati, Laura; Carreri, Vittorio; Principi, Nicola

    2007-01-01

    Background Medical and public health importance of pneumococcal infections justifies the implementation of measures capable of reducing their incidence and severity, and explains why the recently marketed heptavalent pneumococcal conjugate vaccine (PCV-7) has been widely studied by pediatricians. This study was designed to evaluate the impact of PCV-7 administered at 3, 5 and 11 months of age on respiratory tract infections in very young children. Methods A total of 1,571 healthy infants (910 males) aged 75–105 days (median 82 days) were enrolled in this prospective cohort trial to receive a hexavalent vaccine (DTaP/IPV/HBV/Hib) and PCV-7 (n = 819) or the hexavalent vaccine alone (n = 752) at 3, 5 and 11 months of age. Morbidity was recorded for the 24 months following the second dose by monthly telephone interviews conducted by investigators blinded to the study treatment assignment using standardised questionnaires. During these interviews, the caregivers and the children's pediatricians were questioned about illnesses and the use of antibiotics since the previous telephone call. All of the data were analysed using SAS Windows v.12. Results Among the 1,555 subjects (98.9%) who completed the study, analysis of the data by the periods of follow-up demonstrated that radiologically confirmed community-acquired pneumonia (CAP) was significantly less frequent in the PCV-7 group during the follow-up as a whole and during the last period of follow-up. Moreover, there were statistically significant between-group differences in the incidence of acute otitis media (AOM) in each half-year period of follow-up except the first, with significantly lower number of episodes in children receiving PCV-7 than in controls. Furthermore, the antibiotic prescription data showed that the probability of receiving an antibiotic course was significantly lower in the PCV-7 group than in the control group. Conclusion Our findings show the effectiveness of the simplified PCV-7 schedule

  19. Spotlight on quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine(Gardasil®) in the prevention of premalignant genital lesions, genital cancer, and genital warts in women.

    PubMed

    McCormack, Paul L; Joura, Elmar A

    2011-10-01

    Quadrivalent human papilloma virus (HPV) [types 6, 11, 16, 18] recombinant vaccine (Gardasil®; Silgard®) is composed of virus-like particles (VLPs) formed by self-assembly of recombinant L1 capsid protein from each of HPV types 6, 11, 16, and 18. The VLPs are noninfectious, containing no DNA, and are highly immunogenic, inducing high levels of neutralizing antibodies against the particular HPV types when administered to animals or humans. Quadrivalent HPV vaccine is indicated for use from the age of 9 years for the prevention of premalignant genital lesions (cervical, vulvar, and vaginal), cervical cancer, and external genital warts (condyloma acuminata) causally related to certain oncogenic or specific HPV types. In placebo-controlled clinical trials, quadrivalent HPV vaccine administered as three doses over 6 months provided high-level protection against infection or disease caused by the vaccine HPV types over 2-4 years of follow-up in females aged 15-45 years who were naive to the vaccine HPV types. A degree of cross-protection against certain other non-vaccine high-risk HPV types was also observed. The vaccine is not effective against current infection with a vaccine HPV type. Girls or women with current infection with one or more of the vaccine HPV types gained protection from infection or disease caused by the remaining vaccine HPV types and they were also protected against reinfection with the same HPV type after clearance of an infection caused by a vaccine HPV type. High seroconversion rates and high levels of anti-HPV antibodies were observed in all vaccinated individuals of all age ranges from 9 to 45 years. No correlation was found between antibody levels and protective efficacy of the vaccine. Rechallenge with quadrivalent HPV vaccine produced a potent anamnestic humoral immune response. The vaccine is generally well tolerated and is projected to be cost effective in most pharmacoeconomic models. Therefore, quadrivalent HPV vaccine offers an

  20. Use of Recombinant Virus Replicon Particles for Vaccination against Mycobacterium ulcerans Disease

    PubMed Central

    Bolz, Miriam; Kerber, Sarah; Zimmer, Gert; Pluschke, Gerd

    2015-01-01

    Buruli ulcer, caused by infection with Mycobacterium ulcerans, is a necrotizing disease of the skin and subcutaneous tissue, which is most prevalent in rural regions of West African countries. The majority of clinical presentations seen in patients are ulcers on limbs that can be treated by eight weeks of antibiotic therapy. Nevertheless, scarring and permanent disabilities occur frequently and Buruli ulcer still causes high morbidity. A vaccine against the disease is so far not available but would be of great benefit if used for prophylaxis as well as therapy. In the present study, vesicular stomatitis virus-based RNA replicon particles encoding the M. ulcerans proteins MUL2232 and MUL3720 were generated and the expression of the recombinant antigens characterized in vitro. Immunisation of mice with the recombinant replicon particles elicited antibodies that reacted with the endogenous antigens of M. ulcerans cells. A prime-boost immunization regimen with MUL2232-recombinant replicon particles and recombinant MUL2232 protein induced a strong immune response but only slightly reduced bacterial multiplication in a mouse model of M. ulcerans infection. We conclude that a monovalent vaccine based on the MUL2232 antigen will probably not sufficiently control M. ulcerans infection in humans. PMID:26275222

  1. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  2. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  3. Vaccination against Canine Distemper Virus Infection in Infant Ferrets with and without Maternal Antibody Protection, Using Recombinant Attenuated Poxvirus Vaccines

    PubMed Central

    Welter, Janet; Taylor, Jill; Tartaglia, James; Paoletti, Enzo; Stephensen, Charles B.

    2000-01-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log10 inverse mean titer ± standard deviation of 2.30 ± 0.12 and 2.20 ± 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 ± 0.57 versus 0.40 ± 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 ± 0.54 and 1.28 ± 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 ± 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 ± 0.32; n = 8, P = 7 × 10−6). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1.63 ± 0

  4. Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis.

    PubMed Central

    Hess, J; Gentschev, I; Miko, D; Welzel, M; Ladel, C; Goebel, W; Kaufmann, S H

    1996-01-01

    Vaccination provides the most potent measure against infectious disease, and recombinant (r) viable vaccines expressing defined pathogen-derived antigens represent powerful candidates for future vaccination strategies. In a new approach we constructed r-aroA- Salmonella typhimurium displaying p60 or listeriolysin (Hly) antigen of Listeria monocytogenes in secreted or somatic form in the host cell. Vaccination of mice with r-aroA- S. typhimurium induced protection against the intracellular pathogen L. monocytogenes only with secreted and not with somatic antigen. Secreted Hly was slightly more potent in inducing protective immunity than secreted p60. Both r-aroA- S. typhimurium secreting p60 in the endosome and r-aroA- S. typhimurium secreting Hly in the cytosol induced protective CD4+ and CD8+ T-cells suggesting CD8+ T-cell stimulation independent from intracellular residence of r-aroA- S. typhimurium carriers. Hence, not only the type of antigen but also its display by the r-carrier within the host cell critically influences vaccine efficacy. Images Fig. 1 PMID:8643654

  5. Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats.

    PubMed

    Bálint, Ádám; Farsang, Attila; Szeredi, Levente; Zádori, Zoltán; Belák, Sándor

    2014-03-14

    Feline infectious peritonitis virus (FIPV) is a major pathogen of Felidae. Despite the extensive efforts taken in the past decades, development of the "ideal" live attenuated FIPV vaccine was not successful yet. In the present study, we provide data of immunisation experiments with a recombinant FCoV pair differing only in the truncation (PBFIPV-DF-2) or completion (PBFIPV-DF-2-R3i) of their ORF3abc regions. In our previous in vivo studies, these viruses proved to show the characters of low virulent or avirulent FCoV phenotypes, respectively. Therefore, we hypothesised the ability of these viruses, as possible vaccine candidates, in conferring protection in specific pathogen free (SPF) Domestic Shorthair as well as in conventional purebred British Shorthair cats. In SPF cats, after two oronasal and two intramuscular vaccinations with two weeks intervals, both vaccine candidates provided 100% protection against lethal homologous challenge with the highly virulent FIPV DF-2 strain. In contrast, the conventional purebred British Shorthair cats did not develop protection when they were immunised with the same vaccination regimes. In these groups 100% of the PBFIPV-DF-2-R3i immunised animals developed antibody-dependent enhancement (ADE). Prolonged survival was observed in 40% of the animals, while 60% showed fulminant disease course. Genetic and more probably immunological differences between the SPF and non-SPF purebred kittens can explain the different outcome of the vaccination experiment. Our data highlight the diverse immune responses between SPF and conventional cats and suggest a decisive role of previous infection by heterologous causative agents in the outcome of the vaccination against FIP. PMID:24513277

  6. Recombinant Measles Virus Vaccine Expressing the Nipah Virus Glycoprotein Protects against Lethal Nipah Virus Challenge

    PubMed Central

    Yoneda, Misako; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Ishii, Miho; Nagata, Noriyo; Jacquot, Frederic; Raoul, Hervé; Sato, Hiroki; Kai, Chieko

    2013-01-01

    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans. PMID:23516477

  7. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    PubMed

    Yoneda, Misako; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Ishii, Miho; Nagata, Noriyo; Jacquot, Frederic; Raoul, Hervé; Sato, Hiroki; Kai, Chieko

    2013-01-01

    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans. PMID:23516477

  8. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens.

    PubMed

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Lülf, Anna; Marr, Lisa; Jany, Sylvia; Deeg, Cornelia A; Pijlman, Gorben P; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E; Sutter, Gerd

    2016-04-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans. PMID:26939903

  9. Booster vaccination of pre-school children with reduced-antigen-content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine co-administered with measles-mumps-rubella-varicella vaccine

    PubMed Central

    Ferrera, Giuseppe; Cuccia, Mario; Mereu, Gabriele; Icardi, Giancarlo; Bona, Gianni; Esposito, Susanna; Marchetti, Federico; Messier, Marc; Kuriyakose, Sherine; Hardt, Karin

    2012-01-01

    Background: Pertussis occurs in older children, adolescents and adults due to waning immunity after primary vaccination. Booster vaccination for pre-school children has been recommended in Italy since 1999. In this study (NCT00871000), the immunogenicity, safety and reactogenicity of a booster dose of reduced-antigen content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine (dTpa-IPV; GSK Biologicals Boostrix™-Polio; 3-component pertussis) vs. full-strength DTPa-IPV vaccine (sanofi-pasteur—MSD Tetravac™; 2-component pertussis) was evaluated in pre-school Italian children.   Methods: Healthy children aged 5–6 y primed in a routine vaccination setting with three doses of DTPa-based vaccines were enrolled and randomized (1:1) in this phase IIIb, booster study to receive a single dose of dTpa-IPV or DTPa-IPV; the MMRV vaccine was co-administered. Antibody concentrations/titers against diphtheria, tetanus, pertussis and poliovirus 1–3 were measured before and one month post-booster. Reactogenicity and safety was assessed. Results: 305 subjects were enrolled of whom 303 (dTpa-IPV = 151; DTPa-IPV = 152) received booster vaccination. One month post-booster, all subjects were seroprotected/seropositive for anti-diphtheria, anti-tetanus, anti-PT, anti-FHA and anti-poliovirus 1–3; 99.3% of dTpa-IPV and 60.4% of DTPa-IPV subjects were seropositive for anti-PRN; 98–100% of subjects were seropositive against MMRV antigens post-booster. Pain at the injection site (dTpa-IPV: 63.6%; DTPa-IPV: 63.2%) and fatigue (dTpa-IPV: 26.5%; DTPa-IPV: 23.7%) were the most commonly reported solicited local and general symptoms, during the 4-d follow-up period. No SAEs or fatalities were reported. Conclusions: The reduced-antigen-content dTpa-IPV vaccine was non-inferior to full-strength DTPa-IPV vaccine with respect to immunogenicity. The vaccine was well-tolerated and can be confidently used as a booster dose in pre-school children. PMID:22327497

  10. Immunogenicity of DNA- and recombinant protein-based Alzheimer Disease epitope vaccines

    PubMed Central

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials. PMID:24525778

  11. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines.

    PubMed

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials. PMID:24525778

  12. Development and characterization of a recombinant, hypoallergenic, peptide-based vaccine for grass pollen allergy

    PubMed Central

    Focke-Tejkl, Margarete; Weber, Milena; Niespodziana, Katarzyna; Neubauer, Angela; Huber, Hans; Henning, Rainer; Stegfellner, Gottfried; Maderegger, Bernhard; Hauer, Martina; Stolz, Frank; Niederberger, Verena; Marth, Katharina; Eckl-Dorna, Julia; Weiss, Richard; Thalhamer, Josef; Blatt, Katharina; Valent, Peter; Valenta, Rudolf

    2015-01-01

    Background Grass pollen is one of the most important sources of respiratory allergies worldwide. Objective This study describes the development of a grass pollen allergy vaccine based on recombinant hypoallergenic derivatives of the major timothy grass pollen allergens Phl p 1, Phl p 2, Phl p 5, and Phl p 6 by using a peptide-carrier approach. Methods Fusion proteins consisting of nonallergenic peptides from the 4 major timothy grass pollen allergens and the PreS protein from hepatitis B virus as a carrier were expressed in Escherichia coli and purified by means of chromatography. Recombinant PreS fusion proteins were tested for allergenic activity and T-cell activation by means of IgE serology, basophil activation testing, T-cell proliferation assays, and xMAP Luminex technology in patients with grass pollen allergy. Rabbits were immunized with PreS fusion proteins to characterize their immunogenicity. Results Ten hypoallergenic PreS fusion proteins were constructed, expressed, and purified. According to immunogenicity and induction of allergen-specific blocking IgG antibodies, 4 hypoallergenic fusion proteins (BM321, BM322, BM325, and BM326) representing Phl p 1, Phl p 2, Phl p 5, and Phl p 6 were included as components in the vaccine termed BM32. BM321, BM322, BM325, and BM326 showed almost completely abolished allergenic activity and induced significantly reduced T-cell proliferation and release of proinflammatory cytokines in patients' PBMCs compared with grass pollen allergens. On immunization, they induced allergen-specific IgG antibodies, which inhibited patients' IgE binding to all 4 major allergens of grass pollen, as well as allergen-induced basophil activation. Conclusion A recombinant hypoallergenic grass pollen allergy vaccine (BM32) consisting of 4 recombinant PreS-fused grass pollen allergen peptides was developed for safe immunotherapy of grass pollen allergy. PMID:25441634

  13. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    PubMed

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection. PMID:25371092

  14. Vaccine potential of recombinant pro- and mature cathepsinL1 against fasciolosis gigantica in mice.

    PubMed

    Kueakhai, Pornanan; Changklungmoa, Narin; Chaichanasak, Pannigan; Jaikua, Wipaphorn; Itagaki, Tadashi; Sobhon, Prasert

    2015-10-01

    In Fasciola gigantica cathepsin L1 (CatL1) is a family of predominant proteases that is expressed in caecal epithelial cells and secreted into the excretory-secretory products (ES). CatL1 isotypes are expressed in both early and late stages of the life cycle and the parasites use them for migration and digestion. Therefore, CatL1 is a plausible target for vaccination against this parasite. Recombinant pro-F.gigantica CatL1 (rproFgCatL1) and recombinant mature F.gigantica CatL1 (rmatFgCatL1) were expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rproFgCatL1 and rmatFgCatL1 combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The level of protection of rproFgCatL1 and rmatFgCatL1 vaccines was estimated to be 39.1, 41.7% and 44.9, 47.2% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immuno-blotting to react with the native FgCatL1 in the extract of newly excysted juveniles (NEJ), 4-week-old juveniles and the ES products of 4 week-old juveniles. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune response, respectively, it was found that both Th1 and Th2 responses were significantly increased in rproFgCatL1- and rmatFgCatL1-immunized groups compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rmatFgCatL1-immunized group showed a significant decrease when compared to rproFgCatL1-immunized group, indicating that rmatFgCatL1-vaccinated mice had reduced liver parenchyma damage. The pathological lesions of liver in vaccinated groups were significantly decreased when compared with control groups. This study indicates that r

  15. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    PubMed

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising. PMID:26697713

  16. Production and Evaluation of a Recombinant Chimeric Vaccine against Clostridium botulinum Neurotoxin Types C and D

    PubMed Central

    Gil, Luciana A. F.; da Cunha, Carlos Eduardo P.; Moreira, Gustavo M. S. G.; Salvarani, Felipe M.; Assis, Ronnie A.; Lobato, Francisco Carlos F.; Mendonça, Marcelo; Dellagostin, Odir A.; Conceição, Fabricio R.

    2013-01-01

    Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)3) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)3 developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle. PMID:23936080

  17. Production and evaluation of a recombinant chimeric vaccine against clostridium botulinum neurotoxin types C and D.

    PubMed

    Gil, Luciana A F; da Cunha, Carlos Eduardo P; Moreira, Gustavo M S G; Salvarani, Felipe M; Assis, Ronnie A; Lobato, Francisco Carlos F; Mendonça, Marcelo; Dellagostin, Odir A; Conceição, Fabricio R

    2013-01-01

    Bovine botulism is a fatal disease that is caused by botulinum neurotoxins (BoNTs) produced by Clostridium botulinum serotypes C and D and that causes great economic losses, with nearly 100% lethality during outbreaks. It has also been considered a potential source of human food-borne illness in many countries. Vaccination has been reported to be the most effective way to control bovine botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. Neutralizing antibodies targeted against the C-terminal fragment of the BoNT heavy chain (HC) are known to confer efficient protection against lethal doses of BoNTs. In this study, a novel recombinant chimera, consisting of Escherichia coli heat-labile enterotoxin B subunit (LTB), a strong adjuvant of the humoral immune response, fused to the HC of BoNT serotypes C and D, was produced in E. coli. Mice vaccinated with the chimera containing LTB and an equivalent molar ratio of the chimera without LTB plus aluminum hydroxide (Al(OH)3) developed 2 IU/mL of antitoxins for both serotypes. Guinea pigs immunized with the recombinant chimera with LTB plus Al(OH)3 developed a protective immune response against both BoNT/C (5 IU/mL) and BoNT/D (10 IU/mL), as determined by a mouse neutralization bioassay with pooled sera. The results achieved with guinea pig sera fulfilled the requirements of commercial vaccines for prevention of botulism, as determined by the Brazilian Ministry of Agriculture, Livestock and Food, Supply. The presence of LTB was essential for the development of a strong humoral immune response, as it acted in synergism with Al(OH)3. Thus, the vaccine described in this study is a strong candidate for the control of botulism in cattle. PMID:23936080

  18. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses. PMID:26458835

  19. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein.

    PubMed

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier; Rziha, Hanns-Joachim

    2013-02-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals. PMID:23175365

  20. Liposomes containing recombinant gp85 protein vaccine against ALV-J in chickens.

    PubMed

    Zhang, Limei; Cai, Dongjie; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Qi, Chunhua; Liu, Jianzhu; Xu, Ruixue; Zhao, Peng; Cui, Zhizhong

    2014-05-01

    To study the potential of liposome vaccines in the clinical prevention of ALV-J, the effect of recombinant gp85 protein of subgroup J avian leukosis virus (ALV-J) entrapped by liposomes in chickens against ALV-J infection was investigated in this paper. A recombinant plasmid (PET28a-gp85) containing the PET28a vector and gp85 gene was constructed and then expressed in Rosetta (DE3) cells with 0.5mM IPTG to produce recombinant gp85 proteins that could be entrapped by liposomes through reverse-phase evaporation. The chickens were inoculated intramuscularly either once or twice with the liposomes or with Freund's adjuvant emulsion containing recombinant gp85 protein. Sixty chickens were raised to one week old for the first inoculation and to three weeks old for the second inoculation. Chickens raised to five weeks old were challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of ALV-J. Blood samples were collected from each chicken at weekly intervals for serum antibody and viremia analyses. Changes in serum antibodies showed that positive serum antibodies (S/P value >0.6) could be induced in all groups regardless of the frequency of inoculation but improved significantly in the twice-inoculated groups. As well, high levels of antibodies emerged earlier in the Freund's adjuvant groups but persisted longer in the liposome groups. Detection of viremia indicated that the liposomes provide better protection against ALV-J than Freund's adjuvant emulsion and that this protection is directly influenced by serum antibody levels. Overall, this study reveals the potential of liposome vaccines containing recombinant gp85 protein in the clinical prevention of ALV-J. PMID:24625339

  1. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine.

    PubMed

    Mathias, D K; Plieskatt, J L; Armistead, J S; Bethony, J M; Abdul-Majid, K B; McMillan, A; Angov, E; Aryee, M J; Zhan, B; Gillespie, P; Keegan, B; Jariwala, A R; Rezende, W; Bottazzi, M E; Scorpio, D G; Hotez, P J; Dinglasan, R R

    2012-04-01

    Vaccines have been at the forefront of global research efforts to combat malaria, yet despite several vaccine candidates, this goal has yet to be realized. A potentially effective approach to disrupting the spread of malaria is the use of transmission-blocking vaccines (TBV), which prevent the development of malarial parasites within their mosquito vector, thereby abrogating the cascade of secondary infections in humans. Since malaria is transmitted to human hosts by the bite of an obligate insect vector, mosquito species in the genus Anopheles, targeting mosquito midgut antigens that serve as ligands for Plasmodium parasites represents a promising approach to breaking the transmission cycle. The midgut-specific anopheline alanyl aminopeptidase N (AnAPN1) is highly conserved across Anopheles vectors and is a putative ligand for Plasmodium ookinete invasion. We have developed a scalable, high-yield Escherichia coli expression and purification platform for the recombinant AnAPN1 TBV antigen and report on its marked vaccine potency and immunogenicity, its capacity for eliciting transmission-blocking antibodies, and its apparent lack of immunization-associated histopathologies in a small-animal model. PMID:22311924

  2. Nonclinical toxicology study of recombinant-plasmid DNA anti-rabies vaccines.

    PubMed

    Kumar, P Uday; Kumar, B Dinesh; Annapurna, V V; Krishna, T Prasanna; Kalyanasundaram, S; Suresh, P; Harishankar, N; Jagadeesan, V; Hariharan, S; Naidu, A Nadamuni; Krishnaswamy, Kamala; Rangarajan, P N; Srinivasan, V A; Reddy, G S; Sesikeran, B

    2006-04-01

    The absence of standard guidelines from National and International regulatory agencies for the safety evaluation of biotechnology products challenges the ingenuity of toxicologists. At present, the development of standard pre-clinical toxicology protocols for such products is on an individual case basis. The present investigation is an attempt to evaluate the safety profile of the first indigenously developed DNA based anti-rabies vaccine in India. The test compounds were DNA rabies vaccine [DRV (100 microg)] and combination rabies vaccine (CRV (100 microg DRV and 1/50 dose of cell culture vaccine)), intended for clinical use by intramuscular route on 1, 7, 14 and 28 day. As per the regular mandatory requirements, the study has been designed to undertake acute (single dose--10 days), sub-chronic (repeat dose--28 days) and chronic (intended clinical dose--120 days) toxicity tests using three dose levels viz. therapeutic, average (2 x therapeutic dose) and highest dose (10 x therapeutic dose) exposure in Swiss Albino mice. The selection of the rodent model viz. Swiss Albino mice is based on affinity and rapid higher antibody response during the efficacy studies. Apart from physical, physiological, clinical, hematological and histopathology profiles of all target organs, the tier-I immunotoxicity parameters have also been monitored. There were no observational adverse effects even at levels of 10x therapeutic dose administration of DRV and CRV. The procedure also emphasizes on the designing of protocols for the products developed by recombinant technique. PMID:16448727

  3. Vaccination of domestic pig with recombinant paramyosin. against Schistosoma japonicum in China.

    PubMed

    Chen, H; Nara, T; Zeng, X; Satoh, M; Wu, G; Jiang, W; Yi, F; Kojima, S; Zhang, S; Hirayama, K

    2000-04-14

    Paramyosin (PM), a myosin-like protein is a major antigen on Schistosoma japonicum (Sj). We reported that passive transfer of a monoclonal IgE SjE18varepsilon.1 which recognizes PM of Sj (SJPM), partially protected mice from challenge infection. In the present study, we developed an experimental model system of schistosomiasis japonica with domestic pigs in China and used it for the evaluation of vaccination with recombinant SJPM (rSJPM). Sixteen-week-old pigs were successfully infected by dermal penetration of 120 cercariae of a domestic strain of Sj (50-60% worm recovery 11 weeks after challenge). The pigs vaccinated with 400 UV attenuated cercariae showed a reduction of worm recovery (53%, p<0.001). The experimental groups were immunized intradermally with rSJPM and alum or TiterMax and were partially protected against the challenge infection (32-35% reduction). PMID:10715529

  4. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  5. In vivo and in vitro genetic recombination between conventional and gene-deleted vaccine strains of pseudorabies virus.

    PubMed

    Henderson, L M; Katz, J B; Erickson, G A; Mayfield, J E

    1990-10-01

    Pseudorabies virus (PRV), an alpha-herpesvirus, causes substantial economic losses in the swine industry and is currently the focus of eradication and control programs. Some of these programs rely on the ability of veterinarians to differentiate animals exposed to virulent strains of PRV from animals exposed to avirulent vaccine strains of PRV on the basis of a serologic response to nonessential glycoproteins that are deleted in some vaccine strains of PRV. Genetic recombination resulting in the creation of virulent strains of PRV with the same negative immunologic markers as vaccine strains could disrupt these programs. Two strains of PRV were coinoculated either into tissue culture or into sheep to facilitate recombination. Progeny viruses were selected to detect a specific recombinant phenotype. We were able to detect genetic recombination between vaccine strains of PRV following in vitro or in vivo coinoculation of 2 strains of PRV. The selected recombinants had marker-deleted phenotypes in strains with restored virulence genes. Increased virulence was observed in sheep after coinoculation of 2 avirulent vaccine strains of PRV. PMID:2173449

  6. Protection of mice against H. somni septicemia by vaccination with recombinant immunoglobulin binding protein subunits

    PubMed Central

    Geertsema, Roger S.; Worby, Carolyn; Kruger, Robert P.; Tagawa, Yuichi; Russo, Riccardo; Herdman, D. Scott; Lo, Kimby; Kimball, Richard A.; Dixon, Jack; Corbeil, Lynette B.

    2008-01-01

    Haemophilus somni causes bovine pneumonia as well as septicemia and its sequelae but mechanisms of virulence and protective immunity are poorly understood. Since surface immunoglobulin binding proteins are virulence factors, we addressed their role as protective antigens in a mouse model of H. somni septicemia. Immunoglobulin binding protein A (IbpA), has homology to Bordetella pertussis filamentous hemagglutinin and other large bacterial exoproteins. IbpA is a major surface antigen encoded by the ibpA gene with many domains that may be important in pathogenesis and immune protection. Three IbpA recombinant protein subunits, IbpA3, IbpA5 and IbpADR2 were chosen for study because of putative functional domains and motifs. These recombinant GST fusion subunit proteins were compared with GST (negative control), formalin-killed H. somni (commercial vaccine control), live H. somni (to induce convalescent immunity) and H. somni culture supernatant (containing IbpA shed from the bacterial surface). In vaccination/challenge studies, both live H. somni (convalescent immunity) and supernatant protected equally but formalin-killed H. somni and GST did not protect against septicemia. The DR2 and A3 subunits protected moderately well and induced antibody responses against supernatant antigen and the homologous subunit in ELISA but not against whole cell antigens. Supernatant immunization protected better than the IbpA subunit antigens and induced high antibody activity against both whole cells and supernatant antigens. The results indicate that culture supernatant antigens or perhaps recombinant IbpA subunits may be useful in H. somni vaccines. These studies also provide insight into the contribution of IbpA domains to pathogenesis of H. somni septicemia. PMID:18590787

  7. Protection of mice against H. somni septicemia by vaccination with recombinant immunoglobulin binding protein subunits.

    PubMed

    Geertsema, Roger S; Worby, Carolyn; Kruger, Robert P; Tagawa, Yuichi; Russo, Riccardo; Herdman, D Scott; Lo, Kimby; Kimball, Richard A; Dixon, Jack; Corbeil, Lynette B

    2008-08-18

    Histophilus somni causes bovine pneumonia as well as septicemia and its sequelae but mechanisms of virulence and protective immunity are poorly understood. Since surface immunoglobulin binding proteins are virulence factors, we addressed their role as protective antigens in a mouse model of H. somni septicemia. Immunoglobulin binding protein A (IbpA), has homology to Bordetella pertussis filamentous hemagglutinin and other large bacterial exoproteins. IbpA is a major surface antigen encoded by the ibpA gene with many domains that may be important in pathogenesis and immune protection. Three IbpA recombinant protein subunits, IbpA3, IbpA5 and IbpADR2 were chosen for study because of putative functional domains and motifs. These recombinant GST fusion subunit proteins were compared with GST (negative control), formalin-killed H. somni (commercial vaccine control), live H. somni (to induce convalescent immunity) and H. somni culture supernatant (containing IbpA shed from the bacterial surface). In vaccination/challenge studies, both live H. somni (convalescent immunity) and supernatant protected equally but formalin-killed H. somni and GST did not protect against septicemia. The DR2 and A3 subunits protected moderately well and induced antibody responses against supernatant antigen and the homologous subunit in ELISA but not against whole cell antigens. Supernatant immunization protected better than the IbpA subunit antigens and induced high antibody activity against both whole cells and supernatant antigens. The results indicate that culture supernatant antigens or perhaps recombinant IbpA subunits may be useful in H. somni vaccines. These studies also provide insight into the contribution of IbpA domains to pathogenesis of H. somni septicemia. PMID:18590787

  8. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials

    PubMed Central

    Gailhardou, Sophia; Skipetrova, Anna; Dayan, Gustavo H.; Jezorwski, John; Saville, Melanie; Van der Vliet, Diane; Wartel, T. Anh

    2016-01-01

    A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2–16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2–60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2–60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for

  9. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials.

    PubMed

    Gailhardou, Sophia; Skipetrova, Anna; Dayan, Gustavo H; Jezorwski, John; Saville, Melanie; Van der Vliet, Diane; Wartel, T Anh

    2016-07-01

    A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2-16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2-60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2-60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for

  10. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    PubMed Central

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  11. Protection of non-human primates against rabies with an adenovirus recombinant vaccine.

    PubMed

    Xiang, Z Q; Greenberg, L; Ertl, H C; Rupprecht, C E

    2014-02-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  12. Protection conferred by recombinant turkey herpesvirus avian influenza (rHVT-H5) vaccine in the rearing period in two commercial layer chicken breeds in Egypt.

    PubMed

    Kilany, Walid; Dauphin, Gwenaelle; Selim, Abdullah; Tripodi, Astrid; Samy, Mohamed; Sobhy, Heba; VonDobschuetz, Sophie; Safwat, Marwa; Saad, Mona; Erfan, Ahmed; Hassan, Mohamed; Lubroth, Juan; Jobre, Yilma

    2014-01-01

    The effectiveness of recombinant turkey herpesvirus avian influenza (A/swan/Hungary/4999/2006(H5N1)) clade 2.2 virus (rHVT-H5) vaccine was evaluated in two layer chicken breeds (White Bovans [WB] and Brown Shaver [BS]). One dose of rHVT-H5 vaccine was administered at day 1 and birds were monitored serologically (haemagglutination inhibition test) and virologically for 19 weeks. Maternally-derived antibody and post-vaccination H5 antibody titres were measured using the Chinese (A/Goose/Guangdong/1/96(H5N1)) HA and the Egyptian (A/chicken/Egypt/128s/2012(H5N1)) HA as antigens. The challenge was conducted at 19 weeks of age and on six experimental groups: Groups I (WB) and II (BS), both vaccinated and challenged; Groups III (WB) and IV (BS), both vaccinated but not challenged; Groups V and VI, unvaccinated specific pathogen free chickens, serving respectively as positive and negative controls. The challenge virus was the clade 2.2.1 highly pathogenic avian influenza H5N1 A/chicken/Egypt/128s/2012 at a dose of 10(6) median embryo infective dose. For both breeds, complete maternally-derived antibody waning occurred at the age of 4 weeks. The immune response to rHVT-H5 vaccination was detected from the sixth week. The seroconversion rates for both breeds reached 85.7 to 100% in the eighth week of age. Protection levels of 73.3%, 60% and 0% were respectively recorded in Groups I, II and V. No mortalities occurred in the unchallenged groups. Group I showed superior results for all measured post-challenge parameters. In conclusion, a single rHVT-H5 hatchery vaccination conferred a high level of protection for a relatively extended period. This vaccine could be an important tool for future A/H5N1 prevention/control in endemic countries. Further studies on persistence of immunity beyond 19 weeks, need for booster with inactivated vaccines, breed susceptibility and vaccinal response, and transmissibility are recommended. PMID:25245772

  13. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    PubMed

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector. PMID:16829611

  14. Recombinant Turkey Herpesvirus-AI Vaccine Virus Replication in Different Species of Waterfowl.

    PubMed

    Palya, Vilmos; Kovács, Edit Walkóné; Tatár-Kis, Tímea; Felföldi, Balázs; Homonnay, Zalán G; Mató, Tamás; Sato, Takanori; Gardin, Yannick

    2016-05-01

    Waterfowl play a key role in the epidemiology of the H5N1 subtype of highly pathogenic avian influenza (HPAI) virus; therefore, efficient immunization of domesticated ducks and geese to maximize the impact of other control measures is of great importance. A recombinant (r)HVT-AI, expressing the HA gene of a clade 2.2 H5N1 HPAI strain had been developed and proved to be efficient against different clades of H5N1 HPAI virus in chickens after a single vaccination at 1 day old and could provide long-term immunity. We investigated whether rHVT-AI applied at 1 day old is able to replicate in different species and crossbreeds of ducks and in geese with the aim of collecting data on the possible application of rHVT-AI vaccine in different species of waterfowl for the control of H5N1 HPAI. We tested the possible differences among different waterfowl species, i.e., between geese (Anser anser, domesticated greylag goose), Muscovy ducks (Cairina moschata forma domestica), Pekin ducks (Anas platyrhynchos forma domestica), and mule ducks (Muscovy duck × Pekin duck), in their susceptibility to support the replication of rHVT-AI. Vaccine virus replication was followed by real-time PCR in spleen, bursa, and feather tip samples. Humoral immune response to vaccination was tested using the hemagglutination inhibition (HI) test and H5-specific commercial ELISA. Significant differences among the different waterfowl species regarding the rate of rHVT-AI replication was detected that were not reflected by the same difference in the immune response to vaccination. Replication of the rHVT-AI vaccine was very limited in Pekin ducks, somewhat better in mule ducks, and the vaccine virus was replicating significantly better in Muscovy ducks and geese, reaching 100% detectability at certain time points after administration at 1 day old. Results indicated that the vaccine virus could establish different levels of persistent infection in these species of waterfowl. No humoral immune response

  15. Rabies vaccination: comparison of neutralizing antibody responses after priming and boosting with different combinations of DNA, inactivated virus, or recombinant vaccinia virus vaccines.

    PubMed

    Lodmell, D L; Ewalt, L C

    2000-05-01

    Long-term levels of neutralizing antibody were evaluated in mice after a single immunization with experimental DNA or recombinant vaccinia virus (RVV) vaccines encoding the rabies virus glycoprotein (G), or the commercially available inactivated virus human diploid cell vaccine (HDCV). Anamnestic antibody titers were also evaluated after two booster immunizations with vaccines that were identical to or different from the priming vaccine. Five hundred and forty days (1.5 year) after a single immunization with any of the three vaccines, neutralizing antibody titers remained greater than the minimal acceptable human level of antibody titer (0.5 International Units (IU)/ml). In addition, either an HDCV or DNA booster elicited early and elevated anamnestic antibody responses in mice that had been primed with any of the three vaccines. In contrast, RVV boosters failed to elevate titers in mice that had been previously primed with RVV, and elicited slowly rising titers in mice that had been primed with either DNA or HDCV. Thus, a single vaccination with any of the three different vaccines elicited long-term levels of neutralizing antibody that exceeded 0.5 IU/ml. In contrast, different prime-booster vaccine combinations elicited anamnestic neutralizing antibody responses that increased quickly, increased slowly or failed to increase. PMID:10738096

  16. Potential of recombinant inorganic pyrophosphatase antigen as a new vaccine candidate against Baylisascaris schroederi in mice.

    PubMed

    Xie, Yue; Chen, Sijie; Yan, Yubo; Zhang, Zhihe; Li, Desheng; Yu, Hua; Wang, Chengdong; Nong, Xiang; Zhou, Xuan; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2013-01-01

    The intestinal nematode Baylisascaris schroederi is an important cause of death for wild and captive giant pandas. Inorganic pyrophosphatases (PPases) are critical for development and molting in nematode parasites and represent potential targets for vaccination. Here, a new PPase homologue, Bsc-PYP-1, from B. schroederi was identified and characterized, and its potential as a vaccine candidate was evaluated in a mouse challenge model. Sequence alignment of PPases from nematode parasites and other organisms show that Bsc-PYP-1 is a nematode-specific member of the family I soluble PPases. Immunohistochemistry revealed strong localization of native Bsc-PYP-1 to the body wall, gut epithelium, ovary and uterus of adult female worms. Additionally, Bsc-PYP-1 homologues were found in roundworms infecting humans (Ascaris lumbricoides), swine (Ascaris suum) and dogs (Toxocara canis). In two vaccine trials, recombinant Bsc-PYP-1 (rBsc-PYP-1) formulated with Freund complete adjuvant induced significantly high antigen-specific immunoglobulin (Ig)G but no IgE or IgM responses. Analysis of IgG-subclass profiles revealed a greater increase of IgG1 than IgG2a. Splenocytes from rBsc-PYP-1/FCA-immunized mice secreted low levels of T helper (Th)1-type cytokines, interferon-γ and interleukin (IL)-2, while producing significantly high levels of IL-10 and significantly elevated levels of IL-4 (Th2 cytokines) after stimulation with rBsc-PYP-1 in vitro. Finally, vaccinated mice had 69.02-71.15% reductions (in 2 experiments) in larval recovery 7 days post-challenge (dpc) and 80% survival at 80 dpc. These results suggest that Th2-mediated immunity elicited by rBsc-PYP-1 provides protection against B. schroederi, and the findings should contribute to further development of Bsc-PYP-1 as a candidate vaccine against baylisascariasis. PMID:24090087

  17. Potential of recombinant inorganic pyrophosphatase antigen as a new vaccine candidate against Baylisascaris schroederi in mice

    PubMed Central

    2013-01-01

    The intestinal nematode Baylisascaris schroederi is an important cause of death for wild and captive giant pandas. Inorganic pyrophosphatases (PPases) are critical for development and molting in nematode parasites and represent potential targets for vaccination. Here, a new PPase homologue, Bsc-PYP-1, from B. schroederi was identified and characterized, and its potential as a vaccine candidate was evaluated in a mouse challenge model. Sequence alignment of PPases from nematode parasites and other organisms show that Bsc-PYP-1 is a nematode-specific member of the family I soluble PPases. Immunohistochemistry revealed strong localization of native Bsc-PYP-1 to the body wall, gut epithelium, ovary and uterus of adult female worms. Additionally, Bsc-PYP-1 homologues were found in roundworms infecting humans (Ascaris lumbricoides), swine (Ascaris suum) and dogs (Toxocara canis). In two vaccine trials, recombinant Bsc-PYP-1 (rBsc-PYP-1) formulated with Freund complete adjuvant induced significantly high antigen-specific immunoglobulin (Ig)G but no IgE or IgM responses. Analysis of IgG-subclass profiles revealed a greater increase of IgG1 than IgG2a. Splenocytes from rBsc-PYP-1/FCA-immunized mice secreted low levels of T helper (Th)1-type cytokines, interferon-γ and interleukin (IL)-2, while producing significantly high levels of IL-10 and significantly elevated levels of IL-4 (Th2 cytokines) after stimulation with rBsc-PYP-1 in vitro. Finally, vaccinated mice had 69.02–71.15% reductions (in 2 experiments) in larval recovery 7 days post-challenge (dpc) and 80% survival at 80 dpc. These results suggest that Th2-mediated immunity elicited by rBsc-PYP-1 provides protection against B. schroederi, and the findings should contribute to further development of Bsc-PYP-1 as a candidate vaccine against baylisascariasis. PMID:24090087

  18. Immunogenicity of quadrivalent HPV and combined hepatitis A and B vaccine when co-administered or administered one month apart to 9–10 year-old girls according to 0–6 month schedule

    PubMed Central

    Gilca, Vladimir; Sauvageau, Chantal; Boulianne, Nicole; De Serres, Gaston; Couillard, Michel; Krajden, Mel; Ouakki, Manale; Murphy, Donald; Trevisan, Andrea; Dionne, Marc

    2014-01-01

    Background. No immunogenicity data has been reported after a single dose of the quadrivalent HPV vaccine (qHPV-Gardasil®) and no data are available on co-administration of this vaccine with the HAV/HBV vaccine (Twinrix-Junior®). Two pre-licensure studies reported similar anti-HPV but lower anti-HBs titers when co-administering HPV and HBV vaccines.   Objectives. To assess the immunogenicity of the qHPV and HAV/HBV vaccine when co-administered (Group-Co-adm) or given one month apart (Group-Sep) and to measure the persistence of HPV antibodies three years post-second dose of qHPV vaccine in both study groups. Methods. 416 9–10 year-old girls were enrolled. Vaccination schedule was 0–6 months. Anti-HAV and anti-HBs were measured in all subjects 6 months post-first dose and 1 month post-second dose. Anti-HPV were measured 6 months post-first dose in Group-Co-adm and in all subjects 1 and 36 months post-second dose. Results. Six months post-first dose: 100% of subjects had detectable anti-HAV and 56% and 73% had detectable anti-HBs in Group-Co-Adm and Group-Sep, respectively. In Group-Co-adm 94, 100, 99 and 96% had detectable antibodies to HPV 6, 11, 16 and 18, respectively. One month post-second dose of qHPV and HAV/HBV vaccine, in both study groups 99.5–100% of subjects had an anti-HAV titer ≥ 20IU/L, 97.5–97.6% an anti-HBs level ≥ 10IU/L, and 100% had an anti-HPV titer ≥ 3LU. Thirty-six months post-second dose of qHPV all but four subjects (99%) had antibodies to HPV18 and 100% had antibodies to HPV6, 11 and 16. The great majority (97–100%) had an anti-HPV titer ≥ 3 LU. Post-second dose administration of qHPV and HAV/HBV, no meaningful difference was observed in the immune response in the two study groups to any component of vaccines. Conclusions. The results indicate that qHPV and HAV/HBV can be given during the same vaccination session. Two doses of of qHPV and HAV/HBV vaccines induce a strong immune response. Three years post-second dose of q

  19. Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies.

    PubMed

    Zhang, Shoufeng; Liu, Ye; Fooks, Anthony R; Zhang, Fei; Hu, Rongliang

    2008-01-17

    Rabies is a reemerging and fatal infectious disease in Asia mainly caused by exposure to rabid dogs. Prevention of dog rabies would be the most effective way to stop rabies transmission to humans. However, vaccinating stray dogs in urban and rural areas using conventional vaccines is always difficult and is not cost-effective for use in most areas including China. Further to previous studies from our laboratory, we developed a bait containing the recombinant rabies vaccine and performed a non-parenteral trial in dogs. This vaccine was intranasally administrated once to 46 dogs in solution form with 1 x 10(8.5) PFU and orally to 90 dogs in specially designed baits with 3 x 10(8.5) PFU of the recombinant canine adenovirus. Results showed that about 87.5% (119/136) of the immunized dogs developed virus neutralizing antibodies (VNA). The immune response against rabies in dogs was detectable at 2-3 weeks after administration, reaching a peak by 5-6 weeks. Among the seroconverted animals, 90.8% (108/119) elicited a VNA response for over 24 months. The antibody titer during the 2 years was above 0.5IU /ml while showing a gradual but slow decline from the 6th week after vaccination. In a challenge experiment of 10 dogs with 60,000 mouse LD(50) of CVS-24 2 years after the vaccination, all the dogs survived. This demonstrated that the recombinant vaccine could be orally administrated and the bait was effective for the oral vaccination of dogs. PMID:18083277

  20. In vitro assessments of the genetic stability of a live recombinant human adenovirus vaccine against rabies.

    PubMed Central

    Lutze-Wallace, C; Sapp, T; Sidhu, M; Wandeler, A

    1995-01-01

    The genetic stability of a live human adenovirus 5: rabies glycoprotein recombinant vaccine has been assessed upon 20 serial passages in a permissive cell line of human origin. Restriction endonuclease analysis and the polymerase chain reaction were used to examine the integrity of the expression cassette for the rabies glycoprotein and the viral vector at the site of insertion of the cassette. It was found that the restriction endonuclease profile was identical for each sample assayed. A more detailed analysis of the expression cassette following amplification by the polymerase chain reaction revealed no changes in the size and number of fragments originating from the coding sequence for the glycoprotein nor the signals controlling the expression of the protein product. The amplified product obtained from the 10th and 20th passages was subjected to nucleotide sequencing. Additionally, 20 plaques isolated from the 20th passage of the virus expressed the rabies glycoprotein as demonstrated by fluorescent antibody staining with glycoprotein specific monoclonal antibodies. These results suggest that the recombinant vaccine maintains the integrity of the heterologous sequences upon passage in tissue culture. Images Fig. 1. Fig. 2. PMID:7648530

  1. Vaccinations with recombinant variants of Aspergillus fumigatus allergen Asp f 3 protect mice against invasive aspergillosis.

    PubMed

    Ito, James I; Lyons, Joseph M; Hong, Teresa B; Tamae, Daniel; Liu, Yi-Kuang; Wilczynski, Sharon P; Kalkum, Markus

    2006-09-01

    A vaccine that effectively protects immunocompromised patients against invasive aspergillosis is a novel approach to a universally fatal disease. Here we present a rationale for selection and in vivo testing of potential protein vaccine candidates, based on the modification of an immunodominant fungal allergen for which we demonstrate immunoprotective properties. Pulmonary exposure to viable Aspergillus fumigatus conidia as well as vaccination with crude hyphal extracts protects corticosteroid-immunosuppressed mice against invasive aspergillosis (J. I. Ito and J. M. Lyons, J. Infect. Dis. 186:869-871, 2002). Sera from the latter animals contain antibodies with numerous and diverse antigen specificities, whereas sera from conidium-exposed mice contain antibodies predominantly against allergen Asp f 3 (and some against Asp f 1), as identified by mass spectrometry. Subcutaneous immunization with recombinant Asp f 3 (rAsp f 3) but not with Asp f 1 was protective. The lungs of Asp f 3-vaccinated survivors were free of hyphae and showed only a patchy low-density infiltrate of mononuclear cells. In contrast, the nonimmunized animals died with invasive hyphal elements and a compact peribronchial infiltrate of predominantly polymorphonuclear leukocytes. Three truncated versions of rAsp f 3, spanning amino acid residues 15 to 168 [rAsp f 3(15-168)], 1 to 142, and 15 to 142 and lacking the known bipartite sequence required for IgE binding, were also shown to be protective. Remarkably, vaccination with either rAsp f 3(1-142) or rAsp f 3(15-168) drastically diminished the production of antigen-specific antibodies compared to vaccination with the full-length rAsp f 3(1-168) or the double-truncated rAsp f 3(15-142) version. Our findings point to a possible mechanism in which Asp f 3 vaccination induces a cellular immune response that upon infection results in the activation of lymphocytes that in turn enhances and/or restores the function of corticosteroid-suppressed macrophages

  2. A New Recombinant BCG Vaccine Induces Specific Th17 and Th1 Effector Cells with Higher Protective Efficacy against Tuberculosis

    PubMed Central

    da Costa, Adeliane Castro; Costa-Júnior, Abadio de Oliveira; de Oliveira, Fábio Muniz; Nogueira, Sarah Veloso; Rosa, Joseane Damaceno; Resende, Danilo Pires; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2014-01-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials. PMID:25398087

  3. A new recombinant BCG vaccine induces specific Th17 and Th1 effector cells with higher protective efficacy against tuberculosis.

    PubMed

    da Costa, Adeliane Castro; Costa-Júnior, Abadio de Oliveira; de Oliveira, Fábio Muniz; Nogueira, Sarah Veloso; Rosa, Joseane Damaceno; Resende, Danilo Pires; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2014-01-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials. PMID:25398087

  4. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  5. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice.

    PubMed

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  6. Enhanced immune response by amphotericin B following NS1 protein prime-oral recombinant Salmonella vaccine boost vaccination protects mice from dengue virus challenge.

    PubMed

    Liu, Wen-Tssann; Lin, Wei-Ting; Tsai, Chung-Chin; Chuang, Chuan-Chang; Liao, Chin-Len; Lin, Huang-Chi; Hung, Yao-Wen; Huang, Shih-Shiung; Liang, Chung-Chih; Hsu, Hui-Ling; Wang, Hsian-Jenn; Liu, Yu-Tien

    2006-07-26

    A recombinant vaccine strain SL3261/pLT105 of attenuated aroA Salmonella enterica serovar Typhimurium SL3261 strain expressing a secreted dengue virus type 2 non-structural NS1 and Yersinia pestis F1 (Caf1) fusion protein, rNS1:Caf1, was generated. Immunological evaluation was performed by prime-boost vaccine regimen. Oral immunization of mice with 1 x 10(9)cfu of SL3261/pLT105 only induced low levels of NS1-specific antibody response and protective immunity following dengue virus challenge. The parenteral NS1 protein priming-oral Salmonella boosting protocol enhanced both NS1-specific serum IgG response and protective efficacy as compared to mice immunized with each type vaccine alone. Addition of an antifungal antibiotic amphotericin B (AmB) to Salmonella vaccine further enhanced the synergic effects of prime-boost vaccine regimen on the elicited NS1-specific serum IgG response and the protective efficacy. Together, the results demonstrated that the rNS1:Caf1 producing Salmonella SL3261/pLT105 strain fails to provide effective protection as an oral vaccine alone despite co-administration of AmB as an adjuvant capable of enhancing the immune responses, and moreover, the protein priming-oral Salmonella vaccine boosting approach in combination with AmB as an immunization regimen may have the potential to be further explored as an alternative approach for dengue vaccine development. PMID:16759760

  7. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    PubMed

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs. PMID:19500553

  8. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  9. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep.

    PubMed

    Faburay, Bonto; Wilson, William C; Gaudreault, Natasha N; Davis, A Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts. PMID:27296136

  10. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William C.; Gaudreault, Natasha N.; Davis, A. Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts. PMID:27296136

  11. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform.

    PubMed

    Kim, Mi-Young; Reljic, Rajko; Kilbourne, Jacquelyn; Ceballos-Olvera, Ivonne; Yang, Moon-Sik; Reyes-del Valle, Jorge; Mason, Hugh S

    2015-04-01

    Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens. PMID:25728317

  12. [Specific activity of an UV-inactivated antirabies vaccine made from brain tissue administered in a shortened schedule].

    PubMed

    Morogova, V M; Magazov, R Sh; Gil'dina, S S; Latypova, R G; Shafeeva, R S

    1982-04-01

    The results obtained in the study of the specific potency of rabies vaccine prepared from sheep brain tissue and inactivated by UV irradiation indicate that, even in the presence of the lowest immunogenicity index (0.5), 5-6 injections of the vaccine, made not daily, but at interval of 3 and 7 days, induced the production of antibodies in the titers not lower than those resulting from 14-20 daily injections of the same vaccine or Fermi vaccine. The preparation inactivated by UV irradiation should be introduced for therapy according to the shortened immunization schedule with intervals, taking into account the immunogenicity index. PMID:7080770

  13. A recombinant chimeric protein containing B chains of ricin and abrin is an effective vaccine candidate

    PubMed Central

    Wang, Junhong; Gao, Shan; Zhang, Tao; Kang, Lin; Cao, Wuchun; Xu, Na; Liu, Wensen; Wang, Jinglin

    2014-01-01

    Both ricin toxin (RT) and abrin toxin (AT) are 2 important toxin agents as potantial bioweapons. A dual subunit vaccine against RT and AT exposure is a promising option for developing prophylactic vaccination. In this study, we constructed a dual vaccine with RT B chain and AT B chain named RTB-ATB. The RTB-ATB chimeric protein was expressed in Escherichia coli (E. coli), and the purified protein was used to evaluate the immune response by a 2 × 2 × 2 × 2 factorial design. The main effects included dose of RTB-ATB, route of immunization injection, immunization time interval, and dose of native toxins challenge. For 2 × LD50 challenge of RT or AT, 100% of the RTB-ATB immunized mice survived and regained or exceeded their initial weights within 10 days. For 4 × LD50 challenge, different routes of immunization injection caused significant difference (P < 0.05), intraperitoneal (i.p.) administration of immunogen protected mice better than the subcutaneous (s.c.) administration. In conclusion, when administered i.p. to mice with 25 μg per mouse and immunization time interval Π in the absence of adjuvant, the chimeric protein elicited a stronger immune response and protected the animals from a dose of native toxins which was 4 times higher than their LD50 in unvaccinated mice. Besides, the RTB-ATB chimeric protein could induce specific neutralizing antibodies against these 2 toxins. We anticipate that this study will open new possibilities in the preparation of RTB-ATB dual subunit vaccine against the exposure to deadly RT and AT. PMID:24509607

  14. Assessment of recombinant beak and feather disease virus capsid protein as a vaccine for psittacine beak and feather disease.

    PubMed

    Bonne, Nicolai; Shearer, Patrick; Sharp, Margaret; Clark, Phillip; Raidal, Shane

    2009-03-01

    Beak and feather disease virus (BFDV) is a significant pathogen of wild Australasian and African psittacine birds. We assessed the immunogenicity of recombinant BFDV capsid (recBFDVcap) to protect against the development of psittacine beak and feather disease (PBFD). Long-billed corellas (Cacatua tenuirostris) (n=13) received (by injection) 1 ml vaccine containing 10 microg recBFDVcap on day 0 and 0.4 ml vaccine containing 66.8 microg recBFDVcap on day 11. All vaccinated corellas and five non-vaccinated control corellas were given 0.4 ml BFDV suspension [titre=log(2) 12 haemagglutination units (HAU) 50 microl(-1)] intramuscularly and 0.1 ml orally 16 days after booster vaccination. Blood was collected during the vaccination period and blood and feathers were collected after BFDV administration. Testing of blood samples included BFDV DNA detection by PCR and quantitative PCR (qPCR) as well as antibody detection by haemagglutination inhibition (HI) and on feather samples, BFDV DNA and antigen was detected by haemagglutination (HA) and qPCR. Four of 97 blood samples collected from vaccinated birds after virus challenge tested positive by PCR, whereas 17 of 35 samples taken from non-vaccinated control corellas tested positive. Vaccinated birds did not develop feather lesions, had only transient PCR-detectable viraemia and had no evidence of persistent infection 270 days post-challenge using PCR, histopathology and immunohistochemistry. Non-vaccinated control corellas developed transient feather lesions and had PCR, HI and HA test results consistent with PBFD. They were BFDV PCR-positive for up to 41 days post-challenge and qPCR demonstrated reduced virus replication in vaccinated birds compared with non-vaccinated control birds. PMID:19218209

  15. Safety and immunogenicity of two doses of quadrivalent meningococcal conjugate vaccine or one dose of meningococcal group C conjugate vaccine, both administered concomitantly with routine immunization to 12- to 18-month-old children

    PubMed Central

    Noya, Francisco; McCormack, Deirdre; Reynolds, Donna L; Neame, Dion; Oster, Philipp

    2014-01-01

    OBJECTIVES: To describe the immunogenicity and safety of a two-dose series of a quadrivalent meningococcal (serogroups A, C, Y and W) polysaccharide diphtheria toxoid conjugate vaccine (MenACYW-D) administered to toddlers. METHODS: Children were randomly assigned (1:1) at study entry to receive MenACYW-D at 12 and 18 months of age (group 1; n=61) or meningococcal serogroup C conjugate vaccine (MCC) at 12 months of age (group 2; n=62). All received routine childhood immunizations. A, C, Y and W antibody titres were measured in group 1 before and one month after the 18-month MenACYW-D vaccination and were measured in group 2 at one and seven months post-MCC vaccination. Antibodies elicited by diphtheria and tetanus toxoids, and acellular pertussis vaccine adsorbed combined with inactivated poliomyelitis vaccine and Haemophilus influenzae b conjugate (DTaP-IPV-Hib) vaccine coadministered at the 18-month vaccination were measured one month later. Safety data were collected. RESULTS: At 19 months of age, ≥96% in group 1 achieved protective titres for the four meningococcal serogroups after dose 2; 67% in group 2 exhibited protective titres against serogroup C 28 days after MCC vaccination at 12 months of age, declining to 27% seven months later. DTaP-IPV-Hib elicited high antibody concentrations/titres in groups 1 and 2, consistent with historical values. The safety profiles after each dose generated no unexpected safety signals; no serious adverse events were related to vaccination. DISCUSSION: A two-dose series of MenACYW-D given concomitantly with a DTaP-IPV-Hib booster dose at 18 months of age demonstrated a good immunogenicity and safety profile. A two-dose series of MenACYW-D can be used as an alternative to one dose of MCC and provides protection against additional serogroups (NCT ID: NCT01359449). PMID:25285126

  16. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine.

    PubMed

    Jas, D; Coupier, C; Toulemonde, C Edlund; Guigal, P-M; Poulet, H

    2012-11-19

    Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine. PMID:23059358

  17. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  18. Evaluation of Factors Affecting Vaccine Efficacy of Recombinant Marek's Disease Virus Lacking the Meq Oncogene in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported that deletion of Meq gene from oncogenic rMd5 virus rendered it apathogenic for chickens. Here we examined multiple factors affecting Marek’s disease (MD) vaccine efficacy of this non-pathogenic recombinant Meq null rMd5 virus (rMd5deltaMeq). These factors included host g...

  19. Immunogenicity of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine strains carrying a gene that encodes Eimeria tenella antigen S07

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an attempt to develop an efficacious vaccine against avian coccidiosis, research was conducted using Type III Secretion System (TTSS) of Salmonella to deliver Eimeria antigens into the cytoplasm of host cells. Once delivered, recombinant protein may enter the MHC I antigen processing pathway for...

  20. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens.

    PubMed

    Vagnozzi, Ariel; Zavala, Guillermo; Riblet, Sylva M; Mundt, Alice; García, Maricarmen

    2012-01-01

    Viral vector vaccines using fowl poxvirus (FPV) and herpesvirus of turkey (HVT) as vectors and carrying infectious laryngotracheitis virus (ILTV) genes are commercially available to the poultry industry in the USA. Different sectors of the broiler industry have used these vaccines in ovo or subcutaneously, achieving variable results. The objective of the present study was to determine the efficacy of protection induced by viral vector vaccines as compared with live-attenuated ILTV vaccines. The HVT-LT vaccine was more effective than the FPV-LT vaccine in mitigating the disease and reducing levels of challenge virus when applied in ovo or subcutaneously, particularly when the challenge was performed at 57 days rather than 35 days of age. While the FPV-LT vaccine mitigated clinical signs more effectively when administered subcutaneously than in ovo, it did not reduce the concentration of challenge virus in the trachea by either application route. Detection of antibodies against ILTV glycoproteins expressed by the viral vectors was a useful criterion to assess the immunogenicity of the vectors. The presence of glycoprotein I antibodies detected pre-challenge and post challenge in chickens vaccinated with HVT-LT indicated that the vaccine induced a robust antibody response, which was paralleled by significant reduction of clinical signs. The chicken embryo origin vaccine provided optimal protection by significantly mitigating the disease and reducing the challenge virus in chickens vaccinated via eye drop. The viral vector vaccines, applied in ovo and subcutaneously, provided partial protection, reducing to some degree clinical signs, and challenge VIRUS replication in the trachea. PMID:22845318

  1. Immunogenicity in Swine of Orally Administered Recombinant Lactobacillus plantarum Expressing Classical Swine Fever Virus E2 Protein in Conjunction with Thymosin α-1 as an Adjuvant

    PubMed Central

    Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong

    2015-01-01

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954

  2. Immunogenicity in Swine of Orally Administered Recombinant Lactobacillus plantarum Expressing Classical Swine Fever Virus E2 Protein in Conjunction with Thymosin α-1 as an Adjuvant.

    PubMed

    Xu, Yi-Gang; Guan, Xue-Ting; Liu, Zhong-Mei; Tian, Chang-Yong; Cui, Li-Chun

    2015-06-01

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV. PMID:25819954

  3. Recombinant HBV vaccine enhances the rate of sustained virological response when early initiated after anti-HCV combination therapy.

    PubMed

    Hanafy, Amr Shaaban; Farag, Alaa Ahmad; Hassanin, Hassan Mahmoud; Hassaneen, Ahmad Mahmoud

    2016-01-01

    The overall SVR rate for chronic hepatitis C genotype 4 using the Standard of care is 54.3%. HBV infection can be prevented by the administration of effective and safe vaccine. Evaluation of the vaccination-induced anti-HBs response rates in a cohort of HCV Egyptian patients after being exposed to antiviral combination therapy and the magnitude of its effect on the rate of SVR through its putative role in induction of crossed immunity. (A) 500 HCV patients who had completed the course of antiviral therapy and achieved ETR were retrospectively analyzed and received 20 μg of recombinant DNA vaccine for hepatitis B at time intervals (0, 1, and 4 months). The first dose of the vaccine was initiated one month post treatment. (B) Laboratory analysis: Included routine preliminary investigations to anti viral therapy and specific investigations as determination of anti-HBs antibodies 2 months following the third dose of vaccine. 433 patients showed protective response (86.6%), 67 patients were non-responders (13.4%) (P = 0.003). Adding HBV vaccine 1 month post-treatment increased SVR (400 patients, 80%) (χ(2)  = 40.3, P = 0.000). Diabetes affect response to HBV vaccine (P = 0.0001). Adding HBV vaccine to the post treatment care of patients with HCV after termination of antiviral therapy gain two benefits; protection from HBV and significant increase in rates of SVR. PMID:26147509

  4. Cattle Immunized with a Recombinant Subunit Vaccine Formulation Exhibits a Trend towards Protection against Histophilus somni Bacterial Challenge

    PubMed Central

    Madampage, Claudia Avis; Wilson, Don; Townsend, Hugh; Crockford, Gordon; Rawlyk, Neil; Dent, Donna; Evans, Brock; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2016-01-01

    Histophilosis, a mucosal and septicemic infection of cattle is caused by the Gram negative pathogen Histophilus somni (H. somni). As existing vaccines against H. somni infection have shown to be of limited efficacy, we used a reverse vaccinology approach to identify new vaccine candidates. Three groups (B, C, D) of cattle were immunized with subunit vaccines and a control group (group A) was vaccinated with adjuvant alone. All four groups were challenged with H. somni. The results demonstrate that there was no significant difference in clinical signs, joint lesions, weight change or rectal temperature between any of the vaccinated groups (B,C,D) vs the control group A. However, the trend to protection was greatest for group C vaccinates. The group C vaccine was a pool of six recombinant proteins. Serum antibody responses determined using ELISA showed significantly higher titers for group C, with P values ranging from < 0.0148 to < 0.0002, than group A. Even though serum antibody titers in group B (5 out of 6 antigens) and group D were significantly higher compared to group A, they exerted less of a trend towards protection. In conclusion, the vaccine used in group C exhibits a trend towards protective immunity in cattle and would be a good candidate for further analysis to determine which proteins were responsible for the trend towards protection. PMID:27501390

  5. Cattle Immunized with a Recombinant Subunit Vaccine Formulation Exhibits a Trend towards Protection against Histophilus somni Bacterial Challenge.

    PubMed

    Madampage, Claudia Avis; Wilson, Don; Townsend, Hugh; Crockford, Gordon; Rawlyk, Neil; Dent, Donna; Evans, Brock; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2016-01-01

    Histophilosis, a mucosal and septicemic infection of cattle is caused by the Gram negative pathogen Histophilus somni (H. somni). As existing vaccines against H. somni infection have shown to be of limited efficacy, we used a reverse vaccinology approach to identify new vaccine candidates. Three groups (B, C, D) of cattle were immunized with subunit vaccines and a control group (group A) was vaccinated with adjuvant alone. All four groups were challenged with H. somni. The results demonstrate that there was no significant difference in clinical signs, joint lesions, weight change or rectal temperature between any of the vaccinated groups (B,C,D) vs the control group A. However, the trend to protection was greatest for group C vaccinates. The group C vaccine was a pool of six recombinant proteins. Serum antibody responses determined using ELISA showed significantly higher titers for group C, with P values ranging from < 0.0148 to < 0.0002, than group A. Even though serum antibody titers in group B (5 out of 6 antigens) and group D were significantly higher compared to group A, they exerted less of a trend towards protection. In conclusion, the vaccine used in group C exhibits a trend towards protective immunity in cattle and would be a good candidate for further analysis to determine which proteins were responsible for the trend towards protection. PMID:27501390

  6. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    PubMed

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  7. Approaches for genetic purity testing of live recombinant viral vaccines using a human adenovirus:rabies model.

    PubMed Central

    Lutze-Wallace, C; Sapp, T; Nadin-Davis, S A; Wandeler, A

    1992-01-01

    A two part purity testing regimen for genetically engineered live viral vaccines is described using a human adenovirus 5: rabies glycoprotein gene recombinant as a model vaccine. Initially, restriction endonuclease analysis of the recombinant viral genome verified the integrity of the recombinant construct and identified the vector genome. The second stage employed the polymerase chain reaction to facilitate a more detailed study of the target rabies glycoprotein cassette. The size of the target region was predicted from known nucleic acid sequence information and compared to that obtained after electrophoresis with molecular weight standards. Digestion of the polymerase chain reaction product with a second restriction endonuclease cleaved the target into a number of small fragments. Resolution of the fragments by gel electrophoresis allowed analysis of the target region alone, verifying its identity and integrity. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1477804

  8. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  9. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  10. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    PubMed Central

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681

  11. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague

    USGS Publications Warehouse

    Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.

    2011-01-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  12. Recombinant bovine interleukin 2 enhances immunity and protection induced by Brucella abortus vaccines in cattle.

    PubMed

    Wyckoff, John H; Howland, Jeri L; Scott, Catherine M O'Connell; Smith, Robert A; Confer, Anthony W

    2005-11-30

    Augmentation of immunization of cattle Brucella abortus S19 or a B. abortus soluble protein extract (SPEBA) vaccine through administration of recombinant bovine IL 2 (rBoIL 2) was evaluated. Seventy-five heifers were divided among 6 groups that were treated with the following: Group 1, no treatment; Group 2, rBoIL 2 (1microg/kg) on day 0; Group 3, SPEBA (2 mg) on day 0 and week 9; Group 4, SPEBA + rBoIL 2 on day 0, SPEBA on week 9; Group 5, S19 (10(7) CFU) on day 0 and week 9; Group 6, S19 + rBoIL 2 on day 0, S19 only on week 9. Approximately, 6 months after vaccination, cattle were bred by natural service, and at mid-gestation pregnant cattle were challenged intraconjunctivally with 9.1 x 10(5) CFU of virulent B. abortus S2308. Pre- and post-challenge antibody responses were measured by an enzyme-linked immunosorbent assay, a particle concentration fluorescence assay, and the card test. Lymphoproliferation (LP) responses to gamma-irradiated B. abortus and SPEBA antigens were measured in peripheral blood mononuclear cells. After vaccination, antibody responses to B. abortus elevated rapidly in SPEBA- and S19-vaccinates with and without rBoIL 2, however, these responses were significantly (P < 0.05) higher in vaccinates which also received rBoIL 2. Antibody levels for all vaccinated groups had returned to those of negative control groups by the challenge date with the exception of the SPEBA/rBoIL 2 group. In general, LP responses were higher in vaccinated or rBoIL 2-treated cattle than for unvaccinated controls. Challenge of 48 pregnant heifers resulted in abortions in 4/9 of Group 1, 0/9 of Group 2, 4/8 of Group 3, 2/9 of Group 4, 1/7 of Group 5, and 0/6 of Group 6 cattle. Treatment with rBoIL 2 alone (Group 2) provided significant (P < 0.05) protection from infection, abortions and induction of sero-positive status compared to untreated (Group 1) cattle. Co-administration of rBoIL 2 with S19 resulted in significant (P < 0.05) augmentation in onset, duration and

  13. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine.

    PubMed

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R; Wu, T-C; Pai, Sara I

    2013-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8(+) T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8(+) T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8(+) T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic antitumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8(+) T cells, which led to higher ratios of CD8(+)/Treg and CD8(+)/CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8(+) T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  14. Mass vaccination with a two-dose oral cholera vaccine in a refugee camp.

    PubMed Central

    Legros, D.; Paquet, C.; Perea, W.; Marty, I.; Mugisha, N. K.; Royer, H.; Neira, M.; Ivanoff, B.

    1999-01-01

    In refugee settings, the use of cholera vaccines is controversial since a mass vaccination campaign might disrupt other priority interventions. We therefore conducted a study to assess the feasibility of such a campaign using a two-dose oral cholera vaccine in a refugee camp. The campaign, using killed whole-cell/recombinant B-subunit cholera vaccine, was carried out in October 1997 among 44,000 south Sudanese refugees in Uganda. Outcome variables included the number of doses administered, the drop-out rate between the two rounds, the proportion of vaccine wasted, the speed of administration, the cost of the campaign, and the vaccine coverage. Overall, 63,220 doses of vaccine were administered. At best, 200 vaccine doses were administered per vaccination site and per hour. The direct cost of the campaign amounted to US$ 14,655, not including the vaccine itself. Vaccine coverage, based on vaccination cards, was 83.0% and 75.9% for the first and second rounds, respectively. Mass vaccination of a large refugee population with an oral cholera vaccine therefore proved to be feasible. A pre-emptive vaccination strategy could be considered in stable refugee settings and in urban slums in high-risk areas. However, the potential cost of the vaccine and the absence of quickly accessible stockpiles are major drawbacks for its large-scale use. PMID:10593032

  15. [The induction of protective immune response in mice vaccinated by recombinant avian adenovirus CELO expressing glycoprotein G of the rabies virus].

    PubMed

    Shmarov, M M; Tutykhina, I L; Logunov, D Iu; Verkhovskai, L V; Nedosekov, V V; Tsybanov, S Zh; Novikov, B V; Narodnitskiĭ, B S; Gintsburg, A L

    2006-01-01

    The recombinant avian adenovirus CELO-gpRb expressing glycoprotein G of rabies virus (strain TS-80, ARRIW&M, Pokrov, Russia) was used for mice vaccination against rabies. Double intramuscular immunization by recombinant CELO-gpRb adenovirus in a dose 10(9) pfu per mouse caused the induction of virus neutralizing antibodies (VNA) synthesis in 78% of mice, while twice repeated intradermal injections of the recombinant adenovirus failed to induce the VNA production. The protection level in groups of vaccinated mice after intracerebral injection of CVS rabies virus in a dose of 100 MLD50 was equal to 45% at single intramuscular immunization and to 91% after twice repeated intramuscular immunization. The recombinant adenoviral vaccine against rabies, based on CELO viral genome, has a good perspective for domestic and wild animal vaccination, not only due to rather high protection level, but also because the production of adenoviral CELO vaccine in chicken embryos is of high technology and inexpensive. PMID:16941876

  16. Engineering of genetically detoxified pertussis toxin analogs for development of a recombinant whooping cough vaccine.

    PubMed Central

    Loosmore, S M; Zealey, G R; Boux, H A; Cockle, S A; Radika, K; Fahim, R E; Zobrist, G J; Yacoob, R K; Chong, P C; Yao, F L

    1990-01-01

    Pertussis toxin (PT) is an important protective antigen in vaccines against whooping cough, and a genetically detoxified PT analog is the preferred form of the immunogen. Several amino acids of the S1 subunit were identified as functionally critical residues by site-directed mutagenesis, specifically, those at positions 9, 13, 26, 35, 41, 58, and 129. Eighty-three mutated PT operons were introduced into Bordetella parapertussis, and the resultant toxin analogs were screened for expression levels, enzymatic activity, residual toxicity, and antigenicity. While more than half of the mutants were found to be poorly secreted or assembled, the rest were fully assembled and most were highly detoxified. Single mutations resulted in up to a 1,000-fold reduction in both toxic and enzymatic activities, while PT analogs with multiple mutations (Lys-9 Gly-129, Glu-58 Gly-129, and Lys-9 Glu-58 Gly-129) were 10(6)-fold detoxified. Operons coding for stable and nontoxic mutants shown to express a critical immunodominant protective epitope were returned to the chromosome of Bordetella pertussis by allelic exchange. In vivo analysis of the toxin analogs showed a dramatic reduction in histamine sensitization and lymphocytosis-promoting activities, paralleling the reduction in toxic activities. All mutants were protective in an intracerebral challenge test, and the Lys-9 Gly-129 analog was found to be significantly more immunogenic than the toxoid. PT analogs such as those described represent suitable components for the design of a recombinant whooping cough vaccine. Images PMID:2228237

  17. Protection Induced in Broiler Chickens following Drinking-Water Delivery of Live Infectious Laryngotracheitis Vaccines against Subsequent Challenge with Recombinant Field Virus

    PubMed Central

    Korsa, Mesula G.; Browning, Glenn F.; Coppo, Mauricio J. C.; Legione, Alistair R.; Gilkerson, James R.; Noormohammadi, Amir H.; Vaz, Paola K.; Lee, Sang-Won

    2015-01-01

    Infectious laryngotracheitis virus (ILTV) causes acute upper respiratory tract disease in chickens. Attenuated live ILTV vaccines are often used to help control disease, but these vaccines have well documented limitations, including retention of residual virulence, incomplete protection, transmission of vaccine virus to unvaccinated birds and reversion to high levels of virulence following bird-to-bird passage. Recently, two novel ILTV field strains (class 8 and 9 ILTV viruses) emerged in Australia due to natural recombination between two genotypically distinct commercial ILTV vaccines. These recombinant field strains became dominant field strains in important poultry producing areas. In Victoria, Australia, the recombinant class 9 virus largely displaced the previously predominant class 2 ILTV strain. The ability of ILTV vaccines to protect against challenge with the novel class 9 ILTV strain has not been studied. Here, the protection induced by direct (drinking-water) and indirect (contact) exposure to four different ILTV vaccines against challenge with class 9 ILTV in commercial broilers was studied. The vaccines significantly reduced, but did not prevent, challenge virus replication in vaccinated chickens. Only one vaccine significantly reduced the severity of tracheal pathology after direct drinking-water vaccination. The results indicate that the current vaccines can be used to help control class 9 ILTV, but also indicate that these vaccines have limitations that should be considered when designing and implementing disease control programs. PMID:26366738

  18. Protection Induced in Broiler Chickens following Drinking-Water Delivery of Live Infectious Laryngotracheitis Vaccines against Subsequent Challenge with Recombinant Field Virus.

    PubMed

    Korsa, Mesula G; Browning, Glenn F; Coppo, Mauricio J C; Legione, Alistair R; Gilkerson, James R; Noormohammadi, Amir H; Vaz, Paola K; Lee, Sang-Won; Devlin, Joanne M; Hartley, Carol A

    2015-01-01

    Infectious laryngotracheitis virus (ILTV) causes acute upper respiratory tract disease in chickens. Attenuated live ILTV vaccines are often used to help control disease, but these vaccines have well documented limitations, including retention of residual virulence, incomplete protection, transmission of vaccine virus to unvaccinated birds and reversion to high levels of virulence following bird-to-bird passage. Recently, two novel ILTV field strains (class 8 and 9 ILTV viruses) emerged in Australia due to natural recombination between two genotypically distinct commercial ILTV vaccines. These recombinant field strains became dominant field strains in important poultry producing areas. In Victoria, Australia, the recombinant class 9 virus largely displaced the previously predominant class 2 ILTV strain. The ability of ILTV vaccines to protect against challenge with the novel class 9 ILTV strain has not been studied. Here, the protection induced by direct (drinking-water) and indirect (contact) exposure to four different ILTV vaccines against challenge with class 9 ILTV in commercial broilers was studied. The vaccines significantly reduced, but did not prevent, challenge virus replication in vaccinated chickens. Only one vaccine significantly reduced the severity of tracheal pathology after direct drinking-water vaccination. The results indicate that the current vaccines can be used to help control class 9 ILTV, but also indicate that these vaccines have limitations that should be considered when designing and implementing disease control programs. PMID:26366738

  19. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    PubMed

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-01

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. PMID:27060051

  20. Reactogenicity and immunogenicity of an inactivated influenza vaccine administered by intramuscular or subcutaneous injection in elderly adults.

    PubMed

    Cook, Ian F; Barr, Ian; Hartel, Gunter; Pond, Dimity; Hampson, Alan W

    2006-03-20

    In many countries there is no clear recommendation regarding the preferred route of administration of inactivated influenza vaccines. In a randomised, observer blind study of 720 elderly subjects, a split, trivalent influenza vaccine was significantly more immunogenic for both A strains (H3N2 and H1N1, p = 0.0016 and 0.003, respectively) when given intramuscularly compared to subcutaneously. This difference was due entirely to a gender effect, with females in the intramuscular (IM) group having a significantly greater serological response than females in the subcutaneous (SC) group for both of these strains. Similar results were seen with local adverse effects. These data suggest that vaccination practices that ensure intramuscular injection are required for optimal administration of influenza vaccines in the elderly. PMID:16406171

  1. Comparative reactogenicity and immunogenicity of 23 valent pneumococcal vaccine administered by intramuscular or subcutaneous injection in elderly adults.

    PubMed

    Cook, Ian F; Pond, Dimity; Hartel, Gunter

    2007-06-15

    23 Valent pneumococcal vaccine is provided to the elderly through public health programs in many countries. However there is no clear recommendation regarding its route of administration (subcutaneous or intramuscular). In a randomised, observer blind study of 254 elderly subjects, the immunogenicity of a 23 valent pneumococcal vaccine was not influenced by its route of administration. A low rate of systemic adverse reactions was observed with the vaccine (subcutaneous and intramuscular both 6.3%). Local adverse reaction rates were; intramuscular 7.1% and subcutaneous 18.9% and these were predicted by: * Pre-vaccination antibody titres>1 microg/ml, odds ratio 22.4 (8.06-74.84) compared with pre-vaccination antibody titre<1 microg/ml. * Female gender, odds ratio 5.0 (1.85-14.83) compared with male gender. * Subcutaneous injection route, odds ratio 3.20 (1.13-9.13) compared with intramuscular injection route. * Female gender subcutaneous injection route, odds ratio 2.99 (1.10-8.70) compared with female gender intramuscular injection route. These data support the intramuscular injection of 23 valent pneumococcal vaccine, especially in elderly females. PMID:17512098

  2. Rotavirus Vaccine -- Questions and Answers

    MedlinePlus

    ... to these vaccines. The infant's immune response to influenza vaccine administered at the same time as rotavirus vaccine ... previously that an inactivated vaccine (e.g., inactivated influenza vaccine) may be administered either simultaneously or at any ...

  3. Immunogenicity and safety of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with DTPa vaccine in Japanese children: A randomized, controlled study

    PubMed Central

    Iwata, Satoshi; Kawamura, Naohisa; Kuroki, Haruo; Tokoeda, Yasunobu; Miyazu, Mitsunobu; Iwai, Asayuki; Oishi, Tomohiro; Sato, Tomohide; Suyama, Akari; François, Nancy; Shafi, Fakrudeen; Ruiz-Guiñazú, Javier; Borys, Dorota

    2015-01-01

    This phase III, randomized, open-label, multicenter study (NCT01027845) conducted in Japan assessed the immunogenicity, safety, and reactogenicity of 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, given intramuscularly) co-administered with diphtheria-tetanus-acellular pertussis vaccine (DTPa, given subcutaneously). Infants (N=360 ) were randomized (2:1) to receive either PHiD-CV and DTPa (PHiD-CV group) or DTPa alone (control group) as 3-dose primary vaccination (3–4–5 months of age) and booster vaccination (17–19 months of age). Immune responses were measured before and one month after primary/booster vaccination and adverse events (AEs) were recorded. Post-primary immune responses were non-inferior to those in pivotal/efficacy European or Latin American pneumococcal protein D-conjugate vaccine studies. For each PHiD-CV serotype, at least 92.6% of infants post-primary vaccination and at least 97.7% of children post-booster had pneumococcal antibody concentrations ≥0.2 μg/ml, and at least 95.4% post-primary and at least 98.1% post-booster had opsonophagocytic activity (OPA) titers ≥8 . Geometric mean antibody concentrations and OPA titers (except OPA titer for 6B) were higher post-booster than post-priming for each serotype. All PHiD-CV-vaccinated children had anti-protein D antibody concentrations ≥100 EL.U/ml one month post-primary/booster vaccination and all were seroprotected/seropositive against each DTPa antigen. Redness and irritability were the most common solicited AEs in both groups. Incidences of unsolicited AEs were comparable between groups. Serious AEs were reported for 47 children (28 in PHiD-CV group); none were assessed as vaccine-related. In conclusion, PHiD-CV induced robust immune responses and was well tolerated when co-administered with DTPa in a 3-dose priming plus booster regimen to Japanese children. PMID:25830489

  4. Safety and immunogenicity of co-administered MF59-adjuvanted 2009 pandemic and plain 2009–10 seasonal influenza vaccines in rheumatoid arthritis patients on biologicals

    PubMed Central

    Milanetti, F; Germano, V; Nisini, R; Donatelli, I; Di Martino, A; Facchini, M; Ferlito, C; Cappella, A; Crialesi, D; Caporuscio, S; Biselli, R; Rossi, F; Salemi, S; D'Amelio, R

    2014-01-01

    Rheumatoid arthritis (RA) patients under immunosuppressive therapy are particularly susceptible to infections, mainly of the respiratory tract, thus vaccination may represent a strategy to reduce their incidence in this vulnerable population. In the 2009–10 influenza season, the safety and immunogenicity of co-administered non-adjuvanted seasonal and MF59-adjuvanted pandemic influenza vaccines were evaluated in this study in 30 RA patients under therapy with anti-tumour necrosis factor (TNF)-α agents or Abatacept and in 13 healthy controls (HC). Patients and HC underwent clinical and laboratory evaluation before (T0), 1 (T1) and 6 months (T2) after vaccinations. No severe adverse reactions, but a significant increase in total mild side effects in patients versus HC were observed. Both influenza vaccines fulfilled the three criteria of the Committee for Proprietary Medicinal Products (CPMP). Seroconversion rate for any viral strain in patients and HC was, respectively, 68 versus 45 for H1-A/Brisbane/59/07, 72 versus 81 for H3-A/Brisbane/10/07, 68 versus 54 for B/Brisbane/60/08 and 81 versus 54 for A/California/7/2009. A slight increase in activated interferon (IFN)-γ-, TNF-α- or interleukin (IL)-17A-secreting T cells at T1 compared to T0, followed by a reduction at T2 in both patients and HC, was registered. In conclusion, simultaneous administration of adjuvanted pandemic and non-adjuvanted seasonal influenza vaccines is safe and highly immunogenic. The largely overlapping results between patients and HC, in terms of antibody response and cytokine-producing T cells, may represent further evidence for vaccine safety and immunogenicity in RA patients on biologicals. PMID:24666311

  5. Simulation of control strategies for the cattle tick Boophilus microplus employing vaccination with a recombinant Bm86 antigen preparation.

    PubMed

    Labarta, V; Rodríguez, M; Penichet, M; Lleonart, R; Luaces, L L; de la Fuente, J

    1996-05-01

    Current strategies for the control of the cattle tick Boophilus microplus include the use of chemicals as the principal control method. These methods, however, have met with partially successful results. The recent development of immunological methods for the control of the cattle tick has opened new possibilities for the design of control strategies. Employing the results obtained by us in experiments testing the effect of vaccination with the recombinant vaccine, Gavac (Heber Biotec S.A.), on tick populations, we have developed a model to evaluate, through a computer program, the efficacy of the vaccine as a control method. The action of the vaccine on the control of tick populations was simulated and the specific serum antibody titers required to decrease the tick population in the field were calculated. The specific serum antibody titer required to decrease the tick population in the field after the first vaccination scheme was found to be > or = 57,200 and the antibody titer required to maintain this effect when the vaccine is already acting and after successive revaccinations was found to be > or = 27,500. Considerations about revaccination schemes and combination between vaccination and acaricide treatments as possible control strategies are discussed. PMID:8792587

  6. Novel in-ovo chimeric recombinant Newcastle disease vaccine protects against both Newcastle disease and infectious bursal disease.

    PubMed

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Wen, Zhiyuan; Feng, Qiulin; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Bu, Zhigao

    2014-03-14

    Development of a safe and efficient in-ovo vaccine against Newcastle disease (NDV) and very virulent infectious bursal disease virus (vvIBDV) is of great importance. In this study, a chimeric NDV LaSota virus with the L gene of Clone-30 (rLaC30L) was used to generate a recombinant chimeric virus expressing the VP2 protein of vvIBDV (rLaC30L-VP2). The safety and efficacy of rLaC30L-VP2 in-ovo vaccination was then evaluated in 18-day-old special pathogen free (SPF) chicken embryos and commercial broiler embryos for prevention of NDV and vvIBDV. Hatchability and global survival rate of the hatched birds was not affected by in-ovo rLaC30L-VP2 vaccination. However, rLaC30L-VP2 in-ovo vaccination induced significant anti-IBDV and anti-NDV antibodies in SPF birds and commercial broilers, and 100% of vaccinated chickens were protected against a lethal NDV challenge. In-ovo rLaC30L-VP2 vaccination also provided resistance against vvIBDV challenge in a significant amount of animals. These results suggest that rLaC30L-VP2 is a safe and efficient bivalent live in-ovo vaccine against NDV and vvIBDV. PMID:24486349

  7. Avian influenza vaccination in chickens and pigs with replication-competent adenovirus-free human recombinant adenovirus 5.

    PubMed

    Toro, Haroldo; van Ginkel, Frederik W; Tang, De-Chu C; Schemera, Bettina; Rodning, Soren; Newton, Joseph

    2010-03-01

    Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland-derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a "mixing vessel" for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636

  8. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease.

    PubMed

    Tsou, Yueh-Liang; Lin, Yi-Wen; Shao, Hsiao-Yun; Yu, Shu-Ling; Wu, Shang-Rung; Lin, Hsiao-Yu; Liu, Chia-Chyi; Huang, Chieh; Chong, Pele; Chow, Yen-Hung

    2015-04-01

    Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune

  9. Recombinant Adeno-Vaccine Expressing Enterovirus 71-Like Particles against Hand, Foot, and Mouth Disease

    PubMed Central

    Tsou, Yueh-Liang; Lin, Yi-Wen; Shao, Hsiao-Yun; Yu, Shu-Ling; Wu, Shang-Rung; Lin, Hsiao-Yu; Liu, Chia-Chyi; Huang, Chieh; Chong, Pele; Chow, Yen-Hung

    2015-01-01

    Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune

  10. Production and evaluation of a recombinant subunit vaccine against botulinum neurotoxin serotype B using a 293E expression system.

    PubMed

    Yu, YunZhou; Shi, DanYang; Liu, Si; Gong, Zheng-Wei; Wang, Shuang; Sun, ZhiWei

    2015-01-01

    Although Escherichia coli and yeast were commonly used to express recombinant Hc of botulinum neurotoxins, as an alternative, in current study, a 293E expression system was used to express the Hc of botulinum neurotoxin serotype B (BHc) as soluble recombinant protein for experimental vaccine evaluation. Our results demonstrated that the 293E expression system could produce high level of recombinant secreted BHc protein, which was immunorecognized specifically by anti-botulinum neurotoxin serotype B (BoNT/B) sera and showed ganglioside binding activities. The serological response and efficacy of recombinant BHc formulated with aluminum hydroxide adjuvant were evaluated in mice. Immunization with Alhydrogel-formulated BHc subunit vaccine afforded the effective protection against BoNT/B challenge. A frequency- and dose-dependent effect to immunization with BHc subunit vaccine was observed and the ELISA antibody titers correlated well with neutralizing antibody titers and protection. And a solid-phase assay showed that the neutralizing antibodies from the BHc-immunized mice inhibited the binding of BHc to the ganglioside GT1b. Our results also show that the plasmid pABE293SBHc derived of the 293E expression system as DNA vaccine is capable of inducing stronger humoral response and protective efficacy against BoNT/B than the pVAX1SBHc. In summary, immunization with the 293E-expressed BHc protein generates effective immune protection against BoNT/B as E. coli or yeast-expressed BHc, so the efficient expression of botulinum Hc protein for experimental vaccine can be prepared using the 293E expression system. PMID:25483668

  11. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant.

    PubMed

    Holmgren, J; Bourgeois, L; Carlin, N; Clements, J; Gustafsson, B; Lundgren, A; Nygren, E; Tobias, J; Walker, R; Svennerholm, A-M

    2013-05-01

    A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant. Two test vaccines were prepared under GMP: (1) A prototype E. coli CFA/I-only formalin-killed whole-cell+LCTBA vaccine, and (2) A "complete" inactivated multivalent ETEC-CF (CFA/I, CS3, CS5 and CS6 antigens) whole-cell+LCTBA vaccine. These vaccines, when given intragastrically alone or together with dmLT in mice, were well tolerated and induced strong intestinal-mucosal IgA antibody responses as well as serum IgG and IgA responses to each of the vaccine CF antigens as well as to LT B subunit (LTB). Both mucosal and serum responses were further enhanced (adjuvanted) when the vaccines were co-administered with dmLT. We conclude that the new multivalent oral ETEC vaccine, both alone and especially in combination with the dmLT adjuvant, shows great promise for further testing in humans. PMID:23541621

  12. Growth properties and vaccine efficacy of recombinant pseudorabies virus defective in glycoprotein E and thymidine kinase genes.

    PubMed

    Wu, Ching-Ying; Liao, Chih-Ming; Chi, Jiun-Ni; Chien, Maw-Sheng; Huang, Chienjin

    2016-07-10

    Pseudorabies virus (PRV) is an alphaherpesvirus that causes pseudorabies (PR), an economically important viral disease of pigs. Marker vaccines were widely used in PR prevention and eradication programs. The purpose of this study was to construct a novel recombinant virus with deletions at defined regions in the glycoprotein E (gE) and thymine kinase (TK) genes by homologous recombination. This study also evaluated the safety and efficacy of the virus for a live attenuated marker vaccine. No significant difference was observed in virus replication between gE gene-deleted (gE(-)), gE/TK double gene-deleted (gE(-)TK(-)), and wild-type PRV by growth curve analysis. However, gE(-)TK(-) PRV was completely attenuated in mice. To evaluate the immunogenicity of gE(-)TK(-) PRV, four 12-week-old specific-pathogen-free pigs per group were immunized intramuscularly with viral titers of 1×10(4), 1×10(5), or 1×10(6) TCID50, followed by intranasal challenge infection with virulent PRV (1×10(8) TCID50) at 3 weeks post vaccination. The gE(-)TK(-) PRV-vaccinated pigs displayed no general adverse effects after immunization and had protective immune responses after PRV challenge. Thus, gE(-)TK(-) PRV was safe and efficacious and might be a potential candidate for a live attenuated marker vaccine against PRV. PMID:27164258

  13. A novel recombinant BCG vaccine encoding eimeria tenella rhomboid and chicken IL-2 induces protective immunity against coccidiosis.

    PubMed

    Wang, Qiuyue; Chen, Lifeng; Li, Jianhua; Zheng, Jun; Cai, Ning; Gong, Pengtao; Li, Shuhong; Li, He; Zhang, Xichen

    2014-06-01

    A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased CD4(+) and CD8(+) cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity. PMID:25031464

  14. A recombinant rabies virus (ERAGS) for use in a bait vaccine for swine

    PubMed Central

    2016-01-01

    Purpose Rabies viruses (RABV) circulating worldwide in various carnivores occasionally cause fatal encephalitis in swine. In this study, the safety and immunogenicity of a recombinant rabies virus, the ERAGS strain constructed with a reverse genetics system, was evaluated in domestic pigs. Materials and Methods Growing pigs were administered 1 mL (108.0 FAID50/mL) of the ERAGS strain via intramuscular (IM) or oral routes and were observed for 4 weeks' post-inoculation. Three sows were also inoculated with 1 mL of the ERAGS strain via the IM route. The safety and immunogenicity in swine were evaluated using daily observation and a virus-neutralizing assay (VNA). Fluorescent antibody tests (FAT) for the RABV antigen and reverse transcriptase-polymerase chain reaction (RT-PCR) assays for the detection of the nucleocapsid (N) gene of RABV were conducted with brain tissues from the sows after necropsy. Results The growing pigs and sows administered the ERAGS strain did not exhibit any clinical sign of rabies during the test period test and did develop VNA titers. The growing pigs inoculated with the ERAGS strain via the IM route showed higher VNA titers than did those receiving oral administration. FAT and RT-PCR assays were unable to detect RABV in several tissues, including brain samples from the sows. Conclusion Our results suggest that the ERAGS strain was safe in growing pigs and sows and induced moderate VNA titers in pigs. PMID:27489807

  15. Experimental immunization of cats with a recombinant rabies-canine adenovirus vaccine elicits a long-lasting neutralizing antibody response against rabies.

    PubMed

    Hu, R L; Liu, Y; Zhang, S F; Zhang, F; Fooks, A R

    2007-07-20

    During the past decade, human rabies caused by cats has ranked the second highest in China. Several recombinant rabies vaccines have been developed for dogs. However, seldom have these vaccines been assessed or used in cats. In this trial, we report the experimental immunization of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Delta-RGP, in cats. Thirty cats were inoculated with the recombinant vaccine intramuscularly, orally and intranasally, respectively. Safety and efficacy studies were undertaken using the fluorescent antibody virus neutralization (FAVN) test and evaluated. Results showed that this recombinant vaccine is safe for cats as demonstrated by the three different routes of administration. The vaccine stimulated an efficient humoral response in the vaccinated cats when 10(8.5)PFU/ml of the recombinant vaccine was injected intramuscularly in a single dose. The neutralizing antibody level increased above 0.5IU/ml at 4 weeks after the vaccination. The mean antibody level ranged from 0.96+/-0.26 to 4.47+/-1.57IU/ml among individuals, and the antibody levels were elicited for at least 12 months. After this period, the immunized cats survived the challenge of CVS-24 and an obvious anemnestic and protective immune response was stimulated after the challenge. The immune response occurred later than the inactivated vaccine and the overall antibody level in the vaccinated cats was lower, but it was sufficient to confer protection of cats against infection. This demonstrated that a single, intramuscular dose of CAV-2-E3Delta-RGP stimulated a long-lasting protective immune response in cats and suggested that CAV-2-E3Delta-RGP could be considered as a potential rabies vaccine candidate for cats. PMID:17576027

  16. Evaluation of protective immune response in mice by vaccination the recombinant adenovirus for expressing Schistosoma japonicum inhibitor apoptosis protein.

    PubMed

    Hu, Chao; Zhu, Lihui; Luo, Rong; Dao, Jinwei; Zhao, Jiangping; Shi, Yaojun; Li, Hao; Lu, Ke; Feng, Xingang; Lin, Jiaojiao; Liu, Jinming; Cheng, Guofeng

    2014-11-01

    Schistosomiasis is a worldwide parasitic disease, and while it can be successfully treated with chemotherapy, this does not prevent reinfection with the parasite. Adenovirus vectors have been widely used for vaccine delivery, and a vaccination approach has the potential to prevent infection with Schistosoma. Here, we developed a recombinant adenoviral vector that expresses Schistosoma japonicum inhibitor apoptosis protein (Ad-SjIAP) and assessed its immunoprotective functions against schistosomiasis in mice. Murine immune responses following vaccination were investigated using enzyme-linked immunosorbent assays (ELISA), lymphocyte proliferation, and cytokine assays. The protective immunity in mice was evaluated by challenging with S. japonicum cercariae. Our results indicated that immunization with the Ad-SjIAP in mice induced a strong serum IgG response against IAP including IgG1, IgG2a, and IgG2b. In addition, lymphocyte proliferation experiments showed that mice treated with Ad-SjIAP significantly increased the lymphocyte response upon stimulation with recombinant Schistosoma japonicum inhibitor apoptosis protein (rSjIAP). Moreover, cytokine assays indicated that vaccination of Ad-SjIAP significantly increased the production of interferon (IFN)-γ and IL-2 as compared to the corresponding control group. Furthermore, following the challenge with S. japonicum cercariae, the vaccine conferred moderate protection, with an average rate of 37.95% for worm reduction and 31.7% for egg reduction. Taken together, our preliminarily results suggested that schistosoma IAP may be a potential vaccine against S. japonicum and that adenoviral vectors may serve as an alternative delivery vehicle for schistosome vaccine development. PMID:25185668

  17. Effectiveness of the E2-classical swine fever virus recombinant vaccine produced and formulated within whey from genetically transformed goats.

    PubMed

    Sánchez, O; Barrera, M; Farnós, O; Parra, N C; Salgado, E R; Saavedra, P A; Meza, C D; Rivas, C I; Cortez-San Martín, M; Toledo, J R

    2014-12-01

    Subunit recombinant vaccines against classical swine fever virus (CSFV) are a promising alternative to overcome practical and biosafety issues with inactivated vaccines. One of the strategies in evaluation under field conditions is the use of a new marker E2-based vaccine produced in the milk of adenovirally transduced goats. Previously we had demonstrated the efficacy of this antigen, which conferred early protection and long-lasting immunity in swine against CSFV infection. Here, we have used a simpler downstream process to obtain and formulate the recombinant E2 glycoprotein expressed in the mammary gland. The expression levels reached approximately 1.7 mg/ml, and instead of chromatographic separation of the antigen, we utilized a clarification process that eliminates the fat content, retains a minor amount of caseins, and includes an adenoviral inactivation step that improves the biosafety of the final formulation. In a vaccination and challenge experiment in swine, different doses of the E2 antigen contained within the clarified whey generated an effective immune response of neutralizing antibodies that protected all of the animals against a lethal challenge with CSFV. During the immunization and after challenge, the swine were monitored for adverse reactions related to the vaccine or symptoms of CSF, respectively. No adverse reactions or clinical signs of disease were observed in vaccinated animals, in which no replication of CSFV could be detected after challenge. Overall, we consider that the simplicity of the procedures proposed here is a further step toward the introduction and implementation of a commercial subunit vaccine against CSF. PMID:25274802

  18. Effectiveness of the E2-Classical Swine Fever Virus Recombinant Vaccine Produced and Formulated within Whey from Genetically Transformed Goats

    PubMed Central

    Sánchez, O.; Barrera, M.; Farnós, O.; Parra, N. C.; Salgado, E. R.; Saavedra, P. A.; Meza, C. D.; Rivas, C. I.; Cortez-San Martín, M.

    2014-01-01

    Subunit recombinant vaccines against classical swine fever virus (CSFV) are a promising alternative to overcome practical and biosafety issues with inactivated vaccines. One of the strategies in evaluation under field conditions is the use of a new marker E2-based vaccine produced in the milk of adenovirally transduced goats. Previously we had demonstrated the efficacy of this antigen, which conferred early protection and long-lasting immunity in swine against CSFV infection. Here, we have used a simpler downstream process to obtain and formulate the recombinant E2 glycoprotein expressed in the mammary gland. The expression levels reached approximately 1.7 mg/ml, and instead of chromatographic separation of the antigen, we utilized a clarification process that eliminates the fat content, retains a minor amount of caseins, and includes an adenoviral inactivation step that improves the biosafety of the final formulation. In a vaccination and challenge experiment in swine, different doses of the E2 antigen contained within the clarified whey generated an effective immune response of neutralizing antibodies that protected all of the animals against a lethal challenge with CSFV. During the immunization and after challenge, the swine were monitored for adverse reactions related to the vaccine or symptoms of CSF, respectively. No adverse reactions or clinical signs of disease were observed in vaccinated animals, in which no replication of CSFV could be detected after challenge. Overall, we consider that the simplicity of the procedures proposed here is a further step toward the introduction and implementation of a commercial subunit vaccine against CSF. PMID:25274802

  19. Efficacy of an inactivated FeLV vaccine compared to a recombinant FeLV vaccine in minimum age cats following virulent FeLV challenge.

    PubMed

    Stuke, Kristin; King, Vickie; Southwick, Kendra; Stoeva, Mira I; Thomas, Anne; Winkler, M Teresa C

    2014-05-01

    The aim of the study was to determine the efficacy of an inactivated feline leukemia virus (FeLV) vaccine (Versifel(®) FeLV, Zoetis.) compared to a recombinant FeLV vaccine (Purevax(®) FeLV, Merial Animal Health) in young cats, exposed under laboratory conditions to a highly virulent challenge model. The study was designed to be consistent with the general immunogenicity requirements of the European Pharmacopoeia 6.0 Monograph 01/2008:1321-Feline Leukaemia Vaccine (Inactivated) with the exception that commercial-strength vaccines were assessed. Fifty seronegative cats (8-9 weeks old) were vaccinated subcutaneously on two occasions, three weeks apart, with either placebo (treatment group T01), Versifel FeLV Vaccine (treatment group T02), or Purevax FeLV Vaccine (treatment group T03) according to the manufacturer's directions. Cats were challenged three weeks after the second vaccination with a virulent FeLV isolate (61E strain). Persistent FeLV antigenemia was determined from 3 to 15 weeks postchallenge. Bone marrow samples were tested for the presence of FeLV proviral DNA to determine FeLV latent infection. At week 15 after challenge with the virulent FeLV 61E strain, the Versifel FeLV Vaccine conferred 89.5% protection against FeLV persistent antigenemia and 94.7% protection against FeLV proviral DNA integration in bone marrow cells. In comparison, the Purevax FeLV Vaccine conferred 20% protection against FeLV persistent antigenemia and 35% protection against FeLV proviral DNA integration in bone marrow cells following challenge. The data from this study show that the Versifel FeLV Vaccine was efficacious in preventing both FeLV persistent p27 antigenemia and FeLV proviral DNA integration in bone marrow cells of cats challenged with this particular challenge model under laboratory conditions and provided better protection than Purevax FeLV in this experimental challenge model with highly virulent FeLV. PMID:24662705

  20. Anti-Tumor Effect of a Novel Soluble Recombinant Human Endostatin: Administered as a Single Agent or in Combination with Chemotherapy Agents in Mouse Tumor Models

    PubMed Central

    Jiang, Wenhong; Dai, Wei; Jiang, Yongping

    2014-01-01

    Background Angiogenesis has become an attractive target in cancer treatment. Endostatin is one of the potent anti-angiogenesis agents. Its recombinant form expressed in the yeast system is currently under clinical trials. Endostatin suppresses tumor formation through the inhibition of blood vessel growth. It is anticipated that combined therapy using endostatin and cytotoxic compounds may exert an additive effect. In the present study, we expressed and purified recombinant human endostatin (rhEndostatin) that contained 3 additional amino acid residues (arginine, glycine, and serine) at the amino-terminus and 6 histidine residues in its carboxyl terminus. The recombinant protein was expressed in E. Coli and refolded into a soluble form in a large scale purification process. The protein exhibited a potent anti-tumor activity in bioassays. Furthermore, rhEndostatin showed an additive effect with chemotherapy agents including cyclophosphamide (CTX) and cisplatin (DDP). Methods rhEndostatin cDNA was cloned into PQE vector and expressed in E. Coli. The protein was refolded through dialysis with an optimized protocol. To establish tumor models, nude mice were subcutaneously injected with human cancer cells (lung carcinoma A549, hepatocellular carcinoma QGY-7703, or breast cancer Bcap37). rhEndostatin and/or DDP was administered peritumorally to evaluate the rate of growth inhibition of A549 tumors. For the tumor metastasis model, mice were injected intravenously with mouse melanoma B16 cells. One day after tumor cell injection, a single dose of rhEndostatin, or in combination with CTX, was administered intravenously or at a site close to the tumor. Results rhEndostatin reduced the growth of A549, QGY-7703, and Bcap37 xenograft tumors in a dose dependent manner. When it was administered peritumorally, rhEndostatin exhibited a more potent inhibitory activity. Furthermore, rhEndostatin displayed an additive effect with CTX or DDP on the inhibition of metastasis of B16 tumors

  1. Recombinant Attenuated Listeria monocytogenes Vaccine Expressing Francisella tularensis IglC Induces Protection in Mice Against Aerosolized Type A F. tularensis

    PubMed Central

    Jia, Qingmei; Lee, Bai-Yu; Clemens, Daniel L.; Bowen, Richard A.; Horwitz, Marcus A.

    2009-01-01

    Fransicella tularensis, the causative agent of tularemia, is in the top category (Category A) of potential agents of bioterrorism. To develop a safer vaccine against aerosolized F. tularensis, we have employed an attenuated Listeria monocytogenes, which shares with F. tularensis an intracellular and extraphagosomal lifestyle, as a delivery vehicle for F. tularensis antigens. We constructed recombinant L. monocytogenes (rLm) vaccines stably expressing 7 F. tularensis proteins including IglC (rLm/iglC), and tested their immunogenicity and protective efficacy against lethal F. tularensis challenge in mice. Mice immunized intradermally with rLm/iglC developed significant cellular immune responses to F. tularensis IglC as evidenced by lymphocyte proliferation and CD4+ and CD8+ T-cell intracellular expression of interferon gamma. Moreover, mice immunized with rLm/iglC were protected against lethal challenge with F. tularensis LVS administered by the intranasal route, a route chosen to mimic airborne infection, and, most importantly, against aerosol challenge with the highly virulent Type A F. tularensis SchuS4 strain. PMID:19126421

  2. [Immunogenicity and heterologous protection in mice with a recombinant adenoviral-based vaccine carrying a hepatitis C virus truncated NS3 and core fusion protein].

    PubMed

    Guan, Jie; Deng, Yao; Chen, Hong; Yang, Yang; Wen, Bo; Tan, Wenjie

    2015-01-01

    To develop a safe and broad-spectrum effective hepatitis C virus (HCV) T cell vaccine,we constructed the recombinant adenovirus-based vaccine that carried the hepatitis C virus truncated NS3 and core fusion proteins. The expression of the fusion antigen was confirmed by in vitro immunofluorescence and western blotting assays. Our results indicated that this vaccine not only stimulated antigen-specific antibody responses,but also activated strong NS3-specific T cell immune responses. NS3-specific IFN-γ+ and TNF-α+ CD4+ T cell subsets were also detected by a intracellular cytokine secretion assay. In a surrogate challenge assay based on a recombinant heterologous HCV (JFH1,2a) vaccinia virus,the recombinant adenovirus-based vaccine was capable of eliciting effective levels of cross-protection. These findings have im- portant implications for the study of HCV immune protection and the future development of a novel vaccine. PMID:25997323

  3. A Recombinant G Protein Plus Cyclosporine A-Based Respiratory Syncytial Virus Vaccine Elicits Humoral and Regulatory T Cell Responses against Infection without Vaccine-Enhanced Disease.

    PubMed

    Li, Chaofan; Zhou, Xian; Zhong, Yiwei; Li, Changgui; Dong, Aihua; He, Zhonghuai; Zhang, Shuren; Wang, Bin

    2016-02-15

    Respiratory syncytial virus (RSV) infection can cause severe disease in the lower respiratory tract of infants and older people. Vaccination with a formalin-inactivated RSV vaccine (FI-RSV) and subsequent RSV infection has led to mild to severe pneumonia with two deaths among vaccinees. The vaccine-enhanced disease (VED) was recently demonstrated to be due to an elevated level of Th2 cell responses following loss of regulatory T (Treg) cells from the lungs. To induce high levels of neutralizing Abs and minimize pathogenic T cell responses, we developed a novel strategy of immunizing animals with a recombinant RSV G protein together with cyclosporine A. This novel vaccine induced not only a higher level of neutralizing Abs against RSV infection, but, most importantly, also significantly higher levels of Treg cells that suppressed VED in the lung after RSV infection. The induced responses provided protection against RSV challenge with no sign of pneumonia or bronchitis. Treg cell production of IL-10 was one of the key factors to suppress VED. These finding indicate that G protein plus cyclosporine A could be a promising vaccine against RSV infection in children and older people. PMID:26792805

  4. Safety and Immunogenicity of HCV E1E2 Vaccine Adjuvanted with MF59 Administered to Healthy Adults

    PubMed Central

    Frey, Sharon E.; Houghton, Michael; Coates, Stephen; Abrignani, Sergio; Chien, David; Rosa, Domenico; Pileri, Piero; Ray, Ranjit; Di Bisceglie, Adrian; Rinella, Paola; Hill, Heather; Wolff, Mark C.; Schultze, Viola; Han, Jang H.; Scharschmidt, Bruce; Belshe, Robert B.

    2010-01-01

    Background Hepatitis C virus (HCV) causes chronic liver disease that often leads to cirrhosis and hepatocellular carcinoma. In animal studies, chimpanzees were protected against chronic infection following experimental challenge with either homologous or heterologous HCV genotype 1a strains which predominates in the USA and Canada. We describe a first in humans clinical trial of this prophylactic HCV vaccine. Methods HCV E1E2 adjuvanted with MF59C.1 (an oil-in-water emulsion) was given at 3 different dosages on day 0 and weeks 4, 24 and 48 in a phase 1, placebo-controlled, dose escalation trial to healthy HCV-negative adults. Results There was no significant difference in the proportion of subjects reporting adverse events across the groups. Following vaccination subjects developed antibodies detectable by ELISA, CD81 neutralization and VSV/HCV pseudotype neutralization. There was no significant difference between vaccine groups in the number of responders and geometric mean titers for each of the three assays. All subjects developed lymphocyte proliferation responses to E1E2 and an inverse response to increasing amounts of antigen was noted. Conclusions The vaccine was safe and generally well tolerated at each of the 3 dosage levels and induced anti-body and lymphoproliferative responses. A larger study to further evaluate safety and immunogenicity is warranted. PMID:20619382

  5. Immunity conferred by an experimental vaccine based on the recombinant PCV2 Cap protein expressed in Trichoplusia ni-larvae.

    PubMed

    Pérez-Martín, Eva; Gómez-Sebastián, Silvia; Argilaguet, Jordi M; Sibila, Marina; Fort, María; Nofrarías, Miquel; Kurtz, Sherry; Escribano, José M; Segalés, Joaquim; Rodríguez, Fernando

    2010-03-01

    Porcine circovirus type 2 (PCV2) vaccination has been recently included as a measure to control postweaning multisystemic wasting syndrome (PMWS) in the field. Aiming to obtain a more affordable vaccine to be extensively implemented in the field, a highly efficient non-fermentative expression platform based on Trichoplusia ni (T. ni) larvae was used to produce a baculovirus-derived recombinant PCV2 Cap protein (rCap) for vaccine purposes. Vaccination of pigs with rCap induced solid protection against PCV2 experimental infection, inhibiting both the viremia and the viral shedding very efficiently. The protection afforded by the rCap vaccine strongly correlated with the induction of specific humoral immune responses, even in the presence of PCV2-specific maternal immunity, although cellular responses also seemed to play a partial role. In summary, we have shown that rCap expressed in T. ni larvae could be a cost-effective PCV2 vaccine candidate to be tested under field conditions. PMID:20056179

  6. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus.

    PubMed

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Cañas-Arranz, Rodrigo; Vázquez-Calvo, Ángela; Merino-Ramos, Teresa; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-04-19

    Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen. PMID:26993334

  7. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    PubMed

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. PMID:20381643

  8. [Research progress regarding the clinical evaluation on recombinant human papillomavirus vaccines].

    PubMed

    He, W G; Zhao, J; Huang, S J; Wu, T

    2016-06-01

    Human papillomavirus (HPV) is the main cause for cervical cancer, anogenital cancers and genital warts. Three HPV vaccines have been licensed abroad. Data from clinical trials showed high efficacy of the HPV vaccines in young women with 90%-100% vaccine-related HPV diseases prevented. Though efficacy of the vaccine appears lower in older women, this population can still benefit from vaccination. Immunobriging trials show that the two-dose schedule in 9-14 years old girls elicits non-inferior immune response than the three-dose one in young adults. In addition, HPV vaccines can reduce the recurrent rates in CIN2+ patients after therapeutic surgery and the vaccines have cross-protection aganist diseases caused by non-vaccine type HPV. Safety data on HPV vaccines are assuring. Thus HPV vaccine should be widely used in adolescent girls and women of appropriate age groups. PMID:27346126

  9. Murine responses to recombinant MVA versus ALVAC vaccines against tumor-associated antigens, gp100 and 5T4.

    PubMed

    Hanwell, David G; McNeil, Bryan; Visan, Lucian; Rodrigues, Lauren; Dunn, Pamela; Shewen, Patricia E; Macallum, Grace E; Turner, Patricia V; Vogel, Thorsten U

    2013-05-01

    Virally vectored cancer vaccines comprise a new form of immunotherapy that aim to generate anti-tumor immune responses with potential for tumor clearance and enhanced patient survival. Here, we compared 2 replication-deficient poxviruses modified vaccinia Ankara (MVA) and ALVAC(2) in their ability to induce antigen expression and immunogenicity of the tumor-associated antigens (TAAs) 5T4 and gp100. To facilitate the comparison, recombinant MVA-gp100M and ALVAC(2)-5T4 were constructed to complement existing ALVAC(2)-gp100M and MVA-5T4 vectors. Recombinant TAA expression in chicken embryo fibroblast cells was confirmed by Western blot analysis. 5T4 expression was approximately equal for both viruses, whereas ALVAC-derived gp100 was quickly degraded, at a time point when MVA-derived gp100 was still stable and expressed at high levels. Human leukocyte antigen-A2 transgenic mice were vaccinated with recombinant viruses and the CD8 T-cell responses elicited against each TAA were monitored by interferon-γ enzyme-linked immunospot. No 5T4 peptide responses were detected using splenocytes from mice vaccinated with either vector, whereas vaccination with MVA elicited a significantly higher gp100-specific response than ALVAC(2) at 10 PFU (P<0.001). In CD-1 mice, each vector elicited similar 5T4 antibody responses, whereas MVA was more potent and induced gp100 antibody responses at a lower immunization dose than ALVAC (P<0.001). In this study, immunogenicity varied depending on the viral vector used and reflected vector-associated differences in in vitro TAA expression and stability. These findings suggest that novel vector-transgene combinations must be assessed individually when designing vaccines, and that stability of vector-encoded proteins produced in vitro may be useful as a predictor for in vitro immunogenicity. PMID:23603858

  10. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.

    PubMed

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing

    2016-01-01

    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus. PMID:26266551

  11. Applications of bacillus Calmette-Guerin and recombinant bacillus Calmette-Guerin in vaccine development and tumor immunotherapy

    PubMed Central

    Zheng, Yuan-qiang; Naguib, Youssef W.; Dong, Yixuan; Shi, Yan-chun; Bou, Shorgan; Cui, Zhengrong

    2016-01-01

    Summary Bacillus Calmette-Guerin (BCG) vaccines are attenuated live strains of Mycobacterium bovis and are among the most widely used vaccines in the world. BCG is proven effective in preventing severe infant meningitis and miliary tuberculosis. Intravesical instillation of BCG is also a standard treatment for non-muscle invasive bladder cancer. In the past few decades, recombinant BCG (rBCG) technology had been extensively applied to develop vaccine candidates against a variety of infectious diseases, including bacterial, viral, and parasite infections, and to improve the efficacy of BCG in bladder cancer therapy. This review is intended to show the vast applications of BCG and rBCG in prevention of infectious diseases and in cancer immunotherapy, with a special emphasis on recent approaches and trends on both pre-clinical and clinical levels. PMID:26268434

  12. Clinical and Parasitological Protection in a Leishmania infantum-Macaque Model Vaccinated with Adenovirus and the Recombinant A2 Antigen

    PubMed Central

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A.; Marchevsky, Renato S.; Rocha, Maria Gabrielle L.; Dutra, Miriam S.; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T.

    2014-01-01

    Background Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Methodology/Principal Findings Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. Conclusions/Significance The

  13. Recombinant Secreted Antigens from Mycoplasma hyopneumoniae Delivered as a Cocktail Vaccine Enhance the Immune Response of Mice

    PubMed Central

    Galli, Vanessa; Simionatto, Simone; Marchioro, Silvana Beutinger; Klabunde, Gustavo Henrique Ferrero; Conceição, Fabricio Rochedo

    2013-01-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae. PMID:23803903

  14. Comparative Evaluation of Vaccine Efficacy of Recombinant Marek's Disease Virus Vaccine Lacking Meq Oncogene in Commercial Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5delMeq, in which the oncogene Meq was deleted. Vaccine efficacy experiments conducted in ADOL 15I5 x 71 chickens vaccinated with rMd5delMeq virus...

  15. Avian influenza in ovo vaccination with replication defective recombinant adenovirus in chickens: Vaccine potency, antibody persistence, and maternal antibody transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding the AI virus (AIV) hemagglutinin (HA). We evaluated vaccine potency, antibo...

  16. Phase I Safety and Immunogenicity Evaluation of MVA-CMDR, a Multigenic, Recombinant Modified Vaccinia Ankara-HIV-1 Vaccine Candidate

    PubMed Central

    Currier, Jeffrey R.; Ngauy, Viseth; de Souza, Mark S.; Ratto-Kim, Silvia; Cox, Josephine H.; Polonis, Victoria R.; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M.; Robb, Merlin L.; Kim, Jerome; Michael, Nelson L.; Marovich, Mary A.

    2010-01-01

    Background We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. Methodology/Principal Findings MVA-CMDR or placebo was administered intra-muscularly (IM; 107 or 108 pfu) or intradermally (ID; 106 or 107 pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a 51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/106 PBMC at 108 pfu IM), but high in response rate (70% 51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 108 pfu IM); (ii) predominantly HIV Env-specific CD4+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 108 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 108 pfu IM). Conclusions/Significance MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell

  17. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit.

    PubMed

    Arnold, Marina; Durairaj, Vijay; Mundt, Egbert; Schulze, Katja; Breunig, Karin D; Behrens, Sven-Erik

    2012-01-01

    Here we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV). Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine. PMID:23024743

  18. Protective Vaccination against Infectious Bursal Disease Virus with Whole Recombinant Kluyveromyces lactis Yeast Expressing the Viral VP2 Subunit

    PubMed Central

    Arnold, Marina; Durairaj, Vijay; Mundt, Egbert; Schulze, Katja; Breunig, Karin D.; Behrens, Sven-Erik

    2012-01-01

    Here we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV). Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine. PMID:23024743

  19. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future

    PubMed Central

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-01-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination. PMID:26853127

  20. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future.

    PubMed

    Valenta, Rudolf; Campana, Raffaela; Focke-Tejkl, Margit; Niederberger, Verena

    2016-02-01

    In the past, the development of more effective, safe, convenient, broadly applicable, and easy to manufacture vaccines for allergen-specific immunotherapy (AIT) has been limited by the poor quality of natural allergen extracts. Progress made in the field of molecular allergen characterization has now made it possible to produce defined vaccines for AIT and eventually for preventive allergy vaccination based on recombinant DNA technology and synthetic peptide chemistry. Here we review the characteristics of recombinant and synthetic allergy vaccines that have reached clinical evaluation and discuss how molecular vaccine approaches can make AIT more safe and effective and thus more convenient. Furthermore, we discuss how new technologies can facilitate the reproducible manufacturing of vaccines of pharmaceutical grade for inhalant, food, and venom allergens. Allergy vaccines in clinical trials based on recombinant allergens, recombinant allergen derivatives, and synthetic peptides allow us to target selectively different immune mechanisms, and certain of those show features that might make them applicable not only for therapeutic but also for prophylactic vaccination. PMID:26853127

  1. HPV16L1-attenuated Shigella recombinant vaccine induced strong vaginal and systemic immune responses in guinea pig model

    PubMed Central

    Yan, Xiaofei; Wang, Depu; Liang, Fengli; Fu, Ling; Guo, Cheng

    2014-01-01

    Though human papillomavirus (HPV) vaccines based on L1 virus-like particles (VLPs) have excellent protective effect against HPV-induced cervical cancer, they are too expensive to be afforded by the developing countries, where most cases of cervical cancer occur. A live bacterial-based vaccine could be an inexpensive alternative. The aim of this study was to evaluate the potential value of live attenuated Shigella. flexneri 2a sc602 strain-based HPV16L1 as a high-efficiency, low-cost HPV16L1 mucosal vaccine. Recombinant sc602/L1 vaccine induced high L1-specific systemic and mucosal immune responses as well as cell-mediated Th1 and Th2 immune responses in guinea pig model. Sc602/L1 vaccine induced higher L1-specific IgG and IgA antibodies as well as HPV16-neutralizing antibodies in genital region in sc602/L1 mucosal immunized animals than in L1 intramuscular immunized animals. Though both are via mucosal delivery, immunized sc602/L1 vaccine by rectum route induced higher L1-specific IgA and IgG titers in genital region than by conjunctiva route. In addition, sc602/L1 also strongly increased L1-specific IFN-γ and IL-4 expression, implying its effect on cell-mediated immune response. HPV16L1 was expressed in sc602 bacteria and their biologic characteristics were detected by immunoblot, electron microscope and HeLa cell invasion assay. Guinea pigs were immunized with sc602L1 through conjunctiva (i.c.) or rectum (i.r.). Mucosal and systemic immune responses were detected by ELISA, ELISPOT and Neutralization activity assays. Strong mucosal and systemic immune responses were induced by sc602/L1 vaccine. This study provides evidence that sc602/L1 vaccine may have protective effect on HPV infection. PMID:25483698

  2. Protective immune response against Toxoplasma gondii elicited by a recombinant DNA vaccine with a novel genetic adjuvant.

    PubMed

    Zhou, Huaiyu; Min, Juan; Zhao, Qunli; Gu, Qinmin; Cong, Hua; Li, Ying; He, Shenyi

    2012-02-27

    Previous immunological studies from our laboratory have demonstrated the potential role of Toxoplasma gondii antigens SAG1 and GRA2 as vaccine candidates. To further evaluate the vaccine's effects, a series of recombinant DNA vaccines pVAX1-SAG1, pVAX1-GRA2 and pVAX1-SAG1-GRA2, termed pSAG1, pGRA2 and pSAG1-GRA2, respectively, were constructed. A plasmid pVAX1-S/PreS2, termed pSPreS2 encoding hepatitis B virus (HBV) surface antigen (HBsAg) S and PreS2 as a novel genetic adjuvant, was also constructed. The expression abilities of those DNA plasmids were examined in HFF cells by Western blotting. Then BALB/c mice were intramuscularly immunized with DNA plasmids and followed by challenging with the highly virulent T. gondii RH strain. The results demonstrated that the recombinant DNA vaccine pSAG1-GRA2 was capable of eliciting high levels of antibodies, a Th1 type of immune response with significant production of IFN-γ and low levels of IL-4 or IL-10 in BALB/c mice, and partial protection against the acute phase of toxoplasmosis as compared to pSAG1, pGRA2 and controls. In addition, the adjuvant pSPreS2 formulated with DNA vaccine induced a Th1 type of immune response and therefore might be a novel genetic adjuvant to DNA vaccine for further investigation. PMID:22240340

  3. Vaccination with Adjuvanted Recombinant Neuraminidase Induces Broad Heterologous, but Not Heterosubtypic, Cross-Protection against Influenza Virus Infection in Mice

    PubMed Central

    Wohlbold, Teddy John; Nachbagauer, Raffael; Xu, Haoming; Tan, Gene S.; Hirsh, Ariana; Brokstad, Karl A.; Cox, Rebecca J.; Palese, Peter

    2015-01-01

    ABSTRACT In an attempt to assess the cross-protective potential of the influenza virus neuraminidase (NA) as a vaccine antigen, different subtypes of recombinant NA were expressed in a baculovirus system and used to vaccinate mice prior to lethal challenge with homologous, heterologous, or heterosubtypic viruses. Mice immunized with NA of subtype N2 were completely protected from morbidity and mortality in a homologous challenge and displayed significantly reduced viral lung titers. Heterologous challenge with a drifted strain resulted in morbidity but no mortality. Similar results were obtained for challenge experiments with N1 NA. Mice immunized with influenza B virus NA (from B/Yamagata/16/88) displayed no morbidity when sublethally infected with the homologous strain and, importantly, were completely protected from morbidity and mortality when lethally challenged with the prototype Victoria lineage strain or a more recent Victoria lineage isolate. Upon analyzing the NA content in 4 different inactivated-virus vaccine formulations from the 2013-2014 season via Western blot assay and enzyme-linked immunosorbent assay quantification, we found that the amount of NA does indeed vary across vaccine brands. We also measured hemagglutinin (HA) and NA endpoint titers in pre- and postvaccination human serum samples from individuals who received a trivalent inactivated seasonal influenza vaccine from the 2004-2005 season; the induction of NA titers was statistically less pronounced than the induction of HA titers. The demonstrated homologous and heterologous protective capacity of recombinant NA suggests that supplementing vaccine formulations with a standard amount of NA may offer increased protection against influenza virus infection. PMID:25759506

  4. A novel vaccine against Streptococcus equi ssp. zooepidemicus infections: the recombinant swinepox virus expressing M-like protein.

    PubMed

    Lin, Hui-xing; Huang, Dong-yan; Wang, Ye; Lu, Cheng-ping; Fan, Hong-jie

    2011-09-16

    To develop a safer, more immunogenic and efficacious vaccine against Streptococcus equi ssp. zooepidemicus (SEZ) infections, the gene of M-like protein (SzP) was placed under the strong vaccinia virus promoter P28 and then inserted into swinepox virus (SPV) genome. The recombinant swinepox virus (rSPV-szp) was isolated in a non-selective medium by the co-expression of Escherichia coli LacZ gene and verified by PCR, western blotting and immunofluorescence assays. To evaluate the immunogenicity of this rSPV-szp, ICR mice were immunized with the rSPV-szp, inactivated SEZ vaccine (positive control), wild type SPV (negative control), or PBS (challenge control). All mice were intraperitoneally challenged with 5 LD(50) of homogenous ATCC 35246 strain 14 days post-vaccination. The results showed that at least 70% mice in rSPV-szp-vaccinated group were protected against homogenous ATCC 35246 challenge, the survival rate was significantly higher compared with mice in the negative control group and the challenge control group (P<0.001). The antibody titers of the rSPV-szp-vaccinated group were significantly higher (P<0.05) than the other three groups. Passive immune protection assays showed that the hyperimmune sera against M-like protein could provide mice with complete protection against challenge of ATCC 35246. Semi-quantitative RT-PCR analysis showed a marked increased in levels of IL-4 and IFN-γ mRNA in immunized mice. The results suggested that the recombinant rSPV-szp provided mice with significant protection from the SEZ infections. It is a promising candidate for the vaccine development against SEZ infections. PMID:21807055

  5. Oral immunization of mice with recombinant rabies vaccine strain (ERAG3G) induces complete protection

    PubMed Central

    2015-01-01

    Purpose New rabies vaccine bait for both pets and raccoon dogs residing in Korea is needed to eradicate rabies infection among animals. In this study, we constructed a recombinant rabies virus (RABV), the ERAG3G strain, using a reverse genetics system. Then we investigated the efficacy of this strain in mice after oral administration and the safety of this strain in cats after intramuscular administration. Materials and Methods The ERAG3G strain was rescued in BHK/T7-9 cells using the full-length genome mutated at the amino acid position 333 of the glycoprotein gene of RABV and helper plasmids. Four-week-old mice underwent one or two oral administrations of the ERAG3G strain and were challenged with the highly virulent RABV strain CVSN2c 14 days after the second administration. Clinical symptoms were observed and body weights were measured every day after the challenge. Results All mice showed complete protection against virulent RABV. In addition, cats intramuscularly inoculated with the ERAG3G strain showed high antibody titers ranging from 2.62 to 23.9 IU/mL at 28-day postinoculation. Conclusion The oral immunization of the ERAG3G strain plays an important role in conferring complete protection in mice, and intramuscular inoculation of the ERAG3G strain induces the formation of anti-rabies neutralizing antibody in cats. PMID:25648184

  6. Intravenously Administered Recombinant Human Type VII Collagen Derived from Chinese Hamster Ovary Cells Reverses the Disease Phenotype in Recessive Dystrophic Epidermolysis Bullosa Mice.

    PubMed

    Hou, Yingping; Guey, Lin T; Wu, Timothy; Gao, Robert; Cogan, Jon; Wang, Xinyi; Hong, Elizabeth; Ning, Weihuang Vivian; Keene, Douglas; Liu, Nan; Huang, Yan; Kaftan, Craig; Tangarone, Bruce; Quinones-Garcia, Igor; Uitto, Jouni; Francone, Omar L; Woodley, David T; Chen, Mei

    2015-12-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disorder characterized by skin fragility, blistering, and multiple skin wounds with no currently approved or consistently effective treatment. It is due to mutations in the gene encoding type VII collagen (C7). Using recombinant human C7 (rhC7) purified from human dermal fibroblasts (FB-rhC7), we showed previously that intravenously injected rhC7 distributed to engrafted RDEB skin, incorporated into its dermal-epidermal junction (DEJ), and reversed the RDEB disease phenotype. Human dermal fibroblasts, however, are not used for commercial production of therapeutic proteins. Therefore, we generated rhC7 from Chinese hamster ovary (CHO) cells. The CHO-derived recombinant type VII collagen (CHO-rhC7), similar to FB-rhC7, was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. CHO-rhC7 bound to fibronectin and promoted human keratinocyte migration in vitro. A single dose of CHO-rhC7, administered intravenously into new-born C7-null RDEB mice, incorporated into the DEJ of multiple skin sites, tongue and esophagus, restored anchoring fibrils, improved dermal-epidermal adherence, and increased the animals' life span. Furthermore, no circulating or tissue-bound anti-C7 antibodies were observed in the mice. These data demonstrate the efficacy of CHO-rhC7 in a preclinical murine model of RDEB. PMID:26203639

  7. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide™ ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to compare four Clostridium perfringens recombinant proteins as vaccine candidates using the Montanide™ ISA 71 VG adjuvant in an experimental model of necrotic enteritis. Broiler chickens were immunized with clostridial recombinant proteins with ISA 71 VG, and intestinal le...

  8. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  9. Potency requirements of rabies vaccines administered intradermally using the Thai Red Cross regimen: investigation of the immunogenicity of serially diluted purified chick embryo cell rabies vaccine.

    PubMed

    Beran, Jiri; Honegr, Karel; Banzhoff, Angelika; Malerczyk, Claudius

    2005-06-10

    To determine the minimum vaccine potency per intradermal dose required to elicit an adequate immune response using the Thai Red Cross (TRC) regimen (2-2-2-0-1-1), healthy volunteers received 0.1 mL volumes of PCECV containing decreasing amounts of antigen. Subjects also received HRIG to evaluate potential interference with antibody production. Results indicated that when each 0.1 mL intradermal dose of PCECV contained antigen corresponding to 0.32 IU per intramuscular dose, every subject had titers above 0.5 IU/mL by day 14. These results confirm that the current World Health Organization (WHO) recommendations for vaccine potency (2.5 IU per intramuscular dose) are sufficient for use in the Thai Red Cross intradermal regimen. PMID:15917111

  10. Central nervous system demyelinating diseases and recombinant hepatitis B vaccination: a critical systematic review of scientific production.

    PubMed

    Martínez-Sernández, V; Figueiras, A

    2013-08-01

    The etiology of multiple sclerosis has not yet been fully described. A potential link between the recombinant hepatitis B vaccine and an increased risk of onset or exacerbation of multiple sclerosis emerged in the mid-1990s, leading to several spontaneous reports and studies investigating this association. We conducted a critical systematic review aimed at assessing whether hepatitis B vaccination increases the risk of onset or relapse of multiple sclerosis and other central nervous system demyelinating diseases. MEDLINE and EMBASE were used as data sources, and the search covered the period between 1981 and 2011. Twelve references met the inclusion criteria. No significant increased risk of onset or relapse of the diseases considered was associated with hepatitis B vaccination, except in one study. Most studies included in this review displayed methodological limitations and heterogeneity among them, which rendered it impossible to draw robust conclusions about the safety of hepatitis B vaccination in healthy subjects and patients with multiple sclerosis. Therefore, on the basis of current data there is no need to modify the vaccination recommendations; however, there is a need to improve the quality of observational studies with emphasis on certain considerations that are discussed in this review. PMID:23086181

  11. Influenza (Flu) Vaccine (Inactivated or Recombinant): What You Need to Know

    MedlinePlus

    ... likely to cause disease in the upcoming flu season. But even when the vaccine doesn’t exactly ... after vaccination, and protection lasts through the flu season. 3 Sthoismveapcecoinpele should not get Tell the person ...

  12. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Inactivated Influenza Vaccine Information Statement (VIS) www.cdc.gov/vaccines/hcp/vis/vis-statements/flu.html CDC review information for Inactivated Influenza VIS: ...

  13. Comparative evaluation of vaccine efficacy of recombinant Marek's disease virus vaccine lacking Meq oncogene in commercial chickens.

    PubMed

    Lee, Lucy F; Kreager, K S; Arango, J; Paraguassu, A; Beckman, B; Zhang, Huanmin; Fadly, Aly; Lupiani, B; Reddy, S M

    2010-02-01

    Marek's disease virus (MDV) oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5 Delta Meq, in which the oncogene meq was deleted. Vaccine efficacy experiments conducted in Avian Disease and Oncology Laboratory (ADOL) 15I(5) x 7(1) chickens vaccinated with rMd5 Delta Meq virus or an ADOL preparation of CVI988/Rispens indicated that rMd5 Delta Meq provided superior protection than CVI988/Rispens when challenged with the very virulent plus MDV 648A strain. In the present study we set to investigate the vaccine efficacy of rMd5 Delta Meq in the field compared to several commercial preparations of CVI988/Rispens. Three large-scale field experiments, in which seeder chickens were inoculated with a very virulent plus strain of 686, vv+ MDV, were conducted in a model developed by Hy-Line International. In addition, comparisons were made with bivalent vaccine (HVT+SB-1), HVT alone and several serotype 3 HVT-vectored vaccines individually or in combination with CVI988/Rispens. Experimental results showed that addition of HVT to either of the two commercial CVI988/Rispens preparations tested (A or B) did not enhance protection conferred by CVI988/Rispens alone and that rMd5 Delta Meq was a better or equal vaccine compared to any of the CVI988/Rispens vaccines tested under the conditions of the field trials presented herein. Our results also emphasized the complexity of factors affecting vaccine efficacy and the importance of challenge dose in protection. PMID:19941987

  14. Safety of recombinant VSV-Ebola virus vaccine vector in pigs.

    PubMed

    de Wit, Emmie; Marzi, Andrea; Bushmaker, Trenton; Brining, Doug; Scott, Dana; Richt, Juergen A; Geisbert, Thomas W; Feldmann, Heinz

    2015-04-01

    The ongoing Ebola outbreak in West Africa has resulted in fast-track development of vaccine candidates. We tested a vesicular stomatitis virus vector expressing Ebola virus glycoprotein for safety in pigs. Inoculation did not cause disease and vaccine virus shedding was minimal, which indicated that the vaccine virus does not pose a risk of dissemination in pigs. PMID:25811738

  15. Recombinant Newcastle disease vaccines: risk for recombination, reversion to virulence, and spread in non-target species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND), caused by Newcastle disease virus (NDV), is one of the most important diseases of poultry and causes significant economic losses to the poultry industry worldwide. Vaccination is the main form of control of ND and it has been practiced for more than 60 years with billions of...

  16. Immunogenicity of a Trivalent Recombinant Vaccine Against Clostridium perfringens Alpha, Beta, and Epsilon Toxins in Farm Ruminants

    PubMed Central

    Moreira, Gustavo Marçal Schmidt Garcia; Salvarani, Felipe Masiero; da Cunha, Carlos Eduardo Pouey; Mendonça, Marcelo; Moreira, Ângela Nunes; Gonçalves, Luciana Aramuni; Pires, Prhiscylla Sadanã; Lobato, Francisco Carlos Faria; Conceição, Fabricio Rochedo

    2016-01-01

    Clostridium perfringens is an anaerobic bacterium that produces several toxins. Of these, the alpha, beta, and epsilon toxins are responsible for causing the most severe C. perfringens-related diseases in farm animals. The best way to control these diseases is through vaccination. However, commercially available vaccines are based on inactivated toxins and have many production drawbacks, which can be overcome through the use of recombinant antigens. In this study, we produced recombinant alpha, beta, and epsilon toxins in Escherichia coli to formulate a trivalent vaccine. Its effectiveness was evaluated through a potency test in rabbits, in which the vaccine generated 9.6, 24.4, and 25.0 IU/mL of neutralizing antibodies against the respective toxins. Following this, cattle, sheep, and goats received the same formulation, generating, respectively, 5.19 ± 0.48, 4.34 ± 0.43, and 4.70 ± 0.58 IU/mL against alpha toxin, 13.71 ± 1.17 IU/mL (for all three species) against beta toxin, and 12.74 ± 1.70, 7.66 ± 1.69, and 8.91 ± 2.14 IU/mL against epsilon toxin. These levels were above the minimum recommended by international protocols. As such, our vaccine was effective in generating protective antibodies and, thus, may represent an interesting alternative for the prevention of C. perfringens-related intoxications in farm animals. PMID:27004612

  17. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. PMID:26072304

  18. Vaccination of ferrets with a recombinant G glycoprotein subunit vaccine provides protection against Nipah virus disease for over 12 months

    PubMed Central

    2013-01-01

    Background Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. Methods Ferrets were vaccinated with 4, 20 or 100 μg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. Results Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome – but not virus - was recovered from nasal secretions of one ferret given 20 μg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. Conclusions We have previously shown that ferrets vaccinated with 4, 20 or 100 μg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months

  19. A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism.

    PubMed

    Johnston, I C; ter Meulen, V; Schneider-Schaulies, J; Schneider-Schaulies, S

    1999-08-01

    Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism. PMID:10400788

  20. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    PubMed

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. PMID:27030586

  1. DNA vaccine (P1-2A-3C-pCDNA) co-administered with Bovine IL-18 gives protective immune response against Foot and Mouth Disease in cattle.

    PubMed

    Kotla, Sivareddy; Sanghratna Vishanath, Bahire; H J, Dechamma; K, Ganesh; V V S, Suryanarayana; Reddy, G R

    2016-09-25

    Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals causing considerable economic loss in the affected countries. Presently used tissue culture inactivated vaccine protects the vaccinated animals for a short duration. DNA vaccines along with appropriate adjutants is one of the approach for the development of alternative vaccine. In the present study, we constructed P1-2A-3CpCDNA (containing P1-2A-3C coding sequences of FMDV Asia-1 Ind 63/72) and bovine IL-18 pCDNA plasmids and evaluated in cattle. Four groups of calves each group containing six calves were vaccinated with 200μg of plasmid DNA vaccine P1-2A-3CpCDNA, P1-2A-3CpCDNA+ bIL-18pCDNA and inactivated vaccine respectively where as fourth group was unvaccinated. P1-2A-3CpCDNA+bIL-18pCDNA vaccinated animals have shown higher levels of neutralizing antibodies and specific T-cell proliferation responses. Higher levels of CD4(+) and CD8(+) cells were observed in these animals. Similarly, IL-18 adjuvanted group has shown increased Th1 and Th2 cytokine responses. All the vaccinated animals were challenged with cattle adapted FMD homologous Asia1 virus two weeks after the booster dose. IL18 co administered DNA vaccine construct has protected four out of six animals challenged with homologous virus. PMID:27599937

  2. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic

    PubMed Central

    Gabitzsch, Elizabeth S.; Tsang, Kwong Yok; Palena, Claudia; David, Justin M.; Fantini, Massimo; Kwilas, Anna; Rice, Adrian E.; Latchman, Yvette; Hodge, James W.; Gulley, James L.; Madan, Ravi A.; Heery, Christopher R.; Balint, Joseph P.

    2015-01-01

    Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies. PMID:26374823

  3. Vaccination with Recombinant RNA Replicon Particles Protects Chickens from H5N1 Highly Pathogenic Avian Influenza Virus

    PubMed Central

    Halbherr, Stefan J.; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry. PMID:23762463

  4. [Influence of vaccination of calves with recombinant cysteine proteinase of Fasciola hepatica on development and infectivity of miracidia].

    PubMed

    Dabrowska, Martyna; Kaliniak, Marcin; Wedrychowicz, Halina

    2006-01-01

    The aim of the study was to evaluate an influence of vaccination of the final host on F. hepatica development in intermediate hosts. Fluke eggs were isolated from the biliary tracts of calves vaccinated orally with recombinant cysteine proteinase of F. hepatica after the challenge infection and from control calves which received the infection only. To asses the effect of the vaccine on egg "hatch rate" the eggs were transferred to the Petri dishes with distilled water and incubated at 25 degrees C for 16-19 days. They were subsequently exposed to light for about 2 h, at a temperature of 27 +/- 1 degrees C, to stimulate sprouting of the miracidia and asses the egg hatchability. In order to evaluate infectivity and pathogenicity of the miracidia, single miracidium infections of Lymnea truncatula by F. hepatica were carried out under laboratory conditions using 4-mm-high snails. The prevalence of snail infections with F. hepatica was calculated using the ratio between the number of cercariae-shedding snails in each group and that of surviving snails. It appeared that the eggs isolated from immunized calves demonstrated significantly lower hatchability than the eggs isolated from non-vaccinated control hosts. Also, the proportion of infected snails as well as their mortality were lower after exposition to miracidia originating from vaccinated calves. It is suggested that effectors of the immune response in vaccinated calves inhibited in part biological activity of cysteine proteinases of the fluke which are known to be involved in egg shell formation, penetration of host's tissues and worm feeding. PMID:17432623

  5. Vaccinations

    MedlinePlus

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  6. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    PubMed

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-01-01

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine. PMID:24568545

  7. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    PubMed

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV. PMID:26873815

  8. Protection against murine listeriosis by an attenuated recombinant Salmonella typhimurium vaccine strain that secretes the naturally somatic antigen superoxide dismutase.

    PubMed

    Hess, J; Dietrich, G; Gentschev, I; Miko, D; Goebel, W; Kaufmann, S H

    1997-04-01

    A recombinant (r)-Salmonella typhimurium aroA vaccine strain was constructed which secretes the naturally somatic protein of Listeria monocytogenes, superoxide dismutase (SOD), by the HlyB/HlyD/TolC export machinery. Vaccine efficacy of the SOD-bearing carrier strain was compared with that of the p60-secreting construct, S. typhimurium p60s (J. Hess, I. Gentschev, D. Miko, M. Welzel, C. Ladel, W. Goebel, and S. H. E. Kaufmann, Proc. Natl. Acad. Sci. USA 93:1458-1463, 1996). Vaccination of mice with both constructs induced protection against a lethal challenge with the intracellular pathogen, L. monocytogenes. While the somatic listerial antigen, SOD, is immunologically uncharacterized, the naturally secreted protein of L. monocytogenes, p60, is known to be highly immunogenic. Our data emphasize the high vaccine potential of r-Salmonella constructs secreting antigens of somatic or secreted origin. Moreover, they suggest that the HlyB/HlyD/TolC-based antigen delivery system with attenuated Salmonella spp. as the carrier is capable of potentiating the immune response against foreign proteins independent from their immunogenicity in and display by the natural host. PMID:9119463

  9. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    PubMed Central

    Rocke, Tonie E.; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  10. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  11. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    USGS Publications Warehouse

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  12. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs

    USGS Publications Warehouse

    Liao, Chih-Ming; Huang, Chienjin; Hsuan, Shih-Ling; Chen, Zeng-Weng; Lee, Wei-Cheng; Liu, Cheng-I; Winton, James R.; Chien, Maw-Sheng

    2006-01-01

    Three short fragments of recombinant subunit Pasteurella multocida toxin (rsPMT) were constructed for evaluation as candidate vaccines against progressive atrophic rhinitis (PAR) of swine. PMT-specific antibody secreting cells and evidence of cellular immunity were detected in rsPMT-immunized pigs following authentic PMT challenge or homologous antigen booster. Piglets immunized with rsPMT fragments containing either the N-terminal or the C-terminal portions of PMT developed high titers of neutralizing antibodies. Pregnant sows immunized with rsPMT had higher levels of maternal antibodies in their colostrum than did those immunized with a conventional PAR-toxoid vaccine. Offspring from rsPMT vaccinated sows had better survival after challenge with a five-fold lethal dose of authentic PMT and had better growth performance after challenge with a sublethal dose of toxin. Our findings indicate these non-toxic rsPMT proteins are attractive candidates for development of a subunit vaccine against PAR in pigs.

  13. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague.

    PubMed

    Rocke, Tonie E; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  14. Immunogenicity and Safety of a Recombinant Tetravalent Dengue Vaccine in Children and Adolescents Ages 9–16 Years in Brazil

    PubMed Central

    Dayan, Gustavo H.; Garbes, Pedro; Noriega, Fernando; de Sadovsky, Ana Daniela Izoton; Rodrigues, Patricia Marques; Giuberti, Camila; Dietze, Reynaldo

    2013-01-01

    Immunogenicity and safety of a recombinant, live-attenuated, tetravalent dengue disease vaccine (CYD-TDV) was evaluated in children/adolescents in Brazil. In this observer-blind, placebo-controlled, phase II single-center study, children/adolescents (ages 9–16 years) were randomized to receive CYD-TDV or placebo at 0, 6, and 12 months. Immunogenicity was assessed using a 50% plaque neutralization test. Overall, 150 participants were enrolled (CYD-TDV: N = 100; placebo: N = 50). Injection site pain and headache were the most common solicited injection site and systemic reactions. Unsolicited adverse events (AEs) and serious AEs were similar between groups. No serious AEs were vaccine-related. Geometric mean titers against all dengue virus serotypes increased with CYD-TDV vaccination and were 267, 544, 741, and 432 1/dil for serotypes 1–4, respectively, after dose 3, representing a mean fold increase from baseline of 5, 6, 6, and 20, respectively. CYD-TDV vaccination elicited a neutralizing antibody response against serotypes 1–4 and was well-tolerated in children/adolescents in a dengue-endemic region. PMID:24189367

  15. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant.

    PubMed

    Monaris, D; Sbrogio-Almeida, M E; Dib, C C; Canhamero, T A; Souza, G O; Vasconcellos, S A; Ferreira, L C S; Abreu, P A E

    2015-08-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  16. Protection against murine listeriosis by an attenuated recombinant Salmonella typhimurium vaccine strain that secretes the naturally somatic antigen superoxide dismutase.

    PubMed Central

    Hess, J; Dietrich, G; Gentschev, I; Miko, D; Goebel, W; Kaufmann, S H

    1997-01-01

    A recombinant (r)-Salmonella typhimurium aroA vaccine strain was constructed which secretes the naturally somatic protein of Listeria monocytogenes, superoxide dismutase (SOD), by the HlyB/HlyD/TolC export machinery. Vaccine efficacy of the SOD-bearing carrier strain was compared with that of the p60-secreting construct, S. typhimurium p60s (J. Hess, I. Gentschev, D. Miko, M. Welzel, C. Ladel, W. Goebel, and S. H. E. Kaufmann, Proc. Natl. Acad. Sci. USA 93:1458-1463, 1996). Vaccination of mice with both constructs induced protection against a lethal challenge with the intracellular pathogen, L. monocytogenes. While the somatic listerial antigen, SOD, is immunologically uncharacterized, the naturally secreted protein of L. monocytogenes, p60, is known to be highly immunogenic. Our data emphasize the high vaccine potential of r-Salmonella constructs secreting antigens of somatic or secreted origin. Moreover, they suggest that the HlyB/HlyD/TolC-based antigen delivery system with attenuated Salmonella spp. as the carrier is capable of potentiating the immune response against foreign proteins independent from their immunogenicity in and display by the natural host. PMID:9119463

  17. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model.

    PubMed

    Wu, Qunfeng; Yu, Fulai; Xu, Jinfang; Li, Yang; Chen, Huanchun; Xiao, Shaobo; Fu, Zhen F; Fang, Liurong

    2014-06-25

    Rabies virus has been an ongoing threat to humans and animals. Here, we developed a new strategy to generate a rabies virus vaccine based on a pseudotyped baculovirus. The recombinant baculovirus (BV-RVG/RVG) was pseudotyped with the rabies virus glycoprotein (RVG) and also simultaneously expressed another RVG under the control of the immediate early CMV promoter. In vitro, this RVG-pseudotyped baculovirus vector induced syncytium formation in insect cells and displayed more efficient gene delivery into mammalian cells. Mice immunized with BV-RVG/RVG developed higher levels of virus-neutralizing antibodies, and conferred 100% protection against rabies viral challenge. These data indicate that the RVG-pseudotyped baculovirus BV-RVG/RVG can be used as an alternative strategy to develop a safe and efficacious vaccine against the rabies virus. PMID:24793501

  18. Development of a multiplex RT-PCR assay for the identification of recombination types at different genomic regions of vaccine-derived polioviruses.

    PubMed

    Dimitriou, T G; Kyriakopoulou, Z; Tsakogiannis, D; Fikatas, A; Gartzonika, C; Levidiotou-Stefanou, S; Markoulatos, P

    2016-08-01

    Polioviruses (PVs) are the causal agents of acute paralytic poliomyelitis. Since the 1960s, poliomyelitis has been effectively controlled by the use of two vaccines containing all three serotypes of PVs, the inactivated poliovirus vaccine and the live attenuated oral poliovirus vaccine (OPV). Despite the success of OPV in polio eradication programme, a significant disadvantage was revealed: the emergence of vaccine-associated paralytic poliomyelitis (VAPP). VAPP is the result of accumulated mutations and putative recombination events located at the genome of attenuated vaccine Sabin strains. In the present study, ten Sabin isolates derived from OPV vaccinees and environmental samples were studied in order to identify recombination types located from VP1 to 3D genomic regions of virus genome. The experimental procedure that was followed was virus RNA extraction, reverse transcription to convert the virus genome into cDNA, PCR and multiplex-PCR using specific designed primers able to localize and identify each recombination following agarose gel electrophoresis. This multiplex RT-PCR assay allows for the immediate detection and identification of multiple recombination types located at the viral genome of OPV derivatives. After the eradication of wild PVs, the remaining sources of poliovirus infection worldwide would be the OPV derivatives. As a consequence, the immediate detection and molecular characterization of recombinant derivatives are important to avoid epidemics due to the circulation of neurovirulent viral strains. PMID:27098645

  19. Human Granulocytic Ehrlichiosis Agent Infection in a Pony Vaccinated with a Borrelia burgdorferi Recombinant OspA Vaccine and Challenged by Exposure to Naturally Infected Ticks

    PubMed Central

    Chang, Yung-Fu; McDonough, Sean P.; Chang, Chao-Fu; Shin, Kwang-Soon; Yen, William; Divers, Thomas

    2000-01-01

    A pony was vaccinated with recombinant OspA vaccine (rOspA) and then exposed 3 months later to Borrelia burgdorferi-infected ticks (Ixodes scapularis) collected in Westchester County, N.Y. At 2 weeks after tick exposure, the pony developed a high fever (105°F). Buffy coat smears showed that 20% of neutrophils contained ehrlichial inclusion bodies (morulae). Flunixin Meglumine (1 g daily) was given for 2 days, and the body temperature returned to normal. PCR for ehrlichial DNA was performed on blood samples for 10 consecutive days beginning when the pony was first febrile. This pony was monitored for another 3.5 months but developed no further clinical signs. The 44-kDa immunodominant human granulocytic ehrlichiosis antigen gene was amplified by PCR and cloned into a pCR2.1 vector. DNA sequence analysis of this gene showed it was only 8 bp different (99% identity) from the results reported by others (J.W. Ijdo et al., Infect. Immun. 66:3264–3269, 1998). Western blot analysis, growth inhibition assays, and repeated attempts to isolate B. burgdorferi all demonstrated the pony was protected against B. burgdorferi infection. These results highlight the potential for ticks to harbor and transmit several pathogens simultaneously, which further complicates the diagnosis and vaccination of these emerging tick-borne diseases. PMID:10618280

  20. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    NASA Astrophysics Data System (ADS)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  1. Studies on recombinant glucokinase (r-glk) protein of Brucella abortus as a candidate vaccine molecule for brucellosis.

    PubMed

    Vrushabhendrappa; Singh, Amit Kumar; Balakrishna, Konduru; Sripathy, Murali Harishchandra; Batra, Harsh Vardhan

    2014-09-29

    Brucellosis is one of the most prevalent zoonotic diseases of worldwide distribution caused by the infection of genus Brucella. Live attenuated vaccines such as B. abortus S19, B. abortus RB51 and B. melitensis Rev1 are found most effective against brucellosis infection in animals, contriving a number of serious side effects and having chances to revert back into their active pathogenic form. In order to engineer a safe and effective vaccine candidate to be used in both animals and human, a recombinant subunit vaccine molecule comprising the truncated region of glucokinase (r-glk) gene from B. abortus S19 was cloned and expressed in Escherichia coli BL21DE3 host. Female BALB/c mice immunized with purified recombinant protein developed specific antibody titer of 1:64,000. The predominant IgG2a and IgG2b isotypes signified development of Th1 directed immune responses. In vitro cell cytotoxicity assay using anti-r-glk antibodies incubated with HeLa cells showed 81.20% and 78.5% cell viability against lethal challenge of B. abortus 544 and B. melitensis 16M, respectively. The lymphocyte proliferative assay indicated a higher splenic lymphocyte responses at 25μg/ml concentration of protein which implies the elevated development of memory immune responses. In contrast to control, the immunized group of mice intra-peritoneal (I.P.) challenged with B. abortus 544 were significantly protected with no signs of necrosis and vacuolization in their liver and spleen tissue. The elevated B-cell response associated with Th1 adopted immunity, significant in vitro cell viability as well as protection afforded in experimental animals after challenge, supplemented with histopathological analysis are suggestive of r-glk protein as a prospective candidate vaccine molecule against brucellosis. PMID:25131740

  2. Vaccination: Who Should Do It, Who Should Not and Who Should Take Precautions

    MedlinePlus

    ... shot (inactivated influenza vaccine or IIV) and the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated ... vaccines--inactivated influenza vaccine (or IIV) or the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated ...

  3. Immunogenicity of a Heptavalent Conjugate Pneumococcal Vaccine Administered Concurrently with a Combination Diphtheria, Tetanus, Five-Component Acellular Pertussis, Inactivated Polio, and Haemophilus influenzae Type b Vaccine and a Meningococcal Group C Conjugate Vaccine at 2, 3, and 4 Months of Age ▿

    PubMed Central

    Moss, S. J.; Fenton, A. C.; Toomey, J.; Grainger, A.; Borrow, R.; Balmer, P.; Smith, J.; Gennery, A. R.

    2010-01-01

    The immunogenicities of conjugate pneumococcal vaccines have been demonstrated when they are administered at 2, 3, and 4 months of age. There is a paucity of data on the immunogenicity of this vaccine when it is administered concurrently with other vaccines in the primary immunization schedule of the United Kingdom. We immunized 55 term infants at 2, 3, and 4 months of age with the seven-valent pneumococcal conjugate vaccine (PCV7), the meningococcal group C conjugate (MCC) vaccine, and the diphtheria, tetanus, five-component acellular pertussis, inactivated polio, and Haemophilus influenzae type b (DTaP5/IPV/Hib-TT) vaccine. The immune responses to the H. influenzae type b (Hib), MCC, and tetanus vaccines were measured at 2, 5, and 12 months of age; and the immune responses to PCV7 were measured at 2 and 5 months and then either at 12 months or following a 4th dose of PCV7. There were increases in the geometric mean concentrations (GMCs) of all antigens postimmunization. Greater than or equal to 90% of the infants achieved putatively protective levels postimmunization for all vaccine antigens except pneumococcal serotype 6B and Hib. The GMCs of the PCV7 serotypes increased following a 4th dose, although one infant had not reached putative levels of protection against serotype 6B. In conclusion, when infants were vaccinated according to the schedule described above, they had lower postprimary immunization responses to Hib, meningococcus group C capsular polysaccharide, and pneumococcal serotype 6B than the responses demonstrated by use of the other schedules. Despite this finding, there was a good response following a 4th dose of PCV7. PMID:20042517

  4. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus).

    PubMed

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting. PMID:26756624

  5. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus)

    PubMed Central

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated / sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting. PMID:26756624

  6. Characterisation of genotype VII Newcastle disease virus (NDV) isolated from NDV vaccinated chickens, and the efficacy of LaSota and recombinant genotype VII vaccines against challenge with velogenic NDV

    PubMed Central

    Roohani, Kiarash; Yeap, Swee Keong; Ideris, Aini; Bejo, Mohd Hair; Omar, Abdul Rahman

    2015-01-01

    A Newcastle disease virus (NDV) isolate designated IBS002 was isolated from a commercial broiler farm in Malaysia. The virus was characterised as a virulent strain based on the multiple basic amino acid motif of the fusion (F) cleavage site 112RRRKGF117 and length of the C-terminus extension of the hemagglutinin-neuraminidase (HN) gene. Furthermore, IBS002 was classified as a velogenic NDV with mean death time (MDT) of 51.2 h and intracerebral pathogenicity index (ICPI) of 1.76. A genetic distance analysis based on the full-length F and HN genes showed that both velogenic viruses used in this study, genotype VII NDV isolate IBS002 and genotype VIII NDV isolate AF2240-I, had high genetic variations with genotype II LaSota vaccine. In this study, the protection efficacy of the recombinant genotype VII NDV inactivated vaccine was also evaluated when added to an existing commercial vaccination program against challenge with velogenic NDV IBS002 and NDV AF2240-I in commercial broilers. The results indicated that both LaSota and recombinant genotype VII vaccines offered full protection against challenge with AF2240-I. However, the LaSota vaccine only conferred partial protection against IBS002. In addition, significantly reduced viral shedding was observed in the recombinant genotype VII-vaccinated chickens compared to LaSota-vaccinated chickens. PMID:25643805

  7. Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia

    NASA Astrophysics Data System (ADS)

    Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.

    1994-11-01

    Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.

  8. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    PubMed

    Noe, Amy R; Espinosa, Diego; Li, Xiangming; Coelho-Dos-Reis, Jordana G A; Funakoshi, Ryota; Giardina, Steve; Jin, Hongfan; Retallack, Diane M; Haverstock, Ryan; Allen, Jeffrey R; Vedvick, Thomas S; Fox, Christopher B; Reed, Steven G; Ayala, Ramses; Roberts, Brian; Winram, Scott B; Sacci, John; Tsuji, Moriya; Zavala, Fidel; Gutierrez, Gabriel M

    2014-01-01

    The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy

  9. The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice

    PubMed Central

    Hess, Jessica A.; Zhan, Bin; Torigian, April R.; Patton, John B.; Petrovsky, Nikolai; Zhan, Tingting; Bottazzi, Maria Elena; Hotez, Peter J.; Klei, Thomas R.; Lustigman, Sara; Abraham, David

    2016-01-01

    Background In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. Methodology/ Principal Findings Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen–specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. Conclusions/Significance The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans. PMID:27387453

  10. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant.

    PubMed

    Halperin, Scott A; Van Nest, Gary; Smith, Bruce; Abtahi, Simin; Whiley, Heather; Eiden, Joseph J

    2003-06-01

    Certain oligodeoxynuclotides with CpG motifs provide enhanced immune response to co-delivered antigens. We performed a phase I, observer-blinded, randomized study in healthy anti-hepatitis B surface antigen (anti-HBsAg) antibody negative adults to explore safety and immunogenicity of co-injection of recombinant HBsAg combined with an immunostimulatory DNA sequence (ISS) 1018 ISS. Four ISS dosage groups (N=12 per group) were used: 300, 650, 1000 or 3000 microg. For each group, two controls received 20 microg HBsAg alone, two controls received ISS alone, and eight subjects received ISS+20 microg HBsAg. Subjects received two doses 8 weeks apart. Injection site reactions (tenderness and pain on limb movement) were more frequent at higher ISS+HBsAg doses but were mainly mild and of short duration. Higher anti-HBsAg antibody levels were associated with higher ISS doses. Four weeks after the first dose, a seroprotective titer (>or=10 mIU/ml) was noted for 0, 25, 75, and 87.5% of subjects by increasing ISS dose group (P<0.05) for those who received ISS+HBsAg; 1 month after the second dose this increased to 62.5, 100, 100, and 100%, respectively. Geometric mean anti-HBsAg antibody levels by increasing ISS+HBsAg dose were 1.22, 5.78, 24.75, and 206.5 mIU/ml after the first dose and 65.37, 877.6, 1545, and 3045 mIU/ml after the second dose. We conclude that 1018 ISS+HBsAg was well tolerated and immunogenic in this phase I study in healthy adults and may offer the potential for enhancement of hepatitis B virus (HBV) immunization and protection after one or two doses or in individuals who fail to respond to the standard vaccine regimen. PMID:12744879

  11. CURRENT STATUS OF RECOMBINANT MAREK'S DISEASE VACCINES FOR CONTROL OF FUTURE OUTBREAKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 4 decades of vaccination has resulted in good control of Marek’s disease (MD). Although vaccination has dramatically reduced the incidence of the disease, more virulent viruses are emerging and the development of new control strategies is needed. Recently, the student of MD virus (MDV) g...

  12. Design and Antigenic Epitopes Prediction of a New Trial Recombinant Multiepitopic Rotaviral Vaccine: In Silico Analyses.

    PubMed

    Jafarpour, Sima; Ayat, Hoda; Ahadi, Ali Mohammad

    2015-01-01

    Rotavirus is the major etiologic factor of severe diarrheal disease. Natural infection provides protection against subsequent rotavirus infection and diarrhea. This research presents a new vaccine designed based on computational models. In this study, three types of epitopes are considered-linear, conformational, and combinational-in a proposed model protein. Several studies on rotavirus vaccines have shown that VP6 and VP4 proteins are good candidates for vaccine production. In the present study, a fusion protein was designed as a new generation of rotavirus vaccines by bioinformatics analyses. This model-based study using ABCpred, BCPREDS, Bcepred, and Ellipro web servers showed that the peptide presented in this article has the necessary properties to act as a vaccine. Prediction of linear B-cell epitopes of peptides is helpful to investigate whether these peptides are able to activate humoral immunity. PMID:25965449

  13. Ear Infection and Vaccines

    MedlinePlus

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  14. Recombinant vaccine displaying the loop-neutralizing determinant from protective antigen completely protects rabbits from experimental inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Jacobs, Jana L; Cease, Kemp B

    2013-03-01

    We previously showed that a multiple antigenic peptide (MAP) vaccine displaying amino acids (aa) 304 to 319 from the 2β2-2β3 loop of protective antigen was capable of protecting rabbits from an aerosolized spore challenge with Bacillus anthracis Ames strain. Antibodies to this sequence, referred to as the loop-neutralizing determinant (LND), are highly potent at neutralizing lethal toxin yet are virtually absent in rabbit and human protective antigen (PA) antiserum. While the MAP vaccine was protective against anthrax, it contains a single heterologous helper T cell epitope which may be suboptimal for stimulating an outbred human population. We therefore engineered a recombinant vaccine (Rec-LND) containing two tandemly repeated copies of the LND fused to maltose binding protein, with enhanced immunogenicity resulting from the p38/P4 helper T cell epitope from Schistosoma mansoni. Rec-LND was found to be highly immunogenic in four major histocompatibility complex (MHC)-diverse strains of mice. All (7/7) rabbits immunized with Rec-LND developed high-titer antibody, 6 out of 7 developed neutralizing antibody, and all rabbits were protected from an aerosolized spore challenge of 193 50% lethal doses (LD(50)) of the B. anthracis Ames strain. Survivor serum from Rec-LND-immunized rabbits revealed significantly increased neutralization titers and specific activity compared to prechallenge levels yet lacked PA or lethal factor (LF) antigenemia. Control rabbits immunized with PA, which were also completely protected, appeared sterilely immune, exhibiting significant declines in neutralization titer and specific activity compared to prechallenge levels. We conclude that Rec-LND may represent a prototype anthrax vaccine for use alone or potentially combined with PA-containing vaccines. PMID:23283638

  15. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

    PubMed

    Virginio, Veridiana Gomes; Gonchoroski, Taylor; Paes, Jéssica Andrade; Schuck, Desirée Cigaran; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2014-10-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP. PMID:25148775

  16. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines.

    PubMed

    Ploquin, Aurélie; Szécsi, Judit; Mathieu, Cyrille; Guillaume, Vanessa; Barateau, Véronique; Ong, Kien Chai; Wong, Kum Thong; Cosset, François-Loïc; Horvat, Branka; Salvetti, Anna

    2013-02-01

    Nipah virus (NiV) and Hendra virus (HeV) are closely related, recently emerged paramyxoviruses that are capable of causing considerable morbidity and mortality in several mammalian species, including humans. Henipavirus-specific vaccines are still commercially unavailable, and development of novel antiviral strategies to prevent lethal infections due to henipaviruses is highly desirable. Here we describe the development of adeno-associated virus (AAV) vaccines expressing the NiV G protein. Characterization of these vaccines in mice demonstrated that a single intramuscular AAV injection was sufficient to induce a potent and long-lasting antibody response. Translational studies in hamsters further demonstrated that all vaccinated animals were protected against lethal challenge with NiV. In addition, this vaccine induced a cross-protective immune response that was able to protect 50% of the animals against a challenge by HeV. This study presents a new efficient vaccination strategy against henipaviruses and opens novel perspectives on the use of AAV vectors as vaccines against emergent diseases. PMID:23175762

  17. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    NASA Astrophysics Data System (ADS)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  18. Vaccination with recombinant actin from scab mites and evaluation of its protective efficacy against Psoroptes cuniculi infection.

    PubMed

    Zheng, W; Tang, Q; Zhang, R; Jise, Q; Ren, Y; Nong, X; Wu, X; Gu, X; Wang, S; Peng, X; Lai, S; Yang, G

    2013-02-01

    The mite Psoroptes cuniculi is globally widespread and has a serious impact on commercial rabbit breeding. Current treatment methods are based on chemotherapy. Because of the disadvantages of these methods, alternative measures are required, and vaccination is one of the most promising strategies. Here, we cloned and expressed the recombinant P. cuniculi actin gene (rPc-act). Antiserum levels against rPc-act in rabbits were used to locate actin distribution in mite sections. Challenge trials were carried out to evaluate the immunity protection of rPc-act in rabbits, with antibody levels determined by ELISA. Sequence analysis of this gene fragment showed 89·26% and 84·91% identity to Sarcoptes scabiei and Mayetiola destructor sequences, respectively. Immunohistochemistry showed rPc-act to locate widely throughout the mites, especially in feet and muscle tissues. Recombinant P. cuniculi actin with QuliA adjuvant was used to immunize six rabbits. Each animal was challenge-infested with 25-50 adult mites. Although IgE levels showed no significant difference to controls, IgG levels were significantly higher, and clinical development showed no significantly different severity of lesions in vaccinated rabbits than in the controls. This study showed that rPc-act is a muscular isotype actin and has no clinical protective efficacy against P. cuniculi. PMID:23078134

  19. Dendritic Cell Activity Driven by Recombinant Mycobacterium bovis BCG Producing Human IL-18, in Healthy BCG Vaccinated Adults

    PubMed Central

    Szpakowski, Piotr; Biet, Franck; Locht, Camille; Paszkiewicz, Małgorzata; Rudnicka, Wiesława; Druszczyńska, Magdalena; Allain, Fabrice; Fol, Marek; Pestel, Joël; Kowalewicz-Kulbat, Magdalena

    2015-01-01

    Tuberculosis remains an enormous global burden, despite wide vaccination coverage with the Bacillus Calmette-Guérin (BCG), the only vaccine available against this disease, indicating that BCG-driven immunity is insufficient to protect the human population against tuberculosis. In this study we constructed recombinant BCG producing human IL-18 (rBCGhIL-18) and investigated whether human IL-18 produced by rBCGhIL-18 modulates DC functions and enhances Th1 responses to mycobacterial antigens in humans. We found that the costimulatory CD86 and CD80 molecules were significantly upregulated on rBCGhIL-18-infected DCs, whereas the stimulation of DCs with nonrecombinant BCG was less effective. In contrast, both BCG strains decreased the DC-SIGN expression on human DCs. The rBCGhIL-18 increased IL-23, IL-10, and IP-10 production by DCs to a greater extent than nonrecombinant BCG. In a coculture system of CD4+ T cells and loaded DCs, rBCGhIL-18 favoured strong IFN-γ but also IL-10 production by naive T cells but not by memory T cells. This was much less the case for nonrecombinant BCG. Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to induce IFN-γ and IL-10 expression by naive T cells, without affecting the maturation phenotype of the DCs. PMID:26339658

  20. Evaluation of recombinant P23 protein as a vaccine for passive immunization of newborn calves against Cryptosporidium parvum.

    PubMed

    Askari, N; Shayan, P; Mokhber-Dezfouli, M R; Ebrahimzadeh, E; Lotfollahzadeh, S; Rostami, A; Amininia, N; Ragh, M J

    2016-05-01

    Cryptosporidiosis is a zoonotic protozoan disease that affects the gastrointestinal tract of animals and humans. Diarrhoea as the most important indication of the infection leads to high economic losses in livestock industries and is a life threatening infection in immunocompromised individuals. In the absence of the effective drugs, vaccine has an effective role in the prevention of infection. For this purpose we developed a vaccine utilizing recombinant P23 protein and immunized pregnant cows four times from 70 days to parturition every 2 weeks. After parturition, each calf received his dam colostrum and challenged with 1 × 10(7) Cryptosporidium parvum oocysts at 12 h of age. Results showed that in contrast with the control group, the antibody titre in the sera and first milking colostra of the immunized cows significantly increased and calves fed hyperimmune colostrum did not show cryptosporidiosis signs. Moreover, enriched colostrum not only reduced significantly the amount of oocyst excretion but also delayed its onset. Our study showed that recombinant P23 protein could be used for passive immunization of newborn calves against Cryptosporidium parvum. PMID:27012710

  1. Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia.

    PubMed

    Bokori-Brown, Monika; Hall, Charlotte A; Vance, Charlotte; Fernandes da Costa, Sérgio P; Savva, Christos G; Naylor, Claire E; Cole, Ambrose R; Basak, Ajit K; Moss, David S; Titball, Richard W

    2014-05-13

    Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia. PMID:24709588

  2. Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia

    PubMed Central

    Bokori-Brown, Monika; Hall, Charlotte A.; Vance, Charlotte; Fernandes da Costa, Sérgio P.; Savva, Christos G.; Naylor, Claire E.; Cole, Ambrose R.; Basak, Ajit K.; Moss, David S.; Titball, Richard W.

    2014-01-01

    Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia. PMID:24709588

  3. Immunogenicity of a Recombinant Mycobacterium smegmatis Vaccine Expressing the Fusion Protein CMX in Cattle from Goiás State, Brazil

    PubMed Central

    ALVES DA SILVA, Duanne; CAVALCANTI, Marcos Antônio Rocha; MUNIZ DE OLIVEIRA, Fábio; TRENTINI, Monalisa Martins; JUNQUEIRA-KIPNIS, Ana Paula; KIPNIS, André

    2014-01-01

    ABSTRACT This study aimed to evaluate the immunogenicity of a recombinant Mycobacterium smegmatis vaccine expressing the CMX fusion protein composed of immunodominant epitopes Ag85C, MPT51 and HspX of Mycobacterium tuberculosis, which are important mycobacteria virulence factors. A group of Nelore heifers that were 10 to 12 months of age and negative for the tuberculin skin test (TST) were immunized with four doses of the recombinant vaccine mc2-CMX (M. smegmatis-Ag85C-MPT51-HspX) during a period of one year. Before each immunization, blood was collected to obtain sera for antibody analysis. Serological analysis demonstrated that mc2-CMX was able to induce a humoral response with increased levels of specific IgG antibodies against CMX, despite minimum antibody levels being detected for individual Ag85C, MPT51 or HspX recombinant antigens. However, there was no significant increase in specific CD4+ IFN-γ-positive T cells. Lymphadenomegaly was observed in superficial cervical lymph nodes adjacent to the site of vaccination among mc2-CMX-vaccinated bovines, and the histopathological analysis demonstrated follicular hyperplasia without inflammatory infiltrate or granuloma formation. Animals remained negative for the TST until the end of the experiments, showing no cross-reactivity with the recombinant vaccine and tuberculin proteins. We discuss the potential of mc2-CMX to induce an immune response in cattle. PMID:24681608

  4. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge

    PubMed Central

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B.; Buchman, George W.; Volkin, David B.; Middaugh, C. Russell; Isaacs, Stuart N.

    2012-01-01

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted-vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight-loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit vaccine immunogenicity and protection. PMID:23153450

  5. Heterologous protection elicited by candidate monomeric recombinant HIV-1 gp120 vaccine in the absence of cross neutralising antibodies in a macaque model

    PubMed Central

    2012-01-01

    Background Current data suggest that an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine should elicit both adaptive humoral and cell mediated immune responses. Such a vaccine will also need to protect against infection from a range of heterologous viral variants. Here we have developed a simian-human immunodeficiency virus (SHIV) based model in cynomolgus macaques to investigate the breadth of protection conferred by HIV-1W61D recombinant gp120 vaccination against SHIVsbg and SHIVSF33 challenge, and to identify correlates of protection. Results High titres of anti-envelope antibodies were detected in all vaccinees. The antibodies reacted with both the homologous HIV-1W61D and heterologous HIV-1IIIB envelope rgp120 which has an identical sequence to the SHIVsbg challenge virus. Significant titres of virus neutralising antibodies were detected against SHIVW61D expressing an envelope homologous with the vaccine, but only limited cross neutralisation against SHIVsbg, SHIV-4 and SHIVSF33 was observed. Protection against SHIVsbg infection was observed in vaccinated animals but none was observed against SHIVSF33 challenge. Transfer of immune sera from vaccinated macaques to naive recipients did not confer protection against SHIVsbg challenge. In a follow-up study, T cell proliferative responses detected after immunisation with the same vaccine against a single peptide present in the second conserved region 2 of HIV-1 W61D and HIV-1 IIIB gp120, but not SF33 gp120. Conclusions Following extended vaccination with a HIV-1 rgp120 vaccine, protection was observed against heterologous virus challenge with SHIVsbg, but not SHIVSF33. Protection did not correlate with serological responses generated by vaccination, but might be associated with T cell proliferative responses against an epitope in the second constant region of HIV-1 gp120. Broader protection may be obtained with recombinant HIV-1 envelope based vaccines formulated with adjuvants that generate

  6. A Phase Ia Study to Assess the Safety and Immunogenicity of New Malaria Vaccine Candidates ChAd63 CS Administered Alone and with MVA CS

    PubMed Central

    de Barra, Eoghan; Hodgson, Susanne H.; Ewer, Katie J.; Bliss, Carly M.; Hennigan, Kerrie; Collins, Ann; Berrie, Eleanor; Lawrie, Alison M.; Gilbert, Sarah C.; Nicosia, Alfredo

    2014-01-01

    Background Plasmodium falciparum (P. falciparum) malaria remains a significant cause of mortality and morbidity throughout the world. Development of an effective vaccine would be a key intervention to reduce the considerable social and economic impact of malaria. Methodology We conducted a Phase Ia, non-randomized, clinical trial in 24 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding the circumsporozoite protein (CS) of P. falciparum. Results ChAd63-MVA CS administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to CS. With a priming ChAd63 CS dose of 5×109 vp responses peaked at a mean of 1947 SFC/million PBMC (median 1524) measured by ELIspot 7 days after the MVA boost and showed a mixed CD4+/CD8+ phenotype. With a higher priming dose of ChAd63 CS dose 5×1010 vp T cell responses did not increase (mean 1659 SFC/million PBMC, median 1049). Serum IgG responses to CS were modest and peaked at day 14 post ChAd63 CS (median antibody concentration for all groups at day 14 of 1.3 µg/ml (range 0–11.9), but persisted throughout late follow-up (day 140 median antibody concentration groups 1B & 2B 0.9 µg/ml (range 0–4.7). Conclusions ChAd63-MVA is a safe and highly immunogenic delivery platform for the CS antigen in humans which warrants efficacy testing. Trial Registration ClinicalTrials.gov NCT01450280 PMID:25522180

  7. Effectiveness of vaccination with recombinant HpaA from Helicobacter pylori is influenced by host genetic background.

    PubMed

    Sutton, Philip; Doidge, Christopher; Pinczower, Gideon; Wilson, John; Harbour, Stacey; Swierczak, Agnieszka; Lee, Adrian

    2007-07-01

    Several studies have explored the production and immunogenicity of HpaA as a potential protective antigen against Helicobacter pylori but little is known regarding its protective capabilities. We therefore evaluated the protective efficacy of recombinant HpaA (rHpaA) as a candidate vaccine antigen against H. pylori. To explore the impact of genetic diversity, inbred and outbred mice were prophylactically and therapeutically immunized with rHpaA adjuvanted with cholera toxin (CT). Prophylactic immunization induced a reduction in bacterial colonization in BALB/c and QS mice, but was ineffective in C57BL/6 mice, despite induction of antigen-specific antibodies. By contrast, therapeutic immunization was effective in all three strains of mice. Prophylactic immunization with CT-adjuvanted rHpaA was more effective when delivered via the nasal route than following intragastric delivery in BALB/c mice. However, HpaA-mediated protection was inferior to that induced by bacterial lysate. Hence, protective efficacy is inducible with vaccines containing HpaA, most relevantly shown in an outbred population of mice. The effectiveness of protection induced by HpaA antigen was influenced by host genetics and was less effective than lysate. HpaA therefore has potential for the development of effective immunization against H. pylori but this would probably entail the antigen to be one component of a multiantigenic vaccine. PMID:17567282

  8. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    PubMed

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. PMID:27449079

  9. Strategies for recombinant allergen vaccines and fruitful results from first clinical studies.

    PubMed

    Cromwell, Oliver; Fiebig, Helmut; Suck, Roland; Kahlert, Helga; Nandy, Andreas; Kettner, Jens; Narkus, Annemie

    2006-05-01

    Recombinant DNA technology has delivered the prospect of a new generation of preparations for allergen-specific immunotherapy. The first clinical studies with recombinant allergens have yielded encouraging results, suggesting that there is a good chance that such preparations will become available for use in the routine management of allergic disease. PMID:16701144

  10. Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared with the licensed 3-dose schedule

    PubMed Central

    Schwarz, Tino F; Ferguson, Linda M; Peters, Klaus; Dionne, Marc; Schulze, Karin; Ramjattan, Brian; Hillemanns, Peter; Catteau, Grégory; Dobbelaere, Kurt; Schuind, Anne; Descamps, Dominique

    2011-01-01

    The immunogenicity of the human papillomavirus (HPV)-16/18 AS 04-adjuvanted vaccine (Cervarix®, GlaxoSmithKline Biologicals) administered according to its licensed vaccination schedule (3-dose, 3D) and formulation (20 µg of each HPV antigen; 20/20F) has previously been demonstrated. This partially-blind, controlled, randomized trial (NCT00541970) evaluated 2-dose (2D) schedules using the licensed 20/20F or an alternative formulation containing 40 µg of each antigen (40/40F), compared with the licensed 3D schedule. Healthy females stratified by age (9–14, 15–19, 20–25 y) were randomized to receive 2 doses of 20/20F at Months (M) 0,6 (n = 240), 40/40F at M0,6 (n = 241) or 40/40F at M0,2 (n = 240), or 3 doses of 20/20F at M0,1,6 (licensed schedule/formulation, n = 239). One month after the last dose, the 3D schedule was not immunologically superior to 2D schedules except in the 40/40F M0,2 group for HPV-16 (lower limit of 95% CI geometric mean antibody titer (GMT) ratio [2D/3D] <0.5). For both HPV-16 and HPV-18, the 2D schedules in girls 9–14 y were immunologically non-inferior to the 3D schedule in women 15–25 y (the age group in which efficacy has been demonstrated) (upper limit of 95% CI for GMT ratio [3D/2D] <2) one month after the last dose. At Month 24, non-inferiority was maintained for the 2D M0,6 schedules in girls 9–14 y vs. the 3D schedule in women 15–25 y. All formulations had acceptable reactogenicity and safety profiles. These results indicate that the HPV-16/18 vaccine on a 2D M0,6 schedule is immunogenic and generally well tolerated in girls 9–14 y and that the 2D schedule is likely adequate for younger females. PMID:22048171

  11. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    PubMed

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-01-01

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats. PMID:25117370

  12. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    SciTech Connect

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M. . E-mail: david_knipe@hms.harvard.edu

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.

  13. Protective efficacy of a recombinant subunit West Nile virus vaccine in domestic geese (Anser anser)

    USGS Publications Warehouse

    Jarvi, S.I.; Lieberman, M.M.; Hofmeister, E.; Nerurkar, V.R.; Wong, T.; Weeks-Levy, C.

    2008-01-01

    Introduction of the West Nile virus (WNV) to Hawai'i will undoubtedly devastate many populations of critically endangered avian species indigenous to Hawai'i. The protective efficacy of a protein-based WNV subunit vaccine formulated with adjuvant was evaluated in domestic geese as a surrogate species for the endangered Ne??ne??, the state bird of Hawai'i. Prevention of viremia following viral infection of vaccinated birds was used as the clinical endpoint of protection. ELISA and plaque reduction neutralization tests demonstrate that significant levels of vaccine antigen-specific antibody were produced in groups of birds vaccinated with 5 or 10 ??g of the WN-80E antigen formulated with ISA720 adjuvant. Moreover, after challenge with WNV, no viremia was detected in vaccinated birds, whereas viremia was detected up to 4 days after and virus was detected by oral swab for 6 days after infection among control groups. Safe and effective vaccination of managed or captive endangered bird populations will protect species with critically low numbers that could not survive the added mortality of introduced disease. ?? 2008 Elsevier Ltd.

  14. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    PubMed

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology. PMID:27076292

  15. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  16. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed Central

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-01-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  17. Predicted Coverage and Immuno-Safety of a Recombinant C-Repeat Region Based Streptococcus pyogenes Vaccine Candidate.

    PubMed

    McNeilly, Celia; Cosh, Samantha; Vu, Therese; Nichols, Jemma; Henningham, Anna; Hofmann, Andreas; Fane, Anne; Smeesters, Pierre R; Rush, Catherine M; Hafner, Louise M; Ketheesan, Natkuman; Sriprakash, Kadaba S; McMillan, David J

    2016-01-01

    The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35-42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types. PMID:27310707

  18. Maternal immunization with vaccines containing recombinant NetB toxin partially protects progeny chickens from necrotic enteritis

    PubMed Central

    2013-01-01

    Avian necrotic enteritis is a major economic and welfare issue throughout the global poultry industry and is caused by isolates of Clostridium perfringens that produce NetB toxin. Previously we have shown that birds directly vaccinated with inactivated C. perfringens type A culture supernatant (toxoid) combined with recombinant NetB (rNetB) protein were significantly protected from homologous and heterologous challenge. In the present study the protective effect of maternal immunization was examined. Broiler breeder hens were injected subcutaneously with genetically toxoided rNetB(S254L) alone, C. perfringens type A toxoid and toxoid combined with rNetB(S254L). Vaccination resulted in a strong serum immunoglobulin Y response to NetB in hens immunized with rNetB(S254L) formulations. Anti-NetB antibodies were transferred to the eggs and on into the hatched progeny. Subclinical necrotic enteritis was induced experimentally in the progeny and the occurrence of specific necrotic enteritis lesions evaluated. Birds derived from hens immunized with rNetB(S254L) combined with toxoid and challenged with a homologous strain (EHE-NE18) at either 14 or 21 days post-hatch had significantly lower levels of disease compared to birds from adjuvant only vaccinated hens. In addition, birds from hens immunized with rNetB(S254L) alone were significantly protected when challenged at 14 days post-hatch. These results demonstrate that maternal immunization with a NetB-enhanced toxoid vaccine is a promising method for the control of necrotic enteritis in young broiler chickens. PMID:24219318

  19. Predicted Coverage and Immuno-Safety of a Recombinant C-Repeat Region Based Streptococcus pyogenes Vaccine Candidate

    PubMed Central

    McNeilly, Celia; Cosh, Samantha; Vu, Therese; Nichols, Jemma; Henningham, Anna; Hofmann, Andreas; Fane, Anne; Smeesters, Pierre R.; Rush, Catherine M.; Hafner, Louise M.; Ketheesan, Natkuman; Sriprakash, Kadaba S.; McMillan, David J.

    2016-01-01

    The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35–42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types. PMID:27310707

  20. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  1. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  2. Recombinant vaccines for the prevention of human papillomavirus infection and cervical cancer.

    PubMed

    Palmer, Kenneth E; Jenson, A Bennett; Kouokam, J Calvin; Lasnik, Amanda B; Ghim, Shin-je

    2009-06-01

    Carcinogenic human papillomaviruses (HPVs) that cause cervical cancer preferentially infect basal, metaplastic squamous cells of the transformation zone. If infection persists, and a vegetative infection ensues, a premalignant lesion may develop with the potential to progress into an invasive squamous cell carcinoma. Papillomavirus prophylactic vaccines target the systemic immune system for induction of neutralizing antibodies that protect the basal cells against infection. Because the carcinogenic HPVs are susceptible to neutralization by antibodies for 9-48 h after reaching the basal cells, both low and high titered HPV type-specific antibodies induced by HPV L1 and L2-based vaccines are highly efficacious. The greatest burden of HPV-associated cancers occurs in poor areas of the world where women do not have access to routine gynecological care. The burden of HIV/AIDS in these same regions of the world has added to the burden of HPV-associated disease. There is an urgent need for a cost-effective, broad-spectrum HPV prophylactic vaccine in developing countries, which necessitates substantial cost subsidization of the virus-like particle (VLP) based vaccines licensed in industrialized countries or an alternative approach with second-generation vaccines that are specifically designed for delivery to women in resource-poor communities. PMID:19454268

  3. Cell-Mediated and Humoral Immune Responses after Immunization of Calves with a Recombinant Multiantigenic Mycobacterium avium subsp. paratuberculosis Subunit Vaccine at Different Ages

    PubMed Central

    Thakur, Aneesh; Aagaard, Claus; Stockmarr, Anders; Andersen, Peter

    2013-01-01

    Neonates and juvenile ruminants are very susceptible to paratuberculosis infection. This is likely due to a high degree of exposure from their dams and an immature immune system. To test the influence of age on vaccine-induced responses, a cocktail of recombinant Mycobacterium avium subsp. paratuberculosis proteins (MAP0217, MAP1508, MAP3701c, MAP3783, and MAP1609c/Ag85B) was formulated in a cationic liposome adjuvant (CAF01) and used to vaccinate animals of different ages. Male jersey calves were divided into three groups that were vaccinated at 2, 8, or 16 weeks of age and boosted twice at weeks 4 and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster vaccination with no or only a minor effect from the second booster. However, significant differences were observed in the immunogenicity levels of the different proteins, and it appears that the older age group produced a more consistent IFN-γ response. In contrast, the humoral immune response is seemingly independent of vaccination age as we found no difference in the IgG1 responses when we compared the three vaccination groups. Combined, our results suggest that an appropriate age of vaccination should be considered in vaccination protocols and that there is a possible interference of vaccine-induced immune responses with weaning (week 8). PMID:23389934

  4. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    PubMed

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease. PMID:23637908

  5. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge

    PubMed Central

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-01-01

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR −/−) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. PMID:24837765

  6. Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs.

    PubMed

    Woolley, Lauren K; Fell, Shayne A; Gonsalves, Jocelyn R; Raymond, Benjamin B A; Collins, Damian; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2014-07-23

    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights

  7. Evaluation of the immune response to recombinant DNA vaccine and adenoviral vaccine co-expressing the M1 and HA genes of H5N1 influenza virus in mice.

    PubMed

    Guo, Jianqiang; Yao, Lihong; Chen, Aijun; Liu, Xiaoyu; Fu, Jinqi; Xu, Pengwei; Zhang, Zhiqing

    2011-06-01

    In order to evaluate the response to vector-expressed M1 and HA genes of influenza virus in mice, we prepared recombinant plasmid pStar-M1/HA and recombinant adenovirus Ad-M1/HA containing both the full-length matrix protein 1(M1) and hemagglutinin (HA) genes of human H5N1 influenza virus strain A/Anhui/1/2005. We then combined the DNA vaccine and adenoviral vaccine in immunization of BALB/c mice with a prime-boost regime. We immunized the mice with DNA vaccine at day 0 and 28 and with recombinant adenoviral vaccines at day 14 and 42. We took blood samples before each injection and 14 days after the final injection for detection of humoral immune responses. At day 56, we sacrificed the mice and collected splenocytes for detection of cellular immune responses. ELISA and hemagglutination inhibition (HI) assay showed that specific IgG Abs against H5N1 influenza virus was induced in serum of the immunized mice. ELISPOT results confirmed that the specific cellular immune responses were successfully induced against the M1 and HA proteins of H5N1 influenza virus. This study provides new strategy for development of novel influenza vaccines. PMID:22034816

  8. Cloning of the Major Capsid Protein (MCP) of Grouper Iridovirus of Taiwan (TGIV) and Preliminary Evaluation of a Recombinant MCP Vaccine against TGIV.

    PubMed

    Liu, Hsin-I; Chiou, Pinwen Peter; Gong, Hong-Yi; Chou, Hsin-Yiu

    2015-01-01

    Fish iridoviruses cause systemic diseases with high mortality in various species of wild and farm-raised fish, resulting in severe economic losses. In 1998, we isolated a new epizootic iridovirus in cultured grouper (Epinephelus sp.) in Taiwan, thus named as grouper iridovirus of Taiwan (TGIV). We report here the cloning of TGIV major capsid protein (MCP). Phylogenetic analysis of the iridoviral MCPs confirmed the classification of TGIV into the Megalocytivirus genus. Recombinant TGIV MCP and GIV MCP were then generated to produce polyclonal antibodies. Western blot analysis revealed that the two antisera were species-specific, indicating no common epitope shared by the MCPs of the two viruses. We further assayed the potency of a subunit vaccine containing recombinant TGIV MCP. The vaccine effectively protected grouper from TGIV infection. The result demonstrated that MCP is a suitable antigen for anti-TGIV vaccines. PMID:26633384

  9. Cloning of the Major Capsid Protein (MCP) of Grouper Iridovirus of Taiwan (TGIV) and Preliminary Evaluation of a Recombinant MCP Vaccine against TGIV

    PubMed Central

    Liu, Hsin-I; Chiou, Pinwen Peter; Gong, Hong-Yi; Chou, Hsin-Yiu

    2015-01-01

    Fish iridoviruses cause systemic diseases with high mortality in various species of wild and farm-raised fish, resulting in severe economic losses. In 1998, we isolated a new epizootic iridovirus in cultured grouper (Epinephelus sp.) in Taiwan, thus named as grouper iridovirus of Taiwan (TGIV). We report here the cloning of TGIV major capsid protein (MCP). Phylogenetic analysis of the iridoviral MCPs confirmed the classification of TGIV into the Megalocytivirus genus. Recombinant TGIV MCP and GIV MCP were then generated to produce polyclonal antibodies. Western blot analysis revealed that the two antisera were species-specific, indicating no common epitope shared by the MCPs of the two viruses. We further assayed the potency of a subunit vaccine containing recombinant TGIV MCP. The vaccine effectively protected grouper from TGIV infection. The result demonstrated that MCP is a suitable antigen for anti-TGIV vaccines. PMID:26633384

  10. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice

    PubMed Central

    Eckhoff, Grace; Charles, Richelle C.; Alam, Mohammad Murshid; Sultana, Tania; Rashu, Md. Rasheduzzaman; Berger, Amanda; Gonzalez-Escobedo, Geoffrey; Mandlik, Anjali; Bhuiyan, Taufiqur Rahman; Leung, Daniel T.; LaRocque, Regina C.; Harris, Jason B.; Calderwood, Stephen B.; Qadri, Firdausi; Vann, W. F.; Kováč, Pavol; Ryan, Edward T.

    2015-01-01

    Background Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). Methodology Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. Principle Findings Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. Conclusion We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens. PMID:26154421

  11. Vaccine Protection of Turkeys Against H5N1 Highly Pathogenic Avian Influenza Virus with a Recombinant Turkey Herpesvirus Expressing the Hemagglutinin Gene of Avian Influenza.

    PubMed

    Kapczynski, Darrell R; Dorsey, Kristi; Chrzastek, Klaudia; Moraes, Mauro; Jackwood, Mark; Hilt, Debra; Gardin, Yannick

    2016-06-01

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies by subtype and virulence of field virus. In this study, the efficacy of a recombinant turkey herpesvirus (rHVT) vector vaccine expressing the hemagglutinin gene from a clade 2.2 AI virus (A/Swan/Hungary/4999/2006) was evaluated in turkeys for protection against challenge with A/Whooper Swan/Mongolia/L244/2005 H5N1 HPAI clade 2.2. One-day-old turkeys received a single vaccination and were challenged at 4 wk postvaccination with 2 × 10(6) 50% embryo infectious dose per bird. The results demonstrate that following H5N1 HPAI challenge 96% protection was observed in rHVT-AI vaccinated turkeys. The oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared with sham-vaccinated birds. From respiratory and gastrointestinal tracts, there was a greater than 6 log10 reduction in shedding in vaccinated birds as compared with the controls. This study provides support for the use of a commercially available rHVT-AI vaccine to protect turkeys against H5N1 HPAI. PMID:27309280

  12. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery.

    PubMed

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A; Price, Nancy L; Stratilo, Chad; Feldman, Mario F

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  13. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery

    PubMed Central

    Garcia-Quintanilla, Fatima; Iwashkiw, Jeremy A.; Price, Nancy L.; Stratilo, Chad; Feldman, Mario F.

    2014-01-01

    Vaccines developing immune responses toward surface carbohydrates conjugated to proteins are effective in preventing infection and death by bacterial pathogens. Traditional production of these vaccines utilizes complex synthetic chemistry to acquire and conjugate the glycan to a protein. However, glycoproteins produced by bacterial protein glycosylation systems are significantly easier to produce, and could possible be used as vaccine candidates. In this work, we functionally expressed the Burkholderia pseudomallei O polysaccharide (OPS II), the Campylobacter jejuni oligosaccharyltransferase (OTase), and a suitable glycoprotein (AcrA) in a designer E. coli strain with a higher efficiency for production of glycoconjugates. We were able to produce and purify the OPS II-AcrA glycoconjugate, and MS analysis confirmed correct glycan was produced and attached. We observed the attachment of the O-acetylated deoxyhexose directly to the acceptor protein, which expands the range of substrates utilized by the OTase PglB. Injection of the glycoprotein into mice generated an IgG immune response against B. pseudomallei, and this response was partially protective against an intranasal challenge. Our experiments show that bacterial engineered glycoconjugates can be utilized as vaccine candidates against B. pseudomallei. Additionally, our new E. coli strain SDB1 is more efficient in glycoprotein production, and could have additional applications in the future. PMID:25120536

  14. Expression, purification, immunogenicity, and protective efficacy of a recombinant Tc24 antigen as a vaccine against Trypanosoma cruzi infection in mice.

    PubMed

    Martinez-Campos, Viridiana; Martinez-Vega, Pedro; Ramirez-Sierra, Maria Jesus; Rosado-Vallado, Miguel; Seid, Christopher A; Hudspeth, Elissa M; Wei, Junfei; Liu, Zhuyun; Kwityn, Cliff; Hammond, Molly; Ortega-López, Jaime; Zhan, Bin; Hotez, Peter J; Bottazzi, Maria Elena; Dumonteil, Eric

    2015-08-26

    The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluation as a candidate vaccine antigen against Chagas disease. Previously, a DNA vaccine encoding Tc24 was shown to be an effective vaccine (both as a preventive and therapeutic intervention) in mice and dogs, as evidenced by reductions in T. cruzi parasitemia and cardiac amastigotes, as well as reduced cardiac inflammation and increased host survival. Here we developed a suitable platform for the large scale production of recombinant Tc24 (rTc24) and show that when rTc24 is combined with a monophosphoryl-lipid A (MPLA) adjuvant, the formulated vaccine induces a Th1-biased immune response in mice, comprised of elevated IgG2a antibody levels and interferon-gamma levels from splenocytes, compared to controls. These immune responses also resulted in statistically significant decreased T. cruzi parasitemia and cardiac amastigotes, as well as increased survival following T. cruzi challenge infections, compared to controls. Partial protective efficacy was shown regardless of whether the antigen was expressed in Escherichia coli or in yeast (Pichia pastoris). While mouse vaccinations will require further modifications in order to optimize protective efficacy, such studies provide a basis for further evaluations of vaccines comprised of rTc24, together with alternative adjuvants and additional recombinant antigens. PMID:26192358

  15. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 PMID:26701602

  16. Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein: a vaccine candidate for human intestinal schistosomiasis.

    PubMed

    Curti, Elena; Kwityn, Clifford; Zhan, Bin; Gillespie, Portia; Brelsford, Jill; Deumic, Vehid; Plieskatt, Jordan; Rezende, Wanderson C; Tsao, Eric; Kalampanayil, Bose; Hotez, Peter J; Bottazzi, Maria Elena

    2013-11-01

    A novel recombinant protein vaccine for human schistosomiasis caused by Schistosoma mansoni is under development. The Sm-TSP-2 schistosomiasis vaccine is comprised of a 9 kDa recombinant protein corresponding to the extracellular domain of a unique S. mansoni tetraspanin. Here, we describe the cloning and the expression of the external loop of Sm-TSP-2 recombinant protein secreted by Pichia Pink the process development at 20L scale fermentation, and the two-steps purification, which resulted in a protein recovery yield of 31% and a protein purity of 97%. The developed processes are suitable for the production of purified protein for subsequent formulation and Phase 1 clinical studies. PMID:23899507

  17. Two doses of parenterally administered split influenza virus vaccine elicited high serum IgG concentrations which effectively limited viral shedding upon challenge in mice.

    PubMed

    Hovden, A-O; Cox, R J; Madhun, A; Haaheim, L R

    2005-10-01

    We have previously found that whole influenza virus vaccine induced a more rapid and stronger humoral response, particularly after the first dose of vaccine, than split virus vaccine in mice. In this study, we have evaluated the protective efficacy of whole and split influenza virus vaccines in mice using a nonlethal upper respiratory tract challenge model. We have also investigated the immunological correlates associated with no or very little viral shedding after viral challenge. Vaccination resulted in reduced viral shedding and shortened the duration of infection by at least 2 days. After one dose of vaccine, whole virus vaccine generally resulted in less viral shedding than split virus vaccine. In contrast, two doses of split virus vaccine, particularly the highest vaccine strengths of 15 and 30 microg HA, most effectively limited viral replication and these mice had high concentrations of prechallenge influenza-specific serum IgG. The vaccine formulation influenced the IgG2a/IgG1 ratio, and this IgG subclass profile was maintained upon challenge to some extent, although it did not influence the level of viral shedding. The concentration of postvaccination serum IgG showed an inverse relationship with the level of viral shedding after viral challenge. Therefore, serum IgG is an important factor in limiting viral replication in the upper respiratory tract upon challenge of an antigenically similar virus. PMID:16253121

  18. Mechanism of protective immunity by vaccination with recombinant Echinococcus granulosus glutathione S-transferase (Chinese strain) in mice

    PubMed Central

    ZHU, MINGXING; WANG, XIUQING; WANG, HAO; WANG, ZHISHENG; ZHAO, JIAQING; WANG, YANA; ZHAO, WEI

    2015-01-01

    The aim of this study was to investigate the immunoprotective effects of recombinant Echinococcus granulosus glutathione S-transferase (rEgGST) against the development of protoscolices (PSCs), and to determine the mechanisms underlying this protection. ICR mice were subcutaneously immunized three times with rEgGST at weeks 0, 2 and 4, followed by the intraperitoneal administration of E. granulosus PSCs at week 10. Six mice in each group were sacrificed at 0, 2, 4, 6, 10, 18 and 30 weeks following the initial vaccination in order to observe the macroscopic and microscopic effects of parasite development. Various analyses were subsequently conducted, including determination of the levels of immunoglobulins (Igs) and cytokines. Significant differences were observed a number of indices of immune response following immunization with rEgGST. These included reduced cyst formation and elevated levels of IgG1, IgG2a, IgG3, IL-2, IL-4, IL-10 and IFN-γ, which indicated an increased percentage of immune helper cells. The results of the present study suggest that immunization with rEgGST in mice is able to successfully reduce the PSC-induced formation of cysts and to stimulate an immune response, suggesting that rEgGST possesses potential value as a candidate vaccine for PSC infection. PMID:26622451

  19. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  20. Analysis of epitope-specific immune responses induced by vaccination with structurally folded and unfolded recombinant Bet v 1 allergen derivatives in man.

    PubMed

    Pree, Ines; Reisinger, Jürgen; Focke, Margit; Vrtala, Susanne; Pauli, Gabrielle; van Hage, Marianne; Cromwell, Oliver; Gadermaier, Elisabeth; Egger, Cornelia; Reider, Norbert; Horak, Friedrich; Valenta, Rudolf; Niederberger, Verena

    2007-10-15

    Previously, we have constructed recombinant derivatives of the major birch pollen allergen, Bet v 1, with a more than 100-fold reduced ability to induce IgE-mediated allergic reactions. These derivatives differed from each other because the two recombinant Bet v 1 fragments represented unfolded molecules whereas the recombinant trimer resembled most of the structural fold of the Bet v 1 allergen. In this study, we analyzed the Ab (IgE, IgG subclass, IgA, IgM) response to Bet v 1, recombinant and synthetic Bet v 1-derived peptides in birch pollen allergic patients who had been vaccinated with the derivatives or adjuvant alone. Furthermore, we studied the induction of IgE-mediated skin responses in these patients using Bet v 1 and Bet v 1 fragments. Both types of vaccines induced a comparable IgG1 and IgG4 response against new sequential epitopes which overlap with the conformational IgE epitopes of Bet v 1. This response was 4- to 5-fold higher than that induced by immunotherapy with birch pollen extract. Trimer more than fragments induced also IgE responses against new epitopes and a transient increase in skin sensitivity to the fragments at the beginning of therapy. However, skin reactions to Bet v 1 tended to decrease one year after treatment in both actively treated groups. We demonstrate that vaccination with folded and unfolded recombinant allergen derivatives induces IgG Abs against new epitopes. These data may be important for the development of therapeutic as well as prophylactic vaccines based on recombinant allergens. PMID:17911617

  1. A study of high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria

    PubMed Central

    Yang, Jing; Pan, Xing; Wang, Hongren; Gao, Lizhen; Zhu, Jie; Zhou, Yongjun; Li, Wanyi; Li, Mingyuan; Wang, Baoning

    2015-01-01

    Objective: To establish high cell density cultivation process of recombinant Helicobacter pylori multi-epitope vaccine engineering bacteria BIB. Methods: Based on the results of shake flask fermentation, the process was magnified into volume of a 50 L fermenter to optimize and verify the factors affecting the yield of the target protein, such as the fermentation medium, working seed inoculation amount, inducer concentration, induction starting time, induction duration, inducer adding mode and feeding strategy. Results: After activated in modified TB medium at 37°C for 8 h, the BIB working seed was inoculated at 5% (v/v) and was induced for expression for another 11 h by the final concentration of 5 mmol/L lactose. In growth phase, glucose at rate of 80 ml/h was used as carbon source, and in induction phase, glycerol at rate of 40 ml/h was used as carbon source; ammonia water was added dropwise to control pH at about 7.0, and revolution speed is adjusted to control the dissolved oxygen at above 30%; ultimately the output of bacterial body was 70 g/L and protein expression amount was about 32%. Conclusion: After high cell density cultivation of the recombinant engineering bacteria, expression and yield of the target protein rBIB significantly increased. PMID:25784986

  2. An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. In cell culture, PRV has many non-essential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs ex...

  3. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    PubMed

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-04-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever. PMID:26635182

  4. Human immunodeficiency virus type 1 infection despite prior immunization with a recombinant envelope vaccine regimen.

    PubMed Central

    McElrath, M J; Corey, L; Greenberg, P D; Matthews, T J; Montefiori, D C; Rowen, L; Hood, L; Mullins, J I

    1996-01-01

    With efforts underway to develop a preventive human immunodeficiency virus type 1 (HIV-1) vaccine, it remains unclear which immune responses are sufficient to protect against infection and whether prior HIV-1 immunity can alter the subsequent course of HIV-1 infection. We investigated these issues in the context of a volunteer who received six HIV-1LAI envelope immunizations and 10 weeks thereafter acquired HIV-1 infection through a high-risk sexual exposure. In contrast to nonvaccinated acutely infected individuals, anamnestic HIV-1-specific B- and T-cell responses appeared within 3 weeks in this individual, and neutralizing antibody preceded CD8+ cytotoxic responses. Despite an asymptomatic course and an initial low level of detectable infectious virus, a progressive CD4+ cell decline and dysfunction occurred within 2 years. Although vaccination elicited immunity to HIV-1 envelope, which was recalled upon HIV-1 exposure, it was insufficient to prevent infection and subsequent immunodeficiency. Images Fig. 2 PMID:8633000

  5. Japanese encephalitis vaccines: current vaccines and future prospects.

    PubMed

    Monath, T P

    2002-01-01

    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed. PMID:12082985

  6. Towards the conservation of endangered avian species: a recombinant West Nile Virus vaccine results in increased humoral and cellular immune responses in Japanese Quail (Coturnix japonica).

    PubMed

    Young, Jay A; Young, Joanne A; Jefferies, Wilfred

    2013-01-01

    West Nile Virus (WNV) arrived in North America in 1999 and is now endemic. Many families of birds, especially corvids, are highly susceptible to WNV and infection often results in fatality. Avian species susceptible to WNV infection also include endangered species, such as the Greater Sage-Grouse (Centrocercus uropbasianuts) and the Eastern Loggerhead Shrike (Lanius ludovicianus migrans). The virus has been shown to contribute towards the likelihood of their extinction. Although a clear and present threat, there exists no avian WNV vaccine available to combat this lethal menace. As a first step in establishing an avian model for testing candidate WNV vaccines, avian antibody based reagents were assessed for cross-reactivity with Japanese quail (Coturnix japonica) T cell markers CD4 and CD8; the most reactive were found to be the anti-duck CD8 antibody, clone Du-CD8-1, and the anti-chicken/turkey CD4 antibody, clone CT4. These reagents were then used to assess vaccine performance as well as to establish T cell populations in quail, with a novel population of CD4/CD8 double positive T cells being identified in Japanese quail. Concurrently, non-replicating recombinant adenoviruses, expressing either the WNV envelope or NS3 'genes' were constructed and assessed for effectiveness as avian vaccines. Japanese Quail were selected for testing the vaccines, as they provide an avian model that parallels the population diversity of bird species in the wild. Both the level of WNV specific antibodies and the number of T cells in vaccinated birds were increased compared to unvaccinated controls. The results indicate the vaccines to be effective in increasing both humoral and cellular immune responses. These recombinant vaccines therefore may find utility as tools to protect and maintain domestic and wild avian populations. Their implementation may also arrest the progression towards extinction of endangered avian species and reduce the viral reservoir that potentiates infection

  7. Head-to-Head Comparison of Three Vaccination Strategies Based on DNA and Raw Insect-Derived Recombinant Proteins against Leishmania

    PubMed Central

    Núñez, María del Carmen; Laurenti, Márcia D.; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M.

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories –the cheapest way of producing DNA-PROT vaccines– is a practical and cost-effective way for potential “off the shelf” supplying vaccines at very low prices for the protection against

  8. Enhanced protective immune response to PCV2 subunit vaccine by co-administration of recombinant porcine IFN-γ in mice.

    PubMed

    Wang, Yi-Ping; Liu, Dan; Guo, Long-Jun; Tang, Qing-Hai; Wei, Yan-Wu; Wu, Hong-Li; Liu, Jian-Bo; Li, Sheng-Bin; Huang, Li-Ping; Liu, Chang-Ming

    2013-01-21

    The capsid (Cap) protein of PCV2 is the major immunogenic protein that is crucial to induce PCV2-specific neutralizing antibodies and protective immunity; thus, it is a suitable target antigen for the research and development of genetically engineered vaccines against PCV2 infection. IFN-γ has exhibited potential efficacy as an immune adjuvant that enhances the immunogenicity of certain vaccines in experimental animal models. In this study, three recombinant proteins: PCV2-Cap protein, porcine IFN-γ (PoIFN-γ), and the fusion protein (Cap-PoIFN-γ) of PCV2-Cap protein and PoIFN-γ were respectively expressed in the baculovirus system, and analyzed by Western blot and indirect ELISA. Additionally, we evaluated the enhancement of the protective immune response to the Cap protein-based PCV2 subunit vaccine elicited by co-administration of PoIFN-γ in mice. Vaccination of mice with the PCV2-Cap+PoIFN-γ vaccine elicited significantly higher levels of PCV2-specific IPMA antibodies, neutralizing antibodies, and lymphocyte proliferative responses compared to the Cap-PoIFN-γ vaccine, the PCV2-Cap vaccine, and LG-strain. Following virulent PCV2 challenge, no viraemia was detected in all immunized groups, and the viral loads in lungs of the PCV2-Cap+PoIFN-γ group were significantly lower compared to the Cap-PoIFN-γ group, the LG-strain group, and the mock group, but slightly lower compared to the PCV2-Cap group. These findings suggested that PoIFN-γ substantially enhanced the protective immune response to the Cap protein-based PCV2 subunit vaccine, and that the PCV2-Cap+PoIFN-γ subunit vaccine potentially serves as an attractive candidate vaccine for the prevention and control of PCV2-associated diseases. PMID:23219694

  9. Mechanistic Insight into the TH1-Biased Immune Response to Recombinant Subunit Vaccines Delivered by Probiotic Bacteria-Derived Outer Membrane Vesicles

    PubMed Central

    Rosenthal, Joseph A.; Huang, Chung-Jr.; Doody, Anne M.; Leung, Tiffany; Mineta, Kaho; Feng, Danielle D.; Wayne, Elizabeth C.; Nishimura, Nozomi; Leifer, Cynthia; DeLisa, Matthew P.; Mendez, Susana; Putnam, David

    2014-01-01

    Recombinant subunit vaccine engineering increasingly focuses on the development of more effective delivery platforms. However, current recombinant vaccines fail to sufficiently stimulate protective adaptive immunity against a wide range of pathogens while remaining a cost effective solution to global health challenges. Taking an unorthodox approach to this fundamental immunological challenge, we isolated the TLR-targeting capability of the probiotic E. coli Nissle 1917 bacteria (EcN) by engineering bionanoparticlate antigen carriers derived from EcN outer membrane vesicles (OMVs). Exogenous model antigens expressed by these modified bacteria as protein fusions with the bacterial enterotoxin ClyA resulted in their display on the surface of the carrier OMVs. Vaccination with the engineered EcN OMVs in a BALB/c mouse model, and subsequent mechanism of action analysis, established the EcN OMV’s ability to induce self-adjuvanted robust and protective humoral and TH1-biased cellular immunity to model antigens. This finding appears to be strain-dependent, as OMV antigen carriers similarly engineered from a standard K12 E. coli strain derivative failed to generate a comparably robust antigen-specific TH1 bias. The results demonstrate that unlike traditional subunit vaccines, these biomolecularly engineered “pathogen-like particles” derived from traditionally overlooked, naturally potent immunomodulators have the potential to effectively couple recombinant antigens with meaningful immunity in a broadly applicable fashion. PMID:25426709

  10. Mechanistic insight into the TH1-biased immune response to recombinant subunit vaccines delivered by probiotic bacteria-derived outer membrane vesicles.

    PubMed

    Rosenthal, Joseph A; Huang, Chung-Jr; Doody, Anne M; Leung, Tiffany; Mineta, Kaho; Feng, Danielle D; Wayne, Elizabeth C; Nishimura, Nozomi; Leifer, Cynthia; DeLisa, Matthew P; Mendez, Susana; Putnam, David

    2014-01-01

    Recombinant subunit vaccine engineering increasingly focuses on the development of more effective delivery platforms. However, current recombinant vaccines fail to sufficiently stimulate protective adaptive immunity against a wide range of pathogens while remaining a cost effective solution to global health challenges. Taking an unorthodox approach to this fundamental immunological challenge, we isolated the TLR-targeting capability of the probiotic E. coli Nissle 1917 bacteria (EcN) by engineering bionanoparticlate antigen carriers derived from EcN outer membrane vesicles (OMVs). Exogenous model antigens expressed by these modified bacteria as protein fusions with the bacterial enterotoxin ClyA resulted in their display on the surface of the carrier OMVs. Vaccination with the engineered EcN OMVs in a BALB/c mouse model, and subsequent mechanism of action analysis, established the EcN OMV's ability to induce self-adjuvanted robust and protective humoral and T(H)1-biased cellular immunity to model antigens. This finding appears to be strain-dependent, as OMV antigen carriers similarly engineered from a standard K12 E. coli strain derivative failed to generate a comparably robust antigen-specific TH1 bias. The results demonstrate that unlike traditional subunit vaccines, these biomolecularly engineered "pathogen-like particles" derived from traditionally overlooked, naturally potent immunomodulators have the potential to effectively couple recombinant antigens with meaningful immunity in a broadly applicable fashion. PMID:25426709

  11. Immunogenicity of recombinant classic swine fever virus CD8(+) T lymphocyte epitope and porcine parvovirus VP2 antigen coexpressed by Lactobacillus casei in swine via oral vaccination.

    PubMed

    Xu, Yigang; Cui, Lichun; Tian, Changyong; Zhang, Guocai; Huo, Guicheng; Tang, Lijie; Li, Yijing

    2011-11-01

    Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8(+) CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV. PMID:21940406

  12. Immunogenicity of Recombinant Classic Swine Fever Virus CD8+ T Lymphocyte Epitope and Porcine Parvovirus VP2 Antigen Coexpressed by Lactobacillus casei in Swine via Oral Vaccination

    PubMed Central

    Xu, Yigang; Cui, Lichun; Tian, Changyong; Zhang, Guocai; Huo, Guicheng; Tang, Lijie; Li, Yijing

    2011-01-01

    Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8+ CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV. PMID:21940406

  13. Construction of recombinant Mip-FlaA dominant epitope vaccine against Legionella pneumophila and evaluation of the immunogenicity and protective immunity.

    PubMed

    He, Jinlei; Zhang, Junrong; He, Yanxia; Huang, Fan; Li, Jiao; Chen, Qiwei; Chen, Dali; Chen, Jianping

    2016-02-01

    Legionnaires' disease, a kind of systemic disease with pneumonia as the main manifestation, is caused by Legionella pneumophila (L. pneumophila). In order to prevent the disease, we optimized Mip and FlaA, the virulence factors of L. pneumophila, to design recombinant Mip-FlaA dominant epitope vaccine against the pathogen. Firstly, the coding sequences of mip and flaA were optimized by DNAStar software and Expasy protein analysis system, and then, the tertiary structure and function of recombinant Mip-FlaA were predicted by PHYRE2 Protein Fold Recognition Server. After that, the optimized mip, flaA and mip-flaA were cloned, expressed and purified, and the proteins were used as dominant epitope vaccines to immunize BABL/c mice. Moreover, the IgG titers, histological changes in lung and the level of TNF-α, IFN-γ, IL-6 and IL-1β were detected to reflect the immunogenicity and protective immunity of the vaccines. The results of SDS-PAGE and Western blot proved the recombinant Mip-FlaA was successfully expressed. ELISA results of IgG titers and these cytokines showed Mip-FlaA group was capable to induce the strongest immune response, compared to PBS, Mip and FlaA groups. In addition, histopathology analysis demonstrated the mice immunized with Mip-FlaA showed better immune protection. Therefore, the work indicated that the above-described biological tools were useful in optimization of epitope vaccine. Antigenic characterization and immune protection of recombinant Mip-FlaA would be of great value in understanding the immunopathogenesis of the disease and in developing possible vaccine against the pathogen. PMID:26607265

  14. [VACCINES].

    PubMed

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs. PMID:26685562

  15. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    PubMed Central

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  16. Control of ticks resistant to immunization with Bm86 in cattle vaccinated with the recombinant antigen Bm95 isolated from the cattle tick, Boophilus microplus.

    PubMed

    García-García, J C; Montero, C; Redondo, M; Vargas, M; Canales, M; Boue, O; Rodríguez, M; Joglar, M; Machado, H; González, I L; Valdés, M; Méndez, L; de la Fuente, J

    2000-04-28

    The recombinant Bm86-containing vaccine Gavac(TM) against the cattle tick Boophilus microplus has proved its efficacy in a number of experiments, especially when combined with acaricides in an integrated manner. However, tick isolates such as the Argentinean strain A, show low susceptibility to this vaccine. In this paper we report on the isolation of the Bm95 gene from the B. microplus strain A, which was cloned and expressed in the yeast Pichia pastoris producing a glycosylated and particulated recombinant protein. This new antigen was effective against different tick strains in a pen trial, including the B. microplus strain A, resistant to vaccination with Bm86. A Bm95-based vaccine was used to protect cattle against tick infestations under production conditions, lowering the number of ticks on vaccinated animals and, therefore, reducing the frequency of acaricide treatments. The Bm95 antigen from strain A was able to protect against infestations with Bm86-sensitive and Bm86-resistant tick strains, thus suggesting that Bm95 could be a more universal antigen to protect cattle against infestations by B. microplus strains from different geographical areas. PMID:10717348

  17. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    PubMed

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  18. Subtype specificity of anti-HBs antibodies produced by human B-cell lines isolated from normal individuals vaccinated with recombinant hepatitis B vaccine.

    PubMed

    Shokrgozar, Mohammad Ali; Shokri, Fazel

    2002-05-22

    Hepatitis B surface antigen (HBsAg) constitutes of an immunodominant determinant common to all subtypes of hepatitis B virus (HBV) and four major subtypic determinants. Subtype specificity of the human antibody response to HBsAg has already been partially studied in vivo at serum level. No comprehensive data, however, is available at the cellular level. In this study, the methods of Epstein-Barr virus (EBV) transformation and limiting dilution assay (LDA) were used to establish a large number of B-cell lines secreting anti-HBs antibody from 34 adult individuals who were good-responders to the recombinant hepatitis B vaccine (HBsAg/adw). Specificity of 222 B-cell lines was assayed by sandwich ELISA and immunoblotting, of which 216 samples (97.3%) were identified to be anti-a, 5 samples (2.3%) as anti-d and one sample (0.4%) as anti-w. The isotype of most of the anti-HBs antibodies was IgG and belonged to the IgG1 subclass. These findings which have not already been extensively investigated at the cellular level in human confirm and extend previous circumstantial results achieved in mouse and further prove the immunodominant role of the "a" determinant of HBsAg in antibody response in human. PMID:12009275

  19. Replication of recombinant herpesvirus of turkey expressing genes of infectious laryngotracheitis virus in specific pathogen free and broiler chickens following in ovo and subcutaneous vaccination.

    PubMed

    Gimeno, Isabel M; Cortes, Aneg L; Guy, James S; Turpin, Elizabeth; Williams, Christopher

    2011-08-01

    Replication of a recombinant herpesvirus of turkey vaccine expressing infectious laryngotracheitis virus genes (rHVT-LT) was evaluated in specific pathogen free (SPF) and commercial broiler chickens after various vaccination protocols (amniotic route at embryonation day [ED] 18; intra-embryonic route at ED 19; and subcutaneous at 1 day of age [s.c.]). Three experiments were conducted: in the first experiment, replication of rHVT-LT vaccine was chronologically evaluated and compared with the replication of herpesvirus of turkey (HVT) in SPF chickens; in the second experiment, the effect of different in ovo vaccination procedures on rHVT-LT vaccine replication was evaluated in SPF chickens; and in the third experiment, the effect of different in ovo vaccination procedures on rHVT-LT vaccine replication was evaluated in commercial broiler chickens with maternal antibodies against HVT and infectious laryngotracheitis virus (LTV). rHVT-LT vaccine replicated in chickens after in ovo (ED 18 and ED 19) or s.c. administration at a similar level. In vivo replication of rHVT-LT vaccine was slower than HVT vaccine. However, in vivo both rHVT-LT and HVT vaccines replicated at similar levels. Both vaccines were consistently detected in the spleen and feather pulp and at lower frequency in the lung. The frequency of samples with detectable levels of rHVT-LT DNA was lower in broiler chickens than in SPF chickens, probably due to interactions with maternal antibodies. Differences between SPF chickens and broiler chickens were found also in the transcription of the LTV glycoprotein I gene (gI). In SPF chickens, in ovo inoculation resulted in a higher number of spleen samples with detectable gI transcripts than s.c. inoculation. In broiler chickens, however, no differences in the level of gI transcripts in spleen samples were found between chickens vaccinated in ovo and those vaccinated by the s.c. route. Transcription of LTV gI gene in lung samples was very low in both SPF and

  20. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    PubMed

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  1. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines

    PubMed Central

    Meseda, Clement A.; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P.

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  2. Development of the Brazilian Anti Schistosomiasis Vaccine Based on the Recombinant Fatty Acid Binding Protein Sm14 Plus GLA-SE Adjuvant.

    PubMed

    Tendler, Miriam; Almeida, Marilia; Simpson, Andrew

    2015-01-01

    Data herein reported and discussed refer to vaccination with the recombinant fatty acid binding protein (FABP) family member of the schistosomes, called Sm14. This antigen was discovered and developed under a Brazilian platform led by the Oswaldo Cruz Foundation, from the Health Ministry in Brazil, and was assessed for safety and immunogenicity in healthy volunteers. This paper reviews past and recent outcomes of developmental phases of the Sm14-based anti schistosomiasis vaccine addressed to, ultimately, impact transmission of the second most prevalent parasitic endemic disease worldwide. PMID:26029206

  3. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice1

    PubMed Central

    Yu, Hong; Karunakaran, Karuna P.; Jiang, Xiaozhou; Brunham, Robert C.

    2014-01-01

    An efficacious vaccine is needed to control Chlamydia trachomatis infection. In the murine model of C. muridarum genital infection, multifunctional mucosal CD4 T cells are the foundation for protective immunity, with antibody playing a secondary role. We previously identified four Chlamydia outer membrane proteins (PmpE, PmpF, PmpG and PmpH) as CD4 T cell vaccine candidates using a dendritic cell-based immunoproteomic approach. We also demonstrated that these four polymorphic membrane proteins (Pmps) individually conferred protection as measured by accelerated clearance of Chlamydia infection in the C57BL/6 murine genital tract model. The major outer membrane protein, MOMP is also a well-studied protective vaccine antigen in this system. In the current study, we tested immunogenicity and protection of a multisubunit recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with or without the major outer membrane protein (MOMP) formulated with a Th1 polarizing adjuvant in C57BL/6, Balb/c and C3H mice. We found that C57BL/6 mice vaccinated with PmpEFGH+MOMP elicited more robust cellular immune responses than mice immunized with individual protein antigens. Pmps elicited more variable cellular immune responses than MOMP among the three strains of mice. The combination vaccine accelerated clearance in the three strains of mice although at different rates. We conclude that the recombinant outer membrane protein combination constitutes a promising first generation Chlamydia vaccine construct that should provide broad immunogenicity in an outbred population. PMID:24992718

  4. The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus

    PubMed Central

    de Cassan, Simone C.; Forbes, Emily K.; Douglas, Alexander D.; Milicic, Anita; Singh, Bijender; Gupta, Puneet; Chauhan, Virander S.; Chitnis, Chetan E.; Gilbert, Sarah C.; Hill, Adrian V. S.; Draper, Simon J.

    2011-01-01

    A central goal in vaccinology is the induction of high and sustained antibody responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent pre-clinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as alum to new pre-clinical adjuvants and adjuvants in clinical development such as Abisco®100, CoVaccine HT™, Montanide®ISA720 and SE-GLA, for their ability to induce high and sustained antibody responses and T cell responses. These adjuvants induced a broad range of antibody responses when used in a three-shot protein-in-adjuvant regime using the model antigen ovalbumin and leading blood-stage malaria vaccine candidate antigens. Surprisingly, this range of antibody immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost antibody responses primed by a human adenovirus serotype 5 (AdHu5) vaccine recombinant for the same antigen. This AdHu5-protein regime also induced a more cytophilic antibody response and demonstrated improved efficacy of merozoite surface protein-1 (MSP-1) protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination, and may circumvent the need for more potent chemical adjuvants. PMID:21813775

  5. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    PubMed

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity. PMID:26046831

  6. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    PubMed

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-01

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala. PMID:26747718

  7. Efficacy of DNA vaccines forming e7 recombinant retroviral virus-like particles for the treatment of human papillomavirus-induced cancers.

    PubMed

    Lescaille, Geraldine; Pitoiset, Fabien; Macedo, Rodney; Baillou, Claude; Huret, Christophe; Klatzmann, David; Tartour, Eric; Lemoine, François M; Bellier, Bertrand

    2013-05-01

    Human papillomavirus (HPV) is involved in the development of anogenital tumors and also in the development of oropharyngeal head and neck carcinomas, where HPV-16, expressing the E6 and E7 oncoproteins, is the most frequent serotype. Although vaccines encoding L1 and L2 capsid HPV proteins are efficient for the prevention of HPV infection, they are inadequate for treating established tumors. Hence, development of innovative vaccine therapies targeting E6/E7 is important for controlling HPV-induced cancers. We have engineered a nononcogenic mutated E7-specific plasmo-retroVLP vaccine (pVLP-E7), consisting of plasmid DNA, that is able to form recombinant retrovirus-based virus-like particles (VLPs) that display E7 antigen into murine leukemia virus Gag proteins pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G). pVLP-E7 vaccinations were studied for their ability to generate specific immune responses and for induction of protective immunity against tumor cell challenge in preventive and therapeutic models. The produced VLPs induce the maturation of human dendritic cells in vitro and mount specific E7 T cell responses. Intradermic vaccinations of mice with pVLP-E7 show their efficacy to generate antigen-specific T cell responses, to prevent and protect animals from early TC-1 tumor development compared with standard DNA or VLP immunizations. The vaccine efficacy was also evaluated for advanced tumors in mice vaccinated at various time after the injection of TC-1 cells. Data show that pVLP-E7 vaccination can cure mice with already established tumors only when combined with Toll-like receptor-7 (TLR7) and TLR9 agonists. Our findings provide evidence that pVLPs, combining the advantages of DNA and VLP vaccines, appear to be a promising strategy for the treatment of HPV-induced cancers. PMID:23521528

  8. Vaccines

    MedlinePlus Videos and Cool Tools

    ... help the body defend itself against foreign invaders. As the antigens invade the body's tissues, they attract ... the suppressor T cells stop the attack. After a vaccination, the body will have a memory of ...

  9. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children

    PubMed Central

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P.; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J.; Gibbons, Robert V.; Yoon, In-Kyu; Jarman, Richard G.; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H.; Thomas, Stephen J.; Innis, Bruce L.

    2016-01-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1–4 waned during the 1–3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. PMID:27022153

  10. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    PubMed

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster do